
7Reasoning with Uncertainty

We have already shown in Chap. 4 with the Tweety problem that two-value logic
leads to problems in everyday reasoning. In this example, the statements Tweety is a
penguin, Penguins are birds, and All birds can fly lead to the (semantically
incorrect) inference Tweety can fly. Probability theory provides a language in which
we can formalize the statement Nearly all birds can fly and carry out inferences on
it. Probability theory is a proven method we can use here because the uncertainty
about whether birds can fly can be modeled well by a probability value. We will
show, that statements such as 99% of all birds can fly, together with probabilistic
logic, lead to correct inferences.

Reasoning under uncertainty with limited resources plays a big role in everyday
situations and also in many technical applications of AI. In these areas heuristic
processes are very important, as we have already discussed in Chap. 6. For example,
we use heuristic techniques when looking for a parking space in city traffic. Heuristics
alone are often not enough, especially when a quick decision is needed given
incomplete knowledge, as shown in the following example. A pedestrian crosses the
street and an auto quickly approaches. To prevent a serious accident, the pedestrian
must react quickly. He is not capable of worrying about complete information about
the state of the world, which he would need for the search algorithms discussed in
Chap. 6. He must therefore come to an optimal decision under the given constraints
(little time and little, potentially uncertain knowledge). If he thinks too long, it will be
dangerous. In this and many similar situations (see Fig. 7.1 on page 126), a method
for reasoning with uncertain and incomplete knowledge is needed.

We want to investigate the various possibilities of reasoning under uncertainty in
a simple medical diagnosis example. If a patient experiences pain in the right lower
abdomen and a raised white blood cell (leukocyte) count, this raises the suspicion
that it might be appendicitis. We model this relationship using propositional logic
with the formula

Stomach pain right lower ^ Leukocytes[ 10000 ! Appendicitis
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Fig. 7.1 “Let’s just sit back and think about what to do!”

If we then know that

Stomach pain right lower ^ Leukocytes[ 10000

is true, then we can use modus ponens to derive Appendicitis. This model is clearly
too coarse. In 1976, Shortliffe and Buchanan recognized this when building their
medical expert system MYCIN [Sho76]. They developed a calculus using so-called
certainty factors, which allowed the certainty of facts and rules to be represented.
A rule A → B is assigned a certainty factor β. The semantic of a rule A → β B is
defined via the conditional probability P (B | A) ¼ β. In the above example, the rule
could then read

Stomach pain right lower ^ Leukocytes[ 10000 !0:6 Appendicitis:

For reasoning with this kind of formulas, they used a calculus for connecting the
factors of rules. It turned out, however, that with this calculus inconsistent results
could be derived.
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As discussed in Chap. 4, there were also attempts to solve this problem by using
non-monotonic logic and default logic, which, however, were unsuccessful in the
end. The Dempster–Schäfer theory assigns a belief function Bel(A) to a logical
proposition A, whose value gives the degree of evidence for the truth of A. But even
this formalism has weaknesses, which is shown in [Pea88] using a variant of the
Tweety example. Even fuzzy logic, which above all is successful in control theory,
demonstrates considerable weaknesses when reasoning under uncertainty in more
complex applications [Elk93].

Since about the mid-1980s, probability theory has had more and more influence in
AI [Pea88, Che85, Whi96, Jen01]. In the field of reasoning with Bayesian networks,
or subjective probability, it has secured itself a firm place among successful
AI techniques. Rather than implication as it is known in logic (material implication),
conditional probability is used here, which models everyday causal reasoning sig-
nificantly better. Reasoning with probability profits heavily from the fact that
probability theory is a hundreds of years old, well-established branch of mathematics.

In this chapter we will select an elegant, but for an instruction book somewhat
unusual, entry point into this field. After a short introduction to the most important
foundations needed here for reasoning with probability, we will begin with a
simple, but important example for reasoning with uncertain and incomplete
knowledge. In a quite natural, almost compelling way, we will be led to the method
of maximum entropy (MaxEnt). Then we will show the usefulness of this method in
practice using the medical expert system LEXMED. Finally we will introduce the now
widespread reasoning with Bayesian networks, and show the relationship between
the two methods.

7.1 Computing with Probabilities

The reader who is familiar with probability theory can skip this section. For
everyone else we will give a quick ramp-up and recommend a few appropriate
textbooks such as [Ros09, FPP07].

Probability is especially well-suited for modeling reasoning under uncertainty.
One reason for this is that probabilities are intuitively easy to interpret, which can
be seen in the following elementary example.

Example 7.1 For a single roll of a gaming die (experiment), the probability of the
event “rolling a six” equals 1/6, whereas the probability of the occurrence “rolling
an odd number” is equal to 1/2.

Definition 7.1 Let Ω be the finite set of events for an experiment. Each event
ω 2 Ω represents a possible outcome of the experiment. If these events wi 2 Ω
mutually exclude each other, but cover all possible outcomes of the attempt,
then they are called elementary events.
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Example 7.2 For a single roll of one gaming die

X ¼ f1; 2; 3; 4; 5; 6g

because no two of these events can happen simultaneously. Rolling an even number
({2, 4, 6}) is therefore not an elementary event, nor is rolling a number smaller than
five ({1, 2, 3, 4}) because {2, 4, 6}\ {1, 2, 3, 4} ¼ {2, 4} 6¼ ;.

Given two events A and B, A[B is also an event. Ω itself is denoted the certain
event, and the empty set ; the impossible event.

In the following we will use the propositional logic notation for set opera-
tions. That is, for the set A\B we write A ∧ B. This is not only a syntactic
transformation, rather it is also semantically correct because the intersection of two
sets is defined as

x 2 A\B , x 2 A ^ x 2 B:

Because this is the semantic of A ∧ B, we can and will use this notation. This is also
true for the other set operations union and complement, and we will, as shown in
the following table, use the propositional logic notation for them as well.

The variables used here (for example A, B, etc.) are called random variables in
probability theory. We will only use discrete chance variables with finite domains
here. The variable face_number for a dice roll is discrete with the values 1, 2, 3, 4,
5, 6. The probability of rolling a five or a six is equal to 1/3. This can be described by

Pðface number 2 f5; 6gÞ ¼ Pðface number ¼ 5 _ face number ¼ 6Þ ¼ 1=3:

The concept of probability is supposed to give us a description as objective as
possible of our “belief” or “conviction” about the outcome of an experiment. All
numbers in the interval [0,1] should be possible, where 0 is the probability of the
impossible event and 1 the probability of the certain event. We come to this from
the following definition.

Set notation Propositional logic Description

A\B A ^ B intersection / and

A[B A _ B union / or
�A :A complement / negation

X t certain event / true

; f impossible event / false
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Definition 7.2 Let Ω = {ω1, ω2, … , ωn} be finite. There is no preferred
elementary event, which means that we assume a symmetry related to the
frequency of how often each elementary event appears. The probability
P(A) of the event A is then

PðAÞ ¼ jAj
jXj ¼

Number of favorable cases for A
Number of possible cases

:

It follows immediately that every elementary event has the probability 1/|Ω|. The
requirement that elementary events have equal probability is called the Laplace
assumption and the probabilities calculated thereby are called Laplace probabili-
ties. This definition hits its limit when the number of elementary events becomes
infinite. Because we are only looking at finite event spaces here, though, this does
not present a problem. To describe events we use variables with the appropriate
number of values. For example, a variable eye_color can take on the values green,
blue, brown. eye_color ¼ blue then describes an event because we are dealing with
a proposition with the truth values t or f. For binary (boolean) variables, the variable
itself is already a proposition. Here it is enough, for example, to write P(JohnCalls)
instead of P(JohnCalls ¼ t).

Example 7.3 By this definition, the probability of rolling an even number is

Pðface number 2 f2; 4; 6gÞ ¼ jf2; 4; 6gj
jf1; 2; 3; 4; 5; 6gj ¼

3
6
¼ 1

2
:

The following important rules follow directly from the definition.

Theorem 7.1
1. P(Ω) = 1.
2. P(;) = 0, which means that the impossible event has a probability of 0.
3. For pairwise exclusive events A and B it is true that P(A ∨ B) = P(A) + P(B).
4. For two complementary events A and ¬A it is true that P(A) + P(¬A) = 1.
5. For arbitrary events A and B it is true that P(A ∨ B) = P(A) + P(B) −

P(A ∧ B).
6. For A � B it is true that P(A) ≤ P(B).
7. If A1; . . . ;An are the elementary events, then

Pn
i¼1 PðAiÞ ¼ 1 (normal-

ization condition).
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The expression P(A ∧ B) or equivalently P(A, B) stands for the probability of the
events A ∧ B. We are often interested in the probabilities of all elementary events,
that is, of all combinations of all values of the variables A and B. For the binary
variables A and B these are P(A, B), P(A,¬B), P(¬A, B), P(¬A, ¬B). We call the vector

ðPðA; BÞ;PðA; :BÞ;Pð:A; BÞ;Pð:A; :BÞÞ

consisting of these four values a distribution or joint probability distribution of the
variables A and B. A shorthand for this is P(A, B). The distribution in the case of
two variables can be nicely visualized in the form of a table (matrix), represented
as follows:

For the d variables X1; . . . ;Xd with n values each, the distribution has the values
PðX1 ¼ x1; . . . ;Xd ¼ xdÞ and x1; . . . ; xd, each of which take on n different values.
The distribution can therefore be represented as a d-dimensional matrix with a total
of nd elements. Due to the normalization condition from Theorem 7.1 on page 129,
however, one of these nd values is redundant and the distribution is characterized by
nd −1 unique values.

7.1.1 Conditional Probability

Example 7.4 On Landsdowne street in Boston, the speed of 100 vehicles is mea-
sured. For each measurement it is also noted whether the driver is a student.
The results are

We pose the question: Do students speed more frequently than the average
person, or than non-students?1

P(A, B) B ¼ w B ¼ f

A ¼ w P (A, B) P (A, ¬B)

A ¼ f P (¬A, B) P (¬A, ¬B)

Event Frequency Relative frequency

Vehicle observed 100 1

Driver is a student (S) 30 0.3

Speed too high (G) 10 0.1

Driver is a student and speeding (S ∧ G) 5 0.05

1The computed probabilities can only be used for continued propositions if the measured sample
(100 vehicles) is representative. Otherwise only propositions about the observed 100 vehicles can
be made.
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The answer is given by the probability

PðGjSÞ ¼ jDriver is a student and speedingj
jDriver is a studentj ¼ 5

30
¼ 1

6
� 0:17

for speeding under the condition that the driver is a student. This is obviously
different from the a priori probability P(G) = 0.1 for speeding. For the a priori
probability, the event space is not limited by additional conditions.

Definition 7.3 For two events A and B, the probability P(A|B) for A under
the condition B (conditional probability) is defined by

PðAjBÞ ¼ PðA ^ BÞ
PðBÞ :

In Example 7.4 we see that in the case of a finite event space, the conditional
probability P(A|B) can be understood as the probability of A ∧ B when we only
look at the event B, that is, as

PðAjBÞ ¼ jA ^ Bj
jBj :

This formula can be easily derived using Definition 7.2 on page 129

PðAjBÞ ¼ PðA ^ BÞ
PðBÞ ¼

jA^Bj
jXj
jBj
jXj

¼ jA ^ Bj
jBj :

Definition 7.4 If, for two events A and B,

PðAjBÞ ¼ PðAÞ;

then these events are called independent.

Thus A and B are independent if the probability of the event A is not influenced
by the event B.
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Theorem 7.2 For independent events A and B, it follows from the definition
that

PðA ^ BÞ ¼ PðAÞ � PðBÞ:

Example 7.5 For a roll of two dice, the probability of rolling two sixes is 1/36 if the
two dice are independent because

PðD1 ¼ 6 ^ D2 ¼ 6Þ ¼ PðD1 ¼ 6Þ � PðD2 ¼ 6Þ ¼ 1
6
� 1
6
¼ 1

36
;

where the first equation is only true when the two dice are independent. If for
example by some magic power die 2 is always the same as die 1, then

PðD1 ¼ 6 ^ D2 ¼ 6Þ ¼ 1
6
:

Chain Rule
Solving the definition of conditional probability for P(A ∧ B) results in the
so-called product rule

PðA ^ BÞ ¼ PðAjBÞPðBÞ;

which we immediately generalize for the case of n variables. By repeated appli-
cation of the above rule we obtain the chain rule

PðX1; . . . ;XnÞ
¼ PðXnjX1; . . . ;Xn�1Þ � PðX1; . . . ;Xn�1Þ
¼ PðXnjX1; . . . ;Xn�1Þ � PðXn�1jX1; . . . ;Xn�2Þ � PðX1; . . . ;Xn�2Þ
¼ PðXnjX1; . . . ;Xn�1Þ � PðXn�1jX1; . . . ;Xn�2Þ � . . . � PðXnjX1Þ � PðX1Þ

¼
Yn
i¼1

PðXnjX1; . . . ;Xi�1Þ; ð7:1Þ

with which we can represent a distribution as a product of conditional probabilities.
Because the chain rule holds for all values of the variables X1; . . . ;Xn, it has been
formulated for the distribution using the symbol P.

Marginalization
Because A ⇔ (A ∧ B) ∨ (A ∧ ¬B) is true for binary variables A and B

PðAÞ ¼ PððA ^ BÞ _ ðA ^ :BÞÞ ¼ PðA ^ BÞþPðA ^ :BÞ:
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By summation over the two values of B, the variable B is eliminated. Analogously,
for arbitrary variables X1; . . . ;Xd, a variable, for example Xd, can be eliminated by
summation over all of their variables and we get

PðX1 ¼ x1; . . . ;Xd�1 ¼ xd�1Þ ¼
X
xd

PðX1 ¼ x1; . . . ;Xd�1 ¼ xd�1;Xd ¼ xdÞ:

The application of this formula is called marginalization. This summation can
continue with the variables X1,… , Xd−1 until just one variable is left. Marginal-
ization can also be applied to the distribution P(X1,… , Xd). The resulting distri-
bution P(X1,… , Xd−1) is called the marginal distribution. It is comparable to the
projection of a rectangular cuboid on a flat surface. Here the three-dimensional
object is drawn on the edge or “margin” of the cuboid, i.e. on a two-dimensional
set. In both cases the dimensionality is reduced by one.

Example 7.6 We observe the set of all patients who come to the doctor with acute
stomach pain. For each patient the leukocyte value is measured, which is a metric
for the relative abundance of white blood cells in the blood. We define the variable
Leuko, which is true if and only if the leukocyte value is greater than 10,000. This
indicates an infection in the body. Otherwise we define the variable App, which tells
us whether the patient has appendicitis, that is, an infected appendix. The distri-
bution P(App, Leuko) of these two variables is given in the following table:

In the last row the sum over the rows is given, and in the last column the sum of the
columns is given. These sums are arrived at by marginalization. For example, we
read off

PðLeukoÞ ¼ PðApp; LeukoÞþPð:App; LeukoÞ ¼ 0:54:

The given distribution P(App, Leuko) could come from a survey of German doctors,
for example. From it we can then calculate the conditional probability

PðLeukojAppÞ ¼ PðLeuko;AppÞ
PðAppÞ ¼ 0:82

which tells us that about 82% of all appendicitis cases lead to a high leukocyte
value. Values like this are published in medical literature. However, the conditional

P(App, Leuko) App ¬App Total

Leuko 0.23 0.31 0.54

¬Leuko 0.05 0.41 0.46

Total 0.28 0.72 1
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probability P(App|Leuko), which would actually be much more helpful for diag-
nosing appendicitis, is not published. To understand this, we will first derive a
simple, but very important formula.

Bayes’ Theorem
Swapping A and B in Definition 7.3 yields

PðAjBÞ ¼ PðA ^ BÞ
PðBÞ and PðBjAÞ ¼ PðA ^ BÞ

PðAÞ :

By solving both equations for PðA ^ BÞ and equating them we obtain Bayes’
theorem

PðAjBÞ ¼ PðBjAÞ � PðAÞ
PðBÞ ; ð7:2Þ

whose relevance to many applications we will illustrate using three examples. First
we apply it to the appendicitis example and obtain

Example 7.7

PðAppjLeukoÞ ¼ PðLeukojAppÞ � PðAppÞ
PðLeukoÞ ¼ 0:82 � 0:28

0:54
¼ 0:43: ð7:3Þ

Why then is PðLeukojAppÞ published, but not PðAppjLeukoÞ?
Assuming that appendicitis affects the biology of all humans the same, regard-

less of ethnicity, PðLeukojAppÞ is a universal value that is valid worldwide. In
Equation 7.3 we see that PðAppjLeukoÞ is not universal, for this value is influenced
by the a priori probabilities PðAppÞ and PðLeukoÞ. Each of these can vary
according to one’s life circumstances. For example, PðLeukoÞ is dependent on
whether a population has a high or low rate of exposure to infectious diseases. In
the tropics, this value can differ significantly from that of cold regions. Bayes’
theorem, however, makes it easy for us to take the universally valid value
PðLeukojAppÞ, and compute PðAppjLeukoÞ which is useful for diagnosis.

Before we dive deeper into this example and build a medical expert system for
appendicitis in Sect. 7.3 let us first apply Bayes’ theorem to another interesting
medical example.

Example 7.8 In cancer diagnosis, so-called tumor markers are often measured. One
example of this is the use of the tumor marker PSA (prostate specific antigen) for
the diagnosis of prostate cancer (PCa = prostate cancer) in men. Assuming that no
further tests for PCa have been conducted, the test is considered positive, that is,
there is suspected PCa, if the concentration of PSA reaches a level at or above
4 ng/ml. If this occurs, the probability P Cjposð Þ of PCa is of interest to the patient.
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The binary variable C is true if the patient has PCa, and pos represents a PSA value
� 4 ng=ml. Let us now compute the P Cjposð Þ. For reasons similar to those men-
tioned for appendicitis diagnosis, this value is not reported. Instead, researchers
publish the sensitivity P posjCð Þ and the specificity Pðnegj:CÞ of the test.2

According to [HL04], for a sensitivity of 0.95, the specificity can be at most 0.25,
which is why we proceed from PðposjCÞ ¼ 0:95 and Pðnegj:CÞ ¼ 0:25 below. We
apply Bayes’ theorem and obtain

PðCjposÞ ¼PðposjCÞ � PðCÞ
PðposÞ ¼ PðposjCÞ � PðCÞ

PðposjCÞ � PðCÞþPðposj:CÞ � Pð:CÞ
¼ 0:95 � 0:0021
0:95 � 0:0021þ 0:75 � 0:99679 ¼ 0:95 � 0:0021

0:75
¼ 0:0027:

Here we use Pðposj:CÞ ¼ 1� Pðnegj:CÞ ¼ 1� 0:25 ¼ 0:75 and PðCÞ ¼
0:0021 ¼ 0:21% as the a priori probability of PCa during one year.3 It makes sense
to assume that the PSA test is done once per year. This result is somewhat sur-
prising from the patient’s perspective because the probability of PCa after a positive
test is, at 0:27%, only marginally higher than the probability of 0:21% for PCa for a
55-year-old man. Thus, a PSA value of just over 4 ng/ml is definitively no reason
for the patient to panic. At most it is used as a basis for further examinations, such
as biopsy or MRI, leading if necessary to radiation and surgery. The situation is
similar for many other tumor markers such as those for colorectal cancer or breast
cancer diagnosis by mammography.

The cause of this problem is the very low specificity Pðnegj:CÞ ¼ 0:25, which
leads to 75% of healthy patients (without PCa) getting a false-positive test result
and consequently undergoing unnecessary examinations. Because of this, PSA
testing has been a controversial discussion topic for years.4

Assume we had a better test with a specificity of 99%, which would only deliver
a false-positive result for one percent of healthy men. Then, in the above calcula-
tion, we would assign Pðposj:CÞ the value 0.01 and obtain the result
PðCjposÞ ¼ 0; 17. Plainly, this test would be much more specific.

Example 7.9 A sales representative who wants to sell an alarm system could make
the following argument:

If you buy this very reliable alarm system, it will alert you to any break-in with 99%
certainty. Our competitor’s system only offers a certainty of 85%.

Hearing this, if the buyer concludes that from an alert A he can infer a break-in
B with high certainty, he is wrong. Bayes’ theorem shows the reason. What the

2For definitions of sensitivity and specificity see Eqs. 7.16 and 7.17.
3See http://www.prostata.de/pca_haeufigkeit.html for a 55-year-old man.
4The author is not a medical doctor. Therefore these computations should not be used as a basis for
personal medical decisions by potentially afflicted individuals. If necessary, please consult a
specialist physician or the relevant specialist literature.
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representative told us is that PðAjBÞ ¼ 0:99. What he doesn’t say, however, is what
it means when we hear the alarm go off. To find out, we use Bayes’ theorem to
compute P(B|A) and assume that the buyer lives in a relatively safe area in which
break-ins are rare, with PðBÞ ¼ 0:001. Additionally, we assume that the alarm
system is triggered not only by burglars, but also by animals, such as birds or cats in
the yard, which results in PðAÞ ¼ 0:1. Thus we obtain

PðBjAÞ ¼ PðAjBÞPðBÞ
PðAÞ ¼ 0:99 � 0:001

0:1
¼ 0:01;

which means that whoever buys this system will not be happy because they will be
startled by too many false alarms. When we examine the denominator

PðAÞ ¼ PðAjBÞPðBÞ þ PðAj:BÞPð:BÞ ¼ 0:00099 þ PðAj:BÞ � 0:999 ¼ 0:1

of Bayes’ theorem more closely, we see that PðAj:BÞ � 0:1, which means that the
alarm will be triggered roughly every tenth day that there is not a break-in.

From this example we learn, among other things, that it is important to consider
which probabilities we are really interested in as a buyer, expecially when it
comes to security. When the arguments of a conditional probability are inter-
changed, the value can change dramatically when the prior probabilities differ
significantly.

7.2 The Principle of Maximum Entropy

We will now show, using an inference example, that a calculus for reasoning under
uncertainty can be realized using probability theory. However, we will soon see that
the well-worn probabilistic paths quickly come to an end. Specifically, when too
little knowledge is available to solve the necessary equations, new ideas are needed.
The American physicist E.T. Jaynes did pioneering work in this area in the 1950s.
He claimed that given missing knowledge, one can maximize the entropy of the
desired probability distribution, and applied this principle to many examples in
[Jay57, Jay03]. This principle was then further developed [Che83, Nil86, Kan89,
KK92] and is now mature and can be applied technologically, which we will show
in the example of the LEXMED project in Sect. 7.3.

7.2.1 An Inference Rule for Probabilities

We want to derive an inference rule for uncertain knowledge that is analogous to
the modus ponens. From the knowledge of a proposition A and a rule A ⇒ B, the
conclusion B shall be reached. Formulated succinctly, this reads
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A; A ! B

B
:

The generalization for probability rules yields

PðAÞ ¼ a; PðBjAÞ ¼ b
PðBÞ ¼ ?

:

Let the two probability rules α, β be given and the value P(B) desired. By
marginalization we obtain the desired marginal distribution

PðBÞ ¼ PðA;BÞþPð:A;BÞ ¼ PðBjAÞ � PðAÞþPðBj:AÞ � Pð:AÞ:

The three values P(A), P(¬A), P BjAð Þ on the right side are known, but the value
P(B | ¬A) is unknown. We cannot make an exact statement about P(B) with classical
probability theory, but at the most we can estimate P Bð Þ�P BjAð Þ � PðAÞ.

We now consider the distribution

PðA; BÞ ¼ ðPðA; BÞ; PðA; :BÞ; Pð:A;BÞ; Pð:A; :BÞÞ

and introduce for shorthand the four unknowns

p1 ¼ PðA;BÞ;
p2 ¼ PðA;:BÞ;
p3 ¼ Pð:A;BÞ;
p4 ¼ Pð:A;:BÞ:

These four parameters determine the distribution. If they are all known, then every
probability for the two variables A and B can be calculated. To calculate the four
unknowns, four equations are needed. One equation is already known in the form of
the normalization condition

p1 þ p2 þ p3 þ p4 ¼ 1:

Therefore, three more equations are needed. In our example, however, only two
equations are known.

From the given values PðAÞ ¼ a and PðBjAÞ ¼ b we calculate

PðA;BÞ ¼ PðBjAÞ � PðAÞ ¼ ab

and

PðAÞ ¼ PðA;BÞþPðA;:BÞ:
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From this we can set up the following system of equations and solve it as far as is
possible:

p1 ¼ ab; ð7:4Þ
p1 þ p2 ¼ a; ð7:5Þ

p1 þ p2 þ p3 þ p4 ¼ 1; ð7:6Þ
ð7:4Þ in (7.5): p2 ¼ a� ab ¼ að1� bÞ; ð7:7Þ
ð7:5Þ in ð7:6Þ: p3 þ p4 ¼ 1� a: ð7:8Þ

The probabilities p1, p2 for the interpretations (A, B) and (A, ¬B) are thus
known, but for the values p3, p4 only one equation still remains. To come to a
definite solution despite this missing knowledge, we change our point of view.
We use the given equation as a constraint for the solution of an optimization
problem.

We are looking for a distribution p (for the variables p3, p4) which maximizes
the entropy

Hð pÞ ¼ �
Xn
i¼1

pi ln pi ¼ �p3 ln p3 � p4 ln p4 ð7:9Þ

under the constraint p3 + p4 = 1 − α (7.8). Why exactly should the entropy
function be maximized? Because we are missing information about the distribu-
tion, it must somehow be added in. We could fix an ad hoc value, for example
p3 = 0.1. Yet it is better to determine the values p3 and p4 such that the infor-
mation added is minimal. We can show (Sect. 8.4.2 and [SW76]) that entropy
measures the uncertainty of a distribution up to a constant factor. Negative entropy
is then a measure of the amount of information a distribution contains. Maxi-
mization of entropy minimizes the information content of the distribution. To
visualize this, the entropy function for the two-dimensional case is represented
graphically in Fig. 7.2 on page 139.

To determine the maximum of the entropy under the constraint p3 + p4 − 1 + α = 0
we use the method of Lagrange multipliers [Ste07]. The Lagrange function reads

L ¼ �p3 ln p3 � p4 ln p4 þ kðp3 þ p4 � 1þ aÞ:

Taking the partial derivatives with respect to p3 and p4 we obtain

@L

@p3
¼ � ln p3 � 1þ k ¼ 0;

@L

@p4
¼ � ln p4 � 1þ k ¼ 0
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and calculate

p3 ¼ p4 ¼ 1� a
2

:

Now we can calculate the desired value

PðBÞ ¼ PðA;BÞþPð:A;BÞ ¼ p1 þ p3 ¼ abþ 1� a
2

¼ a

�
b� 1

2

�
þ 1

2
:

Substituting in α and β yields

PðBÞ ¼ PðAÞ
�
PðBjAÞ � 1

2

�
þ 1

2
:

P(B) is shown in Fig. 7.3 on page 140 for various values of P BjAð Þ. We see that in
the two-value edge case, that is, when P(B) and P BjAð Þ take on the values 0 or 1,
probabilistic inference returns the same value for P(B) as the modus ponens. When
A and B|A are both true, B is also true. An interesting case is P(A) = 0, in which
¬A is true. Modus ponens cannot be applied here, but our formula results in the
value 1/2 for P(B) irrespective of P BjAð Þ. When A is false, we know nothing about
B, which reflects our intuition exactly. The case where P(A) = 1 and P BjAð Þ = 0 is
also covered by propositional logic. Here A is true and A ⇒ B false, and thus
A ∧ ¬B true. Then B is false. The horizontal line in the figure means that we cannot
make a prediction about B in the case of P BjAð Þ = 1/2. Between these points,
P(B) changes linearly for changes to P(A) or P BjAð Þ.

Fig. 7.2 Contour line
diagram of the
two-dimensional entropy
function. We see that it is
strictly convex in the whole
unit square and that it has an
isolated global maximum.
Also marked is the constraint
p3 + p4 = 1 as a special case of
the condition p3 + p4−1 + α= 0
for α = 0 which is relevant here
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Theorem 7.3 Let there be a consistent5 set of linear probabilistic equations.
Then there exists a unique maximum for the entropy function with the given
equations as constraints. The MaxEnt distribution thereby defined has min-
imum information content under the constraints.

It follows from this theorem that there is no distribution which satisfies the
constraints and has higher entropy than the MaxEnt distribution. A calculus that
leads to lower entropy puts in additional ad hoc information, which is not justified.

Looking more closely at the above calculation of P(B), we see that the two
values p3 and p4 always occur symmetrically. This means that swapping the two
variables does not change the result. Thus the end result is p3 = p4. The so-called
indifference of these two variables leads to them being set equal by MaxEnt. This
relationship is valid generally:

Definition 7.5 If an arbitrary exchange of two or more variables in the
Lagrange equations results in equivalent equations, these variables are called
indifferent.

Fig. 7.3 Curve array for P(B) as a function of P(A) for different values of P BjAð Þ

5A set of probabilistic equations is called consistent if there is at least one solution, that is, one
distribution which satisfies all equations.
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Theorem 7.4 If a set of variables fpi1 ; . . . ; pikg is indifferent, then the
maximum of the entropy under the given constraints is at the point where
pi1 ¼ pi2 ¼ � � � ¼ pik .

With this knowledge we could have immediately set the two variables p3 and p4
equal (without solving the Lagrange equations).

7.2.2 Maximum Entropy Without Explicit Constraints

We now look at the case in which no knowledge is given. This means that, other
than the normalization condition

p1 þ p2 þ � � � þ pn ¼ 1;

there are no constraints. All variables are therefore indifferent. Therefore we can set
them equal and it follows that p1 = p2 = ⋅⋅⋅ = pn = 1/n.6 For reasoning under
uncertainty, this means that given a complete lack of knowledge, all worlds are
equally probable. That is, the distribution is uniform. For example, in the case of
two variables A and B it would be the case that

PðA;BÞ ¼ PðA;:BÞ ¼ Pð:A;BÞ ¼ Pð:A;:BÞ ¼ 1=4;

from which P(A) = P(B) = 1/2 and P(B|A) = 1/2 follow. The result for the
two-dimensional case can be seen in Fig. 7.2 on page 139 because the marked
condition is exactly the normalization condition. We see that the maximum of the
entropy lies on the line at exactly (1/2, 1/2).

As soon as the value of a condition deviates from the one derived from the
uniform distribution, the probabilities of the worlds shift. We show this in a further
example. With the same descriptions as used above we assume that only

PðBjAÞ ¼ b

is known. Thus PðA;BÞ ¼ PðBjAÞPðAÞ ¼ bPðAÞ, from which p1 = β(p1 + p2)
follows and we derive the two constraints

bp2 þðb� 1Þp1 ¼ 0;

p1 þ p2 þ p3 þ p4 � 1 ¼ 0:

6The reader may calculate this result by maximization of the entropy under the normalization
condition (Exercise 7.5 on page 132).
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Here the Lagrange equations can no longer be solved symbolically so easily.
A numeric solution of the Lagrange equations yields the picture represented in
Fig. 7.4, which shows that p3 = p4.We can already see this in the constraints, in which
p3 and p4 are indifferent. For P BjAð Þ = 1/2 we obtain the uniform distribution, which
is no surprise. This means that the constraint for this value does not imply a restriction
on the distribution. Furthermore, we can see that for small P(B|A), P(A, B) is
also small.

7.2.3 Conditional Probability Versus Material Implication

We will now show that, for modeling reasoning, conditional probability is better
than what is known in logic as material implication (to this end, also see [Ada75]).
First we observe the truth table shown in Table 7.1, in which the conditional
probability and material implication for the extreme cases of probabilities zero and
one are compared. In both cases with false premises (which, intuitively, are critical
cases), P BjAð Þ is undefined, which makes sense.

Fig. 7.4 p1, p2, p3, p4 in dependence on β

Table 7.1 Truth table for material implication and conditional probability for propositional logic
limit

A B A ⇒ B P(A) P(B) P BjAð Þ
t t t 1 1 1

t f f 1 0 0

f t t 0 1 Undefined

f f t 0 0 Undefined
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Now we ask ourselves which value is taken on by P BjAð Þ when arbitrary values
P(A) = α and P(B) = γ are given and no other information is known. Again we
maximize entropy under the given constraints. As above we set

p1 ¼ PðA;BÞ; p2 ¼ PðA;:BÞ; p3 ¼ Pð:A;BÞ; p4 ¼ Pð:A;:BÞ

and obtain as constraints

p1 þ p2 ¼ a; ð7:10Þ

p1 þ p3 ¼ c; ð7:11Þ

p1 þ p2 þ p3 þ p4 ¼ 1: ð7:12Þ

With this we calculate using entropy maximization (see Exercise 7.8 on page 173)

p1 ¼ ac; p2 ¼ að1� cÞ; p3 ¼ cð1� aÞ; p4 ¼ ð1� aÞð1� cÞ:

From p1 = αγ it follows that P(A, B) = P(A) ⋅ P(B), which means that A and B are
independent. Because there are no constraints connecting A and B, the MaxEnt
principle results in the independence of these variables. The right half of Table 7.1
on page 142 makes this easier to understand. From the definition

PðBjAÞ ¼ PðA;BÞ
PðAÞ

it follows for the case P(A) ≠ 0, that is, when the premise is not false, because A and
B are independent, that P BjAð Þ ¼ P Bð Þ. For the case P(A) = 0, P BjAð Þ remains
undefined.

7.2.4 MaxEnt-Systems

As previously mentioned, due to the nonlinearity of the entropy function, MaxEnt
optimization usually cannot be carried out symbolically for non-trivial problems.
Thus two systems were developed for numerical entropy maximization. The first
system, SPIRIT (Symmetrical Probabilistic Intensional Reasoning in Inference
Networks in Transition, www.xspirit.de), [RM96] was built at Fernuniversität
Hagen. The second, PIT (Probability Induction Tool) was developed at the Munich
Technical University [Sch96, ES99, SE00]. We will now briefly introduce PIT.

The PIT system uses the sequential quadratic programming (SQP) method to
find an extremum of the entropy function under the given constraints. As input, PIT
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expects data containing the constraints. For example, the constraints P(A) = α and
P(B|A) = β from Sect. 7.2.1 have the form

var A{t,f}, B{t,f};

P([A=t]) = 0.6;
P([B=t] | [A=t]) = 0.3;

QP([B=t]);
QP([B=t] | [A=t]);

Because PIT performs a numerical calculation, we have to input explicit proba-
bility values. The second to last row contains the query QP([B = t]). This means
that P(B) is the desired value. At www.pit-systems.de under “Examples”we now put
this input into a blank input page (“Blank Page”) and start PIT. As a result we get

and from there read off P(B) = 0.38 and P BjAð Þ ¼ 0:3.

Nr. Truth value Probability Query

1 UNSPECIFIED 3.800e–01 QP([B = t]);

2 UNSPECIFIED 3.000e–01 QP([A = t]-|> [B = t]);

7.2.5 The Tweety Example

We now show, using the Tweety example from Sect. 4.3, that probabilistic rea-
soning and in particular MaxEnt are non-monotonic and model everyday reasoning
very well. We model the relevant rules with probabilities as follows:

P(birdjpenguin) = 1 ‘‘penguins are birds’’
P( fliesjbird) 2 [0.95, 1] ‘‘(almost all) birds can fly’’
P( fliesjpenguin) = 0 ‘‘penguins cannot fly’’

The first and third rules represent firm predictions, which can also be easily
formulated in logic. In the second, however, we express our knowledge that almost
all birds can fly by means of a probability interval. With the PIT input data

var penguin{yes,no}, bird{yes,no}, flies{yes,no};

P([bird=yes] | [penguin=yes]) = 1;
P([flies=yes] | [bird=yes]) IN [0.95,1];
P([flies=yes] | [penguin=yes]) = 0;

QP([flies=yes]| [penguin=yes]);

144 7 Reasoning with Uncertainty

http://www.pit-systems.de


we get back the correct answer

with the proposition that penguins cannot fly.7 The explanation for this is very
simple. With P fliesjbirdð Þ 2 [0.95, 1] it is possible that there are non-flying birds. If
this rule were replaced by P(flies|bird) = 1, then PIT would not be able to do
anything and would output an error message about inconsistent constraints.

In this example we can easily see that probability intervals are often very helpful
for modeling our ignorance about exact probability values. We could have made an
even fuzzier formulation of the second rule in the spirit of “normally birds fly” with
P(flies|bird) 2 (0.5, 1]. The use of the half-open interval excludes the value 0.5.

It has already been shown in [Pea88] that this example can be solved using
probabilistic logic, even without MaxEnt. In [Sch96] it is shown for a number of
demanding benchmarks for non-monotonic reasoning that these can be solved
elegantly with MaxEnt. In the following section we introduce a successful practical
application of MaxEnt in the form of a medical expert system.

7.3 LEXMED, an Expert System for Diagnosing Appendicitis

The medical expert system LEXMED, which uses the MaxEnt method, was developed
at the Ravensburg-Weingarten University of Applied Sciences by Manfred
Schramm, Walter Rampf, and the author, in cooperation with the Weingarten
14-Nothelfer Hospital [SE00, Le999].8 The acronym LEXMED stands for learning
expert system for medical diagnosis.

7.3.1 Appendicitis Diagnosis with Formal Methods

The most common serious cause of acute abdominal pain [dD91] is appendicitis—
an inflammation of the appendix, a blind-ended tube connected to the cecum. Even
today, diagnosis can be difficult in many cases [OFY+95]. For example, up to about
20% of the removed appendices are without pathological findings, which means
that the operations were unnecessary. Likewise, there are regularly cases in which
an inflamed appendix is not recognized as such.

Since as early as the beginning of the 1970s, there have been attempts to automate
the diagnosis of appendicitis, with the goal of reducing the rate of false

Nr. Truthvalue Probability Query

1 UNSPECIFIED 0.000e+00 QP([penguin = yes]-|> [flies = yes]);

7QP([penguin=yes]-|> [flies=yes]) is an alternative form of the PIT syntax for
QP([flies=yes] | [penguin=yes]).
8The project was financed by the German state of Baden-Württemberg, the health insurance
company AOK Baden-Württemberg, the Ravensburg-Weingarten University of Applied Sciences,
and the 14 Nothelfer Hospital in Weingarten.
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diagnoses [dDLS+72, OPB94, OFY+95]. Especially noteworthy is the expert sys-
tem for diagnosis of acute abdominal pain, developed by de Dombal in Great Britain.
It was made public in 1972, thus distinctly earlier than the famous system MYCIN.

Nearly all of the formal diagnostic processes used in medicine to date have been
based on scores. Score systems are extremely easy to apply: For each value of a
symptom (for example fever or lower right stomach pain) the doctor notes a certain
number of points. If the sum of the points is over a certain value (threshold), a certain
decision is recommended (for example operation). For n symptoms S1, … , Sn a
score for appendicitis can be described formally as

Diagnose ¼ Appendicitis if w1S1 þ � � � þwnSn [H;
negative else.

�

With scores, a linear combination of symptom values is thus compared with a
threshold Θ. The weights of the symptoms are extracted from databases using
statistical methods. The advantage of scores is their simplicity of application. The
weighted sum of the points can be computed by hand easily and a computer is not
needed for the diagnosis.

Because of the linearity of this method, scores are too weak to model complex
relationships. Since the contribution wiSi of a symptom Si to the score is calculated
independently of the other symptoms, it is clear that score systems cannot take any
“context” into account. Principally, they cannot distinguish between combinations
of symptoms, for example they cannot distinguish between the white blood cell
count of an old patient and that of a young patient.

For a fixed given set of symptoms, conditional probability is much more
powerful than scores for making predictions because the latter cannot describe the
dependencies between different symptoms. We can show that scores implicitly
assume that all symptoms are independent.

When using scores, yet another problem comes up. To arrive at a good diagnosis
quality, we must put strict requirements on the databases used to statistically
determine the weights wi. In particular they must be representative of the set of
patients in the area in which the diagnosis system is used. This is often difficult, if
not impossible, to guarantee. In such cases, scores and other statistical methods
either cannot be used, or will have a high rate of errors.

7.3.2 Hybrid Probabilistic Knowledge Base

Complex probabilistic relationships appear frequently in medicine. With LEXMED,
these relationships can be modeled well and calculated quickly. Here the use of
probabilistic propositions, with which uncertain and incomplete information can be
expressed and processed in an intuitive and mathematically grounded way, is
essential. The following question may serve as a typical query against the expert
system: “How high is the probability of an inflamed appendix if the patient is a
23-year-old man with pain in the right lower abdomen and a white blood cell count
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of 13,000?” Formulated as conditional probability, using the names and value
ranges for the symptoms used in Table 7.2, this reads

PðDiag4 ¼ inflamed _ Diag4 ¼ perforated j
Sex2 ¼ male ^ Age10 2 21�25 ^ Leuko7 2 12k�15kÞ:

By using probabilistic propositions, LEXMED has the ability to use information
from non-representative databases because this information can be complemented
appropriately from other sources. Underlying LEXMED is a database which only
contains data about patients whose appendixes were surgically removed. With
statistical methods, (about 400) rules are generated which compile the knowledge
contained in the database into an abstracted form [ES99]. Because there are no
patients in this database who were suspected of having appendicitis but had neg-
ative diagnoses (that is, not requiring treatment),9 there is no knowledge about
negative patients in the database. Thus knowledge from other sources must be
added in. In LEXMED therefore the rules gathered from the database are comple-
mented by (about 100) rules from medical experts and the medical literature. This
results in a hybrid probabilistic database, which contains knowledge extracted from
data as well as knowledge explicitly formulated by experts. Because both types of
rules are formulated as conditional probabilities (see for example (7.14) on
page 152), they can be easily combined, as shown in Fig. 7.5 on page 148 and with
more details in Fig. 7.7 on page 150.

Table 7.2 Symptoms used for the query in LEXMED and their values. The number of values for
the each symptom is given in the column marked #

Symptom Values # Short

Gender Male, female 2 Sex2

Age 0–5, 6–10, 11–15, 16–20, 21–25, 26–35, 36–45, 46–55, 56–65, 65– 10 Age10

Pain 1st Quad. Yes, no 2 P1Q2

Pain 2nd Quad. Yes, no 2 P2Q2

Pain 3rd Quad. Yes, no 2 P3Q2

Pain 4th Quad. Yes, no 2 P4Q2

Guarding Local, global, none 3 Gua3

Rebound tenderness Yes, no 2 Reb2

Pain on tapping Yes, no 2 Tapp2

Rectal pain Yes, no 2 RecP2

Bowel sounds Weak, normal, increased, none 4 BowS4

Abnormal ultrasound Yes, no 2 Sono2

Abnormal urine sedim. Yes, no 2 Urin2

Temperature (rectal) –37.3, 37.4–37.6, 37.7–38.0, 38.1–38.4, 38.5–38.9, 39.0– 6 TRec6

Leukocytes 0–6k, 6k–8k, 8k–10k, 10k–12k, 12k–15k, 15k–20k, 20k– 7 Leuko7

Diagnosis Inflamed, perforated, negative, other 4 Diag4

9These negative diagnoses are denoted “non-specific abdominal pain” (NSAP).
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LEXMED calculates the probabilities of various diagnoses using the probability
distribution of all relevant variables (see Table 7.2 on page 147). Because all 14
symptoms used in LEXMED and the diagnoses are modeled as discrete variables
(even continuous variables like the leukocyte value are divided into ranges), the size
of the distribution (that is, the size of the event space) can be determined using
Table 7.2 on page 147 as the product of the number of values of all symptoms, or

210 � 10 � 3 � 4 � 6 � 7 � 4 ¼ 20643840

elements. Due to the normalization condition from Theorem 7.1 on page 129, it thus
has 20643839 independent values. Every rule set with fewer than 20643839 proba-
bility values potentially does not completely describe this event space. To be able to
answer any arbitrary query, the expert system needs a complete distribution. The
construction of such an extensive, consistent distribution using statistical methods is
very difficult.10 To require from a human expert all 20643839 values for the distri-
bution (instead of the aforementioned 100 rules) would essentially be impossible.

Here the MaxEnt method comes into play. The generalization of about 500 rules
to a complete probability model is done in LEXMED by maximizing the entropy with
the 500 rules as constraints. An efficient encoding of the resulting MaxEnt distri-
bution leads to response times for the diagnosis of around one second.

Fig. 7.5 Probabilistic rules are generated from data and expert knowledge, which are integrated
in a rule base (knowledge base) and finally made complete using the MaxEnt method

10The task of generating a function from a set of data is known as machine learning. We will cover
this thoroughly in Chap. 8.
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7.3.3 Application of LEXMED

The usage of LEXMED is simple and self-explanatory. The doctor visits the LEXMED

home page at www.lexmed.de.11 For an automatic diagnosis, the doctor inputs the
results of his examination into the input form in Fig. 7.6. After one or two seconds
he receives the probabilities for the four different diagnoses as well as a suggestion
for a treatment (Sect. 7.3.5). If certain examination results are missing as input
(for example the sonogram results), then the doctor chooses the entry not examined.
Naturally the certainty of the diagnosis is higher when more symptom values
are input.

Fig. 7.6 The LEXMED input mask for input of the examined symptoms and below it the output of
the resulting diagnosis probabilities

11A version with limited functionality is accessible without a password.

7.3 LEXMED, an Expert System for Diagnosing Appendicitis 149



Each registered user has access to a private patient database, in which input data
can be archived. Thus data and diagnoses from earlier patients can be easily
compared with those of a new patient. An overview of the processes in LEXMED is
given in Fig. 7.7.

7.3.4 Function of LEXMED

Knowledge is formalized using probabilistic propositions. For example, the
proposition

PðLeuko7[ 20000jDiag4 ¼ inflamedÞ ¼ 0:09

gives a frequency of 9% for a leukocyte value of more than 20,000 in case of an
inflamed appendix.12

Learning of Rules by Statistical Induction
The raw data in LEXMED’s database contain 54 different (anonymized) values for
14,646 patients. As previously mentioned, only patients whose appendixes were
surgically removed are included in this database. Of the 54 attributes used in the

Fig. 7.7 Rules are generated from the database as well as from expert knowledge. From these,
MaxEnt creates a complete probability distribution. For a user query, the probability of every
possible diagnosis is calculated. Using the cost matrix (see Sect. 7.3.5) a decision is then suggested

12Instead of individual numerical values, intervals can also be used here (for example [0.06, 0.12]).
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database, after a statistical analysis the 14 symptoms shown in Table 7.2 on
page 147 were used. Now the rules are created from this database in two steps. The
first step determines the dependency structure of the symptoms. The second step
fills this structure with the respective probability rules.13

Determining the Dependency Graph The graph in Fig. 7.8 contains for each
variable (the symptom and the diagnosis) a node and directed edges which connect
various nodes. The thickness of the edges between the variables represents a
measure of the statistical dependency or correlation of the variables. The correlation
of two independent variables is equal to zero. The pair correlation for each of the 14
symptoms with Diag4 was computed and listed in the graph. Furthermore, all triple
correlations between the diagnosis and two symptoms were calculated. Of these,
only the strongest values have been drawn as additional edges between the two
participating symptoms.

Fig. 7.8 Dependency graph computed from the database

13For a systematic introduction to machine learning we refer the reader to Chap. 8.
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Estimating the Rule Probabilities The structure of the dependency graph describes
the structure of the learned rules.14 The rules here have different complexities: there
are rules which only describe the distribution of the possible diagnoses (a priori rules,
for example (7.13)), rules which describe the dependency between the diagnosis and
a symptom (rules with simple conditions, for example (7.14)), and finally rules which
describe the dependency between the diagnosis and two symptoms, as given in
Fig. 7.9 in PIT syntax.

PðDiag4 ¼ inflamedÞ ¼ 0:40; ð7:13Þ
PðSono2 ¼ yesjDiag4 ¼ inflamedÞ ¼ 0:43; ð7:14Þ

PðP4Q2 ¼ yesjDiag4 ¼ inflamed ^ P2Q2 ¼ yesÞ ¼ 0:61: ð7:15Þ

To keep the context dependency of the saved knowledge as small as possible, all
rules contain the diagnosis in their conditions and not as conclusions. This is quite
similar to the construction of many medical books with formulations of the kind
“With appendicitis we usually see …”. As previously shown in Example 7.6 on
page 133, however, this does not present a problem because, using the Bayesian
formula, LEXMED automatically puts these rules into the right form.

The numerical values for these rules are estimated by counting their frequency in
the database. For example, the value in (7.14) is given by counting and calculating

jDiag4 ¼ inflamed ^ Sono2 ¼ yesj
jDiag4 ¼ inflamedj ¼ 0:43:

1 P([Leuco7=0-6k] | [Diag4=negativ] * [Age10=16-20]) = [0.132,0.156];
2 P([Leuco7=6-8k] | [Diag4=negativ] * [Age10=16-20]) = [0.257,0.281];
3 P([Leuco7=8-10k] | [Diag4=negativ] * [Age10=16-20]) = [0.250,0.274];
4 P([Leuco7=10-12k] | [Diag4=negativ] * [Age10=16-20]) = [0.159,0.183];
5 P([Leuco7=12-15k] | [Diag4=negativ] * [Age10=16-20]) = [0.087,0.112];
6 P([Leuco7=15-20k] | [Diag4=negativ] * [Age10=16-20]) = [0.032,0.056];
7 P([Leuco7=20k-] | [Diag4=negativ] * [Age10=16-20]) = [0.000,0.023];
8 P([Leuco7=0-6k] | [Diag4=negativ] * [Age10=21-25]) = [0.132,0.172];
9 P([Leuco7=6-8k] | [Diag4=negativ] * [Age10=21-25]) = [0.227,0.266];

10 P([Leuco7=8-10k] | [Diag4=negativ] * [Age10=21-25]) = [0.211,0.250];
11 P([Leuco7=10-12k] | [Diag4=negativ] * [Age10=21-25]) = [0.166,0.205];
12 P([Leuco7=12-15k] | [Diag4=negativ] * [Age10=21-25]) = [0.081,0.120];
13 P([Leuco7=15-20k] | [Diag4=negativ] * [Age10=21-25]) = [0.041,0.081];
14 P([Leuco7=20k-] | [Diag4=negativ] * [Age10=21-25]) = [0.004,0.043];

Fig. 7.9 Some of the LEXMED rules with probability intervals. “*” stands for “∧” here

14The difference between this and a Bayesian network is, for example, that the rules are equipped
with probability intervals and that only after applying the principle of maximum entropy is a
unique probability model produced.
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Expert Rules
Because the appendicitis database only contains patients who have undergone the
operation, rules for non-specific abdominal pain (NSAP) receive their values from
propositions of medical experts. The experiences in LEXMED confirm that the
probabilistic rules are easy to read and can be directly translated into natural lan-
guage. Statements by medical experts about frequency relationships of specific
symptoms and the diagnosis, whether from the literature or as the result of an
interview, can therefore be incorporated into the rule base with little expense. To
model the uncertainty of expert knowledge, the use of probability intervals has
proven effective. The expert knowledge was primarily acquired from the partici-
pating surgeons, Dr. Rampf and Dr. Hontschik, and their publications [Hon94].

Once the expert rules have been created, the rule base is finished. Then the
complete probability model is calculated with the method of maximum entropy by
the PIT-system.

Diagnosis Queries
Using its efficiently stored probability model, LEXMED calculates the probabilities
for the four possible diagnoses within a few seconds. For example, we assume the
following output:

A decision must be made based on these four probability values to pursue one of
the four treatments: operation, emergency operation, stationary observation, or
ambulant observation.15 While the probability for a negative diagnosis in this case
outweighs the others, sending the patient home as healthy is not a good decision.
We can clearly see that, even when the probabilities of the diagnoses have been
calculated, the diagnosis is not yet finished.

Rather, the task is now to derive an optimal decision from these probabilities.
To this end, the user can have LEXMED calculate a recommended decision.

7.3.5 Risk Management Using the Cost Matrix

How can the computed probabilities now be translated optimally into decisions?
A naive algorithm would assign a decision to each diagnosis and ultimately select
the decision that corresponds to the highest probability. Assume that the computed
probabilities are 0.40 for the diagnosis appendicitis (inflamed or perforated), 0.55
for the diagnosis negative, and 0.05 for the diagnosis other. A naive algorithm
would now choose the (too risky) decision “no operation” because it corresponds to
the diagnosis with the higher probability. A better method consists of comparing

Diagnosis

Results of the PIT diagnosis

Appendix inflamed Appendix perforated Negative Other

Probability 0.24 0.16 0.57 0.03

15Ambulant observation means that the patient is released to stay at home.
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Table 7.3 The cost matrix of LEXMED together with a patient’s computed diagnosis probabilities

Therapy Probability of various diagnoses

Inflamed Perforated Negative Other

0.25 0.15 0.55 0.05

Operation 0 500 5800 6000 3565

Emergency operation 500 0 6300 6500 3915

Ambulant observ. 12000 150000 0 16500 26325

Other 3000 5000 1300 0 2215

Stationary observ. 3500 7000 400 600 2175

the costs of the possible errors that can occur for each decision. The error is
quantified in the form of “(hypothetical) additional cost of the current decision
compared to the optimum”. The given values contain the costs to the hospital, to the
insurance company, the patient (for example risk of post-operative complications),
and to other parties (for example absence from work), taking into account long term
consequences. These costs are given in Table 7.3.

The entries are finally averaged for each decision, that is, summed while taking
into account their frequencies. These are listed in the last column in Table 7.3.
Finally, the decision with the smallest average cost of error is suggested. In
Table 7.3 the matrix is given together with the probability vector calculated for a
patient (in this case: (0.25, 0.15, 0.55, 0.05)). The last column of the table contains
the result of the calculations of the average expected costs of the errors. The value of
Operation in the first row is thus calculated as 0.25 ⋅ 0 + 0.15 ⋅ 500 + 0.55 ⋅ 5800 +
0.05 ⋅ 6000 = 3565, a weighted average of all costs. The optimal decisions are
entered with (additional) costs of 0. The system decides on the treatment with the
minimal average cost. It thus is an example of a cost-oriented agent.

Cost Matrix in the Binary Case
To better understand the cost matrix and risk management we will now restrict the
LEXMED system to the two-value decision between the diagnosis appendicitis with
probability

p1 ¼ PðappendicitisÞ ¼ PðDiag4 ¼ inflamedÞþPðDiag4 ¼ perforatedÞ

and NSAP with the probability

p2 ¼ PðNSAPÞ ¼ PðDiag4 ¼ negativeÞþPðDiag4 ¼ otherÞ

The only available treatments are operation and ambulant observation.
The cost matrix is thus a 2 × 2 matrix of the form

0 k2
k1 0

� �
:
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The two zeroes in the diagonal stand for the correct decision operation in the case
of appendicitis and ambulant observation for NSAP. The parameter k2 stands for
the expected costs which occur when a patient without an inflamed appendix is
operated on. This error is called a false positive. On the other hand, the decision
ambulant observation in the case of appendicitis is a false negative. The probability
vector (p1, p2)

T is now multiplied by this matrix and we obtain the vector

ðk2 p2; k1 p1ÞT

with the average additional cost for the two possible treatments. Because the
decision only takes into account the relationship of the two components, the vector
can be multiplied by any scalar factor. We choose 1/k1 and obtain ((k2/k1) p2, p1).
Thus only the relationship k = k2/k1 is relevant here. The same result is obtained by
the simpler cost matrix

0 k
1 0

� �
;

which only contains the variable k. This parameter is very important because it
determines risk management. By changing k we can fit the “working point” of the
diagnosis system. For k → ∞ the system is put in an extremely risky setting
because no patient will ever be operated on, with the consequence that it gives no
false positive classifications, but many False negatives. In the case of k = 0 the
conditions are in exact reverse and all patients are operated upon.

7.3.6 Performance

LEXMED is intended for use in a medical practice or ambulance. Prerequisites for the
use of LEXMED are acute abdominal pain for several hours (but less than five days).
Furthermore, LEXMED is (currently) specialized for appendicitis, which means that
for other illnesses the system contains very little information.

In the scope of a prospective study, a representative database with 185 cases was
created in the 14 Nothelfer Hospital. It contains the hospital’s patients who came to
the clinic after several hours of acute abdominal pain and suspected appendicitis.
From these patients, the symptoms and the diagnosis (verified from a tissue sample
in the case of an operation) is noted.

If the patients were released to go home (without operation) after a stay of
several hours or 1–2 days with little or no complaint, it was afterwards inquired by
telephone whether the patient remained free of symptoms or whether a positive
diagnosis was found in subsequent treatment.

To simplify the representation and make for a better comparison to similar
studies, LEXMED was restricted to the two-value distinction between appendicitis
and NSAP, as described in Sect. 7.3.5. Now k is varied between zero and infinity
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and for every value of k the sensitivity and specificity are measured against the test
data. Sensitivity measures

Pðclassified positivejpositiveÞ ¼ jpositive and classified positivej
jpositivej ; ð7:16Þ

that is, the relative portion of positive cases which are correctly identified. It indi-
cates how sensitive the diagnostic system is. Specificity, on the other hand, measures

Pðclassified negativejnegativeÞ ¼ jnegative and classified negativej
jnegativej ; ð7:17Þ

that is, the relative portion of negative cases which are correctly identified.
We give the results of the sensitivity and specificity in Fig. 7.10 for 0 ≤ k < ∞.

This curve is denoted the ROC curve, or receiver operating characteristic. Before
we come to the analysis of the quality of LEXMED, a few words about the meaning of
the ROC curve. The line bisecting the diagram diagonally is drawn in for orien-
tation. All points on this line correspond to a random decision. For example, the
point (0.2, 0.2) corresponds to a specificity of 0.8 with a sensitivity of 0.2. We can
arrive at this quite easily by classifying a new case, without looking at it, with
probabilities 0.2 for positive and 0.8 for negative. Every knowledge-based diag-
nosis system must therefore generate a ROC which clearly lies above the diagonal.

Specificity

Fig. 7.10 ROC curve from LEXMED compared with the Ohmann score and two additional models
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The extreme values in the ROC curve are also interesting. At point (0, 0) all
three curves intersect. The corresponding diagnosis system would classify all cases
as negative. The other extreme value (1, 1) corresponds to a system which would
decide to do the operation for every patient and thus has a sensitivity of 1. We could
call the ROC curve the characteristic curve for two-value diagnostic systems. The
ideal diagnostic system would have a characteristic curve which consists only of the
point (0, 1), and thus has 100% specificity and 100% sensitivity.

Now let us analyse the ROC curve. At a sensitivity of 88%, LEXMED attains a
specificity of 87% (k = 0.6). For comparison, the Ohmann score, an established,
well-known score for appendicitis is given [OMYL96, ZSR+99]. Because LEXMED

is above or to the left of the Ohmann score almost everywhere, its average quality of
diagnosis is clearly better. This is not surprising because scores are simply too weak
to model interesting propositions. In Sect. 8.7 and in Exercise 8.17 on page 242 we
will show that scores are equivalent to the special case of naive Bayes, that is, to the
assumption that all symptoms are pairwise independent when the diagnosis is
known. When comparing LEXMED with scores it should, however, be mentioned that
a statistically representative database was used for the Ohmann score, but a
non-representative database enhanced with expert knowledge was used for LEXMED.
To get an idea of the quality of the LEXMED data in comparison to the Ohmann data, a
linear score was calculated using the least squares method (see Sect. 9.4.1), which is
also drawn for comparison. Furthermore, a neural network was trained on the
LEXMED data with the RProp algorithm (see Sect. 9.5). The strength of combining
data and expert knowledge is displayed clearly in the difference between the LEXMED

curve and the curves of the score system and the RProp algorithm.

7.3.7 Application Areas and Experiences

LEXMED should not replace the judgment of an experienced surgeon. However,
because a specialist is not always available in a clinical setting, a LEXMED query
offers a substantive second opinion. Especially interesting and worthwhile is the
application of the system in a clinical ambulance and for general practitioners.

The learning capability of LEXMED, which makes it possible to take into account
further symptoms, further patient data, and further rules, also presents new possi-
bilities in the clinic. For especially rare groups which are difficult to diagnose, for
example children under six years of age, LEXMED can use data from pediatricians or
other special databases, to support even experienced surgeons.

Aside from direct use in diagnosis, LEXMED also supports quality assurance
measures. For example, insurance companies can compare the quality of diagnosis
of hospitals with that of expert systems. By further developing the cost matrix
created in LEXMED (with the consent of doctors, insurance, and patients), the quality
of physician diagnoses, computer diagnoses, and other medical institutions will
become easier to compare.

LEXMED has pointed to a new way of constructing automatic diagnostic systems.
Using the language of probability theory and the MaxEnt algorithm, inductively,
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statistically derived knowledge is combined with knowledge from experts and from
the literature. The approach based on probabilistic models is theoretically elegant,
generally applicable, and has given very good results in a small study.

LEXMED has been in practical use in the 14 Nothelfer Hospital in Weingarten since
1999 and has performed there very well. It is also available at www.lexmed.de,
without warranty, of course. Its quality of diagnosis is comparable with that of an
experienced surgeon and is thus better than that of an average general practitioner, or
that of an inexperienced doctor in the clinic.

Despite this success it has become evident that it is very difficult to market such
a system commercially in the German medical system. One reason for this is that
there is no free market to promote better quality (here better diagnoses) through its
selection mechanisms. Furthermore, in medicine the time for broad use of intelli-
gent techniques is not yet at hand—even in 2010. One cause of this could be
conservative teachings in this regard in German medical school faculties.

A further issue is the desire of many patients for personal advice and care from
the doctor, together with the fear that, with the introduction of expert systems, the
patient will only communicate with the machine. This fear, however, is wholly
unfounded. Even in the long term, medical expert systems cannot replace the
doctor. They can, however, just like laser surgery and magnetic resonance imaging,
be used advantageously for all participants. Since the first medical computer
diagnostic system of de Dombal in 1972, almost 40 years have passed. It remains to
be seen whether medicine will wait another 40 years until computer diagnostics
becomes an established medical tool.

7.4 Reasoning with Bayesian Networks

One problem with reasoning using probability in practice was already pointed out in
Sect. 7.1. If d variables X1,… , Xd with n values each are used, then the associated
probability distribution has nd total values. This means that in the worst case the
memory use and computation time for determining the specified probabilities grows
exponentially with the number of variables.

In practice the applications are usually very structured and the distribution contains
many redundancies. This means that it can be heavily reduced with the appropriate
methods. The use of Bayesian networks has proved its power here and is one of the AI
techniques which have been successfully used in practice. Bayesian networks utilize
knowledge about the independence of variables to simplify the model.

7.4.1 Independent Variables

In the simplest case, all variables are pairwise independent and it is the case that

PðX1; . . .;XdÞ ¼ PðX1Þ � PðX2Þ � � � � � PðXdÞ:
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All entries in the distribution can thus be calculated from the d valuesP(X1),… ,P(Xd).
Interesting applications, however, can usually not be modeled because conditional
probabilities become trivial.16 Because of

PðAjBÞ ¼ PðA;BÞ
PðBÞ ¼ PðAÞPðBÞ

PðBÞ ¼ PðAÞ

all conditional probabilities are reduced to the a priori probabilities. The situation
becomes more interesting when only a portion of the variables are independent or
independent under certain conditions. For reasoning in AI, the dependencies
between variables happen to be important and must be utilized.

We would like to outline reasoning with Bayesian networks through a simple
and very illustrative example by J. Pearl [Pea88], which became well known
through [RN10] and is now basic AI knowledge.

Example 7.10 (Alarm-Example) Bob, who is single, has had an alarm system
installed in his house to protect against burglars. Bob cannot hear the alarm when he
is working at the office. Therefore he has asked his two neighbors, John in the house
next door to the left, and Mary in the house to the right, to call him at his office if
they hear his alarm. After a few years Bob knows how reliable John and Mary are
and models their calling behavior using conditional probability as follows.17

PðJjAlÞ¼ 0:90 PðMjAlÞ ¼ 0:70;
PðJj:AlÞ¼ 0:05 PðMj:AlÞ ¼ 0:01:

Because Mary is hard of hearing, she fails to hear the alarm more often than John.
However, John sometimes mixes up the alarm at Bob’s house with the alarms at
other houses. The alarm is triggered by a burglary, but can also be triggered by a
(weak) earthquake, which can lead to a false alarm because Bob only wants to know
about burglaries while at his office. These relationships are modeled by

PðAljBur;EarÞ ¼ 0:95;

PðAljBur;:EarÞ ¼ 0:94;

PðAlj:Bur;EarÞ ¼ 0:29;

PðAlj:Bur;:EarÞ ¼ 0:001;

as well as the a priori probabilities P(Bur) = 0.001 and P(Ear) = 0.002. These two
variables are independent because earthquakes do not make plans based on the
habits of burglars, and conversely there is no way to predict earthquakes, so
burglars do not have the opportunity to set their schedule accordingly.

16In the naive Bayes method, the independence of all attributes is assumed, and this method has
been successfully applied to text classification (see Sect. 8.7).
17The binary variables J and M stand for the two events “John calls”, and “Mary calls”,
respectively, Al for “alarm siren sounds”, Bur for “burglary” and Ear for “earthquake”.
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Queries are now made against this knowledge base. For example, Bob might be
interested in P(Bur|J ∨ M), P(J|Bur) or P(M|Bur). That is, he wants to know how
sensitively the variables J and M react to a burglary report.

7.4.2 Graphical Representation of Knowledge as a Bayesian
Network

We can greatly simplify practical work by graphically representing knowledge that
is formulated as conditional probability. Figure 7.11 shows the Bayesian network
for the alarm example. Each node in the network represents a variable and every
directed edge a statement of conditional probability. The edge from Al to J for
example represents the two values P(J|Al) and P(J | ¬Al), which is given in the form
of a table, the so-called CPT (conditional probability table). The CPT of a node lists
all the conditional probabilities of the node’s variable conditioned on all the nodes
connected by incoming edges.

While studying the network, we might ask ourselves why there are no other
edges included besides the four that are drawn in. The two nodes Bur and Ear are
not linked since the variables are independent. All other nodes have a parent node,
which makes the reasoning a little more complex. We first need the concept of
conditional independence.

7.4.3 Conditional Independence

Analogously to independence of random variables, we give

Definition 7.6 Two variables A and B are called conditionally independent,
given C if

PðA;BjCÞ ¼ PðAjCÞ � PðBjCÞ:

Fig. 7.11 Bayesian network
for the alarm example with
the associated CPTs
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This equation is true for all combinations of values for all three variables (that is,
for the distribution), which we see in the notation. We now look at nodes J andM in
the alarm example, which have the common parent node Al. If John and Mary
independently react to an alarm, then the two variables J and M are independent
given Al, that is:

PðJ;MjAlÞ ¼ PðJjAlÞ � PðMjAlÞ:

If the value of Al is known, for example because an alarm was triggered, then the
variables J and M are independent (under the condition Al = w). Because of the
conditional independence of the two variables J and M, no edge between these two
nodes is added. However, J and M are not independent (see Exercise 7.11 on
page 173).

Quite similar is the relationship between the two variables J and Bur, because
John does not react to a burglary, rather the alarm. This could be, for example,
because of a high wall that blocks his view on Bob’s property, but he can still hear
the alarm. Thus J and Bur are independent given Al and

PðJ;BurjAlÞ ¼ PðJjAlÞ � PðBurjAlÞ:

Given an alarm, the variables J and Ear, M and Bur, as well as M and Ear are
also independent. For computing with conditional independence, the following
characterizations, which are equivalent to the above definition, are helpful:

Theorem 7.5 The following equations are pairwise equivalent, which means
that each individual equation describes the conditional independence for the
variables A and B given C.

PðA;BjCÞ ¼ PðAjCÞ � PðBjCÞ; ð7:18Þ

PðAjB;CÞ ¼ PðAjCÞ; ð7:19Þ

PðBjA;CÞ ¼ PðBjCÞ: ð7:20Þ

Proof On one hand, using conditional independence (7.18) we can conclude that

PðA;B;CÞ ¼ PðA;BjCÞPðCÞ ¼ PðAjCÞPðBjCÞPðCÞ:

On the other hand, the product rule gives us

PðA;B;CÞ ¼ PðAjB;CÞPðBjCÞPðCÞ:

Thus P(A|B, C) = P(A|C) is equivalent to (7.18). We obtain (7.20) analogously by
swapping A and B in this derivation. □
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7.4.4 Practical Application

Now we turn again to the alarm example and show how the Bayesian network in
Fig. 7.11 can be used for reasoning. Bob is interested, for example, in the sensi-
tivity of his two alarm reporters John and Mary, that is, in P JjBurð Þ and P MjBurð Þ.
However, the values P BurjJð Þ and P BurjMð Þ, as well as P BurjJ;Mð Þ are even
more important to him. We begin with P JjBurð Þ and calculate

PðJjBurÞ ¼ PðJ;BurÞ
PðBurÞ ¼ PðJ;Bur;AlÞþPðJ;Bur;:AlÞ

PðBurÞ ð7:21Þ

and

PðJ;Bur;AlÞ ¼ PðJjBur;AlÞPðAljBurÞPðBurÞ ¼ PðJjAlÞPðAljBurÞPðBurÞ;
ð7:22Þ

where for the last two equations we have used the product rule and the conditional
independence of J and Bur given Al. Inserted in (7.21) we obtain

PðJjBurÞ ¼ PðJjAlÞPðAljBurÞPðBurÞþPðJj:AlÞPð:AljBurÞPðBurÞ
PðBurÞ

¼ PðJjAlÞPðAljBurÞþPðJj:AlÞPð:AljBurÞ:
ð7:23Þ

Here P(Al|Bur) and P(¬Al|Bur) are missing. Therefore we calculate

PðAljBurÞ ¼ PðAl;BurÞ
PðBurÞ ¼ PðAl;Bur;EarÞþPðAl;Bur;:EarÞ

PðBurÞ
¼ PðAljBur;EarÞPðBurÞPðEarÞþPðAljBur;:EarÞPðBurÞPð:EarÞ

PðBurÞ
¼ PðAljBur;EarÞPðEarÞþPðAljBur;:EarÞPð:EarÞ
¼ 0:95 � 0:002þ 0:94 � 0:998 ¼ 0:94

as well as P(¬Al|Bur) = 0.06 and insert this into (7.23) which gives the result

PðJjBurÞ ¼ 0:9 � 0:94þ 0:05 � 0:06 ¼ 0:849:

Analogously we calculate P(M|Bur) = 0.659. We now know that John calls for
about 85% of all break-ins and Mary for about 66% of all break-ins. The probability
that both of them call is calculated, due to conditional independence, as

PðJ;MjBurÞ ¼ PðJ;MjAlÞPðAljBurÞþPðJ;Mj:AlÞPð:AljBurÞ
¼ PðJjAlÞPðMjAlÞPðAljBurÞþPðJj:AlÞPðMj:AlÞPð:AljBurÞ
¼ 0:9 � 0:7 � 0:94þ 0:05 � 0:01 � 0:06 ¼ 0:5922:

162 7 Reasoning with Uncertainty



More interesting, however, is the probability of a call from John or Mary

PðJ _ MjBurÞ ¼ Pð:ð:J;:MÞjBurÞ ¼ 1� Pð:J;:MjBurÞ
¼ 1� ½Pð:JjAlÞPð:MjAlÞPðAljBurÞþPð:Jj:AlÞPð:Mj:AlÞPð:AljBurÞ�
¼ 1� ½0:1 � 0:3 � 0:94þ 0:95 � 0:99 � 0:06� ¼ 1� 0:085 ¼ 0:915:

Bob thus receives a notification for about 92% of all burglaries. Now to calculate
P BurjJð Þ, we apply Bayes’ theorem, which gives us

PðBurjJÞ ¼ PðJjBurÞPðBurÞ
PðJÞ ¼ 0:849 � 0:001

0:052
¼ 0:016:

Evidently only about 1.6% of all calls from John are actually due to a break-in.
Because the probability of false alarms is five times smaller for Mary, with
P BurjMð Þ ¼ 0:056, we have significantly higher confidence given a call from
Mary. Bob should only be seriously concerned about his home if both of them call,
because P BurjJ;Mð Þ ¼ 0:284 (see Exercise 7.11 on page 173).

In (7.23) on page 162 we showed with

PðJjBurÞ ¼ PðJjAlÞPðAljBurÞþPðJj:AlÞPð:AljBurÞ

how we can “slide in” a new variable. This relationship holds in general for two
variables A and B given the introduction of an additional variable C and is called
conditioning:

PðAjBÞ ¼
X
c

PðAjB;C ¼ cÞPðC ¼ cjBÞ:

If furthermore A and B are conditionally independent given C, this formula sim-
plifies to

PðAjBÞ ¼
X
c

PðAjC ¼ cÞPðC ¼ cjBÞ:

7.4.5 Software for Bayesian Networks

We will give a brief introduction to two tools using the alarm example. We are
already familiar with the system PIT. We input the values from the CPTs in PIT
syntax into the online input window at www.pit-systems.de. After the input shown
in Fig. 7.12 on page 164 we receive the answer:

P([Einbruch=t] | [John=t] AND [Mary=t]) = 0.2841.
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While PIT is not a classical Bayesian network tool, it can take arbitrary conditional
probabilities and queries as input and calculate correct results. It can be shown
[Sch96], that on input of CPTs or equivalent rules, the MaxEnt principle implies the
same conditional independences and thus also the same answers as a Bayesian
network. Bayesian networks are thus a special case of MaxEnt.

Next we will look at JavaBayes [Coz98], a classic system also freely available
on the Internet with the graphical interface shown in Fig. 7.13. With the graphical
network editor, nodes and edges can be manipulated and the values in the CPTs
edited. Furthermore, the values of variables can be assigned with “Observe” and the
values of other variables called up with “Query”. The answers to queries then
appear in the console window.

The professional, commercial system Hugin is significantly more powerful and
convenient. For example, Hugin can use continuous variables in addition to discrete
variables. It can also learn Bayesian networks, that is, generate the network fully
automatically from statistical data (see Sect. 8.5).

1 var Alarm{t,f}, Burglary{t,f}, Earthquake{t,f}, John{t,f}, Mary{t,f};
2
3 P([Earthquake=t]) = 0.002;
4 P([Burglary=t]) = 0.001;
5 P([Alarm=t] | [Burglary=t] AND [Earthquake=t]) = 0.95;
6 P([Alarm=t] | [Burglary=t] AND [Earthquake=f]) = 0.94;
7 P([Alarm=t] | [Burglary=f] AND [Earthquake=t]) = 0.29;
8 P([Alarm=t] | [Burglary=f] AND [Earthquake=f]) = 0.001;
9 P([John=t] | [Alarm=t]) = 0.90;

10 P([John=t] | [Alarm=f]) = 0.05;
11 P([Mary=t] | [Alarm=t]) = 0.70;
12 P([Mary=t] | [Alarm=f]) = 0.01;
13
14 QP([Burglary=t] | [John=t] AND [Mary=t]);

Fig. 7.12 PIT input for the alarm example

Fig. 7.13 The user interface of JavaBayes: left the graphical editor and right the console where
the answers are given as output

164 7 Reasoning with Uncertainty



7.4.6 Development of Bayesian Networks

A compact Bayesian network is very clear and significantly more informative for
the reader than a full probability distribution. Furthermore, it requires much less
memory. For the variables v1; . . . ; vn with jv1j; . . . ; jvnj different values each, the
distribution has a total of

Yn
i¼1

jvij � 1

independent entries. In the alarm example the variables are all binary. Thus for all
variables jvij = 2, and the distribution has 25 − 1 = 31 independent entries. To
calculate the number of independent entries for the Bayesian network, the total
number of all entries of all CPTs must be determined. For a node vi with ki parent
nodes ei1; . . . ; eiki , the associated CPT has

ðjvij � 1Þ
Yki
j¼1

jeijj

entries. Then all CPTs in the network together have

Xn
i¼1

ðjvij � 1Þ
Yki
j¼1

jeijj ð7:24Þ

entries.18 For the alarm example the result is then

2þ 2þ 4þ 1þ 1 ¼ 10

independent entries which uniquely describe the network. The comparison in
memory complexity between the full distribution and the Bayesian network
becomes clearer when we assume that all n variables have the same number b of
values and each node has k parent nodes. Then (7.24) can be simplified and all
CPTs together have n(b − 1)bk entries. The full distribution contains bn − 1 entries.
A significant gain is only made then if the average number of parent nodes is much
smaller than the number of variables. This means that the nodes are only locally
connected. Because of the local connection, the network becomes modularized,
which—as in software engineering—leads to a reduction in complexity. In the
alarm example the alarm node separates the nodes Bur and Ear from the nodes
J and M. We can also see this clearly in the LEXMED example.

18For the case of a node without ancestors the product in this sum is empty. For this we substitute
the value 1 because the CPT for nodes without ancestors contains, with its a priori probability,
exactly one value.
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LEXMED as a Bayesian Network
The LEXMED system described in Sect. 7.3 can also be modeled as a Bayesian
network. By making the outer, thinly-drawn lines directed (giving them arrows), the
independence graph in Fig. 7.8 on page 151 can be interpreted as a Bayesian
network. The resulting network is shown in Fig. 7.14.

In Sect. 7.3.2 the size of the distribution for LEXMED was calculated as the value
20643 839. The Bayesian network on the other hand can be fully described with
only 521 values. This value can be determined by entering the variables from
Fig. 7.14 into (7.24) on page 165. In the order (Leuko, TRek, Gua, Age, Reb,
Sono, Tapp, BowS, Sex, P4Q, P1Q, P2Q, RecP, Urin, P3Q, Diag4) we calculate

Xn
i¼1

ðjvij � 1Þ
Yki
j¼1

jeijj ¼ 6 � 6 � 4þ 5 � 4þ 2 � 4þ 9 � 7 � 4þ 1 � 3 � 4þ 1 � 4þ 1 � 2 � 4

þ 3 � 3 � 4þ 1 � 4þ 1 � 4 � 2þ 1 � 4 � 2þ 1 � 4þ 1 � 4þ 1 � 4
þ 1 � 4þ 1 ¼ 521:

Fig. 7.14 Bayesian network for the LEXMED application
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This example demonstrates that it is practically impossible to build a full distri-
bution for real applications. A Bayesian network with 22 edges and 521 probability
values on the other hand is still manageable.

Causality and Network Structure
Construction of a Bayesian network usually proceeds in two stages.
1. Design of the network structure: This step is usually performed manually and

will be described in the following.
2. Entering the probabilities in the CPTs: Manually entering the values in the case

of many variables is very tedious. If (as for example with LEXMED) a database is
available, this step can be automated through estimating the CPT entries by
counting frequencies.

We will now describe the construction of the network in the alarm example (see
Fig. 7.15). At the beginning we know the two causes Burglary and Earthquake and
the two symptoms John andMary. However, because John and Mary do not directly
react to a burglar or earthquake, rather only to the alarm, it is appropriate to add this
as an additional variable which is not observable by Bob. The process of adding
edges starts with the causes, that is, with the variables that have no parent nodes.
First we choose Burglary and next Earthquake. Now we must check whether
Earthquake is independent of Burglary. This is given, and thus no edge is added
from Burglary to Earthquake. Because Alarm is directly dependent on Burglary and
Earthquake, these variables are chosen next and an edge is added from both Bur-
glary and Earthquake to Alarm. Then we choose John. Because Alarm and John are
not independent, an edge is added from alarm to John. The same is true for Mary.
Now we must check whether John is conditionally independent of Burglary given
Alarm. If this is not the case, then another edge must be inserted from Burglary to
John. We must also check whether edges are needed from Earthquake to John and
from Burglary or Earthquake to Mary. Because of conditional independence, these
four edges are not necessary. Edges between John and Mary are also unnecessary
because John and Mary are conditionally independent given Alarm.

The structure of the Bayesian network heavily depends on the chosen variable
ordering. If the order of variables is chosen to reflect the causal relationship
beginning with the causes and proceeding to the diagnosis variables, then the result
will be a simple network. Otherwise the network may contain significantly more
edges. Such non-causal networks are often very difficult to understand and have a
higher complexity for reasoning. The reader may refer to Exercise 7.11 on
page 173 for better understanding.

Fig. 7.15 Stepwise construction of the alarm network considering causality
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7.4.7 Semantics of Bayesian Networks

As we have seen in the previous section, no edge is added to a Bayesian network
between two variables A and B when A and B are independent or conditionally
independent given a third variable C. This situation is represented in Fig. 7.16.

We now require the Bayesian network to have no cycles and we assume that the
variables are numbered such that no variable has a lower number than any variable
that precedes it. This is always possible when the network has no cycles.19 Then,
when using all conditional independencies, we have

PðXnjX1; . . .;Xn�1Þ ¼ PðXnjParentsðXnÞÞ:

This equation thus is a proposition that an arbitrary variable Xi in a Bayesian
network is conditionally independent of its ancestors, given its parents. The
somewhat more general proposition depicted in Fig. 7.17 on page 169 can be stated
compactly as

Theorem 7.6 A node in a Bayesian network is conditionally independent
from all non-successor nodes, given its parents.

Now we are able to greatly simplify the chain rule ((7.1) on page 132):

PðX1; . . . ;XnÞ ¼
Yn
i¼1

PðXijX1. . . ;Xi�1Þ ¼
Yn
i¼1

PðXijParentsðXiÞÞ: ð7:25Þ

Using this rule we could, for example, write (7.22) on page 162 directly

PðJ;Bur;AlÞ ¼ PðJjAlÞPðAljBurÞPðBurÞ:

We now know the most important concepts and foundations of Bayesian
networks. Let us summarize them [Jen01]:

Fig. 7.16 There is no edge between A and B if they are independent (left) or conditionally
independent (middle, right)

19If for example three nodes X1, X2, X3 form a cycle, then there are the edges (X1, X2), (X2, X3) and
(X3, X1) where X1 has X3 as a successor.
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Definition 7.7 A Bayesian network is defined by:
• A set of variables and a set of directed edges between these variables.
• Each variable has finitely many possible values.
• The variables together with the edges form a directed acyclic graph

(DAG). A DAG is a graph without cycles, that is, without paths of the
form (A,… ,A).

• For every variable A the CPT (that is, the table of conditional probabilities
P(A|Parents(A))) is given.

Two variables A and B are called conditionally independent given C if
PðA;BjCÞ ¼ PðAjCÞ � PðBjCÞ or, equivalently, if PðAjB;CÞ ¼ PðAjCÞ.
Besides the foundational rules of computation for probabilities, the following
rules are also true:
Bayes’ Theorem: PðAjBÞ ¼ PðBjAÞ�PðAÞ

PðBÞ
Marginalization: PðBÞ ¼ PðA;BÞþPð:A;BÞ ¼ PðBjAÞ � PðAÞþPðBj:AÞ �

Pð:AÞ
Conditioning: P(A|B) = ∑c P (A|B, C = c)P (C = c|B)
A variable in a Bayesian network is conditionally independent of all
non-successor variables given its parent variables. If X1,… ,Xn−1 are no
successors of Xn, we have P(Xn|X1,… ,Xn−1) = P(Xn|Parents(Xn)). This con-
dition must be honored during the construction of a network.
During construction of a Bayesian network the variables should be ordered
according to causality. First the causes, then the hidden variables, and the
diagnosis variables last.
Chain rule: PðX1; . . . ;XnÞ ¼

Qn
i¼1 PðXijParentsðXiÞÞ

Fig. 7.17 Example of
conditional independence in a
Bayesian network. If the
parent nodes E1 and E2 are
given, then all non-successor
nodes B1,… , B8 are
independent of A
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In [Pea88] and [Jen01] the term d-separation is introduced for Bayesian net-
works, from which a theorem similar to Theorem 7.6 on page 168 follows. We will
refrain from introducing this term and thereby reach a somewhat simpler, though
not a theoretically as clean representation.

7.5 Summary

In a way that reflects the prolonged, sustained trend toward probabilistic systems,
we have introduced probabilistic logic for reasoning with uncertain knowledge.
After introducing the language—propositional logic augmented with probabilities
or probability intervals—we chose the natural, if unusual approach via the method
of maximum entropy as an entry point and showed how we can model
non-monotonic reasoning with this method. Bayesian networks were then intro-
duced as a special case of the MaxEnt method.

Why are Bayesian networks a special case of MaxEnt? When building a
Bayesian network, assumptions about independence are made which are unneces-
sary for the MaxEnt method. Furthermore, when building a Bayesian network, all
CPTs must be completely filled in so that a complete probability distribution can be
constructed. Otherwise reasoning is restricted or impossible. With MaxEnt, on the
other hand, the developer can formulate all the knowledge he has at his disposal in
the form of probabilities. MaxEnt then completes the model and generates the
distribution. Even if (for example when interviewing an expert) only vague
propositions are available, this can be suitably modeled. A proposition such as
“I am pretty sure that A is true.” can for example be modeled using P(A) 2 [0.6, 1]
as a probability interval. When building a Bayesian network, a concrete value must
be given for the probability, if necessary by guessing. This means, however, that the
expert or the developer put ad hoc information into the system. One further
advantage of MaxEnt is the possibility of formulating (almost) arbitrary proposi-
tions. For Bayesian networks the CPTs must be filled.

The freedom that the developer has when modeling with MaxEnt can be a
disadvantage (especially for a beginner) because, in contrast to the Bayesian
approach, it is not necessarily clear what knowledge should be modeled. When
modeling with Bayesian networks the approach is quite clear: according to causal
dependencies, from the causes to the effects, one edge after the other is entered into
the network by testing conditional independence.20 At the end all CPTs are filled
with values.

However, the following interesting combinations of the two methods are pos-
sible: we begin by building a network according to the Bayesian methodology,
enter all the edges accordingly and then fill the CPTs with values. Should certain
values for the CPTs be unavailable, then they can be replaced with intervals or
by other probabilistic logic formulas. Naturally such a network—or better: a rule

20This is also not always quite so simple.
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set—no longer has the special semantics of a Bayesian network. It must then be
processed and completed by a MaxEnt system.

The ability to use MaxEnt with arbitrary rule sets has a downside, though.
Similarly to the situation in logic, such rule sets can be inconsistent. For example,
the two rules P(A) = 0.7 and P(A) = 0.8 are inconsistent. While the MaxEnt system
PIT for example can recognize the inconsistency, if cannot give a hint about how to
remove the problem.

We introduced the medical expert system LEXMED, a classic application for rea-
soning with uncertain knowledge, and showed how it can be modeled and imple-
mented using MaxEnt and Bayesian networks, and how these tools can replace the
well-established, but too weak linear scoring systems used in medicine.21

In the LEXMED example we showed that it is possible to build an expert system
for reasoning under uncertainty that is capable of discovering (learning) knowledge
from the data in a database. We will give more insight into the methods of learning
of Bayesian networks in Chap. 8, after the necessary foundations for machine
learning have been laid.

Today Bayesian reasoning is a large, independent field, which we can only
briefly describe here. We have completely left out the handling of continuous
variables. For the case of normally distributed random variables there are proce-
dures and systems. For arbitrary distributions, however, the computational com-
plexity is a big problem. In addition to the directed networks that are heavily based
on causality, there are also undirected networks. Connected with this is a discussion
about the meaning and usefulness of causality in Bayesian networks. The interested
reader is directed to excellent textbooks such as [Pea88, Jen01, Whi96, DHS01], as
well as the proceedings of the annual conference of the Association for Uncertainty
in Artificial Intelligence (AUAI) (www.auai.org).

7.6 Exercises

Exercise 7.1 Prove the proposition from Theorem 7.1 on page 129.

Exercise 7.2 The gardening hobbyist Max wants to statistically analyze his yearly
harvest of peas. For every pea pod he picks he measures its length xi in centimeters
and its weight yi in grams. He divides the peas into two classes, the good and the
bad (empty pods). The measured data (xi, yi) are

good peas:
x 1 2 2 3 3 4 4 5 6
y 2 3 4 4 5 5 6 6 6

bad peas:
x 4 6 6 7
y 2 2 3 3

21In Sect. 8.7 and in Exercise 8.17 on page 242 we will show that the scores are equivalent to the
special case naive Bayes, that is, to the assumption that all symptoms are conditionally
independent given the diagnosis.
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(a) From the data, compute the probabilities P(y > 3|Class = good) and P(y ≤ 3|
Class = good). Then use Bayes’ formula to determine P(Class = good |y > 3)
and P(Class = good |y ≤ 3).

(b) Which of the probabilities computed in subproblem (a) contradicts the state-
ment “All good peas are heavier than 3 grams”?

Exercise 7.3 You are supposed to predict the afternoon weather using a few simple
weather values from the morning of this day. The classical probability calculation
for this requires a complete model, which is given in the following table.

Sky Bar Prec P (Sky,Bar,Prec)

Clear Rising Dry 0.40
Clear Rising Raining 0.07
Clear Falling Dry 0.08
Clear Falling Raining 0.10
Cloudy Rising Dry 0 .09
Cloudy Rising Raining 0.11
Cloudy Falling Dry 0.03

Sky: The sky is clear or
cloudy in the morning

Bar: Barometer rising or
falling in the morning

Prec: Raining or dry in the
afternoon

(a) How many events are in the distribution for these three variables?
(b) Compute P (Prec = dry|Sky = clear, Bar = rising).
(c) Compute P (Prec = rain|Sky = cloudy).
(d) What would you do if the last row were missing from the table?

❄ Exercise 7.4 In a television quiz show, the contestant must choose between three
closed doors. Behind one door the prize awaits: a car. Behind both of the other
doors are goats. The contestant chooses a door, e.g. number one. The host, who
knows where the car is, opens another door, e.g. number three, and a goat appears.
The contestant is now given the opportunity to choose between the two remaining
doors (one and two). What is the better choice from his point of view? To stay with
the door he originally chose or to switch to the other closed door?

Exercise 7.5 Using the Lagrange multiplier method, show that, without explicit
constraints, the uniform distribution p1 = p2 = … = pn = 1/n represents maximum
entropy. Do not forget the implicitly ever-present constraint p1 + p2 + ��� + pn = 1.
How can we show this same result using indifference?

Exercise 7.6 Use the PIT system (http://www.pit-systems.de) or SPIRIT (http://
www.xspirit.de) to calculate the MaxEnt solution for P (B) under the constraint
P (A) = α and P (B|A) = β. Which disadvantage of PIT, compared with calculation
by hand, do you notice here?

Exercise 7.7 Given the constraints P (A) = α and P (A ∨ B) = β, manually calculate
P (B) using the MaxEnt method. Use PIT to check your solution.
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❄ Exercise 7.8 Given the constraints from (7.10), (7.11), (7.12): p1 þ p2 = α,
p1 þ p3 = γ, p1 þ p2 þ p3 þ p4 = 1. Show that p1 = αγ, p2 = α(1 − γ), p3 = γ(1 − α),
p4 = (1 − α)(1 − γ) represents the entropy maximum under these constraints.

❄ Exercise 7.9 A probabilistic algorithm calculates the likelihood p that an inbound
email is spam. To classify the emails in classes delete and read, a cost matrix is then
applied to the result.
(a) Give a cost matrix (2 × 2 matrix) for the spam filter. Assume here that it

costs the user 10 cents to delete an email, while the loss of an email costs 10
dollars (compare this to Example 1.1 on page 17 and Exercise 1.7 on
page 21).

(b) Show that, for the case of a 2 × 2 matrix, the application of the cost matrix is
equivalent to the application of a threshold on the spam probability and
determine the threshold.

Exercise 7.10 Given a Bayesian network with the three binary variables A, B,
C and P(A) = 0.2, P(B) = 0.9, as well as the CPT shown below:

(a) Compute P(A|B).
(b) Compute P(C|A).

A B P(C)

t f 0.1
t t 0.2
f t 0.9
f f 0.4

Exercise 7.11 For the alarm example (Example 7.10 on page 159), calculate the
following conditional probabilities:
(a) Calculate the a priori probabilities P (Al), P (J), P (M).
(b) Calculate P MjBurð Þ using the product rule, marginalization, the chain rule,

and conditional independence.
(c) Use Bayes’ formula to calculate P BurjMð Þ
(d) Compute P AljJ;Mð Þ and P BurjJ;Mð Þ.
(e) Show that the variables J and M are not independent.
(f) Check all of your results with JavaBayes and with PIT (see [Ert11] for

demo programs).
(g) Design a Bayesian network for the alarm example, but with the altered

variable ordering M, Al, Ear, Bur, J. According to the semantics of Bayesian
networks, only the necessary edges must be drawn in. (Hint: the variable order
given here does NOT represent causality. Thus it will be difficult to intuitively
determine conditional independences.)

(h) In the original Bayesian network of the alarm example, the earthquake nodes
is removed. Which CPTs does this change? (Why these in particular?)

(i) Calculate the CPT of the alarm node in the new network.
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Exercise 7.12 A diagnostic system is to be made for a dynamo-powered
bicycle light using a Bayesian network. The variables in the following table
are given.

The following variables are pairwise independent:
Str, Flw, B, K. Furthermore: (R, B), (R, K), (V, B),
(V,K) are independent and the following equation holds:

PðLijV;RÞ ¼ PðLijVÞ
PðVjR; StrÞ ¼ PðV jRÞ
PðV jR;FlwÞ ¼ PðVjRÞ

(a) Draw all of the edges into the graph (taking
causality into account).

(b) Enter all missing CPTs into the graph (table of
conditional probabilities). Freely insert plausible
values for the probabilities.

(c) Show that the network does not contain an edge
(Str, Li).

(d) Compute P (V|Str = snow_covered).

Abbr. Meaning Values

Li Light is on t / f

Str Street condition dry, wet, snow_covered

Flw Dynamo flywheel worn out t / f

R Dynamo sliding t / f

V Dynamo shows voltage t / f

B Light bulb o.k. t / f

K Cable o.k. t / f

V B K P(Li)

t t t 0.99
t t f 0.01
t f t 0.01
t f f 0.001
f t t 0.3
f t f 0.005
f f t 0.005
f f f 0
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