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Abstract The chromosome biology field at large has benefited from studies of the
cell cycle components, protein cascades and genomic landscape that are required
for centromere identity, assembly and stable transgenerational inheritance. Research
over the past 20 years has challenged the classical descriptions of a centromere as a
stable, unmutable, and transcriptionally silent chromosome component. Instead,
based on studies from a broad range of eukaryotic species, including yeast, fungi,
plants, and animals, the centromere has been redefined as one of the more dynamic
areas of the eukaryotic genome, requiring coordination of protein complex
assembly, chromatin assembly, and transcriptional activity in a cell cycle specific
manner. What has emerged from more recent studies is the realization that the
transcription of specific types of nucleic acids is a key process in defining cen-
tromere integrity and function. To illustrate the transcriptional landscape of cen-
tromeres across eukaryotes, we focus this review on how transcripts interact with
centromere proteins, when in the cell cycle centromeric transcription occurs, and
what types of sequences are being transcribed. Utilizing data from broadly different
organisms, a picture emerges that places centromeric transcription as an integral
component of centromere function.
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1 A Centromere Refresher

1.1 Why Centromeres?

Centromeres across eukaryotic lineages range from a relatively small, “point”
within a chromosome to sprawling and complex structures that vary in size from
10’s of kilobases (KB) to 10’s of megabases (MB) (Pluta et al. 1995; Choo 1997,
and reviewed in Bayes and Malik 2008; Brown and O’Neill 2014). While the
location of the centromere as a single constriction on a chromosome is found
broadly across the major clades of eukaryotes, some eukaryotic species do not
harbor a distinct centromere; rather, there are multiple nucleating sites across
chromosome arms that act as centromeres (termed holocentricity) (reviewed in
Malik and Henikoff 2009). For example, chromosome segregation in
Caenorhabditis elegans (and other nematodes) and some insect and plant species is
mediated by sites along the entire chromosome.

The diversity in the complexity, density, and distribution of centromere forms
across species lies in contrast to the uniform requisite function for the centromere:
to serve as the site of kinetochore assembly and spindle attachment during meiosis
and mitosis. In essence, the proper functioning of centromeres is a requirement for
faithful segregation of a chromosome complement. Any failure in this function has
catastrophic consequences for the cell, such as chromosome breakage, and/or loss
and cellular breakdown (reviewed in Holland and Cleveland 2009); and, conse-
quently has devastating consequences for the organism, such as infertility, loss of
cell cycle control, and aberrant proliferation.

1.2 Why NOT Centromeres?

Despite the deep phylogenetic conservation of centromere function—to mediate
kinetochore formation and spindle attachment—the diversity of centromere forms
across species has presented a unique challenge in understanding the components
that delineate centromere functionality as well as defining the minimal required
elements for centromere integrity. For example, the “point centromeres” of the
budding yeast, Saccharomyces cerevisiae (Fishel et al. 1988), consist of a 125-bp
nucleotide sequence that supports centromere function (Meluh et al. 1998) without
the requirement for any other complex repeat structures. The centromeres of the
filamentous fungi Neurospora are 175–300 KB and harbor AT-rich, degenerate
transposons (reviewed in Smith et al. 2012) whose sequences have been ravaged by
a genome defense mechanism known as RIP (‘repeat induced point mutation’)
(Smith et al. 2011). Many plants, including maize and grasses, carry satellites and
transposons throughout their regional centromeres (Neumann et al. 2011; Gent and
Dawe 2012). Like fungi, there does not appear to be any pattern to the repeat
structure that defines the functional centromere core in most plants.
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The diversity of centromere forms is not only restricted to species-specific
genomic arrangements, as several species (e.g., orangutan, horse, chicken) carry a
chromosome complement wherein some centromeres are characterized largely by
repetitive DNA (satellites and transposable elements) while others are seemingly
devoid of a highly repetitive structure (Piras et al. 2010; Shang et al. 2010; Locke
et al. 2011). Thus, attempts to reconcile these diverse centromere forms with a
generalizable model for centromere function across traditional eukaryotic model
organisms (yeast, human, mouse, Arabidopsis, maize) have been largely unsuc-
cessful as no simple rule appears to apply to even the majority of centromere types.
Large-scale genome sequencing projects for several model species initially showed
promise in capturing the DNA landscape of regional centromeres in species with
diverse karyotypes [e.g., human (Schueler et al. 2001), Arabidopsis (Copenhaver
et al. 1999; Kumekawa et al. 2000; Hosouchi et al. 2002), rice (Yan and Jiang
2007), wallaby (Renfree et al. 2011), and gibbon (Carbone et al. 2014)]. However,
the highly repetitive nature of such centromeres, composed of expansive arrays of
simple satellites [ranging in size anywhere from only 0.2 KB to more than 28 MB
(Melters et al. 2013)] and other highly repeated sequences, such as transposable
elements, has remained a hurdle in defining genomic maps for complex, regional
centromeres. As a consequence, complex eukaryotic centromeres have, to date,
remained on the “black list” (Miga et al. 2015) of regions refractive to mapping and
assembly techniques (Altemose et al. 2014).

Emerging sequence techniques that afford long-range sequence information
(e.g., long-read sequencers capable of sequencing >100 KB of contiguous DNA,
such as PacBio and Oxford Nanopore; and, synthetic long-read sequencers such
10X Genomics) offer the potential to overcome the technical challenges of dealing
with highly repeated regions of genomes. However, the overall scale of the total
repeat regions that encompass the functional centromeres within model systems that
are subject to genome sequencing efforts is orders of magnitude greater than the
long-read sequencing capabilities and has left centromere regions in genome
assemblies without the foundation of a linear genetic map in most cases, particu-
larly human and mouse. Confounding this sequencing challenge is the sheer
number of centromeres that must be tackled for assembly within any given genome
—one per chromosome in a diploid cell—as each centromere contains a unique
genomic sequence structure.

2 Centromeric DNA: A Descriptor or Determinant?

Studies aimed at identifying the primary sequence associated with functional cen-
tromeric chromatin have revealed a lack of conservation of centromeric sequences,
even among closely related species. Thus, the genomic component of eukaryotic
centromeres is relatively rapidly evolving despite its conserved role in chromosome
segregation (Henikoff et al. 2001). A remarkable computational effort has led to the
production of graphical models of human centromere sequences (Miga et al. 2014;
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Miga 2015; Rosenbloom et al. 2015), bypassing the need for strict linear assembly
in the assessment of nascent genetic content. These “maps” do not delineate the
order of sequences within any given centromere, yet reveal the diversity of satellites
within and among centromeres, supporting earlier work demonstrating that while
satellite higher order repeats (HORs) are homogenized through processes such as
molecular drive and concerted evolution (Dover et al. 1982), some satellites are in
fact distinct amongst different chromosomes (for an example, see Miga et al. 2014).

Defying another common misconception that each chromosome has only one
location that can serve as a functional centromere, several human chromosomes
have multiple HORs that act as functional centromeric epialleles (Maloney et al.
2012). Within any given chromosome, only one of these epialleles functions as the
active centromere, raising the possibility of heterozygotes for different epialleles on
the same chromosome pair. As the quality of sequencing and gap-filling for the
human genome has increased, novel annotation workflows have also uncovered
retroelements scattered throughout active centromere regions across all human
chromosomes, within HORs and between epialleles (Miga et al. 2014; Rosenbloom
et al. 2015). Indeed, co-option of repetitive elements, including tandem duplica-
tions, may be a general aspect of centromere ontogenesis across eukaryotes (Dawe
2003; Wong and Choo 2004; Chueh et al. 2009; O’Neill and Carone 2009; Brown
and O’Neill 2010).

Most multicellular eukaryotic centromeres harbor a similar, characteristic repeat
structure highly enriched in species-specific satellites (e.g., a satellites in human
and minor satellites (miSAT) in mouse). The functional impact of these satellites
with respect to kinetochore assembly remains less clear, however, based on mul-
tiple lines of evidence. Several studies highlight that centromeric satellites are not
sufficient to form kinetochores. Placing an array of satellites in a cell is not the only
requisite to form stable artificial chromosomes in all cases (Nakano et al. 2003). In
fact, dicentric chromosomes often retain their satellite array but this array no longer
forms functional centromeric chromatin (Warburton et al. 1997). Thus, the presence
of satellite DNA alone is not the primary determinant for recruiting centromeric
histones. As both ectopic centromeres in abnormal chromosomes (e.g., mini- and
marker chromosomes, B chromosomes, neocentromeres) and newly formed cen-
tromeres that have only recently become fixed within a species (e.g., evolutionary
new centromeres, ENC) are often devoid of satellite DNA, the absence of satellite
DNA suggests such repeated DNA is also not required for centromere formation
(Lo et al. 2001a; Alonso et al. 2007; Hasson et al. 2013).

While the canonical structure of species-specific satellites, and higher order
arrays of groups of satellites, is neither sufficient nor required to facilitate cen-
tromere assembly, it is a pervasive feature among eukaryotic centromeres (Brown
and O’Neill 2014; Plohl et al. 2014). While the fact that centromeres can form and
act on genomic regions devoid of satellite DNA has lent support to the notion that
centromere identity is likely under epigenetic control (Karpen and Allshire 1997;
Henikoff et al. 2001). The contributions such types of genomic sequence have on
defining the functional capacity of centromeric chromatin assembly and evolu-
tionary stability of centromeres cannot be discounted. As exemplified in studies of
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human neocentromeres, DNA satellites alone are not required to attract centromere
proteins to ectopic centromeres (e.g., Lo et al. 2001b). In such cases, another type
of repeat found in most complex centromeres, retrotransposons, are found to bind
the defining centromeric histone, CENP-A, and define the functional centromere
(Chueh et al. 2009). These selfish entities may be the progenitors of satellite arrays
(e.g., Macas et al. 2009) that experience accretion and diminution as either
monomers or large homogenous arrays following centromere stabilization and
fixation in a population. Just as the acquisition of repeat expansions may be linked
to the ontogeny of a fixed, stable centromere within a species, the primary estab-
lishment of a new centromere may be the result of a seeding event from retroele-
ment(s) that progressively generate novel satellites (Dawe 2003; O’Neill et al.
2004; Brown and O’Neill 2010).

Despite the challenges in delineating a finite sequence demarcating centromere
functionality across species, the protein cascade that leads to faithful centromere
assembly each cell cycle is more clearly defined. The pivotal event is the loading of
the centromere specific H3, CENP-A (Fig. 1a), which occurs in late telophase/early
G1 in most organisms (Dunleavy et al. 2009) [n.b. in S. pombe, this occurs in S
phase (Dunleavy et al. 2007)]. During replication in S phase, the levels of CENP-A
are diluted to 1/2 as H3.3 is assembled into centromeric chromatin as a placeholder
(Dunleavy et al. 2011). In human, HJURP (holliday junction recognition protein)
associates with CENP-A in pre-nucleosomal complexes (Mellone et al. 2009; Foltz
et al. 2009; Dunleavy et al. 2009) and chaperones newly synthesized CENP-A to
centromeric chromatin following mitosis (telophase/early G1) (Foltz et al. 2009;
Dunleavy et al. 2009) when CENP-A loading occurs (Jansen et al. 2007). After
mitosis, new CENP-A loading is also facilitated by a priming mechanism involving
protein complexes such as hMis18 (Fujita et al. 2007) that prepares the centromeric
nucleosome for CENP-A loading (Mellone et al. 2009; Dunleavy et al. 2009).
These proteins serve as the pinnacle of the DNA-chromatin interface, yet many
other proteins are involved in the coordinated assembly of the kinetochore
(described in Parts I and IV of this book).

3 Active Transcription at Centromeres—Breaking Down
Common Myths and Legends

Challenging another classical description of a eukaryotic centromere as a
heterochromatin-rich and transcriptionally inactive region, centromeres are in fact
characterized by a complex suite of different chromatin marks supporting active
transcription and the production of centromeric noncoding RNAs required for
proper centromere formation and function (Wong et al. 2007; Carone et al. 2009,
2013; Ting et al. 2011; Hall et al. 2012; Quenet and Dalal 2014). The chromatin
encompassing the centromere core, referred to as “centrochromatin”, is distinct
from that of pericentromeres and contains histone modifications associated with
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transcriptionally active chromatin (Sullivan and Karpen 2004; Eymery et al. 2009;
Gopalakrishnan et al. 2009; Bergmann et al. 2011, 2012). CENP-A nucleosomes
within centrochromatin are interspersed with modified histones, histone H3
methylation, and dimethylation of lysine 4 and di- and trimethylation of lysine 36 of
histone H3 (H3K4me1, H3K4me2, H3K36me2, and H3K36me3). These modified
histones are not only permissive to transcription, but differentiate centrochromatin
from its neighboring pericentromere, a region that, while also characterized by a
high density of repeats, is defined by histone modifications typically associated with
transcriptional silencing [(Gopalakrishnan et al. 2009; Roadmap Epigenomics et al.
2015): di- and trimethylation of lysine residues 9 and 27 of histone H3 (H3K9me2,
H3K9me3,H3K27me2, and H3K27me3)].

Despite the remarkably different chromatin environments that define the peri-
and centromere, active transcription has been detected from both regions in many
organisms (Carone et al. 2009; Ugarkovic 2005; Eymery et al. 2009; Brown et al.
2012; Gent and Dawe 2012; Hall et al. 2012; Biscotti et al. 2015; Koo et al. 2016;
Rosic and Erhardt 2016). Moreover, a clear balance in transcriptional output from
each region is required to maintain chromosome stability (Hall et al. 2012). The
types of sequences found to produce transcripts within centromeres includes the
same sequences represented in the genomic foundation of a centromere: satellites,
retroelements and in some cases active genes located within the boundaries of
centrochromatin (e.g., Nagaki et al. 2004).

While prevalent in complex eukaryotic centromeres, the importance of these
retroelement and satellite-derived transcripts to centromere function is only recently
becoming apparent; chromosome missegregation has been associated with aberrant
centromere transcription in animals and satellite RNA has been implicated in the
assembly of centromere components CENP-A and -C, in Drosophila, plants, mouse
and human (Mejía 2002; Bergmann et al. 2011; Ting et al. 2011; Carone et al. 2013;
Quenet and Dalal 2014; Leung et al. 2015).

4 Genome Engineering to Tease Apart the Transcriptional
Framework of the Centromere

Advances in techniques that allow manipulation of DNA and its nascent chromatin
have been used synergistically to create and modify artificial centromere constructs
within living cells. For example, alpha satellite arrays from human have been
isolated and, when placed in HT1080 cells, form functional human artificial
chromosomes (HACs) (Harrington et al. 1997; Ikeno et al. 1998; Grimes and
Monaco 2005; Lam et al. 2006; Maloney et al. 2012). Focused studies of HACs
have shown that active transcription at the centromere is essential to their stable
propagation (Okamoto et al. 2007; Nakano et al. 2008; Bergmann et al. 2011, 2012;
Molina et al. 2016). DNA constructs that form stable HACs incorporate selectable
marker genes (i.e., neo and bsr) under strong, constitutive promoters juxtaposed to
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the alphoid arrays. The ability of the resulting HAC to assemble a functional
kinetochore and survive cell division was found to be reliant not only on the overall
number of satellites but also on the transcriptional activity of these marker genes
(Okamoto et al. 2007).

Human artificial chromosomes modified to carry tetO transcriptional regulatory
sequences within alphoid arrays were manipulated to increase or decrease tran-
scriptional output in attempts to define the activity for proper centromere function
(Nakano et al. 2008). Switching off transcription from the tetO dramatically
diminished propagation of the HACs, but upregulating transcription with tet acti-
vators had a similar effect, indicating a balanced level of transcription is a requisite
for proper centromere function. Further modifications of HACs by tethering a
lysine-specific demethylase (LSD1) to alphoid arrays showed that depletion of
H3K4me2 from HAC centromeric chromatin results in a loss of satellite tran-
scription and concomitant reduction in local assembly of newly synthesized
CENP-A (Bergmann et al. 2011). HACs targeted to increase H3K9 acetylation, a
mark permissive to transcription, showed no effect on kinetochore formation
despite such a dramatic change in chromatin state. However, when this chromatin
change is coupled with a dramatic increase in transcription, rapid centromere
inactivation through loss of CENP-A loading results (Bergmann et al. 2012).

Recently, a study using an inducible ectopic centromere system in Drosophila
showed that CENP-A assembly by the Drosophila CENP-A chaperone, CAL1,
requires RNA pol II mediated transcription of nascent DNA (Chen et al. 2015). In
this ectopic centromere system, transcription is mediated by CAL1’s binding
partner, the chromatin remodeling complex FACT (facilitates chromatin tran-
scription) and targets an artificial array of lacO sequences, indicating that the
passage of RNA polymerase is required for CENP-A chromatin establishment
rather than sequence-specific transcripts (Chen et al. 2015). A study of the primary
centromere core sequence in S. pombe necessary and sufficient for CENP-A
assembly was conducted wherein the core sequence was shuffled to create a de
novo sequence with the same AT content and nucleosome positioning (Catania
et al. 2015). This new construct was not able to effectively establish CENP-A
chromatin, indicating some sequence features are required for centromere integrity.
Notably, the core sequence is actively transcribed via multiple putative transcription
start sites, implicating its ability to facilitate transcription (albeit stalled transcrip-
tion, see below) as a defining feature of this centromere-competent sequence
(Catania et al. 2015). As demonstrated by these studies, centromere integrity
requires tight control of centromere transcription, suggesting that centromeric DNA
sequence identity may not be an absolute requirement, but the ability to facilitate
transcription and act as a fundamentally stable and immutable regulatory element(s)
is needed.
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5 The “How?” of Centromeric RNA: Centromere
Transcripts and Protein Interactions

Centromeric RNAs have been hypothesized to perform diverse functions, including
establishing and maintaining pericentromeric heterochromatin and recruiting
kinetochore proteins to the centrochromatin core. Recent studies have focused on
the transcription of the most prevalent centromeric sequence, satellites, with respect
to centromere function, however, the identity and functional roles of satellite
transcripts in diverse organisms have not been fully elucidated. Several recent
studies highlighted below further support the growing evidence that transcription is
an integral part of the centromere chromatin assembly cascade; how, when, and
what types of transcripts impact centromere assembly are emerging areas of focus in
the centromere biology field.

As the centromere is a tightly regulated network of protein and nucleic acid
interactions, noncoding transcripts may only directly interact with a subset of this
multi-protein network and yet, indirectly impact the function of many centromere
and kinetochore proteins when these transcripts are mis-regulated. CENP-C,
CENP-A, HJURP, and certain members of the chromosomal passenger complex
(CPC) have been implicated as the centromere proteins that directly associate with,
or bind to, noncoding RNAs (Wong et al. 2007; Ferri et al. 2009; Du et al. 2010;
Carone et al. 2013; Quenet and Dalal 2014; Rosic et al. 2014; Blower 2016).

CENP-A: The first indication that CENP-A can interact with noncoding RNA
was discovered in a human neocentromere; LINE-1 elements within the CENP-A
binding region of a neocentromere on 10q25 are actively transcribed into a non-
coding RNA that incorporates with CENP-A chromatin (Chueh et al. 2009). While
less evidence exists for a direct association of centromeric RNA and CENP-A or
HJURP, aberrant expression of these transcripts distinctly perturbs CENP-A local-
ization and loading (Fig. 2). For example, overexpression of noncoding RNA from
the centromeric retrotransposon KERV in tammar wallaby disrupts proper CENP-A
loading into centromeres in late telophase (Carone et al. 2013). A recent study in
human showed a more direct contact between CENP-A and RNA when an alpha
satellite related RNA sequence was pulled down with the soluble CENP-A/HJURP
complex using RNA immunoprecipitation (RIP) (Quenet and Dalal 2014). While
this specific noncoding RNA sequence does not match the alpha satellite consensus,
nor any other alpha satellite higher order repeat sequence, and any known repeated
elements in the assembled or unassembled contigs of the human genome, DNA FISH
showed it may reside in only a subset of chromosomes in the human karyotype
(Quenet and Dalal 2014). Quenet and Dalal (2014) complemented their study with an
in-silico prediction of potential RNA binding sites in CENP-A and HJURP, finding
that 79 out of 140 residues in CENP-A and 286 out of 748 residues in HJURP had a
capacity for RNA binding. Intriguingly, the entirety of the CENP-A N-terminal tail
was predicted to carry RNA-binding capacity (Quenet and Dalal 2014) (Fig. 1a).
CENP-A’s N-terminal tail is the most rapidly evolving portion of CENP-A
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(Henikoff et al. 2001; Malik and Henikoff 2001), and while it is known to be required
for CENP-A stabilization at the centromere (Logsdon et al. 2015), its exact function
remains elusive. Given a putative role in RNA interaction, it is possible the vast
differences in amino acid sequence and overall length of the N-terminal region
among species (Henikoff et al. 2001) could be to enable permissive interaction with a
variety of transcripts that emanate from the rapidly evolving, underlying DNA.

CENP-C: CENP-C contains an experimentally validated, distinct RNA binding
domain (Wong et al. 2007; Du et al. 2010) (Fig. 1b). Interestingly, the RNA binding
domain of CENP-C shares homology to the RNA binding hinge domain region of
the pericentromeric heterochromatin proteins HP1 alpha, beta, and gamma
(Muchardt et al. 2002; Du et al. 2010). In human, CENP-C associates with
single-stranded (ss) alpha satellite transcripts both in vitro and in vivo, and is lost
from centromeres upon alpha satellite depletion along with the CPC proteins,
INCENP and Survivin (Wong et al. 2007). DNA binding of maize CENP-C is
stabilized by a ssRNA in vitro, although this stabilization appears to be independent
of the ssRNA sequence (Du et al. 2010) (Fig. 2). This permissive binding in maize
is in contrast to human CENP-C that showed a preferential association with alpha
satellite ssRNA in competition assays with tRNA, rRNA, and mouse pericentric
satellite (Wong et al. 2007). In Drosophila, the X chromosome specific satellite,

MGPRRRSRKPEAPRRRSPSPTPTPGPSRRGPSLGASSHQHSRRRQGWLKEIRKLQKSTHLLIRKLPFSRLAREICVKFTRGVDFNWQAQALLALQEAAEAFLVHLFEDAYLLTLHAGRVTLFPKDVQLARRIRGLEEG

 CATD
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 N-terminal tail

1 943aa
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1 140aa

αN α1 α2 α3  CC BD

(A) CENP-A

422 551

RRKFMAKPAEEQLDVGQSKDENIHTSHITQDEFQRNSDRNMEEHEEMGNDCVSKKQMPPVGSKKSSTRKDKEESKKKRFSSESKN KLVPEEVTSTVTKSRRISRRPSDWWVVKSEESPVYSNSSVRNELP

(B) CENP-C
DNA 

binding

RNA binding

Dimerization
CABD

Fig. 1 RNA binding domains of CENP-A and CENP-C. a Linear depiction of the complete
CENP-A protein domain structure (Regnier et al. 2003) with amino acids that comprise each
domain shown underneath. Amino acids in green were computationally predicted to have an RNA
binding capability by Quenet and Dalal (2014). Most of the potential RNA interaction capability
lies in the N-terminal tail region [a Alpha helix, L Loop region, CATD Centromere targeting
domain (Black et al. 2004), CCBD CENP-C binding domain (Carroll et al. 2010)]. b Linear
depiction of the CENP-C protein. The RNA binding domain experimentally validated by Wong
et al. (2007) is located between amino acids 422 and 551, the sequence of which is shown below.
Amino acids in green are most critical to RNA binding (Wong et al. 2007). The RNA binding
domain of CENP-C overlaps with both the DNA binding domain (aqua) and the CATD (gray).
Note that Wong et al. (2007) also found evidence for a second RNA binding domain between 552
and 943, but did not isolate the exact region. [DNA binding domain (Yang et al. 1996; Sugimoto
et al. 1997; Cohen et al. 2008; Schueler et al. 2010), CATD (Yang et al. 1996), Dimerization
domain (Sugimoto et al. 1997), CABD CENP-A binding domain (Trazzi et al. 2009)]
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SAT III, is actively transcribed into long noncoding transcripts that localize to
centromeres and associate with CENP-C (Rosic et al. 2014) (Fig. 2). Upon CENP-C
depletion, SAT III RNA signal is greatly reduced at centromeres, implying a similar
interaction between CENP-C and RNA in Drosophila, as in human and maize.
When depleting SAT III RNA levels, both newly synthesized CENP-C and
CENP-A showed a reduction in centromeric signal that was also observed to cas-
cade up through the kinetochore proteins (Rosic et al. 2014). SAT III-depleted cells
also suffered errors in mitosis, including lagging chromosomes and micronuclei

Fig. 2 Cell cycle variation of centromere transcription. Overview of when in the cell cycle
centromeric transcripts have been identified in different model species in relation to critical
assembly events defining centromere integrity. The cell cycle is indicated (color). Top The type of
transcript for each species [from top, human (Wong et al. 2007; Chueh et al. 2009; Quenet and
Dalal 2014), wallaby (Carone et al. 2013), plants (Topp et al. 2004; Koo et al. 2016), and reviewed
in Gent and Dawe (2012), Drosophila (Rosic et al. 2014), frog (Blower 2016), mouse (Lu and
Gilbert 2007; Ferri et al. 2009), yeast (Chen et al. 2008; Choi et al. 2011; Catania et al. 2015)] is
indicated. Below the dashed line are the transcripts where the timing of transcription is known.
A thinner bar represents a lower level of transcription while a thicker bar represents a higher level.
Gray lines (above the dashed line) indicate that while transcripts have been identified, it is not
known when in the cell cycle transcription is initiated. Above each line are the protein associations
known for transcripts. Bottom The timing of protein cascade components relative to the cell cycle.
Black bar indicates constitutive association with the centromere (FACT, RNA Pol II). Relevant
timing of loading of the H3.3 placeholder, CPC recruitment and CENP-A loading components are
indicated. Specific CENP-A assembly times are indicated for each group of species
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formation; notably, all chromosomes were susceptible to mitotic defects, indicating
that SAT III RNAs, despite originating from the X chromosome, can act in trans to
target the autosomes (Rosic et al. 2014). Lagging chromosomes with reduced
CENP-C signal were also prevalent in human cells after RNA pol II inhibition
(Chan et al. 2012).

The CPC: Ostensibly, a single centromeric noncoding transcript does not have to
bind to just a single protein. When considering the fact that CENP-A assembly is
facilitated by a chaperone, HJURP, and that CENP-A and CENP-C are both required
for centromere integrity, it is probable that these transcripts contact multiple proteins
that are associated with one another. Such RNA interactions may even serve to tether
protein complexes together, or to scaffold these complexes to other components of
the surrounding chromatin environment. The multi-protein interaction between
Aurora-B, Dasra-a/Borealin, Survivin, and Incenp composes the CPC. The CPC aids
in mitosis as a phosphorylating agent at chromosome arms, the inner centromere,
and mitotic spindles (reviewed in (Carmena et al. 2012). While at the inner cen-
tromere, the CPC plays a key role in bipolar spindle attachment by acting as a
“sensor” of connection between the centromere and the spindle (Lampson and
Cheeseman 2011). Both cen-RNAs and spindle-enriched RNAs are known to
congregate with the CPC (Ferri et al. 2009; Ideue et al. 2014; Jambhekar et al. 2014)
(Fig. 2). In fact, there is direct binding of RNA to the CPC and this interaction is
responsible for inner centromere localization (Jambhekar et al. 2014; Blower 2016),
and is required for CPC activation (Blower 2016). Despite the fact that multiple
proteins form the CPC, Ferri et al. (2009) showed that miSAT transcripts in mouse
are a key partner with CPC proteins Aurora-B, INCENP and Survivin at the onset of
mitosis. In Xenopus extracts, however, RNA binding was identified that is required
for CPC localization, but this binding is specific only to the proteins Aurora-B and
Dasra-A, and not INCENP, Survivin, and XMAP215 (Blower 2016).

In Xenopus, among the Aurora-B binding RNAs is a *170 nt centromeric
transcript (fcr1, frog centromeric repeat1) that, similar to the sat III RNA in
Drosophila (Rosic et al. 2014), is only found on a subset of CENP-A defined
centromeres within the karyotype (Edwards and Murray 2005). The active tran-
scription of fcr1 is required for Aurora-B localization to the inner centromere of
mitotic chromosomes and may act initially on the fcr-1-native chromosomes before
diffusing to other centromeres (Blower 2016) (Fig. 2).

6 The “When?” of Centromere Transcription: It is
an Around the Clock Job

The emergence of studies on RNA, transcription, and centromere function since the
pivotal studies in yeast (Volpe et al. 2003), plants (Topp et al. 2004) and human
neocentromeres (Wong et al. 2007) has led to accumulating evidence that tran-
scription is a requirement for centromere function and cell stability. However, the
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timing of this transcription and a delineation of whether specific transcript
sequences, or simply the act of transcription itself, are required for centromere
integrity are not known. Studies in several model systems have begun to highlight
the intricacies of transcriptional events at the centromere throughout the cell cycle,
with a particular emphasis on mitotic transcription (Fig. 2).

Cell Cycle Phase G1: Late telophase/early G1 is the pivotal time in mammalian
cells when CENP-A is actively loaded into centromeric chromatin. Thus, the impact
of active transcription at this point in the cell cycle may have direct bearing on the
ability of CENP-A to assemble functional centromeric chromatin. The 1.3 KB
human centromeric transcript described above (Quenet and Dalal 2014) is tran-
scribed by RNA pol II from late telophase into early G1, coincident with the timing
of CENP-A deposition by its chaperone HJURP (Fig. 2). This RNA transcript was
found to interact with these proteins, suggesting its capacity to aid in CENP-A
nucleosome assembly. The transcription of one of two groups of transcripts that
emanate from mouse pericentromeric gamma satellites was detected in late G1 and
proceeded through mid-S phase (Lu and Gilbert 2007) (Fig. 2). This species of
RNA did not show a discrete size range and transcription of this species decreased
at a time coincident with the replication of pericentric heterochromatin. This RNA
class is a large, heterogeneous group of gamma satellite transcripts whose tran-
scriptional timing may simply be the result of cryptic transcription (Lu and Gilbert
2007). However, given that the appearance of these satellite transcripts is CDK
(cyclin dependent kinase)-dependent, and thus is only in cells committed to pro-
liferation, the transcripts may be required for heterochromatin reassembly at the
replication fork (Lu and Gilbert 2007).

Cell Cycle Phase S and G2: Double-stranded RNAs are actively transcribed
from the pericentric repeats dh and dg from within the centromeres of the yeast,
Shizosaccharomyces pombe, and are subsequently processed into small interfering
RNAs (siRNAs) (Volpe et al. 2002, 2003). These siRNAs are bound to a complex
of proteins (the RNA-induced initiation of transcriptional gene silencing, RITS) and
result in targeted H3 lysine-9 methylation through RNA interference (Volpe et al.
2002, 2003). Moreover, the disruption of RNAi components compromises hete-
rochromatin assembly (Volpe et al. 2002) and CENP-A deposition (Folco et al.
2008), linking a small RNA component to centromere function.

The forward strand of centromeric repeats is transcribed in S phase in S. pombe,
thought to be the major initiating point for siRNA production (Chen et al. 2008).
siRNA levels are stably detected throughout the cell cycle but increased in S/G2,
coincident with RITS complex accumulation and transcript processing (Fig. 2).
Similar to that proposed for gamma satellites in mouse, these transcripts may be the
result of cryptic or spurious transcription yet are required for the appropriate
establishment of heterochromatin (Chen et al. 2008).

While active CENP-A loading occurs in late telophase/early G1 in mammals,
H3.3 is loaded into centrochromatin during S phase, likely as a placeholder for
CENP-A replenishment after mitosis (Dunleavy et al. 2011). Thus, transcription
could be involved in the eviction of the placeholder (Catania et al. 2015; Chen et al.
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2015; Chen and Mellone 2016). A recent study in S. pombe showed that RNA pol II
stalls at centromeric DNA and that the level of stalling is directly related to the level
of subsequent CENP-A nucleosome assembly. In this yeast species, CENP-A
assembly occurs in S phase and G2 (Takahashi et al. 2005; Dunleavy et al. 2007;
Takayama et al. 2008); an increase in RNA pol II stalling, and concomitantly
permissive but “low-quality” transcription, may lead to increased CENP-A chro-
matin through either increased eviction rates for placeholder H3 or through
demarcation of a specific environment conducive to efficient CENP-A assembly
(Catania et al. 2015).

The timing of detectable increases in RNAPII stalling in S phase is coincident
with DNA replication. Centromere transcription at this phase of the cell cycle
[forward strands in S. pombe (Chen et al. 2008) and pericentromeric satellites in
mouse (Lu and Gilbert 2007)] may position replication forks and RNA pol II to
collide more often, increasing the rate of RNA pol II stalling (reviewed in Brown
et al. 2012). RNA pol II stalling and collisions subsequently increase the generation
of large, stable R-loop formation (Reddy et al. 2011). While the RNA–DNA
hybrids present in R-loops are typically small and transient, it is notable that the
transcriptional framework of the centromere may present an increase in stable
R-loops in S phase since increases in R-loops are linked to phosphorylation of
H3S10, a marker of subsequent entry into mitosis (M phase) (Castellano-Pozo et al.
2013; Oestergaard and Lisby 2016). Chen et al (2015) showed that FACT is
required for CENP-A assembly and FACT has been previously shown to both
travel in a complex with the CENP-A chaperone (Foltz et al. 2006) and localize to
centromeres throughout the cell cycle (Okada et al. 2009). The presence of FACT at
centromeres and in complex with key centromere assembly components supports
hypotheses that FACT is an essential part of the chromatin remodeling involved in
facilitating CENP-A nucleosome assembly. For example, FACT may be required to
destabilize nucleosomes (Hondele and Ladurner 2013) and subsequently facilitate
the transcription of centromere sequences preceding assembly of new CENP-A
nucleosomes (Chen et al. 2015; Chen and Mellone 2016). Recently, FACT was
found to bind the inner kinetochore proteins of the CENP-T/W complex and thus
may promote the CENP-T/W deposition at centromeres (Prendergast et al. 2016). In
fungi it appears that FACT is necessary to prevent spurious, ectopic incorporation
of CENP-A rather than performing a function in primary CENP-A assembly at the
centromere (Deyter and Biggins 2014). FACT is known to solve R-loop and
replication mediated conflicts in both human and yeast (Herrera-Moyano et al.
2014). Furthermore, low levels of central core transcripts are detected in yeast cells
due to an increase in RNA pol II stalling (Catania et al. 2015). We thus propose that
FACT may also be present at centromeres to resolve the resulting R-loops prior to
progression into mitosis. The multiple, possible roles for FACT in CENP-A
assembly are not mutually exclusive, rather are an example of the dynamic state of
the centromere during different phases of the cell cycle.

Cell Cycle Phase Mitosis: Whether or not centromeric transcription occurs
during mitosis has been hotly debated since the majority of transcription factors and

Centromere Transcription: Means and Motive 269



RNA polymerases are not associated with chromosomes during mitosis (Gottesfeld
and Forbes 1997). However, several pieces of evidence suggest centromeric tran-
scription occurs during M phase of the cell cycle (Liu 2016), indicating persistent
transcription during mitosis may serve to further distinguish the centromere from
chromosome arms. First, RNA pol II is present at kinetochores in M phase (Chan
et al. 2012). Second, transcription run-on assays have shown that RNA pol II is
capable of transcribing centromeres of mitotic chromosomes (Liu 2016). Third,
inhibition of RNA pol II by alpha-amanitin reduces centromeric cohesion and
CENP-C localization (Chan et al. 2012; Liu et al. 2015). The defective cohesion
following RNA polymerase inhibition was caused by a mislocalization of Sgo1, a
protein found at the inner centromere that protects cohesin during mitosis (Liu et al.
2015). Collectively, these data suggest that transcription and/or the transcripts
themselves may play a functional role in a time-specific manner (i.e., restricted to
specific phases of the cell cycle).

A long noncoding RNA was recently identified as actively transcribed from the
centromeres ofXenopus egg extracts duringmitosis; moreover, these transcripts serve
a functional role via binding Aurora-B, a component of the CPC, and are required for
normal kinetochore-centromere attachment (Blower 2016). Xenopus egg extracts
have also led to the discovery that RNA processing assists in kinetochore and spindle
assembly (Grenfell et al. 2016); inhibition of the spliceosome in egg extracts leads to
an accumulation of long centromeric transcripts and a failure to efficiently recruit
CENP-A,CENP-C andNDC80.What this study shows is that transcription is not only
active duringmitosis, further supporting the growing body of evidence indicating this
occurs, but that transcripts undergo processing during this phase, contradicting the
theory that RNA processing is repressed during mitosis (Shin and Manley 2002).

Centromere transcript processing is a recurring theme observed for a broad set of
centromere transcripts, although the relationship of the processing machinery and/or
processed RNA products to centromere integrity is less clear (with the notable
exception of S. pombe, see above). Early work in mouse cells showed that a loss of
DICER activity, the RNAse III enzyme that facilitates small RNA processing,
results in an accumulation of larger satellite transcripts (Kanellopoulou et al. 2005).
This finding implies that when DICER is available, these larger satellite transcripts
are not detected as they are processed into smaller RNAs. The implication that
DICER is involved in this RNA processing would also indicate these small RNAs
are <40 nt based on the catalytic activity of the enzyme (MacRae et al. 2007). Other
sizes of centromeric RNAs have been uncovered that are likely independent of
DICER. For example, small RNAs have been detected for the maize centromere
satellite CentC (Du et al. 2010) and from the wallaby centromeric retroelement
KERV (Carone et al. 2009). Both of these small RNAs were also found to par-
ticipate in the centromere assembly cascade: CentC associated with CENP-C
directly (Du et al. 2010); a reduction in KERV small RNAs resulted in a loss of
CENP-A assembly in late telophase (Carone et al. 2013) (Fig. 2). However, any
connection between these types of processed, small RNA transcripts and the nec-
essary RNA processing machinery observed in Xenopus is unexplored; likewise the
timing of transcription for these processed RNAs is currently unknown.
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7 Conclusion

Mounting evidence suggests that RNA species and the act of transcription itself is
required for the recruitment and/or establishment of centromere and kinetochore
proteins. Thus, it is clear that transcription at the centromere, and in neighboring
pericentromeric heterochromatin, is functionally distinct yet critical throughout the
entirety of the cell cycle. Studies are now beginning to reveal that centromeric
transcripts and accompanying chromatin changes are required for different com-
ponents of the centromere assembly cascade at different points in the cell cycle.
Over the last decade, RNA species derived from the centromeric regions of many
model species have been uncovered, as have some of their interacting partners.
Closer examination of these transcripts, and indeed of the subregions of the cen-
tromere previously considered devoid of transcriptional activity, has made it clear
that both the act of transcription itself and the resulting transcripts are critical to
ensuring proper CENP-A assembly and faithful chromosome segregation. In the
same manner that the comparative approach revealed that centromeres evolve
rapidly and are established through an epigenetic framework, the use of diverse
eukaryotic systems will afford the development of a model to describe key
remaining questions, such as: how do specific transcripts mediate centromere
function in cis and/or in trans? is splicing or RNA processing a requisite in forming
functional transcripts across different cell cycles and among different species? and,
how does this transcriptional landscape impact centromere evolution in both a
phylogenetic and disease context? In fact, one of the reasons the myth of the
centromere as “silent chromatin” prevailed for so long is that centromere transcripts
have been difficult to capture and characterize. As highlighted herein, it is the very
reason these transcripts are difficult to capture (e.g., RNA pol II stalling, RNA
processing, protein-RNA binding) that holds the key to how centromere tran-
scription, and their transcripts, likely function in maintaining centromere integrity.
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