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Abstract The kinetochore is the multi-protein complex that drives chromosome
segregation in eukaryotes. It assembles onto centromeric DNA and mediates
attachment to spindle microtubules. Kinetochore research over the last several
decades has been focused on a few animal and fungal model organisms, which
revealed a detailed understanding of the composition and organization of their
kinetochores. Yet, these traditional model organisms represent only a small fraction
of all eukaryotes. To gain insights into the actual degree of kinetochore diversity, it
is critical to extend these studies to nontraditional model organisms from evolu-
tionarily distant lineages. In this chapter, we review the current knowledge of
kinetochores across diverse eukaryotes with an emphasis on variations that arose in
nontraditional model organisms. In addition, we also review the literature on spe-
cies, in which the subcellular localization of kinetochores has changed from the
nucleoplasm to the nuclear membrane. Finally, we speculate on the organization of
the chromosome segregation machinery in an early eukaryotic ancestor to gain
insights into fundamental principles of the chromosome segregation machinery,
which are common to all eukaryotes.

1 Introduction

Mitosis is the process that partitions newly replicated chromosomes from the
mother cell into the two emerging daughter cells (McIntosh 2016). Fundamental to
this process is the kinetochore, a macromolecular protein complex that assembles
onto specialized chromosomal regions called centromeres to mediate the attachment
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of sister chromatids to spindle microtubules (Cheeseman and Desai 2008;
Santaguida and Musacchio 2009). Kinetochores also promote the recruitment of
cohesin complexes around centromeres to hold duplicated sister chromatids toge-
ther until anaphase (Nasmyth and Haering 2009). At their DNA-binding interface,
kinetochores need to ensure stable attachment to tolerate the pulling forces exerted
by kinetochore microtubules (Allshire and Karpen 2008; Fukagawa and Earnshaw
2014; Westhorpe and Straight 2015; McKinley and Cheeseman 2016). In contrast
to this more static attachment, the binding to spindle microtubules must be
dynamically regulated (Foley and Kapoor 2013; Cheerambathur and Desai 2014;
London and Biggins 2014; Etemad and Kops 2016). Faithful chromosome segre-
gation requires that sister kinetochores form bioriented attachments to spindle
microtubules emanating from opposite poles (Nicklas 1997). Biorientation is nec-
essary for the accurate distribution of sister chromatids into daughter cells during
anaphase.

Research on kinetochores has mainly been performed on a few model organ-
isms, such as fungi, worms, flies, and vertebrates. Their studies have been instru-
mental in informing us about the basic composition and organization of
kinetochores among these species. However, these “traditional” model organisms
only represent a small fraction of the entire eukaryotic biodiversity. In fact, both
animals and fungi are members of the Opisthokonta, that is only one out of six
major supergroups of eukaryotes (Fig. 1) (Walker et al. 2011; Adl et al. 2012).
While extensive analyses have not been performed on kinetochores in
non-opisthokonts, glances into kinetochores from additional species scattered
across the eukaryotic phylogenetic tree have revealed extraordinary levels of
variations in kinetochore composition and subcellular location. This stands in sharp
contrast to many other cell cycle machines that are highly conserved among diverse
eukaryotes (e.g., Cyclin/CDK, cohesin, condensin, the anaphase promoting com-
plex, and proteasomes). In this chapter, we will first discuss the extent of similarity
and variation in kinetochore composition among animals and fungi. We will then
review kinetochores in select organisms from different supergroups, as well as
unique kinetochores that evolved in kinetoplastids. Following up on that, we will
highlight membrane-bound kinetochores found in some unicellular organisms.
Finally, we will speculate on the organization of the chromosome segregation
machinery in early eukaryotes.

2 The Kinetochore Complex in Animals and Fungi

Genetic and biochemical analyses in fungi and vertebrates have led to the identi-
fication of more than 80 proteins that are part of the kinetochore (Biggins 2013;
Cheeseman 2014). The structural core of the kinetochore consists of an inner and an
outer complex. The inner kinetochore complex binds centromeric chromatin. It
serves as a platform for the recruitment of the outer kinetochore complex that binds
spindle microtubules during mitosis and meiosis. Both complexes are characterized
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by a network of several protein complexes that work in concert to regulate the
proper attachment of kinetochore microtubules to centromeric DNA.

2.1 Similarities and Variations of the Inner Kinetochore
in Animals and Fungi

In vertebrates and fungi, the inner kinetochore consists of *16 members that are
commonly referred to as the Constitutive Centromere Associated Network or
CCAN (Cheeseman and Desai 2008; Westermann and Schleiffer 2013; Westhorpe
and Straight 2013; Fukagawa and Earnshaw 2014) (Table 1). It is generally agreed
that the recruitment of all CCAN members in these species depends on a specialized

Fig. 1 Six eukaryotic supergroups. Representative organisms from each supergroup are shown as
examples
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centromeric histone H3 variant, CENP-A (also known as CenH3—see the Note on
nomenclature at the end of this chapter) (Black and Cleveland 2011; Müller and
Almouzni 2014; Earnshaw 2015) and its direct DNA-binding partner CENP-C
(Carroll et al. 2010; Basilico et al. 2014). In addition to CENP-A and CENP-C,
other CCAN components also make DNA contacts, including the histone-fold
proteins CENP-T and CENP-W as well as CENP-UAme1 and CENP-QOkp1 in
budding yeast (Hori et al. 2008; Hornung et al. 2014).

Given their central role in kinetochore function, it is surprising that several inner
kinetochore components undergo rapid evolution at the amino acid level, which
complicates homology-based predictions even in well-sequenced species (Henikoff
et al. 2001; Talbert et al. 2009; Malik and Henikoff 2009). While sequence simi-
larity of several CCAN components between vertebrates and budding yeast was
revealed early on (Meraldi et al. 2006), the identification of phylogenetic rela-
tionship for other CCAN components often required advanced bioinformatics tools
due to limited sequence similarities (Schleiffer et al. 2012; Westermann and
Schleiffer 2013). For example, the budding yeast CENP-TCnn1 was only identified
using a combination of proteomic approaches and remote homology predictions
(Schleiffer et al. 2012). Thus, experimental approaches as well as advanced
bioinformatics are required to obtain a comprehensive picture of kinetochores.

While most CCAN components are conserved between vertebrates and fungi,
CCAN proteins appear to be absent in Caenorhabditis elegans and Drosophila
melanogaster except for CENP-C (Table 1). While it is formally possible that these
species have highly divergent CCAN members, the wealth of extensive genetic
screens for chromosome segregation defects and biochemical purifications of
kinetochore components makes this unlikely (Cheeseman et al. 2004; Goshima
et al. 2007; Przewloka et al. 2007, 2011). Therefore, it appears that nematodes and
Diptera have “simpler” inner kinetochore complexes that just consist of CENP-C,
which connects the CENP-A-containing chromatin to outer kinetochore proteins.
The reason for this potential reduction in kinetochore complexity remains unknown.
In contrast to D. melanogaster, homologous CCAN members have been identified
in other insects (see below), showing that the near-complete loss of CCAN is not
common to all insects and instead occurred in a dipteran ancestor around 250 Mya
(Hedges et al. 2006).

While CENP-A was thought to be essential for kinetochore assembly in all animals
and fungi, recent studies showed that a number of insects have recurrently lost
CENP-A (Drinnenberg et al. 2014). Intriguingly, all CENP-A-deficient insects ana-
lyzed are derived from independent transitions from monocentric chromosomes
(where microtubules attach to a single chromosomal region) to holocentric chromo-
somes (where microtubules attach along the entire length of the chromosome) (Melters
et al. 2012; Drinnenberg et al. 2014). This strong correlation between the change in
centromeric architecture and the loss of CENP-A supports a causal relationship
between the two events in that the transition to holocentromeres facilitated the loss of
CENP-A or vice versa. While CENP-A and its binding partner CENP-C are lost,
several of the CCAN components continue to be present even in CENP-A-deficient
insects (e.g., the silkworm Bombyx mori (Table 1)). These findings suggest that the
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assembly of the inner kinetochore has been altered in CENP-A-deficient insects,
allowing CENP-A-independent kinetochore formation. Whether or not new kineto-
chore components have evolved to compensate for the loss of CENP-A is an open
question. It is important to note that other holocentric organisms including nematodes
(e.g., C. elegans) have retained CENP-AHCP-3. Thus, despite the usage of the generic
term “holocentromere”, the basic architecture and regulation of holocentromeres is
likely to be diverse among different species.

2.2 The Composition of the Outer Kinetochore Is Highly
Conserved in Animals and Fungi

The outer kinetochore complex is recruited to centromeres upon the onset of mitosis
to connect to spindle microtubules. This interaction is accomplished by
the *10-subunit KMN network that consists of the Knl1, Mis12, and Ndc80
complexes (Cheeseman et al. 2006; Petrovic et al. 2014). In contrast to the inner
kinetochore, the composition of the outer kinetochore is widely conserved across
animals and fungi (Meraldi et al. 2006; Tromer et al. 2015). Even
CENP-A-deficient insects encode the same repertoire of outer kinetochore com-
ponents, implying similar means of attaching to microtubules while utilizing
alternate inner kinetochore assembly pathways (Drinnenberg et al. 2016). A notable
exception to the otherwise conserved composition of the KMN network is found in
Diptera. D. melanogaster has lost Dsn1, a subunit of the Mis12 complex
(Przewloka and Glover 2009). In addition, the Nnf1 subunit of the Mis12 complex
underwent a duplication event giving rise to two paralogs, Nnf1a and Nnf1b, that
are part of two distinct Mis12 complexes with similar biochemical behaviors
(Przewloka et al. 2007; Schittenhelm et al. 2007; Liu et al. 2016; Richter et al.
2016; Blattner et al. 2016). The loss of Dsn1 could have been compensated by the
C-terminal part of the Drosophila Knl1 homolog (Przewloka et al. 2009). Indeed,
the overall organization of this complex appears to resemble the human and yeast
counterparts (Hornung et al. 2011; Przewloka et al. 2011; Screpanti et al. 2011).
Whether these changes have any functional consequences on the Drosophila KMN
complex is currently unclear.

3 Glimpses into Kinetochore Compositions in Diverse
Eukaryotes

While research on kinetochores in fungi and animals has revealed a paradigm for
the basic organization of kinetochores, it remains unclear whether other eukaryotes
have similar kinetochores. Comparative studies in additional eukaryotic lineages are
a key to revealing the degree of conservation and divergence of kinetochores among
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eukaryotes. Although bioinformatic analyses have identified some homologous
kinetochore proteins in diverse eukaryotes (Table 1), very few studies have char-
acterized the function of individual kinetochore proteins. Furthermore, extensive
proteomic screens have not been carried out in most organisms, leaving open the
possibility of lineage-specific evolution of additional kinetochore proteins. Below
we summarize the current knowledge of kinetochores in select eukaryotes from
different supergroups to highlight their peculiarities.

3.1 Supergroup Amoebozoa

The only kinetochore protein that has been characterized in the supergroup
Amoebozoa is the centromere-specific histone H3 variant in Dictyostelium dis-
coideum (Dubin et al. 2010). In contrast to nearly all other characterized CENP-A
proteins that have at least one extra amino acid in the loop 1 region within the
histone fold compared to histone H3 (Malik and Henikoff 2003), D. discoideum
CENP-ACenH3 does not have a longer loop 1. While alterations or shortening of
residues in loop 1 in other species can impair centromere targeting (Vermaak et al.
2002), cytological studies of D. discoideum CENP-ACenH3 revealed incorporation
into centromeric DNA (Dubin et al. 2010). Therefore, the insertion of extra amino
acids in loop 1 is not an obligatory feature of CENP-A.

3.2 Supergroup Archaeplastida

Several kinetochore proteins have been characterized in land plants (e.g.,
Arabidopsis, maize, and barley) (Dawe et al. 1999; ten Hoopen et al. 2000; Sato
et al. 2005). For example, homologous kinetochore proteins (such as CENP-C and
Mis12) identified by bioinformatics searches were analyzed by means of cytological
and mutational studies, confirming their importance for chromosome segregation in
mitosis and meiosis. Although most eukaryotes have a single CENP-A protein,
multiple CENP-ACENH3 variants are found in Arabidopsis halleri, A. lyrata
(Kawabe et al. 2006), Brassica sp. (Wang et al. 2011), Mimulus monkeyflowers
(Finseth et al. 2015), barley (Ishii et al. 2015), and Fabeae sp. (Neumann et al.
2012; Neumann et al. 2015). While it is currently unclear whether the individual
CENP-ACENH3 variants are functionally distinct, it has been hypothesized that
CENP-ACENH3 duplications occurred to counteract the evolutionary force from
centromere drive (Finseth et al. 2015) (centromere drive is discussed in the chapter
“Cell Biology of Cheating—Transmission of Centromeres and Other Selfish
Elements Through Asymmetric Meiosis” by Chm�atal et al.).

Compared to land plants, much less is known about kinetochores in other
Archaeplastida species. Cyanidioschyzon merolae is a thermoacidiphilic red alga
that is thought to be one of the most primitive photosynthetic eukaryotes. Its simple
cellular architecture and reduced genome make it an attractive organism for cell
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biological study (Matsuzaki et al. 2004). Among several homologous kinetochore
proteins identified (Table 1), only CENP-ACENH3 has been experimentally char-
acterized to date (Maruyama et al. 2007; Kanesaki et al. 2015). Given its hot and
acidic living habitats, it will be interesting to test for potential adaptations of
kinetochore components that evolved to cope with such extreme environments.

3.3 Supergroup SAR

The supergroup SAR (Stramenopiles, Alveolates, and Rhizaria: also referred to as
Harosa) includes diatoms, ciliates, apicomplexans, and dinoflagellates (discussed
later). Ciliates have a somatic macronucleus with highly amplified genes for RNA
synthesis as well as several germline micronuclei for genome maintenance. The
number of chromosomes in the somatic macronucleus can be as high as 16,000 in
some species (Swart et al. 2013). While the germline micronucleus has
CENP-ACNA1 and segregates its chromosomes accurately, the somatic macronu-
cleus does not have CENP-ACNA1 and segregates its chromosomes randomly
(Cervantes et al. 2006; Cui and Gorovsky 2006).

Apicomplexans include a number of important human pathogens, including
Plasmodium and Toxoplasma (Francia and Striepen 2014). Several kinetochore
proteins have been identified and functionally characterized in Plasmodium falci-
parum and Toxoplasma gondii including CENP-ACENH3, CENP-C, and members of
the Ndc80 complex (Brooks et al. 2011; Verma and Surolia 2013; Farrell and
Gubbels 2014). While the domain architecture appears to be conserved, the T.
gondii Nuf2 homolog contains a conserved amino acid motif that appears specific
to apicomplexan (Farrell and Gubbels 2014). The functional relevance of this motif,
however, remains unclear.

3.4 Supergroup CCTH

Very little is known about kinetochores in the supergroup CCTH (Cryptophytes,
Centrohelids, Telonemids, and Haptophytes: also called Hacrobia). Cryptophyte
algae are thought to have evolved by engulfing a red alga that contained a primary
plastid (Tanifuji and Archibald 2014). In the cryptomonad Guillardia theta, the
secondary plastid has retained the red algal-derived relict nucleus (called nucleo-
morph) (Curtis et al. 2012). How the nucleomorph genome is maintained during
cell division remains unknown. While the nucleomorph genome encodes for a
putative CENP-A homolog (Douglas et al. 2001) (Table 1), this protein lacks the
hallmark of an extended loop 1 region. It will therefore be necessary to experi-
mentally confirm whether it indeed functions as the centromeric histone variant for
the segregation of the nucleomorph genome.
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3.5 Supergroup Excavata

Excavata is a group of predominantly flagellated species (Walker et al. 2011; Adl
et al. 2012). It is divided into Metamonads and Discoba. A number of human
parasites belong to this supergroup, such as Giardia, Trichomonas vaginalis,
Naegleria fowleri, and Trypanosoma brucei.

Giardia intestinalis (Metamonads) has two histone H3-like molecules that have
a longer loop 1. Cytological studies have revealed that only one H3 variant
incorporates into centromeres, while the other variant localizes to pericentric
heterochromatin (Dawson et al. 2007), underlining the need for experimental
approaches to corroborate the identity of the centromeric histone H3 variant. As in
Dictyostelium (see above), another metamonad Trichomonas vaginalis has a
CENP-ACenH3 protein that does not have a longer loop 1, but its localization pattern
is suggestive of centromeric incorporation (Zubácová et al. 2012).

Discoba (also called JEH for Jakobids, Euglenozoa, Heterolobosea) includes
Naegleria, Euglena, and kinetoplastids. Although canonical kinetochore proteins
have been identified in Naegleria gruberi and Euglena gracilis (Table 1), none has
been identified in the genome of kinetoplastids.

4 Unconventional Kinetoplastid Kinetochores

Identification of at least a fraction of canonical kinetochore proteins (especially
CENP-A and the Ndc80 complex) in diverse eukaryotes led to a notion that all
eukaryotes may build the structural core of the kinetochore using a conserved set of
kinetochore proteins (Meraldi et al. 2006). However, none of the canonical kine-
tochore proteins were identified in the genome of kinetoplastids (Lowell and Cross
2004; Berriman et al. 2005), a group of unicellular eukaryotes defined by the
presence of kinetoplast (a large structure in the mitochondrion that contains mito-
chondrial DNA) (Vickerman 1962). They belong to the supergroup Excavata,
Discoba group, Euglenozoa. Euglenozoa is a diverse group of flagellates that
include euglenids, diplonemids, symbiontids, and kinetoplastids (Walker et al.
2011; Cavalier-Smith 2016).

To uncover the repertoire of kinetoplastid kinetochores, recent studies utilized
proteomic and functional approaches and identified 20 kinetochore proteins in
Trypanosoma brucei, named KKT1–20 (Akiyoshi and Gull 2014; Nerusheva and
Akiyoshi 2016). The majority of these proteins are conserved among kinetoplastids,
including the free-living Bodo saltans. However, obvious orthologs of KKT pro-
teins were not found even in euglenids, which instead have canonical kinetochore
proteins (Akiyoshi 2016). The unique KKT-based kinetochores are therefore not
conserved across Euglenozoa but are apparently restricted to kinetoplastids. It
remains unclear why kinetoplastids possess a unique set of kinetochore proteins
(discussed below).
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4.1 Domain Architectures of Kinetoplastid Kinetochore
Proteins

Sequence analyses of kinetoplastid kinetochore proteins have revealed the fol-
lowing conserved domains: a BRCT (BRCA1 C terminus) domain in KKT4, FHA
(Forkhead-associated) domain in KKT13, WD40-like domain in KKT15, divergent
polo boxes (DPB) in KKT2, KKT3 and KKT20, unique protein kinase domain in
KKT2 and KKT3, and CLK (cdc2-like kinase) kinase domain in KKT10 and
KKT19. While orthologs of any of the KKT proteins have not been identified in
non-kinetoplastid species, the domain architecture and sequence similarity of
KKT2, KKT3, and KKT20 suggest that these proteins may share common ancestry
with a Polo-like kinase (PLK) (Nerusheva and Akiyoshi 2016). Consistent with this
possibility, although the kinase domain of KKT2/3 is apparently unique (Parsons
et al. 2005), the next closest kinase domain is that of PLK (Akiyoshi 2016).
Furthermore, putative DNA-binding motifs are present in KKT2 and KKT3, sug-
gesting that these proteins likely bind DNA and play a critical role in establishing
unique kinetochores in kinetoplastids. Although PLK localizes at the kinetochore in
some species, it is not considered to be a structural kinetochore protein in any
eukaryote. Substrates of these KKT kinases have yet to be identified.

BRCT, FHA, or CLK-like kinase domains are not present in canonical kineto-
chore proteins. Domains found in canonical kinetochore proteins such as CH
(calponin homology) and RWD (RING finger, WD repeat, DEAD-like helicases)
domains have not been identified in KKT proteins. Although KKT proteins do not
have similarity to canonical kinetochore proteins at the primary sequence level,
high-resolution structural data are necessary to reveal if there is any similarity at the
tertiary level.

4.2 Common Features

Although components of the core kinetoplastid kinetochore appear to be distinct
from canonical kinetochore proteins present in other eukaryotes, various regulatory
proteins that are known to be important for chromosome segregation are conserved,
including Aurora B, Cyclin/CDK, cohesin, condensin, separase, and the anaphase
promoting complex (Berriman et al. 2005; Akiyoshi and Gull 2013). Aurora B
apparently localizes at the kinetochore during prometaphase and metaphase in
Trypanosoma brucei (Li et al. 2008), suggesting that its kinetochore regulatory
function may be conserved. It is known that the kinase–phosphatase balance is
important for regulating kinetochore functions in other eukaryotes. For example, the
KNL1 outer kinetochore protein recruits the PP1 phosphatase (Liu et al. 2010;
Rosenberg et al. 2011; Meadows et al. 2011; Espeut et al. 2012). Interestingly, a
conserved PP1-binding motif is present in KKT7, suggesting that PP1 may regulate
kinetochore functions in kinetoplastids. It is therefore possible that kinetoplastid
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kinetochores, while being structurally distinct, may still utilize a conserved
mechanism for the regulation of kinetochore functions.

4.3 Implications from Kinetoplastid Kinetochores

The discovery of KKT-based kinetochores in kinetoplastids challenged a widely
held assumption that the core of the kinetochore would be composed of proteins
conserved throughout eukaryotes (e.g., CENP-A and Ndc80). A corollary is that
eukaryotic chromosome segregation can be achieved using proteins distinct from
CENP-A or Ndc80. Understanding how KKT proteins carry out the conserved
kinetochore functions will likely provide important insights into fundamental
principles of the kinetochore. It also raises a possibility that there might be as yet
different types of kinetochores to be discovered in eukaryotes.

5 Membrane-Embedded Kinetochores

In addition to compositional variations, the subcellular location of kinetochores has
also been altered in some lineages. In all eukaryotes, chromosomes are enclosed
inside the nuclear envelope during most of the cell cycle. This keeps
chromosome-based activities physically separated from the cytoplasm where pro-
tein synthesis and metabolic processes take place (Martin and Koonin 2006;
Koumandou et al. 2013). This separation necessitates proper nuclear remodeling to
be coordinated with the chromosome segregation apparatus. There are mainly three
types of mitoses depending on the extent of nuclear envelope breakdown: open,
semi-open, and closed (Sazer et al. 2014; Makarova and Oliferenko 2016). In open
mitosis, the nuclear envelope breaks down completely during mitosis, facilitating
access for cytoplasmic spindle microtubules to chromosomes. Semi-open mitosis
involves a partial breakdown of the nuclear envelope, allowing transport of material
while keeping chromosomes inside the nucleus. In this case, the spindle assembles
either inside or outside of the nucleus. In the latter case, spindle microtubules
appear to fenestrate through the nuclear envelope and capture chromosomes that are
located inside the nucleus. Finally, in closed mitosis, the nuclear envelope does not
break down. To enable capturing of sister chromatids, most eukaryotes with closed
mitosis assemble an intranuclear spindle. Some eukaryotes, however, assemble an
extranuclear spindle where spindle microtubules are located outside of the nucleus.
This type of mitosis, though not very common, is found in some Alveolata
(dinoflagellates and Perkinsozoa) and Parabasalids (Trichomonads and
Hypermastigia), suggesting that it arose independently. To enable attachments
between spindle microtubules and kinetochores, these organisms embed their
kinetochores in the nuclear envelope. Below we will summarize the current
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literature on these organisms as well as their sister species and then discuss potential
adaptations and implications from such kinetochores.

5.1 Dinoflagellates

Dinoflagellates are a highly diverse group of flagellates, including photosynthetic
free-living and parasitic species (Taylor et al. 2007). They belong to the supergroup
SAR, Alveolata group, and their sister groups include Perkinsozoa and
Apicomplexa (Saldarriaga et al. 2004) (Fig. 2). Dinoflagellates are characterized by
large genome sizes in the range of 1,500 Mbp to 185,000 Mbp (Wisecaver and
Hackett 2011). Despite having all core histone genes, histones are not involved in
packaging the majority of nuclear DNA (Hackett et al. 2005; Marinov and Lynch
2015). In addition, other basic nuclear proteins including Dinoflagellates/Viral
NucleoProteins (DVNPs) and HU-like proteins might substitute major histone
functions in some of these organisms (Sala-Rovira et al. 1991; Chan and Wong
2007; Gornik et al. 2012; Talbert and Henikoff 2012; Bachvaroff et al. 2014). Their
chromosomes are permanently condensed, showing a characteristic liquid crys-
talline state even in interphase. Interestingly, some, but not all, dinoflagellates have
kinetochores embedded in the nuclear envelope with an extranuclear spindle
(Leadbeater and Dodge 1967; Kubai and Ris 1969; Spector and Triemer 1981).

Dinoflagellates are divided into core dinoflagellates, Syndiniales, and early
diverging Oxyrrhinales (Fig. 2) (Wisecaver and Hackett 2011). Electron micro-
scopy revealed that kinetochores are embedded in the nuclear envelope in core
dinoflagellates [e.g., Amphidinium (Oakley and Dodge 1974) and Crypthecodinium
cohnii (Bhaud et al. 2000) (Fig. 3)] as well as in Syndiniales (e.g., Syndinium
sp. (Ris and Kubai 1974)). Due to their large genome sizes, genome sequence data
are limited in dinoflagellates. In fact, the only dinoflagellate genome sequence
available to date is for Symbiodinium minutum (Shoguchi et al. 2013), which
revealed putative CENP-A and outer kinetochore components (Table 1) as well as a
spindle assembly checkpoint protein (Mad3/BubR1: symbB.v1.2.026514.t1). These
findings suggest that this organism still utilizes canonical kinetochore components
and the spindle checkpoint. Indeed, a microtubule inhibitor nocodazole delayed
mitotic exit in Crypthecodinium cohnii, showing that the spindle checkpoint is
functional in core dinoflagellates (Yeung et al. 2000).

In contrast, a member of the early diverging Oxyrrhinales, Oxyrrhis marina, has
an intranuclear spindle, and its chromosomes are not attached to the nuclear
envelope (Triemer 1982; Gao and Li 1986; Kato et al. 2000). These studies show
that the extranuclear spindle is not a ubiquitous feature of dinoflagellates.
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5.2 Perkinsozoa

Perkinsozoa is one of the closest relatives of dinoflagellates (Fig. 2). Like core
dinoflagellates and Syndiniales, Perkinsozoa undergoes a closed mitosis with an
extranuclear spindle, suggesting that its kinetochores are embedded in the nuclear
envelope (e.g., Perkinsus marinus (Perkins 1996) and Cryptophagus (Brugerolle
2002)). Unlike dinoflagellates, however, Perkinsozoa has a smaller genome size that
is packaged into nucleosomes (58 Mbp in Perkinsus marinus (Gornik et al. 2012)),
and its chromosomes are not permanently condensed. Taken together, the obser-
vations in Perkinsozoa suggest that extranuclear spindles and membrane-embedded

Fig. 2 Membrane-bound kinetochores have independently evolved at least twice. The diagram
shows the evolutionary transition to membrane-bound kinetochores in Perkinsozoa and
Parabasalids indicated by the blue star and thick branches. Two black stars indicate the reversion
to non-membrane-bound kinetochores
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kinetochores are not necessarily the consequence of an expanded genome or the
diminution of packaging histones.

In contrast to Perkinsozoa, its sister group Apicomplexa (e.g., Plasmodium and
Toxoplasma gondii) undergoes a closed mitosis with an intranuclear spindle as is
the case for many other species in the SAR supergroup (Francia and Striepen 2014).
These observations suggest that the nuclear envelop-embedded kinetochores and
the extranuclear spindle appeared at or before the emergence of Perkinsozoa
(Cavalier-Smith and Chao 2004) (Fig. 2). Therefore, the intranuclear spindle in
Oxyrrhis is most likely a derived feature, i.e., back to a more canonical state. The
driving forces underlying the switch to the extranuclear spindle or back, however,
remain unclear.

Fig. 3 Membrane-embedded kinetochores in dinoflagellates. Top Electron microscopy micro-
graph of mitotic Crypthecodinium cohnii cells. Note that the kinetochore-like structure embedded
in the nuclear membrane makes contact with extranuclear spindle microtubules (arrows). Bars
0.8 µm (left), 0.3 µm (right). Reproduced from Bhaud et al. (2000) with permission from the
Company of Biologists Limited. Bottom Simplified schematic of images on top
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5.3 Parabasalids

Membrane-bound kinetochores have also evolved in Parabasalids that belong to the
supergroup Excavata, Metamonads group. They are characterized by a unique
parabasal apparatus (Honigberg 1963). Electron microscopy studies showed that
Trichomonads (Tritrichomonas foetus and Trichomonas vaginalis) and
Hypermastigia (Trichonympha agilis) undergo a closed mitosis with an extranuclear
spindle, and have kinetochores embedded in the nuclear envelope (Kubai 1973;
Ribeiro et al. 2002) (Fig. 4). As in dinoflagellates and Perkinsozoa, canonical
kinetochore proteins are found in the genome of Trichomonas vaginalis (Carlton
et al. 2007; Zubácová et al. 2012) (Table 1). Because other members of meta-
monads such as Giardia have intranuclear spindles (Sagolla et al. 2006),
membrane-embedded kinetochores and extranuclear spindles in Parabasalids appear
to be a derived feature that independently evolved in this lineage.

5.4 Implications from Membrane-Bound Kinetochores

The findings of nuclear envelope-embedded kinetochores raise several questions.
It is likely that the change in the location required adaptations of the kinetochore

due to the change in biophysical environment. What modifications are necessary to
allow kinetochores to be embedded in the nuclear envelope and what are possible
consequences? Although the exact position of kinetochores/centromeres within the
lipid bilayer of nuclear membranes remains unclear, electron microscopy data
indicate that microtubules likely interact with kinetochores in the cytoplasm rather

Fig. 4 Bipolar organization of an extranuclear mitotic spindle in Parabasalids. Left Electron
microscopy image of Tritrichomonas foetus. Note that some extranuclear spindle microtubules
terminate outside the nuclear membrane. Bars 560 and 320 nm (inset). Reproduced from Ribeiro
et al. (2002) with permission from John Wiley and Sons. Right Simplified schematic of the images
on left
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than in the nuclear envelope. This implies that the microtubule-binding domain of
the Ndc80 complex is located outside of the nuclear envelope. Other kinetochore
proteins that bridge between the Ndc80 complex and CENP-A-containing cen-
tromeric chromatin within the nucleus must therefore be embedded within the
nuclear envelope. Transmembrane domains have so far not been identified in any of
Symbiodinium minutum and Trichomonas vaginalis kinetochore proteins. It is
possible that their kinetochores insert into the lipid bilayer by interacting with other
nuclear envelope-embedded components such as the nuclear pore complex as
previously suggested (Kubai 1973; Ris and Kubai 1974; Cachon and Cachon 1977;
Drechsler and McAinsh 2012).

Another question is how membrane-embedded kinetochores form biorientation
and regulate cell cycle progression. Can kinetochores move freely in the nuclear
envelope or do they require new membrane synthesis? And once biorientation is
achieved, how do nuclear and cytoplasmic environments communicate to promote
the transition to anaphase, activating the anaphase promoting complex to disrupt
cohesion (in the nucleus) and Cyclin B (in the nucleus or cytoplasm), while
coordinating the elongation of spindle microtubules (in the cytoplasm)? Finally,
what was the evolutionary driving force that underlies the assembly of kinetochores
within the nuclear envelope? To address these unknowns, new tools and model
systems need to be developed. Importantly, genetic manipulations have already
been established in some dinoflagellates (Te and Lohuis 1998; Radakovits et al.
2010) and Trichomonas vaginalis (Delgadillo et al. 1997). Studies on these
membrane-embedded kinetochores will likely shed new light onto the diverse
mechanism of kinetochore assembly and chromosome segregation in eukaryotes.

6 Speculation of Kinetochores in Early Eukaryotes

Chromosome segregation in the last eukaryotic common ancestor (LECA) was
likely driven by tubulin-based polymers because microtubules are a universal
feature of the chromosome segregation machinery in all known eukaryotes
(McIntosh et al. 2010; Yutin and Koonin 2012; Findeisen et al. 2014). In addition,
the LECA likely used condensins to compact chromosomes and cohesins to connect
duplicated sister chromatids until anaphase (Nasmyth and Haering 2009; Hirano
2016). Furthermore, the presumed presence of cyclin-dependent kinases and the
anaphase promoting complex suggests that chromosome segregation was probably
already regulated in the cell cycle dependent manner (Nasmyth 1995;
Cavalier-Smith 2010a; Garg and Martin 2016).

In contrast to these components, no obvious ortholog for any of the kinetochore
proteins has been identified in prokaryotes, including Lokiarchaeota that is con-
sidered to be the closest sister group to eukaryotes (Spang et al. 2015). Therefore, it
is unclear whether the LECA utilized canonical kinetochore components, such as
CENP-A and Ndc80 that are found in nearly all extant species. It is formally
possible that the LECA utilized a KKT-based complex that has later been replaced
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by canonical kinetochore components in most eukaryotic lineages. This model is
consistent with the controversial hypothesis that kinetoplastids might represent the
earliest branching eukaryotes (Cavalier-Smith 2010b; Cavalier-Smith 2013;
Akiyoshi and Gull 2014). Alternatively, the KKT-based kinetochore may be a
derived feature that replaced early eukaryotic kinetochores at some point during the
kinetoplastid evolution. A third possibility is that either canonical kinetochores or
the KKT-based kinetochores had not yet evolved in the LECA. In this case,
chromosome segregation in early eukaryotes might have been similar to the
plasmid-partitioning systems found in Bacteria (Gerdes et al. 2010; Reyes-Lamothe
et al. 2012) and Archaea (Barillà 2016) where specific DNA elements are recog-
nized by DNA-binding proteins that connect to filament-forming proteins to drive
segregation. In such a system, chromosome movement and DNA attachment in the
LECA could have been mediated by kinesin or dynein motor proteins. In fact,
motor proteins that transport cargo along microtubules and chromokinesins that are
capable of connecting chromosomes to microtubules were likely already present in
the LECA (Wickstead and Gull 2007; Wickstead et al. 2010).

Kinetochores in all extant eukaryotes are highly complex and consist of many
components. Gene duplication likely played an important role in increasing the
structural complexity in both canonical and kinetoplastid kinetochores, as evident
by the presence of multiple kinetochore proteins that apparently share common
ancestry (Schmitzberger and Harrison 2012; Nerusheva and Akiyoshi 2016;
Dimitrova et al. 2016; Petrovic et al. 2016). To ensure proper assembly and bior-
ientation of kinetochores, the invention of the Aurora kinase could have been a key
evolutionary step that likely had occurred before the emergence of the LECA
(Lampson and Cheeseman 2011; Carmena et al. 2012; Hochegger et al. 2013).
Error correction by Aurora and direct stabilization of kinetochore-microtubule
attachment by tension likely increased the fidelity of chromosome segregation
(Akiyoshi et al. 2010; Miller et al. 2016).

7 Conclusions

Most cell biological research over the last several decades has focused on a limited
number of model organisms that were selected largely based on historical, not
necessarily biological, reasons. Although these studies revealed insights into basic
principles of kinetochore organization, a number of differences have been noted
even among traditional animal and fungal model organisms. In addition, the
unconventional kinetochore in kinetoplastids, the absence of CENP-A in holo-
centric insects, and nuclear envelope-embedded kinetochores in some eukaryotic
lineages all suggest that kinetochores are more plastic than previously thought. The
advance of sequencing and genome editing techniques combined with experimental
approaches should enable researchers to characterize kinetochores in nontraditional
model organisms in a relatively short space of time (Warren 2015; Kobayashi et al.
2015; Gladfelter 2015; Goldstein and King 2016). Insights into kinetochores from
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diverse species outside of our current catalog of model organisms have a potential
to reveal fundamental design and working principles of the eukaryotic segregation
machines.

Note to Nomenclature
In different organisms, the centromeric histone H3 variant is referred to with dif-
ferent names (Earnshaw et al. 2013; Talbert and Henikoff 2013). To be consistent
with other chapters, we generally refer to the centromeric histone as CENP-A
across species. To account for the differences in nomenclature in specific organ-
isms, we donate the superscript of the original name wherever appropriate (for
example, CENP-AHCP-3 for C. elegans).
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