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IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World
Computer Congress held in Paris the previous year. A federation for societies working
in information processing, IFIP’s aim is two-fold: to support information processing in
the countries of its members and to encourage technology transfer to developing na-
tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
panies, national or international associations or federations of companies.
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Preface

This volume contains the papers selected for presentation at the 32nd International
Conference on ICT Systems Security and Privacy Protection (IFIP SEC 2017), held in
Rome, Italy, May 29–31, 2017. IFIP SEC conferences are the flagship events of the
International Federation for Information Processing (IFIP) Technical Committee 11 on
Information Security and Privacy Protection in Information Processing Systems
(TC-11).

In response to the call for papers, 199 papers were submitted to the conference.
These papers were evaluated on the basis of their significance, novelty, and technical
quality. Each paper was assigned to at least four members of the Program Committee.
The Program Committee meeting was held electronically, with intensive discussion
over a period of two weeks. Of the papers submitted, 38 were selected for presentation
at the conference.

A conference like this does not just happen; it depends on the volunteer efforts of a
host of individuals. There is a long list of people who volunteered their time and energy
to put together the conference and who deserve acknowledgment. Thanks to all the
members of the Program Committee, and the external reviewers, for all their hard work
in the paper evaluation. We are very grateful to everyone who gave their assistance and
ensured a smooth organization process: Sara Foresti, Luigi V. Mancini (General
Chairs); Giovanni Livraga (Publicity Chair); Adriana Lazzaroni (Local Organizing
Chair); Patrizia Andronico, Raffaella Casarosa, and Giulia Severino (Local Organizing
Secretariat). A special thanks goes to the keynote speakers who accepted our invitation
to deliver keynote talks at the conference. We are also sincerely grateful to our sponsor,
NECS.

Last but certainly not least, thanks to all the authors who submitted papers and all
the conference’s attendees. We hope you find the proceedings of IFIP SEC 2017
interesting, stimulating, and inspiring for your future research.

May 2017 Sabrina De Capitani di Vimercati
Fabio Martinelli
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Turning Active TLS Scanning to Eleven

Wilfried Mayer(B) and Martin Schmiedecker

SBA Research, Vienna, Austria
{wmayer,mschmiedecker}@sba-research.org

Abstract. Transport Layer Security (TLS) is the fundament of today’s
web security, but the majority of deployments are misconfigured and left
vulnerable to a phletora of attacks. This negatively affects the overall
healthiness of the TLS ecosystem, and as such all the protocols that build
on top of it. Scanning a larger number of hosts or protocols such as the
numerous IPv4-wide scans published recently for a list of known attacks
in TLS is non-trivial. This is due to the design of the TLS handshake,
where the server chooses the specific cipher suite to be used. Current
scanning approaches have to establish an unnecessary large number of
connections and amount of traffic. In this paper we present and imple-
mented different optimized strategies for TLS cipher suite scanning that,
compared to the current best practice, perform up to 3.2 times faster
and with 94% less connections used while being able to do exhaustive
scanning for many vulnerabilities at once. We thoroughly evaluated the
algorithms using practical scans and an additional simulation for eval-
uating current cipher suite practices at scale. With this work full TLS
cipher suite scans are brought to a new level, making them a practical
tool for further empiric research.

Keywords: Cipher suite scanning · SSL · TLS · Network security

1 Introduction

Transport Layer Security (TLS) is the fundament of today’s web security and
provides confidentiality and authentication for application layer protocols like
HTTPS, e-mail-related protocols or smartphone applications. Successful attacks
against TLS are irritating the security community on a regular basis. Many of
these attacks exploit vulnerabilities in the underlying cryptographic primitives,
which, when grouped together, form so-called cipher suites. Often the mitigation
of these vulnerabilites is achieved by simply discontinuing the use of insecure
cipher suites. Although easily done, this is a manual configuration step, which
results in a slowly adopting TLS ecosystem. This progress is only observable
through Internet-wide measurements.

Full cipher suite scans are important in order to understand in-depth the
TLS ecosystem and the impact of discovered vulnerabilities, as demonstrated

c© IFIP International Federation for Information Processing 2017
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recently [6,19]. Only with detailed information it is possible to thoroughly assess
the state of online security, ranging from the security of a single host up to the
security of the whole ecosystem. With the recent advent of fast-paced scanning
tools it has become possible to proactively scan the entire range of IPv4 on a
regular basis. This data is invaluable when reacting to newly released attacks.

In this work, we developed three new scanning algorithms that efficiently test
TLS configurations in detail. These full cipher suite scans can then be used to
cluster configurations based on different cipher suites, identifying common mis-
configurations and facilitate TLS stack fingerprinting. We evaluated these algo-
rithms and estimated the performance gain for Internet-wide full cipher suites
scans. We then used these algorithms to scan parts of the IPv4-wide Internet
and analyzed the results. The specific contributions of this paper are:

– We introduce highly optimized scanning methodologies to perform TLS scan-
ning at scale.

– We evaluate our improved methodologies against the top-10k websites, and
are on average 3.2 times faster.

– We show that current cipher suite recommendations are hardly used.
– We publicly release the source code and collected data from our experiments

under an open source license1.

The remainder of this paper is organized as follows: In Sect. 2 we present
the relevant background as well as the body of related work. Section 3 intro-
duces our optimized scanning methodologies and the data inputs used for our
evaluation. Section 4 illustrates the achievable gain in overall performance and
provides insights into the current TLS deployment. We discuss the results in
Sect. 5 before we conclude in Sect. 6.

2 Background

TLS itself is specified in a variety of RFCs. The most important one is
RFC5246 [7]. It defines the most modern version of TLS, version 1.2, introduced
in 2008. Version 1.3 contains significant changes, but is still a working draft [24].
One of the goals of TLS is extensibility, i.e., the possibility of exchanging the
used cryptographic functions. This is accomplished through the concept of cipher
suites. Cipher suites are combinations of cryptographic primitives, defined as a
two-byte value [17]. The used cipher suite and the TLS version are negotiated in
the first two exchanged TLS messages (client hello, server hello). First, the
client sends a client hello message including a list of supported cipher suites.
Second, the server replies with a server hello choosing one of these cipher
suites. This cryptographic primitives are subsequently used. A large number of
cipher suites exists (over 140), and they can be used in different TLS versions

1 The patterns, the mappings and the source code are available online at: https://
github.com/WilfriedMayer/turning-active-tls-scanning-to-eleven.

https://github.com/WilfriedMayer/turning-active-tls-scanning-to-eleven
https://github.com/WilfriedMayer/turning-active-tls-scanning-to-eleven
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(SSLv3, TLSv1, TLSv1.1, TLSv1.2). This results in approx. 550 different com-
binations that can be tested.

Many security problems are caused by the use of old and deprecated fea-
tures of TLS, e.g., the support of export-grade algorithms, old TLS versions
or insecure ciphers. Two examples are POODLE [20] which is caused by the
use of deprecated SSLv3 and DROWN [6] which is based on the active sup-
port of SSLv2. Some attempts to get rid of old cryptography were made, e.g.,
the ban of export-grade crypto in modern TLS versions or RFC7465 [22] that
forbids the use of the insecure RC4 cipher. A secure deployment is non-trivial,
therefore several guidelines give recommendations on how to (i) configure cipher
suite settings and (ii) improve the configuration of TLS-enabled server applica-
tions [2,25]. However, these methods all rely on the administrator to actively
improve the setup by changing the supported cipher suites manually – hence,
the ecosystem is adopting slowly.

In the early days, nmap was used to perform these types of scan on a larger
scale, but it is rather slow and does not scale to a larger number of hosts in
reasonable time. A breakthrough was achieved with the development of zmap [11]
and masscan [13]. Both tools use new methods to optimize large-scale scanning
and are so far mainly used for port and vulnerability scanning. However, these
improved methods are not applicable to fine-grained TLS scanning. With zgrab it
is possible to establish TLS connections, but it is still not feasible for examining
full cipher suite configurations. A more intense scanning behavior is necessary
due to the design of TLS. Tools like SSLyze implement naive algorithms that
conduct a full scan of all cipher suites by using one TLS handshake for each
cipher suite. This is slow and produces a lot of traffic, thus a huge potential
for optimization exists. With the results of this work, we are able to efficiently
measure cipher suite configurations for TLS, also for large-scale studies.

2.1 Related Work

Prior studies that measured the TLS ecosystem focused primarily on the cer-
tificate ecosystem, the overall security was rarely evaluated. An early study was
conducted by Lee et al. in 2007 [18]. With only 19,000 evaluated servers, this is
a long way from an Internet-wide scale. Nevertheless, the size of measurement
studies increased constantly, with larger studies conducted by the EFF [12] a
few years later. Also, additional passive data was taken into account (Amann
et al. [4,5]). With new scanning methods (e.g., zmap [11]), studies were sud-
denly able to cover the IPv4-wide Internet. These methods implemented new
ideas, e.g., no per-connection state. This improved the speed and quality of
large-scale scans. Studies that used this new scanning behavior are, e.g., the
certificate ecosystem study by Durumeric et al. [9], that doesn’t cover supported
cryptographic primitives, and studies on vulnerabilities like Heartbleed [10] that
solely examine one exclusive issue.

Most of these studies focused on specific details in the configuration, e.g., the
properties of a certificate. Fewer studies scanned all cryptographic primitives at
once, i.e., all supported cipher suites. Huang et al. [15] describes the results of
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a complete cipher suite scan to measure perfect forward-secrecy support, but
scanned only hosts from the Alexa top 1 million list [3]. Mayer et al. [19] per-
formed cipher suite scans for all e-mail-related ports at an IPv4-wide scale. Both
studies used naive algorithms to perform the scan. Other projects like the Qualys
SSLTest [23] also scan full TLS configurations, but these projects are designed for
single host configuration tests and not for Internet-wide studies. Newer studies
tried to draw a complete picture of the certificate ecosystem [26] while miss-
ing the underlying security primitives, others decided against scanning full TLS
cipher suites, because it would require to establish too many connections [14].

3 Methodology

To improve the scan rate for TLS-specific scanning, we defined the follow-
ing requirements: First, time as the overall time consumption of the scanning
process; second, the support for parallelization – can different scans be executed
in parallel or do they rely on partial results and therefore require a sequen-
tial execution? These two requirements are especially important for large-scale
scans. Third, the number of connections necessary for a scan: How many con-
nections are necessary for a full configuration scan? Also, the generated traffic
is derived from the number of connections. Lastly, the completeness of the scan,
or how much information we can gather from the results: Is it possible to draw
a complete picture of the TLS configuration or is it just one specific detail?

The anticipated use cases range from an interested system administrator or
CISO who wants to scan infrastructure for security vulnerabilities up to Internet-
wide scans for either specific questions or complete ecosystem analysis.

We identified three existing approaches to scan and identify TLS configu-
rations: The naive approach establishes one connection for each cipher suite,
starting at the same time. For each connection the server replies with either this
cipher suite or with an alert that the cipher suite is not supported. This method is
currently implemented by the command line tool SSLyze [1]. It highly parallelizes
all requests, which results in a fast execution time, especially for non-delaying
networks. The number of connections and produced traffic is rather large. This
can lead to errors for some hosts, because the number of parallel connections may
exceed their limit. This disadvantage leads to error-prone results and affects the
completeness in a negative way. SSLyze (version 0.12) produces exactly 543 con-
nection attempts to test all cipher suite/TLS version combinations and approx.
500KB of traffic (inbound and outbound) per tested host. These numbers clearly
don’t scale for Internet-wide scans, making SSLyze impractical for this task.

The second approach is implemented by zmap. This command line tool, cre-
ated by Durumeric et al. [11], is primarily used for Internet-wide port scans.
With zgrab they also implemented an application layer scanner capable of scan-
ning TLS configurations. To minimize the number of connections to exactly one
per server, the cipher suites in the client hello message are fixed to a specific
research question, e.g., in order to test if RC4 is supported, all cipher suites that
use RC4 are included. The server then responds with a server hello message
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(showing the support of RC4) or an alert (showing that RC4 is not supported).
This one-connection-based approach minimizes traffic and performs fast. The
downside is that it does not completely evaluate all cipher suites. It is limited
in its expressiveness, since only one question per scan can be evaluated.

The third approach is used by the SSL Server Test [23]. This web service is
designed to test and evaluate one specific web server configuration. Therefore it
utilizes the cipher suite settings from different browsers and browser versions as
well as settings to test common misconfigurations. It then establishes one TLS
connection per setting to completely evaluate one server configuration. It also
includes HTTPS-specific settings and security features, e.g., HSTS or HPKP.
The information collected is comprehensive, but the service’s design is not suit-
able for large-scale ecosystem studies.

3.1 Introducing New Approaches

We propose the following new approaches for cipher suite scanning:

Connection-Optimal Approach. This approach tests all cipher suites per
TLS version in a serialized way. The process is illustrated in Fig. 1. It starts
with one TLS client hello message that includes all available cipher suites for
this TLS version. The server then responds with one cipher suite that it accepts.
The next handshake includes all cipher suites except the one that was accepted
earlier. This procedure is repeated until the server does not accept any of the
offered cipher suites and responds with an alert. All remaining cipher suites are
then evaluated as rejected. This approach uses the optimal, lowest number of
connections necessary, but is not parallelizable for one host. Therefore it needs
more time, especially for networks with a delayed round trip.

Fig. 1. Connection-optimal approach

Grouped by Cryptographic Primitives. The second approach, presented in
Fig. 2, groups cipher suites according to their used cryptographic primitives. It is
based on the assumption that server operators disable or enable all cipher suites
with a common primitive (e.g., deactivate all RC4-based cipher suites). After the
cipher suites are split up in groups, the process follows the methodology of the



8 W. Mayer and M. Schmiedecker

connection-optimal approach. We currently use groups based on keywords in the
cipher suite name, i.e., SRP, PSK, EXP, NULL, (DSA, DSS), (ADH, AECDH),
(CAMELLIA, SEED, IDEA, DES-CBC-), RC4. Primitives that are not supported
can be filtered out in the very first round. This approach supports parallel
execution of the group tests so that it works with fewer round trips than the
connection-optimal approach.

Fig. 2. Approach based on grouping cryptographic primitives

Based on Existing Results. The third approach, as presented in Fig. 3, com-
bines the ideas from the former approach with data from already conducted
cipher suite scans. It is based on the fact that many server operators use the
same configuration, e.g., a default configuration. The most likely configuration
based on former results is calculated before a client hello is sent. After the
first round of concurrent handshakes, an intermediary result is evaluated. Based
on this result, the next, most probable configuration is computed. The cipher
suites used in the next round of parallel sent client hello messages are then
adjusted. This goes on until all cipher suites are either rejected or accepted. This
approach is based on data described in the next paragraph.

Existing Data. For the last algorithm, we rely on the dataset of an Internet-
wide study we conducted from April to August 2015 [19]. We additionally use
cipher suite scans of the HTTPS ecosystem, performed in August 2015. These
datasets are very extensive w.r.t. the number of scanned cipher suites. Because
of the large dataset (approx. 12 million error-free results), we transformed each
result for each single host/port combination to a string. This string has a length
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Fig. 3. Approach based on cipher suite statistics

of 551 characters2. This represents the total number of TLS version and cipher
suite combinations. Each TLS version/cipher suite is either accepted or rejected,
which is represented by the characters a respectively r. We did not take dif-
ferent behaviors of key exchange algorithms or different error messages (for
rejected cipher suites) into account. In Table 1, the five most-used combina-
tions for HTTPS are shown (a black bar represents an accepted cipher suite, a
white bar a rejected cipher suite). We see that 7.8% of all hosts share one con-
figuration in which all cipher suites for SSLv2 and SSLv3 are rejected and the
supported cipher suites for TLSv1 and TLSv1.1 are identical. As an example,
the first two bars represent the accepted AES128-SHA and AES256-SHA, whereas
the next cipher suites are rejected (CAMELLIA128-SHA, CAMELLIA256-SHA).

Table 1. Most-used cipher suite patterns for HTTPS, Internet-wide scan in Aug. 2015

7.8%

5.5%

5.3%

4.3%

2.7%

2 551 cipher suites were tested with SSLyze version 0.11. Because the underlying TLS
implementation changed, version 0.12 does not test two specific cipher suites for four
TLS versions, thus only 543 connections. Existing results for these cipher suites are
ignored in the algorithm.
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When we take a closer look at the number of existing patterns per TCP
port and the percentage of hosts that use these patterns, we see that a small
number of patterns are used for most of the hosts. This is especially true for
SMTP, where we see that the two most-used patterns cover more than 50% of
all SMTP-enabled hosts. In Fig. 4 the percentage of hosts that is covered by an
increasing number of patterns for various TCP ports is shown. We assume that
it is possible to optimize scanning methods by using this information. Also, the
raw data of this patterns is publicly available.3

Fig. 4. Host coverarage by number of patterns

3.2 Implemented Approaches

We implemented all approaches by creating an additional mechanism to store
partial results. Based on this partial result, the next requests are computed and
executed, adding information to the partial result until it is complete. Users
are able to choose the algorithm by specifying a command line argument (e.g.,
--algorithm=connopt). The required connections and time are logged for every
run. Based on the existing data, we also implemented a simulation that calculates
the number of necessary connections and rounds per approach. The complete
source code is publicly available.

4 Results

We evaluated the proposed improvements by simulating an Internet-wide scan
on IPv4 with existing scan data. We computed two performance values:
3 https://scans.io/study/sba-email.

https://scans.io/study/sba-email
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The number of average established connections necessary to scan one host (C )
and the number of average rounds (round trips) to scan one host (R). These
two parameters are a good indicator for the defined requirements. Generated
traffic and connections are directly mapped to C, the degree of parallelization
and therefore the time needed is mapped to R. The results of this simulation
are shown in Table 2. We can see that all new approaches use fewer connections
than the naive approach. The optimum is achieved with the connection-optimal
approach, although this method uses a lot of rounds and is therefore not paral-
lelizable (and probably the slowest of all algorithms), except of the different TLS
versions. Thus, the number of connections is five times bigger than the number
of rounds. The group-based algorithm lies in between, with further potential to
optimize the chosen groups. The algorithm based on existing data shows a low
number of connections as well as a low number of rounds. For HTTPS on port
443 it minimizes the number of connections to an average of 37.3 (6.8%) with
an average of 1.8 rounds. The simulation is based on the same dataset as the
algorithm, so the expressiveness of this method will decrease in the future (as
configurations change), but can be easily readopted with newer results.

Table 2. Comparison of simulation results with existing scan data

Port 25 Port 110 Port 143 Port 443

C R C R C R C R

Naive 551.0 1.0 551.0 1.0 551.0 1.0 551.0 1.0

Connection-optimal 110.0 22.0 42.7 8.5 42.7 8.5 28.2 5.6

Crypto-group-based 252.0 7.3 199.9 3.8 199.8 3.8 187.7 2.4

Existing-data-based 141.0 1.5 52.3 1.5 51.4 1.4 37.3 1.8

4.1 Experimental Results

We tested the performance of our algorithms with scans in the wild. We used
SSLyze version 0.12 and scanned a predefined set of hosts out of the Alexa
Top10k list. We shuffled it and created batches of 100 hosts. With each algo-
rithm we scanned 25 batches and measured the time needed and connections
performed. We restrained from changing other aspects of SSlyze, like multi-
processing, multithreading or the general process. We also did not optimize ker-
nel settings or other parameters on operating system level in order to compare
only the algorithms with the default behavior. We used commodity hardware
with an 100MBit/s uplink. The results are presented in Table 3. The naive app-
roach performs worst in terms of speed. Also, connection-wise every new app-
roach performs better than the naive approach. Although it has a more complex
implementation, the approach based on existing data performs only slightly bet-
ter than the algorithm based on crypto groups. Also listed in Table 3 are scans
with a slightly larger set of hosts, used in the Sect. 4.2.
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Table 3. Experimental results of the different approaches

Approach # Scans

(Hosts)

Valid

results

Time (s) Connections

Total Min Avg Max Total Min Avg Max

Naive 25 (100) 1,866 14,356 0.92 7.69 15.42 1,012,976 542.6 542.9 543.0

Connection-optimal 25 (100) 1,896 4,473 0.92 2.36 4.70 60,723 28.7 32.0 34.7

Crypto-group-based 25 (100) 1,914 5,462 0.64 2.85 4.96 351,534 182.1 183.7 185.8

Existing-data-based 25 (100) 1,870 4,672 0.50 2.50 5.98 268,814 126.1 143.8 156.4

Connection-optimal 5 (2,000) 9,262 5,951 0.56 0.64 0.75 314,398 33.3 33.9 34.4

Connection-optimal 5 (2,000) 7,534 9,493 1.13 1.26 1.38 244,644 31.7 32.5 33.5

Figure 5 visualizes the large performance gain we can achieve with our
approaches. It shows the average time for one host and the average number
of connections per valid, scanned host of every tested batch.

These results show a large improvement in TLS cipher suite scanning algo-
rithms. The connection-optimal algorithm is 3.2 times faster than the naive
implementation (avg. connection-optimal compared with avg. naive) and uses
only 6% of the connections (avg. connection-optimal compared with avg. naive)
to execute a full TLS cipher suite scan in the wild. The connection-optimal app-
roach and the group-based approach are correctly simulated, but we see that the
results of the method based on existing data differ from the simulated results.
We argue that this is due to two reasons: First, the algorithm and the simulation
are based on the same data. If configurations change, the algorithm gets slower.
The second reason is that we practically evaluated top-10k web services and not
random hosts, whereas the simulation also considers a large number of small
hosts.

Fig. 5. Experimental results of different approaches
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Table 4. Cipher suite patterns

Umbrella Top10k Alexa Top10k

E.g., xx.fbcdn.net 18.53% 1716 8.51% 641

E.g., google.com 13.43% 1244 6.15% 463

E.g., configuration.apple.com 7.63% 707 1.87% 141

Mozilla modern conf. 0.02% 2 0.05% 4

Mozilla intermediate conf. 0.98% 91 3.28% 247

Mozilla old conf. 0.35% 32 0.15% 11

4.2 Cipher Suite Results of Top-10k Domains

We used the connection-optimal algorithm to perform an additional cipher suite
scan on the Alexa top-10k domains [3]. Cisco Umbrella recently proposed an
alternative to the often-used Alexa Top 1 million list [16], so we decided to
scan these top-10k domains as well. We analyzed which patterns occur, if these
patterns are secure and if we can find a trend to common and secure TLS con-
figurations. First, we looked at the most-used patterns in the Umbrella top-10k
list. Although the three most-used patterns are used by 39.6% of the Umbrella
top 10k resp. 26.9% of the Alexa top-10k, 524 and 954 (Umbrella/Alexa) differ-
ent configurations exist. This indicates a highly diverse ecosystem. Second, we
analyzed proposed cipher suite settings. Mozilla introduced a tool, the Mozilla
SSL Configuration Generator [21], to generate secure configurations for various
compatibility requirements, i.e., modern, intermediate and old. We see that the
cipher suite pattern for a modern configuration is only used by 2 resp. 4 hosts
in the top-10k lists. Their intermediate configuration is used by a recognizable
number (91, 247). The exact numbers are also shown in Table 4. Third, we looked
at differences between these patterns. All patterns disabled SSLv2 and SSLv3.
In contrast to the modern Mozilla configuration (only TLSv1.2), the other con-
figurations support TLSv1 to TLSv1.2. In contrast to the intermediate config-
uration, TripleDES with DH key exchanges is not supported. The xx.fbcdn.net
configuration is supporting more cipher suites (CAMELLIA, non-elliptic-curve
Diffie-Hellman), whereas configurations like google.com support only one cipher
suite more than configurations like configuration.apple.com, i.e., AES256-SHA.
Finally, we tried to compare the results with pattern statistics we used for our
simulation. We see that there are differences in the pattern usage, and we argue
that the average top-10k host is differently configured than the average host
from an Internet-wide scan.

5 Discussion

Internet scanning is not only a technical challenge. It also has to deal with ethical
issues. Other studies already pointed out current best practices [11] which include
to “scan no larger or more frequent than is necessary”. This discouraged studies
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from performing a full scan, e.g., Holz et al. [14]. They stated that a full TLS
cipher suite scan “is a poor trade-off in terms of good Internet citizenship versus
lessons that can be learned”. With our work, full TLS cipher suite scans can be
conducted with less than 6% (approx. 32) of the connections compared to the
currently used naive algorithm (543 connections). This minimizes the load each
target host has to handle to a manageable minimum and makes the trade-off in
terms of good Internet citizenship absolutely arguable. Good Internet citizenship
is not only about minimizing the impact of one scan. It is also about avoiding
unnecessary scans at all. One solution are publicly available results of scans, for
which Censys [8], a search engine for Internet-wide scans, is a good example.
They use the scanning approaches mentioned in Sect. 3, but an integration with
the results of full TLS cipher suite scans is possible. We publish all our datasets
and the source code.

In this work we optimized the methodology for full TLS cipher suite scans.
For the practical evaluation we didn’t change important factors of SSLyze to
speed up the process. Important factors to optimize the bandwidth usage are,
e.g., TCP port reuse, optimal settings for the TCP/IP stack or TCP connection
reuse. The most influential factor is the parallelization of the scanning infrastruc-
ture. SSLyze (version 0.12) uses a maximum of 12 processes with 15 threads for
all hosts; if the number of hosts is larger than that, the hosts are queued inter-
nally. This behavior is not optimal, since the server is idling. The solution is to
split up all hosts amongst a large number of concurrent processes to minimize
idling. With some optimizations applied, we were able to scan 27 K hosts per
hour with the naive approach on commodity hardware (100 MBit/s uplink). We
did not bundle these optimizations with our new approaches in order to focus
on our comparison.

The approaches are created for TLS versions up to TLS v1.2. With TLSv1.3,
which is currently a working draft, many things will change. Many insecure
features are dropped, e.g., static RSA or DH key exchanges, insecure ciphers or
hash-functions like MD5. Also, the handshake mechanism will be changed, so
only one round trip is necessary to establish a full TLS connection. This – and
also the question how TLSv1.3. is going to be deployed in the wild – affects the
problem of how to efficiently scan full TLSv1.3 configurations.

6 Conclusion

In this paper we presented existing and new approaches for cipher suite scanning
which is an important tool to evaluate the current status of the TLS ecosystem.
Until now, naive approaches were used which are not optimal in terms of con-
nections, scanning time or traffic transmitted over the wire. We introduced three
new approaches that make use of the TLS protocol specification, common con-
figurations and existing results. We evaluated the performance gain of these
methods and found that we were able to perform scans 3.2 times faster with
only 6% of the connections. We implemented a version of the described methods
to work with a commonly used tool, simulated them and then evaluated them in
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practice by conducting a cipher suite scan for Alexa and the Umbrella top-10k
hosts, describing the results and common patterns.
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tuliopascoal@gmail.com, {iguatemi,vivek}@ci.ufpb.br

2 TU Darmstadt, Darmstadt, Germany
dantas@mais.informatik.tu-darmstadt.de

3 fortiss, Munich, Germany

Abstract. Software Defined Networks (SDN) facilitate network man-
agement by decoupling the data plane which forwards packets using effi-
cient switches from the control plane by leaving the decisions on how
packets should be forwarded to a (centralized) controller. However, due
to limitations on the number of forwarding rules a switch can store in
its TCAM memory, SDN networks have been subject to saturation and
TCAM exhaustion attacks where the attacker is able to deny service by
forcing a target switch to install a great number of rules. An underlying
assumption is that these attacks are carried out by sending a high rate of
unique packets. This paper shows that this assumption is not necessarily
true and that SDNs are vulnerable to Slow TCAM exhaustion attacks
(Slow-TCAM). We analyse this attack arguing that existing defenses for
saturation and TCAM exhaustion attacks are not able to mitigate Slow-
TCAM due to its relatively low traffic rate. We then propose a novel
defense called SIFT based on selective strategies demonstrating its effec-
tiveness against the Slow-TCAM attack.

Keywords: DDoS attacks · SDN · Low-Rate attacks · Selective defenses

1 Introduction

In Software Defined Networks (SDN), a powerful controller is responsible for tak-
ing the decision of where packets should be forward, i.e., defining the network
flows (control plane), while the task of forwarding packets is left to powerful
switches (data plane). Whenever a packet arrives a switch, it searches whether
there is a matching installed rule. This search is efficient because of dedicated
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memories called Ternary Content-Addressable Memory (TCAM) where forward-
ing rules are stored. If no rule is applicable, the switch informs the controller
which takes a decision by, for example, installing a new rule.

However, TCAM are expensive and have high power consumption [14]. There-
fore, SDN switches have a limited TCAM space [10,14,15] and can store only
a limited number of rules (typically 1500 to 3000 rules) [10,13,14,25,27]. This
limitation has led to TCAM exhaustion [10,13,17,24,29] and saturation attacks
[2,11,12,14,28,29,31]. In a saturation attack, the attacker forces the target
switch to install a great number of new rules consuming the switch TCAM
capacity and moreover causing the whole network controller to crash because of
increased traffic between the switch and the controller.

We describe some approaches for mitigating saturation and TCAM attacks:

1. Setting rule timeouts which remove a rule whenever it is not used for some
given duration. This timeout is called idle timeout in the OpenFlow protocol
used in SDNs as the basic mechanism for removing obsolete rules. There have
been proposals [25] for optimizing timeout values according to the network
behavior and by flow aggregation.

2. Monitoring the number of unpaired rules, i.e., rules for which there is an
incoming flow, but no outgoing flow. The purpose is to detect DDoS attacks in
general, as it can be used to detect when a packet has a spoofed IP. Similarly,
there have been defenses that evaluate TCP SYN cookies in order to validate
TCP Handshake of the packets in order to detect IP spoofing [26].

3. Monitoring the rate that rules are installed. If the rate of rule installation is
too high, then it is likely that the network is suffering an attack and defense
mechanisms may be triggered [10].

4. CPU and memory of SDN Switches and Controllers also provide indications
that a system is suffering a DDoS attack and trigger countermeasures [28].

The main underlying assumption of these measures, however, is that attackers
will send unique packets in a very high rate by, for example, spoofing IPs. This
causes some of these parameters to change abruptly triggering counter-measures.

1.1 Slow TCAM Exhaustion Attacks

The assumption that attackers only generate high traffic is not necessarily true.
Indeed as witnessed by the class of Low-Rate Application Layer DDoS attacks,
such as Slowloris, attackers can deny service of a web-server or a VoIP server by
sending a very low rate of requests to the target server [8,9,18]. Attackers can
also carry out Low-Rate attacks on not powerful devices using SlowDroid [3,6]
and exploit new vulnerabilities on application layer protocols in order to evade
detection mechanisms, e.g., SlowNext [5].

Inspired by Low-Rate Application DDoS Attacks, our first contribution is the
identification of the vulnerability of SDN to Slow TCAM attacks. We propose
a novel attack called Slow TCAM Exhaustion attack (Slow-TCAM) which is
carried out as follows:
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1. Recruit a large enough number of bots, typically a number a bit greater than
a half the rule capacity of the target switch. A number between 1500–3000 is
enough. Notice that the attacker is not spoofing IPs.

2. Each bot sends a unique packet to the target switch. Whenever the switch
receives the first packet, a new rule is installed. Moreover, since there is no IP
spoofing, two flows, an incoming and outgoing flow, are eventually installed.

3. The unique packet generation rate is controlled so that the rate that new
rules are installed is not too high. In our experiments, the attacker generates
a traffic of up to 40 packets per second, while typical flooding and saturation
attacks generate a traffic greater than 1000 packets per second [10,13,26,28].

4. Finally, each bot keeps sending at a low rate a packet to the switch within its
rule idle timeout. The idle timeout can be inferred by the attacker by try and
error using SDN SCANNER [25]. Therefore, no rule is uninstalled leaving the
TCAM always full and not allowing new rules to be installed.

After the Slow-TCAM attack is carried out, the controller and the switch operate
normally, but they are forced to serve only flow rules installed by the attacker
thus denying service to legitimate clients.

Our second contribution is the proposal of SIFT, SelectIve DeFense for
TCAM, a selective defense for Slow-TCAM attack. Our previous work used
selective strategies to mitigate Low-Rate Application-Layer DDoS attacks on
web and VoIP servers [8,9,18,19]. This paper shows that selective strategies can
mitigate Slow-TCAM attack by randomly selecting rules to be dropped when-
ever the system is overloaded. We built SIFT over the Openflow protocol, i.e.,
no additional SDN machinery is necessary nor hardware, and it runs in conjunc-
tion with the controller. Whenever a switch has its rule capacity full, i.e., the
controller receives a TABLE-FULL message, SIFT is activated and decides using
a probability distribution whether a new rule is going to be installed or not. We
demonstrate that SIFT is a lightweight defense for Slow-TCAM attacks with low
impacting on the controller’s CPU and memory consumption. Moreover, when
under attack, SIFT mitigates the attack leading to high levels of availability.

Similarly to our previous work on selective strategies for Low-Rate
Application-Layer DDoS attacks [9], we have also formalized the Slow-TCAM
and SIFT in Maude and used Statistical Model Checking techniques to validate
our results. The formalization can be found at [1], but due to space limitations
is left out of the scope of this paper which focuses on the experimental results
obtained.

The rest of the paper is structured as follows: Section 2 details the Slow-
TCAM attack arguing why it is a fatal attack on SDN. Section 3 details our
experimental results demonstrating the efficiency of the attack. Section 4 dis-
cusses means to mitigate Slow-TCAM attack and introduces the defense SIFT
based on selective strategies showing that it can mitigate Slow-TCAM attacks.
Finally, in Sect. 5, we conclude by discussing related and future work.
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2 Slow TCAM Exhaustion Attack (Slow-TCAM)

While we assume that the reader is familiar with the OpenFlow protocol used in
SDN, we review some of the messages exchanged between a SDN switch and the
controller. Whenever a packet is received by a SDN switch, it checks whether
there is a matching forwarding rule. If so, it applies the rule to this packet.
However, if no rule is applicable, i.e., it is a new unique packet, the switch
exchanges the following messages with the controller:

Switch → Controller : PACKET-IN
Controller → Switch : FLOW-MOD

The message PACKET-IN contains the incoming packet information, e.g.,
header, buffer id, in port, payload, etc. It will contain simply the header if the
switch’s incoming buffer1 is not full, and it will contain the whole packet if
its buffer is full. FLOW-MOD contains the rule that should be installed by
the switch. Once the message FLOW-MOD is received by the switch, it checks
whether there is enough space in the switch’s TCAM memory for installing a
new rule. If this is the case, the rule is installed and the packet is forwarded
using it. Otherwise, the switch drops the packet and informs the controller that
its TCAM memory is full by sending the following message:

Switch → Controller : TABLE-FULL

The controller can specify a rule idle timeout. (OpenFlow comes with a hard
timeout which is deprecated.) Given a rule timeout of TO, a rule is uninstalled
by the switch if it is not triggered for TO time units. The use of timeouts is a
mechanism to remove less used rules freeing TCAM memory for other rules to
be installed. Typically, the timeout TO is a value between 9–11 s [31].

Finally, we point out that the communication between a SDN switch and
the controller is expensive as it builds a secure channel for their communication.
Therefore, a defense should avoid switcher-controller communication overhead.

2.1 Attacking SDN

As TCAM are expensive and consume a great amount of energy, SDN switches
have limited TCAM space, consequently are not able to store many rules, typi-
cally a number between 1500 and 3000 rules [10,13,14,25,27]. There have been
attacks on SDN which attempt to (1) consume the TCAM memory of switches
(TCAM exhaustion attack) and (2) overload the controller (saturation attack).

These attacks are carried out by sending a great number of unique packets,
normally by spoofing IPs. Once the TCAM is exhausted, the switch starts to drop
packets leading to the TCAM exhaustion attack. Moreover, the saturation attack
goes even further by sending unique packets at a even greater rate consuming

1 Not to confuse the incoming packet buffer which stores packets with the TCAM
which stores rules.
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not only the switch’s TCAM memory, but also the switch’s incoming buffer. The
switch, then, starts sending to the controller the whole packet instead of only
the packet header. This overloads the controller leading it to crash thus affecting
the whole SDN.

Defenses for the TCAM exhaustion attack and the saturation attack assume
that the attacker necessarily sends a great number of unique packets, i.e., flood
the switch, to deny its service. Existing defenses monitor parameters that could
be affected when receiving a large number of unique packets, e.g., rule installation
rate, CPU and Memory, number of unpaired rules.

However, this assumption is not necessarily true. We identify that SDNs are
vulnerable to Slow TCAM exhaustion attacks, where the attacker exhausts a
switch’s TCAM memory without sending unique packets at a high rate.

2.2 Slow-TCAM

Inspired by Low-Rate Application DDoS attacks [4,8,9,18], such as Slowloris, we
propose a variant of the TCAM exhaustion attack, called Slow TCAM Exhaus-
tion Attack (Slow-TCAM), which does not need to send a great number of unique
packets, i.e., flood the system, but rather is able to slowly occupy all a switch’s
TCAM resources and deny service to legitimate.

In order to carry out a Slow-TCAM attack, we assume that the attacker has a
botnet with more than the rule capacity of the target switch, i.e., typically 1500
– 3000 bots.2 This is feasible as he can recruit a botnet using standard methods,
e.g., phishing or purchasing such botnet3. We also assume that the attacker
knows the rule timeout TO. This can be easily inferred by using existing tools
such as an SDN Scanner [25]4 which uses a try and error approach applying
statistical testing methods, e.g., t-test analysis.

The Slow-TCAM attack then proceeds as follows:

– Rule installation: Coordinates its botnet to send a unique packet to the
target switch directed to some service in the SDN, for example a web-server,
at a low rate. Once a unique packet is received, the target switch follows the
OpenFlow protocol which causes it to install a rule. As the rate of unique
packets that are arriving is low, the rate of rule installation is also low.

– Rule Activation: Once a bot has send its first unique packet causing the
target switch to install a rule, it sends packets in intervals of less than the
timeout TO. This causes the corresponding rule to be fired and therefore to
not be removed by the rule timeout mechanism.

As we demonstrated by our experiments in Sect. 3, Slow-TCAM can be quite
effective:

– Low Attacker Effort: The main effort from the attacker is to recruit a large
enough botnet. Once he possesses such botnet, the traffic generated by the

2 One can reduce this number by half as a flow has an incoming and outgoing flows.
3 https://tinyurl.com/zf27emp.
4 It is possible to carry out a Slow-TCAM attack by IP spoofing. However, this attack

could be easily mitigated by checking for unpaired rules.

https://tinyurl.com/zf27emp
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botnet is very low compared to usual traffic. Bots have to send a single packet
in intervals of less than TO, which is typically every 10 s;

– Disguised Attack: As the traffic generated is low, it is hard to detect
the Slow-TCAM attack. Indeed, differently from the saturation attack which
causes the controller to crash, a Slow-TCAM attack does not stress the con-
troller’s memory and CPU resources. This renders defense that monitor these
parameters ineffectively. Moreover, the rule installation rate is low thus not
indicating a malicious over use of the network. In fact, the attack can be in
principle made to be as slow as desired as bots can install rules in a slower
rate bypassing defenses based on traffic monitoring.

– Effectiveness: It effectively denies service to legitimate clients. As the
attacker occupies the target switch’s TCAM, legitimate clients packets are
no longer forwarded being dropped and therefore they cannot access the ser-
vices provided by the SDN.

Table 1. Slow-TCAM: Time to service and availability. The value on Success Rate
corresponds to the number of clients that are able to obtain a response after the
attacker has carried out the attack and occupied all the TCAM memory.

Average attack rate Success Rate TTS Time to DoS CPU Memory usage

No attack 100% 12,6 ms – – –

3.2 unique packets/s 0.0% ∞ 478 s 2.5% 42.3 MB

4.6 unique packets/s 0.0% ∞ 324 s 3.83% 43.0 MB

5.8 unique packets/s 0.0% ∞ 258 s 4.74% 42.3 MB

9.2 unique packets/s 0.0% ∞ 162 s 4.98% 42.5 MB

13.6 unique packets/s 0.0% ∞ 110 s 6.39% 42.2 MB

15.6 unique packets/s 0.0% ∞ 96 s 7.17% 41.9 MB

23.6 unique packets/s 0.0% ∞ 63 s 10.43% 41.8 MB

39.5 unique packets/s 0.0% ∞ 38 s 10.97% 42.3 MB

Fig. 1. Experimental set-up.
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3 Slow-TCAM Experimental Analysis

We implemented the Slow-TCAM attack and carried out a number of exper-
iments. Figure 1 shows the set-up of our experiments. We used two virtual
machines, one executing Mininet [20] along with Open vSwitch 2.5.0 [22], which
are a well-known network emulator and open-source virtual switch, respectively.
Another virtual machine executed the SDN controller Ryu [23] using Open-
Flow 1.3 [21]. The Mininet machine was a Ubuntu 14.04 LTS, Intel i7-5500U
CPU@2,40 GHz with 3 GB of RAM memory, while the Ryu machine was a
Ubuntu 16.04.1 LTS, Intel i7-5500U CPU@2,40 GHz with 1 GB of RAM mem-
ory. The host machine was a Windows 10 64 bit, Intel i7-5500U CPU@2,40 GHz
with 8 GB of RAM memory.

We set the SDN switch rule capacity to 1500 rules with rule timeout TO of
10 s as recommended in the literature [31].

Legitimate client traffic (Host 2) consisted of 375 unique connections, which
means the installation of 750 rules (incoming and outgoing rules) in a switch, i.e.,
half the switch rule capacity. We implemented the Slow-TCAM attack where the
attacker (Host 2) possesses a botnet with more than 760 bots and no more than
800 bots. Both legitimate and attacker’s bots accessed the web-server (Host 1).

Table 1 summarizes our experimental results. It shows that Slow-TCAM
attack can be effective in denying service to legitimate clients accessing the net-
work using a SDN switch. We carried out a number of experiments with different
attack intensities from 3.2 unique packets per second to 39.5 unique packets per
second. In comparison typical flooding attacks has a rule installation rate of 1000
unique packets per second [10,13,26,28]. Once the attacker successfully occupied
all the TCAM memory, every one of its bots sends with periodicity of 3 s a packet
to keep its corresponding rule active in the SDN switch.

We measured the legitimate client availability after the attacker has occupied
all the TCAM memory, time to service (TTS), the time for the attacker to deny
service, the controller’s average CPU and memory usage. We observed that the
attacker can carry out the attack very slowly occupying all the TCAM memory in
around 8 min or more quickly in only 38 s. There is little impact on the controller
CPU usage and memory.

Figure 2 illustrates the TCAM usage by the Slow-Attack with intensity of 5.8
rules per second. It takes a bit more than 4 min to occupy all the rule capacity
by installing 1500 rules. The remaining scenarios with different attack intensities
had the same behavior. For our slowest attack with intensity of 3.2 unique packets
per second, the attacker can deny service even more silently in around 8 min
with practically no impact on the controller’s CPU usage. On the other hand,
the attacker can also deny service more quickly in 38 s by carrying out a Slow-
TCAM attack with intensity of 39.5 unique packets per second with still a very
low impact on the controller’s CPU usage. Notice that the attacker is able to
keep the rules installed in the switch by avoiding their timeout to be fired. This
can be observed by the fact that no rules are uninstalled. Once all 1500 rules are
installed, there is no more room for new rules thus denying service to legitimate
clients.
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Fig. 2. Number of installed rules in the target SDN switch and the number of FLOW-
MOD messages sent by the controller for a Slow-TCAM attack with intensity of 5.8
unique packets per second.

We also measured the number of FLOW-MOD messages sent by the con-
troller (also illustrated in Fig. 2). As the attack is slow, it causes the controller
to send a low amount of FLOW-MOD messages (less than 40) and once the
TCAM is occupied the number of FLOW-MOD messages reduces even further.
Notice as well that this number can also be reduced if the attacker is willing to
carry out an attack with an even lower rate.

We measured the CPU and memory effort of the controller during the Slow-
TCAM attack depicted in Fig. 3. The Slow-TCAM attack causes a low overhead
on the CPU usage of less than 5% and little impact to the switch’s memory
usage from 34 MB to less than 43 MB which is due to the installation of new
rules.

These results demonstrate that the Slow-TCAM attack is indeed an effective
and silent attack as it denies service to legitimate clients without changing in
abrupt ways the main parameters used by monitoring defenses (see Sect. 5 for

Fig. 3. Slow-TCAM: CPU and memory usage during a Slow-TCAM attack with inten-
sity of 5.8 unique packets per second.
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further details). The rule rate installation and of FLOW-MOD messages is kept
low and there is little impact to the Switch’s CPU and Memory. Moreover, as
the attacker is not spoofing IPs, all rules installed in the switch to handle his
packets are paired, i.e., have an incoming and outgoing rules.

Algorithm 1. SIFT Execution During a Round
1: procedure SIFT-ROUND
2: if Received FLOW-MOD with ruleIns then
3: ruleList.insert(ruleIns)
4: lastFlowMod ← ruleIns
5: if Received TABLE-FULL then
6: pmod ← pmod + inc
7: ruleList.remove(lastFlowMod)
8: if random() < k

k+pmod
then

9: iRuleInd ← random(k)
10: ruleDr ← ruleList.get(iRuleInd)
11: ruleList.remove(ruleDr)
12: send OFPFC DELETE with ruleDr
13: if hasPairRule(ruleDr,ruleList) then
14: rulePair ← ruleList.getPair(ruleDr)
15: ruleList.remove(rulePair)
16: send OFPFC DELETE with rulePair
17: if Received OFPRR DELETE or OFPRR IDLE TIMEOUT with ruleDr

then
18: ruleList.remove(ruleDr)

4 Mitigating Slow-TCAM

Before we introduce our new defense SIFT for mitigating Slow-TCAM attacks,
we discuss some alternative defenses mechanisms. A detailed analysis of their
applicability is left to future work:

– Rule aggregation: It seems possible to mitigate Slow-TCAM attack by
aggregating different rules into broader rules. The controller can reduce the
impact of Slow-TCAM as the attacker would not be able to consume all the
target switch’s TCAM. The downside of using rule aggregation is that the
controller has a coarser definition of unique packet and therefore, the system
becomes more vulnerable to other attacks, such as volumetric attacks.

– Dynamic Timeouts: If the controller is able to distinguish a bot from a
legitimate client, the controller can set different timeouts allowing rules cre-
ated for possible clients to have longer timeouts. It is not yet clear how to set
these timeouts with the Slow-TCAM attack as bots may behave very close
to legitimate clients, e.g., access a web-page with an expected behavior.



26 T.A. Pascoal et al.

– Improving TCAM usage: The switch may improve its TCAM usage by
storing less data for example. This mechanism may increase a switch’s rule
capacity and therefore, the attacker would need to hire a larger botnet to
carry-out a Slow-TCAM attack.

4.1 SIFT

We propose a new defense called SelectIve DeFense for TCAM (SIFT) for
defending against the Slow-TCAM attack. It is based on selective strate-
gies [8,9,18] which have already been used to mitigate Low-Rate Application
Layer DDoS attacks on web-servers and VoIP servers, such as Slowloris.

SIFT is executed together with the controller at the controller-layer. Assume
that the switch rule capacity is k. SIFT maintains three variables:

ruleList, lastFlowMod, and pmod

where ruleList is a mirror list of the rules installed in the switch and pmod is a
counter. Selective strategies including SIFT work in rounds with duration of TR

time units. Our experiments demonstrate that TR = 0.1 s is a suitable value for
a round duration being able to mitigate attacks with very little overhead on the
controller’s CPU and memory usage. At the beginning of a round, SIFT sets a
counter pmod := 0.

During a round, SIFT follows Algorithm1. Whenever a new rule ruleIns is
to be installed, i.e., a FLOW-MOD is generated, then SIFT adds this rule to
ruleList (lines 2–3). If a TABLE-FULL is received from the switch informing
that a rule ruleTB was not able to be installed, then SIFT proceeds as follows:
first it increments pmod by a value inc (line 6). Our experiments show that inc
= 100 is a good value for a switch with rule size 1500.

SIFT then generates a random number between 0 and 1 and checks whether
this number is less than (line 8):

k

k + pmod

If this is not true, then SIFT simply rejects the rule ruleTB and leaves the
currently installed rules as they are. Otherwise, SIFT drops a randomly chosen
installed rule ruleDr so that new rules may be added. As pmod increases, the
probability of installing new rules decreases with the rate of incoming traffic (for
more formal justification for this rule see [16]).

If SIFT decides to install ruleTB (lines 9–16), SIFT selects a number iRuleDr
between 1 and k and removes the rule ruleDr at the index iRuleDr from
ruleList (lines 9–11). It then sends the OpenFlow message OFPFC DELETE
to the switch specifying that the rule ruleDr should be uninstalled (line 12). As
the rule ruleDr has been uninstalled, we also search whether it has a pair rule
and uninstall it as well (lines 14–16) as it would no longer have an incoming or
outgoing flow.



Slow TCAM Exhaustion DDoS Attack 27

Finally, whenever the switch uninstalls a rule sending an OFPRR DELETE
or an OFPRR IDLE TIMEOUT message, the corresponding rule is removed
from ruleList (lines 17–18).

Notice that SIFT has a concrete effect on the switch only when its rule
capacity is reached. If there is still space in the TCAM for new rules, the network
behaves as if SIFT is not present.

Rationale of Why SIFT Works: The objective of the attacker is to keep
its rules installed for long periods of time. Therefore, whenever a switch’s rule
capacity is reached, which is likely due to an attack, SIFT has a greater prob-
ability of selecting an attacker rule and enabling new rules for serving possibly
legitimate clients to be installed.

Variations of SIFT: The results obtained in this paper assumes a uniform
probability mechanism for choosing which rule to drop. Our experiments indi-
cate that this strategy is effective for mitigating Slow-TCAM attacks. However,
there are other selective strategies [8,18,19] that could be used, e.g., taking into
account the time a rule has been installed or the number of packets that fired a
rule, etc. We leave this investigation to future work.

4.2 Experimental Results with SIFT

We carried out load tests with scenarios with SIFT and without SIFT when
under an Slow-TCAM attack of intensity of 5.8 unique packets per second. These
tests provide us with lower bounds on the performance of our defense. We varied
the intensity of legitimate client traffic from 1 packet in intervals of 1–3 s (chosen
randomly), to 15 packets every 1–3 s. We also tested SIFT when there is a burst
of legitimate client traffic with 100 packets every 10 s.

Table 2 summarizes the results with different scenarios. It first shows that
SIFT does not have an impact when the system is not under attack. Then, it
shows that the Slow-TCAM attack is effective in denying service resulting in
0% availability in all cases when not running SIFT. With SIFT, on the other
hand, one is able to maintain high levels of availability with levels above 95%
for each scenario. SIFT had, however, an impact on the time to service (TTS)
specially when there are burst of client demand reaching 2.4 s. We are currently
investigating how to improve TTS by using different selective strategies and
incorporating other defense technique such as those described at the beginning
of Sect. 4. This is left to future work.

Finally, we measured the impact of SIFT on the controller’s memory and
CPU. It is a lightweight defense not impacting the CPU and Memory consump-
tion of the controller. This can be observed by the graphs depicted in Fig. 4.
SIFT did not cause overhead on the CPU and memory usage when compared
with the data in Fig. 3.
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Table 2. SIFT: Time to service and availability when under an attack of intensity of
5.8 unique packets per second. The value on Success Rate corresponds to the number
of clients that are able to obtain a response after the attacker has carried out the attack
and occupied all the TCAM memory.

Client traffic Without SIFT With SIFT

Success Rate Median TTS Success Rate Median TTS

No attack 100% 23.7 ms 100% 20.2 ms

1 packet every 1–3 s 0% ∞ 97.3% 97 ms

5 packets every 1–3 s 0% ∞ 96.9% 1061 ms

10 packets every 1–3 s 0% ∞ 97.9% 1082 ms

15 packets every 1–3 s 0% ∞ 98.9% 1149 ms

100 packets every 10 s 0% ∞ 95.6% 2454 ms

Fig. 4. SIFT: CPU and memory usage during a Slow-TCAM attack of intensity of 5.8
unique packets per second.

5 Related and Future Work

The main objective of TCAM exhaustion attacks is to force the switch to install
rules. In the literature, this is accomplished by sending a high rate of unique
packets, e.g., using spoofing and sending UDP packets [10,13,17]. Furthermore
the saturation attack [2,11,12,14,28,29,31] has as main objective to crash the
controller by sending a large amount of traffic to a SDN switch occupying its
incoming buffer. This causes the switch send to the controller the whole packet
instead of only sending the packet header.

Dhawan et al. [10] propose the detection of DoS attacks by monitoring the
rate of rule creation by the SDN controller. If this rate passes a threshold, then
mitigation actions are taken. Since the Slow-TCAM attack can be configured to
set a particular rate of rule creation, this defense is not effective in mitigating
the Slow-TCAM attack.
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Shin and Gu [25] propose two mechanisms to detect TCAM exhaustion and
saturation attacks. The first mechanism is compute an optimal rule timeout
according to the complexity of the network. While this mechanism can mitigate
flooding attacks which use IP Spoofing of UDP packets, for example, it is not
efficient for mitigating Slow-TCAM attacks as the bots are continuously sending
valid packets thus resetting timeouts. The second mechanism is the technique
of Flow Aggregation which generates more general rules, defining macroflows,
instead of using more specific rules, defining microflows. This strategy can miti-
gate the Slow-TCAM, but at the expense of leaving the network more vulnerable
to other attacks, e.g., Get-Flooding, allowing malicious traffic to use the network.
Moreover, as pointed out by [28], Flow Aggregation is not capable of mitigating
saturation attacks such as the ones proposed by [7].

The strategy AVANT GUARD [26] detects when a TCP-handshake is com-
pleted before creating rules in the network. It has been recently shown [2] that
this defense is vulnerable to a modification of the saturation attack capable to
consume all AVANT GUARD’s resources. AVANT GUARD’s strategy cannot
detect Slow-TCAM attacks as the attacker’s bots complete TCP-handshakes.

Wang et al. [28] propose to monitor switch buffer, controller’s CPU and
memory usage to mitigate saturation attacks. As the Slow-TCAM attack has
little impact to these parameters, it seems that the defense proposed by Wang
et al. is not effective in detecting Slow-TCAM attacks.

Shen [24] proposes a peer support strategy where SDN switches share their
unused TCAM memory space among them when they are reaching its TCAM
limit. This is done by installing flow rules in the attacked switch (they keep a
reserved space in TCAM) in order to divert flows to other peer switches according
to: not being full, nearest to the attacker switch, less busy, connects to more other
switches. However they can only retard the attack and has the problem of when
the majority or many switches are full they will divert traffic between them
ending up in loop.

Some proposals [15,30] suggest modifications to the OpenFlow protocol used
in SDN and in the structure of TCAM memory in order to improve memory man-
agement. Kandoi and Antikainen [13] comment the possibility of using Optimal
Timeout technique and Flow Aggregation. However, their goal is to enhance
SDN general performance, whereas we expose the TCAM limited space SDN
vulnerability as a mean to deny its service.

We are currently investigating the use of alternative selective strategies for
mitigating not only Slow-TCAM attack, but also saturation attacks. These selec-
tive strategies would use parameters such as CPU, Memory usage, number of
times a rules has been fired. The probability of dropping a rule would then
depend on such parameters. For example, rules that have not been frequently
used should have a higher probability of being dropped. We believe that by using
more parameters we can improve SIFT and mitigate other TCAM attacks.
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Abstract. Fueled by a recent boost in revenue, cybercriminals are devel-
oping increasingly sophisticated and advanced malicious applications.
This new generation of malware is able to avoid most of the existing
detection methods. Even behavioral detection solutions are no longer
immune to evasion, mostly because existing solutions focus on the actions
or characteristics of a single process. We propose shifting the focus from
malware as a single component to a more accurate perspective of malware
as multi-component systems. We propose a dynamic behavioral detec-
tion solution that identifies groups of related processes, analyzes the
actions performed by processes in these groups using behavioral heuris-
tics and evaluates their behavior such that even evasive, multiprocess
malware can be detected. Using the information provided by groups of
processes, once a malware has been detected, a more comprehensive sys-
tem cleanup can be performed, to ensure that all traces of an attack have
been removed and the system is no longer at risk.

1 Introduction

Malicious software has become the foundation of a highly profitable industry.
To maximize profit, malware authors are developing increasingly sophisticated
attacks. The new breed of malware is able to avoid static detection through
various methods, like obfuscation or encryption. To make detection even more
difficult, thousands of new malware or variants of existing malware are being
released every day. Consequently, dynamic detection has become more impor-
tant, representing a last line of defense in security solutions.

Currently, the majority of dynamic malware detection techniques evaluate
the behavior of a process and, using a set of rules, decide if that process is mali-
cious or not. The rule set must accurately differentiate between malicious and
non-malicious processes. Because a balance between detection rate and num-
ber of false positives must be assured, a dynamic detection system can not be
too aggressive when evaluating a single process. Advanced malware may take
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advantage of this lack of aggression. They can evade being detected by separat-
ing malicious actions into multiple processes through process creation or code
injection. This separation causes current dynamic detection systems to be unable
to detect some of the malware components or, even worse, not to detect the mal-
ware at all. This is a major issue, because if a malware attack is only partially
detected and the malicious components are not entirely removed from a system,
they will continue to represent a serious security risk for the user.

We propose a behavioral detection solution that overcomes the issue of detect-
ing evasive malware. We propose renouncing the current view of malware as
single component systems and adopting a more accurate and comprehensive,
multi-component based, method of evaluation and detection.

The following sections present a method to detect malicious groups of
processes instead of single malicious processes. This research will provide a
method for constructing such groups, together with a way to evaluate their
actions so that malware groups can be detected. We also present a way to clean
the infected system based on the actions performed by the processes in the
detected group.

This paper is organized as follows: Section 2 presents the current state of
research concerning behavioral malware detection and how most common solu-
tions can be evaded. The proposed solution is described in Sect. 3 and the results
of the proposed solution are presented in Sect. 4. The conclusions are mentioned
in Sect. 5.

2 Related Work

An approach used in behavioral malware detection consists of extracting features
based on the API calls performed by an analyzed sample. Devesa et al. [2]
propose identifying which actions were performed, based on API calls records.
These actions represent features, used to classify a sample as malicious or clean.

Constructing graphs based on the relations between system calls represents
another approach in behavioral malware detection. Elhadi et al. [3] propose
creating data dependent graphs, with nodes representing system calls and the
edges, relations between their parameters or return values. An algorithm based
on the Longest Common Subsequence is used to match the obtained graph to
those of known malware stored in a database. Behavior graphs are also used
in [7]. Compared to other similar solutions, the solution proposed by Kolbitsch
et al. has the advantage of matching the behavior graphs in real time, providing
protection on the end host. Naval et al. [10] propose representing the behavior of
a sample as an ordered system call graph and extracting relevant paths, which
are considered features used for classifying the sample as malicious or benign.

Most dynamic malware detection solutions that focus on analyzing the behav-
ior of individual processes are highly vulnerable to a certain type of evasion that
is increasingly used by sophisticated malware and advanced threats. The eva-
sion mechanism is quite simple: instead of executing all the malicious actions
from a single process - which could be more easily detected by advanced security
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solutions - the malicious payload is distributed to multiple, distinct processes,
and may be executed over a long period of time. Because behavior based detec-
tion solutions can not usually detect a process based on a single action, multiple
individual processes, each performing a smaller set of actions, may go unnoticed,
allowing the malware to achieve its target goal undetected.

Ma et al. [8] developed a prototype tool, working at compiler level, that
can generate multiple “shadow” processes from the original malware code. Each
“shadow” process executes some of the payload, such that the original behavior
of a process remains unchanged. Various methods to deliver malware distrib-
uted into multiple files are presented in [11]. Another method of distributing
the malicious payload, presented in [4] consists of injecting parts of the pay-
load into clean processes running on a system. This approach makes cleanup
more difficult because, if only one injected process is terminated, the malware
is capable of reinstantiating itself from another injected process. The distinct
malicious processes may communicate using traditional inter process communi-
cation, supported by the operating system, or through purposely implemented
special mechanisms.

This evasion mechanism is extremely effective especially against detectors
based on API or code flow graph. Since the API calls are distributed to multiple
distinct processes, this type of detectors may have difficulties in matching the
obtained graphs, or may be unable to do so. The effectiveness of distributing
malicious behavior to multiple processes is also recognized by [6,12].

A solution designed to combat multi-process malware is proposed in [5]. In
the approach presented by Ji et al., the actions performed by each process are
represented as feature vectors and then correlated with the actions performed
by its child processes. The correlation phase in malware detection may be a
complex problem, both in terms of implementation and efficiency. Additionally,
this solution does not consider code injection when correlating processes.

Evasion mechanisms such as those previously described represent a strong
argument to show that behavioral-based security solutions need to evolve past
analyzing a single process, individually and in isolation from other entities. Focus
should shift to developing more advanced security solutions, capable of analyzing
each process in the broader context of all the processes executed on a computing
system and taking into account any relations between them.

3 Proposed Solution

A high level view of the proposed solution, illustrating its major components
and the interactions between them is presented in Fig. 1. Our implementation is
intended for the Windows Operating System (OS), but the proposed approach
may be applied for other operating systems.

The essential requirement for a behavioral detection solution is to monitor
the actions performed by processes. This is implemented within the Event Inter-
ceptors. They use mechanisms specific to the Windows OS and are located both
in Kernel Mode and User Mode (UM). In Kernel Mode, the solution uses a



Evasive Malware Detection Using Groups of Processes 35

Event Interceptor Event Interceptor Event Interceptor

Heuristic
Engine

Entity
Manager

Behavior Manager

Scoring
Engine

Cleanup
Module

Heuristics
Database

Scoring
alert

Detection
alert

Event notifications

Fig. 1. Behavioral detection solution

minifilter driver [9] that registers callback routines, which are notified whenever
changes occur in the file system, registry keys or when processes are created.
At User Mode level, the actions are filtered using API interception (hooking)
through a DLL injection [1] into the monitored process. The intercepted actions
are encapsulated in events and sent to the Behavior Manager, consisting of the
Heuristic Engine and the Entity Manager.

The detection is based on behavioral heuristics located in the Heuristic
Engine. A heuristic is an algorithm that analyzes the actions performed by
processes, using the intercepted events. Some heuristics are defined in signature
files and are retrieved by the engine from the Heuristics Database.

The Entity Manager uses information provided by the Event Interceptors,
together with information from some heuristics (e.g. for detecting code injection)
to manage the processes and groups on a system and their relations.

When a heuristic decides a malicious action has been performed, it sends
an alert to the Scoring Engine, where it is evaluated. This component com-
putes scores for the entities that caused the alert and decides whether they are
potentially malicious. If a process or group of processes is considered malicious
a detection alert will be sent to the Cleanup Module. This module is responsible
with taking anti-malware actions against the target entity. The Cleanup Module
and the Scoring Engine use the information provided by the Entity Manager in
order to identify all the relations between the malicious entities.

In a broader perspective such a solution should be integrated (as a last line
of defense) in a modern security application, together with other components
such as URL blocking, firewall, classic AV signatures, etc.

3.1 The Management of Groups

In order to function effectively, the solution must have a complete overview
of the running processes. To accomplish that, the Entity Manager maintains
a collection of processes executing on the client system. The Entity Manager
dynamically updates this collection to reflect the addition of new processes in
response to process creation, and the removal of other processes in response to
process termination. The Entity Manager divides the processes in the collection
into one or multiple groups and maintains a set of associations indicating the
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groups each of those process belongs to. An example illustrating multiple groups
of processes is presented in Fig. 2.

Categories of Processes. Processes are divided into three distinct categories:
group creators - illustrated using triangles, group inheritors - circles and unmon-
itored processes - squares. By assigning a category - or a role - to each process,
the groups of processes are much easier to identify and manage. Smaller groups,
consisting of processes that are actually related, can be created, avoiding the cre-
ation of a single, large group per system. The category which a process belongs
to is identified based on certain features of the respective process. Examples of
such features are the file path, the digital signature or a hash computed for the
executable file corresponding to the process.

Relations of Processes. The solid arrows indicate process creation, while the
dashed arrows indicate code injection. The direction of each arrow indicates
the direction of the relationship between the respective entities. For example,
process P6 is a child of process P5 while process P7 has injected code into process
P14. Groups of related processes are represented as dashed lines, encircling those
processes, and are denoted as Gi, i ∈ {1, 11}. For example, P1 is the sole member
of group G1, while G5 contains processes P5 . . . P8, P14 and P15.

Group creators are processes that are known to create other processes, not
necessarily related to them. As their name suggests, whenever a process from this
category spawns a process, a new group will be created, initially consisting of the
child process. This category includes, among others, winlogon.exe, svchost.exe,
cmd.exe and other processes or services of the OS, Windows Explorer, Total
Commander and similar file manager applications, Internet Explorer, Firefox,
Chrome and other browsers. When a group creator spawns a process a new
group is created (e.g. group creator P1 creates group G5 when it spawns P5).
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Processes that are unmonitored by the security application include the var-
ious components of the security solution and certain components of the OS,
for example csrss.exe and smss.exe on the Windows OS. These processes are
implicitly treated as group creators.

The group inheritor category includes the majority of user processes, as well
as processes that are unknown or are not identified as group creators. Whenever
a group inheritor spawns a process or injects code into another process, the other
process is included in the same group as the group inheritor (e.g. process P6 is
included in the same group with its parent process, P5; P14 is included in the
same group as process P7, as a result of receiving injected code from P7).

The category of a process is updated in response to certain events or when
it becomes part of a group. In Fig. 2, process P14 was initially a group creator,
as shown in group G11. At a later moment, it received code injected by process
P7, a member of G5. As a result, process P14 was included in the group of the
injector process, G5, and was re-marked as a group inheritor.

A process may also simultaneously belong to multiple groups, due to code
injection. However, such situations are not so frequent. In the example illustrated
in Fig. 2, process P14 has become a group inheritor and is included in both G5

and G11 groups, as described above. When process P14 - now a group inheritor
- spawns the new process P15, the latter will be included in both the G5 and
G11 groups. In other words, changing the category of a process impacts how the
processes it spawns or injects code into are handled.

The groups of processes are managed by the Entity Manager, which receives
notifications from various Event Interceptors whenever an event related to the
life cycle of a process occurs. Process life cycle events consist of process creation,
code injection and process termination. If the event indicates the creation of
a new process, the Entity Manager determines whether the parent process is
a group inheritor or not, in order to assign the newly created process to the
appropriate group. If the parent is a group inheritor, the manager will add
the child process to the parent’s group and will mark it as a group inheritor.
Otherwise, the manager determines if the parent process is a group creator. If so,
a new group will be created and the child process will be added to that group.

Figure 3 presents a real-world example using a TrojanSpy.MSIL1 malware.
During the two minutes the sample was run, it launched multiple processes,
including cmd.exe and reg.exe (used to modify registry). Under normal circum-
stances, cmd.exe is a group creator, but because the first process in the group
is a group inheritor, all its descendant processes become group inheritors.

If the process life cycle event is a code injection, the Entity Manager will
determine if it represents a trusted injection. Usually, each code injection event
is considered suspicious, possibly indicating a malicious action. However, some
processes of the OS may, in some specific situations, legitimately inject code into
other processes. These situations should not be considered malicious in order to
avoid false positives. The Entity Manager attempts to match the details of the
code injection event to a whitelist, containing details of legitimate injections.

1 MD5 hash: 0x143FCC07CEB0F779FF1E204CEF4A20D6.
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Fig. 3. TrojanSpy:MSIL malware

If the current event is not recognized as a known kind of legitimate injection,
the Entity Manager will add the processes receiving the injected code to the
group of the process performing the code injection. Then the injected process
is marked as a group inheritor, even if initially it was categorized as a group
creator.

If the analyzed event indicates the termination of a process, that process
is marked as dead. However, it will not be removed from a group until all the
other processes in that group have terminated. This strategy will allow a security
solution to perform a comprehensive cleanup of the protected system, eliminating
even evasive malware that, for instance, only spawn child entities and then exit.

3.2 Heuristics

The proposed security solution relies on behavioral heuristics to analyze the
actions performed by processes, based on the information provided by Event
Interceptors. Whenever a heuristic identifies that a targeted action is being per-
formed, it triggers an alert to the Scoring Engine. Each alert consists of several
information about the detected action and the entity that performed it. An alert
also has an associated score, that is used to evaluate the potential of a process
or group of being malicious.

Some of the actions that can be identified using heuristics are: creating a
copy of the original file, hiding a file, injecting code into another process, cre-
ating a startup registry key such that the malicious application will be exe-
cuted after a system restart, deactivating some critical OS functionalities (e.g.
Windows Update), terminating critical processes or processes associated with
security solutions or modifying an executable file belonging to the OS.

Figure 4A illustrates a heuristic that listens for events to identify six actions
in a certain time order. If these actions are identified, the heuristic will trigger
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an alert. In the proposed solution the logic of the heuristic is implemented in
two ways, as function-callbacks or as heuristic signatures, depending on the com-
plexity of the heuristic. In the first case the heuristics are procedures (functions)
that are called whenever an event that they registered for occurs. The second
one uses signatures to store the logic of simpler heuristics and an engine that
tries to match the signatures with the intercepted events.

If a heuristic listens for actions performed only by a process it is called
process heuristic. If it listens for actions performed by all the processes inside a
group it is called group heuristics. An example of group heuristic is illustrated
in Fig. 4B. Whenever processes P1 . . . P4 perform actions A1 . . . A6 in a specific
order, such a heuristic will trigger an alert for the group that contains, among
others, processes P1 . . . P4. Process creation is illustrated as a zigzagged arrow.
The life history of each process is represented as a solid vertical line. For example,
process P1 terminates after it spawns process P2. Process P3 becomes a part of
the illustrated group in response to receiving injected code from P2. Some actions
of the respective processes are not part of the heuristic presented in Fig. 4B, for
example the spawning of process P4 by process P3, mainly because they are not
invariants between multiple executions.

The sequence of actions A1 . . . A6 describes a ransomware attack.
Ransomware is a type of malware that encrypts a set of files on the user’s computer
and demands a ransom payment in order to recover the files. It has become very
popular recently among malware authors, because it represents an almost sure
source of revenue. In this example, the malicious actions are distributed among a
group of processes P1 . . . P4. Each member of the malicious group performs only
a small amount of these actions. The actions performed by the ransomware are:
A1 : dropping a copy of itself on disk, A2 : launching a copy of itself, A3 : deleting
backup (shadow) files, A4 : injecting code into another process, A5 : enumerating
and encrypting files, A6 : displaying a message demanding the ransom.
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Individually, each action A1 . . . A6 may be performed legitimately by a clean
application. For example, dropping a copy of itself on disk or launching it (actions
A1 and A2) are commonly performed by installers. Additionally, deleting backup
files (action A3) may be performed by certain tools or the Operating System
to free disk space. Many clean applications perform code injection (action A4)
for various purposes, such as adding functionalities to an existing, previously
released product. Most applications for management of media libraries can legit-
imately enumerate or modify certain files (action A5). Finally, displaying a mes-
sage to the user (action A6) is specific to almost every GUI application.

An experienced behavior-based detection researcher may observe that a more
generic heuristic is possible, that triggers when the group executed the action A3

or A4, but the presented heuristic was extended for the sake of the example. Also,
one may observe that the flexibility granted by using such heuristics may allow
detecting various versions, variants or an entire class of malware. For example,
the heuristic presented in Fig. 4 triggers an alert for the CTB Locker2 sample,
whose group is presented in Fig. 5. Regardless of how the actions A1 . . . A6 are
distributed among processes within the group, if they are executed in the same
order as presented in Fig. 4A, the heuristic will trigger an alert on the group.

Heuristic’s Evaluation. The Scoring Engine receives scoring alerts from the
Heuristic Engine whenever a heuristic determines that the occurrence of an event
indicates a malicious action. Based on these alerts, the Scoring Engine maintains
and updates the aggregated scores for the involved entities, process or group.
Depending on the heuristic, the alert can influence the aggregated scores of a
single process, of a group of processes or of both types of entities.

Using these scores, the Entity Manager determines whether a malware is
present on the client system (e.g. a score threshold is reached). When this
happens a detection alert is sent to the Cleanup Module, that will take the
actions necessary to remove the malicious component from the system. Using

1 sample.exe

2wordpad.exe 3 sample.exe

4 svchost.exe

5 sample.exe

6sample.exe 7
sample.exe

(encryption)

Code
Injection

Fig. 5. CTB Locker ransomware

2 MD5 hash: 0x82F941FBD483E0684DAED99F006488F1.
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Fig. 6. Trojan-PSW malware

these evaluation methods, even if malicious actions are distributed between sev-
eral members of a group, and the aggregated scores corresponding to each indi-
vidual processes are not sufficient to trigger a detection, the group-wide score
may exceed the detection threshold. This is very useful for malware such as the
Trojan-PSW3 sample, illustrated in Fig. 6. This malware creates many processes
from the same executable file, each having different command line arguments,
distributing its payload in this way.

3.3 Remediation

In order to assure the best protection of a system, once a malicious entity is
detected, whether it is a process or group of processes, all traces of that entity
must be removed from the system and any changes performed by it must be
undone. The Cleanup Module is responsible for taking such actions, based on
information received from the Scoring Engine and the Entity Manager.

When the module receives the detection alert, it will first identify the process
that triggered the detection and determine if it belongs to a single group or to
multiple groups. If the suspect process belongs to a single group, the module will
proceed to clean the entire group of that process, by applying the appropriate
cleanup operation on each member of that group. Cleanup operations usually
start with suspending or terminating the execution of the targeted entity. Then,
the operation may continue with deleting the disk files that contain the code
of that entity and undoing or rolling back a set of changes performed by the
respective entity, such as changes to a registry of the OS or to the file system. In
some situations, malicious activities may be related to a code injection event. In
that case, the Cleanup Module terminates the process that received the injection.
Special attention should be given to situations where a malware uses a clean
process of the OS to carry out part of a malicious attack through code injection.

3 MD5 hash: 0x609614B508622E90EEEDAA875226FEA4.
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Fig. 7. ZBot malware

In this case, the module may terminate the respective clean process, but it should
not delete its executable file so that no damages are made to the OS. An example
for this case is the ZBot4 malware, illustrated in Fig. 7, which injects code into
multiple clean processes.

If the suspect process belongs to multiple groups, the Cleanup Module
attempts to identify which of those groups is malicious. For example, it could
determine how the suspect process became a member of each group: by process
creation or code injection. Next, by identifying which heuristic triggered the
detection, the Cleanup Module could determine what action the suspect process
has performed. For example, we consider a suspect process that is member of
a first group via process creation and a member of a second group via code
injection. The Cleanup module will attempt to determine the source of the code
that was executing when the scoring alert that caused the detection was trig-
gered. If the alert was triggered while the suspected process was executing code
from its main executable module, the Cleanup Module will determine that the
first group is malicious. Otherwise, if the injected code was being executed, the
Cleanup Module will determine that the second group is the malicious one. If the
malicious group is successfully identified, the module will proceed with cleaning
that group. Otherwise, it will only clean the suspect process, to prevent potential
data loss for the user in case of a false positive detection.

4 Technical Results

When evaluating a security solution the detection rate, false positive rate and
performance impact are the most important criteria to be considered. A good
security solution must have a high detection rate, a low false positive rate and
unnoticeable performance impact.

4 MD5 hash: 0x43A6DD7D5BE93F4E5224940C67E40FF8.
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4.1 Detection Tests

A comparison between the detection rate of the group based approach and a
non group based solution is presented. The detection tests were performed in a
virtual environment consisting of machines running Windows 8.1. Each sample
was run for two minutes in the virtual machine, then the results were collected
and the execution was ended. For false positives tests, each sample was run for
ten minutes in the virtual machine before terminating the execution.

For the detection test, two malware collections were used, the first consist-
ing of ransomware that were collected in November 2016, while the other con-
tains malware samples collected from various sources like: honeypots, spam email
attachments, infected WEB sites and URLs used to spread malware in Novem-
ber 2016. The clean samples (for the false positive test) are popular applications
used in 2016.

Table 1. Malware detection test

Samples Detected
(no groups)

Detected
(no groups)

Detected
(with groups)

Detected
(with groups)

47933 37054 77.3% 42142 87.91%

16490 13084 79.34% 13935 84.5%

Table 1 shows that the detection was improved for both collections with
10.61% and 5.16%. This shows that at least 5% of the malware in both collec-
tions are multi-component or multi-process, thus proving the need of changing
the detection approach to a group based solution. This amount may not seem
much at first glance, but such small differences make the distinction between an
average security solutions and a good, competitive one.

Table 2. False positive test

Samples Detected
(no groups)

Detected
(no groups)

Detected
(with groups)

Detected (with groups)

1128 10 0.88% 10 0.88%

The results of the false positives test, presented in Table 2, show that the
number of false positives does not change when augmenting the security solution
with group awareness. This is due to the fact that the groups generated for
legitimate applications usually contained a small number of processes with few
triggered heuristics.
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4.2 Limitations of the Solution

The implementation of the solution involves maintaining in memory a set of
information associated to each process in a group until the group is terminated.
For some samples, such as the TrojanSpy.MSIL sample the memory requirements
are high. This can be prevented by detecting the sample before the process
group contains too many processes or for clean processes, by simply making
that process a group creator.

Clean processes are added to malware groups because malware use such
processes to perform different actions (e.g. reg.exe to access the registry). This
problem indicates that a whitelist is needed, that will be consulted when clean-
ing the infected system to prevent any data loss for the user or producing any
damages to the Operating System.

The solution can only detect samples which interact on the current machine.
If by some means a process uses an external (i.e. not on the same machine)
communication channel to force the creation of another process on the original
machine the Entity Manager can not link the parent with the child and it is not
able to create the group correctly.

Finally the solution is limited by the platform it runs on. Because Windows
does not keep a strict relation between child processes and parent processes,
managing groups can prove to be difficult, requiring OS specific knowledge. Fur-
thermore, because Windows allows code to be injected in a trivial way and does
not provide a synchronous notification for when injections occur, detecting all
code injection methods is also considerably hard. The proposed solution attempts
to solve this issue by identifying the most common methods for injecting code
through dedicated heuristics.

5 Conclusions

We highlighted the problem of evasive, multi-process malware and proposed
shifting the focus from evaluating the behavior of individual processes to eval-
uating and correlating the actions of related processes. We presented real-world
malware samples, in order to better exemplify the behavior of multi-process mal-
ware. The proposed solution detected all these samples and constructed their
groups correctly.

We described how groups of related processes are constructed, by dividing
the processes into creators and inheritors. We presented the way groups are
influenced by process creation and code injection events. We introduced group-
based behavioral heuristics, described how the behavior of processes and groups
is evaluated and how detected entities can be cleaned.

A major contribution of our solution is that it automatically correlates the
behavior of individual processes within a group, thus eliminating the need for
a distinct correlation phase, as presented in [5], which is both costly and com-
plex. As a result, the heuristics are easier to develop, the evaluation is more
straightforward and cleanup is better performed.
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We implemented the presented concepts into a behavior-based solution and
compared this approach to a non-group solution. The improvement was quite
consistent: the detection rate was increased with over 10% for the ransomware
samples test, a type of malware known to be highly evasive (multi-process).
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Abstract. Industrial Control Systems (ICSs) are computers managing
many critical infrastructures like power plants, aeroplanes, production
lines, etc. While ICS were specialised hardware circuits without internet
connection in former times, they are nowadays commodity computers
with network connection, TCP/IP stack, and a full operating system,
making them vulnerable to common attacks. The defensive mechanisms,
however, are still lacking behind due to the strong requirement for avail-
ability of ICSs which prohibits to deploy typical countermeasures like
e.g. an anti-virus. New techniques are needed to defend these systems
under their distinct prerequisites.

We introduce the concept of a malware-tolerant ICS network archi-
tecture which can still operate securely even when some components are
entirely compromised by an attacker. This was done by replacing all sin-
gle point-of-failures with multiple components verifying each other. We
provide ProVerif proofs to show the correctness of the network protocol
one-by-one assuming each device compromised.

Furthermore, we added a self-healing mechanism based on invariants
to the architecture on network as well as system level which will reset
failed or compromised systems. To demonstrate system level self-healing,
we implemented it on top of FreeRTOS and ARM TrustZone. The net-
work level self-healing was incorporated into the ProVerif proofs by for-
mally verifying the absence of type 1 (falsely identified attacks) and
type 2 errors (missed attacks).

Keywords: Malware tolerance · Self-healing · Industrial Control Sys-
tem (ICS) · Security

1 Introduction

Industrial Control Systems (ICSs) received a lot of media attention with the
Stuxnet attack [18]. But there are also more examples like Duqu, Flame,
Red October, MiniDuke [31], Gauss, Energetic Bear, Epic Turla [15], and the
attack on a German steel mill [4].
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ICSs are sensor-actuator networks that control physical systems. The core
components are so-called Programmable Logic Controllers (PLCs), which nowa-
days are essentially commodity computers with specialised software to satisfy the
requirement for high availability and real-time operation. Due to these require-
ments, they cannot run common defensive measures like an anti-virus. Defensive
mechanisms have, thus, to be deployed (less effective) elsewhere in the network.
Moreover, PLCs have a long lifetime (10–20 years) and are not usually patched
to avoid downtime and bricking the devices [26]. A corrupted patch can render
a PLC unusable possibly leading to a shutdown of part of the network which is
potentially life-threatening. In combination with historic protocols which do not
even offer basic authentication (like the Modbus protocol [10]) these systems fall
in the hands of attackers as soon as the attacker has network access.

Governmental organisations [13,26] recommend a strategy called “defence in
depth” which tries to deploy defences at every layer of the network. We want to
go one step further and, instead of only defending problematic devices, we aim to
distribute trust over several independent components in a way that an individual
component infected with malware cannot break the security policy. We call this
approach malware-tolerance. Simply put, we want to remove every single point-
of-failure at critical intersections throughout the entire ICS architecture. Our
secondary goal is to enable the architecture to automatically repair ordinary and
malicious faults, so-called self-healing. With this approach, it is also possible to
recover from corrupted or incomplete patches.

Contributions:

– We design the architecture of a malware-tolerant ICS that has no single point-
of-failure at critical intersection points and can self-heal failed or (maliciously)
misbehaving PLCs.

– We also formally prove the network architecture with state-of-the-art protocol
verifier ProVerif1. The proofs can be found online2.

– To achieve our architecture, we also develop a self-healing mechanism which
detects incorrect behaviour by verifying invariants, and recovers to a good
state. We adjusted FreeRTOS3 to include our mechanism and released our
implementation as open-source4.

2 Overview

2.1 Traditional Industrial Control System Architecture

Traditional ICSs separate the network into zones which are isolated from each
other by firewalls resulting in a layered network with Intrusion Detection System
(IDS) at intersection points (defence in depth). The innermost part of an ICS is
1 http://prosecco.gforge.inria.fr/personal/bblanche/proverif/.
2 https://github.com/mdenzel/malware-tolerant ICS proofs.
3 www.freertos.org.
4 https://github.com/mdenzel/self-healing FreeRTOS.

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://github.com/mdenzel/malware-tolerant_ICS_proofs
www.freertos.org
https://github.com/mdenzel/self-healing_FreeRTOS
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called control loop and consists of a PLC as well as sensors and actuators. This
part of the system is the actual cyber-physical system and has hardly any (often
no) defensive measures apart from the firewall in front of it due to availability
and real-time constraints. The control loop can be at a different location (field
site) than the control centre. An example for such a control loop would be a
temperature control system with e.g. some water tanks which should neither
freeze nor boil. The PLC would read the temperature from a sensor and adjust
the heating/cooling of the water to maintain a temperature between 0 to 100 ◦C.

2.2 Assumptions

1. We assume a Dolev-Yao attacker [8] on the network who interacts with
software-side technologies. The attacker has no physical access to the facili-
ties and cannot change cabling or remotely introduce electrical signals directly
into wires (apart from assumption 2).

2. Additionally, the attacker can choose one5 device (except the actuator) of
which he gains full control – i.e. also access to corresponding cryptographic
keys and “software” access to the physical wires connected to the chosen
device. If the attacker chooses e.g. a PLC, he has access to the connected sen-
sors, can read their values, but cannot change wiring or sensors. The attacker
can manipulate the hardware of a chosen device once (during production) but
has no physical access afterwards any more. If the chosen device has network
access, the attacker can update software and firmware.

3. We are initially not aware which device the attacker chose.
4. We assume the 2-out-of-3 circuit is hardware-only and in scope of verification.
5. Attacks on cryptography and phishing attacks are out of scope.
6. PLCs and sensors work synchronously or are buffered.

2.3 Proposed Architecture

Our approach is an extension to already existent firewalls, network zones, IDSs
etc. and changes the control loop at the field site. Figure 1 displays our infrastruc-
ture with the changes being highlighted in red. Our concept adds hardware in
form of reset-circuits; data by images and policies; and software in form of a
self-healing Real-Time Operating System (RTOS) and the netboot firmware of
the reset-chip. Additionally, we leverage existent redundancy of PLCs and a
2-out-of-3 (2oo3) circuit which are already in place in some ICS facilities.

Basis of the malware-tolerant architecture are three diverse PLCs combined
with trusted computing. The 2-out-of-3 hardware circuit combines the results of
the PLCs and forward them to the actuator. That means none of the PLCs has
to be invulnerable to attacks or failures, it is enough if two of the three work.
The PLCs must differ in their soft- as well as hardware which we achieve with a
special kind of N-variant system and diverse hardware (details in Sect. 4.2).

5 We only show the basic case of an attacker compromising one system. Tolerating
attacks on multiple systems is more challenging but similarly possible.
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Fig. 1. Proposed Industrial Control System architecture

We also added self-healing functionality that can recover failed and compro-
mised PLCs with (1) a RTOS based on ARM TrustZone that can reset user level
tasks and (2) a network protocol and reset-circuits to defend against attacks on
Trusted Execution Environment (TEE).

Self-healing RTOS: To demonstrate the RTOS, we created a proof-of-concept
implementation based on ARM TrustZone and the FreeRTOS operating system
which we ported to ARM TrustZone to protect critical functionality like schedul-
ing and interrupts. ARM TrustZone, is a TEE which consists of two separated
environments: the secure world and the normal world. While the secure world
has full access to the system, the normal world is restricted in its capabilities.
The switch between the two worlds is handled by the so-called monitor. Trust-
Zone chips usually come with the TrustZone Interrupt Controller (TZIC) and
functionality to manage memory, i.e. a TrustZone-aware Memory Management
Unit, routines to forbid Direct Memory Access, and so on. We refer to the ARM
documentation [2] for more details.

Figure 2 shows the control flow of our TrustZone-aware RTOS. Periodically,
the TZIC will generate a timer interrupt (1.) which is setup as an Fast Interrupt
(FIQ) trapping into monitor mode (2.). The monitor will save the context and
jump to the interrupt handler (3.) which will, for timer interrupts, call the FreeR-
TOS scheduler (4.). After scheduler (5.) and interrupt handler (6.) return, the
next task is determined. At this point, the monitor will invoke a detection rou-
tine (7.). To reveal faults or malicious behaviour of certain tasks, the detection
routine checks various system variables and external values (e.g. sensor values)



50 M. Denzel et al.

Fig. 2. TrustZone-aware real-time operating system

against invariants which are stored in form of a policy, cryptographically signed,
on at least two servers. These invariants are implicitly given by the set-points the
operator of the system placed. For our water tank example, the operator could
e.g. set the temperature t to 0 to 100 ◦C, forbid heating for t > 50 ◦C, and forbid
cooling for t < 50 ◦C. If the temperature is below or above this range and the
task does not enable the actuator, our task is faulty. The result of the detection
routine is returned to the monitor (8.) which then (9.) either runs the task or
dispatches a restoration routine if the task was misbehaving. The restoration
routine only runs during the time-slice of the misbehaving task which ensures
availability of the rest of the system including other tasks and operating system
functionality. The restoration terminates the task and loads an image of the
original task from a protected memory region inside the secure world. Lastly,
the task is added to the scheduler again. The critical steps are run inside the
TrustZone secure world to protect them from manipulation.

To avoid unnecessary resets due to false positives, we created a specification-
based detection technique. These have a lower rate of false alarms than non-
specification-based techniques but might miss some attacks [24]. If the presented
online self-healing mechanism fails, the network level self-healing approach (see
following paragraph) will restore the particular PLC but at the cost of a restart.

Reset-Circuits and Network Protocol: Our reset-circuits consist of a net-
work boot chip (e.g. iPXE6) and a logical circuit to control resets (Fig. 3). A
low frequency clock signal restricts resets to a certain interval. Optionally, the
inputs to the circuit (label 1. in Fig. 3) can be replaced with flipflops to enable
synchronising the PLCs. Circuits for PLC2 and PLC3 can be similarly derived.

6 www.ipxe.org.

www.ipxe.org
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Fig. 3. Reset-circuit for PLC1

Fig. 4. Malware-tolerant, self-healing protocol
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Since network-based detection indicates that system level self-healing (taking
place beforehand) failed, we intentionally clear the state to recover from the
attack. We re-initialise state either by discovery or by requesting it from the other
PLCs. In our temperature maintenance example, discovering the temperature
and adjusting the actuator is straight forward. For more complex scenarios, the
reset PLC would request the state from the other two PLCs and compare it.

The full message sequence chart of our malware-tolerant, self-healing net-
work protocol is presented in Fig. 4: Every PLC reads the current sensor value
s (for simplicity we drew only one sensor but multiple sensors are possible) and
computes the adjustment ai of the actuator. This is sent to the 2-out-of-3 cir-
cuit which forwards the end result a to the actuator. Parallel, each reset-circuit
receives the three response values of the PLCs, each checks if a reset for its corre-
sponding PLC should happen (r ?= 1), and resets it if this is the case. Rebooting
PLCs load the netboot image from the network. The figure displays a reset of
PLC1 as an example.

3 Security Analysis and Results

3.1 ProVerif Proofs

To give evidence of the security features of our architecture, we utilised ProVerif
– a state-of-the-art protocol verifier – to test our network protocol. We modelled
the protocol as shown in Fig. 4 for various configurations (see Table 1) where we
grant the attacker control over different sets of devices.

In order to reason about malware-tolerant systems, we analysed the system
based on multiple Trusted Computing Bases (TCBs). A TCB is the minimum
set of honest components needed to secure the system; multiple such sets can
exist. A system is malware-tolerant if there are at least two disjoint TCBs that
provide the same property. Each independent component of the system – i.e.
mostly entire devices as e.g. the CPU depends on the computer and is not an
independent component – can be part of multiple TCBs.

With this notation, we can reason about a system based on TCBs. The
system is secure if any TCBi is secure. E.g. if device d1 and d2 are part of
TCB1 and device d2 and d3 are part of TCB2, then the system is secure if
(d1 ∧ d2) ∨ (d2 ∧ d3) is secure. As we can see here, d2 is part of all TCBs and
is, thus, the single point-of-failure. The system is not malware-tolerant because
there are no disjoint TCBs (TCB1 and TCB2 overlap).

The TCB model of our proposed ICS is shown in expression 1. Ri stands for
the reset-circuit of PLC number i. Since Ri controls PLCi, we have to consider
(Ri, PLCi) pairs as they are the smallest subset of independent components.
Our system is malware tolerant, because no (Ri, PLCi) pair is part of all TCBs.

TCB1 = {(R1, PLC1), (R2, PLC2)}.
TCB2 = {(R1, PLC1), (R3, PLC3)}.
TCB3 = {(R2, PLC2), (R3, PLC3)}.

(1)
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We formally verified our architecture by testing five properties of our proto-
col (Fig. 4) with ProVerif (results shown in Table 1):

1./2. 1st/2nd iteration: As ProVerif cannot verify loops, we modelled two iter-
ations of the protocol. These two iterations are sufficient, since computa-
tions are independent from each other and resets only affect the next loop
iteration. For each iteration, we tested if the actuator received the correct
value.

3./4. Self-healing: The self-healing column in Table 1 consists of two proofs; the
absence of type I errors and the absence of type II errors.

– Type I error (false positive): Regarding our protocol, a false positive is the
case where we reset an honest PLC. In ProVerif this has to be expressed
as: For all reset events of PLCi, PLCi misbehaved.

At first, this seems to not prove that if PLCi misbehaved, areset
happens but in combination with the type II error and knowing that
reset is a binary event (it can either happen or not happen), we prove the
property.

– Type II error (false negative): False negative refers to the case where
a misbehaving PLC is not reset (missed attack). In ProVerif: For all
not reset events of PLCi, PLCi behaved correctly.

Again, it seems that if PLCi is honest, no reset happens is not proven.
This is applicable, similar to before, by the absence of type I errors.

Table 1. ProVerif results
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5. End reached: We tested if the protocol runs through. This is done in
ProVerif by detecting the deliberate leak of a secret value at the end of the
protocol.

The proofs (Table 1) show that the physical system, i.e. the actuator, is sup-
plied with correct values for the cases where the adversary controls one device
(cases 2–4 and 6–8) or one (PLCi, Reseti)-pair (cases 9–11). Self-healing works
for one compromised PLC but functional reset-circuits (cases 2–4). Also, every-
thing works if there is no attack (case 1). We tested more hypothetical cases as
sanity checks, e.g. the case where the attacker can physically change the 2-out-
of-3 circuit (case 5) which is a validation of our assumption. The expected result
is that the protocol fails since we hand the asset to the attacker from the very
beginning. Case 24 is a special sanity check where we give the adversary control
over literally everything. Both cases (case 5 and 24) fail as predicted.

3.2 Evaluation of Self-healing FreeRTOS

Since we are not aware of any Common Vulnerabilities and Exposures (CVE)
for FreeRTOS, we could not test any real-world attacks against our extended
FreeRTOS operating system (a broader analysis of attacks follows in Sect. 4.1).

To test the system level self-healing capability of our proof-of-concept imple-
mentation, we introduced a buffer overflow in our Input/Output (I/O) driver
using the vulnerable C-function strcpy. We exploited this vulnerability by over-
flowing the buffer and overwriting the settings in the PLC. We chose this attack
as it is the most common vulnerability in C and is similar to a range of attacks,
e.g. format string attacks and return-oriented-programming.

Our simplified detection routine checks that the settings are within an
accepted range and otherwise triggers restoration. The results show that the
task and the temperature driver are reset to their original if the maximum tem-
perature is changed to values outside the range (for more details see code of
adjusted FreeRTOS implementation).

3.3 Performance Analysis of TrustZone

We conducted a performance analysis of the TrustZone world switch on a
FreeScale i.MX53 Quick Start Board with 1 GB DDR3 SDRAM running a 1 GHz
ARM Cortex-A8. For this, we measured the time of 1531 task switches on a sys-
tem running four tasks and FreeRTOS. The measurements start from the timer
interrupt until restoring the context of the next task. This experiment was exe-
cuted twice, once with and once without TrustZone. To measure the time accu-
rately, we read the CCNT-register which stores the cycle count. The overhead
of our timing function calls was 0.9µs, allowing us an accuracy of microseconds.
The average overhead of a TrustZone task switch was 29µs. Figure 5 presents
the overhead as box-and-whisker diagram and the values are listed in Table 2.
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Fig. 5. Box-and-whisker diagram
of time for task switches

Table 2. Data values of the Box-and-
whisker diagram in Fig. 5

Value Without
TrustZone

With
TrustZone

Maximum 97 ± 1µs 126 ± 1µs

75%-Quantile 54 ± 1µs 84 ± 1µs

Mean 16 ± 1µs 45 ± 1µs

25%-Quantile 14 ± 1µs 42 ± 1µs

Minimum 11 ± 1µs 39 ± 1µs

A TrustZone task switch in comparison to a non-TrustZone one is equal to
3.6 malloc system calls (average time for malloc on our system: 8µs) overhead;
in other words memory management overhead is comparable to TrustZone.

4 Discussion

4.1 Attacks

We examine how our architecture behaves in different attack classes.

– Attacks that change invariants: Let us assume an adversary compromises a
PLC but changes some invariants – e.g. he overflows a buffer and inserts a new
task but the policy states that there are only N tasks. The system level self-
healing will immediately reset the tasks, removing the malicious task. This
type of defence was demonstrated in a simple fashion by the buffer overflow
above (Sect. 3.2).

– Stealthy attacks (Advanced Persistent Threats (APTs), backdoors, rootkits,
trojans etc.): Suppose an attacker manages to deploy a stealthy rootkit on a
PLC without being detected. He can now manipulate the PLC as he likes, but
the other two PLCs continue to function correctly. If the rogue PLC affects
outputs, its reset-circuit will notice this and reinstall the PLC, thus removing
the rootkit. If the rootkit resides in the normal world, it will be removed even
earlier by the system level self-healing.

– Firmware/hardware attacks: Suppose the attacker deploys a firmware or
hardware rootkit in a PLC or in a reset-circuit, then software-based self-
healing becomes impossible. However, if the other two PLCs remain opera-
tional, then manipulations of outputs are still detected and outvoted by those
other two PLCs (through the 2-out-of-3 circuit).

– Attacks on network protocol flaws (e.g. Modbus): Since all PLCs presumably
have to support the same protocols, exploits targeting the protocol itself (in
contrast to its implementation) are not prevented. To defend against these
attacks, one has to modify the protocol standard which is beyond our scope.
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– Attacks on the policy/administrator account: We rely on the information in
the (cryptographically signed) policy. If the account in charge of it is com-
promised, the adversary can change the policy freely. To prevent this, trusted
input techniques as in [33] should be utilised.

– Denial of Service (DoS): Since we deliberately grant the attacker full control
over some devices (see assumption 2 Sect. 2.2), he already has the ability to
turn these devices off, but we aim at not enabling further DoS attacks.

4.2 Diversity of PLCs

It is crucial for our architecture that PLCs are diverse in their software as well
as hardware. To achieve this, we suggest to use different reset-chips and differ-
ent CPU architectures, e.g. ARM TrustZone, Intel Software Guard Extensions
(SGX), and a PowerPC with a TPM chip. Since the architectures are different,
an adversary has to craft different exploits, however, he can still use the same
exploit idea to attack the software of all PLCs.

N-version programming was shown to be ineffective against malicious
attacks [5,23] as people make correlated mistakes. Hence, we suggest to use
a form of artificial N-variant systems where N systems are crafted such that
they are distinct by design [32]. Cox et al. [7] used address space partitioning
and instruction set tagging to create different programs that cannot be compro-
mised with the same exploit. Salamat et al. [22] proposed to invert the stack and
demonstrated this by a special compiler. There is also a compiler which splits
stack into data and control structures [17].

By utilising N-variant system techniques, we can artificially create distinct
software, that cannot be compromised with the same exploit idea – e.g. a RTOS
with the stack growing downwards, one with the stack growing upwards, and
one with separate data and control stack cannot all be exploited with the same
stack-based attack. If we additionally require each netboot image to be diverse
from the last one, similar to [25], an attacker would need to learn the properties
of the new image to compromise it. That means, it is considerably harder for an
attacker to compromise two PLCs at the same time.

4.3 Implications

The practical implications of our architecture for the real world are that an
attacker would have to find twice the amount of vulnerabilities for an ICS since
he has to compromise two different devices (e.g. an ARM TrustZone and an Intel
SGX PLC). Hence, our system would double the cost for the attacker.

The cost for the defender will not double. Considering that a lot of companies
already have redundant PLCs, the hardware cost for the company would roughly
stay the same. Diverse software versions can be created similar to the artificial N-
variant systems. As the special compilers used to generate these variants [7,22]
demonstrate, software can be automatically diversified except for architecture



A Malware-Tolerant, Self-Healing Industrial Control System Framework 57

dependent code. In our proof-of-concept implementation based on FreeRTOS
7.8% is platform specific code (780 lines Assembly; 9956 lines C-code)7.

Another advantage is that network-based self-healing prevents bricking
PLCs. If a PLC is partially flashed with an image and crashes, it would automat-
ically reboot triggering the netboot chip to reinstall the image. Thus, patching
of the PLCs can now be done conveniently by central image servers with signed
images.

5 Related Work and Comparison

Industrial Control Systems: The ICS architecture was already analysed in
general: Virvilis et al. [31] studied a variety of APT attacks in depth and their
countermeasures. They suggest proper patch management, network segregation,
white-listing of outgoing connections, filtering dynamic content execution, and
employing trusted computing. Fitzek et al. combined ARM TrustZone with an
ICS but relied on a single TCB [9]. Another new TEE is Intel SGX [12] but we
are not aware of any studies considering APTs or ICSs.

On the defence side, there is the term secure control, i.e. controlling a cyber-
physical system while preventing attacks [6]. Also governmental organisations
already approached the topic [13,26] focusing on thoroughly enhancing every
layer of the architecture, so-called Defence in Depth. Coexisting, there is also a
Defence in Breadth which is not clearly defined but is described as the use of mul-
tiple instances of a security technology within a security layer [20]. Commonly,
intrusion detection and tolerance systems [16] and firewalls are deployed to pre-
vent or limit damage through attackers. Intrusion tolerance draws its ideas from
the field of fault-tolerance [1,30] which focuses on safe operation of a system by
using redundancy. Totel et al. [27] proposed to use multiple diverse off-the-shelf
devices in combination with an IDS proxy to detect attacks. They demonstrated
this on the example of a webserver. However, their proxy is a single point-of-
failure.

Self-healing Systems: The field of self-healing is not well established, espe-
cially considering security. Ghosh et al. [11] gave a detailed overview of existing
techniques. The closest ones to our technique are Finite State Automaton (FSA)
approaches [14,28] which model the systems as an FSA and rejuvenate it when
invalid states are reached. Our self-healing technique based on invariants is more
efficient than FSA as we do not actively keep track of the state. Since invariants
can be declared as regular expressions and every FSA can be translated into a
regular expression [19], our technique is as representative as FSA.

Bessani et al. [3] use proactive-reactive rejuvenation to restore intrusion-
tolerant Crutial Information Switches (a firewall device) throughout the network.
It is an example of a hybrid distributed system [29]. While their system targets
the firewall in front of critical devices like PLCs, our approach is aimed at PLCs

7 Measured with the CLOC Linux tool.
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directly. Platania et al. [21] proposed a rejuvenation architecture similar to ours.
Instead of self-healing upon detected misbehaviour, they proactively rejuvenate
PLCs periodically; each on its own to ensure availability of the whole system.

Periodic system resets can defend against attacks before visible effects occur –
independently of any detection algorithm – however, they impose an overhead
on the system even though the system is mostly in a valid state. In contrast
to Bessani et al. and Platania et al., we removed single point-of-failures8 and
kept the system running as long as possible through system level reactive mea-
surements making it more applicable to scenarios were availability is a major
concern.

6 Conclusion

We presented a malware-tolerant Industrial Control System architecture without
single point-of-failures at critical intersection points. We achieve this by relying
on diverse, redundant PLCs and a 2-out-of-3 circuit. The infrastructure can push
an attacker out of any single PLC using its offline self-healing abilities on the
network level. By also employing online self-healing at system level, we maintain
high availability during basic failures or simple attacks. To prove our claims,
we utilised ProVerif, a state-of-the-art protocol verifier, and implemented proof-
of-concept self-healing capabilities on top of FreeRTOS and ARM TrustZone.
Proofs as well as RTOS implementation are open-source.
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Abstract. Industrial Control Systems (ICSs) are moving from dedi-
cated communications to Ethernet-based interconnected networks, plac-
ing them at risk of cyber attack. ICS networks are typically monitored
by an Intrusion Detection System (IDS), however traditional IDSs do
not detect attacks which disrupt the control flow of an ICS. ICSs are
unique in the repetition and restricted number of tasks that are under-
taken. Thus there is the opportunity to use Process Mining, a series of
techniques focused on discovering, monitoring and improving business
processes, to detect ICS control flow anomalies. In this paper we inves-
tigate the suitability of various process mining discovery algorithms for
the task of detecting cyber attacks on ICSs by examining logs from con-
trol devices. Firstly, we identify the requirements of this unique environ-
ment, and then evaluate the appropriateness of several commonly used
process discovery algorithms to satisfy these requirements. Secondly, the
comparison was performed and validated using ICS logs derived from a
case study, containing successful attacks on industrial control systems.
Our research shows that the Inductive Miner process discovery method,
without the use of noise filtering, is the most suitable for discovering a
process model that is effective in detecting cyber-attacks on industrial
control systems, both in time spent and accuracy.

Keywords: Industrial Control Systems · Process mining · Anomaly
detection

1 Introduction

There have been several cyber-attacks on ICS devices and infrastructure. One
notable recent example is the December 23, 2015 attack on three Ukrainian power
companies, causing power disruption to 225,000 customers [7]. Such attacks high-
light the risk of interconnecting ICS with corporate networks, most notably in
terms of the inadequacy of existing IDSs for control system purposes. Corporate
networks typically use Intrusion Detection Systems (IDS) to monitor for known
cyber-attacks. IDSs come in two types, signature-based IDS (which compare net-
work traffic to signatures of known cyber-attacks), and statistical anomaly based
IDS, (which examines network traffic over time for unusual behaviour). However,
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these IDSs do not detect attacks which exploit or disrupt the control flow of an
ICS [6], thus, such IDSs may not be sufficient as the goal of exploiting an ICS
network is the disruption of ICS system (which is achievable through disruption
of the control flow of the systems), rather than exfiltration or infiltration of data
as per a typical corporate network attack.

An ICS control flow refers to a process, i.e. sequence of events, conducted by
an ICS device. These ICS processes are sometimes multiple sequential processes
operating concurrently. ICS typically executes a series of steps for a given task,
that modify the behaviour of physical devices. Tasks may include creating var-
ious fuels in an oil refinery, manufacturing circuit boards, or large scale food
manufacturing. The order of events in an ICS process is imperative to the task
being conducted, and the deviation from this sequence of events, or control flow,
can disrupt the current industrial process. Using the oil refinery example, there
may be a sequence of events used to burn off excess gases, such as “turn on
flame” → “release gas” → “turn off flame”. Changing the order of events to
“turn on flame” → “turn off flame” → “release gas” could result in the gas
being continually released, potentially damaging equipment. These events may
all be valid ICS events, however when the events are conducted in the incorrect
sequence there is potential to disrupt the industrial process being conducted.

As per the example above, in order to detect anomalies in ICS system, there
is first a need to have knowledge and a model of the expected behaviour of the
ICS process. ICS systems are often modelled using state or control flow diagrams,
where the actual execution semantics of ICS devices are not captured. This is
where techniques from the process mining domain can be of use. Process mining
consists of a series of techniques used to “discover, monitor, and improve real
processes by extracting knowledge from event logs”, and is comprised of process
discovery, conformance checking, and process enhancement techniques [14].

Process discovery is the method of deriving a process model describing the
control flow of a system from an event log. Using this technique there is the
potential to generate process models of an ICS system showing the expected
behaviour, by learning from device logs generated by ICS devices such as PLCs.
Conformance checking is another technique used to compare a process model or
some known business rules to an event log, in order to determine how the events
in the log align with the expected behaviours as captured in a process model. In
the context of ICS security, we can use conformance checking to identify deviant
behaviour that does not match the expected behaviour identified in a generated
process model. Thus, by using process discovery and conformance checking, we
have a set of tools which can be used to identify deviations, or disruptions in an
ICS control flow. In contrast, traditional IDSs which use signatures, or monitor
a network for statistical anomalies, do not focus on the overall control flow of a
process.

There are numerous process discovery algorithms, each of which have advan-
tages and disadvantages. Several studies have been conducted, comparing these
process discovery algorithms [10,17]. However, these comparisons have been con-
ducted in the context of business processes. ICS is a unique environment, and
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as such there is a need to have an understanding of which process discovery
algorithms are the most suitable for this environment.

Thus, the contributions of this paper are as follows: Firstly, we identify
the ICS characteristics and ICS modeling requirements. Secondly, we evaluate
process models generated using several widely used process discovery algorithms,
namely the α-algorithm [13], the Fuzzy Miner [5], the ILP Miner [16], the Flexi-
ble Heuristics Miner (FHM) [18], and the Inductive Miner [11] algorithms, on our
ICS process modeling requirements for process discovery. Finally, we validate the
evaluation of process models with ICS modeling requirements through process
mining’s conformance checking activity. This conformance checking activity
was conducted using ICS device logs from industry-standard ICS devices, four
Siemens S7-1200s, which contain cyber-attacks from an 8-hour attacking vs
defending exercise. These process discovery and conformance checking activi-
ties show that process discovery algorithms can be used to generate models, and
detect cyber-attacks, within an ICS control flow.

2 Background

Industrial control systems (ICS), including supervisory control and data acqui-
sition (SCADA) networks, consist of devices such as programmable logic con-
trollers (PLC) which are controlled by operators through human-machine inter-
faces (HMI). These devices are used to control industrial facilities and critical
infrastructure, such as power generation and distribution systems, and water
treatment facilities [4,8].

ICS networks can spread over large geographical regions, and have been
traditionally controlled through point-to-point communications such as serial
links. However, these networks are increasingly migrating from dedicated com-
munication links to switched and routed corporate networks through the use of
specialised gateways, accessed via virtual private networks (VPN) or the Inter-
net [8,9]. While exposure to corporate networks and the Internet allows for easier
management of ICS devices over a large geographical distance, it also places these
devices at risk of cyber-attack [8,9].

ICS devices generate device logs, which are typically stored on the PLC, or
in complex ICS networks, these device logs can be aggregated to a Historian, a
device for the storage and archival of device logs. There are several methods ICS
devices use to generate device logs, primarily the “Cyclic” method, which records
all “tags” or memory values on the PLC at some predefined interval of time, and
the “On Change” method, which only records values which have changed in some
way. An additional common method of event logging used by ICS devices is to
log an event only when an error occurs. This method of recording events is not
suitable for process mining based analysis, as the error logs do not log the control
flow of the ICS system. From observation of the recorded device logs, we found
the “on change” device logs did not measure each value of all tags as the value
changed, where some tags with high variance (such as measuring pressure, or
water level) were recorded in 2–3 s intervals. In this regard, the “Cyclic” method
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configured with a 1 s polling interval provides more complete and accurate device
logs than the “on change” method. As such, in this paper, we use the Cyclic type
of device log as the starting point for process mining based analysis.

Process models, generated by process discovery algorithms, capture the nor-
mative behaviour of the system being modeled. As an example of a process
model, we have a sequence of events, (A,B,D). In the second iteration of the
process, the sequence of events is (A,C,D). This can be represented in a process
model using a Petri-net, describing the control flow of the process, as shown
in Fig. 1. This method of discovering and modeling the sequence of events can
be applied to ICS systems, with the potential to be used to discover a process
model, and attacks on the control flow of an ICS process.

Fig. 1. Example of a process model capturing both sequential and concurrent events.

There are a wide range of process discovery algorithms, which can be identi-
fied in several types; such as abstraction-based, heuristic-based, search-based and
region-based algorithms [3]. The issue of determining the “best” process min-
ing discovery algorithm for a process discovery activity is a known issue in the
process mining domain [12], and several comparisons of algorithms have previ-
ously been conducted [10,17]. While process discovery and conformance checking
have previously been used in the area of security auditing of business processes to
detect anomalous behaviour in various contexts [1–3], they are insufficient in the
ICS context. This is because there are a number of differences between business
processes, the traditional focus of process mining, and ICS processes. Business
processes typically contain events which are executed by humans and recorded
by an information system, such as a Workflow Management System [15]. Com-
pared to ICS processes, these business processes are far more flexible and varied
than an ICS process, which is a structured and rigid sequence of events executed
by a ICS device. In addition to this difference, event logs generated from busi-
ness processes are typically far more verbose when compared to device logs from
ICS devices, such as PLCs. Therefore, there is a need to identify which process
mining algorithm(s) are best for discovering and modeling an ICS process.

To determine which process discovery algorithms are most suitable to gen-
erate process models from ICS device logs, that can also be used as an input
to a conformance checking activity, we have identified several process discov-
ery algorithms for comparison. These discovery algorithms, namely, are the
α-algorithm [13], the Integer Linear Programming (ILP) Miner [16], the Flexi-
ble Heuristics Miner (FHM) [18], and the Inductive Miner (IM) [11] algorithms.
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These algorithms were selected as they appear promising for use in conformance
checking to detect cyber-attacks on ICS devices. Before we can assess the algo-
rithms, we need to identify requirements needed to create a suitable model of
ICS processes.

3 ICS Modeling Requirements

In the context of ICS networks, there are two main goals for the discovery of
an ICS process model. Firstly, to use as an input for a conformance checking
activity for the goal of detecting cyber-attacks in an ICS event log, and secondly,
to create a process model of an ICS process which is clear and understandable
for human interpretation. To generate a process model to suit both of these
goals, a process discovery algorithm is used. Process discovery algorithms all
have several common features, including the ability to model both sequential
and concurrent events, and in addition model repeating event sequences. We
have identified several further characteristics for consideration when identifying
the most suitable algorithm for ICS process discovery.

Usable Model Representation. For our analysis, we require a usable process
model, which contains clear execution semantics, for use in the conformance
checking activity. The current state-of-the-art conformance checking activities
require the use of Petri-net models. As such, throughout our experiments we use
Petri-net models to represent our ICS process and conduct conformance checking
activities.

Accuracy. Rozinat et al. [12] outline two evaluation dimensions outline two eval-
uation dimensions which can be applied to determine the accuracy of a model,
“Fitness”, and “Precision”. The first dimension, fitness, describes how well the
event log matches the process model. Fitness is measured numerically, between
0 and 1, where 1 represents a perfect fit. Some process discovery techniques
remove “noise” from a process model, commonly to simplify the model. Exam-
ples of this are the Fuzzy Miner, and the Inductive Miner. However, this will
lower the fitness of the model. For conformance checking purposes, especially
for identifying anomalous events, the fitness of the generated process model is
imperative. The Precision evaluation dimensions prevents over general models,
where the generated models are accurate to the process being modelled.

Simplicty. This requirement reflects the goal of creating a process model of an
ICS process which is clear and understandable for human interpretation. In most
ICS networks, there does not exist a process model of either individual process,
or an overall model. The generated process model must be represented in a way
which is understandable, avoiding overcomplicated “spaghetti” models. In the
case of anomaly detection, when a process model is visually complex, it becomes
difficult for a human to quickly visually validate the anomaly. Rozinat et al. [12],
describe two evaluation dimensions which can apply to this simplicity require-
ment, “Generalisation” and “Structure”. The Generalisation evaluation dimen-
sion, conversely to “Precision”, prevents over precise models, where over precise
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models may show each path in the process and may contain duplicate events,
which may be easier to understand but less fitting. The Structure dimension
refers to the visual structure of the process model. Highly fitting process models
may be visually complicated, and hard to read and interpret. Modeling repeating
event sequences is a common feature of all process discovery algorithms, and can
be modeled either directly in the model, or expressed through the use of silent
(τ)-transitions (suitable when there is a choice in the model). Silent transitions
are not necessary to model repeating event sequences in a process model, how-
ever make the model less complicated. These evaluation dimensions can have
an effect on the accuracy of the process model, where more generalisation can
reduce the overall fitness of the model.

4 Experiment

In this section, we outline our experimental methodology to evaluate process
models by generated by discovery algorithms, and compare to our identified ICS
characteristics and ICS modeling requirements. Firstly, we outline the exper-
imental setup, describing the ICS devices, logging method, and dataset used
throughout our experiment. Secondly, we describe our process discovery, and
validation using conformance checking activities.

4.1 Experimental Setup

The experimental setup consists of four distinct scale industrial control systems,
each of these controlled by industry-standard PLCs, Siemens S7-1200’s. These
four scale systems include a bi-directional conveyor belt system, a water pump
system, and a “reactor” system, all connected to a master power meter. These
four systems are controlled through the use of a HMI, which acts as a historian,
collecting device logs from each of the PLCs. These four devices together with the
HMI made a “Process Control Network”, connecting to a multi-level corporate
network through a gateway, representing a typical ICS network. The device
logs recorded throughout our experiment are “Cyclic” device logs, which were
configured to record with a 1 s interval, and stored in comma-separated values
(CSV) format. This “Cyclic” device log method is where the value of all “tags”,
or addresses in a PLCs memory, are recorded every specified interval, in our
configuration, every 1 s. An example of a typical, unprocessed ICS device log is
shown below, in Table 1.

The scale industrial systems form one complete industrial process. This indus-
trial process starts with the bi-directional conveyor belt system, which consists
of two loops. Two sensors; one which detects the presence of a puck, and one
which detects the colour of a puck, control the direction of a “paddle”. As an
example of the “Cyclic” device logging method, a snippet of the device log from
the conveyor belt is shown in Table 1. Once every second all “tags”, or mem-
ory addresses on the PLC logged. When a puck is detected, the “VarValue” of
the tag “Conv Read Conv Color PE”, shown in Table 1, will change from 0 to 1
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Table 1. Example snippet of a typical ICS device log, obtained from the conveyor belt
system.

VarName TimeString VarValue Validity Time ms

Conv Read Conv Color PE 16/07/2015 9:31 0 1 42201396613

Conv Read Conv HMI Direction 16/07/2015 9:31 0 1 42201396613

Conv Read Conv Present PE 16/07/2015 9:31 0 1 42201396613

Conv Read Solenoid Left Direction 16/07/2015 9:31 0 1 42201396613

Conv Read Solenoid Right Direction 16/07/2015 9:31 0 1 42201396613

or −1 depending on the colour of the puck. Once a puck is detected and the
colour is determined, the paddle will direct the puck onto one of the two con-
veyor belt loops depending on the colour.

Once the conveyor belt system has completed, the water tank system begins
to operate. The water tank system consists of an upper reservoir and a lower
reservoir full of water. The lower reservoir is connected to a water pump, which
transfers water to the upper reservoir, which uses gravity to feed water back to
the lower reservoir. The upper water reservoir contains a water sensor, which
turns off the pump when the specified water level is met. This process repeats
until a specified time length has elapsed.

The final stage of the industrial process is the “reactor”, a pressure vessel
system. The reactor is a pipe system, which is connected to an air compressor,
and a solenoid with pressure sensors that measures the pressure level in the
pipe system, in pounds per square inch (PSI). Once a specified pressure level
has been reached, the solenoid activates and opens its valve, releasing air and
lowering the pressure to a lower level. Once the lower level has been reached,
the solenoid closes and the “reactor” begins to build pressure once again. This
process repeats for a designated period of time, at which the remaining pressure
is released and the air compressor switches off.

The device logs were generated by the PLCs throughout the operation of
an 8 h exercise, in which two teams: a defending team of four people protect-
ing the process control and corporate networks from an attacking team of six
attackers with industrial experience. The attackers were tasked with disrupting
the process, through exploiting the “Process Control Network”, and causing the
ICS devices to deviate from the programmed, expected behaviour of that device.

One example of the attacking team successfully disrupting the industrial
process is the changing of the direction of the bi-directional conveyor belt. The
conveyor belt sorts coloured “pucks” placed on the belt, sending each colour
around a different loop on the conveyor. The attacking team successfully com-
promised the HMI, and changed the sorting direction of these coloured pucks.
This results in the pucks being directed around the wrong direction, disrupting
the expected industrial process. Throughout this exercise the attacking team
were successfully able to disrupt the industrial process running on all three
systems, the conveyor belt system, the water tank system, and the “reactor”
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system. The device logs from each ICS system were collected by the HMI on
the “Process Control Network”, which acted as the historian. These collected
devices logs contained the cyber-attacks that were conducted by the attacking
team throughout the duration of the 8 h exercise. These device logs were then
aggregated and pre-processed, creating our dataset of event logs, and preparing
them for process mining activities.

The dataset consisted 25 cases, with 71 event classes and a total of 1855
events. One “case” represents a complete execution of the ICS process. The
PLCs, HMI, and device logging methods were programmed and configured
through the use of WinCC and STEP 7, as part of the Siemens TIA Portal
V11 SP2. The experiments were not conducted on production ICS networks, as
attacks conducted upon these scale systems interrupt the control flow of the ICS
process. These scale systems and industrial process used throughout or exper-
iments, while not production systems, use industry-standard ICS devices, four
Siemens S7-1200 PLCs.

4.2 Experimental Methodology

Using our dataset of pre-processed event logs, generated from device logs aggre-
gated throughout the 8 h exercise, we discover 5 process models using the widely
used algorithms outlined in Sect. 2. These include the α-algorithm, ILP Miner,
Flexible Heuristics Miner, Inductive Miner configured with default fitness, and
Inductive Miner configured with perfect fitness. The default and perfect fitness
for the Inductive Miner are configuration parameters when generating a process
model. The use of both Inductive Miner with default fitness and the Inductive
Miner with perfect fitness to generate a process model is to compare the results
of removing noise and low-varying events from a process model, and the impact
this has upon conformance checking for anomaly detection. In addition to the
models generated by process discovery algorithms, we use a manually-created
Petri-net model of the ICS process. While the manual creation of a process
model can capture an accurate picture of an ICS process, this requires specialist
knowledge of the ICS systems, and process, being modeled. Using process dis-
covery algorithms, a process model of a complicated ICS system can be created
without this in-depth knowledge requirement.

To discover a process model using the outlined algorithms from our dataset,
we extracted the first 10 cases, or first 10 complete process executions of the ICS
process; a representative sample of the complete ICS process where the cases were
known to contain no cyber-attacks. It is assumed while generating models of the
ICS process, the event logs used in the generation contain no attack data. Using
the Disco1 tool, we converted the pre-processed event log from CSV format to XES
format, for use with the Process Mining Toolkit (ProM)2 version 6.5.1. Using the
Petri-net models generated using the ProM tool, and our manually created Petri-
net model, we conducted a total of 6 conformance checks, using ProM with the

1 http://fluxicon.com/disco/.
2 http://www.promtools.org/doku.php.

http://fluxicon.com/disco/
http://www.promtools.org/doku.php
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“Replay a Log on Petri Net for Conformance Analysis” plug-in, comparing each
discovered process model against our full dataset. Both the process discovery and
conformance checking activities were conducted on a Dell Optiplex 9020 desktop
computer, with an i7-4770 CPU, 16 GB RAM, and 256 GB SSD.

5 Results and Analysis

We have laid out in Sect. 3 the requirements for generating process models, firstly
for use in a conformance checking activity with the goal of identifying anomalies,
such as cyber attacks, in an ICS event log, and secondly for human interpretation.
The process models generated by the selected process mining algorithms, out-
lined in Sect. 2 are evaluated by these requirements, and the results of this eval-
uation are described under each requirement below, and summarised in Table 2.

Table 2. Comparison of models generated by selected process discovery algorithms
with identified requirements of ICS process discovery.

Algorithm Model Accuracy Simplicity

α-algorithm [13] ✓ ✓ ✗

ILP Miner [16] ✓ ✓ ✗

FHM [18] ✓/✗ ✗ ✓

IM (Default) [11] ✓ ✗ ✓

IM (Perfect) [11] ✓ ✓ ✓

All models were either generated in or can be converted to Petri-net form,
making all models usable in a conformance checking activity. To test the “Fit-
ness” of the generated process models, we conduct a conformance check on the
representative sample used to generate each model. The process models gener-
ated by the ILP Miner, α-algorithm, and Inductive Miner with perfect fitness,
all fit the representative example of the ICS process event log which was taken to
generate the process models, and are precise. Both models generated by the Flex-
ible Heuristics Miner with a move-log fitness of 0.27, and the Inductive Miner,
configured with default fitness, with a move-log fitness of 0.95, do not fit this
sample. This is due to both algorithms filtering infrequent events. The process
model generated for use in conformance checking for anomaly detection must be
as close to, or perfectly fitting, to the ICS process as possible. Any non fitting
events during a later conformance check for anomaly detection are treated as
“anomalous”, resulting in “false positives” as the model is inaccurate. This can
be observed in Table 3. From this “fitness” metric, we can determine that the
process models generated by the Flexible Heuristics Miner and Inductive Miner
with default fitness are not suitable for use in a conformance checking activity
to detect anomalous events, such as cyber attacks (Fig. 2).
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Fig. 2. Process model generated using Inductive Miner (perfect fitness).
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We have identified two evaluation dimensions for the Simplicity requirement,
described in Sect. 3, “Generalisation” and “Structure”. Both the generalisation
and structure dimensions can be evaluated through observation of the generated
process models. The process models generated by the Heuristics Miner, and
Inductive Miner are both structured and are at a suitable level of generalisation,
showing the control flow of the ICS process without impacting on the fitness of
the process model. However, the models generated by the α-algorithm and ILP
Miner, although fitting, have significantly more arcs within the model, with 47
places connected by 122 arcs, and 26 places connected by 179 arcs respectively.
This significant difference in arcs is shown in Fig. 3. This is compared to Inductive
Miner with 30 places connected by 88 arcs for default fitness, and 34 places
connected by 110 arcs for perfect fitness, resulting in the ILP and α-algorithm
models being less structured and visually harder to interpret. The process models
generated by the Flexible Heuristic Miner and Inductive Miner with both default
fitness and perfect fitness settings model repeating event sequences through the
use of silent transitions. These models with silent transitions simplify the model,
resulting in the models being easier to interpret.

Fig. 3. Process model for illustrative purposes using the ILP Miner to show the com-
plexity of discovered model, where there is less generalisation and structure, with and
more arcs in model.

Using the process models generated from several widely used discovery algo-
rithms, we conduct several conformance checking activities on our pre-processed
ICS event log. Our dataset contained 25 cases, five of these cases contained
cyber-attacks which were conducted on the experimental setup throughout the
duration of the 8-hour exercise, outlined in Sect. 4.1. The results of these confor-
mance checking activities are shown below, in Table 3, including number detected
anomalous cases, Trace Fitness, and calculation time in milliseconds. The “Trace
Fitness” value represents how well the event log fits the Petri-net models gener-
ated by the discovery algorithms.

The conformance checking activities were successfully able to identify the 5
anomalous cases on models generated by the α-algorithm, ILP Miner, Inductive
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Miner with perfect fitness, and our existing, manually-created model, as shown
in Table 3. These anomalous cases contain the cyber-attacks conducted by the
attacking team throughout the 8 h exercise, showing where the event log devi-
ates from the expected behaviour of the ICS, outlined in the generated process
models. An example of this deviation can be shown with the water tank system.
During one attack case, the attackers exploited the HMI and changed the opera-
tion of the water tank from “automatic” to “manual”. This allows an attacker to
manually control the level at which the water level sensor activates, potentially
allowing the attackers to overflow one of the water reservoirs. When this event
is recorded in the device log, and “replayed” over the process models during the
conformance checking activity, it appears as a deviation where the event did not
“fit” the process model representing the control flow of the ICS process.

Table 3. Results of conformance checking activity on discovered process models.

Algorithm Cases Trace Fitness Time(ms)

α-algorithm [13] 5 0.93 25.60

ILP Miner [16] 5 0.93 2.08

FHM [18] 25 0.31 54.24

IM [11] (Perfect) 5 0.93 1.88

IM [11] (Default) 24 0.89 1.48

Manual Model 5 0.93 28.68

Both models created by the Flexible Heuristics Miner and Inductive Miner
with default fitness settings failed to accurately model the ICS process, resulting
in the conformance check returning both 25 and 24 anomalous cases, respectively.
This was caused by both Flexible Heuristics Miner and Inductive Miner reducing
“noise”.

The Flexible Heuristics Miner, and Inductive Miner with default fitness, both
employ methods of filtering noise and low-frequency events. While the removal
of noise is a common and useful practice in process mining activities, it is not
recommended in anomaly detection for identifying cyber-attacks, as the mod-
els must accurately represent the behaviour of the ICS. Removing low-frequency
events or “noise” from the model can result in false positives, as shown with Flex-
ible Heuristics Miner and Inductive Miner (with default fitness). These results
suggest that the Inductive Miner algorithm, configured with perfect fitness, is
the most suitable process discovery algorithm for both the creation of a process
model of an ICS process for human interpretation, and for use in a conformance
checking activity with the goal of identifying anomalies, such as cyber attacks,
in a ICS event log. One limitation to current process discovery algorithms is
the concept of a “case” in process mining. Most ICS device logs do not have
an indication of “case”, and require a pre-processing stage to prepare the logs
for process mining activities. An area of future work is the development of a
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process discovery algorithm which can discover an ICS process model without
the requirement for a “case”.

In addition to detected cases, we found considerable differences in the time
required for conducing the conformance checks. The ProM tool reported the
calculation time in milliseconds(ms) taken for each full conformance check. The
conformance check on the model generated by the Flexible Heuristics Miner was
conducted in the largest amount of time, a total of 54.24 ms. This was followed
by the existing, manually-created model in 28.68 ms, and the α-algorithm in
25.60 ms. The conformance checks using the models generated by the Inductive
Miner (with perfect fitness), the Inductive Miner (with default fitness), and
ILP Miner, were significantly faster. The Inductive Miner with perfect fitness
completing in 1.88ms, with default fitness in 1.48 ms, and the ILP miner in
2.08 ms. The conformance check upon the manually-created model the returned
same anomalous cases as process models generated by the α-algorithm, ILP
Miner, and Inductive Miner configured with perfect fitness, however took more
time to complete, in 28.68 ms. This indicates the process models generated by
process discovery algorithms can accurately capture an ICS process.

Existing IDS used on ICS networks rely on signatures of known attacks in
signature-based IDS, or long-term analysis of network traffic in statistical anom-
aly based IDS. For a signature of an cyber-attack to exist, there must be prior
knowledge of the cyber-attack. Our process mining based process discovery and
conformance checking methods used in this paper have successfully detected
cyber-attacks conducted on industry standard ICS devices, the Siemens S7-1200,
using process models generated by widely-used process discovery algorithms.
This shows process mining can be used in supplement to traditional IDS devices
to detect previously-unknown cyber-attacks.

6 Conclusion

The conformance checking activity with the α-algorithm, ILP Miner, Inductive
Miner with perfect fitness all successfully identifying the five anomalous cases
containing cyber attacks in the ICS event log. Experimental results show that
the Inductive Miner algorithm, configured with perfect fitness, was the most
suitable algorithm for use in detecting cyber attacks.

The process mining based methods presented in this paper, unlike IDS sys-
tems, are a form of offline analysis, which takes place on device logs after a
process has been completed. An area of future work is to modify this method to
operate in real or near-real time to improve the detection speed of ICS anomalies.
Some attacks, such as Man-in-the-Middle (MITM) attacks used in the Stuxnet
attack, may not be detected due to insufficient logging. One method of detecting
these attacks could be to correlate device log data and low level sensor data for
use in process mining based intrusion detection. Larger datasets, and assessment
of the scalability of this method on larger datasets is required.
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Abstract. Nowadays, in an ubiquitous world where everything is con-
nected to the Internet and where social networks play an important
role in our lives, security and privacy is a must. Billions of pictures
are uploaded daily to social networks and, with them, parts of our pri-
vate life are disclosed. In this work, we propose a practical solution for
secure photo sharing on social network with independence of its architec-
ture which can be either centralised or distributed. This solution solves
the inconsistencies that appear in distributed social network as a con-
sequence of treating photos and access policies separately. Specifically,
we solve this open problem by attaching an access policy to the images
and thus, each time a photo is re-shared, the access policy will travel
together with the image.

Keywords: Privacy · Social networks · Applied cryptography

1 Introduction

Online Social Networks (OSNs) such as Facebook, Twitter or Instagram are
only a few examples of the most used Internet applications all over the world.
A recent study shows that Facebook [1] has at least 1.71 billion active users per
month. Moreover, according to that study, it is estimated than more than 300
million photos per day are being uploaded.

Most OSN users have the tendency to share photos. There are several works
that are focused on the reason for sharing personal information such as photos
on OSNs from a sociological perspective [2–5]. These studies found out that most
users share photos on OSNs to seek affection. Nevertheless, users are aware of
the risks of their actions which might reveal personal aspects of their lives. Due
to this, users usually weight the risks of disclosing private information against
benefits of not doing it.
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Both security and privacy issues have been pointed out in several papers as
unsolved and challenging problems [6]. Specifically, in the privacy domain, some
authors have addressed photo sharing1 as an open problem in OSN [6,7].

This problem arises when users take photos they have access to and increase
the audience of the photo by re-sharing it. For instance, imagine that Alice shares
a photo with her friends, and later, Bob—who is a friend with Alice—re-shares
it with his own friends, thus increasing the audience to his own friends as well.
Essentially, this circumstance is given because the privacy policies that Alice has
previously defined are applied only to her public domain and are not attached
to the objects she shares out.

OSNs can be classified into centralised and distributed social networks. In
centralised OSNs there is only one instance which has a global view of the state
of the system and where all information is handled. On the other hand, in Dis-
tributed Online Social Networks (DOSNs), there are different servers where each
one of them has its own instance of the OSN and has the ability of sharing and
exchanging information between them.

Facebook, Twitter or Instagram are some examples of centralised OSNs.
However, under the hood, the store infrastructure of these OSNs is geographi-
cally distributed. For instance, Facebook developers have deployed a distributed
data store for the resources of the OSN [8,9]. This storage system is based on a
master/slave architecture which replicates the information geographically so that
it is accessed efficiently. Bronson et al. pointed out in [8] that their storage system
explicitly favours availability and per-machine efficiency over strong consistency.
They also remarked the problem of expensive read-after-write consistency, i.e.,
the cost of forwarding writes to the master and later being replicated, and the
existence of time elapses before all slaves have a consistent information. In the
context of photo sharing, it might originate problems while updating the audi-
ence of a photo. Imagine that Alice initially shares a photo with her friends, but
after a while she decides to restrict the audience to her family and rewrites the
access control policy of the photo. Before this policy is replicated in the whole
system—a few milliseconds according to [8]—there will be slaves which would
show Alice’s photo to the incorrect audience.

Diaspora [10] is the most popular example of DOSNs with more than 0.6
million users. Moreover, in Diaspora, each server is called a pod and has its
own database. Thus, this architecture prevents a single party to have all the
users’ personal information. In a DOSN when users from different nodes of the
system share information, it is replicated on each node. This highly distributed
architecture makes very hard to keep consistency between pods and it directly
affects the photo sharing problem we are tackling here. Furthermore, in Diaspora
after a user has shared a photo, it is not possible to update its access control
policies. This is because once the photo is replicated, a static access control policy
is sent to specify the audience of the photo in that pod. Due to this unpleasant
restriction, inconsistencies when a user updates the relationships with users from

1 It is also known as photo re-sharing since photos can be shared many times and by
different users.
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different pods may appear. For instance, imagine that Alice shares a photo with
her friends. Bob, who signed up in a different pod, gets access to the photo, given
that it was replicated to his pod and the access control policy allows him to see
it. A few days afterwards, Alice decides to end her friendship with Bob. One
would expect Bob to not be able to see the photo shared with Alice’s friends.
However, the unfriend event is not replicated to all pods where the photo was
sent, and therefore Bob continues having access to the photo.

Note that in both architectures the problem arises from having two sepa-
rate entities, i.e., the photo and its access control policy, and inconsistencies
while updating the access control policy of a photo. Here we propose a solution
where access control policies are “stuck” to the photo. Therefore when a photo
is replicated in different nodes, its access policy travels together with it.

Contributions. We focus on how to share private images on DOSN in a secure
way. To do so, we have developed a solution where the access policy is attached
to the image by using Attribute Based Encryption (ABE), instead of defining a
common access control policy in the generic privacy settings, e.g., “only family”
or “colleagues and friends”. Moreover, we have tested our proposal on Diaspora
to demonstrate its viability on both modes centralised and decentralised2. As far
as we know, this is the first solution which allows different images formats such
as PNG, JPEG or TIFF. Finally, by using the centralised mode of Diaspora, we
show how this could be easily deployed into real applications such as Facebook,
Twitter or any other OSN.

The rest of this paper is organised as follows: Sect. 2 introduces background
knowledge on ABE. In Sect. 3 we present our system design and the core of
our proposal. Section 4 presents the results and the experiments we have run.
In Sect. 5 we give an overview of works on OSNs from the security and privacy
photo re-sharing point of view, and present a comparison with our approach. We
conclude and describe future work in the last section.

2 Preliminaries

For completeness and readability, this section provides a brief overview of the
cryptographic primitives and security assumptions used throughout the paper.

2.1 Access Structure

Let U be the attribute universe and A a non-empty collection of attributes {Att1,
Att2, . . . , Attn}, with Atti ∈ {0, 1}n. A is an access structure over U where the
sets specified by A are called the authorised sets. Notice that each time that new
users join the network, a set of attributes is assigned to them.

Moreover, an access structure A ⊆ U is monotone if ∀B,C ⊆ U if B ⊆ A and
B ⊆ C then C ⊆ A.

2 Accessible online at http://ppf-diaspora.raulpardo.org.

http://ppf-diaspora.raulpardo.org
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2.2 Linear Secret Sharing Scheme

Informally, a secret-sharing scheme among a dealer and a set of parties is an
algorithm in which a secret k is distributed to a set of i parties in such way
that only authorised subsets of parties can reconstruct the secret by pooling the
shares of the authorised parties, while unauthorised subsets will learn nothing
about the secret. Additionally, when the secret is a random vector chosen over
Zp is called linear secret sharing scheme.

Furthermore, we assume that when an access structure A is given as a
monotonic boolean formula over a set of attributes, there is a polynomial time
algorithm that translates it to the matrix access policy [11]. Formally, let p be
a prime number and U the attribute universe, a secret-sharing scheme Π with
domain of secrets Zp realising access structures on U is linear over Zp if:

– The shares of a secret k ∈ Zp for each attribute form a vector over Zp;
– There exists an l × n matrix M ∈ Z

l×n, called the share-generating matrix,
where for all x = 1, . . . , l, the x-th row of M is labelled by a function ρ(x)
(from {1, · · · , l} to U). Additionally, during the shares generation, if we con-
sider the column vector v = (k, r2, . . . , rn)l, where r2, . . . , rn ∈ Zp are ran-
domly chosen, then the vector of l shares of the secret k according to the Π
is Mv ∈ Z

l×1
p . The share (Mv)x belongs to ρ(x).

2.3 Multi-authority Attributes

Since our solution uses the Multi Authority-Attribute Based Encryption (MA-
ABE) scheme proposed in [12], we assume that there is a computable function
T which links each attribute U to a unique authority φ of the set of authorities
Uφ i.e., T : U → Uφ. Moreover, this function creates a second labelling of rows
in the policy (A, ρ), which maps rows to attributes by T(ρ(x)). We additionally
follow the same notation introduced in the original paper where the attributes
are defined according to the next pattern: [attribute-id]@[authority-id].

2.4 Bilinear Pairings

Informally, a pairing function is a function that associates each pair of values
of a given set with a single value of the set. A bilinear parting function is a
pairing function that satisfy bilinear, non-degenerate, efficient and symmetric
properties. More formally, let G and GT be two multiplicative cyclic groups of
the same prime order p, g a generator of G, and e: G × G → GT a pairing
function satisfying the following properties:
– Bilinear: ∀u, v ∈ G and a, b ∈ Zp; we have e(ua, vb) = e(u, v)ab.
– Non-degenerate: e(g, g) �= 1, i.e., the identity element of GT .
– Efficient: there is an efficient algorithm to compute e(u, v),∀u, v ∈ G.
– Symmetric: e is symmetric, i.e., e(ga, gb) = e(g, g)ab = e(gb, ga).

It is important to mention that both authorities and users are provided with
a unique identifier GID which is mapped by a function H to an element in the
group G, i.e., H: GID → G. Additionally, we define another function F that
translates attributes to elements in a group G, i.e., F : Att → G.
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2.5 Security Assumptions

Similarly to [12], the security of our proposal relies on the q-type assumption (q-
DPBDHE2 in short) which basically is a slight modification of the q-Decisional
Parallel Bilinear Diffie-Hellman Exponent Assumption [13]. The following defi-
nition has been previously demonstrated in [13], so we encourage the reader to
check the full security proof.

Let a, s, b1, · · · , bn ∈ Zp be randomly chosen and g a generator of G of prime
order p. If an adversary A is provided with {G, p, e, g, gs} ∪ D where D is:

D =

({
gai

}
i∈[2q]
i�=q+1

,
{

gaibj
}
(i,j)∈[2q,q]

i�=q+1

,
{

gs/bi
}

i∈[q]
,
{

gsaibj/bj′
}
(i,j,j′)∈[q+1,q,q]

j �=j′

)

for any probabilistic algorithm B, the advantage of A in solving the q-DPBDHE2
problem is negligible i.e., this assumption relies on the fact that the probability
of distinguishing the bilinear pairing e(g, g)saq+1

from a random element R ∈ GT

is negligible:

Advq−DPBDHE2
B =

∣∣∣Pr
[
B(D, e(g, g)saq+1

) = 0
]

− Pr [B(D,R) = 0]
∣∣∣ ≤ ε

2.6 MA-ABE Algorithms

The MA-ABE scheme is mainly based on four different algorithms: GlobalSetup,
AuthSetup, KeyGen, Encrypt and Decrypt . In the following we summarise the
five algorithms (for a more detailed description check [12]):

– GlobalSetup(1λ) → GP . This method requires a security parameter λ. It out-
puts the global parameters GP = {p,G, g,H,F ,U ,Uφ}.

– AuthSetup(GP , φ)→ {PKφ, SKφ}. This algorithm generates both a public
and a private key for each one of the authorities.

– KeyGen(GID , φ, Att, SKφ, GP )→ SKGID,Att. This method takes as input
the user’s GID , the authority φ, the attribute Att, the secret key of the
authority SKφ and the general parameters GP and it outputs the user’s
secret key for a given attribute Att —controlled for the authority φ.

– Encrypt(M, T , {PKφ}, GP )→ CT . This algorithm is run by the users and it
receives as input the message to be encrypted M , the access policy T = (A, ρ),
the public keys of the authorities {PKφ}, and the general parameters GP .
It outputs the ciphertext CT (ciphered under the access policy T ) together
with T .

– Decrypt(CT , {SKGID,Att}, GP ) → M . When a user wants to decrypt a
ciphertext, she runs this algorithm. The GP , the ciphertext CT and all the
secret keys of that user SKGID,Att (to recover the shares of the access matrix)
should be provided to get the plaintext.

3 System Design

In this section we explain in detail our proposed solution for re-sharing photos
in DOSNs. Concretely, we describe the design we implemented in Diaspora.
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3.1 Diaspora’s Architecture and Assumptions

As mentioned in the introduction, Diaspora is a very popular DOSNs. The source
of its popularity lies on a distributed architecture which prevents a single party to
control users’ data. Moreover, Diaspora can work as a centralised social network
if there is only one pod in the system.

The distributed architecture of Diaspora consists of pods. A pod is a server
which runs an instance of Diaspora’s source code. In order for users to join
Diaspora they can either join an existing pod or create their own. Every pod
has its own database, therefore when users join a pod, their information is not
available to everyone. Moreover, only the owner of the pod has direct access to
the information of the database.

Users can connect with other users from the pod they joined as well as users
who signed up in other pods. As usual in OSNs, they can define connection
relations to classify their contacts such as friends, acquaintances, family and so
on. Using these relations, users can define the audience of their information, i.e.,
posts, photos, polls, etc. When information is shared with users from different
pods it needs to be replicated. For example, when a set of photos are accessed
in different pods then they are replicated in the databases of each one of the
involved pods. After the photo is replicated, the access control policies (of the
target pod) are updated to determine which users in the pod can access it. If the
owner of the pod were to update the photo audience, the access control policies
should be updated in all the pods where the photo was distributed to.

Note that this approach requires distributing the photo and (separately) the
access control policy. In this way, consistency errors can easily appear, e.g., if
the photo is successfully distributed but there is an error while distributing
the access control policy. An additional problem is updating the policies of a
photo. If a user decides to update the audience of a photo from her friends to
nobody, this policy must be transmitted to all the pods where the photo has
been replicated. As before, it can originate inconsistencies, for instance, when a
pod with a replica of the photo loses connectivity. Currently in Diaspora it is not
possible to update the access control policies of a photo after sharing it. This is,
probably, because of the difficulties to enforce consistency in such a distributed
environment. The previous example can be seen in Fig. 1.

Finally, in our proposal we assume the following: (i) The pods of Diaspora
are trustworthy; (ii) the KeyGen algorithm is only run by the pods; (iii) photos
can be stored either in the pods or in public repositories so it is not mandatory
to be secure; and (iv) there is a function named getAtt that given a user, it
returns the set of a attributes of the user from all the pods in the network.

3.2 MA-ABE in Diaspora

In our solution we propose to attach the “access control policies” to the photo
by using a decentralised version of ABE. Classical ABE approaches are based on
a centralised assumption where a Trusted Party (TP) is in charge of distributing
the keys of the scheme and sets up the system. However this is infeasible because
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Fig. 1. DOSN example.

of two main problems: (1) the TP has the power to decrypt everything in the
system and (2) there is no practical solution if there are n-different authorities
running the same cryptographic schema and users from different authorities want
to share information with them.

In a nutshell, our approach consists in encrypting (parts of) the photo with
a policy which specifies the attributes that other users must possess in order to
see the encrypted parts. In what follows we provide a detailed description of our
design of photo sharing in Diaspora based on MA-ABE.

Attributes in Diaspora. We define the attribute universe, U , to be the set of
all possible connections between users. For instance, in a pod with only two
users, Alice and Bob, and the friend relation, the universe of attributes is U =
{friend(Alice), friend(Bob)}. The attribute friend(Alice) will be granted to users
that Alice marked as friends. In general, given a set of users US and a set of
connections C, the shape of U is as follows: U = {c(u) | ∀u ∈ US,∀c ∈ C}.

The universe of attributes in the system is not centralised. Due to Dias-
pora’s distributed architecture, the universe of attributes is composed by the
attributes in each pod. Let UChalmers and UGU be the universe of attributes
of the Diaspora pods of Chalmers University and the University of Gothen-
burg (GU), respectively. We say that the universe of attributes in Gothenburg is
UGBG = UChalmers ∪ UGU . We use the same notation to denote the set of users
USGBG = USChalmers ∪ USGU and the set of connections in Gothenburg pods
CGBG = CChalmers ∪ CGU .

In this way, diaspora pods act as authorities which grant attributes to users.
Determining whether a user has an attribute can be easily checked by querying
the database of the pod. Note that users might have attributes which belong to
different pods, e.g., Alice (from the Chalmers pod) can mark Bob (from the GU
pod) as friend . Therefore, Bob will have attributes that come, not only from the
GU pod, but also from the Chalmers pod. We use the same notation as in the
original definition of MA-ABE in [12] to specify the provenance of an attribute,
e.g., friend(Alice)@Chalmers. This example can be seen in Fig. 1.
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Key Generation. Initially, when users join Diaspora, they have no connection to
other users. Thus, they possess no attributes. As they interact with the sys-
tem they start to create new connections, and consequently, grant (and be
granted with) new attributes. As we mentioned in the preliminaries section,
there exists a KeyGen algorithm which given the attributes Att1, . . . ,Attn of a
user, her GID and some additional parameters, it produces the corresponding
secret keys, SKGID,Att1 . . . ,SKGID,Attn for n ∈ N. Nevertheless, note that the
set of attributes that a user has is dynamic, i.e., it will change as users interact
with each other. Therefore, a very important question to answer is: When should
the key generation step be carried out?

We chose to perform the key generation algorithm only when the set of
attributes of a user changes. Checking a change in the set of attributes of a
user requires performing a broadcast call to all pods in the network. We use a
function getAtt : US → 2U which given a user, it returns the set of attributes
posses by the user in any pod in the network. Afterwards, we execute KeyGen
for the new attributes of the user—in the corresponding pod—and remove the
keys from attributes that might have been revoked3. Though executing getAtt
is not computationally expensive, it requires communication between pods and
might introduce delays, therefore it is important to minimise its use. Having an
updated set of attributes is only necessary when decrypting photos since the set
of attributes that a user has determines which parts of the photo that are visible.

Therefore, in order to reduce the overhead of this operation to the minimum,
we only execute getAtt—and the corresponding calls to KeyGen—after receiving
a set of photos to show. This occurs, for instance, every time users access their
stream of posts, or whenever they access a particular photo. Encrypting a photo
does not require these secrets key (see Sect. 2). It only requires having access to
the plain attributes the user will use for the policy. As mentioned earlier, this
attributes are easily accessible by querying the database.

Attaching policies to photos. In the same way that users can now choose the
audience of a photo, in our proposal users choose the attributes that other users
must have in order to access a photo. Moreover, we let users grab the area of
the photo that they want to protect and the actions that can be performed
with the photo e.g., re-share, like, comment, etc. This information constitutes
the access policy, T . The photo to protect together with T —and, as before,
some additional parameters, see Sect. 2—are the input parameters of the encrypt
algorithm, which returns a ciphertext CT . This ciphertext is distributed in the
system and it contains both the picture and the access policy.

Example 1. Imagine that the department of vehicle’s design from Chalmers
decides to use Diaspora to share the photo shown in Fig. 2a. However, this
photo contains some parts that are still pending of the patent’s decision
and the researchers only want their colleagues to see the final design. In our
system, researchers can select the part of the photo—where some compromised
3 We discuss other approaches to attribute revocation proposed in the literature in

Sect. 5.
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Fig. 2. Sample photo with and without encrypted area.

design appears—and encrypt it with the attribute colleague(Departmentdesign)
@Chalmers. Later users with the attribute colleague(Departmentdesign)
@Chalmers will be able to decrypt the photo and see Fig. 2a and the remaining
users will see Fig. 2b.

Several access policies can be attached to a photo. The only restriction we
impose is that encrypted areas cannot be re-encrypted. For instance, let Alice
be an engineer working at the Swedish vehicle manufacturer Ovlov , and also
collaborating with the department of vehicle’s design at Chalmers. She decides
that there are some parts of the image that the researchers at Chalmers shared
(Fig. 2b) that are still visible but should only be accessible by Ovlov employ-
ees. In other words, some areas of Fig. 2b that were not encrypted by Chalmers
researchers. Therefore, she decides to encrypt some of those parts and share
the photo again. The resulting ciphertext will allow users with the attribute
colleague(Departmentdesign)@Chalmers to only see some parts of the photo,
users with the attribute employee(Ovlov)@Ovlov to see others parts of the image,
and users with both attributes to see the complete photo.

4 Evaluation

In this section we show different experiments that have been run in order to test
our solution to demonstrate that it can be deployed in Diaspora and thus, the
security of this DOSN would improve considerably. Additionally, our proposed
solution is open source and can be downloaded online4.

We have run the simulations 10 times and we have computed the time aver-
age. Additionally, we have deployed the solution in a real scenario using the
Amazon Web Services (AWS) architecture. All AWS instances are catalogued

4 https://github.com/raulpardo/ppf-diaspora/tree/abe-photos.

https://github.com/raulpardo/ppf-diaspora/tree/abe-photos
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Fig. 3. Encryption and decryption time in a 800× 574 image.

as t2.xlarge in such environment. The characteristics in term of hardware are:
4 virtual Intel Xenon CPU with 16 GB of RAM with no Elastic Block Store
(EBS) storage system. Regarding the software, all instances are running a x64
architecture under Ubuntu 12.04 operating system. The generated JSON files
of the systems are in average: 4 Kb (users’ secret keys); 401 kb (ABE’s global
parameters); 490 Kb (authorities’ keys) and for the CT some samples—which
depend on the size of the photo to encrypt—are shown in Fig. 4 (in the worst
case, i.e., encrypting the whole area of the photo).

Figure 3 shows how ABE behaves when different amount of attributes take
place when both algorithms encryption and decryption are run over an entire
image of 800 × 574 pixels. In Fig. 3a we have fixed the number of attributes
in the policy to 3, i.e., |T | = 3. On the other hand, in Fig. 3b we have fixed
the number of attributes in the universe to 100, i.e., |U| = 100. From these
plots, it is interesting to see that the number of attributes do not affect to the
performance and thus, taking into account that we have run our experiments
in the worst case (encrypting the whole image), all results under 2 s in the
decryption algorithm can be considered as good results. Finally, we can conclude
that our distributed solution for photo re-sharing will perform perfectly when
the number of attributes in the policy T is no higher than 13 attributes.

We have run one more experiment to show how the size of the ciphertext
CT is independent of both the numbers of attributes in the systems and the
length of the access policy T . However we have observed that the size of the
CT generated is hardly dependent of both the photo’s resolution and logically
the selected area to be encrypted. In this experiment, we have used different
images resolution and we have cyphered all the image –which rarely occurs–
to be in the worst case. It is important to remark that Facebook re-sizes the



Secure Photo Sharing in Social Networks 89

25
0x

27
0

80
0x

57
4

10
00

x1
00

0
18

00
x1

20
0

15
30

x2
00

0

0

5

10

M
b

o
f
th

e
C

T

Fig. 4. CT vs resolution image.

images, and the widest side of image does not exceed 2048 pixels. In the Fig. 4
can be seen that the generated CT depends on the resolution of the image. It
was expected, because the larger the image is, the larger the area to cypher is.
We have additionally tested if the size of the generated CT depends on either the
number of attributes on the system U or on the number of attributes involved
in the access policy T and we have realised that the size remains constant.

5 Related Work

Despite the fact that there are several works that try to guarantee both security
and privacy on photos, only few proposals specifically focus on DOSNs [14–20]
and only a subset where ABE is used [14,17,19].

Nilizadeh et al. proposed a DOSN called Cachet [17]. The main characteristic
of this schema is that both ABE and a symmetric encryption are used together.
Basically, the secret key is encrypted using ABE and only those users that satisfy
the policy will get the secret key and decrypt the content. This architecture is
similar to the one proposed by Baden et al. some years before in [14].

Recently, a work published by Yuan et al. in [19] proposed to encrypt an
image under an access policy by using an ABE scheme. This proposal uses
three different encryption schemes: symmetric encryption, RSA and Ciphertext
Policy-Attribute Based Encryption (CP-ABE). Symmetric encryption, in par-
ticular Advanced Encryption Standard (AES), is used to encrypt the areas of
the image. The RSA algorithm is used to encrypt a secret key for a given user.
Finally, CP-ABE is used to check who can access to a given secret key in order
to decrypt a given photo.

ABE it is commonly used as an encryption scheme to share the secret key of a
symmetric encryption such as AES. This is especially useful because symmetric
encryption performance is significantly lower than any other public encryption
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schema. Additionally, by using this technique the size of the ciphertext produced
by the ABE remains always constant.

However, using symmetric encryption to hide some area of the picture and
ABE for encrypting that secret key has one problem when it is applied to a OSN:
once a user has access to decrypt that piece of information, she might share the
secret key and thus no more security will be provided. So, unlike [14,17] we do
not rely on symmetric encryption together with ABE.

Our proposal, in comparison to [19], contemplates both DOSNs and OSNs.
We do not need to include two more parties in the architecture such as a key
server and a certificate authority. We do not need to create a dedicated applica-
tion on the client’s side to view the encrypted photo. We support both, JPEG,
PNG and TIFF files. Additionally, we have tested our proposed solution based
on different attributes on both the universe U and in the access policy T .

Furthermore, it is worth mentioning that classical ABE approaches are based
on a centralised assumption where a TP is in charge of distributing the keys of
the schema and sets up the system. However this is infeasible in DOSNs because
there were no practical solution if there are n-different authorities running the
same cryptographic scheme and users from different authorities want to share
out private information. Nonetheless, Rouselakis et al. proposed in [12] a decen-
tralised and MA-ABE where different authorities spread all over the world can
share information in a secure way by using an ABE scheme.

Another still open issue in MA-ABE is how to revocate attributes, i.e., how
to generate again the users’ secret keys once an attribute is not hold by a user
anymore. In the literature there are some approaches such as using an expira-
tion time in the access policy T or using specific cryptographic primitives [21].
However, in our approach we have solved it by running the KeyGen algorithm
each time a photo is requested by a user.

6 Conclusions

In this paper we have proposed a solution for re-sharing photos securely on
distributed social networks. We have used ABE to encrypt and decrypt the
content of the picture that belongs to that person and thus, users can define
different access control according to some policies previously defined over the
same image. Moreover, as far as we know, this is the first solution that can be
deployed into both decentralised and centralised social networks and we also
allow different photograph’s formats such as PNG, JPEG or TIFF. Finally, we
have tested our solution on the distributed social network Diaspora, with one pod
(centralised mode) and more than three pods (decentralised mode), a hundred of
attributes each and the evaluations show that our solution can encrypt/decrypt
images in less than two seconds.

ABE guarantees, by construction, that only those users having the “right”
attributes can decrypt a ciphertext previously encrypted with a certain access
policy aimed at users with those attributes. On the other hand, ABE does not
ensure that users indeed have the attributes they claim to have. In most ABE
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proposed schemes researchers assume that there is a trusted party in charge of
verifying that a user holds the attributes she claims to have. Though we do
not explicit depend on this assumption, our proof-of-concept implementation
in Diaspora comes with strong guarantees in this sense: the attributes of our
policies are relationships between users and cannot be faked.5 That said, our
approach is more general and our policy description would in principle allow
to define other attributes besides relationships in the OSN, like profession or
location, which might be fields on a user profile and thus under control of the
user. In this case we would need a trusted party to certify that the user has the
attributes she claims to have.

Future Work. Currently there are no well-defined rules about who can encrypt
which parts of a photo. In this work we impose the rule that no-one can re-
encrypt areas of a picture that are already encrypted. This simple rule might
not be enough from the point of view of usability. It might still lead to undesirable
behaviours. For instance, imagine that Alice uploads a photo of herself without
encryption. Later Bob—who has access to the photo—decides to encrypt some
part of it so that only he can see the photo. In other words, now Alice cannot see
parts of the photo that she uploaded. This authorisation problems go beyond the
scope of this paper and require a detailed analysis of the interactions that can be
performed in the social network together with the encryption algorithms. There
are formal techniques to attack this problem, in particular to encode privacy
settings of social networks and formally reason about them [22–24]. We plan to
formalise our solution in order to precisely define which actions are allowed and
prove that no undesirable behaviours can occur.
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Abstract. Photo privacy has raised a growing concern with the
advancements of image analytics, face recognition, and deep learning
techniques widely applied on social media. If properly deployed, these
powerful techniques can in turn assist people in enhancing their online
privacy. One possible approach is to build a strong, automatic and
dynamic access control mechanism based on analyzing the image content
and learning users sharing behavior. This paper presents a model for
context-dependent and privacy-aware photo sharing based on machine
learning. The proposed model utilizes image semantics and requester
contextual information to decide whether or not to share a particu-
lar picture with a specific requester at certain context, and if yes, at
which granularity. To evaluate the proposed model, we conducted a user
study on 23 subjects and collected a dataset containing 1’018 manually
annotated images with 12’216 personalized contextual sharing decisions.
Evaluation experiments were performed and the results show a promising
performance of the proposed model for photo sharing decision making.
Furthermore, the influences of different types of features on decision mak-
ing have been investigated, the results of which validate the usefulness
of pre-defined features and imply a significant variance between users
sharing behaviors and privacy attitudes.

Keywords: Privacy protection · Online social network · Photo sharing ·
Access control · Decision making · Context · Machine learning

1 Introduction

Wide spread of smart mobile devices and online social networks (OSNs) make
photo sharing an easy and popular activity. However, it has also raised concerns
on privacy since the shared content reveals substantial sensitive information
about people. Most social networking or photo sharing services provide access
control for users to manage their privacy. However, users need to manually set
their sharing policies in only a static manner, without the possibility to share
their photos to different groups of people dependent to contexts, e.g. the location,
time or even nearby people of potential viewer. Most access control mechanisms
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enforce only binary sharing options, namely “Yes” or “No”, which may not pro-
vide the best experience when a user just wants to disable partial information in
photo sharing. With the latest progress in image analytics, pattern recognition,
and deep learning techniques, large scale information is mined from the shared
multimedia content. Although seemingly compromising privacy, those techniques
can in turn be used to enhance privacy, in such a way of helping people esti-
mate the privacy value of their content or control the access of their content
automatically and dynamically.

In this paper, we present a machine learning based model that can accurately
predict users photo sharing decisions based on their past decisions. To make
photo sharing decisions, the proposed model takes into account not only the
content of an image, but also the context information about the image capture
and potential requester. To validate the proposed model, we conducted a user
study on 23 subjects and three sets of evaluation experiments.

The rest of the paper is structured as follows. Section 2 introduces related
works. Section 3 describes in detail the proposed model. Then Sects. 4 and 5
present the user study and performance evaluation. Finally, Sect. 6 outlines some
discussions and Sect. 7 summaries the paper.

2 Related Work

A number of studies have been focused on understanding users privacy con-
cern on photo sharing, as well as the potential privacy implications via both
subjective [1,2] and objective [8,13] studies. A number of approaches to pri-
vacy protection in photo sharing have been proposed, including usage control
scheme in distributed OSNs [6], Secure JPEG scrambling image visual infor-
mation [20,22,23], separate coding and sharing of JPEG image by P3 [14] and
tag-based access control [12]. In addition, a substantial research effort has been
made on estimating the privacy value or detecting privacy-sensitive objects in
images. These works include private/public image classifications and privacy-
sensitive visual information detection, based on not only learning low-level image
features (color, edge, faces and SIFT) [24], but also deep learning approaches
such as Convolutional Neural Network (CNN) [16,17].

Another branch of research has been focused on context-aware information
sharing in the scenario of social networks or cloud services. Smith et al. [15]
provided an early investigation on solutions to enable people to share contextual
information in mobile social networks. Wiese et al. [19] investigated the impact
of various factors on people’s willingness to share information. Harkous et al. [10]
present a conceptual framework named C3P for automatic estimation of privacy
risk of data based on the sharing context. Bilogrevic et al. [4] present SPISM, an
information-sharing system that predicts (semi-)automatically sharing decision,
based on personal and contextual features. Despite the substantial works on
contextual information sharing, very few have considered context information
for privacy protection in online photo sharing. To the best of our knowledge,
this paper is the first attempt to investigate the feasibility of deploying both
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Fig. 1. Framework of a photo sharing system based on the proposed model.

content-related and contextual features of images, to automatically make or
“recommend” photo sharing decisions.

3 A Model for Context-/Privacy-Aware Photo Sharing

3.1 Security Assumption and Operating Principle

First of all, we assume the photo sharing service providers are trustworthy. Users
allow the service to conduct necessary analysis on their photos, and the system
is granted the right to enforce access control of users photos.

Figure 1 illustrates a photo sharing architecture of the proposed model. The
operating procedures of the model can be described by the following story: Alice
(the sender, who wants to upload and share photos with online friends) uploads
a set of pictures on the photo sharing service, and the service system analyzes
each picture and extracts a set content and contextual features about those
pictures. Meanwhile, the system asks Alice a set of questions on her willingness to
share each picture to specified individuals in various scenarios. These individuals
can be selected from those who visited Alice’s profile recently or frequently.
Each scenario describes a certain context of a possible requester, who attempts
to visualize a picture shared by the sender. The context includes the identity
(either real name or social group), location, nearby people and the time when the
requester tries to visualize the image. The system then trains a classifier based on
Alice’s answers for different photos in different scenarios. On the other side, Bob
(the requester) visits the profile page of Alice. With the help of the classifier, the
system analyzes Bob’s context and Alice’s photo information, to decide whether
or not to show certain photos to Bob, and if yes, at which granularity.
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Table 1. Feature notations and definitions.

ID Feature Description

What IC Image: Category Major category of the picture, selected from
the eight categories identified in Instagram
pictures [11]: Friends, Activity, Selfie, Food,
Pets, Gadget, Fashion and Captioned photo

IA Image: Activities Activities involved in the picture, selected
from 26 keywords partially defined by [5]:
working, meeting, reading, presentation,
resting, chatting, socializing, family, friends,
vacation, TV, cooking, eating, drinking,
cleaning, shopping, exercising, traveling,
walking, landscape, city, concert, sporting,
gaming, gadget and pets

Who IP Image: # of People The number of people in the picture

Image: Identities The existence of different identities in the
picture. Eight types of identities were
defined: Sender him/herself, Family, Close
friend, Schoolmate or Colleague, Girl or
Boyfriend, Acquaintance, Celebrity and
Stranger

RI Requester: Identity The relationship between the requester and
the sender, categorized in six types: Family,
Close friend, Schoolmate or Colleague, Girl
or Boyfriend, Acquaintance and Stranger

RG Requester: Gender Gender of the requester: Female or Male

RN Requester: Nearby Whether or not the requester has other
people nearby at requesting time

Where IL Image: Location The semantic location where the image was
captured, selected from 12 major location
categories adopted from Foursquare
Location Categories

Image: Loc. Coordinates Latitude and longitude of the image capture
location

Image: Loc. Frequency The frequency of the sender being present in
such place, selected from Rarely,
Sometimes, Often and Almost everyday

RL Requester: Location Semantic location of the requester,
categorized in Unknown, Friend’s home,
His/her own home, Work place and Public
place

When IT Image: Time The time of photo capture in a float value,
e.g. 14.5 denotes 2:30 PM

Image: Day The day (in a week) of photo capture,
selected from Monday to Sunday
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3.2 Feature Definition

To train such a classifier, we considered two groups of features: Image Seman-
tic Features (I) and Requester Contextual Features (R). Instead of using
low-level image features such as color, texture, composition and SIFT, we believe
higher-level semantic features have more immediate relations with privacy. These
features include the image category, number/identities of people in image, activ-
ities or objects in image and the location and time of image capture. The contex-
tual features of the requester include the requester’s identity, location, nearby
people and time.

A detailed description of all the features used in our experiments, grouped in
different aspects of context, is shown in Table 1. Note that the time of requester
is not used in the current experiment because it would be too cumbersome for
subjects to read and analyze the complete information containing all contexts.

3.3 Photo Sharing Decisions

We defined three photo sharing decisions, corresponding to different levels of
photo information disclosure. The three decisions and corresponding descriptions
presented in the user study are listed in the following:

Decision 1 - Do NOT Share: No, I don’t want to share the picture.
Decision 2 - Partially Share: Yes, but with some image region protected

or/and metadata (GPS, time, etc.) removed.
Decision 3 - Entirely Share: Yes, I want to share the picture completely.

The reasons of using the specific three sharing decisions instead of conven-
tional binary decisions (“Yes” or “No”) are twofold: First, in many scenarios of
online photo sharing, people may want to simply remove partial privacy-sensitive
visual information in an image, such as ID card, license plate or their children
faces. Second, most images shared from smart mobile devices contain metadata
such as geotags, camera model and time, which could also compromise privacy.
Therefore, an option should be provided for users to partially protect and share
their image content.

4 User Study and Data Collection

We conducted a study that put participants in personalized photo sharing scenar-
ios, and collected an image dataset containing manual-annotated image semantic
features and contextual sharing decisions.

To conduct the user study, we developed an Android app1, named ProShare
S. The application allows a user to create an account, take pictures, conduct
a set of surveys for each, protect privacy-sensitive image regions, and finally
upload them to a dedicated server. The workflow of a user study using ProShare
S is illustrated in Fig. 2. Particularly, the survey part is structured in two sets
of questionnaires:
1 The application is publicly available at http://grebvm2.epfl.ch/proshare-s/proShare-

rd2.1.apk.

http://grebvm2.epfl.ch/proshare-s/proShare-rd2.1.apk
http://grebvm2.epfl.ch/proshare-s/proShare-rd2.1.apk


98 L. Yuan et al.

Fig. 2. Workflow of user study using ProShare S.

Q1 - Image Semantic Information. The first questionnaire (Q1) requires the
user to add necessary image semantic tags. This questionnaire appears once a
picture has been taken from either gallery or camera. The questions in Q1 cover
all the semantic features defined in Sect. 3.2. A build-in face detector offered
by Android API is applied to count the number of people in image, which can
be manually modified if not correct. Location coordinates and capture time are
automatically extracted from image metadata.

Q2 - Contextual Photo Sharing Decisions. Once Q1 is finished, the user
is directed to the second questionnaire (Q2), where he/she is presented with
12 sharing contexts/questions. For each context, the user needs to decide how
he/she would like to share the picture with the specific requester, by selecting
one of the three decisions defined in Sect. 3.3. An example context is “Would
you share this picture with a close friend, when he is at a public place with other
people?” The 12 contexts/questions are selected in a special way such that each
of the six requester identities appears twice in a random order, with the other
contextual features (gender, location, nearby people) sampled at random. In the
study, basic user profile is also collected through the App. We therefore present
the sharing contexts adaptively based on user’s profile. For instance, for a female
user we present the requester as “your boyfriend” instead of “girl or boyfriend”.

We recruited 23 volunteers to participate in our user study, and assigned each
of them a task of uploading at least 50 daily pictures of their own and completing
corresponding surveys using ProShare S. Each subject was required to complete
the task within a week and to try to cover a wide range of image content2. Finally,
20 out of the 23 subjects successfully finished the required task. We therefore
kept only the data of the 20 effective subjects for the later evaluation. A total
of 1’018 images including 12’216 sharing decisions were contributed by the 20
subjects, each providing 50.9 images on average. Figure 3 shows the histogram
of images in each category and the contextual sharing decisions made on all the
images.

2 The instruction and agreement sheet for the user study including several screen-
shots of the ProShare S App is available at http://grebvm2.epfl.ch/proshare-s/
instruction sheet rd2.1.pdf.

http://grebvm2.epfl.ch/proshare-s/instruction_sheet_rd2.1.pdf
http://grebvm2.epfl.ch/proshare-s/instruction_sheet_rd2.1.pdf
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Fig. 3. Distribution of (a) images in each category and (b) subjects sharing decisions.

5 Evaluation and Analysis

5.1 Methodology

To evaluate the performance of the proposed model for decision making, we
conducted three sets of experiments based on the data collected from our user
study. We take the working hypothesis that users photo sharing behaviors and
privacy attitudes are highly subjective and the difference in users behaviors may
cause the proposed model to perform differently between subjects.

The first experiment focused on the performance of the proposed model with
respect to each user, namely, within-subject analysis. In the second experiment,
we explored a universal one-size-fits-all classifier trained on all users data for
predicting a new user’s decisions. In the third experiment, we investigated the
influences of different image and requester features on the decision making per-
formance of the proposed model.

The WEKA machine learning library [9] was used in experiments and three
representative classification methods were considered: logistic regression, support
vector machine (SVM) and random forest. We started with a preliminary test by
running a 10-fold cross validation on each user’s data using the three methods
and random forest always outperformed the other two. We therefore kept using
random forest for the rest of the experiment.

To evaluate the decision making performance, the following metrics are used:

– Correct Decision rate: The proportion of correctly predicted decisions.
– Over-Sharing rate: The proportion of cases where image information is

shared more than what user expect to share, which compromises privacy.
– Under-Sharing rate: The proportion of cases where image information is

shared less than what user expects to share, which may compromise usability.
– Kappa statistic: Cohen’s kappa score [18] that measures the chance-

corrected agreement between predicted and ground truth decisions.

5.2 Within-Subject Analysis

In the first experiment, we used different proportions (from 10% to 90%) of each
subject’s data to train a classifier, and evaluated the classifier on the rest of the
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Fig. 4. Performance of sharing decision prediction at different sizes of training sets.

data (evaluation set). This is to examine the trade-off between user-burden and
prediction accuracy of the proposed model. The evaluation results measured
by different metrics across the 20 subjects are shown as box plots in Fig. 4.
In this figure, one observes that the median correct decision rate has already
reached 0.75 at a training set of only 10%, which corresponds to only 5 images
in average. This means we could already build an acceptable model for half of
the users using a very small number of images and their decisions. Above the
training set of 50%, most users obtained the correct decision rate higher than
0.8. The median Kappa score at the training set of 10% is below 0.5 and rapidly
reaches 0.6 at the training set of 20%. Above the training size of 60%, an almost
perfect prediction is observed for half of the users with a median Kappa statistic
greater than 0.8. On the other hand, both the over-sharing and under-sharing
rates of most users are very low, even at the training set of 10%. However, we
observe the over-sharing rate is always higher than the under-sharing rate. A
possible explanation is that most users tend to share images and the numbers
of different decisions in the dataset are imbalanced. From the results, one also
observes a significant variance between users. At the training size of 10%, the
maximum difference in correct decision rate between users is up to 0.44. At the
training size of 80%, where the optimal performance is obtained for most of
the users, such difference still remains around 0.2. Such results agree with our
hypothesis made in the beginning of this section that users subjective behaviors
may influence the performance of the proposed model.

Table 2. The cost matrix of the applied cost-sensitive learning.

↓ classified as → Decision 1 Decision 2 Decision 3

Decision 1 0 C1→2 = c C1→3 = 2c

Decision 2 1 0 C2→3 = c

Decision 3 1 1 0
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Fig. 5. Performance of cost-sensitive decision making with two different values of c.

Cost-Sensitive Decision Making. To address the issue of over-sharing, we
introduced the cost-sensitive learning [7] in our decision making core. The aim
is to evaluate the extent to which incorrect decisions can be biased towards
the under-sharing cases instead of over-sharing, when users concern their pri-
vacy more than usability. We specified different error-penalties Ci→j (> 1) for
over-sharing cases and the penalty of 1 for under-sharing. Therefore, the training
process tries to minimize the following cost:

∑
1�i<j�3(Ci→j ×Ni→j +1×Nj→i),

where Ni→j denotes the number of cases where Decision i is misclassified clas-
sified as Decision j. Specially, we assigned a double error-penalty 2c for the
over-sharing cases C1→3 compared to the other two over-sharing cases. This
is because a mistake by classifying “Do NOT Share” to “Entirely Share” may
severely compromise privacy. The cost matrix for the cost-sensitive learning is
shown in Table 2.

We experimented with a set of values for c (from 1.5 to 5), on each user’s
data using the same random forest classification. The results at c = 2 and c = 4
are shown in Fig. 5. With an error-penalty c = 2, the over-sharing rate is greatly
reduced to a level lower than the under-sharing rate. When increasing c to 4, the
over-sharing rate is further reduced, in sacrifice of a significant increase on the
under-sharing rate. This indicates a significant trade-off between the capability of
privacy protection and system usability. In any cases of cost-sensitive learning,
the overall correct decision rate and Kappa statistic do not change much, as
the introduced error-penalty mainly acts as a parameter to tune the weights of
different incorrect decisions.

5.3 One-Size-Fits-All Model

In the second experiment, we evaluated a one-size-fits-all model, to examine
the potential of building a global classifier trained on the data of all users, to
make or “recommendation” decisions for new users. To be fair, for each sub-
ject i, we trained a classifier with random forest on the data of the remaining
subjects, which was then evaluated on the data of subject i. Cost-sensitive learn-
ing was also included in this experiment for comparison. The results over all the



102 L. Yuan et al.

Fig. 6. Performance of a One-Size-Fits-All classifier.

Fig. 7. Distribution of photo sharing decisions distinguished by different features.

20 subjects are shown in Fig. 6. The median correct decision, over-/under-sharing
rates and the Kappa statistic without cost-sensitive learning are 0.636, 0.218,
0.155 and 0.348 respectively. With cost-sensitive learning, the over-sharing rates
are reduced below under-sharing, without greatly degrading the correct deci-
sions and Kappa score. The overall performance of such a one-size-fits-all model
is not as good as the personalized classifier built on each user’s own data. This
again implies that users may have very different behaviors and privacy atti-
tudes towards photo sharing. However, such a classifier could already provide an
acceptable performance better than a random guess. This experiment provides
the insight of building a one-size-fits-all classifier to predict or “recommend”
photo sharing decisions for a new user, until the user has enough data to build
a personalized classifier.

5.4 Influences of Features on Decision Making

At the end, we investigated the influences of different types of features on users
photo sharing decisions and on the performance of our prediction model.

First, the histograms of three sharing decisions distinguished by different
types of features are shown in Fig. 7. The variation in distributions over dif-
ferent feature values indicates the degree of influence of a particular type of
features. One observes a significant difference in decision histograms across
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different requester identities, which implies that the requester identity influences
users decision making the most. On the other hand, although the decision his-
tograms do not change much between other contextual features of the requester,
there is still a small decrease of the “Entirely Share” decisions at the cases
where the requester is at an “Unknown” place or with “Other people” nearby.
Image semantic features also influence users decision making significantly. For
instance, users prefer sharing photos without people or with a lot of people (≥6),
to sharing photos with 1–5 people. Also, users favor sharing those pictures con-
taining strangers or celebrities, over personal photos with intimate connections
like family and close friends.

We then evaluated the performance of decision making on different combina-
tions of image and requester features, by conducting a 10-fold cross validation
on each user’s data. The correct decision rates of cross validation of all the 20
subjects are shown in Fig. 8. Please refer to the feature notations in Table 1. We
gradually remove certain features, and the leftmost and rightmost box plots in
Fig. 8 show two extreme cases where all the features (IAll + RAll) or only the
requester features (RAll) were used. As is shown, when reducing features, the
correct decision rate of the majority of subjects decreases, which implies that
all those features in general have a positive impact on decision making for most
users. When reducing image-related features, a significant variance across differ-
ent subjects is observed, which indicates that those image features are important
for modeling many users sharing decisions. However, for two of those subjects,
the prediction model still performs well (correct decision rate higher than 0.9)
even using only the requester features (RAll). A possible reason is that the two
users made their sharing decisions mostly dependent on the context of requesters,
regardless of the image content.

One also finds that by removing certain requester contextual features, like
requester gender (RG), location (RL), or nearby people (RN ), the overall accu-
racy does not significantly change. With merely the requester identity (RI) +
all image features (IAll), the overall decision making accuracy still remains high.
This implies that the requester contextual information than the requester iden-
tity has very week or even negative influence on decision making. However, this
is not always the case for every subject. Figure 9 illustrates the results of five
example subjects obtained on different combinations of requester contextual fea-
tures (along with all image features IAll). Here, one observes that the inclusion of
requester contextual features other than the requester identity influences decision
making quite differently between users. For instance, the correct decision rate
of User C obtained on all requester features (∼0.8) is much higher than that on
only requester identity RI . For User A or D, combining different requester fea-
tures (RI,L,N or RI,N respectively) generates better accuracy than just using
requester identity RI . However, for User B and E, using only the requester
identity RI provides the best performance, in which case the other contextual
features of requester are considered as noise in machine learning. Such a variance
between users again proved our hypothesis that users have different personalized
behaviors in photo sharing.
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Fig. 8. Correct decision rates of all users obtained on different combinations of features.

Fig. 9. Performance of five example users obtained on combination of all Image Seman-
tic Features (IAll) and different Requester Contextual Features (R).

6 Discussions

Image Visual Information and Metadata Protection. Prior to this study,
we have proposed and researched on different approaches [20–23] to protect
image privacy (visual information and metadata) such that the protected photos
can be publicly shown to any party (service provider and individuals) while orig-
inal photos being secretly shared to authorized individuals. The principal idea of
these approaches is to utilize JPEG application markers to secretly preserve par-
tial image information or metadata, which not only enables the reversibility of
the obfuscated image but also minimizes the storage burden. Such approaches are
collectively named Secure JPEG. In the proposed photo sharing model, Secure
JPEG can be used to create a secure version of a photo. Depending on the pre-
dicted decision, the system can release the corresponding version (protected or
recovered original form) of the image to a requester.

Security Discussion. As mentioned in Sect. 3.1, we assume the service provider
in proposed model is trusted. The reasons are twofold: First, it is still not pos-
sible to perform certain pattern recognition tasks on client devices efficiently,
e.g. image semantic recognition; Second, the system makes sharing decisions in
a dynamic way by analyzing both image content and requester context, which
means the decision making core must lie on the service provider. However, as
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the development of pattern recognition on mobile devices, the security require-
ment of the proposed model can be relaxed. In another specific case of the pro-
posed model, where only requester’s identity is taken into account (no other
context), the security assumption can be discarded. In this case, the photo
sharing decisions are made in a static way equivalent to using an access pol-
icy. According to a privacy-preserving photo sharing architecture proposed in
our previous work [23], the access policy can be integrated in a Ciphertext-
Policy Attribute-Based Encryption (CP-ABE) [3] and secure photo sharing can
be achieved through an “Honest but Curious” untrusted server.

Feature Extraction. In this study, most image semantic features were man-
ually annotated. This is because we lack the access and control to a popular
social network, and that the automatic tools for extraction of some semantic
features (e.g. activities in image [5]) are not mature enough. In practice, with
the advances in deep learning, content understanding and ubiquitous sensors,
automatic extraction of different semantic or contextual features is becoming
more accurate and fine-grained.

7 Conclusion

This paper presents a conceptual model for context-dependent and privacy-aware
photo sharing based on machine learning. The proposed model utilizes the images
semantic and requesters contextual information to predict photo sharing deci-
sions for users, based on their previous shared photos and past decisions. To
evaluate the proposed model, we first conducted a user study on 23 subjects
and collected a dataset containing 1’018 manually annotated images with 12’216
personalized sharing decisions in different contexts. Evaluation experiments have
been performed and show a promising performance of the proposed method.
Furthermore, the influence of different content- and context-related features on
decision making has been investigated, the results of which validated the impor-
tance of pre-defined features and implied a significant variance between users
sharing behaviors and privacy attitudes.

As our future work, we intend to conduct larger-scale user study based on
realistic social networking environment. This will further help us understand
users photo sharing behaviors. In addition, we will investigate more sophisti-
cated machine learning or even deep learning approaches to build more accurate
and secure photo sharing systems. We believe machines will become intelligent
enough to understand people’s privacy concerns towards their photo content and
this is how we define “privacy-aware”.
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Abstract. The possibility that an unauthorised agent is able to infer
a user’s hidden information (an attribute’s value) is known as attribute
inference risk. It is one of the privacy issues for Facebook users in recent
times. An existing technique [1] provides privacy by suppressing users’
attribute values from their profiles. However, suppression of an attribute
value sometimes is not enough to secure a user’s confidential informa-
tion. In this paper, we experimentally demonstrate that (after taking
necessary steps on attribute values) a user’s sensitive information can
still be inferred through his/her friendship information. We evaluated
our approach experimentally on two datasets. We propose 3LP, a new
three layers protection technique, to provide privacy protection to users
of on-line social networks.

Keywords: Privacy enhancing technologies · Attribute inference

1 Introduction

Humans naturally keep themselves connected with friends, colleagues and fam-
ilies but due to geographical distances, people may not be able to meet their
friends regularly. Hence, online social networks (OSNs) play a vital role to con-
nect and share contents among people. Now, all over the world, citizens and
organisations make extensive use of OSNs such as Facebook, Twitter, LinkedIn,
and Google+. In recent years the usage of OSNs, particularly the usage of
Facebook, has increased extensively [2,3].

Facebook is currently the third (after Google and Youtube) most viewed
website [3] with 1.09 billion average active users every day [2]. Users typically
store and share various personal data on Facebook resulting in the possibility
of privacy breaches [4]. Privacy is a crucial element of society. Social scientists
have provided several definitions. Tavani defines privacy as our ability to restrict
access to our personal information and to have control over the transfer of our
information [5]. Rachel [6] argues that privacy is the individuals’ ability to dis-
close selectively personal information related to themselves. What is private for
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one may not be private for some others. For example, some may consider their
political affiliation to be private while some others may not consider important
to disclose their political alignment.

Data stored on Facebook about other users can be analysed for link predic-
tion and attribute value prediction to learn sensitive and private information
of victim users and hence compromise their privacy [7,8]. Sophisticated data
mining techniques can breach individual privacy [9] on Facebook.

It was empirically demonstrated [9] that a data set built from other users’
data that do reveal what one user U considers confidential can be used by an
attacker M to build a classifier that predicts U ’s private information with high con-
fidence. The fundamental idea of the first techniques to guard against the attribute
inference attack (NOYB [10], TOTAL COUNT, and CUM SENSITIVITY [1]) is
to identify a user’s publicly available attribute values which are high predictors
of a sensitive attribute value and recommend to the user to obfuscate the pre-
dictors. While NOYB [10] randomly selects visible attribute values to obfuscate,
TOTAL COUNT andCUM SENSITIVITY [1] heuristically identify which public
data is highly informative and very likely to be influential in any classifier built by
data mining techniques; therefore, recommending to the victim to modify or sup-
press the visible attribute values those are high predictors. The difference between
TOTAL COUNT and CUM SENSITIVITY is in the ranking of the predictors,
but both of them are very similar, so we encapsulate them into the global name of
PrivAdv for short.

The protection technique PrivAdv does not consider friendship links among
the users as information that M can use to infer the sensitive value of U . The
information from on-line social networks can often be organised as a social
attribute network (SAN ) [11]. The SAN model integrates both users’ attribute
information and their friendship network. Although PrivAdv has been extended
to evaluate risks of the inference attack that derive from connections in the social
network [12], the easiness of such an attack was not illustrated. Moreover, no
concrete suggestions of what shall users do when their privacy is at risks because
of social connections. That is, in such extensions [12], the algorithms recommend
to unfriend or befriend a user from the victim’s friend list randomly if such friend
discloses any information which is sensitive to the victim. In those methods, the
number of added or deleted friends may be large, and the victim may not be
interested in this frequent addition and deletion of friends. We experimentally
show that friendship links can be a useful piece of information for M . We also
show that naively extending the existing technique [1] may not be effective to
ensure privacy protection against M usage of this information. Here, we also
propose a new technique (which we name 3LP) with three layers of protection
in order to protect the sensitive value of U even if M uses the friendship links.
We also experimentally demonstrate the effectiveness of 3LP.

This paper is organised as follows. Section 2 discusses some limitations of
existing techniques as evidenced by our initial experiments. Section 3 presents
3LP, followed by Sect. 4 where experimental results are discussed. Finally, Sect. 5
gives concluding remarks.
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2 The Importance of Friendship Links

We now argue that any protection technique that does not take into considera-
tion both, the attribute values of a user and links of a social network, is not able
to ensure sufficient protection. We justify our argument since a real-life attacker
can try to infer the sensitive information using whichever of the two aspects
(attribute values and links) is ignored by the protection technique, dodging the
single focused privacy mechanism. For example, we demonstrate that a previ-
ous work [1] that does not take the link information into consideration may not
be able to secure sensitive data of users when an attacker uses the connection
information of a social network.

We assume that attackers have access to a large data set which has the struc-
ture of an undirected social network (or graph) G having a N number of users,
each with A attributes. Here, without loss of generality, each attribute value
is considered as a distinct binary attribute. This standard data representation
converts a categorical attribute like hometown (with possible values Sydney ,
Melbourne, and Brisbane) into a characteristic vector: the value is true if and
only if the user’s residential city correspond to that attribute-value pair. Under
the SAN model, not only members of the OSN are vertices, but attribute-values
are also vertices. For each user-vertex u with an attribute-value pair a = v, the
SAN places an edge between u and the attribute-value pair a = v.

The SAN model also places an edge between two users if they are friends.
The SAN data model can be used by attackers to estimate the influence of a

user on another user. The idea here is that linked users who have a small number of
friends are strongly connected and have a high influence on each other. For exam-
ple, if a user Tom White is linked to Rob Black and each of them has only two other
friends then Tom and Rob have a high influence on each other meaning that if Rob
supports the Labour party, then there is a greater chance that Tom will also sup-
port the Labour party. On the other hand, if a user is linked to another user who
has a huge number of friends then the two users are relatively weakly connected
and have low influence on each other. For example, if Tom is linked to Mel Gibson
who has thousands of friends, then the fact that Tom supports the Liberal party
does not give a strong clue on whether or not Mel Gibson also supports the Liberal
party. Such influence of a user on another user u can be computed through a metric
that represents the strength of the connection between u and an attribute-value
pair a = v, where the strength of a connection is proportionate to the number of
common users (who are friends of u and have the attribute-value pair a = v) and
inversely proportionate to the numbers of friends of the common users.

We first need to introduce some notations before we formally present the
metric function for a user and an attribute-value pair. We denote by Γs+(u)
the set of all social users linked to a user u. Similarly, Γs+(a = v) is the set
of all users having the attribute-value a = v. Also, Γa+(u) is the set of all
attribute-value pairs linked to user u. Thus, the neighbourhood of u in the SAN
is, Γ+(u) = Γs+(u)∪Γa+(u). On the other hand, w(u) is the weight of any social
node (i.e. a user) u ∈ G. In this study, we assume the weight of each social node
is constant and is set to 1. The equation [13] for the metric m(u, a = v) is
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m(u, a = v) =
∑

t∈Γs+(u)∩Γs+(a=v)

w(t)
log|Γ+(t)| . (1)

An interesting property of this metric is that, if friendship information is avail-
able, then m(u, a = v) can be calculated for any attribute-value pair a = v
whether the user u has that value or not. A high m(u, a = v) suggests that u
has a high chance of having value v for attribute a since, u is connected to many
other users who have a = v. Since m(u, a = v) is computed by taking the net-
work link information into account, we will add m(u, a = v) information for each
user and each attribute in a data set (having a number of users and a number
of attributes for the users) [12] to demonstrate that an existing technique [1]
(that does not take the network link information into account) may not provide
protection against an attack using the link information.

Table 1. Attributes of Facebook data set DFB.

Attribute name Attribute values

Gender Female; all 616 users are female aged over 18 years

Profile image Contains 12 categories represented by 1 to 12, as follows, image shows the

user: 1-alone, 2-with one or more friends, 3-at a special occasion, 4-with

their special partner, 5-smiling, 6-in a unique location not in their

hometown, 7-shows only face/head, 8-playing or watching sport, 9-with

family, 10-depicts an object with apparent meaning to the user, 11-having

a unique visual effect, 12-Reveals too much skin

Relationship status Contains 11 categories: 1 to 10 and null, as follows. 1-single, 2-in a

relationship, 3-engaged, 4-married, 5-it’s complicated, 6-in an open

relationship, 7-widowed, 8-separated, 9-divorced, 10-in a civil union, null

Interested in Null, men,women,both

Family on FB Absent, present

Hometown Absent, present

Show sex No, yes

High school Absent, present

Year-graduated from High

school

Absent, present

University or college Absent, present

Year graduated from

University or college

Absent, present

Timeline Absent, present

Work Absent, present

Friend High, medium, low, null

Album High, medium, low, null

Photo High, medium, low, null

Language English, english+, other, other+, null

Religion Absent, present

Activities Absent, present

Email Absent, present

Date of birth (DOB) 1-full dob is revealed, 2-only day and month are revealed, 3-dob is not

revealed

Political view Absent, present

People who inspire Absent, present

Class attribute Connected, lonely
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2.1 Data Sets

We use the same data set DFB that was used in some previous studies [1,9].
The data set DFB has 616 records where each record contains information of a
female Facebook user who is either feeling lonely or connected as it is explicitly
mentioned in their recent posts. Out of 616 records, 308 users are lonely , and
308 users are connected . As in the previous studies [1,9], we also assume that
the emotional status is confidential. A malicious data miner will try to learn this
information of a user who has not revealed this information. Hence, emotional
status is the class attribute while building a classifier to learn the patterns for
discovering the emotional status of members of the social network.

Thus, the structure of the data set DFB consists of 23 non-class attributes and
the class attribute emotional status. Table 1 provides details of these attributes.

(a) Friendship probability graph (b) Friendship Network of 616 users

Fig. 1. The friendship links simulation

For example, the Profile Image attribute contains 12 categories based on the
image. If the image shows the user alone, then the value of the attribute is 1,
if the image shows the user with one or more family members, then the value
of the attribute is 2 and so on. The attribute Hometown contains two values
absent and present . If the hometown of a user is revealed, then the value of the
attribute is present ; otherwise, absent . The attribute Friend has four possible
values: high, medium, low and null depending on the user’s number of friends.
If the friendship information is not available, then the attribute has null .

However, DFB does not have any information relating the social network
links (i.e. friendship information). Therefore, we first simulate the connections
among users to construct a data set D′

FB that contains information relating social
network links. We set the probability of a link between two users inversely pro-
portional to the Hamming distance between the two users. We set the record-to-
record distance (or R2RD ∈ [0, 1]) between two users as the Hamming distance
divided by 23 (the number of non-class attributes).

Users having similar attribute values (i.e. low Hamming distance) are likely
to have common interests and thus are likely to have friendship links (social
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links) between them [14]. A link between two users will be a Bernoulli trial with
probability p where we set p as a high probability of a friendship link when the
R2RD is low. In particular, when the value of R2RD between two users is within
the range of 0.0 and 0.2, then we set the link probability p linearly between 0.9
and 0.7. When R2RD is between 0.2 and 0.3, then the link probability p is linear
between 0.7 and 0.5. Thus, for example, if the R2RD between two users is 0.3,
then we draw a link between them with probability 1/2; that is, it is equally
likely there is no connection. Figure 1(a) provides the plot that determines the
link probability p as a function of R2RD. In this model, even if the R2RD is
large, between 0.6 and 1, there is still some probability that the users are linked
as friends. Figure 1(a) shows that 1258 friendship links were created among users
whose R2RD is between 0.1 and 0.2. Figure 1(b) shows a social network drawn in
the way, where the dots represent the users and the links represent the friendship
between the users.

Once the friendship links are simulated we can compute the m(u, a = v)
for every user u and attribute-value pair a = v. Recall that the data set DFB

has 23 non-class attributes and a class attribute. A user u is represented by
a record r ∈ DFB that has 24 attribute values. For each attribute value of u
we compute m(u, a = v). Thus, for each attribute-value pair, we create a new
attribute containing m(u, a = v) for each user u. Let us call these newly created
attributes “link attributes” and the original 23 attributes “regular attributes”.
Therefore, when we consider the link information, the expanded data set D′

FB has
now altogether 24 + 24 = 48 attributes. That is, in the expanded data set D′

FB,
we have 47 non-class attributes and a class attribute containing two possible
values: lonely and connected .

We also utilize a synthetic data set as per those synthetic OSN data sets [15].
This data set consists of 11 non-class attributes which are given in Table 2. The
data contains 1000 records (489 male users and 511 female users) and 50,397
friendship links. These are also synthetically generated friendship links [15]. We
shall consider two version of this data set. In the first, we take political orientation
as the confidential attribute of the data set and it is denoted by DPolitical. In
the second one, now DSexor we consider sexual orientation as the confidential
attribute. Both of this will have 10 non-class attributes (but they exchange
sexual orientation and political orientation as the class attribute).

After preparing DPolitical and DSexor, we calculate SAN metric values for each
attribute as we did for D′

FB. This results in expanded data sets D′
Political and D′

Sexor

respectively with 11 + 11 = 22 attributes one of which is the confidential class
attribute.

2.2 Empirical Demonstration

We now empirically demonstrate the impact of considering social links on indi-
vidual’s privacy. For a data set D, in our experiments, we split the users in
10 disjoint groups: {D1,D2,D3, . . . , D10}. For example, for DFB |Di

FB| = 61 for
i = 1, . . . , 9 and |D10

FB| = 67. For the i-th iteration the users in Di are considered
those users who wish to keep their confidential attribute unpredictable from the
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Table 2. Attributes of synthetic dataset.

Attribute name Attribute values

Age Contains 7 categories: 18–25, 26–35, 36–45, 46–55, 56–65, 66–75, 76–85

Gender Male, female

Residence Contains 5 categories: palo alto, santa barbara, san jose, boston,

winthrop

Religion Contains 7 categories: christian, hindu, jewish, muslim, sikh, other

religions, no religious affiliation

Marital status Contains 4 categories: single, married, divorced, widowed

Profession Contains 7 categories: image shows the user: manager, professional,

service, sales and office, student, natural resources construction and

maintenance, production transportation and material moving

Political orientation Contains 7 categories: absent sexual information, bisexual,

heterosexual, homosexual

Political orientation Contains 7 categories: far left, left, centre left,centre, centre right, right,

far right

Like 1 Contains 5 categories: entertainment, music artist, drink brand, soccer

club, tv show

Like 2 Contains 5 categories: entertainment, music artist, drink brand, soccer

club, tv show

Like 3 Contains 5 categories: entertainment, music artist, drink brand, soccer

club, tv show

Class attribute Political orientation or sexual orientation (any one at a time)

adversary M , while the adversary has the data of the other users ∪10
j=1D

j \ Di

who have revealed such confidential attribute.
For each user U in Di, we use PrivAdv repeatedly to identify the sensitive

rules Ru. In each iteration, the primary attribute obtained from Ru is suppressed
until Ru = ∅. At this stage, PrivAdv considers U ’s privacy protected. Different
users in Di have different attribute-value pairs suppressed.

How, we complement the columns of ∪10
j=1D

j \Di and Di with the link infor-
mation, essentially considering D′ instead of D. We impersonate the adversary
M who builds a forest from ∪10

j=1D
′j \D′i. That is, we assume the adversary uses

the SAN metric and thus obtains a new set of sensitive rules R
′u for each user U

in Di (the users in Di and D′i are the same, D′i has the SAN link information
as the metric m(u, a = v) as per Eq. (1)).

The assumed strategy of the adversary for each D′i is a decision-tree forest
SysFor [16] with the aim of building a forest of 10 trees. Throughout the experi-
ments, we use the standard set of parameters of SysFor. SysFor sometimes cannot
build 10 trees as requested due to various reasons such as not having enough
good attributes. Nevertheless, SysFor always builds at least 8 trees and 40 rules
for D′

FB data set (refer to Table 3). The sensitive rules (SR) obtained by the
adversary’s strategy are of 3 types, SRR tests only regular attributes, SRRL
tests both link attributes and regular attributes, SRL are sensitive rules made
of only the link attributes.
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Table 3. Analysis of sensitive rules with and without social link information

Run Trees Rules SR SRR SRRL SRL

1 9 40 31 1 7 23

2 8 71 41 1 8 32

3 8 50 33 0 9 24

4 8 69 42 3 6 23

5 8 83 43 3 20 20

6 8 81 44 3 13 28

7 9 60 41 3 8 30

8 8 49 35 1 13 21

9 8 61 42 3 13 26

10 8 48 37 0 5 32

Average 8.2 61.2 38.9 1.8 10.2 25.9

Table 3 contrasts the types of sensitive rules that are obtained from the link
attributes from D′

FB versus those that do not. Those users in Di
FB who have at

least one sensitive rule ∈ R
′u
FB for which no regular attribute value is suppressed by

PrivAdv are at risk, and we found that the adversary always found at least 20 of
these rules. That is, there are plenty of sensitive rules for which all values tested
in the antecedent are link attributes (i.e. the attributes that contain m(u, a =
v) values). Note again that these values are not suppressed by PrivAdv since
PrivAdv only uses regular attributes from DFB [1]. Users are not properly secured
by PrivAdv with respect to the social link information. For instance, consider
D′1

FB, any records satisfying any of the 23 SRLs for D1
FB are not secured by

PrivAdv. We can see from Table 3 that on an average there are 25.9 SRLs out of
38.9 SRs. This indicates that most of the sensitive rules obtained from D′

FB are
not taken care of by PrivAdv. This should not be surprising, the vast majority of
information derived in recommender systems and on-line social networks where
information is represented as graph models like the SAN derives from the link
information.

On the other hand, SysFor generates 9 trees in each component Di for both
D′

Political and D′
Sexor data sets. The average number of SRRL is comparatively higher

than SRL and SRR in each component of D′
Political. Out of 50 SR (i.e., sensitive

rules), on average, the number of SRRL is 41.6 where SRL (i.e., sensitive rules
with link attributes only) is approximately 0 in our experiments. In D′

Sexor data
set, on average, 180 SR are generated in each part Di and among these 176.4
are SRRL. Only 3.7 (on average) sensitive rules are SRL (i.e., containing both
regular and link attributes).

The limitation of PrivAdv is further defined by the confidential attribute-
value pair is revealed by rules in SRL or SRRL. If a user in D′i has a sensitive
rule in SRL or SRRL (PrivAdv does not suppress any of the attributes in the
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antecedent of the rule), then the user’s information is considered to be insecure,
otherwise the user’s information is considered to be secure.

In our experiments, we found that among 62 users in each cross fold of D′
FB

data set, 35 of them (56.62%) have protected information. However, 27 (43.38%)
out of 62 users having insecure information. In case of D′

Political and D′
Sexor data

sets, out of all 10 parts Di, on an average 41.7% and 70.5% users, respectively,
are having insecure information after PrivAdv has been applied. For these inse-
cure users, the attributes suppressed by PrivAdv are insufficient to protect their
privacy when an adversary uses a data set with link attributes.

3 Our Technique

Our technique 3LP secures the confidential attribute-value pairs of users even
when link attributes (obtained from social links) are taken into consideration.
Our technique suggests three layers of protection: Layer 1 suggests to suppress
necessary attribute values (and is equivalent to PrivAdv: Step 1 and 2 in Algo-
rithm1), Layer 2 suggests to hide some friendship information and Layer 3 sug-
gests to add new friends.

Step 1 Compute Sensitivity of Each Attribute for a User. In Step 1, we invoke
the function GetSensitiveRules() to create the set of sensitive rules Rs. The
set Rs is generic, but the function GetSensRulesForUser() uses the attribute
values of a particular user U and returns the set Ru of sensitive rules for U .
The set A

r/s
u of sensitive attributes is the union of all regular attributes in the

antecedents of the rules in Ru. The TOTAL COUNT [1] counts how many
times each regular attribute Ai appears in the antecedents of set Ru.

Step 2 Suppress Attribute Values as Necessary (Layer 1). 3LP identifies the
regular attribute An with the highest number of appearances in the set
Ru and suggests user U shall suppress the value of attribute An. As in
TOTAL COUNT [1], our first layer only suggests the suppression and leaves
the decision up to the user. Either way, the attribute An is removed from the
set As

u of sensitive attributes. If user U suppresses attribute An, then all sen-
sitive rules in Ru that have An in their antecedent are no longer applicable. In
this case, those sensitive rules are no longer in Ru. The treatment is repeated
with the next regular attribute with the highest number of appearances in
the set Ru until Ru is empty (in which case the algorithm terminates) or the
set A

r/s
u of regular attributes in Ru is empty (in which case the algorithm

continues with Step 3. We remark here that in the experiments of this study
we assume that a user follows all the suggestions.

Step 3 Hide Friendship Links as Necessary (Layer 2). If there are still some
sensitive rules Ru

j ∈ Ru, such rules must use only link attributes. We explore
if there is any link attribute m(u,An = v) whose value can be reduced by
deleting or hiding some friendship links in order to reduce the number of
sensitive rules in Ru. Unlike the regular attributes, the link attributes cannot
be suppressed easily. Moreover, as discussed when Eq. (1) was introduced, in
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many cases m(u,An = v) derives from the social links of the user and not the
explicit links the user has control.

However, we can offer to the user to carefully change the social links
(by deleting/hiding some friendships) and thus alter the values of the link
attributes m(u,An = v). For example, if we hide the friendship link of the
user U with a friend who also shares the same attribute-value pair An = v,
then we can decrease the link attribute value m(u,An = v). Moreover, we
can see from Eq. (1) that if we hide the friendship link of the friend t who has
the smallest Γ+(t) = Γs+(t) ∪ Γa+(t), then we can maximise the reduction of
m(u,An = v).

In Step 3, we first find the most sensitive link attribute m(u,An = v) for
the user U . We then check if the value of m(u,An = v) is higher than the split
point in a sensitive rule Ru

j , where one of the tests in the antecedent of Ru
j is

An ≥ split point. If it is, then we suggest user U shall hide the friendship link
with a friend who has the smallest Γ+(t) = Γs+(t)∪Γa+(t) in order to reduce
the m(u,An = v) value the most. If the user accepts the recommendation,
we recompute m(u,An = v).

The goal here is to reduce the value of m(u,An = v) below the split point
so rule Ru

j is no longer applicable to U . We continue the process of hiding
friends until we get the a value of m(u,An = v) lower than the split point
in Ru

j . We then remove Ru
j and any other rules no longer applicable to user

U from Ru and repeat the process for another sensitive rule Ru
j that tests

m(u,An = v) ≥ some split point in it antecedent. At the end of Step 3, if we
still have some rules Ru

j ∈ Ru then we move to Step 4 (Layer 3).
Step 4 Add New Friends as Necessary (Layer 3). We again find the most

sensitive link attribute m(u,An = v) for the user. We check if there is any
sensitive rule Ru

j ∈ Ru that has an antecedent of the from m(u,An = v) ≤
some split point. If there is such Ru

j , then we aim to add friends and thus
increase the value of m(u,An = v) so that it eventually becomes greater
than the split point and thus Ru

j is no loner applicable to U . Our algorithm
3LP suggests the adding approach to the user U and the user shall make
the decision whether to add the friend or not. Our 3LP retrieves the possible
friend t with the smallest Γ+(t) = Γs+(t)∪Γa+(t), and recommends to add a
friendship link to t. This maximises the increase of the value of m(u,An = v)
and minimises the number of friendship links to be added.

4 Experimental Results and Discussion

We now present experimental results that validate our algorithm 3LP. We
apply 3LP on the expanded data sets named D′

FB, D′
Political and D′

Sexor separately.
We again partition the data sets into 10 disjoint parts, using one part as the
potential victims and 90% of the dataset as the data available for inferring con-
fidential attributes. Table 4 shows experimental results for D′

FB.
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Table 4. Number of insecure users after applying 3LP on expanded dataset D′
FB.

Run Number of
users in test
data set

Number of insecure users

After
using
PrivAdv

After
using
Layer 1
of 3LP

After using
Layer 1 and
Layer 2 of 3LP

After using
Layer 1,
Layer 2 and
Layer 3 of 3LP

1 61 18 18 15 0

2 61 40 40 36 0

3 61 35 35 19 0

4 61 9 9 9 0

5 61 35 35 33 0

6 61 29 29 27 0

7 61 20 20 17 0

8 61 10 10 10 0

9 61 34 34 22 0

10 67 38 38 28 0

Average 61.6 27 27 22 0

Earlier we saw that PrivAdv [1] could secure the confidential attributes of
only 56.62% users from the attribute inference attack that uses link information
on the D′

FB dataset. However, using algorithm 3LP the remaining 43.38% users
are protected. Later 1 is essentially PrivAdv, none of the information of the users
at risk is secured further. Typically, for a group of 61 users, 27 users are still at
risk after Layer 1. But, on average, 5 of them can prevent a breach of privacy by
hiding friends. In percentage terms, users whose confidential attribute is secure
increases to 64.52% after Layer 2, with a 7.9% increment with respect to Layer 1.
Although hiding a particular friend from user profile is currently unavailable on
Facebook these results suggest that the operators of OSN such as Facebook may
consider adding this option to a user profile. That is, enable users to select the
automatic masking of some friendships to any data analyst so their confidential
attribute (already not present) can not be inferred.

Moreover, to secure the data of the remaining users, our experimental results
show that on an average 22 users need to add more friends to prevent a breach
of privacy. (i.e., Layer 3 of 3LP). Of the users who are not protected by previous
approaches (Layer 1), equivalently 83.84% (22 out of 27) need to do it by adding
friends. While choosing the friend during addition, lower degree friends carry
more impact on the metric function values.

Although adding more friends may seem unrealistic in OSNs settings, and
other risks may derive from linking with strangers, we believe the operators of
OSNs would be able to perform this. Certainly ensuring the privacy of their users
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Algorithm 1. 3LP()
Input : User U, attribute C that U considers confidential is the class attribute, dataset D having N records,

A is the set of non-class attributes where Ar ⊂ A is the set of regular attributes and Al ⊂ A is the
set of link attributes, C denotes the class attribute C and G the graph information.

Output : Recommendations for U to act on some attributes in A.
Variables : An=the nth attribute

Rs= set of sensitive rules

Step 1: Compute Sensitivity of Each Attribute for a User
Rs ← GetSensitiveRules(D, C)

Ru ← GetSensRulesForUser(Rs, U)
Counteri ← 0; ∀Counteri ∈ Counter /*Counteri shall total the number of appearances of Ai ∈ Ar in
the set of sensitive rules*/;

A
r/s
u ← φ /*Initially As is set to null*/;

foreach Ru
j ∈ Ru do

foreach attribute An ∈ Ar do
if An is in the antecedent of Ru

j then

Countern ← Countern + 1

A
r/s
u ← A

r/s
u ∪ {An} /* Add the nth attribute in As */

end

end

end

end
Step 2: Suppress Attribute Values as Necessary for the User

while Ru �= φ OR A
r/s
u �= φ do

An ← maxarg(Counter) /*Indentify the attribute that appears the most in Ru*/
SuggestSuppress(An) /*Suggest the user to suppress the attribute value for An*/

A
r/s
u ← (A

r/s
u \ {An})

Counter ← (Counter − Countern) /*The counters are kept aligned with the attributes*/
if An is suppressed then

Ru ← (Ru \ FindRules(Ru, An)) /*Rules using An in preconditions are removed*/
end

end

end
Step 3: Hide Friendship Links as Necessary for the User

An ← FindMostSensitive(Al, Ru, U, G)/*An = V al(m(u, a))*/
while An �= null do

a ← WhichAttr(An, Al)
foreach Ru

j ∈ Ru do

if An ∈ IsT ested(Ru
j ) and V al(An) ≥ SplitP oint(Ru

j , An) then

while V al(An) ≥ SplitPoint(Ru
j , An) and MoreF riends(U, G) do

f ← FriendWithLeastDegree(G, D, U, a)
SuggestHide(f)
if t ∈ IsHidden(f) then

G ← RemoveLink(G, U, f)
Recompute(An, G, D, U)

end

end

end
Ru ← Ru \ {Ru

j }
end
Al ← Al \ {An}

An ← FindMostSensitive(Al, Ru, U, G)/*An = V al(m(u, a))*/
end

end
Step 4: Add New Friends as Necessary for the User

An ← FindMostSensitive(Al, Ru, U, G)/*An = V al(m(u, a))*/
while An �= null do

a ← WhichAttr(An, Al)
foreach Ru

j ∈ Ru do

if An ∈ IsT ested(Ru
j ) and V al(An) ≤ SplitP oint(Ru

j , An) then

while V al(An) ≤ SplitP oint(Ru
j , An) and MoreUsers(U, G) do

f ← UserWithLeastDegree(G, D, U, a)
SuggestAdd(f)
if t ← IsAdded(f) then

G ← AddLink(G, U, f)
Recompute(An, G, D, U)

end

end

end
Ru ← Ru \ {Ru

j }
end
Al ← Al \ {An}

An ← FindMostSensitive(Al, Ru, U, G)/*An = V al(m(u, a))*/
end

end
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Table 5. Number of insecure users after applying 3LP on the expanded dataset D′
Political

and D′
Sexor.

D′
Political Number of insecure users

Run Number of
users in Di

After using
PrivAdv

After using
Layer 1
of 3LP

After using
Layer 1 and
Layer 2 of 3LP

After using
Layer 1,
Layer 2 and
Layer 3 of 3LP

1 100 17 0 X X

2 100 15 0 X X

3 100 12 0 X X

4 100 100 99 0 X

5 100 20 0 X X

6 100 35 0 X X

7 100 29 0 X X

8 100 97 95 0 X

9 100 53 39 0 X

10 100 39 0 X X

Average 100 41.7 23.3 0 X

D′
Sexor Number of insecure users

Run Number of
users in Di

After using
PrivAdv

After using
Layer 1
of 3LP

After using
Layer 1 and
Layer 2 of 3LP

After using
Layer 1,
Layer 2 and
Layer 3 of 3LP

1 100 69 1 0 X

2 100 69 0 X X

3 100 67 0 X X

4 100 75 7 0 X

5 100 86 15 0 X

6 100 77 0 X X

7 100 60 0 X X

8 100 74 0 0 X

9 100 63 5 0 X

10 100 65 0 X X

Average 100 70.5 2.8 0 X

[X = This layer is not required]

is in the operators’ best interest, Thus, our results here suggest that operators
can suggest to users the addition of some synthetic friends. Alternatively, they
could use such technique to sanitise the data before releasing it to data analysts.
We plan to focus on this in our future work. On the other hand, in Table 5 we
present respectively the experimental results with D′

Political and D′
Sexor. The average
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Table 6. Required number of attribute Suppression, Friend Deletion or Addition for
each insecure user suggested by 3LP in expanded data set D′

FB.

Run Average number of
attribute
suppression (per user) in
Layer 1 of 3LP

Average number of
friends needed to be
hidden (per user) in
Layer 2 of 3LP

Average number of
friends needed to be
added (per user) in
Layer 3 of 3LP

1 0 1 2

2 0 1 1

3 0 1 1

4 0 0 1

5 1 2 2

6 0 1 2

7 1 1 1

8 0 0 1

9 1 1 2

10 0 1 2

Average 0 1 2

results show that, for a group of 100 users, about 23 and 3 (after rounding) users
are still insecure after applying the first layer of 3LP on D′

Political and D′
Sexor data

sets respectively.
In order to secure these users we then apply Layer 2 of 3LP (i.e., obfuscate

friends from friend lists) and we notice that no more users are at risk (after
applying Layer 2 of 3LP) in both D′

Political and D′
Sexor data sets. Hence Layer 3

of 3LP is not required in our experiments for both of these data sets.
The Column 2 of Table 6 shows the number of attributes needed suppression

in Layer 1 of 3LP. Please note that these are the suppressions made in addition
to the suppressions suggested by the regular PrivAdv. The average number of
attribute suppression (Layer 1 of 3LP), on the other hand, is higher both in
D′

Political and D′
Sexor compared to D′

FB. The reason may be the number of generated
SRR (i.e., sensitive rules with regular attributes) is much lower for D′

FB.
Our results also show that the burden of additions and obfuscations of friends

is not that large. For example, in D′
FB data set, we need to hide/add at most

1–2 friends, on average, in each partition Di to secure the confidential attribute
(refer to Table 6).

In case of the data sets D′
Political and D′

Sexor, we need to hide 3–4 friends, on aver-
age, in each partition whereas, Layer 3 is not required in our experiments (refer
to Table 7).
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Table 7. Required number of attribute Suppression, Friend Deletion or Addition for
each insecure user suggested by 3LP in expanded data sets D′

Political and D′
Sexor.

D′
Political Run Average number of

attribute
suppression (per user) in
Layer 1 of 3LP

Average number of
friends needed to be
hidden (per user) in
Layer 2 of 3LP

Average number of
friends needed to be
added (per user) in
Layer 3 of 3LP

1 1 X X

2 1 X X

3 1 X X

4 1 10 X

5 1 X X

6 1 X X

7 1 X X

8 1 6 X

9 1 11 X

10 2 X X

Average 1.1 2.7 X

D′
Sexor Run Average number of

attribute
suppression (per user) in
Layer 1 of 3LP

Average number of
friends needed to be
hidden (per user) in
Layer 2 of 3LP

Average number of
friends needed to be
added (per user) in
Layer 3 of 3LP

1 2 11 X

2 2 X X

3 2 X X

4 1 9 X

5 2 7 X

6 1 X X

7 1 X X

8 3 X X

9 1 14 X

10 2 X X

Average 2 4.1 X

5 Conclusion

We proposed 3LP, a privacy-preserving technique in order to protect the privacy
of Facebook users from attribute inference risks. Previous works did not consider
friendship network information which may create vulnerability to users’ privacy.
Our technique provides suggestions, to a user to suppress necessary attribute
values and fabricate friendship links, in order to protect sensitive attribute values
of the user. The technique can also enable a social network provider to query a
user whether to fabricate such links to preserve his/her privacy. Our experimental
results show that by hiding or adding a few friends in a user’s profile can protect
the user’s sensitive information from being inferred. Though hiding a particular
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friend from the user’s profile is currently unavailable on Facebook, the approach
here suggests that such feature could be added in order to protect users’ privacy.

In this paper, we have considered that only the user or few others in user’s
network are consumers of 3LP. If all friends in a user’s friend list continuously
use and adopt the recommendations of 3LP, then the calculation will be dynamic
and different. We believe this is an exciting avenue for further research.
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Abstract. Moving Target Defense (MTD) has emerged as a game
changer in the security landscape, as it can create asymmetric uncer-
tainty favoring the defender. Despite the significant work done in this
area and the many different techniques that have been proposed, MTD
has not yet gained widespread adoption due to several limitations. Specif-
ically, interactions between multiple techniques have not been studied
yet and a unified framework for quantifying and comparing very diverse
techniques is still lacking. To overcome these limitations, we propose a
framework to model how different MTD techniques can affect the infor-
mation an attacker needs to exploit a system’s vulnerabilities, so as to
introduce uncertainty and reduce the likelihood of successful attacks. We
illustrate how this framework can be used to compare two sets of MTDs,
and to select an optimal set of MTDs that maximize security within a
given budget. Experimental results show that our approach is effective.

Keywords: Moving target defense · MTD quantification · Framework

1 Introduction

Moving target defense offers a great potential in turning the typical asymmetry
of the cyber security landscape in favor of the defender [9], and many techniques
have been developed since the term first surfaced in the literature. However,
each technique only addresses a narrow subset of potential attack vectors and
different techniques tend to measure their effectiveness in different and incom-
patible ways. Additionally, in order to provide a comprehensive security solution,
multiple techniques should be used jointly, but this requires the selection of an
optimal subset of available techniques. Although several surveys note where cer-
tain MTDs might not work well together [12], or give a qualitative estimate of
their effectiveness and cost [6], a quantitative framework that can accommodate
any existing or future MTDs is still needed for this area of research to progress
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past specialized, isolated solutions. To address this pressing need, we present a
novel framework that captures the relationships between available MTDs and
the information such MTDs may affect through probabilistic measures. It also
captures the relationships between services, their weaknesses, and the knowledge
required to exploit such weaknesses to probabilistically determine the effective-
ness of any given technique or set of techniques, regardless of how they operate.
Our framework presents the following desirable attributes: (i) generality – the
relationship between MTDs and the knowledge they protect defines an interface
that enables to plug any MTD into the framework; (ii) extensibility – the model
can be extended to accommodate future MTDs by introducing new elements,
such as additional knowledge blocks or classes of weaknesses; (iii) resilience – as
the framework addresses generic classes of weaknesses rather than specific vul-
nerabilities, the model can address both known and unknown (zero-day) attacks;
(iv) usability – the framework is simple and intuitive, can be used to compute
utility estimates at different levels of granularity, and can incorporate cost in the
estimation of utility.

The remainder of the paper is organized as follows. Section 2 discusses related
work, whereas Sect. 3 covers our threat model and underlying assumptions. The
framework itself is presented in detail in Sect. 4 with a simple running example,
while a more complex case study is discussed in Sect. 5. Then, Sect. 6 shows two
applications of the proposed model. Finally, Sect. 7 discusses potential future
work and gives some concluding remarks.

2 Related Work

Many different metrics are used in the literature to measure the effectiveness of
MTDs, such as attacker’s success rate [3], or metrics for deception, deterrence,
and detectability [8]. Still others utilize multiple metrics (productivity, success,
confidentiality, and integrity) for both the attacker and the defender [16], lead-
ing to confusion over the multiple dimensions. However, all these metrics only
evaluate a few select MTDs. One expert survey provides a thorough assessment
of the effectiveness and cost of many techniques across the spectrum of exist-
ing MTDs [6], but the survey is qualitative in nature and potentially subject to
reviewer’s bias. Our work leverages existing work on attack graphs [10], particu-
larly those approaches that evaluate security by looking at how the probability
of a successful attack propagates over an attack graph [15]. The TREsPASS
project1 provides a holistic view of an organization’s information security risk.
It provides a visualization framework that combines the impact of vulnerability
exploitation, physical security breach and social engineering on the target orga-
nization. This framework can be used to analyze several properties of multi-step
attacks such as the required effort or time, and likelihood of success. However,
attack graphs cannot be readily used with every MTD, as they are often tied
to specific vulnerabilities. In fact, several MTDs can drastically alter a system’s
attack surface, requiring to generate an entirely new attack graph every time
1 http://www.trespass-project.eu.

http://www.trespass-project.eu
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the MTD changes the system’s configuration, which is not feasible in practice.
Our work is also inspired by research on autonomous systems, particularly self-
protecting systems [1], which autonomously change their settings to adapt to
their environment, implicitly creating a moving target. In order to do so effi-
ciently, they must quantify the effectiveness and cost of all possible changes.

3 Threat Model and Assumptions

The general nature of our model lets us make very broad, worst-case assumptions
about the cyber threats we are trying to protect against. In particular, we assume
that attackers can exploit any possible attack vector. Most techniques described
in the literature only protect against a narrow subset of possible attacks and no
single MTD can protect against all possible attack vectors. This is handled by
our model by providing the ability to combine multiple MTDs in a defense-in-
depth approach. We also make the worst-case assumption that no static defense
can prevent an attack, as the attacker has virtually unlimited time to plan and
execute an attack and zero-day exploits can evade static defenses. Only MTDs
are considered to have an effect on the attacker’s success rate, and even then,
an MTD may not be perfect. We assume that attackers can be stopped or at
least delayed by preventing them from acquiring accurate knowledge about the
target system. Our primary focus here is on the reconnaissance phase, when
that knowledge is gathered prior to planning and executing attacks. Our goal
can be achieved by either preventing attackers from accessing that knowledge or
delaying them until that knowledge is no longer useful.

Finally, we make several additional simplifying assumptions throughout the
paper that we summarize here. Future work will allow us to revise many of
our assumptions in order to further generalize our approach. We assume that
services and weaknesses are time-invariant. We also assume that services and
knowledge blocks are independent, but multiple services with dependencies could
be modeled. We currently assume that each MTD has a predefined optimal
configuration of its parameters, and that, if multiple MTDs affect a knowledge
block, they do not interact and only the most effective one is considered.

4 Quantification Framework

In this section, we present the proposed quantification framework, which, as
shown for the motivating example of Fig. 1, consists of four layers: (i) a time-
invariant service layer representing the set S of services to be protected; (ii) a
weakness layer representing the set W of general classes of weaknesses that
may be exploited; (iii) a knowledge layer representing the set K of all possible
knowledge blocks required to exploit those weaknesses; and (iv) an MTD layer
representing the set M of available MTD techniques.
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Fig. 1. Quantification framework layers

4.1 Mathematical Model

The proposed MTD quantification framework can be formally defined as a
7-tuple (S,RSW ,W,RWK ,K,RKM ,M), where: (i) S, W, K, M are the sets
of services, weaknesses, knowledge blocks, and MTD techniques, respectively;
(ii) RSW ⊆ S × W represents relationships between services and the common
weaknesses they are vulnerable to; (iii) RWK ⊆ W × K represents relationships
between weaknesses and the knowledge blocks required for an attacker to exploit
them; and (iv) RKM ⊆ K × M represents relationships between knowledge
blocks and the MTD techniques that affect them. The proposed model induces
a k-partite graph (with k = 4) G = (S ∪ W ∪ K ∪ M,RSW ∪ RWK ∪ RKM ).

Layer 1: Service Layer. The first layer represents the set S of services we wish
to protect against attacks. We assume that the services are time-invariant, i.e.,
the functionality of the services does not change over time, and services cannot
be taken down to prevent attacks, as this action would result in a denial-of-
service. We only consider one service in the case studies presented in this paper,
but the model could be extended to consider multiple interdependent services,
similarly to how an exploit chain might occur within attack graphs [10,15].

Layer 2: Weakness Layer. The second layer represents the set of weaknesses
W that services are vulnerable to. We choose general classes of weaknesses rather
than specific vulnerabilities because there are too many vulnerabilities to enu-
merate, some vulnerabilities are unknown, and, depending on the MTD used
(e.g., OS rotation), specific vulnerabilities may change over time. Using general
classes of weaknesses when building the model makes them time-invariant.

The examples used in this paper draw these weaknesses primarily from
MITRE’s Common Weakness Enumeration (CWE) project [5], particularly from
those known as the “Top 25 Most Dangerous Software Errors.” Although many
of the top software errors are primarily the result of bad coding practices and
better solved at development time, the top software errors enabling exploits such
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as SQL Injection, OS Injection, and Classic Buffer Overflow can be addressed
at runtime by MTDs (e.g., SQLrand) and make for good general categories
of weaknesses. The Microsoft STRIDE Threat Model [7] has also been used
as a source of general threats in MTD research [14] and can fill in areas where
CWE may be lacking. For example, Information Disclosure (eavesdropping) and
Denial of Service are not specifically addressed by CWE. Our example shows two
weaknesses, SQL Injection and Buffer Overflow. More weaknesses, such as OS
Injection, might be included in a more complex example, while other weaknesses,
such as Cross-Site Scripting, would not be applicable to this service.

Layer 3: Knowledge Layer. The third layer represents the knowledge blocks
K required to effectively exploit weaknesses. This knowledge is required to plan
an attack even when no MTD is deployed (such as a victim’s IP address) or it
may be an additional piece of information required due to the use of an MTD. For
example, SQLrand [2] adds a keyword to SQL commands, which must be known
for a malicious user to perform SQL injection. We assume that knowledge blocks
are independent and must be acquired using different methods. For example,
IP address and port number should not modeled as separate knowledge blocks
because a method to determine one would also reveal the other.

The relationship between the knowledge and weakness layers is many-to-
many. A weakness may require several pieces of knowledge to be exploited, and
a knowledge block may be key to exploiting several weaknesses. This layer may
also be extended as new MTDs – disrupting new and different aspects of an
attacker’s knowledge – are developed.

In our example, we assume that, in order to execute a SQL Injection attack,
the attacker must gather information about the service (e.g., name and version
of the specific DBMS) and the network configuration (e.g., IP address). In order
to execute a Buffer Overflow attack, an attacker must know the IP address
and some information about the vulnerable memory locations. A higher-fidelity
version of this model may take a knowledge block and break it down into smaller,
more specific items that are specifically targeted by available MTDs.

Layer 4: MTD Layer. The fourth layer of the model represents the set M
of available MTDs. As MTD techniques provide probabilistic security, we model
the impact of an MTD Mi on the attacker’s effort to acquire knowledge Kj by
associating a probability Pi,j – representing the attacker’s success rate – with
the relation (Kj ,Mi). As mentioned in the Sect. 3, when only static defenses
(i.e., no MTD) are deployed, an attacker will acquire the necessary knowledge
without significant effort, which we model by associating a probability of 1.

For example, if technique M1 in Fig. 1 (Service Rotation) reduces an
attacker’s likelihood of acquiring knowledge block K1 (i.e., correct version of
the service) by 60%, we would label that edge with P1,1 = 0.4. If an MTD
delays an attacker by some factor, we can also express that as a probability that
the attacker will not gather the correct information in a timely manner. For
example, an MTD that expands addressable memory by a factor of 10 might
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reduce the attacker’s probability of success to 0.1, so Pi,j = 0.1. The exact
methodology for determining the value of Pi,j may vary from MTD to MTD,
and we are investigating this problem as a separate line of research that goes
beyond the scope of this paper. Specifically, we are developing a general app-
roach to model the tradeoff between cost and effectiveness of MTD techniques,
as we vary the values of a technique’s tunable parameters and other aspects of
the attacker/defender interaction. Ultimately, this approach will enable us to
identify the optimal configuration for each technique. Therefore, in this paper,
we assume that such optimal configuration has already been identified for each
available MTD technique, along with the corresponding value of Pi,j and the
corresponding cost.

Expressing MTD effectiveness in terms of the probability an attacker will
succeed in acquiring required knowledge enables us to analyze multiple tech-
niques using a uniform approach that yields values in the [0,1] range, with a
theoretically perfect MTD yielding Pi,j = 0, and a completely ineffective MTD
yielding Pi,j = 1. In our example, we use service rotation to disrupt knowledge
about the version of the service, and näıvely assume that rotating between 4
services reduces the attacker’s probability of gathering the correct information
to P1,1 = 0.25. We apply an IP address rotation scheme to mask the victim’s IP
address. It has been shown that perfect shuffling reduces the attacker’s likelihood
of guessing the correct IP address by 37% [3]. Using a conservative estimate, we
assume P2,2 = 0.75. Finally, to protect knowledge of the memory layout, we use
a dynamic ASLR scheme. Although dynamic ASLR only adds a single bit of
entropy compared to typical ASLR [13], this further delays the attacker, result-
ing in a probability P3,3 = 0.5 of gathering the correct information.

4.2 Computing MTD Effectiveness

We compute an MTD’s effectiveness starting from layer 4 of the model and
working our way down to find the overall probability of attacker’s success. First,
we define P (Kj) as the probability that the attacker has the correct information
about knowledge block Kj , and compute P (Kj) for each Kj in layer 3, based
on the active MTDs affecting it. If there is no active MTD, we assume that the
attacker is guaranteed to obtain that information, i.e., P (Kj) = 1.

In our example, each knowledge block is affected by only one MTD. When
multiple MTDs affect the same knowledge block, we make the simplifying
assumption that the resulting effect is driven by the best-performing MTD.
Thus:

P (Kj) =

{
1, if �Mi ∈ M s.t. (Kj ,Mi) ∈ RKM ∧ active(Mi)

min
Mi∈M s.t. (Kj ,Mi)∈RKM

Pi,j ∧ active(Mi), otherwise (1)

A possible improvement to the model would be to capture the effect of mul-
tiple MTDs acting on the same knowledge block by using a function modeling
either diminishing returns or some other interaction between multiple MTDs.
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Next, we determine the probability P (Wk) that an attacker has gained all
the knowledge required to exploit a given weakness Wk. Since each knowledge
block is independent, this is simply the product of the probabilities associated
with all knowledge blocks leading to it, as shown by Eq. 2.

P (Wk) =
∏

Kj∈K s.t. (Wk,Kj)∈RWK

P (Kj) (2)

In our example, when calculating P (W1) and P (W2) for SQL Injection and
Buffer Overflow, respectively, we obtain P (W1) = 0.25 · 0.75 = 0.1875 and
P (W2) = 0.75 · 0.50 = 0.375.

Finally, we determine the defender’s utility U gained by deploying MTD tech-
niques based on the reduced probability of exploit for each class of weaknesses.
In this work, the utility is defined as a function of the probability P (Sl) that an
attacker can compromise a service Sl by exploiting any of the weaknesses leading
to it. P (Sl) can be computed as the probability of the union of non-mutually
exclusive events, using the Inclusion-Exclusion Principle [4]. With respect to our
running example, P (S1) can be computed as follows:

P (S1) = P (W1 ∪ W2) = P (W1) + P (W2) − P (W1 ∩ W2) (3)

As W1 and W2 are not necessarily independent (as shown in this example),
we cannot assume P (W1 ∩ W2) = P (W1) · P (W2). Instead, we must express
each P (W ) in terms of its corresponding independent knowledge blocks Kj ,
that is P (W1) = P (K1) · P (K2), P (W2) = P (K2) · P (K3), and P (W1 ∩ W2) =
P (K1) · P (K2) · P (K3), and then express P (S1) as a function of probabilities
P (Kj):

P (S1) = P (K1) · P (K2) + P (K2) · P (K3) − P (K1) · P (K2) · P (K3)

which results in

P (S1) = 0.25 · 0.75 + 0.75 · 0.5 − 0.25 · 0.75 · 0.5 = 0.469

For graphs with 3 or more weaknesses W∗ ⊆ W, we can expand Eq. 3 to the
generalized form of the Inclusion-Exclusion Principle [4]:

P

( ⋃
Wk∈W∗

Wk

)
=

|W∗|∑
i=1

⎛
⎝(−1)i−1 ·

∑
W′∈2W s.t. |W′ |=i

P

⎛
⎝ ⋂

Wj∈W′
Wj

⎞
⎠

⎞
⎠

Computing the probability of the union of multiple events is an NP-hard
problem that cannot be solved in better than O(2n) time [4]. However, the
general nature of the weaknesses in layer 2 of the model limits their number –
as opposed to vulnerabilities which may number in the thousands – keeping the
computing time manageable.

After computing P (Sl), we can easily compute the defender’s utility as
U = 1−P (Sl). Besides this simple approach, the utility could be a sigmoid func-
tion of P (Sl) with an inflection point centered around a desired effectiveness.
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Such functions are commonly used in autonomic computing [1]. The complete
computation for each of the values in our example is shown in Fig. 2. Note that
this choice of utility function relies upon the expectation that at least some mea-
sure of protection will be guaranteed for at least one knowledge block for each
weakness, otherwise the attacker will be guaranteed to exploit that weakness and
reduce the utility to 0. To handle this issue, utility can be defined as a function
of the probabilities to exploit each weakness.
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Fig. 2. Computing MTD effectiveness

5 Experimental Evaluation

We now present a more complex example to demonstrate the capabilities of our
model. As seen in Fig. 3, we consider the same basic service but protect against
two additional classes of weaknesses, OS Injection [5] and Eavesdropping (related
to Information Disclosure from the STRIDE model [7]).

In this case study, more fine-grained knowledge blocks have been considered
in order to provide more detail or to fit the specific MTDs selected for the case
study. For example, knowledge block Knows(memory) has been broken down
into separate blocks related to system call mapping, memory address, and stack
direction. Similarly, SQL Injection now explicitly requires knowledge of keywords
appended to SQL commands and some knowledge of the database schema, both
of which are disrupted by SQLRand. Most importantly, we can now observe the
many-to-many relationships between weaknesses, knowledge blocks, and MTDs,
and conclude that finding the optimal solution is no longer trivial. However, using
approximate yet reasonable values of Pi,j for each MTD and cost constraints,
we can determine the final utility as a function of selected MTDs using the steps
previously shown and find an optimal solution using a problem solving method,
such as stochastic hill climbing or evolutionary methods.

As a proof of concept, we can take the model in Fig. 3 and perform all the
necessary computations programatically. As mentioned earlier, we are studying



132 W. Connell et al.

P1,1

P4,4

P5,5

P8,7

P10,8

P11,10

P(K1) P(K2 ) P(K3 ) P(K10 )P(K4 ) … P(K9 )…P(K8 )

P(W1) P(W2) P(W3) P(W4)

P(S1)
U

P2,1 P2,4 P2,5

P3,2 P3,3

P6,4 P6,10

P7,8P7,6

P9,5 P9,9

Addi onal constraint: each MTD has a cost C
Solve for max(U) within a certain budget

S1
(SQL DB)

SQL 
Injec on

Buffer 
Overflow

M1
Service 

Rota on
M4

IP Rota on
(MOTAG)

M8
ASLR

Knows(IP)Knows 
(applica on)

Knows
(syscall_mapping)

OS 
Injec on

Knows(OS)

M5
OS Rota on

Eaves-
dropping

Knows(path)Knows 
(instr_set)

Knows 
(stack_dir)

Knows
(DBschema)

Knows 
(keyword)

M3
SQLRand

M11
Distrac on 

Cluster

M7
Mul variant

Systems

M6
Mutable 

Networks

M2
Intrusion-

Tolerant Sys

M9
TALENT

M10
Reverse Stack 

Execu on

Knows 
(mem_address)

P(S1): Chance a acker reaches goal
U = U lity factor: chance of 0 exploits occurring

Pi,j = probability of a acker having knowledge, based on disrup on from 1 MTD
P(Kj) = probability of a acker having knowledge, based on all MTDs
P(Wk) = probability of a acker having all required knowledge (exploit occurs)

Fig. 3. Case study quantification framework

Table 1. Sample case study evaluation

PDTM i,j Cost Active? Pi,j (effective) Cost (effective)
M1 (Service Rotation) P1,1 0.500 15 No 1.000 0
M2 (Intrusion Tolerant Systems) P2,1 0.900 25 No 1.000 0

P2,4 000.1009.0
P2,5 000.1009.0

M3 P)dnaRLQS( 3,2 0.300 20 No 1.000 0
P3,3 000.1003.0

M4 (IP Rotation/MOTAG) P4,4 0.900 25 No 1.000 0
M5 (OS Rotation) P5,5 0.700 15 No 1.000 0
M6 (Mutable Networks) P6,4 0.500 20 Yes 0.500 20

P6,10 005.0005.0
M7 (Multivariant Systems) P7,6 0.500 20 No 1.000 0

P7,8 000.1005.0
M8 P)RLSA( 8,7 0.500 10 Yes 0.500 10
M9 P)TNELAT( 9,5 0.500 20 No 1.000 0

P9,9 000.1005.0
M10 (Reverse Stack Execution) P10,8 0.500 20 No 1.000 0
M11 (Distraction Cluster) P11,10 0.500 20 No 1.000 0

Knowledge: Total Cost 30
Knows(application) 1.000 Total Budget 120
Knows(keyword) 1.000
Knows(DBschema) 1.000 Cost:

005.0)PI(swonK High 25
000.1)SO(swonK Medium 15

Knows(syscall mapping) 1.000 Low 5
Knows(mem address) 0.500
Knows(stack 000.1)rid Effectiveness:
Knows(instr 000.1)tes High 0.3

005.0)htap(swonK Medium 0.5
Low 0.9

Chance of attack success:
005.0noitcejnILQS
052.0noitcejnISO
052.0wolfrevOreffuB
052.0gnippordsevsaE

Chance of attacker success: 0.500
005.0ytilitU
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the relationship between cost and effectiveness of MTD techniques as part of
another line of research. For the purpose of this paper and the evaluation we
are presenting, we obtained qualitative values of Pi,j and cost from an expert
survey [6] which estimates the relative effectiveness and cost of several MTD
techniques by grouping them into coarse-grained categories of Low, Medium, or
High. Whether or not an MTD is active can be treated as a Boolean variable,
with inactive MTDs implying an attacker’s probability of success of 1 and a cost
of 0. The values from a sample MTD setup are shown in Table 1. The interim
calculations for the probabilities of each knowledge block being acquired and
each weakness being able to be exploited are also shown.

6 Applications

In these section, we discuss two different applications of our framework.

6.1 Comparing MTDs

Given a set M of MTD techniques, we want to identify the one that provides the
highest overall utility. With respect to the example of Fig. 3, we start from the
baseline deployment, shown earlier in Table 1, including M6 (Mutable Networks)
and M8 (ASLR) to ensure we have a utility value to compare with. We then
measure the updated utility value after individually adding each of the other
MTDs to our baseline deployment. From the results reported in Table 2, we find
that M3 (SQLRand) offers the greatest increase in utility, with M1, M2, and
M3 being the only ones offering any increase at all. To explain these results,
we observe that there is a lower bound on P (S1) that translates into an upper
bound on U , defined by max(P (W1), P (W2), P (W3), P (W4)).

In other words, the overall defense can only be as strong as the protection
against exploitation of its most vulnerable weakness, which in turn benefits from
the deployment of multiple MTDs. Therefore, given the baseline conditions, only
an MTD that affects the most vulnerable weakness will yield any improvement
in our utility value. This procedure could be used iteratively in an attempt to
find an optimal solution in a greedy manner, but there would have to be some
way to handle cases where no MTD adds any utility (such as random selection).

Table 2. Improvement from adding MTDs

MTD M1 (Service Rotation) M2 (Intrusion Tolerant Systems) M3 (SQLRand) All others

Utility 0.5625 0.513 0.614 0.5

Delta 0.0625 0.013 0.114 0.0
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6.2 Selecting Optimal Defenses

Given a set M of MTDs and a budget, we would like to select the optimal set of
MTDs that yield the highest utility with a total cost within the budget. As we
now have a tool to evaluate the utility of any MTD deployment, we can also solve
for the optimal selection of MTDs, given the constraints that the deployment of
each MTD is a Boolean variable (either active or not) and that the sum of the
costs of selected MTDs be under our budget. For the purpose of evaluating our
framework and making the problem interesting, we selected a value of the budget
(120) halfway between 0 and the total cost of deploying all available MTDs (i.e.,
210). This choice ensured that a solution with utility greater than 0 would be
found and that approximately half the MTDs would be chosen as part of the
optimal solution. We solved using the generalized reduced gradient non-linear
algorithm [11] with random restarts to eliminate finding local maxima. After
solving, we obtain an optimal solution with the selected MTD highlighted with
a thicker red outline in Fig. 4 and detailed results, including margins of error for
our estimates of effectiveness, shown in Table 3.

We can observe that our choice of a utility function forces the selection of
a variety of MTDs such that each weakness has at least one MTD affecting
one of its knowledge blocks and that protection is evenly distributed over the 4
weaknesses. Visually, we can also observe that an MTD with the ability to affect
multiple knowledge blocks is inherently more powerful than one that only affects
one. However, if their cost is too high or effectiveness too low, it will still not be
chosen as part of an optimal solution. Similarly, an MTD that only affects one
knowledge block may be chosen if it is effective, low-cost, or affects a knowledge
block that still receives relatively weak protection from other MTDs.
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Table 3. Case study optimal configuration

PDTM i,j C Active? Pi,j (effective) C (effective)
M1 (Service Rotation) P1,1 0.500 ± 0.05 15 Yes 0.500 ± 0.05 15
M2 (Intrusion Tolerant Systems) P2,1 0.900 ± 0.05 25 No 1.000 0

P2,4 0.900 ± 000.150.0
P2,5 0.900 ± 000.150.0

M3 P)dnaRLQS( 3,2 0.300 ± 0.05 20 Yes 0.300 ± 0.05 20
P3,3 0.300 ± 0.05 0.300 ± 0.05

M4 (IP Rotation/MOTAG) P4,4 0.900 ± 0.05 25 No 1.000 0
M5 P)noitatoRSO( 5,5 0.700 ± 0.05 15 No 1.000 0
M6 (Mutable Networks) P6,4 0.500 ± 0.05 20 Yes 0.500 ± 0.05 20

P6,10 0.500 ± 0.05 0.500 ± 0.05
M7 (Multivariant Systems) P7,6 0.500 ± 0.05 20 Yes 0.500 ± 0.05 20

P7,8 0.500 ± 0.05 0.500 ± 0.05
M8 P)RLSA( 8,7 0.500 ± 0.05 10 Yes 0.500 ± 0.05 10
M9 P)TNELAT( 9,5 0.500 ± 0.05 20 Yes 0.500 ± 0.05 20

P9,9 0.500 ± 0.05 0.500 ± 0.05
M10 (Reverse Stack Execution) P10,8 0.500 ± 0.05 20 No 1.000 0
M11 (Distraction Cluster) P11,9 0.500 ± 0.05 20 No 1.000 0

Knowledge: Total Cost 105
Knows (1,application) 0.500 ± 0.05 Total Budget 120
Knows (1,keyword) 0.300 ± 0.05
Knows (1,DBschema) 0.300 ± 0.05 Cost:
Knows (1,IP) 0.500 ± 0.05 52hgiH
Knows (1,OS) 0.500 ± 0.05 Medium 15
Knows (1, syscall mapping) 0.500 ± 0.05 5woL
Knows (1, Mem Address) 0.500 ± 0.05
Knows (1,stack dir) 0.500 ± 0.05 Effectiveness:
Knows (1,instr set) 0.500 ± 0.05 High 0.3 ± 0.05
Knows (1,path) 0.500 ± 0.05 Medium 0.5 ± 0.05

Low 0.9 ± 0.05
Chance of attack success:

320.0noitcejnILQS ± 0.006
360.0noitcejnISO ± 0.013
360.0wolfrevOreffuB ± 0.013
052.0gnippordsevsaE ± 0.035

Chance of attacker success: 0.313 ± 0.043
786.0ytilitU ± 0.043

6.3 Extending the Framework

Our framework can accommodate any existing MTD as long as we can identify
the knowledge blocks it affects, the extent to which it disrupts that knowledge,
and how it relates to the weaknesses we plan to protect against. Another impor-
tant feature of our framework is the ability to be extended to accommodate any
future MTD that may be developed. A new MTD that affects existing knowl-
edge blocks may be simply added to the MTD layer of the model, while an MTD
that works in ways we have not yet considered might also require the addition
of new knowledge blocks. Even a new class of weaknesses could be added to the
model if the situation warrants it, making our model “future-proof” against new
developments in cyber threats.

7 Conclusions and Future Work

In this paper, we have introduced a framework for quantifying moving target
defenses. Our approach to quantifying the benefits of MTDs yields a single,
probability-based utility measure that can accommodate any existing or future
MTD, regardless of their nature. Our multi-layered approach captures the rela-
tionship between MTDs and the knowledge blocks they are designed to protect
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and the relationship between knowledge blocks and generic classes of weaknesses
that can be exploited using that knowledge. We have shown through case stud-
ies that we can compute the joint effectiveness of multiple MTDs as a function
of their individual effectiveness and, by doing so, we can make informed deci-
sions about which MTD or set of MTDs provide better protection based on the
security requirements or cost constraints.

Although the work presented in this paper represents a significant step
towards effective MTD quantification, several limitations still exist and will be
addressed as part of our planned future work. Specifically, limitations exist in
the following areas: (i) probability computation – our methods for computing
the probability Pi,j of knowledge disruption provide rough estimates, so a pro-
cedure needs to be developed to accurately assess the effectiveness of any MTD;
(ii) cost modeling – currently, we adopt a very simple notion of cost, and use
cost just as an additional constraint, whereas a more sophisticated notion of cost
could be introduced and taken into account in the computation of utility values;
and (iii) choice of utility function – the proposed utility function is based
on the assumption that all weaknesses need to be at least partially protected by
MTDs to prevent the utility from dropping to 0, therefore, if the risk of leaving a
specific weakness unprotected can be accepted, other classes of utility functions
could be explored. To address these limitations and further refine our model, we
plan to work on several aspects of the framework, as briefly described below.

Implementation and validation. To validate the model, we plan to deploy
multiple MTDs on our computing infrastructure and then examine their effec-
tiveness both in isolation – in order to determine the value of Pi,j for each MTD
– and jointly – in order to accurately study the combined cost and performance.

Application to multiple attack phases. Our model aims at disrupting an
attacker’s knowledge in the reconnaissance phase of the cyber kill chain. While
this may be the most cost-effective way to approach cyber security, no defense
is perfect, and we need to ensure multiple layers of defense. Some MTDs can
disrupt an attacker’s ability to maintain a foothold in the system, so we plan to
extend our framework to model this additional class of MTDs.

Application to dependent services. Our framework currently models
only independent services. Similar to attack graphs, an attacker may need to exe-
cute a sequence of exploits to reach a specific goal. Thus, we plan to extend our
framework by introducing a meta-model that captures the relationships between
services and the MTDs that can protect them from multi-step attacks.

Heuristics. Because of the O(2n) runtime to evaluate utility with the current
model, it may be necessary to develop heuristics to speed up the evaluation in
the case that the number of weaknesses grows to the point where using the model
becomes infeasible.

Confidence intervals. Because of the level of uncertainty of our probabilis-
tic values, we may not have a completely accurate utility value. With enough
experimental samples, we could introduce confidence intervals into our assertion
that a certain MTD or set of MTDs has a higher utility.
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Abstract. The Internet of Things (IoT) promises to revolutionize the
way we interact with the physical world. Even though this paradigm is
still far from being completely realized, there already exist Sensing-as-a-
Service (S2aaS) platforms that allow users to query for IoT data. While
this model offers tremendous benefits, it also entails increasingly chal-
lenging privacy issues. In this paper, we concentrate on the protection of
user privacy when querying sensing devices through a semi-trusted S2aaS
platform. In particular, we build on techniques inspired by proxy re-
encryption and k-anonymity to tackle two intertwined problems, namely
query privacy and query confidentiality. The feasibility of our solution is
validated both analytically and empirically.

1 Introduction

The interconnection of computational and sensing devices to the Internet is
expected to transform every single aspect of our lives. This novel paradigm,
already known as the Internet of Things (IoT) [16], brings about a whole set
of innovative services and Sensing-as-a-Service (S2aaS) [22,23] platforms play a
fundamental role as they allow querying IoT devices. In this model, the sens-
ing devices deployed by companies, administrations or citizens can be queried
through a sensing server, which acts as gateway, as shown in Fig. 1. This model
is already a reality and there are some companies, like Amazon (cf., AWS IoT
platform [1]), which are offering the infrastructure necessary for delivering these
sort of services.

While this model offers great opportunities to both industry and citizens, it
also poses serious privacy risks. In particular, there is the possibility of exposing
user interests to honest-but-curious sensing servers since they act as intermedi-
aries for the sensing devices. Therefore, it is paramount to provide the users of
these platforms with mechanisms that allow them to remain unlinkable from the
sensing devices they are interested in querying. This is precisely the main objec-
tive of this paper, to provide a solution to query privacy in Sensing-as-a-Service
scenarios where the access to the readings of sensing devices is managed by a
semi-honest sensing server, which may be interested in profiling the users of the
platform.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
S. De Capitani di Vimercati and F. Martinelli (Eds.): SEC 2017, IFIP AICT 502, pp. 141–154, 2017.
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Fig. 1. Sensing-as-a-Service platform

One may think that such a solution can be achieved with traditional public
key cryptography but there are some notable limitations to this approach. First,
the user needs to be aware of the public key of every single sensing device, which
raises evident usability and scalability issues. Moreover, it is necessary for the
user to check the status of the public keys, such as whether or not they have
been revoked. Moreover, if a query is intended for multiple (or all) sensing nodes,
the user has to query the sensors individually. This not only implies more energy
and bandwidth waste but it is also highly advisable to hide these issues from the
user, so as to facilitate the development and adoption of S2aaS platforms.

The main contribution of this paper is the QPSP (Query Privacy for Sensing
Platforms) protocol. The proposed protocol is based on proxy re-encryption
and k-anonymity techniques to provide both query confidentiality (i.e., hiding
the query itself and the sensed data) and query privacy (i.e., hiding the nodes
replying to the queries) in semi-trusted S2aaS platforms. The proposed scheme
is, to the best of our knowledge, the first solution to exploit these notions to
protect query privacy issues in sensing scenarios.

This rest of this paper is organized as follows. Section 2 analyzes previous
papers describing query privacy solutions in related domains. Next, in Sect. 3 we
provide a detailed description of the problem addressed by the QPSP protocol
and identify some general assumptions that are applicable to the rest of the
paper. The various phases of the QPSP protocol are described in Sect. 4 and
its privacy guarantees are analyzed in Sect. 5. In addition, we experimentally
evaluate the feasibility of our solution with current sensing devices in Sect. 6.
Finally, Sect. 7 presents the conclusions of the paper and outlines some potential
lines of future research.

2 Related Work

Most of the research in query privacy has been done in the area of Wireless
Sensor Networks. Although this problem can be trivially solved by making all
sensor nodes reply to every query, it also imposes severe energy requirements
on the sensor nodes. Consequently, some authors have striven to find the right
balance between privacy protection and energy consumption. The authors in [13]
propose reducing the amount of traffic generated by using data-aggregation. This
solution is only suitable for a particular type of query. A more general approach
is presented in [7], where the authors propose transmitting bogus queries to the
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network to hide the destination of real queries. Instead of sending bogus queries,
the authors in [12] propose hiding the recipient of the queries by sending them on
a particular path of nodes that contains the actual destination. Unfortunately,
the user needs to define the path, which is impractical for large-scale sensor
networks.

A completely different approach is to unlink the original data source from
the current location of the data, which is mostly achieved by having two types of
nodes: sensing and storage nodes. The authors in [14] propose having several data
replicas so that user queries are forwarded to a number of random points with the
hope that the query arrives at some of them. PriSecTopK [19] concentrates on
enabling top-k querying with the help of order-preserving encryption. A major
limitation of this scheme is the need for shared secrets between the user and
each sensing node. In addition, some papers [8,24] have considered the problem
of privacy-preserving range queries. Basically, the idea behind these schemes is
to transform data and queries into special codes that can be processed by storage
nodes without leaking information in the case they are compromised. All these
solutions restrict the user to a particular type of query.

Finally, some effort has been made to protect query privacy in urban sensing
scenarios. The approach followed in [11] is again based on data replication and
storage devices. Their scheme is complemented with bogus replies to hide the
data sources. A noteworthy difference with respect to our work is the adversarial
model, which is an external attacker located at the edge of the network.

3 Problem Definition

This section deals with the definition of the problem. First, we present a general
description of the system and then we illustrate the capabilities of the adversarial
model. This section introduces the main assumptions applicable to the rest of
the paper.

3.1 System Model

The system we are aiming for is composed of a substantial number of sensing
devices which can be queried through a sensing server. Without loss of generality,
we assume that the sensing devices are organized into clusters, where one node
acts as the head or leader of each cluster. However, it is also reasonable to assume
a more general model where the sensing server provides access to several sensing
networks, like the one depicted in Fig. 2, which is a typical configuration in fully-
fledged IoT scenarios. Note that the secure selection of cluster heads is beyond
the scope of this paper and the interested reader is referred to [21] for a survey.

Moreover, there are at least n > 1 cluster heads in the sensing network. The
cluster heads are considered to be able to communicate with one another and
also with the sensing server. In the more general model, the cluster heads of
each of the sensing networks are also necessarily interconnected. In either case,
the communication with other cluster heads can be done directly through the
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Fig. 2. General system model

Internet or by using the routing information available to them after the execution
of a secure clustering protocol. The routing information also allows the cluster
heads to determine how to reach any sensing device in the network.

Finally, we focus on a scenario where the readings of the sensing devices
are publicly available to anyone willing to access them. This is, for example,
the case of a Smart City [9]. Another important assumption is that the sensing
devices, including the cluster heads, are owned and managed by an entity (e.g.,
the city council) other than the one that governs the access to the readings of
the devices, namely the sensing server (e.g., Amazon). Moreover, the two entities
are considered not to collude against the users.

3.2 Adversarial Model

The adversarial model considered in this paper is semi-honest (or honest-but-
curious), which means that the adversary is assumed to follow the protocol but
may try to benefit from a privileged role in the system to obtain information
beyond what is permitted. More precisely, the adversary is interested in learning
information about the interests of a particular user based on the queries he/she
issues and the nodes responding to them.

We assume that the sensing server is a semi-honest adversary which has the
following capabilities:

– Content analysis: inspects any packet it receives in order to retrieve sen-
sitive information. The analysis is not limited to the payload of the packets
but may also include the packet headers. Thus, the adversary may learn the
query contents, the sensed data and the identities of the parties involved in
the communication.

– Statistical analysis: analyzes the features of the communication flow includ-
ing the distribution of messages, the time at which messages are delivered or
received, the transmission rate, and so on. The goal of this type of attack is to
discover patterns in the transmissions in order to infer sensitive information.
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The hearing range of the adversary is also an important aspect to consider
when dealing with traffic analysis attacks. Typically, a semi-honest adversary
is internal and limits its actions to the traffic addressed to it or traversing it.
Nonetheless, in this paper we assume a more powerful adversary, which is allowed
to extend its hearing range to the sensing network. The attacker is allowed to
collude with external entities located in the vicinity of the sensing devices.

Moreover, we consider that a semi-honest sensing server can try to cheat
by slightly modifying its behavior as long as it does not deviate from the pro-
tocol specification. For example, the adversary can craft random numbers at
will instead of using a pseudo-random number generator for that purpose. The
adversary can benefit from vague protocol specifications or randomly defined
operations.

4 Query Privacy for Sensing Platforms Protocol

This section provides a detailed description of the QPSP protocol. First, we
present a brief overview of the protocol and then continue with the explanation of
each of the phases involved in it. Prior to that, we introduce some cryptographic
background.

4.1 Overview

The QPSP protocol consists of three phases: initialization, query, and response.
During the initialization a global public key, denoted by pkP , is generated by
the cluster heads in a distributed way. This global public key corresponds to
the sensing network as a whole and no single entity controls the corresponding
decryption key in order to reduce the possibility of key compromise. This phase
also deals with the generation of the corresponding re-encryption keys.

The global public key pkP is used to encrypt the queries sent to the sensing
server, which transforms them using techniques from proxy re-encryption into
new, encrypted queries that can be decrypted by the cluster heads only. This
is done using special keys called re-encryption keys. During this process, the
content of the query remains unaltered and cannot be obtained by the sensing
server. Once the query has been decrypted by a cluster head, it is forwarded to
the appropriate sensing device without disclosing its identity to the gateway.

The response phase is simpler. The confidentiality of the response is secured
from the user end by incorporating a fresh key into the query to be used to
encrypt the content of the response. From an abstract point of view, the com-
munications are basically a two-message exchange between a user and a sensing
device but some traffic obfuscation mechanisms are introduced to prevent leaking
information.

4.2 Preliminaries

This section introduces some cryptographic notions that will be used during the
definition of the QPSP protocol. Due to space limitations we do not go into
details.
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Bilinear Pairings. Let G1,G2 and GT be cyclic groups of prime order q. A
bilinear pairing is a map e : G1×G2 → GT satisfying the properties of bilinearity,
non-degeneracy, and computability (see [17] for more details). Depending on the
characteristics of the groups involved, there are essentially three types of pairings,
namely Type-1, Type-2 and Type-3. In this paper we use Type-3 pairings as they
achieve the best trade-off between security and efficiency [15].

Proxy Re-encryption. From a high-level viewpoint, proxy re-encryption is a
type of public-key encryption that enables a proxy to transform ciphertexts under
Alice’s public key into ciphertexts decryptable by Bob’s secret key. In order to do
this, the proxy is given a re-encryption key, generated by Alice, which makes this
process possible. There are multiple proxy re-encryption proposals in the litera-
ture, the most prominent are those of Blaze et al. [6] and Ateniese et al. [4].

4.3 Initialization Phase

In this phase, the sensing platform sets up the necessary public parameters
and cryptographic keys. As mentioned, we describe a distributed key generation
procedure, principally performed by the cluster heads. Finally, we also present
a key validation procedure in order to guarantee the correctness and validity of
the key generation process.

Setup. Let e : G1 × G2 → GT be a Type-3 pairing, and g and h generators of
G1 and G2, respectively. Let Z be the result of computing e(g, h). The public
parameters of the system are the elements of the tuple (e, g, h, Z).

Key Generation. The main goal of this procedure is to create the global
public key for the sensor domain, denoted by pkP , with no associated private
key. In parallel, it is also necessary to create re-encryption keys that enable
the transformation of ciphertexts between the global public key and the cluster
heads’ public key.

First, each cluster head CHi generates a key pair (pki, ski) = (hxi , xi), where
xi is sampled uniformly at random from Zq. The cluster heads distribute their
public keys among the rest, so we can assume that after this step, the cluster
heads knows each others’ public key. Next, each cluster head independently
generates a temporal secret value pi sampled uniformly at random from Zq, and
computes the values ui = Zpi and vij = (pkj)pi = hpixj , for all j ∈ {1, ..., N}.
Finally, it sends (ui, {vij}) to the sensing server for aggregation.

Once the sensing server has received the inputs from all the cluster heads, it
computes the global public key and corresponding re-encryption keys as follows:

pkP =
N∏

i=1

ui =
N∏

i=1

Zpi = Zp1+...+pN = Zp (1)
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rkP→i =
N∏

j=1

vji =
N∏

j=1

hxipj = hxi(p1+...+pN ) = hxip (2)

Note that this procedure guarantees that the secret p = p1 + ... + pN (which
is the private key associated with the global public key) is never computed
explicitly and that it cannot be recovered efficiently, by the Discrete Logarithm
hardness assumption.

Key Validation. Given that the sensing server aggregates the inputs from all
the cluster heads in order to create the global public key and the associated re-
encryption keys, it is possible (although not sensible) that it misbehaves during
the aggregation process, for example, by discarding the input and publishing an
alternative global public key for which it controls the corresponding decryption
key. Recall that the goal of the distributed key generation process is to create a
global public key with no associated private key.

In Appendix A.1 we describe a procedure for key validation, in which the
cluster heads interact with each other and the sensing server. The existence of
such a procedure acts as a deterrent to possible misbehavior from the sensing
server, since it represents an efficient mechanism to detect any deviation from
the agreed key generation process. Therefore, we can assume that the sensing
server does not misbehave during key generation.

4.4 Query Phase

This phase comprises the first direction of the communication, which is from
user to cluster head, via the sensing server (as shown in Fig. 3). It comprises
two messages: the first between user and sensing server, and the second between
sensing server and the cluster head.

Message 1 (Encryption). The first message of the protocol is constructed on
the user side, and is delivered to the sensing server. The idea is that the user
encrypts the query with the global public key pkP , and the encrypted query is
later re-encrypted to a cluster head of the sensing platform.

The encryption scheme1 we propose is based on Ateniese et al.’s proxy re-
encryption scheme [4], which is proven IND-CPA secure. Let us suppose that the
input to be encrypted is represented by an element m ∈ GT . The user samples
random r ∈ Zq and produces the ciphertext CT = (CT1, CT2) as follows:

EncP (m) = (gr,m · (pkP )r) = (gr,m · Zpr)

1 In practice, the proposed scheme would be used to encrypt a fresh random key, which
in turn will be used to encrypt the actual message with a symmetric encryption
algorithm, following a hybrid encryption approach. For simplicity in the description,
we will obviate this.



148 R. Rios et al.

User Sensing server Cluster head

M1

Random key K
m ← Q K
M1 ← EncP (m)

M2M2 ← ReEnci(M1)

m ← Deci(M2)
Parse Q and K from m
Get response R for query Q
M3 ← SymEncK(R)

M3

M4

R ← SymDecK(M4)

Fig. 3. Main part of the QPSP protocol

An important point when it comes to defining the actual protocol messages
is that the initiator (i.e., the user) does not need to own any kind of key (either
symmetric or asymmetric) to query the responder (i.e., a sensing device); that is,
the initiator is unauthenticated. To the contrary, the responder has a public key,
in this case, a global public key for the sensing platform. Therefore, the initiator
can use this public key as a means to set up a secure channel for the response, by
encrypting a fresh random key K with the public key of the sensing platform (as
with the query Q). This is reminiscent of the one-pass key transport technique
described in [20, Sect. 12.5.1]. Therefore, the first message of the protocol, which
is named M1 and generated by the user, is basically the encryption of the query
Q and a fresh random key K to be used for securing the response, as shown in
Fig. 3.

Message 2 (Re-encryption). Message M1 is received by the sensing server,
which transforms it into a ciphertext, decryptable by one of the cluster heads.
Since, in principle, the encrypted query does not convey any metadata, the
sensing server simply chooses some arbitrary cluster head (either at random or
following some network delivery criteria). Therefore, the server is basically a
blind gateway between the users and the sensing network.

Let us suppose that the sensing server chooses cluster head CHi then, the
corresponding re-encryption key is rkP→i = hxip. The sensing server transforms
the original ciphertext CT into a new ciphertext CT ′ intended for CHi as follows:

ReEnci(CT ) = (e(CT1, rkP→i), CT2) = (Zprxi ,m · Zpr)

The final message M2 is simply the re-encrypted ciphertext.
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4.5 Response Phase

This phase includes the decryption and delivery of the query to the actual recip-
ient as well as the response to the user.

Message 3 (Decryption). The cluster head CHi receives message M2, con-
taining ciphertext CT ′ = (CT ′

1, CT ′
2) and decrypts it using its own secret key as

follows:

Deci(CT ′) = CT ′
2 · (CT ′

1)
−1/ski = m · Zpr · (Zprxi)−1/xi = m

The resulting output m is parsed as the original query Q and a response key K.
Next, the cluster must deliver m to the actual destination but as this process is
subject to traffic analysis we propose a transmission mechanism inspired by the
notion of k-anonymity.

All cluster heads use a deterministic mapping function to choose k destina-
tions. This function is such that it receives one identifier as input and always
returns the set of k identifiers, which include the original one. Therefore, CHi

can either forward the actual query (encrypted under a shared key) to the k
sensing devices output by the mapping function or simply send bogus queries to
the k − 1 cover destinations. In either case, the cluster heads must share secrets
to encrypt the message and thus prevent content analysis attacks.

After reaching the k sensing devices, all of them must behave in the same
way. As a result, devices receiving a (cover) query must reply to it, possibly
with bogus or synthetic data. Finally, the results collected by the corresponding
cluster heads are relayed to the cluster head who originally received the query,
which filters out cover messages and selects the true response R. Finally, the
cluster head encrypts it using the key K to produce message M3; alternatively,
the sensing device itself can encrypt the response, provided the cluster head
sends the key K together with the query. Finally, message M3 is delivered to the
sensing server, which simply forwards it to the user.

Message 4 (Delivery of Response). The user receives message M4 from the
sensing server, and decrypts it using the key K in order to retrieve the response
to his original query.

5 Security Analysis

The analysis presented in this section concentrates on the two security properties
the QPSP protocol aims to protect, namely query confidentiality and query
privacy.
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5.1 Query Confidentiality

The encryption scheme we use for protecting queries from the user to the cluster
heads is essentially a restricted version of Ateniese et al.’s proxy re-encryption
scheme [4], adapted to a Type-3 pairing setting. This encryption scheme satisfies
the security notion of indistinguishability against chosen-plaintext attacks (IND-
CPA), under the External Diffie-Hellman assumption (XDH) [5]. For reasons of
space, we omit the full security proof, but the rough idea is as follows.

Assuming that there is an adversary B that wins the IND-CPA security game,
it is possible to construct an algorithm A that uses B to solve the XDH problem
(which is essentially the DDH problem in G1 but in a pairing setting). Adversary
A receives a DDH tuple (g, ga, gb, gc) ∈ G

4
1, and is asked to decide whether

c = a · b. In order to decide, it simulates the environment for the adversary B
by taking element ga for generating the global public key pk∗

P = e(ga, h) = Za,
and elements gb and gc for generating the challenge ciphertext CT ∗ = (gb,mδ ·
e(gc, h)) = (gb,mδ · Zc). It can be seen that when c = a · b, the challenge
ciphertext is a valid encryption of mδ under pk∗

P , and B guesses δ correctly
with non-negligible advantage. When the guess is correct, adversary A outputs
c = a·b, which solves the DDH problem in G1 with the non-negligible advantage.
To the contrary, when c is random, B does not have any advantage in guessing
δ, and hence, neither does A. Overall, it can be seen that A still solves the XDH
problem with non-negligible advantage.

5.2 Query Privacy

We have just shown that the sensing server cannot obtain information from
content analysis but may still perform statistical analysis. Next we show that
even when the sensing server does not strictly follow the protocol specification,
it learns nothing.

First, let us assume a single protocol run. After a single query, the sensing
server may learn, with the help of external colluders, that the user has queried
one of the k nodes responding to the query. Note that if k is sufficiently large,
query privacy is ensured as long as the mapping function has been designed tak-
ing into account the properties of l-diversity and t-closeness [18]. In the case that
the mapping does not respect these notions, the attacker may not know which
particular device replied to the query but still learn that the user is interested in,
for instance, radiation levels. We assume that this is dependent on the scenario
and thus beyond the scope of this paper.

Let us now assume that the user is repeatedly issuing queries. If the queries
are addressed to different sensing devices, the analysis is similar to the single
execution case. However, if the user is regularly querying a particular device and
the sensing server is aware of this, the adversary is incapable of determining
which of the elements in the anonymity set is the actual recipient. Even if the
sensing server tries to cheat by choosing the cluster heads at will, it is still unable
to reduce the size of the anonymity set because all cluster heads use the same
mapping function.
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The sensing server’s last resort is to craft its own queries and submit them
to the sensing network. This is possible since we are considering a public sensing
network. However, there is no incentive for it to do so since the only thing the
attacker will learn is the mapping function for a particular node, which is not
secret, and the data sensed by the node. These data are not sensitive since they
are obtained from a query issued by the sensing server and not by a particular
user. Thus, the interests of the user are not revealed.

Finally, recall that the sensing server and the sensing devices are supposed
not to collaborate. This is because the former knows the identity of the user
and the latter is aware of the nodes of interest to the user. To reduce the risk
of privacy exposure, the identity of the user can be further protected with the
help of an anonymity network, such as Crowds or Tor.

6 Experimental Evaluation

In order to experimentally evaluate the overhead of the cryptographic operations
in our proposal, we implemented a proof of concept in C using the Apache
Milagro Crypto Library [2]. Since we defined the cryptographic scheme over a
Type-3 pairing setting, it was necessary to use an elliptic curve that supports
this. We selected a 256-bit Barreto-Naehrig (BN) curve, which is suitable for said
pairings and offers a good trade-off with respect to security and performance [3].

We used three different execution platforms, in order to simulate the char-
acteristics of the entities involved in the potential use cases. For the user and
sensing server, we used a laptop with an Intel Core 2 Duo processor @ 2.66 GHz
and 8 GB of RAM. For the cluster heads, we performed our tests in two different
platforms: a Raspberry Pi Gen 1 Model B (SoC Broadcom BCM2835, 32-bit,
single core, 700 Mhz, 512 MB), and an Intel Galileo Gen 1 (SoC Intel Quark
X1000 32-bit, single core, single-thread, P54C/i586 400 Mhz, 256 MB).

Table 1. Performance of the cryptographic operations for different execution platforms

Entity Platform Operation Cost (ms)

User Laptop Encryption 7.58

Sensing server Laptop Re-Encryption 11.55

Cluster head Raspberry Pi Decryption 46.20

Cluster head Intel Galileo Decryption 122.20

Table 1 shows the results of our experiments, categorized by the type of opera-
tion, entity and execution platform. Both encryption and re-encryption of queries
are tested on a PC-like platform, while decryption is done in a sensor-like device.
Experiments were executed 100 times and the average value was taken. It can be
seen that the results are of the order of 10 ms in the user- and server-side, while
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they range between 46 and 122 ms on the side of the cluster head, depending on
the execution platform. Further optimizations include the pre-computation of
pairings for re-encryption, given that re-encryption keys are fixed arguments to
pairings. In this regard there are several techniques, such as [10] which reports
a speed-up around 30%. It is also possible to study different curves in order to
find the more efficient ones on the side of the cluster head, that is, curves that
minimize the cost associated with exponentiations on GT .

7 Conclusions

This paper has presented the QPSP protocol. The proposed solution prevents
users from being profiled by semi-trusted Sensing-as-a-Service platforms. This is
achieved with the help of proxy re-encryption primitives and traffic obfuscation
at the sensing network. More precisely, the user sends queries to the platform
encrypted with a global public key generated by a set of cluster heads, the query
is then re-encrypted by the sensing server and forwarded to one of the cluster
heads, which is responsible for transmitting the query to the final destination
using a privacy-preserving routing protocol.

The proposed solution is intended for Sensing-as-a-Service platforms where
the data collected by the sensing devices are public and therefore anyone can
query the network. We are planning to extend our solution to a scenario where
the access needs to be both authenticated and respectful of privacy. Moreover,
we are exploring network management issues such as the revocation of nodes
and how to deal with the addition of new cluster heads once the network has
been deployed.

Acknowledgements. This paper has been partially supported by the Junta de
Andalućıa through the project FISICCO (P11-TIC-07223) and the Spanish Ministry of
Economy and Competitiveness through the PERSIST (TIN2013-41739-R) and SMOG
(TIN2016-79095-C2-1-R) projects.

A Appendix

A.1 Key Validation Procedure

The validation process has to check three requirements: (i) that the global public
key is the result of aggregating the inputs from all the cluster heads, (ii) the re-
encryption keys are also generated by aggregation, and (iii) the re-encryption
keys are correctly associated with the global public key (i.e., they allow the
transformation of ciphertexts from the global public key to the cluster heads’
keys).

Validation requirement (i) can be checked simply by engaging all the cluster
heads in an incremental ring-style protocol, where each of them receives an
intermediate value and multiplies it by its input ui for the public key; hence, at
the end of the protocol, the global public key (which we assume is published by
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the system and known by all the cluster heads) should be obtained. As long as
no cluster head is corrupted, this requirement can be correctly checked.

Validation requirements (ii) and (iii) involve re-encryption keys. A complica-
tion here is that, although the global public key is, indeed, public, re-encryption
keys may not be (and possible should not be) public2. However, it is possible for
each cluster head to challenge the service provider and to test if the response
corresponds to a valid re-encryption key as follows. Each cluster head CHi com-
putes a random challenge value gk, and sends it to the sensing server, which
responds with the value e(gk, rkP→i). Now the cluster head checks whether the
following equation holds:

e(gk, rkP→i) = (pkP )xik

It can be seen that, given rkP→i = hxip and pkP = Zp, the correct response from
the service provider will be Zxikp, which is indeed equal to (pkP )xik. Therefore,
each cluster head can independently check requirements (ii) and (iii) and report
to the others in the case there is a problem. Since, the correctness of the global
public key has been checked before, and this public key is used during the vali-
dation of the re-encryption keys, it can be safely accepted that all the keys are
correct.
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Abstract. Given the morass of available data, ranking and best match
queries are often used to find records of interest. As such, k-NN queries,
which give the k closest matches to a query point, are of particular inter-
est, and have many applications. We study this problem in the con-
text of the financial sector, wherein an investment portfolio database is
queried for matching portfolios. Given the sensitivity of the information
involved, our key contribution is to develop a secure k-NN computation
protocol that can enable the computation k-NN queries in a distributed
multi-party environment while taking domain semantics into account.
The experimental results show that the proposed protocols are extremely
efficient.

Keywords: k-NN queries · k-NN classification · Privacy · Distributed
computation

1 Introduction

Nearest neighbor (NN) queries are an extremely important data analysis tool,
and have been used in numerous domains. Indeed, they have been identified (in
the form of k-NN classification) as one of the top 10 algorithms in data mining
[17], though they can also be used for other applications such as regression,
content retrieval, and structure prediction. While the typical use of k-NN does
not worry about the sensitivity of the data, k-NN is also applicable in many cases
where the data may be private, and the organization interested in querying is
different from the organization holding the data.
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Consider the financial environment, wherein we have several organizations
(such as Ameritrade, Charles Schwab, etc.) which possess financial data about
individuals, including their current stock positions, transactional history, etc.
Now, a regulating agency such as the SEC may be interested in finding individ-
uals who have a certain stock position, or have indulged in particular type of
transactional behavior. Since perfect match is often difficult, best match queries
are used to find the closest individuals of interest. Alternatively, a financial
advisor service might want to provide recommendations based on similar stock
positions or transactional behavior. Typically, since financial data is extremely
sensitive, the organizations may be unwilling or even (legally) unable to allow
unfettered access to this data. However, in certain cases, there may be a lot
of value associated to be obtained through computing the best match queries.
For example, one can identify trading behavior of investors from their portfolio
structures as shown by [3]; this kind of information is invaluable for numer-
ous organizations e.g. State Exchange Commission (SEC) in the United States.
Similar problems exist in the field of medicine, finance, and homeland security.

In this paper, we address this specific problem. We consider the scenario
where several organizations possess independent portfolio databases, each record
of which contains financial stock positions for a single portfolio. Together, these
databases comprise the global database which contains the portfolios of all enti-
ties, though no third party exists which knows this global database in its entirety.
Another organization, called the querier, would like to query this global database
to retrieve the k portfolios that are the most similar to a particular query port-
folio that it possesses. All of the organizations would like to protect the privacy
of their information, while still enabling the computation. There has been some
work addressing this problem in the past, especially in the context of outsourc-
ing [7,16]. Our proposed solution improves on the state of the art by providing
a way to incorporate the domain semantics and is significantly more efficient.
Our solution is also applicable in the outsourcing environment where an orga-
nization may want to outsource its database in encrypted form and still enable
best match queries. Furthermore, our solution can be extended to provide top-k
results based only on private ranking criteria (without reference to a specific
query point) in an even more efficient fashion. It is worth noting that while the
problem has been formulated in the context of financial domain, our approach
is quite general and can be used to solve k-NN and top-k query problems in any
domain. Overall, our key contributions are:

1. We introduce the notion of semantic distance which is useful in taking domain
semantics into account while computing k-nearest neighbor queries.

2. We propose an extremely efficient multi-party protocol to compute k-NN
queries that is robust to semi-honest adversaries.

3. We show how the protocol can be adapted to the outsourced data model and
used for k-NN based classification without leaking any additional information.
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2 Problem Statement

In this paper, we build a protocol for overcoming the privacy problem for situa-
tions where organizations (or people) are interested in finding the best matches
for a query over distributed data. As discussed earlier, we formulate the problem
in the context of the financial domain i.e., finding investment portfolios from a
distributed database, which best match a given query portfolio in a dynamic and
semantic aware environment, while also providing confidentiality and security-
privacy guarantees to the parties involved in the protocol. We consider a database
P ∈ R

N×M is horizontally distributed among n parties P1, . . . , Pn such that for
all i ∈ [n] and Ni ∈ N the database fragment Pi ∈ R

Ni×M is kept by Pi where∑
i∈[n] Ni = N . Each party Pi collects the same features of information but for

different entities. These parties could be banks, hedge-funds, mutual-funds, or
other institutions. Another party Q is interested in performing a k-NN query,
which also incorporates structure and semantics, on this distributed data with-
out revealing its query, while the parties owning data being queried want to avoid
disclosure of their data except for the legitimate output of the query. Thus, the
problem can be formally defined as follows:

Definition 1 (Distributed Secure k-NN query: DS-kNN). Given a data-
base P ∈ R

N×M , which is horizontally distributed among n parties with party
Pi having fragment Pi ∀i ∈ [n], a querier Q wants to privately find semantic
distance (Definition 3) based k-NN in P to its query q ∈ R

M for N,M,n ∈ N,
where n ≥ 2.

Definition 2 (Security/Privacy). A protocol Π computes DS-kNN query
securely if it reveals nothing but k-NN records to Q with leakage L to all other
parties with negligible probability in security parameter – a function, μ (m), is
negligible in m if μ(m) < 1

p(m) for all sufficiently large m and polynomial p (m).

Hence Definition 2 ensures that data owners do not learn anything about the
query beyond what they already know or infer from leakage, and Q learns nothing
about P beyond what it already knows and can infer from the output and
leakage.
Adversarial Model: We assume all parties to be non-colluding and semi-honest
(i.e., honest-but-curious) adversaries, who communicate over a secure channel.
However, restriction on collusion among the data owners can be relaxed to the
collusion of at least α data owners, where α ≤ n (total number of data owners).
We can accomplish this (without any major change in the proposed protocol) by
employing additive homomorphic encryption with threshold α, which for decryp-
tion will require α parties each performing partial decryption on an encrypted
message.

3 Proposed Approach

We first introduce a notion of semantic awareness for distance metrics that can
capture the desired level of granularity and structure for measuring similar-
ity. For example, standard distance metrics such as Euclidean distance fails to
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capture structural and semantic information such as the industry or sector a
stock belongs to, market capitalization, risk and type of the stock, etc. Con-
sider an investor who would like to find similar portfolios, while incorporating
portfolio structure and/or commodity relationships with regards to a particular
categorization model (e.g., the industry classification of stocks [1]). Such a cate-
gorization model would typically be built by domain experts. We assimilate the
categorization model into the distance metric, denoted sem dist, which we term
as the semantic distance. This enables the integration of semantic information
representing the true interest of the querier, while evaluating similarity among
portfolios (or records). We now formalize the notion of semantic aware distance
and then discuss how it will be calculated in a secure (and privacy-preserving)
manner.

Definition 3. Semantic Distance between two points X,Y ∈ R
M is Euclidean

distance between their linear projection in space R
l, where l,M ∈ N and the

projection is guided by a given categorization model (map,W ), and is formalized
as follows.

sem dist(X,Y) =

√
√
√
√
√

∑

l:cl∈C

⎛

⎝
∑

j:cl∈map(sj)

wlj (xj − yj)

⎞

⎠

2

Here, map : S → 2C specifies the category cl ∈ C to which the stock sj ∈ S
should be mapped with C and S being set of all the categories and set of all
stocks respectively. C ⊆ C is the set of categories, for which sem dist is to
be calculated, whereas wlj in W = [wlj ]|C|×M gives the number of units of cl

equivalent to one unit of sj . We also define signed-distance(X,Y) at a category
level (cl) to be Dl =

∑

j:cl∈map(sj)

wlj (xj − yj).

Tuple (map,W ) defines categorization model. map gives the relationship
among commodities e.g., Industrial Classification Benchmark (ICB) [1] provides
a classification for stocks based on the sector and industry; equivalently map
could specify the categorization based on market capitalization or some other
type. W , here, could denote a weight factor to estimate equivalent worth of a
stock in an industry or sector. In general, sem dist allows for a richer query
specification, which is very helpful. For example, sem dist allows accounting for
risk and/or diversity of each portfolio, while calculating distance between a port-
folio and a query portfolio. Here we show, using an example, the effectiveness of
semantic distance. Consider Table 1a, which contains three portfolios p1, p2 and
p3. Each portfolio specifies the number of stocks of AAV, RDC, ICD, GTT and
NOW held in it. The stocks in Table 1a are from Oil and IT sectors. Table 1b
gives the conversion factor per share of a stock to equivalent dollar value in a
sector. Now, consider an investor who wants to find a portfolio from Table 1a,
which is the closest in terms of its value at sector level. If Euclidean distance
is directly used, then the results are not meaningful, as can be seen from the
results in Table 1c; i.e., according to Euclidean distance, p2 and p3 are equally
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Table 1. Example illustrating semantic distance effectiveness

close (similar) to p1, whereas we notice that in term of the value of portfolio at
sector level, p1 should be closer to p2 as compared to p3, since in contrast to p3,
where only 15 shares of stocks are held in IT sector, p1 and p2 both hold 10 shares
of stocks in Oil sector and 5 shares of stocks in IT sector. On the other hand
if we use semantic distance then the results corroborate with our intuition and
the semantic meaning of the query asked by the investor; this can be seen from
the calculated distances in Table 1d. Though the calculated Euclidean distance
is spatially correct, it fails to capture a lot of domain, structural and semantic
information.

We stress that the proposed protocol is also able to calculate secure DS-kNN
query based on simple Euclidean distance measure. In semantics distance for-
mulation, this can be accomplished by a map : S → C, which is bijective, and
setting W to identity matrix of dimension |S|×|S|. This will essentially calculate
the Euclidean distance between two points.

3.1 DS-kNN Query Protocol

Before presenting the details of the approach to compute the k closest portfolios
as per the problem definition above, we first present the underlying assump-
tions, the notation used, and a few preliminaries. N , S and C are known to
all the parties including querier. Furthermore, each data owner (Pi) knows the
size (Nj ∀j ∈ [n]) of all databases fragments Pj . The database can be viewed
as a matrix. In rest of the paper by parties/party we mean parties/party own-
ing data, whereas Q is referred to as querier. Additive homomorphic encryption
(AHE) e.g., Paillier allows addition of two encrypted values and multiplication
of encrypted value with a plain-text value. The plain text values on which AHE
operates come from N; let us say for a given security parameter λ AHE accepts
plain-text values from P (λ) such that ∀x ∈ P (λ), x < Λ, where Λ ∈ N. We
divide P (λ) into two halves where lower half is positive and upper half is nega-
tive (i.e. contains additive inverses of lower half). Whenever a text is decrypted



160 H. Asif et al.

it is converted to equivalent negative or positive value; additive inverse of an
encrypted value x i.e., Epk[x], is Epk[x]Λ−1. As for the decimal values we can
decide for a precision up to a decimal point d, then multiply each plain-text
value with 10d and convert it to an integer value. λ ∈ N is picked in such a
manner that the finally computed plain-text value in encrypted form is always
within the range. We also employ garbled circuit [19] for secure comparison.

The basic idea in DS-kNN is for data owners to encrypt the portfolio data-
base and send it to Q, who calculates signed-distances w.r.t. its query, q, in
encrypted form (Algorithm 1), and uses them to collaboratively calculate seman-
tic distances in form of random shares with a data owner (Algorithm1). A dis-
tributed rank query is then carried out to identify the indices of k portfolios
with the smallest distances (Algorithm 2). Finally, Q retrieves portfolios, corre-
sponding to the indices identified above, from the portfolio database.

We now discuss the details. In Algorithm 1 we outline the algorithm for DS-
kNN, where a party Pt is picked at random from data owners to initiate the
protocol. Pt can be picked by each party generating a random number ri from
[n] and then calculating

∑
i∈[n] ri mod (n+1) using secure sum [6]. Pt generates

public-private (pk, sk) key pair of AHE and sends it to all data owners and pk to
Q. Pt also picks two parties Pl and Pl′ randomly and lets all the parties know who
they are. Next, every Pi first permutes its database, and creates encrypted shares
EPi = Epk[Pπi

i −Ri] and ERi = Epk[Ri]. Note that these are homomorphically
encrypted additive random shares of Pi. Now Pi sends EPi to Pl and ERi to
Pl′ . This ensures that every database is split into two parts and thus prevents
the leakage of any information to other parties or to Q. Pl and Pl′ put all of
these shares together and permute them using a common random seed s̃ (which
can be done by having Pl and Pl′ each pick a random number and send it to the
other and then compute the XOR of both random numbers). These encrypted
permuted shares (denoted EP and ER) are then sent to Q. At this point, Q
also randomly permutes the received shares of the database to avoid linkage
attack by data owners. Q can reconstruct the database by adding together the
received shares of database in encrypted form. Q then proceeds to calculate
signed-distance in encrypted form according to its specified (map,W ) and C.
This steps consists of addition of encrypted values and their multiplication by
values in plain-text (weights), which can be done in encrypted form thanks to
the additive homomorphism.

Next, these signed distances need to be squared. This is accomplished
by Q generating random numbers, r and g for each signed-distance, vi,l. Q
sets its random share for the squared signed-distance to be v1

i,l = −r2 + g,
and sends Pt, Epk[vi,l − r] and Epk[2rvi,l − g]. Pt decrypts the received
encrypted messages, converts them to appropriate negative or positive val-
ues as explained in preliminaries and sets its share to be v2

i,l = (vi,l − r)2 +
2rvi,l − g. It is obvious that (vi,l)2 = v1

i,l + v2
i,l. Summing all shares of

squared signed-distances of a portfolio will give the share of square of semantic
distance for the portfolio. Thus Q and Pt can compute their shares for the dis-
tance for each portfolio since sem dist(pi, q)2 =

∑|C|
l=1 v1

i,l +
∑|C|

l=1 v2
i,l. At this
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Algorithm 1. DS-kNN
Input: (m, Pi) at Pi ∀[n], security parameter and database of portfolios
Input: At Q: q, query; (map, W ), categorization model; k, number of NN; m
Output: Q gets k-NN portfolios
1: Generate random seed, si, at Pi ∀i ∈ [n]
2: All data owners, P1, . . . , Pn, together pick t uniformly from [n]
3: Pt generates (pk, sk), key pair, for AHE and shares it with all data owners, and pk

with Q
4: Pt picks l from [n] and l′ from [n]\{l} uniformly and sends (l, l′) to all data owners

5: for each Pi ∀i ∈ [n] do
6: Generate a matrix Ri of random numbers: Ri ← N

Ni×|S|{Ni is the size of Pi}
7: Permute the database Pi: Pπi

i = π(si, Pi)
8: Create encrypted random shares of Pπi

i : (EPi, ERi) = (EPpk[Pπi
i −

Ri], EPpk[Ri])
9: Send EPi to Pl and ERi to Pl′

10: Pl sets EP = π(s̃, (EP1, . . . , EPn)){seed s̃ is picked together by Pl and Pl′}
11: Pl′ sets ER = π(s̃, (ER1, . . . , ERn))
12: Pl and Pl′ respectively send EP and ER along with t to Q
13: Q permutes EP and ER using random seed ŝ: (EP π, ERπ) = (π(ŝ, EP ), π(ŝ, ER))

14: Q sets qenc = Epk[q](Λ−1)

15: Q initializes matrices, T and DQ, of sizes N × |C| and N × 1, to have Epk[0]’s and 0’s
resp.

16: Pt initializes
Dt as matrix of 0’s with size N × 1

17: for each i ∈ [N ] do
18: for j ∈ {1, . . . , |S|} do
19: Q sets T [i, map[j]] = T [i, map[j]]× (EP π[i][j]×ERπ[i][j]× qenc[j])

W [map[j],j]

20: for l ∈ {1 . . . |C|} do
21: Q generates random numbers r and g and sets TQ[i, l] = −r2 + g
22: Q sets vr = Epk[T [i, l]] · Epk[r](Λ−1) and vg = Epk[T [i, l]]2r · Epk(g)(Λ−1)

23: Q sends (vr, vg) to Pt

24: Pt sets Tt[i, l] = Dsk[vr]
2 + Dsk[vg]{Dsk decrypts to equivalent +ive/-ive

value}
25: Q sets DQ[i] = DQ[i] + TQ[i, l]
26: Pt sets Dt[i] = Dt[i] + Tt[i, l]
27: Q and Pt interactively find indices of k-smallest distances:

I ←k-Smallest(DQ, Dt, k)
28: return portfolios corresponding to I to Q by getting their random shares

decrypted from Pt

point, the square of semantic distance between each portfolio and the query has
been randomly split between Q and Pt. For the sake of efficiency we do not
compute the square root of squared semantic distance. However, this does not
impact correctness of the protocol. Henceforth, Q and Pt engage in an interactive
protocol to compute the k smallest distances corresponding to k-NN portfolios.
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Algorithm 2. k-Smallest(DQ,Dt, k)
Input: At Q: DQ, at Pt: Dt, such that DQ and Dt are random shares of the squared

distances
Input: At Q, Pt: k, the number of closest records desired
Output: At Q: I, the array containing indices of smallest elements in DQ + Dt

1: At Q: ∀i, VQ[i] = DQ[i] × |DQ|
2: At Pt: ∀i, Vt[i] = Dt[i] × |Dt| + i
3: while k > 0 do
4: Q sets (μQ, �) = (mean(VQ), |VQ|), and Pt sets (μt, �) = (mean(Vt), |Vt|)
5: for i ∈ 1 . . . � do
6: Q sets UQ[i] = (VQ[i] − �μQ�); Pt sets Ut[i] = (−Vt[i] + �μt�)
7: if UQ[i] ≤ Ut[i] {At Q, Pt: Yao Comparison} then
8: Remove ith element from VQ and Vt and add to V ′

Q and V ′
t at Q and Pt

respectively
9: for j ∈ {Q, t} do

10: if |V ′
j | > k then

11: set Vj = V ′
j

12: else
13: For each element in V ′

j , add to I the index of corresponding element in Dj

14: k = k − |V ′
j |

15: return I

To find the k-smallest entries from the split distance vectors we develop a novel
protocol k-Smallest that can accomplish this both securely and efficiently. We
first present the simple-k-smallest (SKS) protocol, that efficiently computes the
k-smallest entries without worrying about security. For a given a vector V con-
taining unique values, v, and S = {}, the k-smallest values can be found as
follows:

– 1: Set μ =
∑

v∈V
v

|V | and divide V into Vg = {v ∈ V : v > μ} and Vle = V \Vg

– 2: If |Vle| > k, set V = Vle and go to step 1
– 3: If |Vle| ≤ k then set V = Vg, S = S ∪ Vle and k = k − |Vle|
– 4: if k 	= 0 go to step 1, terminates otherwise

SKS terminates, since each iteration reduces size of V . Note that, only the cor-
rect distances are added to the output in step 3 since the distances in Vle are
guaranteed to be smaller than the ones in Vg. SKS works very well for our prob-
lem setting and can easily be extended to be secure. Though any point in V
instead of arithmetic mean can be used to split V without affecting correctness
of the algorithm, choice of arithmetic mean as a split point is quite effective as
long as subsets (of different sizes) of data are not highly skewed to the left for
small values of k. This assumption does hold in real world data. Specifically,
we show through empirical analysis that portfolio distances for real world stock
market data [3] are but slightly skewed to left. We used portfolio data of hun-
dred thousand individuals, which was collected over the period of three years
from Swedish stock market [3]. We calculated the mean distance and variance
for the mean distance over samples of various sizes (i.e., number of portfolios).
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(a) mean distance’s percentile (b) percentile’s variance (c) Comparison with Samanthula et al. [7]

Fig. 1. Empirical analysis

Figure 1a depicts the percentile for mean distance and average percentiles for
mean distances. It can be seen that mean distance is consistently at percentile
60. Figure 1b depicts the variance for the above calculated percentile for mean
distance, and the average variance, which asserts that percentile for mean dis-
tance does not vary much. The complexity of SKS for such a distribution will be
O(|V |) regardless of value for k. In the case where data is highly skewed or fol-
lows exponential distribution or leakage function is different a randomly picked
data points can be used as a split point instead.

Now we focus on devising a secure and distributed SKS so that it can be
carried out on random shares of distances without violating the privacy. It is easy
to see that if the first step of SKS can be performed in a secure and distributed
form (note, in our case, DQ and Dt together give V ), the remaining steps can
be performed locally at Q and Pt.

SKS requires the distances in vector to be unique i.e. ∀i ∈ [N ], DQ[i] + Dt[i]
is unique. This is necessary, not only to guarantee that the protocol terminates
but also to ensure security. In essence, if distances were non-unique, it could have
been possible that all of the distances were same, thus resulting in Vle = V for all
iterations. Since, in our case, uniqueness does not generally hold; therefore, we
use a perturbation mechanism to achieve uniqueness. This can be accomplished
by scaling the distance of portfolio pi by N , and translating it by i. In the
protocol, k-smallest, it is carried out as follows: Q multiplies DQ[i] with N
while Pt multiplies Dt[i] with N and adds i to it (lines 1–2 of Algorithm 2) (Note:
|DQ| = |Dt| = |P| = N), which will together gives us N × (DQ[i] + Dt[i]) + i.
Next we need to devise a secure and distributed protocol to compute mean and
identify indices of DQ or Dt for which distances (DQ[i] +Dt[i]) are greater than
the mean. If we let mean distance to be μ = μQ + μt,

where μQ =
∑

i DQ[i]/N and μt =
∑

i Dt[i]/N then

DQ[i] + Dt[i] > μ ⇐⇒ DQ[i] − μQ > −Dt[i] + μQ

The above observation tells us that result of comparing the distance for a record
against the mean distance can be equivalently obtained by comparing the differ-
ence between random share and the mean of random shares. Note that since Q
and Pt can locally compute this difference, the parties can simply use a secure
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comparison [19] (the garbled circuit approach) to compute the first step of SKS
in a secure manner. Furthermore, Since we are using a finite integer field, it is
possible that μQ and μt are fractional, and hence outside the field. To avoid
this we use the output of floor-function on μQ and μt and employ the following
comparison instead: DQ[i] − �μQ > −Dt[i] + �μt, but it does not affect the
performance of Algorithm 2 since 0 ≤ μ−(�μQ+�μt) < 2. Since the remaining
steps are local, both parties can calculate k-smallest entries securely and identify
their corresponding indices in DQ or Dt.

Result Extraction: Using above found indices Q can identify and obtain k-NN
portfolios from the encrypted database. Let I contain the indices of k-smallest
distances and ∀j ∈ I, t̂j and t̃j be the corresponding records in EP and ER
then for all j, Q asks Pt for decryption of Epk[ϕj ] = Epk[t̂j ]⊗Epk[t̃j ]⊗γj , where
γj is uniformly picked vector of size |S| from an appropriate domain and ⊗ gives
coordinate-wise product of two vectors. It is straightforward to compute Epk[ϕj ]
for homomorphically encrypted values and the original record tj from ϕj i.e.,
tj = ϕj −γj . Thus completing the protocol for computing sem dist based k-NN
for horizontally fragmented database in a privacy preserving fashion.

3.2 Extensions

We can easily extend the protocol devised above to work for the outsourced
data model. It can also be used for k-NN classification. Both of these are briefly
described below.

Outsourcing Case: Our protocol can very simply be applied for the case where
the computation of data owners is transferred to the cloud in a secure manner.
Parties can pick non-colluding, semi-honest and untrusted servers C1 and C2 to
take responsibilities of Pl and Pl′ respectively except for creation random shares
of their databases and their encryption. All the responsibilities of Pt for distance
and k-smallest computation along with decryption for result retrieval phase are
handed to one of the servers. Once responsibilities have been assigned to C1

and C2, following the protocol stated in DS-kNN will compute k-NN securely
in cloud.

k-NN Classification Case: The proposed protocol also has the ability to carry
out k-NN classification with a very small modification. Let us say there are G
classes with labels {1, 2, . . . , G}. We append each database fragment with G
new columns and name them 1, 2, . . . , G. For each row with class label g only
column g of the appended G columns will have the value 1, and value 0 for the
others. Now all the steps outlined in DS-kNN are carried on the database with
appended columns, except for the result retrieval step; furthermore, appended
columns are not used for k-NN computations. Once Q has identified k-NN records
in encrypted database, it computes a vector G, where ∀g ∈ [G], G[g] contains k
minus the sum of values in column g of k-NN records i.e., k minus the number of
votes for each class; thus smaller the value G[g], higher the number of votes for
class g. Next, Q permutes G, creates random shares of values in π(G) and send
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them to Pt, after which both Q and Pt follow k-smallest protocol with k = 1.
At the end of k-smallest Q is able to identify the class of its instance q.

4 Complexity Analysis

Let N be the number of portfolios in database P horizontally distributed among
parties P1, . . . Pn, where each record is of dimension M = |S|. The asymptotic
computational complexity of DS-kNN is O(N2) = O(NM,N ×|C|+N2) since in
the worst case there will be O(NM) encryption and O(N ×|C|) decryption oper-
ations along with O(N2) secure comparison by data owners, whereas querier will
perform O(N ×|C|) arithmetic operations on encrypted values and O(N2) secure
comparisons; furthermore, in most of the application scenarios M, |C|, k � N .

It is important to note that in real world data for portfolios require only
O(N) comparison to find k smallest entries as shown in Fig. 1 and is explained
in Sect. 6. Moreover, |C| would also be much smaller as compared to |S| because
thousands of stocks are traded in the market. So for all practical purposes asymp-
totically complexity for our problem will be O(NM) Following the same reason-
ing as above the asymptotic communication complexity of DS-kNN will also be
O(NM).

With respect to the communication complexity, it may appear that the cost of
transferring the entire database over is excessive. While this is true in terms of
the communication itself, both the monetary and time cost of doing this is negligi-
ble, since currently available bandwidth and speed are quite high e.g., currently
ISPs are providing 1000 Mbps connection to residential users and small busi-
nesses, which allows an encrypted database of million rows and ten attributes to
be transferred in matter of few seconds. On the other hand, in many cases cost
and the time required for secure operations are significantly higher than that
of required for data transfer. Additionally, many of the secure protocols includ-
ing [7,12] require transferring complete database between/among the parties.
Therefore, we believe that this cost is reasonable.

5 Security Analysis

In this section we analyze the security of DS-kNN under the framework of
Definition 2. We want to show the following:

DS-kNN is secure if probabilistic polynomial time simulators Si(m,Pi,LP )
and SQ(m, q, (map,W ),LQ,Ok) can respectively simulate the view of Pi, ∀i ∈
[n] and Q during the execution of DS-kNN.

This means that if Si is provided with Pi’s input (m,Pi) and leak-
age LP (which gives (J, j1, . . . , jJ , N1, . . . , Nn, |C|)), and SQ with Q’s input
(m, q, (map,W )) and output (Ok i.e. k-NN records) along with LQ (which gives
(J, j1, . . . , jP , N, S)) then these simulators will have the same view as their
respective parties; thus asserting that DS-kNN reveals no extra information and
does fulfill the security Definition 2. In the output of leakage functions J is the
total number of iterations taken in Algorithm2 corresponding to P and q, j� is
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the percentile of mean distance in 	th iteration, whereas rest of the symbols are
same as defined previously.

Let us analyze Sj for the situation where j = t and also j ∈ {l, l′}
(l, l′ and t are as per specification in Algorithm 1) since such a party, Pj ,
will receive the biggest set of intermediate messages, in all other cases parties
receive less information. Pj ’s view consists of its input (m,Pj), random shares
(Di ∈ N

Ni×|S|, ∀i ∈ [n]) of database fragments, random shares (HR ∈ N
N×|C|) of

distances at category level, random seeds (sj , s̃), random-tape (rj ∈ {0, 1}p(m))
and LP . Pj ’s view can easily be generated by Sj : based on m,Pj and LP

that are provided to Sj , it can generate Dj
i ← N

Ni×|S|, Hj
R ← N

N×|C|,
(s′

j , s̃
′
j) ← N

2 and r′
j ← {0, 1}p(m), LPj

using uniform distribution. Thus Pj ’s
view, (m,Pj ,D1, . . . ,Dn,HR, sj , s̃j , rj ,LP ), is computationally indistinguishable
from Sj ’s view, (m,Pj ,Dj

1, . . . ,Dj
n,Hj

R, s′
j , s̃

′
j , r

′
j ,LP ), in polynomial time, oth-

erwise pseudo-random generator, which is assumed to be secure, can be broken
which is used to create random shares and seeds. It is straightforward that for
all other cases a party’s view will consist of less information than that of Pj ’s
view; hence ∀i ∈ [n], Si will be able to generate Pi’s view.

The case for SQ, is also very similar in that respective inputs, output, and
leakage is provided to SQ, except for the difference that Q receives encrypted
database EP ∈ N

N×|S| instead of random share of a database, but since AHE is
(semantically) secure – meaning EP is computationally indistinguishable from
EP ′ ← N

N×|S| (i.e. generated uniformly) – SQ can generate a view using
m, q, (map,W ) and LQ that is indistinguishable from Q’s view. Thus proving
that DS-kNN is secure.

Note that the defined leakage reveals information, usually known in our appli-
cation scenario. If one wants to hide this information then following is one way
to accomplish this. Instead of mean distance, randomly picked distances can be
used for the purpose of comparison to find k-smallest distances; dummy portfo-
lios with sentinel values can be added to hide size of database; extra columns can
be added for dummy coordinates, mapping to which can be provided through a
secure and modified bloom filter. |C| can be hidden by adding dummy signed-
distances with value zero. Though such measures will stop the leakage, they will
significantly reduce the efficiency of the protocol.

(a) Varying N (b) Varying k (c) k-smallest on real data

Fig. 2. k-smallest (Algorithm 2) computation time
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(a) Varying N (b) Varying |S| (c) Varying |C|

Fig. 3. Distance computation time for Q and Pt

6 Experimental Evaluation

We implemented DS-kNN in Java. The platform used for testing is asymmetric
in terms of its computational power. The querier machine had a 2.2 GH core-i7
processor and 16 GB RAM whereas each of the database owners was a Xeon
E5-2680 v2, with 10 cores running at 2.80 GHz, and 96 GB RAM. For AHE
and garbled circuit we employed the implementation available at [2] with key
size 1024 and [9] with a key size of 512 respectively. The default values for
parameters are set based upon domain semantics. Specifically, even though 2k-
3k stocks are traded on the stock exchange, only a few hundred of them are
most often traded; thus we set |S| to be 100. |C| is set to be 10 because ICB
[1] classification taxonomy segregates stocks to 10 industries at the top level. As
for k, it is set to 1, which represents the worst case for Algorithm 2. Lastly, N is
set to be 1000. For each experiment, only one parameter is varied, while keeping
the rest constant. Experiments described below were carried out with synthetic
data. The results on real data are described later.

Figures 3a, b and c report time taken for distance computation by Q and
Pt, with varying N , |S| and |C| respectively. Time for all of these experiments
grows linearly except for Pt w.r.t. |S|. This is because of the fact that distance
computation time for Pt depends on |C| and N , but not on |S|. Let us now look
at the performance of Algorithm 2, which only depends upon N . Figure 2a plots
the computation time taken by Algorithm 2 for varying values of N . Again, the
computation time scales linearly w.r.t. N . Figure 2b plots the computation time
with respect to varying k. It is interesting to note that the time taken is roughly
constant, and thus the time taken by our approach is actually independent of k.

We also compare our work with Elmehdwi et al. [7] for outsourcing case.
Figure 1c compares the complete time taken by DS-kNN and SRkNN [7]. For the
sake of fair comparison results are computed for same parameters and equivalent
processing power. It can be seen that DS-kNN outperforms existing state of the
art by an order of magnitude. Additionally, our implementation is in Java and
uses threading only for decryption at Pt, whereas implementation in [7] uses the
openMP parallelization framework. Thus with an equivalent implementation,
our results can be further improved.
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Performance on real data: We obtained Swiss stock market data for year
2009–2011, which is a collection of portfolios of around 100k individuals for 300
stocks; the data was previously used in [3]. We only evaluated the performance
of k-smallest protocol because time for distance computation is independent
of data distribution. We randomly picked a subset of the data and choose one
portfolio from it as the query portfolio, and computed the number of actual
comparisons required by the k-smallest protocol for k = 1. Figure 2c plots
the number of comparisons carried out for different values of N (the number of
portfolios) along with a reference line for 2N . The two lines are almost perfectly
in lock-step, which demonstrates the efficiency and suitability of our algorithm
for real world data. However, in the worst case, it is still possible that in each
iteration only one distance will be removed resulting in O(N2) total comparisons.

7 Related Work

Privacy-preserving data mining has received a lot of attention [15]. Given the
numerous practical applications of privacy-preserving k-NN search, various pro-
tocols have been developed to address this problem. [5,14] present solutions to
the problem of computing k-NN, where the data is fragmented among different
parties, while also preserving privacy. [4] uses a semi-trusted third party to find
best k matches. In [12] Qi et al. introduce a single-step protocol for k-NN search,
whereas [8] proposed a secure k-NN searching protocol based on PIR for location-
based services. However, none of the above work is appropriate for computation
over encrypted data. [10] solves recommendation problem using Self-Organizing
Map for clustering and k-NN based collaborative filtering, but reveals query to
data owner. Zang et al. in [20] employ homomorphic encryption for finding k-NN
in distributed setting, but in contrast to our work it reveals distances, partial
access pattern to the parties. In [18], the query along with k-NN distances is
exposed and the output is less accurate. [11] makes use of untrusted third party
and reveals query to parties. Although semantic distance can be applied here,
the categorization model will be revealed to data owners. Shaneck et al. [13]
provide a solution that reveals partial access pattern while being slower than
our proposed protocol. Not only is our protocol straightforwardly extensible to
provide outsourcing and k-NN classification, but it also allows for incorporation
of semantic distance, while still being comparatively very efficient as compared
to state of the art [7].

8 Conclusion and Future Work

In this paper we have presented a secure approach to computing k-nearest neigh-
bor queries for horizontally distributed data. Our approach is an order of mag-
nitude faster than the existing state of the art. It is also applicable in the out-
sourcing environment, and can be used to compute top-k queries, as well as k-NN
based classification. In the future, we plan to develop solutions that are resilient
to stronger adversaries, some of which may collude as well.
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Abstract. Aggregation of values that need to be kept confidential while
guaranteeing the robustness of the process and the correctness of the result
is required in an increasing number of applications. We propose an aggre-
gation algorithm, which supports a large spectrum of potential applica-
tions including complex voting protocols. It relies on the distributed hash
table Kademlia, used in BitTorrent, for pseudonymous communication
between randomly predetermined peers to ensure a high degree of confi-
dentiality which does not solely relies on cryptography. The distribution of
data and computation limits the potential for data breaches, and reduces
the need for institutional trust. Experimental results confirm the complex-
ity of O (log n) for n peers allowing for large-scale applications.

Keywords: Distributed aggregation · DHT · Privacy · Trust

1 Introduction

An increasing number of applications require aggregation of values that should not
be revealed, for various aspects of privacy protection. They include personalized
services related to domotic, smart cities, or mobility for instance that are blooming
today, while revealing security breaches. Confidentiality protecting aggregation is
of even greater importance for online voting. We demonstrate that peer-to-peer
systems offer great promises for such aggregations, because they limit the poten-
tial for data breaches and simplify the essential question of trust.

This paper presents Advokat, a distributed protocol for confidential aggre-
gation of inputs produced by large sets of peers. It relies on the distributed hash
table Kademlia [1], that offers both an overlay network to organize peers, as
well as a tree structure to compute the aggregation. Kademlia is a robust and
scalable technique which is used in particular by BitTorrent [2]. The proposed
protocol integrates also techniques from Bitcoin [3] and BitBallot [4].

Voting is the main privacy preserving aggregation realized with pre-digital
technologies. Paper-based voting protocols offer an unmatched solution to satisfy
often contradicting though essential properties, such as secrecy of the ballot, cor-
rectness of the tally and verifiability. Moreover, the possibility given to voters to
participate in the supervision on-site of both the casting and tallying procedures
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ensures trust. No expert knowledge is required to understand the protocol and
its verification procedure. Thus, no trust in organizing authorities is necessary.
Paper-based voting owes its robustness to its independence from institutional
trust. Our objective is to transfer as much as possible these properties in the
online world, while offering new properties not available in the classical setting,
such as remote participation as well as the capacity to launch a new aggregation.

The case of voting protocols is particularly interesting due to its conflicting,
but essential security requirements. On one hand, the eligibility of every voter to
cast a ballot must be ensured, while, on the other hand, no link can be established
between a given ballot and the corresponding voter. Furthermore, the final tally
must be verifiable. Distributed protocols are promising for voting since they
allow to reduce the reliance on trust and open new prospects for verification.
The various tasks are carried out collectively in a peer-to-peer manner by the
participants, much like voters in paper-based voting.

We assume the existence of an administrator trusted to certify the eligibility
of peers. Supported by a tracker, eligible peers join a Kademlia DHT that pro-
vides a tree-like overlay network in which peers are assigned to random leaves.
Peers pull inputs, and later input aggregates, from other peers close to them
in the tree overlay, which allows to compute aggregates for all ancestor nodes
up to the root. The strategy resides on pulling versus pushing for dissemina-
tion. Cryptographic signatures are used to authorize peers to pull in different
subtrees.

Although several protocols propose a distributed aggregation over tree-like
overlay networks [5–8], to the best of our knowledge, the proposed algorithm
is the first to consider eligibility, confidentiality, scalability and verifiability at
once. The DASIS protocol [9] balances the Kademlia tree by routing joining peers
to less populated subtrees. Internally, the subtree size is computed in a similar
fashion to our approach, but no security measures are introduced. A distributed,
Kademlia-based voting protocol to rank the quality of BitTorrent content has
been proposed [10]. However, confidentiality and eligibility are not addressed.

Using distributed protocols for voting is a very natural idea to avoid concen-
tration of power. Common building blocks, like blind signature schemes [11], Mix
Networks [12] or threshold decryption [13] exercise decentralization on a small
scale. Many classical online voting protocols employ already a set of authorities
[14–16] to achieve privacy. However, they assume trust in the authorities and the
aggregation is generally centralized, rendering the protocols vulnerable to DDoS
attacks and data breaches of global impact for instance.

Various efforts1 are ongoing to propose distributed online voting protocols,
based on the Bitcoin blockchain [3], that does not require trusted authorities.
Still, published results are sparse. [17] describes a protocol for a binary majority
voting to determine the receiver of a voter sponsored Bitcoin payment.

1 Blockchain-based voting techniques include: http://votem.com, http://cryptovoter.
com, http://votosocial.github.io, http://followmyvote.com, http://bitcongress.org,
http://github.com/domschiener/publicvotes.

http://votem.com
http://cryptovoter.com
http://cryptovoter.com
http://votosocial.github.io
http://followmyvote.com
http://bitcongress.org
http://github.com/domschiener/publicvotes
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The SPP protocol [18], based on Secure Multi-Party Computation, partitions
the aggregation over a tree hierarchy of peers of which a random set of peers
serves as authorities to carry out the final decryption step. DPol [19] and its
extension EPol [20] are similar to our protocol in that the aggregation is dis-
tributed to all peers and for their renunciation of cryptography. However, their
message complexity does not allow for large-scale elections.

The aggregation protocol is evaluated with respect to the security properties
used for centralized voting protocols such as FOO [15], and to scalability prop-
erties used for distributed aggregation protocols such as SPP [19]. We consider
eligibility, confidentiality (secrecy), completeness and correctness, verifiability,
and complexity in terms of messages, memory and time.

The paper is organized as follows. In the next section, we present the general
setting of the protocol. The basic aggregation is shown in Sect. 3, while the
recursive process that takes advantage of the tree overlay of the Kademlia DHT
is shown in Sect. 4. Then, in Sect. 5, the recursive aggregation process is extended
to allow a minority of dishonest Byzantine peers. Several desirable security and
complexity properties are sketched in Sect. 6. The provided confidentiality is
experimentally examined in Sect. 7 by means of a simulation.

2 Aggregation Protocol

The protocol relies on peers, an administrator and a tracker. The administrator
is entrusted to certify the eligibility of peers. For this purpose, we assume an
authenticated, tamper-resistant communication channel between the adminis-
trator and each peer, e.g. using an existing public key infrastructure.

Once certified, peers join a distributed hash table (DHT) that is mainly used
to find other peers, but allows also to retrieve and store data. We choose the
Kademlia DHT [1] whose tree-like network overlay is well-suited for aggregations.
Like in BitTorrent, a tracker is employed to provide an initial peer as an entry
point. Peers communicate via pairwise channels assumed to be confidential and
authenticated to the degree of a peer pseudonym, e.g. a public IP address.

We use the following notations adapted from [15]:

A Administrator

Pi Peer, i-th out of n

ai Initial aggregate of peer Pi

(pki, ski) public and private key pair of peer Pi

η(m) Hashing technique for message m, e.g. SHA-1

σi(m) Peer Pi’s signature scheme using (pki, ski)

σA(m) Administrator’s signature scheme

χ(m, r) Blinding technique for message m and random number r

δ(s, r) Retrieving technique of blind signature

The proposed protocol follows the following structural steps:
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Preparation Peers create personal public and private key pairs and send autho-
rization requests with their blinded public key to the administrator.

Administration Once for each peer, the administrator signs the peer’s blinded
public key without learning it and sends the signature to the peer.

Aggregation Supported by the tracker, peers join the tree-like overlay network
of Kademlia. Then, peers assign their initial aggregate to their leaf node and
compute collectively the root aggregate from all initial aggregates using the
distributed aggregation algorithm. This requires the computation of interme-
diate aggregates for all their ancestor nodes in the Kademlia tree.

Evaluation On fulfilment of a well-defined verification criteria, peers accept
their root aggregate as final root aggregate. The outcome (e.g. election result)
is eventually derived from the final root aggregate.

In the preparation step, each peer Pi generates on it’s own authority a public
and private key pair (pki, ski) to sign messages with σi(m). To limit the number
of valid keys to one per eligible peer, the public key must have the signature of
the administrator A [18]. As in FOO [15], a blind signature scheme [11] is used to
ensure that A cannot recognize peers after the administration step. Pi randomly
chooses a blinding factor ri, computes its blinded public key bi = χ(pki, ri) and
sends it to A using the authenticated, tamper-resistant channel.

In the administration step, A ensures to sign only a unique bi for each Pi

and responds to Pi with its signature si = σA(bi). Eventually, Pi can retrieve
the authorization token ti = δ(si, ri). A does not intervene any further once all
eligible peers have acquired their authorization or a time-out has elapsed.

During the aggregation step, all peers run the distributed aggregation algo-
rithm, that is presented hereafter in Sects. 3 and 4.

3 Basic Aggregation

The aggregation algorithm allows to implement various kinds of confidential
aggregations. In particular, with standard security requirements slightly weak-
ened, it supports a large spectrum of voting systems.

Aggregates are values to be aggregated, whether initial aggregates, consti-
tuting inputs from peers, or intermediate aggregates obtained during the com-
putation. The specification of the aggregation algebra is formulated below. We
then introduce the aggregate container allowing to attach meta-information to
aggregates that is used to position them in the tree and ensure verifiability.

We introduce an algebra whose operation applies to aggregates, which are
aggregated during the computation of the operation. In the case of a vote, aggre-
gates correspond to ballot boxes filled with ballots, and the operation is the union
of sets. The data structure can be adapted to different applications with different
aggregation functions, such as average, majority voting, etc.

We consider a set A of aggregates. The aggregation operation, ⊕, combines
two child aggregates to a parent aggregate in A. Initial aggregates, corresponding
to peer inputs, are not computed, but provided by the peers. We assume that
the operation ⊕ : A × A �→ A is commutative and associative.
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Consider for illustrative purposes the algebra for the Plurality Voting (PV).
Peers, or here more precisely voters, choose one out of d options, that are mod-
eled in the algebra with initial aggregate vectors (e1, . . . , ed) in A = N

d, with
∑d

x=1 ex = 1. The operation ⊕ is simply vector addition in A. The root aggregate
aR = (n1, . . . , nd) with

∑d
x=1 nx = n indicates how many peers nx have chosen

each option. The option x with the highest nx, hence plurality, corresponds to
the vote outcome. The system can be easily extended to A = Q

d
+ to support vote

splitting between two or more options. The Manhattan norm is used to ensure
the validity of initial aggregates ai with constant weight: ‖ai‖.

More complex voting systems such as for instance the Alternative Voting
and the Single Transferable Voting systems can easily be encoded. In both cases,
voters have to rank options. Every ranking of d! possible rankings in total can be
interpreted as one option in the PV algebra. The set of aggregates A consists of
vectors A = N

d!
0 and the operation is again vector addition. Note that alternative,

more compact encodings can be defined for efficiency reasons.
The aggregation algorithm relies on meta-information of an aggregate a that

is in general not directly involved in the aggregate computation, and constitutes
together with a the aggregate container of a:

h hash η(·) of the aggregate container without h

a aggregate

c counter of initial aggregates in a, c = c1 + c2

c1, c2 counter of initial aggregates of child aggregates

h1, h2 container hashes of child aggregates
̂S(x, d) identifier of subtree whose initial aggregates are aggregated in a

The counter c allows to detect protocol deviations and to measure the number
of initial aggregates in the root aggregate that can be compared to n [6].

The aggregate container hash h depends on its child aggregate hashes h1, h2.
As such, a chain of signatures is spanned reaching from the root or any inter-
mediate aggregate down to the initial aggregates of the peers. Also employed
in the Bitcoin blockchain, this technique ensures that the sequence of aggregate
containers is immutable.

4 Recursive Aggregation over the Kademlia Binary Tree

The aggregation protocol relies on the Kademlia DHT that establishes a binary
tree overlay network in which each peer Pi is assigned to a leaf node. Using
the aggregation operator ⊕, peers compute the intermediate aggregate for all the
parent nodes from their corresponding leaf up to the root node of the tree. The
aggregates used to compute any intermediate aggregate of a given tree node are
those of its child nodes. Hence, aggregates have to be exchanged between peers of
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sibling subtrees, i.e. subtrees whose roots have the same parent. Kademlia is not
used solely to discover other peers, but its internal tree overlay also provides the
hierarchy for the aggregation algorithm [9]. We use in the following a notation
adapted from Kademlia [1].

k maximum number of contacts per Kademlia segment (k-bucket)

x a Kademlia leaf node ID (KID) of size B

B size of a KID in bits, e.g. 160

xi KID of peer Pi

d node depth, i.e. number of edges from the node to the tree root
̂S(x, d) subtree whose root is at depth d which contains leaf node x

S(x, d) sibling subtree whose root is the sibling node of the root of ̂S(x, d)

The leaf node identifiers x ∈ {0, 1}B (B bits) span the Kademlia binary tree
of height B and are denoted KID. Each peer Pi joins the Kademlia overlay
network using its KID defined as xi = η(ti) with the authorization token ti and
the hashing technique η. This way, xi depends on both Pi’s and A’s key pair,
so that xi cannot be altered unilaterally [21]. B is chosen sufficiently large, so
that hash collisions leading to identical KIDs for distinct peers are very unlikely.
Consequently, the occupation of the binary tree is very sparse.

Any node in the tree can be identified by its depth d ∈ {0, . . . , B} and any of
its descendant leaf nodes with KID x. A subtree Ŝ(x, d) is identified by the depth
d of its root node and any of its leaf nodes x. We overload the subtree notation
to designate as well the set of players assigned to leaves of the corresponding
subtree. Further, we introduce S(x, d) for the sibling subtree of Ŝ(x, d), so that
Ŝ(x, d) = Ŝ(x, d + 1) ∪ S(x, d + 1). The entire tree is denoted Ŝ(x, 0). We observe
that ∀d : Pi ∈ Ŝ(xi, d) and ∀d : Pi /∈ S(xi, d).

In Kademlia, the distance d(xi, xj) between two KIDs is defined as their bit-
wise XOR interpreted as an integer. In general, a peer Pi with KID xi stores
information on peers with xj that are close to xi, i.e. for small d(xi, xj). For this
purpose, Pi disposes of a set denoted k-bucket of at most k players Pj ∈ S(xi, d)
for every S(xi, d) with d > 0.2 See Fig. 1 for an example. The size of subtrees
decreases exponentially for growing depth d. Consequently, the density of known
peers of corresponding k-buckets grows exponentially.

Kademlia ensures that the routing table, that is the set of all k-buckets, is
populated by peer lookup requests for random KIDs to the closest already known
peers. Requests are responded with a set of closest, known peers from the routing
table. One lookup might require multiple, consecutive request-response cycles.

We assume that peers are either present or absent. Present peers join the
Kademlia overlay network within a given time interval and stay responsive until

2 Note that originally [1] the common prefix length b is used to index k-buckets/sibling
subtrees while we use the depth d = b + 1 of the root of the subtree.
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Fig. 1. Example of Kademlia k-buckets for KID xi = 100 assuming B = 3. The sparse
tree is partitioned into subtrees S(xi, d) with root node at depth d = 1, 2, 3. The k-
buckets for each d contain at most k peers Pj ∈ S(xi, d).

their aggregation step is terminated. The aggregation is carried out in B epochs,
one tree level at a time. Epochs are loosely synchronized, because peers may
have to wait for intermediate aggregates to be computed in order to continue.

First, every peer Pi computes a container for its initial aggregate. The con-
tainer is assigned to represent the subtree Ŝ(xi, B) with only $P i.

In each epoch for d = B, . . . , 1, every peer Pi requests from any Pj ∈ S(xi, d)
the aggregate container of subtree S(xi, d). Pj responds with the demanded
aggregate container. With the received container of S(xi, d) and the previously
obtained of Ŝ(xi, d), peer Pi computes the parent aggregate using the aggregation
operator ⊕. Its corresponding container is then assigned to the parent subtree
Ŝ(xi, d − 1). If S(x, d) = ∅ for any d, the container of Ŝ(x, d − 1) is computed
only with the aggregate container of Ŝ(x, d) from the previous epoch.

After B consecutive epochs, peer Pi has computed the root aggregate of the
entire tree Ŝ(xi, 0) that contains the initial aggregates of all present peers. If all
present peers are honest, the root aggregate is complete and correct.

5 Robust Aggregation

The recursive aggregation introduced in Sect. 4 is very vulnerable to aggregate
corruptions leading to erroneous root aggregates, and to illegitimate requests
compromising the confidentiality. Following the attack model from [18], we
assume a minority of dishonest, Byzantine peers entirely controlled by one adver-
sary that aims to interrupt the aggregation, manipulate root aggregates and
increase its knowledge on initial and intermediate aggregates. Byzantine peers
can essentially behave arbitrarily, but are assumed to be unable to prevent their
initial integration in the routing tables by honest peers.
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To prevent Sybil attacks and arbitrary requests, all messages m between
peers are signed by the sender Pi using σi(m) [21]. For signature verification,
the public key pki and the token ti must be either published (in the DHT) or sent
along with every signature. Henceforth, a peer Pi answers aggregate requests for
Ŝ(xi, d) only for peers Pj ∈ Ŝ(xi, d) in the same subtree or Pj ∈ S(xi, d) in the
sibling subtree. Consequently, peers cannot obtain more knowledge on aggregates
than strictly necessary to compute the root aggregate.

Further, player signatures are employed to detect deviations from the proto-
col. For every computed aggregate container of Ŝ(xi, d) with hash h and counter
c, player Pi produces an aggregate container signature σi(h, d, c). A signature
σi(h, d, c) expresses the capacity of a peer Pi to compute the container identified
by its hash h and is consequently only valid for containers of Ŝ(xi, d) for any d.

In Fig. 2, we consider the steps of Pj ∈ S(xi, d) to produce for any Pi a
confirmed aggregate container of S(xi, d) backed by the signatures listed below.
Note that the necessary signatures depend on the subtree configuration that can
be explored by Pi using peer lookup requests. Like for the recursive aggregation,
Pj requests first the sibling aggregate container ( 1©) if S(xj , d + 1) �= ∅. For
|S(xj , d+1)| < k, the corresponding k-bucket is exhaustive [1] and the aggregate
counter c must not exceed its size. k-buckets are hardened against insertion of
false contacts by requiring for all Pq in lookup responses the proof of their KID
(pkq, tq). Then, the so-called container candidate for S(xi, d) is computed ( 2©).

New is the confirmation ( 3© and 4©) to acquire necessary signatures by oth-
erwise redundant requests to peers in the same subtree S(xi, d). Candidates are
exchanged solely among peers of that subtree to allow for mutual confirmation.

Fig. 2. Pj with xj produces a confirmed aggregate container of S(xi, b). This scheme
applies to all tree levels with possibly large subtrees to request from.

Pi requires from Pj the following signatures with the container for S(xi, d):

1. Pi requires the signature σj(h, d, c) on container hash and counter.
2. If c > 1, there is at least one child aggregate with hash h1 and counter c1 and

σj(h1, d + 1, c1) must be provided.
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3. If c > 1 and c1 > 1, a confirmation request ( 3©) is necessary to provide
σq(h, d, c) from Pq ∈ S(xj , d

′) with the smallest d′ > d + 1 for a non-empty
subtree, ideally in the subtree S(xj , d + 2).

4. If c > 1 and c2 > 0, Pj provides σl(c2, d + 1, h2) acquired before ( 1©) as
1. signature.

5. If c > 1 and c2 > 0, a confirmation request ( 4©) is necessary to provide
σl(h, d, c) if Pl for c2 = 1, and otherwise σp(h, d, c) from Pp ∈ S(xl, d

′) with
the smallest d′ > d + 1 for a non-empty subtree, ideally in S(xl, d + 2).

The 1., 2. and 4. signature listed above are required already for candidate
containers and allow to detect dishonest peers during confirmation. The 3. and
5. signature promote a consensus in Ŝ(xj , d + 1) respectively S(xj , d + 1).

The requests 3© and 4© provide additional signatures, that may reveal dishon-
est peers deviating from the protocol. Note that dishonest peers cannot influence
which peers are requested to avoid detection with certainty. For this, we focus on
signatures σe(h, d, c) and σe(h′, d, c) of the same peer Pe with equal counter c for
distinct containers (h �= h′) of the same subtree. In case of c = 1, Pe derived from
the protocol with certainty, is as such detected as dishonest, and its signatures
and containers are discarded. A new candidate container without it is computed.
The same holds for c = 2, because Pe has not discarded itself two distinct con-
tainers with c = 1 of the same peer, and alike for c = 3. Without obvious proof
for c > 3, we assume Pe to be honest. The discarded signatures form a verifiable
proof that is attached to request responses for the newly computed (candidate)
container and stored in the DHT under the key η(xe) if there was none before.
Detected dishonest peers are permanently removed from the routing table.

With all required signatures, a candidate container of S(xi, d) is confirmed
and may be requested by peers in Ŝ(xi, d). If the candidate cannot be confirmed
by a peer Pe, a proof of former deviation is looked up, and requests to other
peers continue for a limited number of tries. If Pj gathers this way a majority
of signatures for a different child container than those it has computed earlier,
Pj repeats the previous aggregation in order to correct or confirm again its child
container. If Pj gathers instead a majority of signatures for a different child
container than those it has requested, Pj repeats the current aggregation in
order to request potentially a different sibling child container to use. Requests for
containers with c = 1 are not repeated to prevent revisions of initial aggregates.

The administration step ensures that the global minority of dishonest voters
is randomly distributed over the tree. Hence, the implicit majority vote on hashes
is supposed to be decided by the local majority of honest peers in the subtree.
Note that a vote, and thus a honest majority, is not required for subtrees with
less than 4 peers, because dishonest peers are detected and removed based on
signatures on containers.

If Pj can still not acquire all signatures, e.g. due to a dishonest peer Pe

blocking the confirmation, Pj continues the aggregation nevertheless and com-
pensates the missing signature by both child aggregate containers with all their
signatures, so that the aggregate computation of Pj can be reproduced. The
confidentiality of Pj and Pe is diminished to the same degree.
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At last, the root aggregate container is confirmed by some additional signa-
tures to increase the confidence that it has been adopted by the majority.

6 Protocol Properties

Common security properties of online voting protocols [16,18] are considered
using the attack model of a dishonest minority from Sect. 5.

Eligibility. The administrator is trusted to sign one authorization request for
every eligible peer. Without signature, peers cannot engage in the aggregation.

Confidentiality. The protocol does not ensure secrecy of the initial aggregate
due to the necessity to share it at least once over a pseudonymous channel.
However, the access to the initial aggregate is limited to randomly determined
peers that acquire mostly partial knowledge, so that confidentiality is ensured to
a high degree. The pseudonymous channel between peers augments further the
confidentiality. The DHT is ephemeral, distributes information evenly among
peers, and vanishes when peers disconnect after the aggregation. Potential data
breaches are therefore local and bounded in time.

Completeness and Correctness. A local majority of dishonest peers in a subtree
Ŝ(x, d) with at least 3 peers allow for manipulations of the corresponding aggre-
gate container. Manipulations of its counter c require further at least k peers
in Ŝ(x, d). Hence, for a reasonably-sized global dishonest minority, the protocol
ensures that peers compute with high probability root aggregates that are with
high probability correct or almost correct.

Verifiability. Using requests, Pi can determine with high probability which root
aggregate has been confirmed by most peers and verify the chain of container
hashes to the hash of its initial aggregate.

Robustness and Non-interruptibility. The aggregation step is entirely distributed
to equipotent peers. With no weakest link, the influence of a reasonably-sized dis-
honest minority is locally limited. The redundancy of the aggregate computation
increases exponentially in every epoch as aggregates become more meaningful.

The protocol complexity is mostly inherited by the properties of Kademlia,
which have been studied [22] and experimentally confirmed as part of BitTorrent.

Message Complexity. For a network of n peers, a lookup requires with great prob-
ability O (log n) request-response cycles. Joining the network requires a limited
number of lookups and is thus as well of order O (log n). With the consideration
to estimate the number of empty k-buckets from [22], the average number of
container requests for the basic aggregation is found to be O (log n).
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Memory Complexity. The memory required to store non-empty k-buckets is
O (log n). Further, the aggregation algorithm requires to store O (log n) received
aggregate containers for non-empty sibling subtrees and perhaps a limited num-
ber of alternatives in case of failing confirmations. Hence, for a constant size of
aggregate containers, the total memory complexity is again O (log n).

Time Complexity. Intermediate aggregates for ancestor nodes are computed in
sequence. For a constant computation time per aggregate and with an upper
limit to request and confirm aggregates, the time complexity is O (log n).

7 Experimental Confidentiality Analysis

The protocol has been simulated on the basis of kad, an implementation of
Kademlia3 written in JavaScript with its extension kad-spartacus. For each
peer Pi, key pairs (pki, ski) are generated using elliptic-curves cryptography.
The KID xi of each peer Pi is derived by hashing pki first with SHA-256 and
the result again with RIPEMD-160. It is assumed that the use of pki instead
of the token ti leads to an equally random distribution of KIDs, so that the
administration step can be omitted in the simulation. A simulation parameter
allows to vary the generation of key pairs and consequently the KIDs, so that
different tree configurations can be tested.

After all n peers are instantiated, every Pi connects to the Kademlia network
using an initial contact Pi−1. According to the Kademlia protocol, peers update
their routing table using lookup requests. In our model, peers do not join or leave
during the aggregation, so that the routing table does not change hereafter. Once
all routing tables are complete, peers start the aggregation step like detailed in
Sect. 4. The simulation does not consider absent or dishonest peers.

If a peer receives a request for an intermediate aggregate that has not yet
been computed, the response is delayed. The aggregation steps in the simulation
use neither parallel requests nor timeouts for requests.

We consider the issue of confidentiality, and measure both the degree of leak-
age of initial aggregates, and the concentration of knowledge on initial aggre-
gates. For that purpose, we assume that all initial aggregates are distinct.

We define the leaked information Li of a peer Pi to be the sum of the inverse
of the counters of all containers that Pi used to respond to aggregation requests.
1/c denotes the probability to correctly link the contained initial aggregate of Pi

to the pseudonym of Pi, e.g. an IP address. The leaked information Li is at
least 1, because in a non-trivial aggregation with n > 1, Pi must respond at
least once with its initial aggregate container with c = 1. In a perfectly balanced
tree with n = 2B peers, Li is strictly smaller than 2:

Li =
B−1∑

n=0

(
1
2

)n

< 2

3 http://kadtools.github.io/, v1.6.2 released on November 29, 2016.

http://kadtools.github.io/
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Fig. 3. In a simulation with n = 1000, peers leak (a), respectively receive (b), informa-
tion on initial aggregates depending on the global distribution of peers on the binary
Kademlia tree. Li peaks close to the theoretical value 2 of an optimally balanced tree.
Only few peers leak significantly more. While the mean for Ri is the same, the distri-
bution is slightly different.

Conversely, we define the received information Ri of Pi as the sum of 1/c
of all containers that Pi receives as responses to its requests. In a perfectly
balanced tree, Ri = Li. We further introduce relative measures li = Li/(n − 1)
and ri = Ri/(n−1) normed by the worst case that initial aggregates of all other
n− 1 peers are leaked/received. Figure 3 shows the distribution of Li and Ri for
a simulation run with n = 1000 peers. The simulation has been repeated with
different tree configurations without notable changes. In the examined case, the
relative leak to the network is li = 0.24(9)%. The relative received information
ri = 0.24(10)% is the same with a slightly higher standard derivation.

The worst case is given by the least balanced tree configuration in which
|S(xi, d)| = 1 for all d ∈ {B, . . . , 1}. That means for the given Pi, every sibling
subtree contains exactly one other peer. Here, Pi learns in every epoch one initial

Fig. 4. In a simulation with n = 1000, the number of given (b) and received (a)
responses has been recorded for every peer. While the distribution of received responses
is very sharp, the distribution for given responses is twice as broad. In the Kademlia
routing tables, some peers are more often represented than others.
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aggregate with certainty. However, such a tree allows for only B + 1 peers and
every additional peer decreases Li.

Moreover, the load on peers measured by the number of received and given
responses has been examined. The histograms in Fig. 4 indicates that no peer
receives significantly more load than others—a property that has been shown
for Kademlia before.

Eventually, the average number of requests per peer simulated with different
numbers of peers n up to n = 1000 confirmed the theoretical message complexity
of O (log n) shown in Sect. 6.

8 Conclusion

We considered the fundamental problem of large-scale confidential aggregation,
and proposed the distributed aggregation protocol Advokat. It prioritizes sys-
tem wide properties like scalability and robustness over perfect completeness,
correctness or full secrecy of initial aggregates.

The aggregation step is distributed to entirely equipotent peers which
improves the robustness in face of all sorts of attacks and reduces the reliance
on institutional trust. Peers may choose their trusted protocol implementation.
Cryptography is only employed to manage authorization and ensure integrity,
but not to ensure secrecy, which renders the protocol easier to understand and
independent of hardness-assumptions common in cryptography. Due to the even
distribution of data and the ephemeral nature of the network, the risk of global
or targeted leaks after the aggregation is eliminated. With its global message
complexity of O (n log n), it outperforms SPP with O (

n log n3
)

[18] and DPol
with O (n

√
n) [19] which both provide instead stronger confidentiality.

We showed that the protocol offers a high level of confidentiality though
at least comparable to postal voting with trusted authorities. For large n, it
is very unlikely that the initial aggregate of a given peer is revealed, which
might be acceptable for many applications. Completeness and correctness can
be compared to paper-based voting. It is possible that few initial aggregates
are manipulated or not counted, but not at a global scale and not often. An
individual verification allows to detect manipulations.

The universal protocol algebra supports a wide range of applications, e.g. dis-
tributed lottery, aggregation of sensible healthcare data, or all sorts of reduce
operations. Turning our protocol into a solution that can be adopted in practice
will require some effort. Foremost, a formal definition of completeness and cor-
rectness must be introduced so that upper limits of their manipulations depend-
ing on the ratio of dishonest peers in the attack model from Sect. 5 can be
formulated. Further, the influence of churn of Byzantine peers on the routing
tables must be analysed and, if necessary, restricted to allow for Byzantine peers
with no assumptions.
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Abstract. Effectively protecting the WindowsTM OS is a challeng-
ing task, since most implementation details are not publicly known.
Windows OS has always been the main target of malware that have
exploited numerous bugs and vulnerabilities exposed by its implementa-
tions. Recent trusted boot and additional integrity checks have rendered
the Windows OS less vulnerable to kernel-level rootkits. Nevertheless,
guest Windows Virtual Machines are becoming an increasingly inter-
esting attack target. In this work we introduce and analyze a novel
Hypervisor-Based Introspection System (HyBIS) we developed for pro-
tecting Windows OSes from malware and rootkits. The HyBIS archi-
tecture is motivated and detailed, while targeted experimental results
show its effectiveness. Comparison with related work highlights main
HyBIS advantages such as: effective semantic introspection, support for
64-bit architectures and for recent Windows versions (≥ win 7), and
advanced malware disabling capabilities. We believe the research effort
reported here will pave the way to further advances in the security of
WindowsTM OSes.

1 Introduction

Securing the Windows OS is a very challenging task, given its complexity and
also given that its internals are not publicly known. Over time, a large set of
malware has targeted vulnerabilities in Windows OSes and services. Due to
the very large installed base of Windows OSes, there is a great amount of new
malware produced every year, which implements advanced methods for detection
avoidance. The problem is particularly interesting for recent Windows versions,
which have not yet been fully analyzed/investigated by the research community.

Among the different kinds of malware, rootkits represent the most complex
and dangerous threats. In fact, rootkits can alter the system’s perception of
itself, and conceal malicious activities over a large period of time. In particular,
modern rootkits can directly manipulate memory structures to further enhance
their stealthiness. As such, security tools can hardly detect them and are usually
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unable react to the infection. For this reason, rootkit detection is a vital task
for protecting Windows and it is then fundamental to make it as effective as
possible.

1.1 Motivation

Current monitoring approaches cannot provide an adequate level of protection
against rootkits targeting Windows OSes. In fact, most solutions operate at the
same level as rootkits do [8,22,28]. By tampering with the functions leveraged
by security tools, rootkits are able to evade detection from within the OS. Hence,
anti-rootkit tools working at the OS level cannot be trusted in case of rootkit
infection. When the OS is running in a virtual machine, however, this problem
can be addressed in a different way. Such a scenario, in fact, allows an exter-
nal observation of the OS, from a more trustworthy and isolated environment.
This capability is provided by the hypervisor, which can directly access VM
components without leveraging OS functions.

Such a capability enables the adoption of virtual machine introspection (VMI
[14,21]), which consists of inferring the guest OS semantics from the analysis of
the status of VM components. VMI provides a valuable tool to counter rootkits
since they can hardly conceal their presence to a monitoring system not depen-
dent on OS functions.

On the one hand, VMI on Windows guest is however hard in practice, as it
requires some specific OS information in order to make sense out of raw machine
data [14]. This is one of the challenges of our present work, and it is also one of
the main contribution of this work. On the other hand, VMI can be supported
by the use of forensic memory analysis (FMA), which provides the means for
extracting OS information from raw memory data. In fact, as stated above, since
modern rootkits manipulate memory to avoid detection, they can be identified
by inspecting the same memory contents [19]. This is a clear advantage over
rootkits and allows the implementation of more reliable security systems.

Moreover, once the infection has been identified, the hypervisor also allows an
effective reaction. In fact, by leveraging unfettered access to physical resources,
a security tool can directly manipulate the VM and stop rootkit activities.

All these features, render the hypervisor a very attractive place where to
implement security functionalities. In this work, we will leverage advanced VMI
and FMA to help securing Windows OSes in virtualized environments.

1.2 Contribution

This work introduces and discusses a novel effective approach for countering
rootkits on a Windows OS running in a VM. The implemented security monitor
is external to the target machine, similarly to some recent literature [13,35].
By leveraging VMI and current FMA tools, we developed a novel Hypervisor-
Based Introspection System (HyBIS) for protecting a Windows OS from stealth
malware, in particular from rootkits.
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The proposed system extends the hypervisor to monitor the state of the run-
ning machine, to detect rootkits, and to react to the discovered anomalies. The
monitoring functionality leverages VMI techniques to infer the guest OS status.
In order to detect rootkits, guest memory is scanned for kernel objects which
may have been hidden. Such a scan is performed on memory dump files by means
of FMA techniques and tools. Although such tools are typically used for offline
analyses, the proposed system utilises them in a live way, during the system exe-
cution. To this purpose, HyBIS provides a novel dumping system which allows
improving the performance of the memory acquisition task. Furthermore, a novel
reaction approach is implemented that makes use of the hypervisor to manip-
ulate memory contents while the virtual machine is running. This capability is
leveraged to prevent the execution of detected rootkit processes. HyBIS allows
detecting and reacting to rootkits effectively on recent Windows OSes. HyBIS
successfully proves that the combination of VMI and FMA provides a valuable
tool for countering rootkits on Windows OSes.

2 Related Work

This section surveys most relevant related work and stresses the main differences
with respect to our solution.

Zhang et al. [33] leverage SMM, an advanced x86 execution mode, for detect-
ing memory-based stealthy malware. Their SPECTRE framework can introspect
a live operating system and supports both Windows and Linux OSes. However,
this framework is vulnerable to hardware-based attacks, such as [34]. Further-
more, their work is limited to Windows XP SP3.

In [16], Hizver and Chiueh make use of Volatility for the analysis of VM
execution states. Their RTKDMS system is able to perform real-time monitoring
at the hypervisor level. Differently from HyBIS, such an architecture leverages an
additional VM for the introspection analysis. Again, the experiments are limited
to Windows XP. Furthermore, their system does not tackle the rootkit threat
specifically, neither it explores any reaction possibility.

Deng et al. [9] propose the SPIDER architecture, a stealthy program instru-
mentation and debugging framework built upon hardware virtualization. SPI-
DER enables monitoring memory read/write at any address. Nonetheless, unlike
HyBIS, it requires an in-guest agent which modifies the guest OS kernel.

In [20], Lengyel et al. describe DRAKVUF, a novel dynamic malware analy-
sis system based on Xen, which improves hardware resources usage efficiency.
DRAKVUF takes advantage of the hardware virtualization extensions to provide
a transparent and scalable environment to enable in-depth analysis of malware
samples. In this case, the target OS is Windows 7 SP1 in both 32- and 64-bit
versions.

Differently from DECAF [15] which only supports introspection of 32 bit
guests, our HyBIS approach also allows inspecting 64 bit Windows guests. Fur-
thermore, Henderson et al. declare that VMI has limitations against some types
of attack (due to the ability of the guest attacker to modify memory contents
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at will). While we agree that memory analysis can be circumvented in theory,
we believe in practice continuous monitoring and effective/smart diff-deltas can
render an attack much less practical.

As regards memory forensics issues, an interesting work by Balzarotti et al. [7]
assesses the impact of GPU-assisted malware [10] on memory forensics. They dis-
cuss different techniques that malware can adopt to hide its presence on GPUs.
Their analysis shows that, by offloading some computation to the GPUs, it is
possible to successfully hide some malicious behavior.

Harrison [13] suggests an approach that is somewhat similar to HyBIS. How-
ever it aims to be integrated into other IDS solutions [11], and mostly focuses on
the analysis phase. HyBIS, instead also explores the novel reaction capabilities
given by the combination of VMI and FMA techniques.

3 HyBIS - Approach and Functionalities

This section describes the approach behind HyBIS, the proposed Hypervisor-
Based Introspection System for Windows. HyBIS combines FMA techniques with
the VMI approach. As mentioned above, the main goal of our work is to improve
Windows security in virtualized environments. In particular, our research focuses
on protecting such OS from rootkits. In order to protect Windows from modern
rootkits, we mostly focused our studies on the RAM component. Memory, in fact,
stores both code and data and is involved in almost every operation performed
on the machine during OS execution. Thus, RAM can be considered the most
complete source of information about the status of a running OS at a specific
time. For such a reason, modern rootkits use to manipulate memory to conceal
their activities and resources. Nonetheless they reside in RAM while running,
thus giving the opportunity to detect their presence. Hence, memory is the best
place where to look for inferring the current status of the target machine. FMA
enables performing such a task in an effective and convenient way.

The basic idea we followed for the development of our security system was
that the hypervisor can do more than what it is intended for. The chosen design
approach was then to augment the hypervisor capabilities by means of intro-
spection techniques. We extended the hypervisor by introducing the following
functionalities: (i) Monitoring : the hypervisor is enabled to monitor the machine
state in order to realize if something anomalous is happening; (ii) Analysis: the
hypervisor is enabled to analyze the state of the guest OS in order to detect
the presence of rootkits; (iii) Reaction: the hypervisor is enabled to react when
a rootkit is detected and block its activities. The above functionalities leverage
internal hypervisor functions as well as external libraries and tools. The internal
functions provide direct access to virtual machine hardware components. In par-
ticular, they allow to monitor the VM CPU and physical memory. By checking
the CPU state and reading the memory contents, it is possible to implement a
transparent monitoring function. Furthermore, the write access to memory can
give the ability to perform changes into a running VM.

By making use of external tools and libraries, the hypervisor can be given
even more capabilities. For instance, by integrating memory forensic functions,
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it is possible to implement advanced analysis techniques, which may allow detect-
ing the presence of rootkits into the system.

Monitoring - Checking The System State: the virtual machine state can
be analyzed by means of VMI. As stated before, the hypervisor has the ability
to access virtual hardware resources directly, allowing the monitoring of all the
VM components. In particular, we chose to monitor CPU and memory as they
are core components of the machine.

CPU state changes can be easily monitored by using internal hypervisor
functions. Such functions allow, for instance, checking the current operating
mode, or inspecting registers.

VM memory contents changes can be monitored by means of differential
dumps. With this approach, memory dumps are periodically generated to check
if a particular area has been modified. In order to implement such a functionality,
an initial memory snapshot must be taken at a specific time. Such a snapshot
can then be used as basis for the comparison with the following checkpoints.

Analysis - Detecting Rootkits: as previously explained, modern rootkits are
able to manipulate memory objects at runtime to conceal their activities. Hence,
in order to detect rootkits, the analysis functionality should focus on the memory
contents. This kind of analysis requires advanced forensic techniques to discover
an infection. A convenient approach would be then to make use of functions from
an external forensic tool or library.

Memory forensic analyses are commonly based on memory dumps. Hence, a
memory acquisition functionality is required to make use of the forensic tools.
Fortunately, most hypervisors implement their own dumping facility which can
be used to acquire guest memory. Such a facility can be easily expanded/adapted
to improve the acquisition process and realize the above-mentioned differential
dumping functionality.

Reaction - Countering Rootkits: in order to react when a rootkit is detected,
some kind of action has to be taken to prevent it from performing further activi-
ties. As such, guest memory can be used to implement the reaction functionality.

Since rootkits, even if concealed, reside in memory, it would be a good app-
roach to counter them into the same place. Once again, hypervisor functions can
come in handy: by writing into guest memory, it could be possible to delete the
detected rootkit from memory, or to block its current execution.

3.1 HyBIS Functionalities

We set up to implement four high-level functionalities in HyBIS: Automatic
boot dump generation; Smart differential dumping; Detection of hidden rootkit
processes; Blocking of hidden rootkit processes. In the following, we detail each
functionality.

Automatic Boot Dump Generation: as explained above, the monitoring
functionality should allow deciding when an analysis operation would be appro-
priate. Since the analysis functionality operates over memory dumps, we decided
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to automatically generate a dump on the basis of some hardware event. In par-
ticular, we chose to monitor the VM during the boot phase in order to produce
a dump at the very beginning of the Windows loading procedure.

This choice has a twofold reason. Firstly, it aims at determining the first
feasible moment for analyzing a memory dump with a forensic tool; in fact,
these tools need the kernel to be loaded in order to work. Secondly, such initial
dump can be used as starting point for a following monitoring of the memory;
in fact, after the kernel has been loaded, most of the system areas remain fixed
during the rest of OS execution.

Hence, this function should allow HyBIS to automatically generate a memory
dump as soon as the Windows kernel process starts.

This objective has been chosen to demonstrate how, by means of introspec-
tion, the VM state monitoring can be effectively used for determining meaningful
moments of the OS execution.

Smart Differential Dumping: besides the CPU, the monitoring functionality
can check specific virtual machine memory areas for changes, in order to decide
if an analysis operation is needed.

As stated above, a differential approach can be taken to perform this kind of
monitoring. However, memory acquisition can be a very onerous task to perform,
especially when it has to be repeated over time. So, it is important to do such an
operation efficiently in order to not compromise the guest system performance.
Since only some memory ranges need to be checked, there is no need to dump
the whole memory at every checkpoint. Instead, it should be enough to acquire
only the ranges we are interested in.

This function should allow HyBIS to update a previously created dump by
acquiring selective ranges and overwriting them into the corresponding areas.
Previous contents of such ranges should be backed up in separate files in order
to allow the comparison between different checkpoints. With such an approach,
it can be said that HyBIS uses “dynamic” dumps.

Dynamic dumps can also be used to improve the acquisition process necessary
for the forensic analyses. In fact, since such analyses usually involve only some
ranges of the whole dump, it is possible to use the update mechanisms described
above, to perform the analyses of different checkpoints without needing to create
multiple dumps of the whole memory.

This objective has been chosen to demonstrate how monitoring the VM mem-
ory can be both effective and efficient.

Detection of hidden rootkit processes: it is well-known that rootkits try
to hide their processes to avoid detection. This is effectively obtained by imple-
menting the DKOM technique [17]. In particular, a rootkit that wants to hide
a process, could remove the corresponding object from the active process list.
In fact, Windows uses two lists of processes: one for scheduling, and one for
tracking. A process whose object is removed from the tracking list, will be invis-
ible while still active. As such, hidden processes can be detected by means of
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a cross-view analysis1. More specifically, this can be done by scanning memory
for process objects, and comparing the results with the active process list. If
a scanned process is not present in this list it is likely to be a hidden rootkit
process. This function should allow HyBIS to detect hidden processes by creating
a memory dump and scanning it for concealed process objects.

This objective has been chosen to demonstrate how FMA can help in detect-
ing rootkits on running guest OSes.

Blocking of hidden rootkit processes: once a hidden process has been
detected, it should be blocked to prevent it from keeping performing malicious
activities. This action will not clean the infection but it could be a first step to
defeat the rootkit.

A good idea for blocking a hidden process would be to exclude it from schedul-
ing, thus preventing its execution. This can be done using the DKOM technique
in a similar way as that used by rootkits. More specifically, we can block a hid-
den process by removing the corresponding object from the scheduling list. This
function should allow HyBIS to manipulate the VM memory in order to prevent
the rootkit process to be executed.

This objective has been chosen to demonstrate how the hypervisor capa-
bilities allow an effective reaction to a rootkit infection by means of memory
manipulation.

4 HyBIS - Design, Architecture and Implementation

This section shows how HyBIS was designed to extend the hypervisor capabilities
for securing a guest Windows OS from the rootkit threat. First, we show the
overall HyBIS operation from a high-level point of view. Next, we describe the
HyBIS architecture. Finally, we describe and motivate the technologies chosen
to build up the first HyBIS prototype, and the most relevant implementation
details.

The high-level overview of the HyBIS operating mode is depicted in Fig. 1a.
The new functionalities are designed to work as a closed loop control system. The
monitoring phase extracts information from a running machine and intercepts
events which could reveal the presence of rootkits. The analysis phase examines
the system in order to evaluate if a rootkit infection occurred. In such a case,
it triggers the reaction phase, otherwise it returns to the monitoring phase. The
reaction phase tries to remove the infection or block the rootkit for preventing
further malicious activities.

The monitoring and reaction functionalities leverage the introspection and
control capabilities of the hypervisor. The analysis functionality is based on
forensic functions provided by external tools but needs some additional inter-
vention to interpret the results and taking further actions. Since the complex-
ity of such a task, some kind of intelligence is needed to take decisions. This
1 It is worth noticing that malware able to infiltrate the task scheduling could be

executed without being on process lists. Current HyBIS does not test for this. This
is left as future work.
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Fig. 1. HyBIS design, architecture, and implementation details

is represented by the evaluator, which is an external component that can be
inserted into the analysis phase. The evaluator functionality can be performed
by a human examiner as well as an external plugin which implements advanced
AI techniques, such as Machine Learning, Expert Systems, Human Expertise,
and so on.

4.1 Architecture

The HyBIS architecture is shown in Fig. 1b. As can be seen, on the guest side,
there is a Windows OS running on a virtual machine (VM). On the host side,
there is the hypervisor that controls the VM, which incorporates the HyBIS
component. The HyBIS component extends the hypervisor with the new secu-
rity functionalities. Such functionalities are implemented by three components,
described below. Outside the hypervisor, on the same side, there is the memory
forensic tool, which is used by HyBIS to provide advanced analysis capabilities.

HyBIS Components: HyBIS includes three components, running in parallel
with the guest OS, without interrupting/suspending its execution:
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– Smart Memory Dumper (SMD): this component allows creating the dynamic
dumps described in the previous section; it leverages the hypervisor to read
the VM’s RAM contents and create or update dump files on the host disk;

– Hidden Process Finder (HPF): this component allows detecting hidden
processes running in the guest Windows OS; it leverages the external memory
forensic tool to perform analyses on the dump files created by SMD;

– Rootkit Process Blocker (RPB): this component allows blocking a detected
rootkit process on the guest OS by preventing it from being scheduled for
execution; it receives from HPF the information on the detected process and
leverages the hypervisor for manipulating the VM’s RAM.

4.2 Technology Info

In this section we discuss the technologies selected for the development of the first
HyBIS prototype. In particular, the target Windows version, the hypervisor and
the forensic tool, have been chosen due to their effectiveness and wide deployment
base.

The Target OS: most of the latest security-related work still focuses on Win-
dows XP or Windows 7 OSes. However, Windows 8 introduced some internal
changes (such as [18]) and security mechanisms (see [27]) which partially invali-
date previous results. For instance, the removal of the KiFastSystemCall func-
tion makes all rootkit techniques based on this function unusable [26]. Fur-
thermore, the latest Windows 10 OS appears to keep such changes, rendering
previous work yet more obsolete.

At the time we started the development of HyBIS, Windows 10 was only
available in its Technical Preview release. Hence, we selected Windows 8.1 (which
is much more widespread then Windows 8) as the target of our experiments.

We initially decided to focus our tests on the 32-bit version since it is more
efficient when performing extensive memory-related experiments. Furthermore,
the 64-bit version which implements more advanced security mechanisms, would
have limited our malware testbed. As such, extensive experimental activity on
64-bit OSes will be the target of future work.

The Hypervisor: most of the recent projects targeting Windows as guest OS,
involve the qemu-kvm [1] or the Xen hypervisors [4]. Although these ones repre-
sent valid tools, we decided to make use of the VirtualBox [24] hypervisor. In fact,
VirtualBox, apart from being one of the mainstream virtualization technologies,
has two main advantages over qemu-kvm and Xen: firstly, it fully supports all
Windows versions, including the latest Windows 10; secondly, it includes vari-
ous VM-debugging functionalities, that allow controlling and manipulating VM
components [24]. Such funcionalities can be very useful when implementating
advanced introspection techniques. For the HyBIS prototype implementation
the latest VirtualBox 5.0 version has been used.

The Memory Forensic Tool: among the available FMA tools, Volatility [3]
is certainly the most widespread. It has a vast number of functionalities and it
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can count on a very active community. Nonetheless, it does not fully support
all Windows kernel versions. In addition, its performance on memory analysis is
quite low for our real-time usage requirement.

A derived project, named Rekall [2], overcomes these limits, while maintain-
ing main Volatility features and advantages. Its novel kernel profiling system,
enables Rekall to automatically upgrade its compatibility with new Windows
versions [5]. Furthermore, thanks to some improved memory-scanning functions,
it shows better analysis performances. This renders Rekall both more efficient
and effective than Volatility. Moreover, it can be integrated as part of other soft-
ware as a library. Finally, since Rekall is implemented in the Python language,
it can be easily installed into a variety of host OSes (This is also an advantage of
VBox over Kvm and Xen). For the HyBIS prototype implementation we made
use of Rekall 1.4.

4.3 Implementation Details

We will now describe how the proposed architecture was implemented by making
use of the previously-mentioned technologies. The HyBIS implementation details
are depicted in Fig. 1c. As before, on the guest side we have a Windows OS,
running in a VM. On the host side, we have the VirtualBox hypervisor, with its
internal components: the Execution Manager (EM), the Page Manager (PGM),
and the Debug Facility (DBGF). The HyBIS component is implemented as a new
VirtualBox component, interacting with the other ones to perform its tasks. In
particular, the SMD component leverages PGM for the memory acquisition, and
EM for the automatic boot dump generation. The RPB component uses DBGF
to manipulate guest memory. The HPF component makes use of the external
Rekall component to perform advanced analyses over memory dumps.

The interaction with the HyBIS components is provided through a set of new
commands on the VirtualBox integrated Debug Console. These commands will
be described later in this section.

Extending VirtualBox. The following VirtualBox components have been
involved for the HyBIS implementation:

– Virtual Machine Monitor (VMM): this is the core hypervisor;
– Execution Manager (EM): it controls the execution of guest code;
– Page Manager (PGM): it controls guest memory paging;
– Debug Facility (DBGF): it provides a built-in debugger for the VM.

Most of the VM-related components are implemented in the VMM section.
Therefore, this is the most suitable place where to insert the new HyBIS com-
ponent. The EM component is leveraged to monitor the CPU operation mode
in order to automatically generate the boot dump. The PGM provides all guest
memory management functions and is used to implement the acquisition func-
tionalities. The DBGF provides a lot of useful debugging functions, which are
used for implementing the reaction functionality. Furthermore, it provides the
console devoted to the interaction with the HyBIS component.
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Integrating Rekall. Since Rekall is written in Python, an interpreter must be
present on the host system. For incorporating Rekall, it has been necessary to
import the Python C++ library into the VirtualBox source code. The Rekall
functionalities, instead, can be used by means of the provided API library, as
mentioned in the previous section. In order to make use of the forensic analysis
functions, a suitable session has to be set up. A Rekall session represents a specific
combination of a dump file and a selected profile. When starting a session, if a
valid profile for the current kernel version is found, every compatible Rekall
plugin automatically becomes available to be used for a forensic analysis.

4.4 Further Details

HyBIS embodies a set of novel architectural and implementation-related features.
In the following, a broad view and some relevant details are given.

Technically speaking, HyBIS is an hypervisor-based IDS which leverages Vir-
tual Machine Introspection (VMI) to monitor a virtualized environment and
exploits Forensic Memory Analysis (FMA) to bridge the semantic gap.

With respect to previous solutions, HyBIS uses a novel approach, whose
differences are explained in the following.

Use of VMI: typical hypervisor-based IDSs reside on top of the hypervisor, in
a Secure Virtual Machine (SVM) (see Fig. 2).

Fig. 2. A typical VMI architecture [30]

Such an approach has the advantage of isolating the security functions so
to avoid corruption. However, in such a case, the IDS requires an additional
VM, and its capabilities are limited by the functionalities provided through the
hypervisor APIs. HyBIS, instead, is integrated into the hypervisor, as shown in
Fig. 1b. As such, it is able to exploit all the hypervisor capabilities in order to
have full control over the target VM.
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An alternative VMI approach leverages advanced CPU features to interpose
the security functions between the OS and the hardware [35]. However, this
kind of hypervisor does not have the control over all the machine components.
Furthermore, this approach usually requires an in-guest agent to be installed into
the OS kernel. Conversely, HyBIS does not require any addition to the guest OS
kernel and does not rely on any CPU feature.

So, while current VMI-based solutions have limited possibilities to exploit
the hypervisor capabilities, the HyBIS novel approach gives the ability to fully
exploit them by integrating into the hypervisor. By working from below the VM,
it has a full overview of the whole machine state, while still being isolated from
the target machine, thus avoiding both OS-level and hardware-level attacks.

Use of Memory Forensics: FMA can be a valuable means for VMI-based
systems to bridge the semantic gap. However, it has not yet been fully leveraged
by current solutions. This is probably due to the slowness of the memory acqui-
sition process. In fact, FMA tools usually operate on offline dump files, whose
creation may take too long for a practical real-time usage. As such, memory
acquisition, represents a critical step for the implementation of a real-time FMA-
based solution. Furthermore, the soundness of the acquisition process is another
serious concern, given that memory is usually dumped by tools installed into
the guest OS (see [29]). Such tools have the drawback of altering memory con-
tents and to be vulnerable to OS-level attacks which may corrupt acquired data.
Alternatively, memory acquisition can be hardware-based, using techniques, such
as DMA, that allow bypassing the OS. Such techniques, however, can still be
bypassed by hardware-level rootkits, such as in [25,34], which are able to alter
acquired data for hiding their presence.

By leveraging the hypervisor, HyBIS is able to acquire memory using a
novel dynamic approach, without being vulnerable to OS-level and hardware-
level attacks. The chosen technologies for present HyBIS implementation was
not only chosen for their useful features. All of them represent an element of
novelty for security research. First of all, the chosen Windows kernel version
has been poorly explored in previous work. Most recent Windows-related papers
still refer to Windows 7 as the subject of their studies, or as the target for their
experiments. Actually, we have not been able to find any kernel-related research
on Windows 8 and Windows 8.1. Instead, in our HyBIS implementation and
testing, Windows 8.1 was used.

Leveraging the Virtualbox hypervisor represents another relevant contribu-
tion of this paper. Most security and virtualization studies involved other com-
mon hypervisors, like KVM or Xen. Instead, besides a few performance analyses,
we were able to find only a single work involving VirtualBox for its implementa-
tion [23]. In the development of HyBIS, VirtualBox has proved to be a great tool
for our purposes. In fact, its features and functionalities have been very helpful
for the exploration of VMI techniques.

A similar discussion can be made about the Rekall forensic tool. To the best of
our knowledge, Rekall was rarely used as part of a security research project. The
only online reference found was in [6], where Rekall was used to analyze Windows
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profiling. This is probably due to its relatively recent introduction (2007). Most
studies and researches involved Volatility instead, from which Rekall was derived.
In fact, Volatility has the advantage of being more widespread and supported.
However, as previously described, Rekall presents almost the same features but
introduce novel features that drastically improves performance and usability. As
such, we found it a valuable tool for memory forensic research.

5 Evaluation

Experiments have been performed, testing the implemented prototype effective-
ness, and the functionality of each HyBIS component described in Sect. 3.1. Some
details of the evaluation are given below.

Boot Dump Generation: As previously described, this function should gener-
ate a memory dump as soon as the Window kernel has been loaded and begins to
run. In order to prove the effectiveness of this function, the generated dump has
been analyzed with Rekall. The analysis showed that the only running process
found in memory was System, that is the Windows kernel image process. This
proves that the dump generation actually occurs at the beginning of the Win-
dows kernel execution. This dump also proved to be acquired in the very first
moment the kernel loads. Dumps generated before this point failed to be ana-
lyzed by both Rekall and Volatility.

As for what stated above, we can claim that this function generates a dump
at the very first suitable time for being analyzed by these kind of FMA tools.
Moreover, we believe this functionality, if properly extended, can be helpful in
detecting those rootkits that load during the very early stages of the Windows
boot.

Dynamic Dumping: This function has been devised to explore new ways of
making the dump creation phase faster for monitoring purposes. In order to test
it, we identified a restricted memory area to update a previously created dump,
while still allowing forensic analysis functionalities. In particular, we selected a
range of 250MB, which empirically showed to always contain all kernel process
objects. ASLR [12], does not to affect the results of our tests. In fact, the lever-
aged tools are able to find out the correct position for the kernel structures.

With the purpose of proving the usefulness of this functionality we first cre-
ated a dump, then started a new process in the guest, and eventually updated the
dump by acquiring the above mentioned memory range. Thereafter, we scanned
the updated dump with Rekall, to retrieve the active processes list. As expected,
the new process was correctly present in the list.

This demontrates that such a reduced memory acquisition speeds up the
acquisition process, while not preventing Rekall to properly work, with respect
to specific operations. This enables a new form of memory monitoring, which is
not limited to single page changes, but involves larger areas. In fact, by leveraging
FMA, it is possible to check memory for changes in the OS-level data (e.g. the
presence a new process).
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Detection and Blocking of Hidden Processes: In order to monitor guest
OSes, HyBIS creates a monitoring thread for each VM. This thread periodically
dumps the VM memory and analyze it with Rekall. In particular, we created
an improved version of the psxview plugin, called pshview, in such a way that
it could be automatically filter the suspected hidden processes. Specifically, it
tries to distinguish among dead processes, which may remain in memory for a
while after their termination, from those which are still present in the system
lists, such as the thread list or the session list. In addition, this function avoid
scanning the whole memory, as this seldomly proved to discover more processes
than those found by reconstructing kernel object lists. The user also has the
ability to enable or disable the scan function, as well as increment or decrement
the scanning rate.

If after the analysis the pshview plugin returns a suspected hidden process,
a pop-up message will be shown to the user, warning about the detected threat,
and suggesting to block it through the .psblock function. This removes the
hidden process object from the system scheduling list (as well as other system
lists), thus preventing its execution. In order to prove the effectiveness of this
action, we again dumped memory and fully analyzed it to verify the blocked
process was not among the active processes lists anymore.

Testbed Setup: All experiments were conducted on a machine with 12 GB
of memory and CPU Intel Core i7 2.4 GHz. Each VM had 1 GB of memory
(common size on AWS), and Intel VT-x, EPT, and PAE features enabled. As
stated above, the target OS was Windows 8.1 32-bit. The OS was infected with
different rootkit specimens, chosen among the most widespread and dangerous,
such as ZeuS [31] and ZeroAccess [32].

6 Conclusion and Future Work

In this work we shed light on some security issues of the Windows OS. Our
main contribution is the design of the novel HyBIS architecture, which suc-
cessfully combines VMI and FMA to build up an anti-rootkit security system
for Windows. VMI is used to examine the Windows status by means of hard-
ware monitoring, while FMA is used to carve meaningful information from raw
memory data. A rich experimental campaign was performed over most relevant
malware specimens, allowing us to detect and block different hidden malicious
processes. Given the architectural complexity of the Windows kernel security
field, the results reported in this paper — other than being interesting on their
own — also pave the way for further research.
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{mariem.graa,nora.cuppens,frederic.cuppens,

routa.moussaileb}@imt-atlantique.fr
2 Campus de Beaulieu, 263 Avenue Général Leclerc, 35042 Rennes, France
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Abstract. Malicious third-party applications can leak personal data
stored in the Android system by exploiting side channels. TaintDroid
uses a dynamic taint analysis mechanism to control the manipulation
of private data by third-party apps [9]. However, TaintDroid does not
propagate taint in side channels. An attacker can exploit this limitation
to get private data. For example, Sarwar et al. [2] present side chan-
nel class of attacks using a medium that might be overlooked by the
taint-checking mechanism to extract sensitive data in Android system.
In this paper, we enhance the TaintDroid system and we propagate taint
in side channels using formal policy rules. To evaluate the effectiveness of
our approach, we analyzed 100 free Android applications. We found that
these applications use different side channels to transfer sensitive data.
We successfully detected that 35% of them leaked private information
through side channels. Also, we detected Sarwar et al. [2] side chan-
nel attacks. Our approach generates 9% of false positives. The overhead
given by our approach is acceptable in comparison to the one obtained
by TaintDroid (9% overhead).

1 Introduction

Android devices account for 80.7% of the global smartphone sales in most mar-
kets in the world [8]. With the continuous demand of these systems, the user pri-
vacy threat is growing. Malicious applications aim to steal personal data stored in
the device or potentially available through side channels such as timing, storage
channels, etc. Side channel attacks [4,13,18] exploit the use of medium to infer
private information (SMS, contacts, location, phone number, pictures...) by ana-
lyzing side channels. Sarwar et al. [2] proposed side channel attacks such as the
bypass timing, bitmap cache, meta data, and graphical properties attacks that
create taint free variables from tainted objects to circumvent the dynamic taint
analysis security technique. Kim et al. [15] utilized screen bitmap memory attack
proposed by Sarwar et al. to propose a collection system that retrieves sensitive
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information through screenshot image. The Android security model is based on
application sandboxing, application signing, and a permission framework. The
side channel attack runs in its own process, with its own instance of the Dalvik
virtual machine. It accesses to side channels that are a public medium. Conse-
quently, the application sandboxing technique cannot detect these attacks. The
malicious application that implements side channel attacks is digitally signed
with a certificate. Therefore, it can be installed on Android systems. The stan-
dard Android permission system controls access to sensitive data but does not
ensure end to end security because it does not track information flow through side
channels. As the core security mechanisms of Android cannot detect side channel
attacks, new approaches that extend the Android OS have been proposed. XMan-
Droid [3], a security framework, extends the monitoring mechanism of Android
to detect side channel attacks such as Soundcomber. However, it cannot detect
subset of side channels such as timing channel, processor frequency and free
space on filesystem. TaintDroid [9], an extension of the Android mobile phone
platform, uses dynamic taint analysis to detect direct buffer attack. The dynamic
analysis approach [9,11,19] defined in smartphones cannot detect software side
channel attacks presented in [2,15]. In this paper, we modify the Android OS
to detect software side channel attacks that try to bypass detection mechanisms
based on dynamic taint analysis. We propagate taint in timing, memory cache
and GPU channels and in meta data (file and clipboard length) using taint prop-
agation rules. To evaluate the effectiveness of our approach, we analyzed 100 free
Android applications. We found that these applications use different side chan-
nels to transfer sensitive data. We successfully detected that 35% of them leaked
private information through side channels. Also, we detected Sarwar et al. [2]
side channel attacks. Our approach generates 9% of false positives. It has a 9%
overhead with respect to the TaintDroid system. The rest of this paper is orga-
nized as follows: Sect. 2 presents the dynamic taint analysis mechanism and the
TaintDroid approach. Section 3 describes the threat model. Section 4 presents
side channel class of attacks that TaintDroid cannot detect. Section 5 describes
the proposed approach. Section 6 provides implementation details. We test the
effectiveness of our approach and we study our approach overhead in Sect. 7.
Section 8 describes how our approach can resist to code obfuscation attacks. We
present related work about side channel attacks and countermeasures in Sect. 9.
Finally, Sect. 10 concludes with an outline of future work.

2 Background

2.1 Dynamic Taint Analysis

The dynamic taint analysis technique is used for tracking information flows in
operating systems. The principle of this mechanism is to tag some of the data in a
program with a taint mark, then propagate the taint to other objects depending
on this data when the program is executed. It is used primarily for vulnerability
detection, protection of sensitive data, and more recently, for binary malware
analysis. To detect vulnerabilities, the sensitive data must be monitored to ensure
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that they are sent through interfaces to the outside world. Many dynamic taint
analysis tools are based on bytecode instrumentation to analyze sensitive data
[6,16]. TaintDroid implemented similar concepts to prevent leakage of private
data in Android system. We present the TaintDroid system in more details in
the following section.

2.2 TaintDroid

TaintDroid improves the Android mobile phone OS to control the manipula-
tion of users personal data in realtime by third-party applications. It analyzes
application behavior to determine when privacy sensitive information is leaked.
TaintDroid considers that information acquired through low-bandwidth sensors
(location and accelerometer), high-bandwidth information source (microphone
and camera), information databases (address books and SMS messages) and
device identifiers(the phone number, SIM card identifiers (IMSI, ICC-ID), and
device identifier (IMEI)) are privacy sensitive information that should be tainted.
So, it uses dynamic taint analysis to track propagation of tainted data at dif-
ferent levels: instruction level, message-level between applications and file-level.
TaintDroid defines taint sinks to detect vulnerabilities. The taint sinks present
interfaces to the outside world (e.g., network interface) where tainted data are
not expected to be sent. Therefore, TaintDroid, issues warning reports when
the tainted data are leaked by malicious applications. One limit of TaintDroid
is that it cannot propagate taint through side channels except direct memory.
Therefore, it can not detect side channel attacks presented in the Sect. 4.

3 Target Threat Model

The adversary’s goal is to extract sensitive data from the Android third-party
system. He/She develops a malicious application that will be executed on this
system and that sends sensitive data through the network to a system which the
adversary controls. We assume that the smartphone user installs the malicious
application on his phone. Also, we assume that he/she uses a dynamic taint
tracking system such as TaintDroid to protect his private data. So, the mali-
cious application will be executed under this system. The adversary exploits
the limitation of dynamic taint analysis mechanism that it cannot propagate
taint through side channels. He/She interferes in the taint propagation level and
he/she removes taint of sensitive data that should be tainted. Therefore, these
data will be leaked without being detected. Next, we present different examples
of side channels attacks that a dynamic taint tracking system such as TaintDroid
cannot detect.

4 Side Channels Attacks

Sarwar et al. [2] present side channel class of attacks such as the bypass timing,
bitmap cache, meta data, and graphical properties attacks using a medium that
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might be overlooked by the taint-checking mechanism to extract sensitive data.
They tested and evaluated the success rate and time of these attacks with the
TaintDroid system. We are interested in these attacks because they are the most
important attacks presented by siwar and al. and the other attacks are already
detected [10]. We present in this section examples of these side channel attacks.

4.1 Timing Attack

The timing attack is an example of a side channel attack in which the attacker
attempts to compromise a cryptosystem by analyzing the time taken to gain
information about the keys. Similar concept can be used to leak tainted data
when running a program with taint analysis approach. Algorithm 1 presents

Algorithm 1. Timing Attack
XTainted ← Private Data
n ← CharToInt(X)
StatT ime ← ReadSystemTime()
Sleep(n)
StopT ime ← ReadSystemTime()
y ← (StopT ime − StartT ime)
YUntainted ← IntToChar(y)
Send Network Data(YUntainted)

the timing attack in the taint tracking system. This attack exploits the system
clock which is not tainted. The sleep() function suspends the execution of the
current program until the waiting period that depends on the value of a tainted
variable has elapsed. Therefore, the difference in time readings before and after a
waiting period indicates the value of sensitive data. This difference is not tainted
because there is no taint propagation in the system clock. Consequently, it can
be assigned to the taint-free output variable and leaked through the network
without being detected.

4.2 Cache Memory Attack

The cache memory attack is another example of side channel attacks that can be
used to extract sensitive data. This attack exploits the fact that graphical out-
put can be obtained from cache of the currently displayed screen. Algorithm 2
presents the bitmap cache attack. The graphical widget contains the private data.
The attacker successfully extracts it from the bitmap cache without any warning
reports because the taint is not propagated in the cache memory. He/She sends
the bitmap data to a cloud and uses the Optical Character Recognition (OCR)
techniques [14] to read the value of sensitive data.

Bitmap Pixel Attack: An attacker can extract private data by exploiting
bitmap cache pixels as shown in Algorithm 3. He/She modifies an arbitrarily



Detection of Side Channel Attacks Based on Data Tainting 209

Algorithm 2. Bitmap Cache Attack
XTainted ← Private Data
W ← CreateNewTextWidget()
B ← CreateNewBitmap()
WriteText(XTainted → W )
B ← CaptureBitmapCache(W )
Y ← OpticalCharacterRecognition(B)
Send Network Data(YUntainted)

Algorithm 3. Bitmap Pixel Attack
XTainted ← Private Data
B ← CreateNewBitmap()
SetP ixel([10; 10], XTainted → B)
YUntainted ← GetP ixel(B; [10; 10])
Send Network Data(YUntainted)

chosen pixel to represent the private data value. Then, he/she reads the value
contained in this pixel at specific coordinates.

4.3 Meta Data Attacks

Taint analysis systems such as TaintDroid associate taint to the object containing
sensitive data. However, these systems do not propagate taint to object size. We
present side channel attacks that exploit meta data to evade taint tracking.

File length Attack:

Algorithm 4. File Length Attack
XTainted ← Private Data
F ← CreateNewFileHandle()
z ← 0
while z < XTainted do

WriteOneByte(F )
z ← z + 1

end while
YUntainted ← ReadFileLength(F )
Send Network Data(YUntainted)

As the file size is not tainted, an attacker can exploit this meta data to leak
sensitive data, as shown in Algorithm 4. Each character in private data is repre-
sented by an arbitrary file size. One byte is written to a file until its size equals
to the character private data value. Then, the attacker obtains the file size which
corresponds to the sensitive data without any warning reports.
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Clipboard Length Attack: An attack similar to the file length Attack can
be performed if an application required a clipboard to exchange data. In the
clipboard length attack, the size of the file is replaced with the size of the content
of the clipboard as shown in the Algorithm 5.

Algorithm 5. Clipboard Length Attack
XTainted ← Private Data
z ← 0
while z < XTainted do

WriteOneByte(Clipboard)
z ← z + 1

end while
YUntainted ← ReadFileLength(Clipboard)
Send Network Data(YUntainted)

4.4 Graphics Processing Unit Attacks

We are interested on a graphics processing unit class of attacks that exploits the
properties of a graphical elements to evade the taint tracking mechanism.

Algorithm 6. Text Scaling Attack
XTainted ← PrivateData
T ← TextV iewWidget()
T ← SetTextScalingV alue(XTainted)
YUntainted ← GetTextScalingV alue(T )
Send Network Data(YUntainted)

For example, in the text scaling attack presented in Algorithm 6, the attacker
sets an arbitrary property of a graphical widget (the scaling) with the value of
private data. Then, he/she extracts and sends this property through the network.

5 Detection of Side Channel Attacks

Our approach is based on dynamic taint analysis to overcome side channel attacks
as attacks presented in Sect. 4. We specify a set of formally defined rules that prop-
agate taint in different side channels to detect leakage of sensitive data.

5.1 Timing Side Channel Propagation Rule

The timing attack exploits the system clock which is available without taint-
ing. The attacker reads the system clock after the waiting period. We define
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the Timing Context Taint which is activated when the argument (arg) of the
Sleep() function is tainted.

Sleep(arg) ∧ Is tainted(arg) =⇒ Activate(Timing Context Taint)

In this case, we propagate taint in timing side channel. Therefore, the system
clock is tainted and the attacker cannot leak sensitive information through timing
side channel.

Is activated(Timing Context Taint) =⇒ Taint(system clock)

5.2 Memory Cache Side Channel Propagation Rules

The bitmap cache attack exploits the cache memory of the currently displayed
screen. The attacker captures the bitmap cache of a graphical object containing
private data. We define the Bitmap Context Taint which is activated when the
graphical object is tainted.

Is tainted(graphical object) =⇒ Activate(Bitmap Context Taint)

In this case, we propagate taint in the bitmap cache side channel and we
associate taint to the bitmap object.

Is activated(Bitmap Context Taint) =⇒ Taint(Bitmap)

For the bitmap pixel attack, the attacker exploits the bitmap cache pixels that
is modified to get the private data value. We define the Pixels Context Taint
which is activated when the argument parameter of the set pixel function is
tainted. So, an arbitrarily chosen pixel is changed to represent value of the private
data

Set pixel(arg) ∧ Is tainted(arg) =⇒ Activate(Pixels Context Taint)

In this case, we assign taint to the return value of getpixel() function.

Is activated(Pixels Context Taint) =⇒ Taint(return getpixel)

By using these memory cache side channel propagation rules, the attacker cannot
leak sensitive information through bitmap cache memory.

5.3 Meta Data Propagation Rule

The meta data attacks exploit the size of the object which is available without
tainting. We define the Meta Data Context Taint which is activated when the
application gets private data.

get private data() =⇒ Activate(Meta Data Context Taint)

In this case, we define meta data propagation rule and we associate taint to the
return value of the length() method.

Is activated(Meta Data Context Taint) =⇒ Taint(length object)

Therefore, by applying the meta data propagation rule, the attacker cannot leak
sensitive information using meta data.
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5.4 GPU Propagation Rule

The graphics processing unit class of considered attacks exploits the properties of
the graphical elements (the scaling, Text size...). The attacker sets an arbitrary
property of a graphical widget to the value of private data. So, we define the
GPU Context Taint which is activated when the argument parameter of the
Set property function is tainted.

Set property(arg) ∧ Is tainted(arg) =⇒ Activate(GPU Context Taint)

In this case, we assign taint to the return value of Getproperty() function to
prevent this attack.

Is activated(GPU Context Taint) =⇒ Taint(return getproperty)

By using the GPU propagation rule, the attacker cannot leak sensitive informa-
tion by exploiting properties of the graphical elements.

6 Implementation

We modify the TaintDroid System to implement the taint propagation rules
defined in Sect. 5. Figure 1 presents the modified components (gray components)
to detect side channel attacks in TaintDroid system. We modify the dalvik virtual
machine to detect timing attacks. We implement the memory cache and the GPU
propagation rules at the framework level to prevent bitmap cache and GPU class
of attacks. We instrument the core libraries to associate taint to meta data.

6.1 Timing Attack Detection

The VMThread sleep(constu4∗args, JV alue∗pResult) function in Dalvik vir-
tual machine native code suspends the execution of the current thread until the
value of a tainted variable has elapsed. Then, the attacker reads the system clock
after the waiting period. We test the argument of VMThread sleep() to imple-
ment the Timing Context Taint. We modify the currentT imeMillis(constu4∗
args, JV alue ∗ pResult) function in the Dalvik virtual machine native code to
propagate taint in the system clock if the Timing Context Taint is activated.
Therefore, the difference in time readings before and after a waiting period that
indicates the value of sensitive data is tainted.

6.2 Cache Memory Attack Detection

We verify if the graphical object contains a private data to implement the
GPU Taint Context. All of the graphical objects defined in the Android frame-
work extend View. So, we check if the view is tainted. The getDrawingCache()
function in the view class creates and returns a bitmap object that contains the
private data. Therefore, we taint the return value of getDrawingCache() func-
tion if the GPU Taint Context is activated. For the bitmap pixel attack, the
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Fig. 1. The modified components (gray) to detect side channel attacks

bitmap is created in the first time and then it is modified by exploiting the bitmap
cache pixels. We verify if the argument parameter of the set pixel function in
Bitmap class (Graphic package) is tainted to implement Pixels Taint Context.
In this case, we assign taint to the return value of getpixel() function in the
bitmap class.

6.3 Meta Data Attacks Detection

TaintDroid implements taint source placement where privacy sensitive informa-
tion types are acquired (low-bandwidth sensors, e.g. location and accelerometer;
high-bandwidth sensors, e.g., microphone and camera; information Databases,
e.g. address books and SMS messages; Device Identifiers, e.g. SIM card identifiers
(IMSI, ICC-ID), and device identifier (IMEI)). In each taint source placement,
we implement the Meta Data Context Taint which is activated if private data
is acquired. To detect the meta data class of attacks, we associate taint to the
return value of the length() method at libcore level in File and String classes if
the Meta Data Context Taint is activated.

6.4 Graphics Processing Unit Attacks Detection

To launch the graphics processing unit class of considered attacks, the attacker
sets an arbitrary property of a graphical widget with the value of private data.
Therefore, we verify if the argument parameter of the Set-Property (SetTextScal-
ingValue function) in graphical widget class is tainted to implement GPU Taint
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Context. Then, we taint the return value of Get-Property (GetTextScalingValue
function) if GPU Taint Context is activated to prevent this attack.

7 Evaluation

We install our system in a Nexus 4 mobile device running Android OS version
4.3. We analyze a number of Android applications to test the effectiveness of our
approach. Then, we evaluate the false positives that could occur. We study our
taint tracking approach overhead using standard benchmarks.

7.1 Effectiveness

To evaluate the effectiveness of our approach, we analyze 100 most popular free
Android applications downloaded from the Android Market [1]. These appli-
cations are categorized in games, shopping, device information, social, tools,
weather, music and audio, maps and navigation, photograhy, productivity, life
style, reference, travel, sports and entertainment applications. We observe that
all applications use bitmap cache channel, 50% of these applications use timing
channel, 30% use GPU channel (get and set graphic properties) and 20% use
meta data (file and clipboard sizes). We found that 66% of these applications
manipulate confidential data. Our approach has succesfully propagated taint
in side channels and detected leakage of tainted sensitive data by checking the
content of network packets sent by applications.

)c()b()a(

Fig. 2. Leakage private data through the bitmap cache side channels

We found that 35% of applications leaked private data through timing and
bitmap cache side channels. For example, the IMEI application takes and send
a screenshot of IMEI information through the network by exploiting the bitmap
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cache side channel (see Fig. 2(a)). Other applications copy the SIM card and
device information from the screen to the clipboard and send them through the
network, SMS or bluetooth using the bitmap cache side channel (see Fig. 2(c)).
Some applications get the drawing cache to leak implicitly private data. For
example, the IMEI Analyser application gets the drawing cache to send implicitly
the IMEI outside the smartphone (see Fig. 2(b)). Games applications leaked
implicitly the devices ID through the timing side channel at the time of score
sharing. In addition, we successfully implement and detect side channels class of
attacks presented in Sect. 4.

7.2 False Positives

We found that 35 of the 100 tested Android applications leaked sensitive data
through side channels. We detected three device information (Android id, Device
Serial, Device model, Phone number...) leakage vulnerability. Also, we detected
that the IMEI is transmitted outside of smartphone by two different forms (dig-
ital and by another application which takes screenshot of IMEI). In addition,
we detected four SIM card information (SIM provider’s country, SIM Contacts,
SimState...) leakage vulnerability. As the user is sent these information by email,
SMS or bluetooth, we can not treat these applications as privacy violators. There-
fore, our approach generates 9% of false positives.

7.3 Performance

We use the CaffeineMark [7] to study our approach overhead. The CaffeineMark
scores roughly correlate with the number of Java instructions executed per sec-
ond and do not depend significantly on the amount of memory in the system or
on the speed of a computers disk drives or internet connection. Figure 3 presents
the execution time results of a Java microbenchmark.

Fig. 3. Microbenchmark of Java overhead
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The unmodified Android system had an overall score of 8401 Java instructions
executed per second and the TaintDroid system measured 6610 Java instructions
executed per second. Therefore, TaintDroid has a 21% overhead with respect to
the unmodified Android system. Our approach had an overall score of 5873
Java instructions executed per second. So, our approach has a 9% overhead
with respect to the TaintDroid system. It gives a slower execution speed rate
because we propagate taint in side channels. However, the overhead given by our
approach is acceptable in comparison to the one obtained by TaintDroid.

8 Discussion

We have proposed in a previous work [10] an enhancement of the TaintDroid
approach that propagates taint along control dependencies to track implicit flows
in smartphones. We have shown that our previous approach can resist to code
obfuscation attacks based on control dependencies in the Android system. In
addition, we have successfully detected side channel attacks exploiting control
flows by combining static and dynamic analyses. However, we did not propagate
taint in side channels. Consequently, we could not detect these class of attacks
when they do not use control flows which generates false negatives. An attacker
can obfuscate the application code by exploiting side channels to evade detection
of leakage of private data in the Android system. The approach proposed in this
paper propagates taint in a specific side channels. So, our approach can be used
to detect code obfuscation attacks based on side channels in the Android system.
We can extend our approach based on taint analysis to detect other side channel
attacks such as ACCessory [17] and Soundcomber [18] attacks. To do so, we
propagate taint in accelerometer and audio side channels. The limitation of our
approach is that it can not be used to detect hardware side channel attacks.

9 Related Work

In this section, we present side channels attacks in Android systems. We also
discuss existing countermeasures.

9.1 Software Side Channels Attacks

Memento [13] is a side-channel attack based on tracking changes in the browser’s
memory footprint to infer which pages the victim is browsing. Soundcomber [18]
analyzes audio side channel in a user’s phone conversations to infer sensitive data.
TouchLogger [4] exploits different vibrations when typing on different locations
on the touch screen to extract sequences of entered text on smartphones. ACCes-
sory [17] uses the accelerometer to get the data entered by user. Chen et al. [5]
exploit a shared-memory side channel to stealthily inject into the foreground a
phishing activity and steal sensitive information. Kim et al. [15] utilized screen
bitmap memory attack proposed by Sarwar et al. [2] to propose a collection sys-
tem that retrieves IMEI and IMSI information through screenshot images. As
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we propagate taint in bitmap cache memory, we can detect Kim et al. attacks.
We are interested on software side channel attacks that try to bypass dynamic
taint analysis based detection technique such as timing, memory cache, GPU
channels and meta data (file and clipboard length) [2,15].

9.2 Side Channels Countermeasures

Many works exist in the literature to detect side channel attacks in Android sys-
tems. App Guardian [20] thwarts a malicious app’s runtime monitoring attempt
by pausing all suspicious background processes, which are identified by their
behaviors inferred from their side channels. In this paper, we are interested in
side channel attacks running in the foreground. So, App Guardian cannot detect
this category of attacks. XManDroid [3] uses dynamic taint analyses to detect
side channel attacks such as Soundcomber. However, it cannot detect subset
of side channels such as timing channel, processor frequency and free space on
filesystem. TaintDroid [9] uses dynamic taint analysis to detect direct buffer
attack. DroidBox [19] analyzes the malicious applications by using sandbox and
tainting techniques based on TaintDroid. It combines static and dynamic analy-
sis, and it uses machine learning techniques to cluster the analyzed samples
into benign and malicious ones. AppFence [11] extends TaintDroid to implement
enforcement policies. The dynamic analysis approach defined in smartphones
like TaintDroid, AppFence and DroidBox cannot detect software side channel
attacks presented in [2,15].

10 Conclusion

The dynamic taint analysis approaches implemented in the Android system can
be bypassed by exploiting side channel attacks. We have improved the Taint-
Droid approach to propagate taint in side channels. We have analyzed 100 free
Android applications to evaluate the effectiveness of our approach. We success-
fully detected sensitive information leakage caused by side channels. We found
that 35% of analyzed applications leaked private data through side channels.
We showed that our approach generates significant false positives (9%). Our
approach creates a 9% overhead with respect to the TaintDroid system. Future
work will be to improve our approach for detecting other side channel attacks
inferring private data. Also, we will demonstrate the completeness of the taint
propagation rules.
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Abstract. Media server daemons, running with a high privilege in the
background, are attractive attack vectors that exist across various sys-
tems including smartphones. Fuzzing is a popularly used methodology to
find software vulnerabilities although symbolic execution and advanced
techniques are obviously promising. Unfortunately, fuzzing itself is not
effective in such format-strict environments as media services. Thus, we
study file format-aware fuzzing as a technical blend for finding new vul-
nerabilities. We present our black-box mutational fuzzing on the lat-
est smartphone systems, Android and iOS, respectively, with manipula-
tion of the MPEG-4 Part 14 file format and show results that affect a
wide range of related systems. In our approach, we automate a seed file
selection process to crawl a crowd-sourcing public website and validate
arbitrary m4a/mp4 audio files according to the FOURCC atom list we
gained through white-box analysis in Android. We acquired eight seed
files covering all effective atoms in 2,600 s. We then performed size field
mutation in a little amount and generated 1,102 test cases common to
both systems. During six CPU hours of fuzzing, we identified three crash
atoms in iOS 9.3.5 and 15 in Android 6.0.1, respectively. Due to format-
awareness, we were able to easily locate crash points through a mutation
table. It was discovered that the new crash atoms found in iOS allowed
remote attackers to execute arbitrary code or cause a denial of service
by memory corruption in iOS and also OS X, tvOS and watchOS.

Keywords: Mutational fuzzing · Format awareness · Media server

1 Introduction

Multimedia services are attractive attack vectors that exist across various sys-
tems and platforms. For instance, audio services, such as phone calls, ring-
tones, alarming sounds, audio file players, and audio streaming over mobile web
browsers, are frequently requested in smartphones and related smart devices. To
deal with these requests, a special daemon process having a high privilege runs in
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the background, e.g., mediaserverd in iOS and mediaserver in Android, and
automatically restarts when it occasionally crashes. Unfortunately, its frame-
work is quite complex, e.g., as a mixture of Java and native code in Android,
and a wide variety of audio codecs and plugins are written by non-security-
experts. Furthermore, users are likely to install third-party sounds (e.g., the
Star Wars imperial march ring-tone) and perceive an audio file or streaming
relatively harmless, even played without user’s consent (e.g., an auto-streaming
on Facebook). Indeed, many vulnerabilities [11] have been discovered in Android
6.0.x regarding the Stagefright engine that manipulates audio-video playbacks,
and significantly fixed in Android 7.1.x. On the contrary, a relatively small num-
ber of media file related vulnerabilities were found in iOS, and in particular
audio-related vulnerabilities of iOS were rarely discovered (e.g., CVE-2010-0036
and CVE-2015-5862). An academic study was also less presented in the litera-
ture [19,21]. Thus, it might be interesting to investigate audio-related vulnera-
bilities on both iOS and Android platforms because the same audio file formats
are readily accepted in both smartphone platforms.

A fuzzing method, first introduced by Miller et al. in 1990 [25], is still the
most widely-used tool1 for finding software vulnerabilities in a variety of systems
although symbolic execution and advanced techniques are obviously promising.
Unfortunately, however, fuzzing itself is not effective in such format-strict envi-
ronments as media services [33] because it needs a large amount of fuzzing work,
mostly format-blocked, and it can hardly locate a crash point. To the best of our
knowledge, there is no explicit literature studying the file format-aware fuzzing
on the media server daemons of the smartphone systems and also for the latest
versions, such as iOS 9.3.x and Android 6.0.x, when we conducted this study.
Thus, it would also be interesting to investigate the file format-aware fuzzing on
the latest smartphone systems.

Contributions. In this paper, concerning the problems and motivations above,
we ‘awaken’ the file format-aware fuzzing for finding new security vulnerabilities
related to media server daemons (with very little amount of fuzzing work and
by easily locating the crash points under specific file formats) in the ‘latest’
versions of iOS and Android. For convenience, we call our methodology TFA,
standing for ‘Tiny Fuzzing on Audio’ or ‘The Fuzzing Awakens’. After reviewing
backgrounds in Sect. 2, we describe TFA in Sect. 3 and evaluate it in Sect. 4. We
discuss limitations and future work in Sect. 5 and related work in Sect. 6, and
then conclude this paper in Sect. 7. We summarize our study as follows:

– TFA is strategic: We choose a seed file format as MPEG-4 Part 14 which is
most widely played by default media players in smartphones, and confront
several challenges to conduct file format-aware fuzzing. Our unique strategies
to overcome such challenges are as follows: (1) To ease format-awareness, we
utilize a GNU-GPL parser tool called AtomicParsley. This might be a benefit
of targeting multimedia files. (2) To gain the valid MPEG-4 atom2 list, we

1 https://lcamtuf.blogspot.kr/2015/02/symbolic-execution-in-vuln-research.html.
2 An atom is a basic data unit in MPEG-4. Readers are referred to Fig. 1 and [1].

https://lcamtuf.blogspot.kr/2015/02/symbolic-execution-in-vuln-research.html
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conduct a white-box analysis to the Android 6.0.1 source code. (3) To auto-
mate a seed file crawling process, we setup selection criteria of target websites
and select a crowd-sourcing public website called 4shared.com for automation.
(4) To automate a mutational fuzzing process in iOS, we backward-fuzz the old
jailbroken version of iOS (7.1.2) and forward-verify new crashes in the latest
version (9.3.5 on conducting our study) of which a jailbreaking is impossible
for now.

– TFA is efficient : In a seed file selection phase, we obtain eight seed files only
in 2,600 s to cover all of the effective and valid atoms. In a mutational fuzzing
phase, we perform mutation of the atom size fields that are likely to cause a
heap overflow. We generate 1,102 test cases3 and a mutation table having 58
records only. They are commonly applied to Android and iOS.

– TFA is effective: Due to format-awareness, it is possible to simply locate crash
atoms4 through a mutation table.
For six CPU hours, we found three crash atoms in iOS 9.3.5 and reported the
results to Apple (CVE-2016-4702, CVSS Score 10.0). Interestingly, these new
crash atoms commonly affected iOS and the related systems such as OS X,
tvOS, and watchOS to allow remote attackers to execute arbitrary code or
cause a denial of service by memory corruption. The new vulnerabilities were
fixed in iOS 10.x.x.
For six CPU hours, we found 15 crash atoms in Android 6.0.1 but they were
thrown to an exception due to the existence of CHECK() functions that signal
the kernel to kill and restart a media server daemon process.

2 Background

2.1 Attack Vectors: Media Server Daemons and Multimedia Files

As for file format-aware fuzzing, our target (media server daemons) and seed
(multimedia file) both have a great implication as an attack vector because of
the followings.

To deal with frequent audio service requests, media server daemons always
run with a high privilege in the background, commonly in modern smartphones
and the related systems. For instance, an media daemon called mediaserverd
aggregates the sound output of all applications and governs events such as volume
and ringer-switch changes in iOS and similarly in tvOS, watchOS, and OS X [19].
Android also runs a media server daemon called mediaserver, which is respon-
sible for starting media related services, including Audio Flinger, Media Player
Service, Camera Service, and Audio Policy Service [12], and the related systems,
such as Android Auto, Android TV, Android Wear, and Android Things, also
share this property in their source code. Thus, if a critical vulnerability is dis-
covered in a smartphone regarding media server daemons, the related systems
and devices might be affected by the same attack that exploits it.
3 Much more test cases are required in dumb fuzzing.
4 It is technically infeasible to identify unique crash atoms by performing a random

bit-flipping only.

https://www.4shared.com
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Fig. 1. MPEG-4 atom structure [1]

Furthermore, it might be highly likely to feed a corrupted multimedia file to
a vulnerable system as studied in the previous work [33], particularly without
specialized access conditions or authentication to exploit the vulnerability.

2.2 Seed File Format

According to www.file-extensions.org, 30 type extensions of audio and sound
files, such as m4a, wma, and mp3, are most commonly used in various platforms
among 1,285 file type extensions. Meanwhile, 35 type extensions of video and
movie files, such as mp4, mov, and avi, are commonly used in various platforms
among 659 file type extensions. All file extensions are categorized under digital
container format such as Ogg, 3 GP, QuickTime.

We chose a seed file format as MPEG-4 Part 14 which is the most widely used
digital multimedia container format to store video and audio, such as mp4, m4a,
m4r, m4b, m4p, and m4v. As depicted in Fig. 1, m4a/mp4 files are structured
hierarchically by the basic data unit called an atom or a box. An atom is called
a container atom if it is not a leaf atom in the nested hierarchy. Each atom
consists of a header, followed by atom data. The header contains the atom’s
size and type fields, giving the size of the atom in bytes and its type. Note that
each atom has an ‘offset’ that describes the atom’s position according to the size
value. The size and the type fields are assigned 32-bit integers, respectively, and
the size fields are the main target of our mutation in this paper because of high
likeliness of raising memory collisions. Particularly, an mp4 file structure consists
of three container atoms: File type atom (ftyp) has a certain file type of format,
movie atom (moov) contains all meta data of corresponding media, and movie
data atom (mdat) stores raw data. Moreover, movie atom (moov) involves various

www.file-extensions.org
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leaf atoms including track atom (trak) and media atom (mdia). There could be
multiple track atoms (trak) in the same file. Note that it is very important to
have a concrete strategy to select a qualified seed file because different atom
structures can be made in files depending on a file generation environment, such
as codec, encoder, program, and device.

3 File Format-Aware Mutational Fuzzing

3.1 Overview

We describe a general overview of TFA fuzzing procedure in Algorithm 1. The
TFA fuzzing procedure consists of a seed file selection phase and a mutational
fuzzing phase: We collect and choose seed files in the former, and perform muta-
tion and fuzzing in the latter.

Let Tx and Ty denote a list of crashes and a mutation table, respectively.
We assume they are initially null. In the seed file selection phase, we repeatedly
perform seed crawling through website W and verify atoms of the result S
as in format awareness(S). If there exist new atoms in S, we add S to the
queue T . We repeat this phase until we collect seed files that cover all atom lists.
Otherwise, we abort this process (line 2–7).

In the mutational fuzzing phase, we set t as the next seed file queued in T ,
and identify offset addresses of atom (size) fields through format awareness().
We then generate a test case t′ through atom mutation() and add this to a
mutation table Ty which contains offset addresses, atom types and file names.
We set n = 19 in our experiment. We finally feed this test case to the target
system. If the generated test case t′ crashes the media server daemon, it is added

Algorithm 1. TFA file format-aware fuzzing algorithm
Input : Website W
1: Tx = ∅, Ty = ∅ � Ty ← {address, atom type, file names[n]}
2: repeat
3: S = seed crawling(W ) � Seed File Selection Phase

4: if new atom found in format awareness(S) then
5: add S to T
6: end if

7: until abort-signal
8: repeat
9: t = choose next(T )

10: t′ = atom mutation(t, format awareness(t)) � Mut. Fuzzing Phase

11: add t′ to Ty

12: if t′ crashes then
13: add t′ to Tx

14: end if

15: until abort-signal
Output: Crashing Inputs Tx, Mutation Table Ty
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Table 1. System environment

Device: Web Server MacBook (Xcode) iPhone 4/6s Nexus 5

OS ver: Ubuntu 12.0.4.5 OS X 10.11.6 iOS 7.1.2/9.3.5 Android 6.0.1

Table 2. Android FOURCC function examples

to the crashing input set Tx. We repeat this phase until we finish our fuzzing
work with collected seed files, and otherwise abort this process (line 8–15).

Note that it is simple to locate crash atoms through Tx and Ty due to file
format-awareness. We automate the whole processes and implement the system
for experiments with an environmental setting as described in Table 1.

3.2 Challenges

We dealt with the following challenges in a practical sense in our fuzzing work.

Format-awareness. It is well known that format-awareness is a crucial job in
the related work [13,29,34]. To ease format-awareness, we utilize a GNU-GPL
parser tool called AtomicParsley. We use parsed atom types for seed validation
and offset address for mutation.

An m4a/mp4 file contains many atoms that include size, type, and even data
fields while the number of structural atom types that could extend data fields is
302 in total according to the atom list of www.mp4ra.org. Thus, we conducted a
white-box analysis to the Android 6.0.1 source code to gain the effective MPEG-
4 atom list. As shown in Table 2, the FOURCC function, composed of switch
statements as in (1), processes the input file by each atom as in (2). We then
collect a FOURCC atom list of 94 atoms and validate arbitrary audio and video
files according to this list.

Seed Crawling. To automate a seed file crawling process, we setup selection
criteria of target websites as follows.

– Avoid a robot check function
– Utilize an internal search function for audio/video files
– Aim at a sufficiently large file pool

According the criteria, we selected a crowd-sourcing public website, 4shared.com
for automation.

www.mp4ra.org
https://www.4shared.com
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Fig. 2. Target system versions (Bold characters denote the latest versions.)

Latest Version Problem. The final challenge was a jailbreaking or rooting
process required for fuzzing on the smartphone platforms, that is, for automation
inside the smartphones. It was infeasible for us to jailbreak the latest version of
iOS (9.3.5) while it was possible to root the latest version of Android (6.0.1).
Thus, as for iOS, we decided to awaken the old version of iOS (7.1.2) running
on iPhone 4. As illustrated in Fig. 2, we first performed fuzzing on iOS 7.1.2 by
jailbreaking iPhone 4 and installing OpenSSH, BigBoss recommend tools, and
SButils for running a fuzzer.

To verify the crashes (of iOS 7.1.2 iPhone 4) on iOS 9.3.5 in iPhone 6s, we
connect iPhone 6 s to the latest version of Xcode (8.2.1) running in a MacBook
and check the device console and the device logs by manually loading the crash
files to mobile Safari one by one. Note that the number of crash files, i.e., the
test case files that aroused crashes in iOS 7.1.2 iPhone 4, is quite lightweight for
us to manually load them to the latest version.

3.3 Main Phases

Seed File Selection Phase. As we mentioned, we chose 4shared.com because
it satisfies the requirements stated in our selection criteria. There was no robot
check function in 4shared.com but an internal search function was provided. The
pool of 4shared.com was sufficiently large with more than 1.5 million m4a/mp4
files. Note that we compare 4shared.com with the case of YouTube.com in
Sect. 4.1. We implemented automation software to crawl the website through
mouse/keyboard macro features in C. We described this as seed crawling in
Algorithm 1. We implemented a validation tool in Python, which has a function
that utilizes AtomicParsley to parse atom types and offset addresses.

Mutational Fuzzing Phase. Given the set of test case files from seed file selec-
tion phase, we implemented format-awareness for get the offset address of atom
size field. Given the mutation targets from format-awareness, i.e., the positions
of the size fields of the seed file, we need to generate small test cases for fuzzing.
We implemented a simple generation tool in a Python code for automation of the
test case generation. We see that this actually happened due to the mutation of
atom size fields with the integers highly likely to arouse memory collisions [31].

We sequentially mutate the value of the size fields with four-byte muta-
tion values as summarized in Table 3. We don’t mutate size fields of duplicate

https://www.4shared.com
https://www.4shared.com
https://www.4shared.com
https://www.4shared.com
www.youtube.com
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Table 3. Mutation values for atom size fields

1: 0x000000FF 2: 0x0000FF00 3: 0x00FF0000 4: 0xFF000000 5: 0xFFFFFFFF

6: 0x7FFFFFFF 7: 0x80000000 8: 0x20000000 9–19: 0x00000000–0x0000000A

atom types which mean the atoms already contained in another seed file. Those
mutation values are highly probable integers for arousing memory collisions and
actually borrowed from [31]. We construct a mutation table to contain a name
of a test case file and atom types in each raw.

We need to instruct a media server daemon to consecutively load and handle
each of the mutated test case files, and monitor and log possible crashes. We
also automate this phase by writing a shell script to automatically open the test
case files in the mobile web browsers, such as mobile Safari and mobile Chrome,
one by one while monitoring the media server daemons for faults. Note that the
simple shell script is very similar to that of [19]. We can easily locate the crash
points effectively by file names of crash log due to the generated mutation table
in test case generation phase.

4 Evaluation

4.1 General Results

Seed File Selection Phase. We performed a seed file crawling experiment
in both 4shared.com and YouTube.com using our automated crawling software.
Figure 3 shows the results of crawling, i.e., the percentage of covered atoms in
the FOURCC atom list (total 94 atoms). The gray area implies a portion (36

Fig. 3. #Atoms/FOURCC atom list over time for 4shared.com (solid line) vs.
YouTube.com (dashed line). Shade area indicates atom types unused in MPEG-4 Part
14 format. ‘✕’ represents the point that achieves the maximum number of effective
atoms, i.e., 58 atoms in 2,600 s.

https://www.4shared.com
www.youtube.com
https://www.4shared.com
www.youtube.com
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Table 4. TFA fuzzing results and comparisons. (Note: Numbers in parenthesis denote
mp4 and the others m4a.)

Target #Seed TFA: #Atoms Comparison: #Crash Files

Mutated Crash ZZUF AFL

iOS 9.3.5 4 (4) 44 (14) 3 (0) 0 (0) –

Android 6.0.1 4 (4) 44 (14) 12 (3) 9 (1) 6 (4)

atoms including MPEG-B Part 7 atoms such as sinf, tenc, and enca) that is
actually unused (i.e., ineffective) in MPEG-4 Part 14. As illustrated in a solid
line in Fig. 3, we were able to cover all effective atoms (58 atoms) in 2,600 s
through 4shared.com. We also made a comparison with YouTube.com. However,
as shown in a dashed line in Fig. 3, the number of atom types was constant (25
atoms) in YouTube.com because all files should have been uploaded in webm
type and then converted to m4a/mp4 format in the server when downloaded.
On the contrary, 4shared.com downloaded crowd-sourcing files as in genuine
format. Consequently, we acquired eight seed files (four m4a and four mp4 files)
covering all effective atoms in 2,600 s through 4shared.com.

Mutational Fuzzing Phase. As summarized in Table 4, we found three crash
atoms in iOS 9.3.5 and 15 crash atoms in Android 6.0.1 from 1,102 test cases
for six CPU hours, respectively. Table 4 shows crash atom numbers according to
OSs and seed types (mp4 in parenthesis). Due to the mutation table constructed
on fuzzing, we were able to easily locate crash points and exploit input files.

As for crashes, we were able to discover vulnerabilities that cause memory
corruption in iOS because we only mutated atom size fields related to mem-
ory assignment. The new crash atoms were mvhd, trak, and udta in iOS 9.3.5
and they were significant. However, in Android, various kinds of CHECK() and
CHECK XX() functions were used to verify size fields and then format-block (i.e.,
SIGABRT) a file that has unusual values in size fields. Thus, a mediaserver process
which was regarded as a format error should have been killed and restarted by

Table 5. Experiment results for all FOURCC atoms. (Shade area indicates 58 fuzzed
effective atoms. 17 crash atoms are in bold. Three iOS crash atoms are underlined.)

https://www.4shared.com
www.youtube.com
www.youtube.com
https://www.4shared.com
https://www.4shared.com
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the Android kernel. Such crash atoms were stbl, trak, mean, name, data, cprt,
covr, albm, gnre, perf, titl, yrrc, auth, dinf, and mp4a but they were only
insignificantly denied in Android 6.0.1. Table 5 summarizes these results. Note
that the crashes make the native daemon, i.e., the media server daemon and
not only a forked server process, die and restart. As a result, the whole media
server daemons and related services, such as audio, radio, and camera, were
killed together. Even a simple crash could make a media server daemon and its
related services go down temporarily because such a daemon process does not
fork to handle individual requests.

4.2 Comparisons

We adopt open source fuzzers such as ZZUF 0.15 [20] and AFL-fuzz 2.39b [37], for
comparisons with TFA regarding their fuzzing performance (#Crashes/Time).
The seed files selected in TFA were commonly used for comparison experiments.
In ZZUF, we set the default mutation ratio as 0.4 for generating test cases. Note
that even this small ratio makes a large amount of mutation. AFL-fuzz is a
coverage-based grey-box fuzzer which uses coverage information to fuzz [37]. In
this study, we used original AFL-fuzz with porting for comparison of fuzzing on
Android. We plan to perform a comparison of fuzzing on iOS in the future study.
In AFL-fuzz, we needed a specific procedure to make a precise comparison. First,
we compiled the stagefright module that uses libstagefright.so library with
afl-clang-fast and afl-clang-fast++, and then cross-compiled afl-fuzz for
armv7-a to run on Nexus 5. Subsequently, we loaded afl-fuzz binary to Nexus 5
and conducted fuzzing on libraries. Finally, we conducted fuzzing again, but on
a chrome browser with crash files obtained through libraries, to verify the crash
results under our experiment design.

For comparisons with TFA, we treated the same eight seed files (four m4a
and four mp4 files) selected from TFA, and set the same amount of time (six
CPU hours) for fuzzing in ZZUF and AFL-fuzz, as TFA. The comparison results
are summarized in Table 4. We were able to exactly identify crash atoms due to
format-awareness in TFA but only crash files in ZZUF and AFL-fuzz. Further-
more, we were able to find more crashes, three of which found on iOS 9.3.5 were
significant. We reported the results to Apple to be archived in CVE-2016-4702
(CVSS Score 10.0).

5 Limitations and Future Work

In this Section, we review some limitations of this work and discuss promising
(and our own on-going) future work.

Seed Container Type Selection. Although we selected two audio/video file
types such as m4a and mp4 from the MPEG-4 Part 14 file type lines, it would be
promising to expand the sort of container types for more interesting results in the
future study. Note that, for example, there exist 3 audio file container, 2 image file
container, and 13 audio/video container used for multimedia file types. If there
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does not exist a file format specification or a parser tool, it would be promising
to adopt the automatic input format recovery [6,9,23] to automatically analyze
the native file formats for enabling the automated file format awareness phase
in general.

Coverage-based Fuzzing. It would be promising to combine file format-aware
fuzzing like TFA and coverage-based fuzzing in the future study. We did not con-
sider deeper paths and code coverage in TFA but plan to work on coverage-based
fuzzers, such as libFuzzer and AFL-fuzz, by replacing the mutation strategy part
with TFA-like format-awareness strategy. It might be expected to improve the
performance of fuzzers significantly.

Latest Version. When we work on TFA, the latest version of iOS was 9.3.2 -
9.3.5 and we reported our result to Apple. Our result was announced as CVE-
2016-4702. We confirmed that all the crashes found in TFA work was successfully
blocked in the current latest version of iOS 10.2.1. In the future study, we will
work on iOS 10.2.1 with the plans described above.

6 Related Work

Fuzzing. Fuzzing first appeared as technical jargon in 1990 when Miller et al.
showed that randomly generated character streams, fed into UNIX utility pro-
grams, could result in significant program crashes [25]. Fuzzing is such a secu-
rity test method that causes crashes and discovers potential memory corrup-
tion and vulnerabilities by feeding randomized data into target application
programs [24,32]. Fuzzing is classified into Black-box fuzzing [10,19,21,28,36],
white-box fuzzing [5,7,14,16,17,35], and grey-box fuzzing [2–4] according to
the existence of internal information of software. Our TFA fuzzing starts with
a white-box analysis to gain the FOURCC atom list but mainly runs with
black-box fuzzing on both iOS and Android. Fuzzing can also be classified
into generation-based fuzzing [15,18,26] and mutational-based fuzzing [21,28,36]
according to the way of input data generation. Our TFA fuzzing is mutational-
based fuzzing Fuzzing was actively used for protocol security test around 1999,
e.g., the PROTOS test suite of the University of Oulu [29]. File fuzzing received
public attention in 2004 due to Microsoft security bulletin MS04-028.

Recently, fuzzing received academic attention regarding seed selections and
mutation strategies. In 2014, A. Rebert et al. [28] pointed out that there had
been little systematic effort in understanding the science of how to fuzz properly
and studied how best to pick seed files to maximize the total number of bugs
found during a fuzz campaign. In 2015, Cha et al. [8] studied how to compute
a probabilistically optimal mutation ratio when a certain program-seed pair is
given. They leveraged white-box symbolic analysis on an execution trace for
a given program-seed pair to detect dependencies among the bit positions of
an input. In 2016, Spephens et al. [30] proposed the so-called Driller which is
a hybrid vulnerability excavation tool to exercise deeper paths in executables.
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They used selective concolic execution to generate inputs which satisfy the com-
plex checks separating the compartments exercised by inexpensive fuzzing. In
2016, Bohme et al. [4] proposed the CGF (Coverage-based Greybox Fuzzing)
method to explore significantly more paths with the same number of tests. They
used the Markov chain model for the purpose.

File Format-awareness. Sutton et al. [31] introduced the benefits of investi-
gating seed file formats. Due to file format-awareness, it would be possible to
appropriately mutate more interesting fields in seed files. In 2007, Lewis et al. [22]
used a modification of traditional format-free fuzzing techniques to identify vul-
nerabilities in the format-strict environment of media players. They stressed the
significance of having the appearance of a valid media file on fuzzing. In 2008,
Thiel presented the results of file format-aware fuzzing on ‘PC’ media software
by investigating various media file formats [33]. It was possible to find new bugs
that could not be found in simple fuzzers.

Fuzzing on Smartphone. There have been studies of fuzzing on iOS and
Android related to our research but there is no file format aware fuzzing in this
area [19,21,27]. In 2010, Klein et al. introduced a black-box ‘byte-wise’ muta-
tional fuzzing on the previous versions of iOS 3.1.3 by selecting an m4r/m4a
ring-tone file (415,959 bytes) as a seed file and discovered a unique bug regard-
ing mediaserverd (CVE-2010-0036). He generated test cases by sequentially
mutating offset 0 to 999 with value of 255 [19]. In 2015, Lee et al. [21] studied
a qualified seed file selection strategy and adopted a mutational fuzzing to find
bugs from old iOS versions (6.x–6.1.x) and Android old versions (2.3.x–4.3.x),
respectively [21]. They discovered several crashes by fuzzing real world format
(gif, jpeg, png, mp3, and mp4 ) in both iOS and Android. They used CACE
(Crash Automatic Classification Engine) method to design SFAT (Seed File
Analysis Tool) for a good selection of seed files and categorized the discovered
crashes automatically. As a result, they achieved better results by discovering
about 1900 crashes and seven (unlike) unique bugs in iOS and Android. Com-
pared with Lee et al.’s work, our research is different in analyzing the file format
to optimize the number of test cases and fuzzing time.

7 Conclusion

In this paper, we studied file format-aware fuzzing on the media server daemons
running in the latest versions of smartphones, and presented a new smartphone
attack that exploits the results of such a fuzz input. Our methodology was strate-
gic to overcome fuzzing challenges, such as format-awareness, seed file crawling,
format-aware fuzzing, and latest versions. It was efficient for black-box muta-
tional fuzzing with regard to a seed file selection and a test case generation, and
also effective to find critical crash atoms in iOS and related systems. Although
both iOS and Android have been updated on submission of this paper, we believe
our strategic, efficient, and effective methodology and the proven results (CVE-
2016-4702 CVSS Score 10.0) are promising for the future study. We plan to
diversify input file formats in the near future.
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Abstract. Embedded systems, as opposed to traditional computers,
bring an incredible diversity. The number of devices manufactured is
constantly increasing and each has a dedicated software, commonly
known as firmware. Full firmware images are often delivered as multi-
ple releases, correcting bugs and vulnerabilities, or adding new features.
Unfortunately, there is no centralized or standardized firmware distribu-
tion mechanism. It is therefore difficult to track which vendor or device
a firmware package belongs to, or to identify which firmware version is
used in deployed embedded devices. At the same time, discovering devices
that run vulnerable firmware packages on public and private networks is
crucial to the security of those networks. In this paper, we address these
problems with two different, yet complementary approaches: firmware
classification and embedded web interface fingerprinting. We use super-
vised Machine Learning on a database subset of real world firmware
files. For this, we first tell apart firmware images from other kind of files
and then we classify firmware images per vendor or device type. Next,
we fingerprint embedded web interfaces of both physical and emulated
devices. This allows recognition of web-enabled devices connected to the
network. In some cases, this complementary approach allows to logically
link web-enabled online devices with the corresponding firmware package
that is running on the devices. Finally, we test the firmware classifica-
tion approach on 215 images with an accuracy of 93.5%, and the device
fingerprinting approach on 31 web interfaces with 89.4% accuracy.

1 Introduction

In the wake of the Internet of Things (IoT), embedded devices are becoming
increasingly present in many computing and networked environments. In fact,
multiple reports estimate an increase in the number of embedded devices in
the next few years [16,24]. These devices often rely on network connectivity, are
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administrated through web interfaces, and firmware packages are made available
with new features and bug fixes. In addition, many firmware releases are available
for each device leading to a large number of firmware images [12]; this number
will likely grow with the increasing number of newly deployed devices. Therefore,
it is challenging to apply manual analysis, classification and fingerprinting, as it
does not scale. Hence, novel, scalable, and automated approaches are needed.

Usually, a firmware image is custom made for a specific device. Although, it
is relatively easy for a human to find the vendor, the version, and the device for
which the firmware is intended, because embedded devices are very diverse, it
is difficult to automatically link a device model and a firmware image without a
learning system that supports them. At the same time, it is extremely hard for an
automated system to categorize firmware files from unstructured download sites
by device class or by vendor. While this can be automated for a few well-defined
file categories, this becomes hard when crawling thousands of firmware images
from a wide diversity of devices. Similarly, when administrating an embedded
device, a human can have contextual clues about its firmware version, however,
an automated system requires a different approach to device identification.

Within this context we formulate the following problems: (i) how to auto-
matically label the brand and the model of the device for which the firmware is
intended and (ii) how to automatically identify the vendor, the model, and the
firmware version of an arbitrary web-enabled online device. File classification and
(web) fingerprinting might seem trivial problems, however, such problems are not
trivial and were addressed in different contexts, for file classification [5,26,27,32],
device fingerprinting [6,14,19], and web fingerprinting [1,2,29,33]. Moreover,
these problems need to be addressed in a reliable and scalable manner which is
independent of device, vendor, or custom protocols running on the device.

In this paper, we apply Machine Learning (ML) to classify firmware files
according to their vendor or device type. First, we explore several feature sets
derived from the characteristics of firmware images. Then, we recommend a fea-
ture set for this type of classification problems that we found to be optimal
and show that our approach achieves high accuracy. Next, using sound statisti-
cal methods, such as confidence intervals, we estimate the performance of our
classifiers for large scale datasets. Complementary to the previous approach, we
build a fingerprinting database of web interfaces using emulated firmware images
(similar to [11,13]) and physical devices. We show that it is feasible to match
an unknown embedded web interface to the list of known web fingerprints in
our database by using multiple features such as the web interface sitemap or the
HTTP protocol Finite-State Machine (FSM). Finally, we use multiple scoring
systems to rank the web fingerprint matches. The outcomes reveal that we are
able to accurately classify firmware and fingerprint embedded web interfaces.

In summary, we make the following main contributions:

– We are the first to apply ML in the context of firmware classification. For
this we propose and study the firmware features and the ML algorithms that
makes the classification effective, accurate, and feasible.



Towards Automated Classification of Firmware Images 235

– We research the fingerprinting and identification of web-enabled embedded
devices and their firmware version, and introduce fingerprinting features for
the embedded web interfaces of physical and emulated devices.

– We present and discuss direct practical applications for both techniques.

2 Firmware Classification and Identification

In this section we show how we classify the firmware files at vendor or at device-
type level. Specifically, we present the details of our classifier for which we use
supervised ML. In supervised ML, the algorithms must be trained with a set
of annotated (e.g., manually, computer-aided) samples before it can classify
unknown or new samples. In our experiments we use Decision Trees (DT) and
Random Forests (RF) algorithms that are able to handle better non-linear fea-
tures, and are easier and faster to train. The supervised ML algorithms also
require features that are used to partition and distinguish the learned classes
of data. Feature selection is usually specific to the domain to which the ML is
applied and thus it must be carefully performed and evaluated. Therefore, we
first present a set of “naive” attempts and their limitations. Then, we present
our dataset, the features we explore, and the motivations behind our selection.
Finally, we measure the performance of our classifiers trained for firmware files.

2.1 Discussion on “Naive” Attempts

One “naive” attempt could be the use of the firmware filenames as the source of
various information (e.g., vendor and device name, firmware version). In practice,
there are several problems with such an attempt. First, there is no standard that
specifies if and how the filenames should carry metadata information. In fact,
many firmware images are released with generic names such as firmware.bin or
upgrade.fw. Second, extracting information from filenames is domain specific
and is non-trivial [4]. Third, often the filenames can be fake and not related to
their content. This is a known problem in “free-riding” on P2P and file sharing
networks [17]. It also constitutes a problem in malware and spam distribution,
where a filename can be used to disguise the real function of the file [21]. There-
fore, we consider the filenames to be an untrustworthy source of information, but
it could optionally be used at later stages for cross-validation of the information.

Another “naive” attempt could be the compilation of a dictionary of hashes
based on all firmware files. One could query this dictionary when trying to obtain
information (e.g., vendor, product, version) for a previously obtained firmware
image. Such an attempt could face several challenges. First, there is no database
that provides a list of all the firmware images that were created and are available
to date: firmware releases and updates are not standardized or never publicly
released. Second, even if such a database would hypothetically exist and the
hashes of all the firmware files to date would be known, the problem remains
for the firmware released in the future. It would be hard, if not impossible, to
classify future firmware releases with such an attempt. In fact, this is one of
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the main reasons why malware file classification techniques do not use it, and
rather propose alternative ways to detect and classify malware samples [5,32],
including techniques based on ML [26,27]. Finally, it could still be possible to
use fuzzy hashing to classify unseen or future firmware images with the right
firmware category (i.e., label) according to fuzzy hash similarity. However, fuzzy
hashing has its own limitations and is not viable in practice.

2.2 Dataset

From a dataset of firmware images we collected over time, we select 215 images
from 13 vendors that manufacture several type of devices [13]. We will refer
to these vendors as classification categories. Each of these categories contains
a varying number of firmware images. In fact, this is a realistic scenario since
firmware release cycles and the numbers of released firmware are diverse and vary
across vendors, and even across devices from the same vendor. Each classification
category contains between 5 and 54 firmware images, with an average of 16
images per vendor. Finally, we create a special classification category of files for
which we know that they are not firmware images. For example, such files include
drivers and PDF or text documents, which are often released along with firmware
updates at a common download location or in a common file archive [12].

2.3 Features Selection

The classification of a firmware file can be performed at vendor or at device-type
level, depending on the granularity objectives. For consistency, we will refer to
both vendor and device-type categorization as classification categories.

Firmware File Size. The file size of a full firmware upgrade for an embedded
device is directly related to the hardware design and the functionalities of the
device. At the same time, a firmware upgrade file cannot exceed the limited
memory available in the particular device types which it targets. This motivates
us to use firmware file size as a good feature to discriminate between firmware
images of devices from different classification categories.

Firmware File Content. Most vendors use custom procedures to build and
package their firmware upgrades. This makes the firmware images to have spe-
cific distribution and density of the information they contain. Therefore, we use
information theory properties as features for ML. In this sense, we leverage the
following characteristics of the firmware files as ML features: (i) file entropy (i.e.,
the informational density of bits per byte), (ii) arithmetic mean of file bytes,
(iii) file compressibility percentage (i.e., an empirical value that is an upper
bound of the Kolmogorov complexity), (iv) serial correlation value, (v) monte-
carlo value and its estimation error, and (vi) chi-square distribution and its
excess error. We will refer to the file entropy as entropy feature and to the rest
of the features from the above list as the entropy extended features set.
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Firmware File Strings. Many software packages, including firmware files,
contain strings. These strings may embody copyright, debugging, or other infor-
mation. They often also contain vendor or device specific information. Hence,
the strings in a given firmware file represent a fingerprint of the corresponding
firmware, device, and vendor. Consequently, the intersection of strings of each
file within a particular classification category is a strong classification feature for
that category. Suppose that an unknown firmware sample contains a string that
is found within strings intersection of a classification category A. There are high
chances that this sample is related to the files in the classification category A.

Unfortunately, many firmware files contain strings that are common across
multiple classification categories. This may happen if the firmware uses com-
mon Free Open Source Software (FOSS) code such as Linux kernel or OpenSSL
libraries. In this case, an unknown sample can match several different classifica-
tion categories and can mislead the ML classifier. To overcome this, for each
trained classification category we also build a dictionary that contains only
strings unique to that category. Therefore, each classification category in the
training set adds two different features: the Category Strings Feature (CSF) and
the Category Unique Strings Feature (CUSF). Unfortunately, the CUSF feature
derivation comes with a drawback which can limit the scalability of our tech-
niques with larger datasets. Whenever a new firmware file is added to a given
classification category, the entire CUSF process has to be re-run on the labeled
dataset.

Fuzzy Hashing of Firmware File Content. Fuzzy hashing is a technique
which provides the ability to compare two different items and determine a fun-
damental level of similarity between them. While the cryptographic hashing is
used to determine if two different items are identical, the fuzzy hashing is used
to decide if two different items are homologous (i.e., similar but not exactly the
same). In our approach, we use Context Triggered Piecewise Hashes (CTPH) [20].
Intuitively, firmware files from a given classification category should be more
“fuzzy hash similar” among themselves than cross-category. As such, for each
trained classification category we build a list containing fuzzy hashes of files
within the category. For a training or an unknown file, we compare its fuzzy
hash with the fuzzy hashes in the list of each category. If there is at least one
fuzzy hash match with similarity above an empiric threshold, the fuzzy hash
feature of that category is set to 1; otherwise, is set to 0. Surprisingly, including
the fuzzy hash similarities as features proved to result in worse classification
accuracy as discussed in Sect. 2.4.

2.4 Evaluation

Running supervised ML experiments requires training sets. Since our dataset
has the classification categories of varying lengths, we create the training sets
by taking a constant percentage from each category as training samples. We
start with 10% as training set percentage and then increment it by 10% until
training set percentage reaches 90%. For each training set percentage, we run 100



238 A. Costin et al.

Fig. 1. Firmware classification perfor-
mance using [size, entropy] features
set.

Fig. 2. Firmware classification per-
formance using [size, entropy,

entropy extended] features set.

Fig. 3. Firmware classification per-
formance using [size, entropy,

entropy extended, strings,

strings unique] features set.

Fig. 4. Firmware classification per-
formance using [size, entropy,

entropy extended, strings,

strings unique, fuzzy hash] fea-
tures set.

experimental runs by randomly sampling the given percentage of files as training
samples and running the training and classification. Finally, for each training
set percentage, we compute its average classification accuracy and error based
on results of each of the 100 experimental runs. For any experiment run, we use
both the DT and RF algorithms so that we can compare their performance under
various conditions. Since we use DT and RF algorithms, we do not perform cross-
validation because these algorithms do it internally. The firmware classification
performance for various ML algorithms, feature sets, and training sets size is
summarized in the Figs. 1, 2, 3, and 4. For each algorithm and features sets, the
figures depict the average accuracy per 100 experimental runs for training set
size increasing with 10% increments.

First, we observe that the classification accuracy improves with the increased
size of the training set. Although this appears to be trivial, is not always the case
as there exist scenarios where larger datasets lead to worse results [30]. Second,
contrary to the intuitive expectation, the addition of the fuzzy hash similarity
features reduced the accuracy. Interestingly, these features made both the RF
and the DT classifiers perform worse. The DT classifier also performed much
worse compared to the DT classifiers with very basic feature sets, such as [size,
entropy] or [size, entropy, entropy extended]. In parallel, the RF classifier
in this setup failed to perform at least marginally better than the RF classifiers
based on basic feature sets mentioned above. One explanation could be the fact
that a fuzzy hash is not an accurate file match. Such hashing can return high
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similarity scores even for pair of files that are totally unrelated. The accuracy of
the fuzzy hashing can be influenced by the file size and various other factors.

Based on the previous observations, we conclude that the feature set of [size,
entropy, entropy extended, category strings, category unique strings]
constitutes the best choice. It also provides best accuracy when used with the RF
classifiers; more than 90% classification accuracy when the training set is based
on at least 40% of the known firmware files. Another observation is that both
the RF and the DT classifiers using other feature sets reach the 90% accuracy
only for training set sizes of 80%–90% of the known firmware files, which is not
practical in real-life. Also, the RF and the DT classifiers with the most basic
feature set [size, entropy] does not even reach 90% classification.

We try to identify the most reliable feature set and learning classifier, how-
ever, the generalization of learning is an open problem in the ML field [7,8,15].
The ML algorithms performance cannot be guaranteed on another dataset (e.g.,
bigger). We compensate this limitation with statistical methods such as confi-
dence intervals. In this context, we use statistical confidence intervals [10] to
evaluate the accuracy of our technique when applied to real-world populations
of firmware images. For example, by taking any firmware in a dataset of 172 K
firmware images [12], with an accuracy of 99% we can compute the confidence
interval for our best feature set and a training based on 50% of the dataset. In this
case, our RF firmware model can correctly classify the firmware in 93.5% ± 4.3%
of the cases. Manually annotating 50% of a dataset with 172 K firmware images is
not trivial and does not scale. However, this challenge can be solved using alter-
native approaches. First, many files could be automatically annotated based on
the metadata that was acquired by the crawler, assuming that the metadata from
the vendor is reliable. Second, building in an incremental manner a clean training
set can be achieved by using services like Amazon’s Mechanical Turk.

3 Device Fingerprinting and Identification

Often firmware fingerprinting is not sufficient and thus it required to fingerprint
the device itself. Many approaches exist for fingerprinting and identification of
computing device and sensors [6,14,19]. However, the fingerprinting features
used by these techniques are strongly linked to the real hardware or the way
the live devices operate. Such strong dependencies can make these techniques
less effective, for example, when dealing with emulated devices and virtualized
appliances. In addition, these techniques do not necessarily take advantage of
the devices’ firmware packages. Often firmware packages can be emulated and
can provide additional information for a reliable device identification.

At the same time, the embedded devices often lack the user interfaces of desk-
top computers, such as keyboard, video, and mouse. Nevertheless, these devices
need somehow to be administrated. Even though some devices alternatively rely
on custom protocols such as “thick” clients or even legacy interfaces (e.g., tel-
net), the web became the universal administration interface. Thus, the firmware
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of these devices often embed a web server providing a web interface and these
web applications range from quite simple to fairly complex.

These observations suggest that higher level approaches are required, regard-
less the way the devices operate. As such, we propose an approach that finger-
prints the devices at high level as possible, which in our case is the embedded web
interface level. Our solution benefits from the firmware contents and the device
emulation based on the firmware images alone. Previous works touched some
aspects of our fingerprinting techniques, however, either they suggest manual
approaches [22] or do not provide enough insights and evaluations [29]. The well
recognized project such as ZMap/ZTag also include a device/service fingerprint-
ing feature. However, their efforts in this regard have been mostly manual so far
as seen in their GitHub and Travis-CI logs.

3.1 Discussion on “Naive” Attempts

One “naive” attempt to create or verify fingerprints of embedded web interfaces
is to use physical devices in a private network or devices connected to the Internet
with public IPs. In practice, there are several problems with such an attempt.
First, it is unfeasible to operate physical devices in a private network for all
the embedded devices that exist to date. Second, it could be unethical, or even
sometimes illegal, to scan the devices connected to the Internet with public IPs
for the purpose of analysis or fingerprinting without prior authorization. Another
“naive” attempt could be to check the existence of unique files/URLs, or specific
strings in the web interface pages or HTTP authentication prompts. However,
in our view such an attempt cannot deal very well with false positives that
can be produced by fake web pages created by web traffic generators, and fake
services produced by rather simple honeypots [23]. Therefore, we suggest that
more elaborate approaches must be designed and proposed.

3.2 Dataset

We used the emulated web interface of 27 firmware images originating from 3
vendors that split across 7 functional categories. 9 of these images where also
part of the firmware ML classification: they were classified by our ML firmware
model with an accuracy of 100% using RF (and around 99.5% using DT). There
are practical reasons why we could not use the entire dataset of 215 images
from the firmware classification experiment: (i) emulating a large number of
diverse firmware images is a challenging problem [13] and (ii) it is unfeasible
and expensive to acquire many devices such that their number is large enough
to produce convincing and representative results. We also used 4 physical devices
from 2 vendors that cover 4 functional categories. We consider that the dataset
has a sufficient size and enough intramodel similarity to provide a conclusive
estimation of the effectiveness and the accuracy of our technique.
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3.3 Features for Web Interface Fingerprinting

We propose six different features that are computed for each training or unknown
embedded web interface, which present them below and motivate the choice.

Web Sitemap. A sitemap is a list of pages of a website which are publicly or
privately accessible. Files and URLs that exist in one website do not necessarily
exist in another, even if they run on the same web server. We leverage this fact
and create a fingerprint based on this assumption. In detail, to categorize the web
interface of an unknown embedded device, we access URLs and files which exist
in our trained dataset and represent the sitemap of a known web application.
If the sitemap of the unknown web interface matches with a known one in our
database, we classify it as belonging to an embedded device running a specific
firmware version. This sitemap approach however would not work for single-page
web applications that use JavaScript router scripts. This could be addressed by
fingerprinting the Document Object Model (DOM) of those interfaces.

HTTP Finite-State Machine. The HTTP protocol, is a stateless application-
level protocol for distributed, collaborative, and hypermedia information sys-
tems. For our fingerprinting and detection purposes we focus only on the server
responses. HTTP is a liberal protocol which means that the structure of a
response message is diversified among the different web server implementations.
Each web server implements the response messages differently in terms of the
headers it uses, the sequence of these headers inside the message, and the value
of each header. Hence, it is possible to fingerprint them by extensively analyzing
the messages they exchange [31,34]. We leverage these differences to identify the
type of server involved in a specific HTTP conversation. Therefore, we create a
model which is able to learn the headers’ order of an HTTP response and then
use this order to classify an unknown HTTP conversation. In essence, we have
implemented an HTTP FSM in which the headers represent the states of this
FSM and the order of the headers the transitions from one state to another.

Cryptographic Hashing of HTML Content and HTTP Headers. We
expand the FSM approach by using also the HTTP response values. Although
some headers will always display the same information (e.g., the header Server)
few other headers will not remain constant over time (e.g., the header Date).
Such small variations in responses results in significant changes in the crypto-
graphic hashes of the headers. For example, the cryptographic hashes of headers
of two consecutive responses to exactly the same static web resource will result
in two different values and will generate a false mismatch. To overcome this type
of “noise”, instead of retrieving the actual value of such a header, we dynami-
cally create a regular expression. As a consequence, headers such as Date do not
affect our features and matching. We create two cryptographic hash values from
a complete HTTP response. The first contains the hashed headers of the message
as explained above and the second the hashed message body. If we have a match
between an unknown response and a response contained in our database, we can
successfully fingerprint the device that sent this response. However, many times
an HTTP response from an unknown device will match a list of devices that can
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reply back with responses that hash to the same values. In those cases, we can
use this approach to minimize the number of devices that match this response.

Fuzzy Hashing of HTML Content and HTTP Headers. It is not always
possible to have a fingerprint based on a cryptographic hash value even if it
comes from the same device. This happens because the modification of a single
byte in a large byte stream causes the cryptographic hash function to generate a
completely different hash value. To counter this behavior we use fuzzy hashing.
In our approach we use Context Triggered Piecewise Hashes (CTPH) [20]. Using
fuzzy hashing, we compute the similarity between an unknown HTTP response
(HTTP headers, HTML content) and a list of HTTP responses in our database
for which we know the fuzzy hash values. The procedure we follow is quite sim-
ilar to the one we followed in the case of the cryptographic hashing, but in this
approach we are using a completely different hashing function. If the similar-
ity between the unknown and a known HTTP response exceeds an empirically
calculated threshold, we can successfully classify this unknown device.

3.4 Scoring Systems for Features

Scoring is the way each feature contributes to the final rank of a given match.
We propose three different scoring systems and briefly present them below.

Majority Vote Scoring. Each feature of each fingerprint match is ranked in
decreasing order. The fingerprint match that ranks highest on most of its features
is considered to be the most accurate match to the unknown sample.

Uniform and Non-Uniform Weighs Scoring. Each feature value of a fin-
gerprint is assigned a weight. Then, for each feature of each fingerprint all the
weighted values are summed into a total value of the fingerprint. Finally, all the
total values are ranked in decreasing order. The match whose total value ranks
highest is considered as the most accurate match to the unknown sample. For
our evaluation, we used the uniform weights of 16.6% (i.e., a uniform devision of
100% match to each of the six features). For the non-uniform scoring, we used
the following empirically found weights: 4% for web sitemap, 4% for HTTP FSM,
1% for fuzzy hash HTTP header, 1% for fuzzy hash HTML content, 10% for
crypto hash HTTP header, 80% for crypto hash HTML content.

Score Fusion. In our evaluation, we used the score fusion technique to improve
the accuracy of identification. The score fusion technique is widely and actively
used in various research fields, such as biometrics and sensors data [18]. It is used
to increase the confidence in the results and to counter the effect of imprecisely
approximated data (e.g., fingerprints in biometrics) and unstable data readings
(e.g., sensors data). We take as input the decreasingly ordered rankings from
each of the scoring systems described above. Then, we apply majority voting to
each ranking from these three scoring systems. This allows our system to decide
which match is the most accurate based on its scores computed using the three
different scoring systems presented above.
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3.5 Evaluation

We start by connecting up the 4 physical devices and emulating the 27 firmware
images. Then we create one fingerprint for the embedded web interface of each
of these 31 devices. Subsequently we create a list of IP addresses based on the IP
address of each of the 31 running devices. We feed sequentially each IP address
to the identification module which acts like an oracle and has to “guess” to
what fingerprint to assign the web-interface at this particular IP address. For
this, the identification module loads the previously created fingerprinting data-
base, computes the features’ scores for each URL and accumulates them, runs
the scoring systems and finally outputs the most accurate fingerprint match by
applying the score fusion method. The list of these steps constitutes an exper-
imental run. We execute the above steps for 100 experimental runs at various
points in time, under varying network conditions and varying IP address assign-
ments. We also vary the number of threads used for web interface crawling and
the speed at which they crawl. Finally, we compute the average successful and
erroneous identification rates based on results from each experimental run.

Summarized, our tests on average resulted in 89.4% accuracy in device iden-
tification. The tests were run using a database containing 31 fingerprints of
embedded web interfaces. Also, the dataset provided enough intramodel similar-
ity, because around a third of the fingerprinted web interfaces consist of similar
or consecutive firmware versions (e.g., Brickcom). Our evaluations show that
the cryptographic hash of the content is the most stable and accurate feature.
On average, it provided an accuracy of more than 85%. On the other end, the
fuzzy hash of headers and content were the most unstable. One reasons for this
is that fuzzy hashing does not perform well with short data (e.g., HTTP head-
ers). Another reason, as discussed also in Sect. 2.4, could be the fact that fuzzy
hash is not an accurate data match and can introduce noise rather than use-
ful similarity information. These empirical observations lead us to choose the
non-uniform scoring weights as presented in Sect. 3.4. Finally, the most accurate
scoring system in our tests was the majority voting, followed by the non-uniform.
As expected, the uniform weights scoring system performed the worst with more
than 50% of classification errors. This could be explained by the high weight val-
ues assigned to the fuzzy hash features which can be noisy and inaccurate.

4 Usage Scenarios

While taking a research-oriented approach to the open problems, with this work
we also aim at providing practical results and usability. Thus, we consider that
providing real-life examples and applications is equally important.

4.1 Firmware Classification

Correct identification and classification of a firmware could be extremely useful.
First, it could allow easy and fast clustering and navigation of firmware files
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according to their vendor or device type. Subsequently, this more granular sep-
aration could be used to apply more refined techniques on each category, such
as version or release date ordering within the category. With all the files in one
huge cluster, such refined techniques would be more challenging, if not impos-
sible. Second, it could allow to build a database of firmware images associated
with inputs that trigger their vulnerabilities. Finding such vulnerabilities is an
interesting topic itself, but is outside the scope of this paper and were addressed
in [12,13]. Subsequently, for new firmware releases labeled into a category, the
vulnerability triggering inputs from older firmware releases could be automati-
cally tested. This could be used to test if a specific vulnerability was fixed in the
last version or it is still present. Third, for well classified firmware files only a
specific set of firmware effective unpackers are run. Unpacking firmware files is
known to be resource and time consuming [12]. Applying a specific set of effec-
tive unpackers skips the brute force unpacking, thus saving processing time and
providing faster and more accurate results. Finally, once the vendor is known, as
a result of a successful firmware classification, vendor-specific analysis techniques
and tools may be applied. The specifics can be tuned based on the knowledge of
vendor’s development practices and technologies used.

4.2 Device Fingerprinting and Identification

Defensive use. Our technique may be used to scan a network and fingerprint
the detected embedded web interfaces. The fingerprint information may be used
to identify the device model and vendor, and its firmware version. This infor-
mation can also be used to offer a firmware upgrade if the identified firmware
version running on the device is obsolete. The remaining unidentified devices
in the network could be easily annotated by the user with attributes such as
vendor, device model, and firmware version.

Offensive use. A penetration tester performing a black-box test may use our
device fingerprinting and identification technique to identify the device model
and the firmware version of an unknown embedded device encountered during the
test. With this information, CVEs or exploits could be automatically retrieved
for the particular device model and firmware version. This may help increase the
test’s success rate and decrease the required test time. Recent evidence shows
that a similar but simplified technique was used for offensive use by a malver-
tising campaign targeting home routers and similar embedded devices [25].

4.3 Automated End-to-End Scenario

It is practical to have a system that can address the firmware vulnerability dis-
covery and the vulnerable device discovery in an end-to-end autonomous process.
The proposed techniques are an ideal complement for the firmware vulnerability
discovery techniques [11–13]. First, the crawlers collect firmware images. Then,
the ML techniques from Sect. 2 classify the firmware. Using static and dynamic
analysis as well as emulation techniques on both generic and firmware-specific
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processing, we can discover vulnerabilities within the firmware. Once the emula-
tor of the firmware is functional, the techniques from Sect. 3 create a fingerprint
for the emulated device and firmware version. Finally, using scanning tools such
as Shodan.io and Censys.io (Internet), or nmap and Nessus (Intranet), we can
identify devices based on their fingerprint, and immediately label and isolate
them according to discovered vulnerabilities. This way, we can cover the entire
vulnerability life-cycle in an automated manner.

5 Related Work

Kohno et al. [19] introduced the area of remote physical device fingerprint-
ing. Desmond et al. [14] proposed a fingerprinting technique that differentiates
between unique devices through timing analysis of 802.11 probe request frames.
Shah [29] presented early techniques to fingerprint and identify web applica-
tions at the HTTP level. Similar, the BlindElephant [1] attempts to discover the
version of a web application. While, Wapplyzer [33] uses regular expressions to
uncover the technologies used on websites, WhatWeb [2] uses more than 900 plu-
gins to recognize the web technologies used within a website. Alvarez [3] used the
Extended File Information (EXIF) metadata in JPEG files to generate finger-
prints, and Bongard [9] studied the implementation differences among the PNG
codecs used with the most popular web application platforms. Samarasinghe and
Mannan [28] used TLS/SSL certificate details to fingerprint embedded devices.

6 Conclusion

In this paper we presented two complementary techniques, embedded firmware
trained classification and embedded web interface fingerprinted identification. We
proposed ML for the firmware classification challenge, and explored features and
score fusion to address the web interface fingerprinting and identification prob-
lem. With high confidence for real-world large scale datasets, our tests demon-
strated that the classifiers and features we proposed achieved 93.5% accuracy in
firmware classification and 89.4% accuracy in device identification. Finally, we
presented practical use cases of our techniques which motivated our work. The
datasets and scripts will be available at http://firmware.re project page.
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Abstract. Runtime firmware product lines enable the generation of uni-
fied firmware images, i.e., a single firmware with several features can be
used on several models. The device itself “decides” whether to unlock a
feature or not. However, an attacker could alter their model and upgrade
it to a higher-level model. In this paper, we propose an approach for
secure runtime firmware product lines. Unified firmware images can be
provisioned to a whole series of products while preventing unauthorized
feature activation. Our approach is based on a Trusted Platform Module
(TPM) 2.0, acting as security anchor using several new TPM 2.0 func-
tionalities. The feasibility is shown in a proof-of-concept implementation.

1 Introduction

The development of Information Technology (IT) products has shifted dras-
tically from separate and designated designs per model to unified hardware
architectures with different software versions. Different products of similar kind
nowadays only differ by their casing and firmware – and sometimes additional
interfaces. For example, an Original Equipment Manufacturer (OEM) may pro-
duce routers and firewalls that only differ in the casing, firmware, and number
of network ports. The firmware, however, differentiates a router from a firewall.

To improve the software production process, software product lines [11]
were introduced for generating similar software versions at compile-time
from a shared set of software components using conditional compilation
techniques, e.g., #ifdef in the C programming language or flags such as
--enable-feature[=arg] in the GNU Autoconf package [17]. Firmware prod-
uct lines are used for generating unified firmware source code for (embedded)
systems, e.g., by using the OpenEmbedded software framework [7] to generate
a customized Linux distribution.

The next iteration of device product lines will go even beyond this and we
refer to this step as runtime firmware product lines. Instead of compiling and
packaging different firmware images from the same code collection, a unified
firmware image will be delivered for a whole product series. The product cus-
tomization will happen on the device itself. Hence, one firmware image contains
several features and the device itself “decides” whether to unlock a certain fea-
ture or not. We use overlay mounting for the unlocking of features. This approach
is particularly attractive due to its cost efficiency and simplifies the maintenance
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Published by Springer International Publishing AG 2017. All Rights Reserved
S. De Capitani di Vimercati and F. Martinelli (Eds.): SEC 2017, IFIP AICT 502, pp. 248–261, 2017.
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of devices drastically. However, it poses the risk that attackers could alter their
model and upgrade it to a higher-level model.

In this paper, we propose an approach for secure runtime firmware product
lines enabling the provisioning of unified firmware images to a whole series of
products while preventing unauthorized feature activation by an attacker. Our
approach uses the Trusted Platform Module (TPM) 2.0 to protect the intel-
lectual property and model feature sets while still enabling refurbishment by
changing the concrete model assignment. The general idea is using the TPM as
a security anchor to individually encrypt the different features and controlling
access to these features using some of the new TPM 2.0 functionalities such as
enhanced authorization. Using our approach, development and firmware update
processes are eased drastically by enabling unified firmware provisioning for com-
plete model series which is also shown by our proof-of-concept implementation.

2 General Idea

In our approach, a device is equipped with a TPM 2.0 that can be a dedicated
hardware chip but also a software implementation to save costs. The TPM acts
as security anchor by providing secure storage, secure execution, and additional
features for controlling access (cf. Sect. 3.3).

The general idea of our approach is as follows. A unified firmware image for
a product line consists of several separate read-only feature filesystems. Each
feature filesystem contains a specific feature set and is encrypted using a unique
cryptographic feature key. For each model of a product line, a different model
number is stored inside the devices’ TPM. This TPM-resident model number
serves as a basis of the runtime configuration of the firmware image to be booted.
By verifying a TPM-Policy, only the allowed features for a specific model of
a product line are unlocked, i.e., decrypted. Note that accessing the unified
firmware image is only possible on an original OEM device containing the pre-
configured TPM. If required, additional read-write filesystems for local data
localdataFS (e.g., for /etc, /home, /srv) and temporary files tmpFS (e.g., for
/var) can be mounted. The protection of the localdata filesystem against manip-
ulation is out of scope of this paper, but can be easily realized, for example, using
the approach presented in [16].

Figure 1 shows an example to illustrate our approach in more detail. The
unified firmware image is structured by the means of overlay read-only filesys-
tems. A base file system BaseFS contains those parts that are shared between
all models. It includes the operating system (OS) kernel and a multitude of
basic libraries and services. Each model then comes with its feature filesystems
FeatureFS-X. In the example, we have four of these filesystems, FeatureFS-0 to
FeatureFS-3. They contain the differences of this feature compared to the under-
lying filesystem. This may be additional files, removed files, or even altered files.
For any given model, a stack can then be built that includes the base filesys-
tem and a series of feature filesystems that are overlayed in order to provide
the actual final boot system. The TPM decides, based on the model number,
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Fig. 1. General idea Fig. 2. Runtime feature unlocking

which features to unlock, i.e., unseal the respective feature key which was used
to encrypt the feature filesystem to decrypt it.

The unlocking of individual features during runtime configuration is illus-
trated by the example shown in Fig. 2. The model number is used to denote a
specific combination of encrypted feature filesystems for a model of the prod-
uct line. In the example, the model number has a length of 4 bits to be able
to encode the four different feature filesystems. The binary model number of
0101b will enable the feature filesystems FeatureFS-0 and FeatureFS-2 to be
loaded, since the respective bits were set within the model number’s feature
bitmask. The figure shows the unlocking of FeatureFS-2. As mentioned above,
FeatureFS-2 is encrypted using FeatureFS-2-Key. This key is encrypted using the
TPM-resident ImportTargetKey and stored together with the Policy: 0100b in
an integrity-protected Sealed Key BLOB. The integrity of the BLOB can be ver-
ified using also the ImportTargetKey. The BLOB and the encrypted FeatureFS-2
form the FeatureFS-2 Data Object. In step 1, the TPM imports the sealed key
blob, decrypts the FeatureFS-2-Key, and checks the integrity of the key BLOB.
The TPM verifies the policy in step 2, by checking that the third bit from the
right of the policy 0100b equals 1 (since it was also set to 1 in the model number
1101b). If this is true, the decrypted FeatureFS-2-Key is unsealed and transfered
to the host CPU (step 3), which uses it to decrypt and mount FeatureFS-2 as
part of the overlay mount (step 4).

In the example, the entire model number was used to encode the used fea-
tures. It is also possible to define certain parts of the model number for encoding
the used features. The remaining parts can be used for other purposes, e.g., to
encode the color of the casing. In principle, the modeling of the model number
can be arbitrary complex to realize certain policies (cf. Sect. 5.2).

3 Related Work

3.1 Secure Runtime Product Lines

The work in this paper extends the idea and concept of compile-time firmware
product lines based upon unified software repositories to run-time firmware
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product lines based upon unified firmware images. The most prominent exam-
ple for compile-time firmware product lines are the Yocto [14], OpenEmbedded
[7], and BitBake [22] projects. The BitBake project provides the build-chain
and environment for a compile-time firmware product line. OpenEmbedded and
Yocto provide the core and application level software recipes to build a multitude
of firmware images for a multitude of devices. The Docker project [2] performs
some form of packaging-time product lines by using overlay filesystems in their
images similarly to our approach in order to stack feature filesystems. We use the
same concept but for device boot of the basic operating system and additionally
preventing activation and decryption of any unauthorized feature layer.

Another closely related case of product lines are so-called (feature oriented)
software product lines, e.g., [8]. A lot of research has been conducted on software
product lines [9,12,18,29] and even their security [10], practical implementations
exist and given the inclusion in mainstream build systems, such as autotools [17],
they are at the core of modern software engineering. The presented approach,
just as the Yocto and OpenEmbedded projects, facilitate these capabilities and
use them for realizing firmware product lines.

Other related technologies that are designed with a closely related focus
are called feature activation. This term refers to the activation of features on
devices (similar to the presented approach), but based on additional fees payed
by the device owner. Though much research has been conducted on securing
feature activation [24] and many more patents were filed, such as [15,20], these
works have focused on the secure transfer of activation codes; i.e., on providing
the evidence for an activated feature into the device. The actual securing of
the feature-relevant programs on the device were to the best of the authors
knowledge not yet solved. Also note that feature activation is not the focus
of the presented approach and would require a rework of the model number
deployment process (cf. Sect. 5.2).

Finally, it is known that many firmwares today are already partially self-
reconfiguring upon startup due to their model by activating or deactivating
certain software services. However, the security of these features remains yet to
be solved, and a plausible approach is presented in this paper.

3.2 Overlay Filesystems

Overlay filesystems combine multiple filesystems into one single virtual filesystem
and directories with equal paths are merged to one path. A typical application is
the combination of read only devices (e.g., a CD) with writable devices, where all
changes in the read only filesystem are stored on the writable device. This exam-
ple use case could be realized under Windows with the Unified Write Filter [3].
For Linux the overlay filesystems AUFS [21] and OverlayFS [23] are available.
AUFS is a reimplementation of UnionFS [6] the first available implementation
of an overlay filesystem for Linux. UnionFS is also available for Free BSD and
Net BSD. AUFS was the first device driver used in Docker [2] to layer Docker
images and is very stable. OverlayFS is included in the mainline kernel and is
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potentially faster than AUFS. Despite this fact, we used AUFS in our prototyp-
ical implementation to present our concept since the structuring of the data was
more simple, and AUFS did match better the requirements for the integration of
encrypted SquashFS [5] read only filesystems into the virtual overlay filesystem.

3.3 TPM 2.0

The second iteration of the Trusted Platform Module (TPM), namely the TPM
2.0 Library Specification [25] has been released by the Trusted Computing Group
(TCG) in October 2014. It provides a catalog of functionalities that can be used
to build TPMs for different platforms. Accompanying the TPM specifications,
the TCG has developed the specification of a TPM Software Stack (TSS) 2.0 for
this new generation of TPMs. It consists of multiple Application Programming
Interfaces (APIs) for different application scenarios [26,28].

Difference of TPM 2.0 to TPM 1.2. Compared with TPM 1.2, TPM 2.0
is a complete rewrite. Many of the new features were not compatible with the
data type and function layout of TPM 1.2. The new features of TPM 2.0 in
comparison to TPM 1.2 include:

– Cryptographic Agility: placeholders for cryptographic algorithms, e.g. RSA,
ECC, AES, SHA1, and SHA256 (cf. TCG Algorithm Registry [27]).

– Support of Symmetric Algorithms: AES and HMACs.
– Enhanced Authorization: TPM 1.2 provided only limited authorization mech-

anisms: SHA1 hashes of passwords and binding a single set of PCR values for
key use and sealing. TPM 2.0 included the concept of Enhanced Authoriza-
tion, that allows the forming of arbitrary policy statements based on a set of
policy commands. This provides a high flexibility requiring multiple factors
to be fulfilled but also to allow different paths for policy fulfillments.

– Non-Volatile Memory: With TPM 2.0 the capabilities of the TPM’s integrated
non-volatile memory (NV-RAM) were enhanced. They can now be used as
counters, bitmaps, and even extended PCRs.

– Flexibility: the TPM can be realized as dedicated hardware chip but also
in software, e.g., as a firmware TPM or software protected by a Trusted
Execution Environment (TEE). In addition, TPM profiles can be defined to
specify required functionalities of the TPM and TSS.

– Many more enhancement were made. A lot of those are outline in [13].

TPM 2.0 Features. In the following, those TPM 2.0 features and command
relevant for the proposed solution are briefly introduced.

– TPM Sealed Objects The TPM 2.0 can seal data. The purpose of sealing is
to encrypt data with the TPM and to ensure that only this TPM can unseal
the data again. In order to unseal the data, an authentication secret can be
provided or a policy session that follows the scheme for Enhanced Authoriza-
tion can be used. The commands used for working with sealed objects are
TPM2 Create, TPM2 Import, and TPM2 Unseal.



Runtime Firmware Product Lines 253

– TPM2 Create This command is used to create all kinds of objects for the
TPM. This includes sealed object as well as keys usable as import targets.
During creation, a usage policy can be provided that restricts usage of the
created object.

– TPM2 Import In addition to the local creation of objects inside the TPM,
the TPM2 Import command further allows the external creation and import-
ing of all kinds of objects, including keys and sealed objects. The creation of
such an import blob is denoted as create Import.

– TPM2 Unseal In order to retrieve the content of an encrypted, sealed
object, the TPM2 Unseal command can be used. If the object was created
or imported with a certain usage policy, this policy needs to be fulfilled for
usage. This is done using so-called policy sessions.

– TPM2 EvictControl Since the TPM only has limited persistent internal
memory, objects are usually stored externally, encrypted with a TPM-resident
key. Any object can be made persistent inside the TPM on request by the
owner. The TPM2 EvictControl command is used to store an object persis-
tently in the TPM or to delete an object from persistent storage.

– TPM NV Storage A TPM comes with an internal non-volatile memory.
This memory can be used to make keys of the TPM persistent but can also be
allocated by applications. Classes of NV-Indices are Extendable NV-Indices,
NV-Counters, and BitMasks. The latter can be used to individually set bits
of an NV index’s or to test bits within Enhanced Authorization policies.

– TPM2 NV DefineSpace The TPM2 NV DefineSpace command is used to
define an NV index. Depending on the assigned index number, the NV index
is either part of the user-owned (storage hierarchy) or of the platform-/OEM-
owned (platform hierarchy) areas of the TPM. For the sake of this paper, only
OEM-owned indices are used.

– TPM2 NV Read/TPM2 NV Write The TPM2 NV Read/TPM2 NV
Write command is used to read/write data to a TPM NV index.

– Enhanced Authorization With Enhanced Authorization, any object that
requires authorization can either be authorized using a secret value assigned
during creation (similar to TPM 1.2) or using a policy scheme. Enhanced
Authorization consists of a set of policy elements that are each represented
via a TPM command. Currently, eighteen different policy elements exist that
can be concatenated to achieve a logical and in arbitrary order and unlimited
number. Two of these policy elements – PolicyOr and PolicyAuthorize – act
as logical or. Due to implementation requirements, policy statements are,
however, neither commutative nor distributive. Once defined they need to be
used in the exact same order. In this paper, we use the following notation:
Policyabc := PolicyX1()∧PolicyX2()∧ . . . PolicyXn() where Policyabc is the
“name” for this policy, such that it can be referred to from other places and
PolicyXi() describes the n concatenated TPM2 Policy commands that are
required to fulfill this policy.

– TPM2 StartAuthSession In order to fulfill any authorization policy, the
application needs to start a policy session using the TPM2 StartAuthSession
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command. Then the actual policy statements are subsequently satisfied by
invoking the corresponding TPM commands.

– TPM2 PolicyNV The PolicyNV element provides the possibility to include
NV-indices in the evaluation of a policy. Amongst other operations, it can
be used to test whether a certain bit is set or clear within the value of
a specified NV-index: Policyabc := PolicyNV (NV index, operation, value).
For the operation of testing where the third bit 0x0004 is set in the
NV index NVabc the following statement can be used: Policyabc :=
PolicyNV (NVabc, BITSET, 0x0004). This policy will only succeed, if the
equation value&0x0004 == 0x0004 evaluates to true.

– TPM2 PolicyNVWritten This policy statement evaluates to true, if a
given NV index has not been written to before.

– sim PolicyXYZ In order to precalculate so-called policy digests – the rep-
resentation of a policy used during creation – certain calculations need to
be performed. To refer to these calculations, the notion of sim PolicyXYZ is
used, e.g. sim PolicyNV.

4 Concept

Our concept for implementing Secure Runtime Firmware Product Lines consists
of three parts: (1) configuration of the device during production, (2) creation of
the firmware image, and (3) booting a model-specific firmware.

4.1 Device Production

During device production, two steps need to be taken. A key must be deployed
to the device, that is used for importing the sealed key blobs, and the model type
number must be stored inside the device’s TPM. The following TPM commands
are used to realize this:

// Set model number
TPM2 NV DefineSpace(modelIdx, policyWritten, UserRead PolicyWrite)
// Create policy session
sess = TPM2 StartAuthSession(PolicySession)
TPM2 PolicyNVWritten(modelIdx, false, sess)
TPM2 NV Write(modelIdx, modelNo, sess)
// Deploy (import) ImportTargetKey
ImportKeyBlob := TPM2 Import(ImportTargetKey)
tmpHandle := TPM2 Load(ImportKeyBlob)
TPM2 EvictControl(tmpHandle, ImportKeyHandle)

Model Number. The model number is stored inside the NV-storage of the
TPM and can be read by anybody but cannot be altered. The number will sub-
sequently be used to test whether a certain software feature shall be decrypted
and activated at boot time for the given device. It is even possible to store the
model number as part of the serial number, since the TPM-operations also allow
the testing of only parts of a number stored in NV memory.
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The purpose of the TPM2 PolicyNVWritten is to disallow subsequent writes
by anybody to the model number NV index. Only as long as the NV index has
not been written, can it be written. This also enables partial pre-production of
products, where for example the board is assembled and fit into a chassis and
the TPM is partially pre-provisioned but the model number is not yet set.

ImportTargetKey. The anchor for the decryption operations during boot is the
ImportTargetKey. This key needs to be deployed to all devices of a product line.
It is stored persistently inside the TPM for the lifetime of the device. This key
is imported into the TPM and stored persistently using the TPM2 EvictControl
command. When booting a firmware, the keys used for each of the features
are imported underneath this key before being unsealed for actual usage during
firmware decryption and activation.

4.2 Firmware Creation

Two additional steps are required for building a firmware image: the product line
elements must be created by means of an overlay filesystem and the filesystems
must be encrypted with a sealed TPM key bound to the corresponding model
number bit. The process involving the TPM can be realized as follows:

firmware = createBaseImage()
for fs=overlay 1 to overlay N do

tmpfs = createFeatureLayer()
fs.bitmask = createFeatureBitmask()
key = TPM2 GenRandom()
fs.data = encrypt(key, tmpfs)
policyDigest = sim PolicyNV(modelIdx, fs.bitmask, BITSET)
fs.seal = create Import(importTargetKey, featureKey, policyDigest)
firmware.add(fs)

end for
release(firmware)

Filesystem Creation. The firmware for Secure Runtime Firmware Product
Lines needs to be constructed in a specific way. For this example, we assume
to have a base firmware image that is common to all models of the given prod-
uct line. Note though that even different base images can be provisioned, this
requires more space in the resulting firmware image. For the sake of explanation,
we consider the construction of a firmware image for two models ModelA and
ModelB with two mutually exclusive features FeatureA and FeatureB.

A base image is constructed as file image on the build PC. For a Linux system,
this would include things such as libc, base-tools, init-system, etc. Next, a second
(empty) image file is created and mounted as overlay to the base image. Then
the software for FeatureA is installed into the overlay filesystem. This step can
also include the rewriting or even the deletion of files. Some overlay filesystems
represent deletion as entries to the 0-inode for example. When unmounting the
filesystem, the differences from base image to ModelA are stored inside the
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FeatureA filesystem. Now, a second file image can be created for FeatureB and
the process of overlay mounting and installation can be repeated.

The approach can be further generalized by, e.g., mounting the images for
base, FeatureA, and FeatureC versus base, FeatureB, and FeatureC if models
differ for example in some intermediate layer, but not in the highest layer.

Filesystem Encryption. For each of the feature filesystem layers, a bitmask is
created regarding which bits inside the model number represent the activation of
the corresponding feature. For example, any model number with bit 0 set (i.e.,
uneven numbers) will include the filesystem for FeatureA. With this information,
a corresponding TPM2 PolicyNV statement can be constructed that represents
the test for this bit inside the model number NV index. It can also test for mul-
tiple bits or even the complete model number. This depends on the architecture
for assignment of features to model numbers. The result of the policy statement
creation is a policyDigest, i.e., a hash value that represents this policy.

Then a symmetric key is created that is used for encrypting the feature
filesystem image. This key is then embedded within an import blob for the
target TPM. This import blob is of type keyedHash, which means that it can be
unsealed on the target TPM. It includes the key for the filesystem and also the
policyDigest that restricts the unsealing of the key to those devices that have a
model number corresponding to the policy’s requirements. Finally, this import
blob is encrypted using the ImportTargetKey as decryption key.

The bitmask, the encrypted key seal blob for TPM import, and the encrypted
filesystem are then provided with the firmware image as a package FeatureFS-X
Data BLOB. Note that the order of mounting the overlay images plays an impor-
tant role, especially if file alterations or removals exist. This can be represented
by naming of the files that contain the feature packages (if they are stored as
files inside the firmware image) or by the order in which they are stored, if e.g., a
partition table is used, where each package is contained inside its own partition.

4.3 Booting a Model-Specific Firmware

During firmware boot, the specific firmware for the given model of the product
line is unlocked and mounted. This process uses the following algorithm:

current = mount(basefs)
modelNo = TPM2 NV Read(modelIdx)
for fs=overlay 1 to overlay N do

if fs.bitmask == modelNo & fs.bitmask then
seal = TPM2 Import(importKeyHandle, fs.seal)
pSess = TPM2 StartAuthSession(PolicySession)
TPM2 PolicyNV(modelIdx, fs.bitmask, BITSET, pSess)
key = TPM2 Unseal(seal, pSess)
overlay = decrypt(key, fs.data)
current = overmount(current, overlay)

end if
end for
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current = overmount(current, localdatafs, localdata-directory)
current = overmount(current, tmpfs, runtime-directory)
chroot and boot(current)

Basic Preparations. During boot, the first step is to perform some basic oper-
ations. During this step, the basefs image is mounted and the model number is
read from the TPM. This reading of the model number is not restricted in any
way and can be performed by any running software. Only writing is restricted
to the vendors production step.

Feature Loop. The loader will loop over all features that are provided within
the unified firmware image and test for each of these, whether they are activated
for the given model number. Those that are not active will be skipped. For all
activated features, the loader will import the sealed feature key into the TPM
under the ImportTargetKey. Then it will provide a policy session that proofs
to the TPM that the policy for this sealed feature key is fulfilled by the model
number stored inside the TPM. Then it will request the unsealing of the feature
key from the TPM, based on the policy session that proofs the correctness of
this attempt. With the unsealed feature key, the loader can decrypt the feature
filesystem and mount it on top over the currently mounted system – either over
the basefs or over the stack of basefs and previously mounted feature overlays.

Local Configuration and Runtime Data. Before switching into the final
stack of overlay filesystems, the loader mounts two final filesystems. The run-
time overlay is a temporary filesystem held only in RAM for the current boot
cycle. This is necessary for the firmware in order to create sockets for local IPC
connections, storing process identifiers, or to create temporary files for locking to
schedule access to certain resources. The configuration overlay is an additional
filesystem that contains local configuration data of the device. The reason for
performing an overlay mount for this filesystem instead of a regular mount is that
the feature filesystems can provide default configurations within their images.
Thus, only changed configuration files are actually stored on local storage.

5 Discussion

5.1 Security

To upgrade his device to a higher-level model, an user/attacker can try the
following attacks.

Attacking the TPM. The attacker can try to read out the feature keys of the
TPM. The secrecy of the feature keys depends directly on the secrecy of the
ImportTargetKey stored inside the TPM. An extraction of this key is unlikely if
a hardware TPM certified by Common Criteria (usually using EAL4+) targeting
the TCG’s defined Protection Profile for TPMs is used. To further mitigate the
impact of a successful key extraction from the TPM, the vendor could also rotate
the import key with every production batch. This will, however, require the
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vendor to provide import-blobs of the sealed feature keys for all of these rotated
import keys. In order to compensate for the latter, the vendor can instead choose
to deploy an additional intermediate key together with the firmware blobs. In
this approach, every production batch would have its own import target key.
Each firmware version would then include a specific intermediate import key
that is prepared for importing under all import target keys. The sealed feature
keys would then be encrypted for import under the intermediate keys. Given
a realization with n import target keys, i.e., production batches, and m sealed
feature keys, this would mean that each firmware blob includes one (unique)
intermediate key that is packaged n times for the different import target keys
and m sealed feature keys that are encrypted for the intermediate import key.
This is a significant simplification compared to the n ·m sealed feature key that
would be required without an intermediate import key.

Attacking the Unsealed Feature Keys. To decrypt and mount a feature
filesystem, the required feature key is decrypted by the TPM and transferred to
the host CPU. An attacker could sniff on the transmission. This threat can be
mitigated either by physically securing the bus between TPM and main CPU or
by using the TPM protocols built-in encryption capabilities. For this, the boot-
code of the device could include the public portion of the import key and use this
to encrypt a salt value during session establishment. Attacks against the host
CPU are not addressed by the presented approach. This includes attacks against
the OS kernel or even cold boot attacks. To address the latter, mechanisms such
as full memory encryption could be applied [19].

Attacking a Feature-Rich Model. An attacker could attack a feature-rich
model and try to extract an unencrypted firmware image and inject it into
a low-feature device. This attack would require access to the raw RAM during
runtime via a software exploit. To cope with potentially unknown vulnerabilities,
appropriate mechanisms for secure code update should be applied [16].

Manipulation of the Model Number. An attacker could try to change the
model number to a number of a device with more features. The integrity of the
model number depends on the inability of the user to write to the model number
NV index. This needs to be ensured by disallowing TPM2 UndefineSpace and
TPM2 UndefineSpaceSpecial with Platform-Authorization, which is supposed
to be under vendor-control anyways. In order to mitigate attack potential even
further, the vendor can set TPM2 NV WriteLock on model number explicitly
on each boot.

5.2 Extensions

Refurbishment of Devices. In many environments with device product lines,
there exists the necessity to refurbish devices that are e.g. produced but never
delivered. This can occur due to canceling of orders or because a certain hardware
feature is defect that is required for a certain version of the device. In such
scenarios, the vendor will refurbish the device to a new model by exchanging the
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chassis or a model number sticker on the chassis and reconfigure the firmware
on the device to the new device type.

In order to support this process with the presented scheme, the policy for
the model number NV index on the device can be set to a policy that allows the
vendor (and only the vendor) to perform write operations on this index. Such a
case can be achieve using a TPM2 PolicySigned. This policy requires an external
entity to sign a challenge from the TPM in order to perform a certain operation.

Model Number Attestation. Many devices nowadays are provided with the
inclusion of additional services, such as cloud integration. This may, however,
be a premium feature that is only activated for premium devices. The presented
scheme of storing the model number inside the TPM supports such scenarios
using the TPM2 NV Certify command. Using this command, the vendor’s cloud
service can send a challenge to the device and the TPM will certify that the
device has a given model number.

Model Numbering Schemes. The presented approach uses a very simplistic
scheme for activation of feature filesystem for a given model number by querying
whether certain bits in the model number are set. In addition, it is possible to
extend these schemes further using a combination of AND and OR in the policy
statements. For example, it is possible to require a (set of) bits to be zero using
the TPM2 PolicyNV with the operation TPM EO BITCLEAR. These policies
can then be extended using the TPM2 PolicyOR to enable a certain feature
filesystem for other bit combinations as well.

6 Implementation

We implemented our concept on an Intel NUC D34010WYK equipped with a
TPM 2.0 implementation running Ubuntu 16.04 with kernel version 4.4. An
Apache and a Samba server were used as PLE (PLE) examples. For accessing
the TPM, a TSS implementation of the TPM 2.0 System API was used together
with accompanying bash tools for rapid prototyping [4].

In the device production phase, the storage root key (SRK) of the TPM is
generated, and the model number is written to the NV-Storage. The firmware
creation need to construct the overlay filesystems. For this purpose, we used
the AUFS [21]. For every product line, an encrypted SquashFS filesystem [5]
is created for overlay mounting. This filesystem is encrypted using dm-crypt [1]
container files. Dm-crypt is a Linux module used for transparent disk encryption.
The AES encryption keys of the encrypted SquashFS filesystem is encrypted
with a private asymmetric key. The created TPM object is protected by a policy
testing the flag corresponding to the PLEin the TPM’s NV model number.

For booting a model-specific firmware, the mounting of these filesystems is
integrated into the boot process by using initramfs which make necessary prepa-
rations before switching to the systemd init process. A shell script for the cre-
ation of the overly filesystem is added to the bottom stage of initramfs. Scripts in
this stage are executed before procfs and sysfs are moved to the real rootfs and
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execution is turned over to the init binary of the rootfs. The command ‘mount -t
aufs -o br=/r/tmps=rw:/r/02 apache:/r/ none /r/chr/’ mounts the over-
lay filesystem with a temporary top filesystem /r/tmps, the mounted Apache
Squash filesystem /r/02 apache, and the Ubuntu base system root directory
/r to the mount point /r/chr. This overlay is finally mounted over the root
filesystem /r/tmps and the init process is started to boot the system. Since
the top filesystem of the current overlay system is a temporary filesystem, all
file changes of the running system will be temporary. In this example, only the
Apache SquashFS is mounted because the flag for enabling the Samba container
was not set. Only the key for the encrypted Apache SquashFS file system could
be unsealed because the corresponding flag was set. The booted system then
produces the same state as during the firmware creation after the installation of
the apache packages. This also includes correct configurations, since no overrides
are provided via a local configuration overlay.

A first performance analysis showed only a negligible delay in the boot process
introduced by using or concept for runtime firmware product lines.

7 Conclusion and Future Work

In this paper, we propose an approach for secure runtime firmware product
lines. Unified firmware images can be provisioned to a whole series of products
while preventing unauthorized activation of features that belong to a different
model instance. Using the features of TPM 2.0 Enhanced Authorization, Sealing,
and Importing we show that this scheme can be implemented by using CotS
hardware. We also present an implementation, to show the feasibility of this
approach and its integration with a Linux-based system. Future work includes
the extension of the presented approach to include unified images for hardware
product lines, similar to the OpenEmbedded’s Board Support Packages and the
tight integration with the build process of unified firmware images as well as a
thorough performance evaluation using different embedded platforms.

Acknowledgment. The work presented in this paper has been partly funded by
the German Federal Ministry of Education and Research (BMBF) under the project
“SURF”.
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1 Quality and Usability Lab, Technische Universität Berlin, Berlin, Germany
lydia.kraus@qu.tu-berlin.de, mail@robschmidt.de,

sebastian.moeller@tu-berlin.de
2 Institute of Media Informatics, Ulm University, Ulm, Germany

marcel.walch@uni-ulm.de
3 School of Information, University of Michigan, Ann Arbor, USA

fschaub@umich.edu

Abstract. Mobile authentication methods protect smartphones from
unauthorized access, but also require users to remember and frequently
enter PINs, passwords, or graphical patterns. We propose the EmojiAuth
scheme with which we study the effects of Emoji use on the usabil-
ity and user experience of mobile authentication. We conducted two
between-subjects studies (lab study: n= 53; field study: n= 41) compar-
ing EmojiAuth to standard PIN entry. We find that EmojiAuth provides
good memorability for short passwords and reasonable memorability for
longer passwords. Moreover, we identify diverse Emoji-password selection
strategies and provide insights on the practical security of Emoji-based
mobile authentication. Our results suggest that Emoji-based authentica-
tion constitutes a practical alternative to traditional PIN authentication.

Keywords: Mobile authentication · Security · Usability · User experi-
ence · Emoji

1 Introduction

Usability of mobile authentication is an active research topic [1–3], given
that users spend a considerable amount of time unlocking their phones [2].
Knowledge-based authentication mechanisms, such as PIN and unlock pattern
(on Android), have been widely deployed for smartphone locking; alphanumer-
ical passwords are also a common option. While PINs, especially 4-digit PINs,
are susceptible to user choice [4] and shoulder surfing [5], they balance short
log-in time and good memorability with sufficient protection against casual
attackers [5]. Biometric authentication, such as fingerprint and face recognition
emerged recently as alternatives, but still rely on knowledge-based authentica-
tion as a fallback [6]. Therefore, knowledge-based authentication remains rel-
evant for smartphones and is unlikely to be replaced soon. However, if users
need to spend mental effort and time to protect their smartphone, the required
interactions should be as pleasant and positive as possible.
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Designing positive interactions has gained considerable attention in user
experience research. Concepts such as hedonic (product) qualities, joy of use,
and stimulation evolved as important aspects of user experience design [7]. We
argue that considering positive interaction aspects is also relevant in the design
of usable security mechanisms. An interesting direction for positive interaction
in mobile authentication is the use of Emojis as password characters. Emojis are
largely used in positive contexts [8] and are popular among users. Thus, provid-
ing potential for offering positive user experiences. Emoji-based passwords have
recently been introduced by a commercial application [9].

In this paper, we study opportunities of Emojis for creating a positive mobile
authentication experience. We further study how Emoji-based authentication
influences password selection and shoulder surfing. To gather insights, we devel-
oped an Emoji-based authentication scheme (EmojiAuth) and evaluated it in
a lab study (n = 53) and a field study (n = 41), including a shoulder-surfing
experiment (n = 38). Our contributions include (1) the identification of five main
Emoji-password selection strategies; (2) a comparative evaluation of PIN- and
Emoji-based passwords regarding their susceptibility to shoulder surfing, indicat-
ing a slight improvement with Emojis; and (3) an analysis of the user experience
of Emoji-based passwords. While Emoji and PIN show similarly high usability,
users indicated that they would prefer Emoji over PIN as a screen lock.

2 Related Work

Mobile authentication has received considerable research attention [1–3,10].
A multi-national survey showed that 50.4% (Italy) to 76.4% (UK) of users use a
screen lock on their phone [10]. Authentication schemes can be divided into
knowledge-based, token-based, and biometric schemes [11]. The Emoji-based
password scheme belongs to the class of graphical authentication schemes which
is a subclass of knowledge-based authentication. In the following we detail related
work on these two areas.

PINs and passwords are commonly deployed knowledge-based authentica-
tion schemes. While PINs can be entered quickly and accurately [3,5], they lack
entropy. With a 4-digit PIN the password space is constrained to about 14 bit.
Users tend to weaken PINs by choosing easy-to-remember numbers, e.g., birth
dates [4]. Random passwords are more secure but harder to remember [12]. PINs
generated under a security policy are more secure, but also harder to remember
than freely-chosen PINs [13].

Graphical authentication schemes are motivated by the fact that graph-
ics are easier to remember than alphanumeric passwords [14]. As for PINs and
passwords, major issues of graphical passwords arise from the susceptibility to
capture and guessing attacks [14]. For instance, image-based cued-recall schemes
are prone to hotspots [14], i.e., image regions users are likely to select, which can
be used in guessing attacks. Graphical passwords can also take longer to enter.
A study with Android pattern unlock found that participants needed twice as
long to enter a pattern and made more mistakes compared to a PIN [3]. Yet,



On the Use of Emojis in Mobile Authentication 267

users tend to rate pattern usability and likability similar to PIN, likely due to
easy error recovery [3]. However, to be practical, a login attempt should not
take longer than for a PIN or a pattern lock mechanism [2]. Patterns have a
smaller theoretical password space as PINs and their security is considered low
in general [15].

Icon-based graphical authentication schemes are a promising approach
enabling fast log-in times [5], while potentially providing a theoretical password
space similar to PIN or larger. The Story scheme [16] is somewhat similar to our
proposed Emoji-based scheme as users create a password from a 3x3 set of photo
icons from different categories (objects, food, people). An interesting finding is
that Story did not result in a skewed password probability distribution [16].
Emoji-based authentication has been recently suggested [9]. Shortly after our lab
study was conducted, Golla et al. conducted an online study to investigate the
susceptibility of Emoji-based passwords to guessing attacks [17]. Their Emoji-
based authentication scheme features a keyboard with 20 Emojis. With their
scheme, they found that the distribution of Emoji-passwords is skewed, but 4-
digit user-chosen Emoji-passwords were still more resistant to guessing attacks
than 4-digit user-chosen PINs.

User experience and authentication should be considered together. To
create a positive user experience, psychological needs, such as stimulation and
popularity, should be addressed in the interaction design of mobile authentication
mechanisms [18]. Also, while mobile and graphical authentication schemes have
been investigated intensively in terms of usability and security, user experience
evaluations beyond usability, have received little attention [19].

While Emojis have been used in authentication, we are the first to study
usability and user experience of an Emoji-based scheme in the lab and in the
wild, as well as its resistance to shoulder-surfing attacks.

3 EmojiAuth: Emoji-Based Authentication Scheme

The use of Emojis may lead to a positive and pleasing user experience and posi-
tive perception of EmojiAuth: Emojis have been shown to enable the expression
of moods, emotions and nuances in written text [20]. Thus, Emojis may also make
authentication more (personally) meaningful for users. Emojis further have pos-
itive associations which may lead to authentication being perceived positively
as well. The most frequently used Emojis are rated significantly more positive
than the remaining Emojis [8].

Similar to PIN entry, our EmojiAuth scheme features twelve buttons (cf.
Fig. 1(a)). We further designed a PIN lock as a baseline comparison (cf.
Fig. 1(b)). In both schemes, if users enter their password correctly, the entry
field turns green and the screen unlocks automatically. If the password is incor-
rect, the phone vibrates and a respective message appears above the entry field.
The use of a keyboard with twelve Emoji buttons is grounded in the advantages
of PIN keyboards: PIN entry is easy and fast [3]. Simple keyboards have further
been linked to authentication usability [21].



268 L. Kraus et al.

Fig. 1. EmojiAuth and PIN user interfaces. The original UIs were in German. Emojis
are depicted in the Noto Emoji Font by Google Inc. https://github.com/googlei18n/
noto-emoji.

In EmojiAuth’s keyboard generation, three Emojis are randomly selected
from each of four categories (Person and Face: 226 Emojis, Object: 287 Emo-
jis, Nature: 204 Emojis, and Activity: 44 Emojis) to support easy assembly of
passwords. Once a user-specific keyboard has been initialized, the Emojis and
their position remain static to reduce search time and thus enable shorter login
times [5,22].

The theoretical password space of EmojiAuth is more than two times larger
than the password space of PINs for 4-digit passwords (EmojiAuth: 20,736; PIN:
10,000), and almost three times larger than PIN for 6-digit passwords (Emoji-
Auth: 2,985,984; PIN: 1,000,000). However, that users favor certain Emojis is
evident from rankings of currently popular Emojis [23] and has been also shown
as an issue in related work on Emoji-based authentication [17]. To mitigate
the issue of hotspot Emojis, EmojiAuth generates an individual keyboard for
each user during password enrollment. Keyboards generated from a large set of
Emojis may increase the practical password space as specific Emojis have low
probability to appear on individual keyboards, thus decreasing the probability
that certain Emojis are favored across the whole user population.

We conducted a lab study and a field study, both between subjects, to eval-
uate EmojiAuth (treatment) in comparison to PIN entry (control). In the lab
study, we evaluated memorability, selection strategies, and user experience of
Emoji-passwords. In the field study, we validated our findings in the wild. We
further conducted a shoulder-surfing experiment at the end of the field study.

https://github.com/googlei18n/noto-emoji
https://github.com/googlei18n/noto-emoji
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4 Lab Study

4.1 Methodology and Procedure

In the lab study, the Emoji and PIN conditions were further divided into two
subgroups to investigate effects of varying password length (4 and 6 digits).
Groups are subsequently referred to as Emoji-4, Emoji-6, PIN-4 and PIN-6.
The lab study was conducted in two sessions. The first session started with
participants signing the consent form and completing an entry questionnaire on
demographics and smartphone use. They were informed that passwords they
create in the study will be stored in plain text to enable scientific analysis, but
will not be linked to their identity. Participants were then assigned round-robin to
an Emoji or PIN group. Participants who currently used a PIN (or fingerprint
and PIN combination) on their smartphone were assigned to the Emoji group,
in order to reduce the impact of prior habituation to PIN entry.

After a training task with randomly generated passwords, participants were
asked to choose their own password and instructed that they will have to remem-
ber it. After creating their password, they had to enter it three times with a men-
tal rotation task (MRT) between attempts. The MRTs served to distract partic-
ipants and clear their short-term memory between login attempts [5,24]. Partic-
ipants then completed a usability and user experience questionnaire (AttrakDiff
2 mini [25]) and a five-minute semi-structured interview, in which they were
asked to describe how they selected their password and their level of confidence
in remembering their password. AttrakDiff 2 mini measures different aspects
of user experience [25,26]: pragmatic quality (PQ), hedonic quality (HQ), and
attractiveness (ATT). Each dimension is measured on a semantic differential
with 7 rating levels between differentials. Pragmatic quality is related to usabil-
ity, i.e., functional aspects of a product [27]. Hedonic Quality (HQ) relates to the
capability of a product to address aspects of personal relevance [27, p. 38]. The
hedonic quality scale is further divided into the sub-dimensions Stimulation and
Identity [26]. Stimulation refers to a products’ capability to provide stimulating
experiences (e.g. in terms of providing new impressions, opportunities, insights),
whereas identity refers to a products’ capability to communicate identity [27, p.
35]. Attractiveness is related to the overall judgment of a product [26].

One week after the first session, participants returned to the lab for the
second session. Participants had to enter the password they created in the first
session and completed the same usability and UX questionnaire. They were also
asked in a short interview how they memorized their password and whether
they had written it down. All participants conducted the study on the same
smartphone (LG Nexus 5, Android 5.1.1). The interviews were recorded and
transcribed verbatim for further analysis. Participants received 4e compensation
for the first study session, and 8e for the second one in order to incentivize
participants to return and thus reduce drop-outs. Participants were recruited
through a participant panel of TU Berlin, classified ads posted on an online
service similar to Craigslist, flyers, and e-mail.
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4.2 Results

In total, 53 smartphone users participated in the lab study: 14 in the Emoji-4
group, 13 in each of the other three groups. Participants were 18 to 70 years old
(M = 31, Mdn. = 27); 28 were male, 25 female. The average time between ses-
sions was 7 days (SD = 1.2 days; range 3–12 days due to scheduling). Over half
the participants were students (58.5%), despite not targeting campus popula-
tions. Other participants were employees (15.1%), self-employed (7.5%), retired
(5.7%), and others (13.2%). Most (75.5%) did not have a professional or edu-
cational IT background. In the sample were 69.8% Android users, 22.6% iOS
users, and 7.6% other smartphone users. Most participants (69.8%) reported
to use authentication on their phone; most common were PIN (28.3%), unlock
pattern (22.6%), and fingerprint with PIN as fallback (11.3%).

Password Memorability. The lab study results indicate high memorability
of both EmojiAuth passwords and PINs. After one week all participants (Emo-
jiAuth and PIN) were able to successfully authenticate within three attempts.
Long Emoji-passwords seem to be slightly harder to remember after a week of
non-use, as a lower number of participants managed to enter their password
correctly for all three trials in week 2 (Emoji-4: 92.9% in both weeks; Emoji-6:
100% in week 1 and 69.2% in week 2; PIN-4: 100% in both weeks; PIN-6: 100%
in week 1 and 92.3% in week 2). A Fisher’s exact test did not reveal statisti-
cally significant differences between groups. Only four PIN participants reported
writing down their passwords after the first session.

Password Selection. Interviews on password selection strategies were first
coded openly by one coder, who created separate code books for Emoji and PIN
with some overlapping codes. Two coders then independently re-coded all inter-
views with the code books. Multiple codes could be assigned. Interrater agree-
ment was high for both groups (Emoji: Cohen’s κ = .83; PIN: κ = .72). Coders
subsequently reconciled the remaining cases. Participants in the PIN group relied
on predictable password selection strategies, e.g., birth dates as PIN [4]. The
selection strategies of the Emoji participants overlapped only partially with the
PIN strategies. Emoji participants often selected passwords based on a prefer-
ence for certain Emojis and remembered them by creating stories, memorizing
spatial patterns or repeating characters. We identified five main password selec-
tion strategies each for Emoji passwords and PINs (frequencies are provided in
Table 1):

– Emoji preference (Emoji): Emojis are selected based on personal prefer-
ence, e.g., “Well I clicked those Emojis I was interested in” (P33).

– Association & story (Emoji): Participants leverage an association between
Emojis and their own knowledge or experience, and/or a password is selected
or memorized by creating a story connecting the Emojis, e.g., “[I selected the
password] after a song. [...] each Emoji stands for one word and depending
on the song which words came first, I typed [the Emojis] in.” (P22); “I just
thought about the weekend [laughing]” (P3).
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– Pattern & position (Emoji): A spatial pattern is used to create or remem-
ber the password and/or the position on the keyboard is used to remember
certain Emojis, e.g., “And then I went from the upper left down to the bottom
right” (P16).

– Repetition & similarity (Emoji): Either single characters or character
sequences are repeated to create a password and/or a password is assembled
from Emojis which are (subjectively) similar to each other, e.g., “[I chose the
password so] that the pictures look similar” (P39).

– Color & Shape (Emoji): A Password is selected based on color or shape of
Emojis, e.g., “Well... first I chose four symbols with the same color.” (P16);
“I chose [the Emojis] according to circular shape” (P18).

– Date (PIN): A date of personal importance (birthday, anniversary, etc.) is
used to create a PIN.

– Repetition & sequence (PIN): Single numbers or number sequences are
repeated to create a PIN and/or a PIN is created with consecutive numbers.

– Re-use (PIN): A PIN is selected by re-using a current or former PIN.
– Pattern & position (PIN): A spatial pattern is used to create or remember

the PIN and/or the keyboard position is used to remember certain numbers.
– Association (PIN): An association between numbers and the user’s knowl-

edge or experience is used to select the password (e.g., choosing a name that
contains a number or a phone number as PIN).

The PIN selection strategies are consistent with findings in related work. For
instance, dates as PINs or parts of passwords are commonly observed [4,28] and
were also the most frequent selection strategy in our study. We further observed
spatial patterns as PIN selection strategies, which are known user strategies
to improve memorability [4,28]. The re-use of passwords is another well-known
issue [28] that also surfaced in our study. Participants reported that they used
former or current PINs.

The emergence of the Emoji-password selection strategy “Preference” sug-
gests that passwords generated with EmojiAuth may also follow a skewed pass-
word distribution. We analyzed the set of Emoji-passwords created in both our
studies to further explore this issue (cf. Sect. 5.3).

User Experience. Pragmatic Quality (PQ) for Emoji was medium-high in
week 1 (M = 4.5, SD = 1.4), but lower compared to PIN (M = 5.9, SD = 0.77).
A Kruskal-Wallis test revealed a significant difference between the groups,
H(3) = 16.25, p = .001, with PQ for Emoji-4 and Emoji-6 being significantly
lower than for PIN-4. In week 2, PQ increased for Emoji (M = 5.5, SD = 1.2)
and approximated the ratings for PIN (M = 5.9, SD = 0.71). The Kruskal-Wallis
test did not reveal significant differences in PQ between groups in week 2.
Hedonic Quality in terms of Stimulation was medium-high for Emoji (week 1:
M = 4.8; SD = 1:36; week 2: M = 4.9; SD = 1.38) and medium-low for PIN (week
1: M = 3.8; SD = 1.19; week 2: M = 4.0; SD = 1.13). Differences were significant
in both weeks (Mann-Whitney U ; week 1: U = 185; p = .003; week 2: U , U = 209;
p = .018). This suggests that Emoji users found the authentication more stimu-
lating in both weeks compared to PIN.
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5 Field Study

5.1 Methodology and Procedure

The field study consisted of a pre-study questionnaire, an introductory session,
a field phase of 15–17 days, and an exit session. In order to ensure meaningful
use of the authentication methods during the study, we deployed EmojiAuth
and PIN as a protection mechanism for the participants’ email app on their own
phone. E-mails have been shown to often contain sensitive information [1] worth
protecting. Consequentially, we recruited only Android users who use an email
app on their device and verified this in a screening survey. Participants were
recruited through a participant panel of TU Berlin and classified ads posted on
an online service similar to Craigslist. Participants from the first study could
not participate. Participants received 25e compensation of which 5e were paid
at the introductory session and 20e at the end.

During the introductory session participants received information about the
study and were asked for consent. Then, either EmojiAuth or PIN was installed
as a lock for their email app on their own devices. We used Android accessibility
services to monitor whether the e-mail app is currently in the foreground. In
order to activate this service, the participants had to select one or more e-mail
apps which they currently use from the list of installed apps. After they created
an Emoji-password or PIN (depending on the group), opening their email app
required participants to authenticate with their password/PIN. Our apps had a
30 second time-out for an authentication session, i.e., if participants left their
e-mail app for 30 s or more, they had to re-authenticate. Participants were asked
to pick their password/PIN at home. It had to be at least 4 digits. For the PIN
group, only meta-data of the user-chosen PINs was collected (PIN length and
number of differing characters).

Directly after creating the password, participants received a questionnaire
asking about the importance of different password/PIN selection criteria, which
were derived from the lab study results. Participants could change their password
or PIN during the study (within our app) and EmojiAuth users could further
generate a new Emoji-keyboard. In case that they had forgotten their password
or PIN, users could enter a pre-defined backup-password in our app and select a
new password/PIN. If the password/PIN was entered five times incorrectly in a
row, users also had to provide their backup-password to unlock their e-mail app
and to select a new password.

The field phase lasted 15–17 days, depending on when participants scheduled
their exit session. Similar to Wechsung et al.’s study [29], participants received
a daily reminder to complete a daily feedback questionnaire, which asked par-
ticipants to rate on a Smiley-scale how they liked interacting with EmojiAuth
or PIN that day. Participants could further explain their rating in a free-text
field. On days 2, 8, and 14, participants further received the AttrakDiff2 mini-
questionnaire to assess user experience.
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After the field phase, participants returned to the lab for the exit session in
which they completed an exit survey (on paper) followed by the shoulder-surfing
experiment. Furthermore, EmojiAuth/PIN was uninstalled from their devices.

5.2 Shoulder-Surfing Experiment

The field study’s exit session contained a shoulder surfing experiment, modeled
after similar experiments in related work [5,30], in which the threat model is
a casual observer. Participants acted as shoulder surfers for either EmojiAuth
or PIN (based on their field study condition), whereas the experimenter served
as the observation target. In contrast to related work, our shoulder surfers were
experienced with the authentication scheme they tried to observe after two weeks
of use. Participants could position themselves either left, right or behind the
experimenter who sat at a table to enter the password. Participants were pro-
vided with pen and paper for note taking. To ensure that passwords are entered
with similar speed and in the same position, the experimenter trained password
entry beforehand.

To test shoulder surfing susceptibility for passwords created with different
password selection strategies, the procedure was repeated with five passwords in
counterbalanced order. Emoji- and PIN-passwords used the same spatial posi-
tion of keys on the keyboard in order to facilitate direct comparison between the
two schemes. The first and second passwords were random 6-digit (‘341779’) and
4-digit passwords (‘1706’). The third (‘134679’) and fourth passwords (‘5802’)
were patterns lab study participants had created. The fifth password was an
association based on the Christmas Eve date (‘2412’) for the PIN users and a
Christmas-related story created by a lab study participant for the Emoji users
(‘bear - Christmas tree - snowman - heart’ or ‘23#4’ on a numerical keyboard).
After a password was entered by the experimenter, the participant had three tri-
als to enter the observed password on a LG Nexus 5 smartphone (Android 5.1.1).

5.3 Results

In total, 41 smartphone users participated in the field study: 21 in the Emoji
group, 20 in the PIN group. Three PIN users had to be excluded (2 due to issues
with participants’ phones; one due to out of scope/inappropriate responses in
almost all daily feedback questions). Thus, the PIN group decreased to 17.

Participants were 19–63 years old (M = 34, Mdn.= 28, SD = 12.1); 24 were
female (59%). Most were students (22), although we did not target students.
The second largest group were employees (8), followed by job seekers (5),
self-employed (2), and others (4). Most (80.5%) did not have a professional IT
background. 19 participants currently used a PIN, 3 a password, 9 an Android
pattern, and 11 did not use any locking method.

Success Rates. In both groups, few incorrect unlocks were recorded during
the field study (Emoji: 3% of total unlocks; PIN: 1.5%). In total, 3,514 cor-
rect and 83 incorrect unlocks were recorded. EmojiAuth accounted for 1,924
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correct (M = 91.6, SD = 66.1) and 58 incorrect unlocks (M = 2.8, SD = 4.2);
PIN accounted for 1,590 correct (M = 93.5, SD = 70.4) and 25 incorrect unlocks
(M = 1.5, SD = 1.6). Fisher’s exact tests did not reveal significant differences in
the number of correct and incorrect unlocks between the groups.

Success rates for PIN were high, suggesting that PIN performs well in the
wild. This confirms related work that found PIN to be a practical authentication
method with low error rates [3]. Emoji success rates were also high, suggesting
that EmojiAuth is a practical authentication method, too.

Password Length and Changes. The majority of participants in the Emoji
group (19) initially picked a 4-digit password, whereas 2 participants picked
a 5-digit password. Participants in the PIN group initially picked diverse PIN
lengths: 10 picked a 4-digit PIN, 2 picked a 5-digit PIN, 3 picked a 6-digit PIN,
and 2 an 8-digit PIN. A Mann-Whitney U test did not indicate significant dif-
ferences in the mean password length between groups (Emoji: M = 4.1, SD = 3;
PIN: M = 4.9, SD = 1.4).

Four Emoji participants changed their password once, 3 changed their pass-
word twice. In the PIN group, 4 participants also changed their PIN once, 1
changed their PIN twice. A Mann-Whitney U test did not indicate significant
differences in the mean number of password changes between groups (Emoji:
M = .48, SD = .75; PIN: M = .35, SD = .61).

Password Selection. The same password selection strategies identified in the
lab study also surfaced in the field study (cf. Table 1). Figure 2 provides examples
of Emoji-passwords created by study participants in the lab and in the field
study.

Fig. 2. EmojiAuth passwords created by lab and field study participants. Passwords
are grouped according to password selection strategies.

Based on the results of the lab study, we asked questions (available online
at: http://bit.ly/2imyb2H) about Emoji and PIN password selection in the field.
For EmojiAuth, the questionnaire contained 17 5-point items (1 = ‘does not
apply at all’; 5 = ‘completely applies’), with 2–4 items to measure each selec-
tion strategy. For PIN, the questionnaire contained 15 items, with 1–6 items per
selection strategy. Lab study frequencies for Table 1 were calculated by counting
the occurrences of each interview code. Field study frequencies were calculated
as the number of participants who rated at least half of the items of a scale
(selection strategy) as important or very important.

http://bit.ly/2imyb2H
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Fig. 3. Password-Emojis examples of the most popular (left) and unpopular (right)
password-Emojis together with their occurrences on the keyboards.

The overlaps between selection strategies in both studies suggest reasonable
validity of the identified strategies. The PIN selection strategies in both studies
align with findings in related work [4]. For Emoji-password selection, Preference,
Pattern & Position, and Association & Story played an important role in both
studies.

The importance of the Preference selection strategy for Emoji passwords is
also visible from the distribution of selected Emojis across passwords. Figure 3
depicts three examples of the most popular and three examples of the most
unpopular Emojis together with their occurrences on the keyboards (lab and
field study). Due to the different sizes of the category lists from which Emojis
were selected in EmojiAuth, some Emojis appear more often on the keyboard
than others. Although we expected the individual keyboards to decrease the
probability of hotspots, Fig. 3 suggests that the distribution of password-Emojis
is skewed.

Shoulder Surfing. We calculated the minimal Levenshtein distance for each
user (“attacker”) and each password, i.e., the number of deletions, insertions,
or substitutions, needed to obtain the correct password from the entered

Table 1. Frequencies of password selection strategies. Note that some participants
used multiple strategies.

Strategy Emoji PIN

Lab (n= 27) Field (n= 20) Lab (n= 26) Field (n= 17)

Color and Shape 2 (7%) 9 (43%) - -

Icon Preference 10 (37%) 12 (60%) - -

Repetition 9 (33%) 4 (20%) 7 (27%) 7 (42%)

Pattern and Position 12 (44%) 8 (40%) 5 (19%) 3 (18%)

Association and Story 10 (37%) 8 (40%) 5 (19%) 12 (71%)

Password re-use 1 (4%) - 7 (27%) 4 (24%)

Date - - 13 (50%) 8 (47%)
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password [21,31]. There was a significant difference in the minimal Levenshtein
distance between Emoji (M = 2.45, SD = 1.64) and PIN (M = .72, SD = .83)
for the 6-digit random password (Mann-Whitney-U, U = 289.0; p = .001; r = .53)
with medium effect. Thus, the 6-digit random password was significantly harder
to shoulder surf on the Emoji keyboard. For the other passwords, there were no
significant difference between the authentication methods.

We also compared shoulder surfing susceptibility of passwords from the
same scheme. For Emoji, a Friedman’s test revealed significant differences in
the minimal Levenshtein distance between passwords (χ2 = 40.44; p < .001).
Post-hoc analysis with Bonferroni correction revealed that the 6-digit random
password was significantly harder to shoulder surf than the 4-digit random pass-
word (M = .75, SD = .93;Z = 1.45, p = .037, r = .46), the 6-digit pattern
(M = .15, SD = .67;Z = 2.75, p < .001, r = 0.72), and the 4-digit pattern
(M = .15, SD = .37;Z = 2.2; p < .001, r = .70). All post-hoc results for Emoji
had medium to large effect sizes. For PIN, a Friedman’s test revealed significant
differences between passwords (χ2 = 10.78; p < .029), but post-hoc tests were
not significant.

The post-experiment questionnaires revealed four different strategies attack-
ers used to observe the password: paying attention to the numbers on the key-
board (“numbers”), the password’s spatial pattern (“pattern”), a mix of both
strategies (“mix”), or they reported observing password entry with high con-
centration (“observation”). The frequencies of strategies significantly differed
between Emoji and PIN (p = .026; Fisher’s exact). “Attackers” in the Emoji
group were more likely to use the pattern observation strategy (Emoji: 16; PIN:
8). Not surprisingly, “attackers” in the PIN group were more likely to use the
numbers observation strategy (Emoji: 0; PIN: 4).

In summary, the 6-digit random password was harder to shoulder surf with
the Emoji keyboard compared to PIN and was also harder to shoulder surf with
the Emoji keyboard compared to the 4-digit random password and the 4- and
6-digit pattern passwords on the Emoji keyboard. The casual “attackers” in the
Emoji group largely relied on the pattern observation strategy which may make
Emoji passwords that are based on spatial patterns more susceptible to shoulder
surfing attacks.

User Experience. The daily feedback questionnaires answered during the field
study indicate that the user experience of EmojiAuth and PIN was perceived
similarly well. This is supported by the AttrakDiff 2 mini ratings, with the dif-
ference that EmojiAuth users perceived the authentication method more stimu-
lating at the beginning of the study. In total, participants reported 342 (Emoji:
184) positive experiences, 99 neutral experiences (Emoji: 51), and 14 negative
experiences (Emoji: 10). A Mann-Whitney U test did not reveal significant differ-
ences between distribution of positive, neutral, and negative experiences between
groups.

To further analyze users’ experiences, the free-text answers of the daily feed-
back were open-coded by one coder. This led to a code list of 17 codes. The
qualitative data was then independently coded with the code list by another
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coder. Inter-rater agreement was high (Cohen’s κ = .83). The coders jointly rec-
onciled the remaining cases. A third of participants’ comments (35%) expressed
that everything was well (e.g., “everything’s ok,” “fine,” “works”). The second
most common comments (10%) concerned good usability of the methods (e.g.,
“really easy and not annoying”, “fast [PIN] entry, no problems, I don’t have
concerns regarding memorability as long as the positions of the numbers don’t
change”). Six percent of comments indicated participants got familiar with the
methods (e.g., “I’ve became accustomed to it,” “it [the authentication] already
belongs to my daily routine”). Thereby, Emoji participants reported this twice
as much as PIN participants (14 vs. 7 comments). Four percent of codes con-
cerned hedonic aspects. Hedonic aspects were mostly mentioned by Emoji users
(11 out of 14, e.g., “I liked choosing the Emojis as I could select them on my own
without restrictions,” “it was fun to open the e-mail app with the Emojis while
sitting next to my friends,” “I changed my password twice today as I was curi-
ous which other Emojis are available”). A few comments (2.5%) also concerned
perceived security vulnerabilities of the schemes (“when I open the app in quick
succession, EmojiAuth didn’t work properly” [participant was likely corollary
not aware of 30 s time-out]; “it’s relatively easy for others to find out the [Emoji]
combination”).

The AttrakDiff 2 mini ratings align with the daily feedback: Pragmatic qual-
ity was perceived as high (M > 5) for both methods at all measurement points
(day 2, 8, and 14). Emoji users rated hedonic quality in terms of stimulation
higher than PIN users on day 2 (Emoji: M = 4.62, SD = 0.89; PIN: M = 3.22,
SD = 0.60; Mann-Whitney U , U = 34; p < .001; r = .70). However, this effect dis-
appeared over time: there were no significant differences in stimulation between
the groups for day 8 and 14.

Despite negligible quantitative differences in user experience, 17 of 20 Emoji
users reported in the exit questionnaire that they would prefer using Emojis
over PIN as a screen lock, mainly due to the high perceived memorability of
Emoji-passwords (12 answers) and the appeal of the Emoji-based method (six
answers).

6 Discussion and Conclusion

Limitations. Our study has a few potential limitations. Participants self-
selected to participate in a study on mobile authentication, thus our participants
may have higher technology affinity than the general population. As the sample
size in both studies was limited, generalizations should be made with caution.
However, our results facilitate a meaningful comparison of EmojiAuth to the
current baseline: PIN entry. Furthermore, the consistency between lab and field
study findings indicates a reasonable validity of our results.

Practical Emoji authentication. We have gained valuable insights into the
practical aspects of Emoji-based mobile authentication. The results suggest that
EmojiAuth may be a practical authentication method with a good password mem-
orability of short passwords and a reasonable memorability of longer passwords.
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Study participants created their Emoji-based passwords with five different strate-
gies: Emoji preference, association & story, pattern & position, repetition & simi-
larity, and color & shape. The results suggest that the distribution of Emoji pass-
words may be skewed, even with individual keyboards. We plan to conduct further
studies to quantify the frequency of each selection strategy and its contribution to
the practical password space. Results from the shoulder-surfing experiment sug-
gest that EmojiAuth performs better for longer passwords that do not follow dis-
tinct spatial patterns. As the “attackers” in this experiment mostly focused on
the pattern strategy, we recommend that spatial patterns should not be used for
password creation. We also plan to conduct further studies to investigate whether
password creation policies could help users create Emoji passwords that are resis-
tant to guessing and capture attacks, as well as memorable. For example, such
policies could blacklist most popular Emojis or spatial patterns.

The role of UX in mobile authentication. Both, EmojiAuth and PIN,
were perceived as highly usable and as providing a good user experience in the
lab and the field study. In the field study, EmojiAuth users mentioned hedonic
aspects slightly more often in their daily feedback. However, for both methods,
the overall number of experiences related to hedonic aspects was rather low. The
Hedonic Quality/Stimulation ratings indicate that EmojiAuth users perceived
their authentication method as more stimulating in the beginning of the field
study compared to PIN users. The majority of EmojiAuth users (field) also
indicated that they would prefer EmojiAuth over PIN as a screen lock, which is
a promising result. We plan to conduct further studies to investigate how hedonic
quality could be further increased and maintained in authentication methods and
whether it contributes to long-term user “relationships” with the authentication
method.
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Abstract. Any successful CAPTCHA design must creatively balance
the three competing criteria of usability, scalability, and robustness to
achieve widespread deployment in public facing web services. We pro-
pose a novel CAPTCHA called EmojiTCHA which utilizes symbolic rep-
resentations of human emotions in the form of emojis correlated to an
image of real humans expressing the same emotion on their face. By lever-
aging the Project Oxford Emotion API from Microsoft’s cognitive ser-
vices platform, which provides automated detection of human emotion
expressions on human faces, we generate a tagged dataset in an automated
fashion. Through the use of image warping and distortion techniques, we
can significantly increase the robustness of the CAPTCHA against auto-
mated attacks, without compromising on usability, as confirmed by our
user study.

Keywords: CAPTCHA · Emotion recognition · Online security ·
Usability

1 Introduction

The Completely Automated Public Turing test to tell Computers and Humans
Apart (CAPTCHA) was invented by von Ahn et al. [2] to enable discrimination
between humans and computers online. CAPTCHAs are reverse Turing tests
administered by computers designed to keep bots from abusing web services and
online forms made for human users. CAPTCHAs rely on hard AI problems to
provide the challenge question asked to the user (human or bot). This ensures
that the challenge question is one that is difficult for a computer to perform with
a high degree of success, yet still remains easy for a human to perform quickly.

Designing effective CAPTCHA challenges has been an ongoing subject of
research for more than a decade. Since the widespread introduction of the tradi-
tional text based CAPTCHA challenge where the user is asked to enter a string
of characters to demonstrate they are human, CAPTCHAs have evolved signifi-
cantly in style, design and complexity over time as they respond to advancements
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in attacks from image processing, computer vision and attacker creativity. The
greatest challenge in designing a successful CAPTCHA that serves its intended
purpose to distinguish between human users and bots is managing the tradeoffs
between the competing requirements of usability, scalability and robustness with
regard to design.

While text based CAPTCHAs have been the de facto style for CAPTCHA
implementations on public websites that need protection from bot abuse, their
usage is quickly falling out of favor as more advanced attacks and deep learning
models have evolved that can solve the challenge at ever more accurate rates
in an automated fashion. As image processing and computer vision algorithms
become increasingly more adept at solving traditionally complex problems such
as object and text recognition (and even attempts at scene recognition and
identifying contextual information contained in an image) [21], the standard
text based CAPTCHA has increasingly become obsolete.

Newer models for CAPTCHA that are replacing traditional text based chal-
lenges rely on strong image identification/object recognition tasks as their pri-
mary challenge method. One example of this is Google’s new image based version
of reCAPTCHA, which asks users to select all images that relate to a particular
category (e.g., select all images that contain street signs) from a grid of nine
images.

Behavior based models that focus on unique traits and actions of the target
user such as websites visited, user agent of browser, geographic location of IP
address, browser cookies, etc., to determine a probabilistic score as to whether
or not the target user is legitimate are also gaining traction as a new way to dis-
tinguish between bot and human. Although these models are not like text/image
based CAPTCHAs, they represent a new risk-calculation based approach to this
problem. While these image based models are emerging as the preferred alter-
native to text based CAPTCHAs, they require extensive investments in back-
end infrastructure and data gathering capabilities (typically at Google scale) to
operate in a secure and effective manner. Thus, although the these traditional
methods eventually will be broken (such as text vs. deep learning models), for the
time being, image based CAPTCHAs can still withstand sophisticated attacks.

In this paper, we demonstrate our design and implementation for a new
image based CAPTCHA – one that meets all the three criteria of usability,
scalability and robustness. The CAPTCHA is constructed entirely from freely
available online tools, open source software and emojis. The central challenge
question revolves around the task of asking the user to match an emoji whose
expressed emotion corresponds to the face contained in the image(s) displayed.
Utilizing the Microsoft Cognitive Services Platform’s Project Oxford Emotion
API [1], human faces and the emotions they are expressing can be detected in
an automated fashion from images. This information is subsequently stored and
used for preparing a CAPTCHA challenge. However, to prevent the tool itself
as well as other image lookup services from being used against the challenge,
image warping, noise and distortions are introduced to the image, thus providing
security.
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2 Preliminaries

In this section, we cover the core components and tools used to construct the
CAPTCHA challenge that allows for the design to be usable, scalable and
robust – i.e., providing a reasonable level of security for the online form it is
protecting.

2.1 Microsoft Project Oxford

Microsoft’s Project Oxford is a collection of easy to use artificial intelligence
based vision, speech and language APIs that are cloud accessible and can be used
in applications by developers. In our CAPTCHA design, we utilize the Face API
and the Emotion API. The Emotion API takes an image as an input, and returns
the confidence score across a set of emotions for each face in the image, as well
as the bounding box for the face, using the Face API. The emotions detected are
anger, contempt, disgust, fear, happiness, neutral, sadness, and surprise. These
emotions are understood to be cross-culturally and universally communicated
with particular facial expressions.

Project Oxford’s Emotion API is a REST API provided by Microsoft and can
be interacted with online. This tool is what provides the critical functionality
that delivers the scalability capabilities for our CAPTCHA design. It supports
an automated method to accurately and consistently identify and tag emotions
within images that contain people’s faces. Indeed, we store the output of the
Emotion API in a database along with the image and subsequently use it in a
challenge served to a user, which asks the user to identify the emotions depicted
in the image. The power of this service is that the algorithm can easily scale
with demand on the CAPTCHA challenge service, e.g., instances can be run in
parallel to produce the requested volume of tagged output as required by the
challenge service, i.e., number of unique challenges that need to be served at a
particular rate. In order to prevent the use of this and other similar tools against
the CAPTCHA, noise is added to the original face image, thereby ensuring failure
to identify emotion or faces on images used in challenges. The process of using
and applying image noise is described in more detail in the Methodology Section.
More details of the Emotion API can be found at https://www.projectoxford.
ai/emotion.

2.2 Emoji Character Set

The emoji character set is a UNICODE character set designed to convey complex
ideas and emotions in the form of small and simple ideograms and/or pictograms.
The cross-cultural nature of emojis enhances the usability as it removes specific
language and alphabets as a barrier to usability. Our challenge asks a user to
match emotions of people in an image with an emoji that conveys the same
emotion, providing a solid basis for a simple CAPTCHA challenge task that is
easy for humans to understand. Furthermore, since this character set consists
of images instead of text, techniques used to provide noise to the images will

https://www.projectoxford.ai/emotion
https://www.projectoxford.ai/emotion
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also work on the emoji characters, which can be scaled based on font size and
noised to thwart attackers further, though we do not do so right now. Wide-
spread availability of the emoji UNICODE character sets on smartphone and
tablet operating systems ensures high portability on mobile devices that use
touchscreens. A list of emoji characters is available at http://apps.timwhitlock.
info/emoji/tables/unicode. In our particular implementation for experimenta-
tion, we have chosen to use the Twitter emoji set which is open sourced by
Twitter for public use. Note that in the current implementation we do not use
the UNICODE characters, we simply use the image, since this is easier and does
not impact the CAPTCHA itself. UNICODE integration is deferred to future
work.

3 Related Work

Text based CAPTCHA challenges have been under attack by various computer
vision and image processing tools since their release via services hosted online.
Segmentation attacks, pixel count attacks, filtration attacks and more have all
proven effective against certain implementations. Bursztein et al. provide an
overview of the strengths and weaknesses of text based CAPTCHA and demon-
strate the need to continue to advance the field of CAPTCHA research [3]. As of
2016, text CAPTCHAs are not being used to a great extent due to deep learning
models being able to decipher characters, even distorted and obfuscated ones,
at an accuracy of close to 99.8% [10]. The security field is moving forward with
new designs to supersede text based CAPTCHA. For example, Google has devel-
oped reCAPTCHA to use images from its image search library and streetview
images gathered by its Maps program to provide challenges for the user to solve
(categorization task and text entry tasks, respectively) [10].

While the concept of image CAPTCHAs has been known for a while, their
designs have certain inherent properties that make them strong candidates for
communicating complex ideas to humans in a quick and efficient manner. Most
versions use some form of object/image recognition [11,15] or categorization task
[6,7,16] as their primary challenge. The most common shortcoming of exist-
ing image based CAPTCHAs, however, is their inability to scale - due to the
fact that the images used need to be manually collected, edited, tagged and
indexed, be unique, etc. Also, attackers have had some degree of success beat-
ing them using image processing and computer vision tools [22] together with
novel machine learning [9] techniques to solve the challenges. Three-Dimensional
models [14,19] and spatial/depth perception [13,18] are gaining popularity in the
image CAPTCHA space as strong use cases for challenges. This style represents
an interesting avenue of research as they present challenges that are not singu-
larly straightforward for a machine to solve, as the primary task asked of the user
requires multiple subtasks, such as image manipulation by the user or using a
mouse instead of a keyboard [4], that must be completed in conjunction to solve
the challenge. The Puzzle Only Solvable by Humans (POSH) [5] is another app-
roach to exploit human interaction for discrimination between humans and com-
puters. A POSH can be generated by a computer, can be consistently answered

http://apps.timwhitlock.info/emoji/tables/unicode
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by a human, and a human answer cannot be efficiently predicted by a computer.
However, a POSH does not even have to be verifiable by a computer at all.
Usability of CAPTCHAs is also a key issue [20] and new solutions are being
devised to provide a fair trade-off between security and usability [8].

Although human face image based CAPTCHAs have been studied before
[15,17], our work requires multiple subtasks, such as identifying the face in the
image, determining their expression, and subsequently matching the appropriate
emoji to the correct face. Our key contribution is to develop a scalable and usable
image based CAPTCHA that is difficult for a machine to solve.

4 Methodology

In this section, we discuss the design choices that were made in order to ensure
the usability, scalability, and robustness of the proposed CAPTCHA while
demonstrating the security it provides from potential attacks.

Figure 1 provides an example of the Microsoft Emotion API output. Using
a sample face that is smiling (a depiction of the emotion “happiness”), the API
provides the coordinates for a faceRectangle, which is a bounding box based on
the area in the image (in pixels) where the Face API detected a human face. It
also gives a confidence score for each of the eight emotions that it can detect. For
the example image shown in the figure, it is seen that the emotion “happiness”
was identified with very high confidence. These two pieces of information provide
the ability to generate a CAPTCHA challenge where the user is asked to answer
what emotion the face in the presented image is expressing. Note that we could
also ask the user to identify the face in the image, though this is correspondingly
easy for automated attackers to do. In our implementation, a python script is
used to interact with the API online and save the results it returns to a local
SQL database, along with the image.

Figure 2 depicts an example of the test image served without noise or filters
into Google’s reverse image search. Note that the results of the search include the

Fig. 1. Example output from Emotion API
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Fig. 2. Useful information can be produced from default image

image at other dimensions, a keyword guess for what is depicted in the image
(e.g. “dental smile”), and a number of visually similar images that all depict
“dental smiles”, which if one were to ask a person what emotion was being
expressed, most likely “happiness” would be the response. Without introducing
noise, distortions and filters to the image, an attacker will be able to answer
the challenge question without much difficulty. Another straightforward attack
would have been to submit it to the same Emotion API application that was
used to annotate the challenge image and get the answer.

Figure 3 depicts an example chain of filters applied in a specific order to
achieve the goal of altering the image enough that reverse image search (RIS),
Google image search service (ISS), and computer vision based attacks cannot
determine what is depicted in the image. The key is to introduce the minimal
amount of distortion such that the tools used to create the challenges are stopped
from returning meaningful results. Note that each filter often has multiple para-
meters that can be adjusted along a range to introduce variability into their
output and how they affect the image. For testing, we have determined a series
of fixed values for the filters that provide the level of distortion we required to
stop the Computer Vision (CV) attack while still maintaining a reasonable level
of usability/ease of understanding of the image.
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Fig. 3. Example of a series of filters applied to the image of Fig. 1

Figure 4 demonstrates how the appropriate level of distorts causes the ISS
engines to return results that cannot be meaningfully used to attack the proposed
CAPTCHA. Notice that the addition of the “canvas” filter effect influenced the
ISS results towards needlepoint/grid based images - none of which focus on facial
features. Also, no keyword is returned as well as no images of other sizes. For all
intents and purposes, this distorted image is unique to the search engine, despite
the original being indexed and tagged by it.

Fig. 4. No useful information can be extracted from noised image

Figure 5 is an example of the Twitter emoji set we used to map to the
eight emotions provided by the Microsoft Emotion API. The initial build of
our CAPTCHA included all these eight emotions. Microsoft noted that con-
tempt and disgust were experimental emotions, and thus were usually not read
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Fig. 5. Twitter Emojis used to represent the 8 emotions

Fig. 6. Reduced emotion version of EmojiTCHA challenge

as accurately as the other six emotions. After an initial round of user testing,
we decided to reduce the number of emotions that could be selected to the
five emotions depicted in Fig. 6 in an effort to remove confusion and increase
usability.

5 CAPTCHA Challenge Generation

This section focuses on the process flow within the toolchain that is used to
generate the CAPTCHA challenges. Figure 7 shows the step by step process used
to generate a unique challenge. Specifically, the following process is undertaken:

1. Gather images involving one or more people whose faces are clearly visible
expressing one of the following eight emotions: anger, contempt, disgust, fear,
happiness, neutral, sadness, or surprise. These images can be gathered from
anywhere, e.g., using image search engine, downloaded from a camera, etc.
They do not need to be manually tagged as the Emotion API will provide
that information.

2. Each image is run through the Microsoft Project Oxford Emotion API to
detect the number of faces expressing emotions in the image and the facial
expressions that fall into one of the eight emotional categories. If at least
one clear face is not found or no emotion can be read from the face by the
algorithm, the image is discarded. If at least one clear face expressing one of
the eight emotions is found, the image is kept and stored in a database.

3. The output of the Emotion API is recorded in the database along with the
stored image. The output from the algorithm includes the face bounding box
# (which face in the image the emotion information is from), the emotion
expressed by the face, and the level of confidence as a percentage for the
emotion expressed by the face.

4. The image is next run through a series of filters and manipulations from
GNU Image Manipulation Program (GIMP) [12] to distort the image for
protecting it against reverse image search attacks and computer vision tool
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Fig. 7. Captcha generation process flow

based attacks. The number, type, and values for each of the filters used can
be varied at random for each individual image produced to make it very
difficult for attackers to filter the alterations. This step is important as it
prevents using the tools that generate the challenge from being exploited by
attackers. The output image is tested against the Emotion API to ensure
that no emotion is meaningfully detected. The final altered image, now ready
to be used as challenge, is stored in the database with the corresponding
information used to create it. Figure 8 shows how filters used in a chain can
successively distort an image until it meets the needed security criteria.

5. A set of emojis is selected such that one of them matches the emotion recorded
from the Emotion API, and the remaining not matching the emotion, i.e., they
would be incorrect/nonexistent responses.

6. The challenge is generated and the user is presented with one or more images
of distorted faces and a corresponding set of emojis. The user simply needs to
match the correct emoji with the facial expression in the image to complete
the challenge. The correctness of the response is evaluated against the ground
truth stored in the database.

6 EmojiTCHA Usability Study

The goal of this section is to evaluate the effectiveness and ease of use of Emo-
jiTCHA. We conducted user trials with 30 participants and asked them to solve
as many challenges as they could in 10 min. The first run included all eight emo-
tions from the emotion engine. The user was served a challenge at random and
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Fig. 8. Filter based distortion

asked to match the corresponding emoji to the emotion depicted on the face
displayed. Each of the emotion categories had 10 images that were tagged and
identified by the Emotion API. The image filters were applied at random until
the image no longer returned a match from the Emotion API, thus some images
were more distorted than others.

Fig. 9. Confusion matrix for complete set of emotions

Figure 9 depicts the confusion matrix (i.e., the emotion guess results) for the
first run with the complete set of eight emotions. The totals on the horizontal
axis represent the number of times a challenge with the correct response being
the emotion in green was served whereas the totals on the vertical axis represent
the number of times that a particular emotion was given as a response for a
challenge with the correct answer in green. Figure 10 gives the results for the
second run with the reduced set of five emotions as options.

To make it easier to analyze the results we plot the precision and recall
results for the different emotions in both runs. Figures 11a and b give the recall
and precision for each emotion when all 8 emotions are used. The recall gives
the percentage of images of each emotion correctly identified with that emotion
whereas precision gives the percentage of images identified with a particular emo-
tion that do actually have that emotion. The emotions from best performing to
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Fig. 10. Confusion matrix for reduced set of emotions

Fig. 11. Results with all 8 emotions

worse performing on recall are: neutral (96%), happiness (91%), surprise (87%),
anger (76%), fear (67%), sadness (61%), contempt (59%) and disgust (47%). The
emotions from best to worse performing on precision are: happiness (83%), con-
tempt (81%), surprise (80%), fear (77%), anger (76%), neutral (73%), sadness
(72%) and disgust(45%). Note that disgust was the worst performing emotion
in both cases. It was expected that the more abstract of the universal emotions
might be more difficult to discern for humans, namely, disgust and contempt.
For recall, these emotions performed the worst, scoring significantly lower than
the top three emotions. Interestingly, for precision, contempt was the second
best emotion recognized, although the scores for the challenges were somewhat
lower than the scores for recall, they were much more consistent across emotions,
with disgust being the outlier. One aspect is the overlap of emotions that are
consistently mistaken for another emotion that may appear similar. For exam-
ple, we see that disgust was mistaken for anger 26 times. It is easy to imagine
that a disgusted face can take a similar shape to an angry one. We also see this
in contempt and anger being mistaken for disgust as well for 26 and 15 times
respectively. More user testing will need to be conducted so that any set of emo-
tions served to the user in a challenge will be ones that are not easily mistaken
for each other. However, this can also provide a way to make it more difficult
for machines – if a competing emotion detection algorithm is ranking a facial
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expression it is possible that it will score and categorize it differently than the
Microsoft Emotion API.

Furthermore, most users were able to solve challenges in a very short dura-
tion. Additionally, after solving a few challenges, users are able to significantly
increase their subsequent accuracy. To summarize, our study shows that Emo-
jiTCHA in its current form is quite accessible to a wide range of users, with
respondents coming from different continents. Figures 12a and b give the recall
and precision when only 5 emotions are used in the challenges. The emotions
from best performing to worse performing on recall are: happiness (97%), anger
(95%), neutral (94%), surprise (94%), sadness (81%). The emotions from best
to worse performing on precision are: surprise (99%), anger (95%), happiness
(94%), sadness (92%), neutral (83%). The performance for all scores in both
categories increased significantly in limiting the number of choices for the user
to select. This shows that using a smaller set of emotions significantly improves
usability of the system. Note that this does not significantly compromise on
security since the challenge image still does not provide any results, and the
probability of random guess is still 1/5 instead of the original 1/8.

Fig. 12. Results when only 5 emotions are used

We have also experimented with an alternative design which improves usabil-
ity, but provides equivalent security to the original version. For example, Fig. 13
shows an example where only two emotions are used, but users are asked 3 chal-
lenges instead of 1. This keeps the security of random guessing to (1/2)3 = 1/8
giving us equivalent security to the original single challenge with 8 emotions,
but potentially is significantly easier for humans to answer.

7 Design Limitations and Security Analysis

The images that were chosen for use in the challenges were hand curated to
ensure that the desired emotion was demonstrated in the image. Work is cur-
rently in progress to tune the image scraper and the Emotion API checker to
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Fig. 13. Example with 3 challenges using 2 emotions each

accept an “emotion” threshold score as a percentage to ensure that there is a high
degree of confidence in any particular emotion expressed in a face. Any images
that have emotions that register below the threshold can be discarded accord-
ingly. Additional work must be done to determine the optimal “co-emotions”
to display with one another to ensure there is minimal mixup by between the
emotions displayed on the screen. These will all be addressed in future iterations
of the study.

Furthermore, in our current implementation, we only use a single emotion
from a single face per challenge. Multi-face, multi emotion challenges are cur-
rently under development. We are also currently developing ordinality rules for
filter application to minimize the number of rounds of filter applications that are
required to ensure the security guarantees that CV attacks and RIS attacks will
not be successful. The test images used in the experiments for the user study
only provide the security guarantee for emotion API attacks - they do not ensure
RIS or ISS attacks are not successful, although many of the images do indeed
stop these attacks in their current form.

Note that the security of the EmojiTCHA depends on two different factors.
First, is the ability of the attacker to successfully de-obfuscate the image, and
then use the Emotion API to solve the challenge. Second, is the ability of the
attacker to randomly guess the correct response. Regarding the first, the image
is obfuscated using lossy filters which result in information loss which cannot be
reversed. This provides a layer of security. Furthermore, we ensure that the obfus-
cated image is robust against reverse image search attacks, which are based on
image similarity. Note, that this process can be adjusted as required, if improve-
ments are made in cracking techniques, or in filtering techniques. Regarding the
ability to randomly choose the correct response, the current 8-emotion version
has a fixed probability of 1/8 for a correct random guess. However, as we have
discussed above, reducing the number of emotions improves usability. At the
same time, we can ask for a higher number of challenges. Similar to Fig. 13, if we
ask three challenges, where the number of emotions is increased to three, then
the probability reduces to 1/27, which is significantly stronger. We have actually
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implemented this, and are currently carrying out comparative usability testing.
Note that since a fresh CAPTCHA is provided on every refresh, the possibility
of a brute force attack is limited as long as sufficient images are included in the
CAPTCHA database. Furthermore, since the noise addition is randomly carried
out, noise can be added to the same image multiple times, resulting in fresh
challenges.

8 Conclusions and Future Work

In this paper, we have designed a new CAPTCHA that is based on emotion
recognition that has the advantage of being scalable and usable while providing
good security. In the future, additional work around new form types and chal-
lenge questions will be experimented with. For example, testing out multiple
emotions in a single image and having a user identify all of the emotions – a
multi-answer CAPTCHA. Another example would be asking the user to identify
the opposite emotion of that depicted in an image (e.g. pick sad if the image
is showing a happy face). Additional work around creating a challenge with
an “emotional mix” where a random set of 4 or 5 choices are selected for the
challenge from the 8 possible choices. Finally, experimenting with a “not here”
answer may be worthwhile to increase the security against a random guess being
correct. We plan to work on these extensions in the future.
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Abstract. The heterogeneity of cloud computing platforms hinders the
proper exploitation of cloud technologies since it prevents interoperabil-
ity, promotes vendor lock-in and makes it very difficult to exploit the
well-engineered security mechanisms made available by cloud providers.
In this paper, we introduce a technique to help developers to specify
and enforce access control policies in cloud applications. The main idea
is twofold. First, use a high-level specification language with a formal
semantics that allows to answer access requests abstracting from an
access control mechanism available in a particular cloud platform. Sec-
ond, exploit an automated translation mechanism to compute (equiva-
lent) policies that can be enforced in two of the most widely used cloud
platforms: AWS and Openstack. We illustrate the technique on a running
example and report our experience with a prototype implementation.

Keywords: Policy translation and validation · Attribute-based Access
Control · Amazon AWS · OpenStack

1 Introduction

Cloud computing platforms offer companies the opportunity to create appli-
cations that have global reach and can scale rapidly to meet sudden spikes in
demand without requiring massive investments by adopting a pay-as-you-go app-
roach. The cost of this extra flexibility is a loss of control over the software
components deployed in the cloud and the data manipulated by applications,
since part of the responsibility and control is transferred from Cloud Customers
(CCs) to Cloud Providers (CPs); consider, e.g., the “Amazon Web Service Shared
Responsibility Model”1. When using a cloud platform, it is crucial for CCs to
understand and distinguish between security measures implemented and oper-
ated by CPs (called, security of the cloud) and those offered by them (called,
security in the cloud), for which the CPs are accountable. Failure to under-
stand the boundaries of this separation of concerns and responsibilities may
lead to leave sensitive assets unprotected with the potential of disclosing sensi-
tive information, thereby incurring in extra costs and potential loss of business,
1 https://aws.amazon.com/compliance/shared-responsibility-model.
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and eliminating many of the benefits of cloud computing. Even if the separation
of responsibilities is clear, CCs may find it difficult to use effectively the large
array of security mechanisms provided by the specific CP. This hinders one the
most important opportunities offered by CPs to CCs, namely the exploitation of
the cornucopia of well-engineered security mechanisms made available by CPs.

In order to alleviate this situation, we propose a technique capable of assisting
CCs in designing and deploying access control systems in two of the most widely
popular cloud platforms: AWS2 and OpenStack3. Access Control (AC) is one of
the most important security mechanisms for the protection of data and services
against unauthorized disclosure (confidentiality) and intentional or accidental
unauthorized changes (integrity), while ensuring their accessibility by authorized
users whenever needed (availability). The development of an AC system requires
the definition of the regulations according to which access is to be controlled
and their implementation as functions executable by a computer system. This
development process is usually carried out with a multi-phase approach based on
the concepts of policy, model, and enforcement mechanism [4]. A policy defines
the (high-level) rules according to which access control must be regulated. A
model provides a formal representation of the AC policy and its working. The
formalization allows the proof of properties on the security provided by the
AC system being designed. An enforcement mechanism defines the low level
functions that implement the controls imposed by the policy and formally stated
in the model. In a cloud computing platform, several enforcement mechanisms
are available, ranging from access control lists to those based on roles [4]. Many
of these enforcement mechanisms are of a low level nature or are variant of the
standards as they are tightly coupled with the resources and operations that
services made available by the CP support. For application developers, it is not
easy to grasp how all the different enforcement mechanisms work and how they
can be used to mediate access to the data and services that the application under
development is using. In many cases, even security experts may have difficulties
in expressing high-level AC constraints related to an application (e.g., Separation
of Duties) by means of the enforcement mechanisms available by CPs.

The main contribution of the paper is a technique that allows application
developers and security experts to design the application and the AC policies by
using an abstract model of a cloud platform without committing to a particular
cloud solution. Since the language in which the AC policies are written has a
formal semantics, it is possible to re-use automated tools for the security analysis
of policies to understand whether the written policies correspond to the designer
expectations. When this is the case, the tool automatically translates the high-
level AC rule into concrete policies that can be enforced by the mechanisms
available in AWS and Openstack.

Plan of the paper. Section 2 introduces a scenario that illustrates the main prob-
lems underlying the development of secure applications in the cloud. Section 3
describes our high-level policy specification language and its formal semantics
2 https://aws.amazon.com.
3 https://www.openstack.org.

https://aws.amazon.com
https://www.openstack.org


298 U. Morelli and S. Ranise

by using a logical framework. Section 4 explains how the policies written in the
high-level language can be translated to the policies that can be enforced by the
AC mechanisms available in AWS and Openstack. Section 5 shows how a proto-
type implementation of our techniques (called SecurePG) solves the problems
arising in the running example of Sect. 2. Section 6 presents some concluding
remarks and a short comparison with related work.

2 A Running Example

The ACME shipping company wants to develop a cloud application to support a
customer loyalty program (SpecialDiscounts). The idea is to reward e-payments
made via a mobile application (PromoApp) with virtual credits that can be
spent for additional ACME services or discounts on selected products offered
by ACME Partners. To this end, ACME wants to grant the partners of the
loyalty program access to a restricted set of information through the application,
while maintaining control over customers’ data; thereby configuring two different
domains in the data storage services available in the cloud.

Fig. 1. Simplified architecture of the SpecialDiscounts and PromoApp cloud apps

Figure 1 shows the ACME and the cloud domains, together with three groups
of users: ACME Customers, ACME Employees and ACME Partners. ACME
Employees, using a system in the ACME domain, can list customers profiles
(label L), extract the information they contain (label G), add new profiles (label
P) or delete existing ones (label D); those operations are represented by the
labelled solid arrow from ACME Employees to the ellipse named ‘Full ACME
Customer Profiles’. ACME Customers, by using PromoApp, can get, add or
delete the information stored in the partial customer profiles (labels G, P and
D linked to the arrow connecting ACME Customers to the ellipse named ‘Par-
tial ACME Customer Profiles’). The same operations are performed on their
full profiles by using a system in the ACME domain. ACME Partners, using
the SpecialDiscounts application, can list the partial ACME customer profiles
(label L on the arrow connecting ACME Partners to the ellipse named ‘Partial
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ACME customer profiles’) and can get or add information to the profile (labels
G and P linked to the arrow connecting ACME Partners to the ellipse named
‘Partial ACME Customer Profiles’). Since the full and partial ACME customer
profiles can be updated independently (by using the cloud application or the
system in the ACME domain), it should be possible to synchronize the infor-
mation stored in both profiles (double arrow named ‘Synch’) so as to keep them
up-to-date. The goal is to deploy the two applications, SpecialDiscounts and
PromoApp, on a cloud computing platform while guaranteeing that the mem-
bers of the various groups can perform only the actions discussed above. It may
be also important to consider public or private cloud solutions, depending on the
fact that sensitive information in the customer profiles must be stored also in
the partial profiles managed by the cloud applications. For instance, it must be
possible to deploy the applications on a public cloud—such as an Amazon AWS
Platform-as-a-Service (PaaS) implementation, using the Simple Storage S3 ser-
vice to manage customer profiles—or on a private cloud—such as an OpenStack
Infrastructure-as-a-Service (IaaS) installation within ACME, that uses Swift as
the data container. The main requirement is to do all this by supporting a cloud
provider-agnostic specification of the access control policies that permit the auto-
mated verification of basic security properties (e.g., a member of a certain group
can/cannot perform a certain action on a given resource) and their automatic
instantiation to the access control mechanisms available in a particular cloud
solution. In this way, it is possible to manage the heterogeneity of the multitude
of IaaS and PaaS solutions currently available by increasing interoperability and
avoiding vendor lock-in while exploiting to the full the well-engineered security
mechanisms available in different cloud solutions. While there exist approaches
in the literature that allow to manage cloud applications across different plat-
forms (see, e.g., [6]), none of these address security issues (and in particular
access control policies) as we do in this paper. For this reason, in the following,
we discuss only the issues related to access control while we point the interested
reader to, e.g., [6] for an approach abstracting away from the functionalities and
storage capabilities of a particular cloud provider.

3 An Abstract Access Control Model for the Cloud

Since Attribute-Based Access Control (ABAC) [7] offers a powerful and unifying
extension to several access control models in the literature (see [8] for a thorough
discussion about the expressive power of ABAC with respect to other models),
we have chosen it as the framework in which to develop our policy language and
access control model for cloud applications. In ABAC, requesters are permitted
or denied access to a resource based on the properties, called attributes, that may
be associated to subjects, resources, and contextual information. Suitably defined
attributes can represent identities, access control lists, or roles; in this sense,
ABAC supplements rather than supplant traditional access control models [8].
Abstractly, policies in ABAC are conditions on the attribute values of the entities
involved in an access decision. Our policy language for the cloud is based on the
following construct:
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Listing 1.1. Abstract policy specification construct
Grant|Deny SUBJECTS [ATTRIBUTES] the permission to ACTIONS on RESOURCES

[ATTRIBUTES] if CONDITIONS;

where the parts in black are mandatory and those in gray are optional. Intu-
itively, the meaning is to grant or deny to a subject (described by an identifier
plus, optionally, some simple conditions on its attributes) the permission to per-
form some action on a resource (also described by an identifier plus some simple
conditions on its attributes) provided that all the complex authorization condi-
tions on the attributes of subjects, resources, or the context are satisfied (the
meaning of simple and complex conditions will be made precise below).

A subject, a resource, or an action are identified by a unique name. The
attributes of a subject, a resource, or the context are also identified by a unique
name and each one is associated to a type, such as the Booleans, the Integers,
or an enumerated data type. Formally, a subject, a resource, or the context can
be seen as records whose (typed) fields are the attributes; a type defines a set
of values plus some functions and predicates (including at least the equality =
operator) that can be applied to the values. A simple condition on a subject or
on a resource can be expressed as a list (intended conjunctively) of equalities of
the form att = val where att is an attribute and val is one of its possible values.
A complex condition is a Boolean combination of atomic expressions contain-
ing attributes of subjects, resources, or the context together with values and
operators of the appropriate type (notice that we forbid quantifiers in complex
conditions; this restriction in expressiveness was never a hindrance to specify
policies in our experience). An example of a policy specification relevant to the
example of Sect. 2 is provided below:

Listing 1.2. Example of an abstract rule that translates to a role policy
Grant ACME_employees the permission to add user to group and remove user

from group on ACME_customers

This grants the ACME employees (identified by the role ID ACME employees)
the right to add and remove users from the group of ACME customers
(ACME customers). As another example, consider the following user policy:

Grant ACME_user_1 the permission to get object on ACME_user_1_profile if
access time greater than 1451606400 and if access time less than
1451779200

that grants the ACME user identified by the ID ACME user 1 the permission to
access his profile (ACME user 1 profile), e.g. to check the number of virtual
credits, provided that this is done in a given period of (Unix) time, namely from
the first to the third of January 2016.

Following [1], it is possible to formalize the meaning of the policy constructs in
Listing 1.1 by using first-order logic formulas. For this, we preliminary introduce
the notion of query as a tuple (sl , a, rl , cl) where a is an action and sl , rl , cl are
simple conditions involving the attributes and values of a subject, a resource,
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and the context, respectively. We write 〈sl〉, 〈rl〉, 〈cl〉 to denote the conjunction
of equalities in the simple conditions sl , rl , and cl , respectively. A complex
authorization condition in a policy construct can be considered as a first-order
formula in which quantifiers does not occur. We assume the availability of the
attributes sid and rid of subjects and resources, respectively, that range over
their sets of identifiers.

Given a finite set Π of policy constructs of the form Listing 1.1 and a theory
T formalizing the types of the attributes in P (it is well-known how to do this,
we point the interested reader to [1] for details), we say that a query (sl , a, rl , cl)
is granted (with respect to Π) iff there exists a policy construct

Grant s [sA] the permission to a on r [rA] if C

in Π such that the formula sid = s∧〈sA〉∧rid = r∧〈rA〉∧C in conjunction with
〈sl〉 ∧ 〈rl〉 ∧ 〈cl〉 is satisfiable in T (i.e. there exists a first-order structure which
is a model of T and satisfies both formulae) and there is no policy construct

Deny s’ [sA ’] the permission to a on r’ [rA ’] if C’

in Π such that the formula sid = s’∧〈sA’〉∧rid = r’∧〈rA’〉∧C’ in conjunction
with 〈sl〉∧〈rl〉∧〈cl〉 is satisfiable in T . Otherwise, we say that the query is denied.

The decidability and NP-completeness of the satisfiability checks with respect
to the theory T follow from results in [1] when the types of the attributes are
Booleans, Integers or enumerated data types. We do not elaborate the details
here for lack of space; we just observe that complex conditions with arbitrary
Boolean structure makes the problem already NP-hard because the Boolean
satisfiability problem is subsumed. Indeed, NP-completeness of the induced sat-
isfiability problems implies that also answering queries is NP-complete. This
should not be seen as a hindrance to the usability of our approach. SMT engines
solving the generated satisfiability problems guarantees the practical viability of
the technique at policy design-time with queries solved in few seconds. One rea-
son for the good practical performances is the relative simplicity of the Boolean
structure of complex conditions.

4 From Abstract to Enforceable Policies in the Cloud

Cloud providers are not able to fully support the complexity of the ABAC model
and the granularity required for handling an arbitrary list of attributes: the
ability to scale while maintaining data integrity and authorizations evaluation
performance allows for simple AC policies based only on the identity of subjects
(that request a cloud resource). Those uses a basic set of user attributes, i.e. his
name, role or the group he belongs and, if supported, further restrict requester
permissions with a set of environment conditions.
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Table 1. Authorization patterns and cloud attributes that identify the entity types

Authorization patterns AWS OpenStack

Subject component UserID [type = user subject] ID and ARN ID and email

GroupID [type = group] ARN ID

RoleID [type = role] ID and ARN ID and email

ServiceID [type = service] URL Missing

FederatedID [type = federated] URL or ARN Missing

Resource component ObjectID[type = object] ARN ID

FolderID[type = folder] ARN ID

ResourceID[type = keys] ARN Missing

ResourceID[type = trust] ARN Missing

Using the model introduced in Sect. 3 it is possible to extend the identity-
centric approach using generic conditions and providing attributes for the sub-
jects and the resources. Table 1 shows the authorization patterns to explicitly
suggest our prototype implementation the entity types (using their identifier
and the type attribute) and the cloud attributes that uniquely identify them
in Amazon and OpenStack: a subject identifier (ID), the URL or the Amazon
Resource Name (ARN) code for the former and the ID or email of the subject for
the latter. The current version supports three types of subjects (users, groups,
roles) and two types of resources (objects and folders). Other components refer
to the ability to authorize a service (handled as a role), support the identity
federation features or create special policies (type keys or trust). If the end-user
provides only the entity name, its type is retrieved querying a database; if the
type is not supported (missing cases in the table) the information is instead
ignored. Similarly, the attributes of subjects and resources, together with the
environment conditions, are identified (using their name) and processed only
if supported by the specific CP. This process, although not expanding the AC
model of the supported CPs, greatly simplifies the task of writing AC policies.
Moreover it allows the tool to create valid AC rules and easily supports the pure
RBAC model of OpenStack and the RBAC-oriented implementation of AWS,
with the possibility of future developments when more complex AC models will
be made available by CPs.

4.1 Reconstruction of the Amazon and OpenStack AC Model

Figure 2 links the elements associated to the subjects in Amazon and OpenStack
AC models, highlighting with dashes those that belong only to OpenStack and
with the crosses those of AWS; solid lines represent instead common components
and are among the ones supported by our prototype implementation.

The picture shows that both solutions present an administrative boundary,
called domain in OpenStack and root account in AWS, that contains all the
supported entities: Users, Groups, Roles and, exclusively for OpenStack, projects
and tokens. Users may belong to a group (User-Group assignment) or be linked
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Fig. 2. Amazon AWS and OpenStack AC models. Adapted from [12,13]

to a role (User-Role assignment), that AWS considers as a separate complex
entity (with its own set of permissions) while OpenStack as a mandatory simple
property of U. OpenStack requires the user to interact with a set of resources with
specific roles (User-Project assignment) and providing a valid authentication
token; the same process allows the interaction for all the entities that belong to
a group (Group-Project assignment).

4.2 Policy Support in Amazon and OpenStack

Our AC solution for the cloud supports six categories of authorization policies:
assigned to the subject (User Policy or UP), to a users group or a role (respec-
tively Group Policy or GP and Role Policy or RoP) and to the resources on
which the subjects perform their actions (Resource Policy or ReP). The GP and
RoP policies can also be specialized to apply only to a single user belonging to
the specified group or role; in the following, these will be called special GP (sGP)
and special RoP (sRoP). Two other types of permissions refer to the ability to
offer the identity federation feature, which requires a trust relationship between
users (Trust Policy or TP), and the possibility to assign permissions together
with login credentials (Credential Policy or CredP). Those are supported only
in Amazon and, when generating the OpenStack AC rules, are handled as UPs.

Table 2 provides an outline of our policy types and their support in the two
CPs, including the required attributes or the services that enforce them. Ama-
zon implement almost all types of authorization through the Identity and Access
Management (IAM) service, while the Security Token Service (STS) is used
for handling the CredP and three other services allow the user to specify ReP
directly associated with the resource involved: S3 and the notification and queue
services (respectively Simple NS and Simple QS). OpenStack instead manages
permissions only through Keystone, using a set of rules related to the action
performed (API actions) or the OpenStack service involved (such as identity,
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Table 2. Policy types supported in our model, Amazon AWS and OpenStack

Policy types Amazon AWS implementation OpenStack implementation

UP IAM UP API-Service:API UP

GP IAM GP API-Service:API GP

sGP Restricted GP (AWS username or user ID) Restricted GP (OpenStack user id)

RoP IAM RoP API-Service:API RoP

sRoP Restricted RoP (AWS username or user ID) Restricted RoP (OpenStack user id)

ReP AWS ReP for the S3, SNS and SQS services Swift ACL or temporary URLs

TP IAM TP Missing

CredP STS-AWS CredP Missing

network or compute). The concept of TP and CredP is not supported in Open-
Stack and the only way to implement ReP, in the case of Swift, is to provide an
Access Control List (ACL) or generate a URL that allows the owner temporary
access; unlike the ACL, the latter can distinguish between a folder and an object.
The special GP and RoP are supported in both cloud platforms using the ID
associated to an user.

5 SecurePG

To implement our AC model for the cloud according to Sect. 3, we developed
a prototype implementation called SecurePG (also referred to as the tool)
that integrates a graphical user interface and a policy engine, both written in
Java, and is supported by a MySQL database. The policy engine is responsi-
ble to analyse the authorization sentences using version 4.5.3 of the framework
ANother Tool for Language Recognition (ANTLR) and identify, with the support
of a general purpose grammar, the tuple < Policy Decision, Subjects, Actions,
Resources, Conditions > according to our abstract policy language; it also inves-
tigates the absence of ambiguities such as the use of the same subject, resource
or action in the positive and negative form or errors as the usage of a wrong oper-
ator or values when specifying the actions or the conditions names. The MySQL
component contains a database schema that replicate the CPs data model and
link cloud compliant names with the ones used for the authorization formulas,
i.e. the subject name with its Amazon identifiers. By design, this component
will interactively ask the user whether to continue if no value or more than one
value are retrieved from the database tables. In the first case it also gives the
possibility to generate a random value.

Figure 3 provides the architecture of the tool in the default use-case sce-
nario. Using the subjects, actions and resources (referred as the triple <S,A,R>)
supported by the tool and agreed with the SA, the application developers can
easily deploy cloud resource and features on the CP that best meets the require-
ments. To demonstrate the use of the tool on the reference scenario, we analyse
the processing of two authorizations: the sRoP obtained by replacing the sub-
ject pattern in Listing 1.2 with “ACME employee 1 [role = ACME employees]”,
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Fig. 3. SecurePG architecture

reported in Table 3, and the CredP listed below. The latter allows the subject
identified by the ID ACME user 1 to assume the role with ID ACME Customers
to access his profile and is structured in compliance with the Amazon AC model:
one role policy (referred as the Role-component in Listing 1.3) assigned to the
role ACME Customers and one policy (referred as the Credential-component
in Listing 1.3) provided to the ACME user 1 subject when authenticating.
This policy, uniquely associated to the user’s credentials, cannot define new
permissions or extend pre-existing authorizations; i.e. the sRoP associated to
ACME Customers.

Listing 1.3. Example of an abstract rule that translates to a CredP
Role -component: Grant ACME_user_1 [role = ACME_customers] the permission

to get object and put object on ACME/ User_profiles /* [type = keys];

Credential -component: Deny ACME_user_1 [role = ACME_customers] the
permission to get object and put object on not ACME_user_1_profile
[type = keys];

5.1 Policy Generator Engine

Processing the sRoP and the CredP authorizations, SecurePG is able to deter-
mine the correct policy types and suggest the creation of all the necessary enti-
ties. For the sRoP, the tool may suggest the creation of one AWS root account,
one IAM user and one IAM role (both belonging to the same root account);
regarding OpenStack, it recommends the use of a domain and the KeyStone user
ACME employee 1 (created providing the KeyStone role ACME employees). In
both cases SecurePG reports the skipping of the components not support-
ed/recognized within the specific CP. Although some information may be stored,
for example as metadata if the interaction refers to a Swift or a S3 resource, it
can not be indicated as part of the AC rule.

When specifying a Swift resource, as in the CredP, the user can choose
between two solutions: a generated URL that allows the owner temporary access
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to the Resource or a Swift ACL for the Keystone user that is assigned with a
role on a project associated to the resource. In the example, the user id 111 of
ACME user 1 must be linked with the role id 222 of ACME customers and the
project id 333 of P ACME user 1. To implement the first solution, the system
requires (or randomly generate) a duration, the resource path and a cluster key
sig (that acts as a signature), according to the following URL template:

https ://{ host }/{ path}? temp_url_sig ={sig}& temp_url_expires ={ expires}

Regarding the Swift ACL instead, the SA needs to manually create a
User-Project assignment using the Keystone interface (in the example, the
triple <111, 222, 333>). Since OpenStack does not support the CredP type,
SecurePG will ignore the resource attribute keys and create a user policy;
lacking the support of negative ACLs either, the tool will be able to generate
only an authorization associated to the permit component.

5.2 Abstract Policy Analysis Engine

To allow the validation of the AC policies before the enforcement, we integrated
the support of the Java Content-Based Protection and Release Language tool
(JCPRL) [1] to analyse the AC rules provided by the SA. This required a bridge
component to translate from the language in Sect. 3 to first-order logic formulas
taken in input by the JCPRL tool. A CPRL document is then created retrieving
all the necessary data from a MySQL database and the output is analysed with
an SMT solver.

Table 3. Example of a sRoP processing

Auth. components AWS policy

Policy decision:

< Grant >
Subjects:

< ACME employee 1 >
Actions:

< add user

to group, true>
< remove user

from group, true>
Resources:

< ACME customers,

true>

[{"Role Policy": {
"ACME employee": {

"Version": "2012-10-17",

"Statement": {
"Sid": "1",

"Effect": "Allow",

"Action": [ "iam:AddUserToGroup,

iam:RemoveUserFromGroup"],

"Resource":

["arn:aws:iam::xx:group/ACME customers"]

"Condition": {
"StringEqualsIgnoreCase": {

"aws:userid": "AIDAIYHF5BVYLMF36IKZY4" }
}}}}}]

OpenStack policy
“identity:add user to group”: “role:ACME employees and
‘ACME customers’:%(target.group.name)s and user id:123”
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Fig. 4. SecurePG query output using JCPRL

Fig. 5. SecurePG AWS output from the Amazon web UI and OpenStack output

Figure 4 shows the output after the authorization query with the GUI
(frame list on the left), while Fig. 5 presents the AWS output from the offi-
cial Amazon web interface when manually adding the rule and the OpenStack
output that will be saved in the Keystone policy.json file. The former pre-
vents the Amazon java SDK from showing the following error message: “User:
arn:aws:iam::4146402582-23:user/ACME employee 1 is not authorized to per-
form: iam:AddUserToGroup on resource: group ACME customers ..Error Code:
AccessDenied.”.

6 Discussion

We have presented a technique supporting the authoring of high-level AC poli-
cies for cloud applications, the capability of answering queries independently
of a particular cloud platform, and the automated translation of the high-level
authorizations to policies that can be enforced in two of the most widely adopted
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cloud platforms, namely AWS and Openstack. We have also reported our expe-
rience with a prototype tool, called SecurePG, of the technique on a typical
cloud application scenario.

The development of a language able to represent, share and facilitate the
evaluation of different types of AC policies has received a lot of attention. The
eXtensible Access Control Markup Language (XACML) [3] is the de facto stan-
dard. As discussed in [10], the precision with which this standard works is both
a weakness and a strength. The solution proposed in [10] to overcome the diffi-
culties of writing XACML is a graphical tool to display and edit the rules. Our
approach is to avoid the difficulties of using XACML by employing a simple and
abstract (but expressive) specification language to enforce user requirements in
the cloud and easily exploit the JCPRL tool proposed in [1]. This allows to
validate the AC policies before their deployment on a particular cloud plat-
form by using a logical semantics and automated reasoning tools to mechanize
the authorization query answering process. Similarly to [10], our prototype tool
employs a graphical user interface to guide the generation and definition of
the AC requirements hiding the complexities of the particular AC model and
enforcement mechanism adopted by the cloud platform.

The abstract language we propose is similar to a structured natural language
albeit simplified by using syntactic constructs to express ABAC authorization
conditions in a way similar to Java Boolean conditions. A lot of work on the use of
structured natural language has been done to express AC policies. For instance,
the work in [9] analyzed the possibility to express user requirements using a
domain dependent grammar and a restricted vocabulary of English sentences.
We believe that this constitutes an interesting line of future work that can be
integrated in our approach to make our abstract language even more intuitive,
expressive, and friendly. Another interesting extension is to integrate a compo-
nent that allows to import XACML policies in SecurePG, and therefore to
compare our tool with other policy generators; following the ABAC policy min-
ing process presented in [11], we tested (although not integrated in SecurePG)
a component that processes the Amazon RBAC policies to generate expressions
compliant with our abstract policy language. This allows to load pre-existing
AWS policies (in the native JSON format) and generate, when supported by the
OpenStack AC model, equivalent OpenStack authorization rules.

To the best of our knowledge, our technique is the first that is capable of gen-
erating enforceable policies in AWS and Openstack from a high-level description
of the AC requirements. Our research is now trying to expand the support of
our prototype tool to other cloud platforms; such as Microsoft Azure or Google
Cloud in order to gain further experience with the automatic translation of high-
level policies. We also intend to enrich the abstract policy languages with more
constructs to express, for instance, the purpose of access—a feature which is
becoming of paramount importance to ensure the privacy of the processing. This
will also require the automatic synthesis of monitors to guarantee the satisfac-
tion of purpose constraints. To this end, we envisage to integrate the approaches
in, e.g., [2,5].
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Abstract. BYOD policies are informally specified using natural lan-
guage. We show how the SP4BYOD language can help reduce ambigu-
ity in 5 BYOD policies and link the specification of a BYOD policy to
its implementation. Using a formalisation of the 5 policies written in
SP4BYOD, we make comparisons between them, and explore the dele-
gation relationships within them. We identify that whilst policy acknowl-
edgement is a key part of all 5 policies, this is not managed by existing
MDM tools.

1 Introduction

Employees bring their own devices to work. In the past employees might have
had a dedicated company device. Today around 70% of companies have a BYOD
scheme [1]. In some fields, 85% of staff use their personal devices to look up
work-sensitive information [2]. Controlling employee’s devices is a challenge for
IT departments. Failure to manage devices can lead to employees accidentally
leaking confidential information. Unfortunately companies have limited control
over the devices inside their networks if they do not own them.

One solution to controlling devices is requiring users follow BYOD policies.
A BYOD policy takes the form of a user agreement, written in natural language,
which describes how devices should be used and configured. Various guides are
available for companies wishing to implement a policy from governments, stan-
dards bodies, and organizations seeking to advise [3–5]. On top of user agree-
ments, companies may also use Mobile Device Management (MDM) software
which can help enforce policies. MDM software can configure a device’s security
settings, and add security APIs, helping enforce some aspects of the policies.
But the use of MDM software does not guarantee compliance. One survey from
a leading MDM vendor found over 50% of companies using their MDM soft-
ware still had devices that did not comply with the policy [6]. Reasons for non-
compliance included out-of-date MDM configurations that hadn’t been updated,
and employees tampering with the MDM software.

BYOD policies are becoming more intricate. Prior work has looked at devel-
oping MDM software to enforce some aspects [7–9]. The MDM encoding of a pol-
icy is only part of the problem, however. BYOD policies are specified informally
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using natural language, and they contain more than just access control decisions.
They describe trust relationships inside the company between IT departments,
users, and HR, who each may be delegated to provide rules and make decisions.
Policies contain rules that require employees to acknowledge risks, and regula-
tions. An antivirus or MDM program may be used to implement part of the
policy. But it is the policy that specifies which software to use and when. There
is no automatic way to check how the policy has been implemented and by what.

Companies lack visibility as to how well they implement their policies. When
considering what tools a company may use Morrow notes “particularly with the
BYOD trend IT professionals do not know if anti-virus software is installed or
if it’s current” [10]. Even when devices can implement policies correctly, it is
hard to configure devices that are not owned by the company [11]. Our work
aims to address these problems directly: by using formal languages we can link
the policy to the implementation.

To describe the BYOD policies we present SP4BYOD: a formal language
for linking policies to the tools used to implement them, and distributing deci-
sions to relevant parties. Using a formalization of five BYOD policies written
using SP4BYOD we identify different idioms and common delegation patterns
present in BYOD policies. Our formalizations pick out the common concerns
and trust relationships in these policies. We look at what decisions and trust
relationships are used in BYOD policies. We identify BYOD idioms that cap-
ture frequently seen decisions in BYOD policies. These give a guide for where
future work implementing MDM tools should focus their efforts to cover more
aspects of policies.

SP4BYOD is not designed to replace existing static and dynamic analysis
and enforcement tools. A company might use multiple tools, app stores, or con-
tractual agreements with employees to enforce their policies. We aim to help
clarify the meaning of ambiguous natural language policy documents, and pro-
vide a rigorous means for following them. A company can use any MDM tool,
curated app store or user agreement to enforce their policy. SP4BYOD links the
specification of the policy to its implementation, showing exactly how a policy
is implemented and giving a rigorous means to enforce it.

We show how SP4BYOD can be used to encode policies and describe precisely
the different trust relationships. SP4BYOD is an instantiation of the SecPAL
authorization language [12] for mobile device policies and implemented atop
of AppPAL [13], which adds mobile device specific predicates to SecPAL, for
example, capturing app permissions. SecPAL is also a useful tool for describing
other policies surrounding mobile ecosystems [14]. Our SP4BYOD implementa-
tion can be easily extended to support new types of policies. It also gives us
access to tooling we have developed to check SP4BYOD policies for complete-
ness and redundant statements. For this work additional tooling was developed
to help visualise policies and describe their contents. This was helpful for making
comparisons between policies and checking our formalisation for mistakes.
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In summary, our work makes the following contributions:

– We present a formalisation of five different BYOD policies in SP4BYOD: a
new instantiation of SecPAL for describing BYOD policies (Sect. 2).

– Using our formalisation of the policies we make comparisons between the
different policies. Unlike previous work which looks at individual policies [15],
our work looks at policies across a variety of domains (Sect. 4).

– We identify that delegation and acknowledgements are an important aspect
of BYOD policies that current MDM software does not look at (Sect. 6).

1.1 Related Work

Martinelli et al.’s work looks at creating a dynamic permissions manager, called
UC-Droid. Their tool can alter what an app’s Android permissions are at run
time based on policies [8]. The tool allows companies to reconfigure their apps
depending on whether the employee is at work, in a secret lab, or working out-
of-hours. These kinds of policies are more configurable than the geofenced based
policies some MDM tools provide. Other work has looked at enforcing different
policies based on what roles an employee holds [7]. The work allowed a company
to verify the devices within their network and what servers and services they
could access. It also describes a mechanism for providing different users with
different policies.

Armando et al. developed BYODroid as a tool for enforcing BYOD poli-
cies through a secure marketplace [16]. Their tool allows companies to distribute
apps through a secure app store [9]. The store ensures apps meet policies through
a combination of static analysis and app rewriting with dynamic enforcement.
Their policies are low level, based on ConSpec [17], allowing checks based on
Dalvik VM’s state. Using their tool, they implemented parts of a NATO Com-
munications and Information Agency policy relating to personal networks and
data management [15]. Their work shows how the app-specific sections of a
BYOD policy can be check and enforced using tools. They did not look at where
the checks or policies come from, however.

An SP4BYOD policy might use BYODroid to ensure that parts of a policy
are enforced (as well as other tools for other parts). Using SP4BYOD, we can
distribute policies by sharing signed statements from different principals. We
can delegate to other marketplaces to decide if an app meets different parts of
policies. We can even create new stores by composing their policies and using
multiple store’s statements about the apps. Distributing checks like this is use-
ful when using some static analysis tools which can take a long time to run
(e.g. TaintDroid [18]).

Tools, such as Dr. Android and Mr. Hyde [19] and Aurasium [20], have sug-
gested app wrapping (where an app is recompiled to use guarded APIs) as a pos-
sible way to enforce policies. App rewriting has the advantage that the device’s
underlying OS needn’t be modified as the apps are changed at the source code
level. However app wrapping alone without additional analysis is insufficient to
enforce policies effectively [21].
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Our approach taken with SP4BYOD is similar to work on safety cases.
A safety case is an argument made to say a system is acceptably safe to be used in
a given scenario. Industrial safety cases are often described in natural language,
which can be ambiguous and unclear. Goal Structuring Notation (GSN) [22] is
one approach to make the safety cases explicit. It is a graphical formal notation
that lets engineers argue that a system is safe by linking safety goals to the argu-
ments made for a system’s safety. Similarly, work developing a formal language
for specifying how medical staff should collaborate in a healthcare scenario [23]
again helps clarify how roles are filled in a medical context on the basis of staff
and different healthcare providers.

It is interesting to examine how leading [24] MDM tools such as IBM’s
MaaS360, or Blackberry Enterprise Services (BES), enforce BYOD policies.
These tools support enforcing and checking compliance policies. They do not,
however, use policy languages to specify policies; rather they provide a lim-
ited number of checkboxes that admins can tweak (an excerpt of a policy from
MaaS360 is shown in Fig. 1). These tools allow administrators to configure a
device’s settings and provision the devices with company apps. Some support
app wrapping, which enables them to encrypt app data locally, use a VPN within
the app, or prevent apps not being used when the device isn’t compliant. But
because the policies are inflexible and tightly coupled to the device’s OS, inter-
vention by an administrator is often required. Whilst MDM software is good
at configuring devices, selecting which policies to apply is typically a manual

Fig. 1. Excerpt of a policy showing network settings from MaaS360.
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process performed by an administrator. Removing blacklisted apps is a common
feature, but the selection process of which apps to remove is manual.

2 Capturing BYOD Policies

As mobile devices have become more common in the workplace, BYOD policies
have been written to help control them. Part of their policies are prescriptive: if
you configure your device in this way, you will mitigate that threat. The policies
contain more than just configuration, however. Consider this rule taken from
the Security Policy for the use of handheld devices in corporate environments by
SANS [3].

SANS: Digital camera embedded on handheld devices might be disabled in
restricted environments, according to 〈COMPANY NAME〉 risk analysis. In sen-
sitive facilities, information can be stolen using pictures and possibly sent using
MMS or E-mail services.

In high-security facilities such as R&D labs or design manufacturers, camera
MUST be disabled. Furthermore, MMS messages should be disabled as well, to
prevent malicious users from sending proprietary pictures.

A company could use an MDM program to enforce this. Some MDM tools
can use geofencing to apply a policies in the area around a lab. Techniques
like this would implement the recommendation within the rule, but the rule
itself contains more than just configuration. It talks of restricted environments
decided by company risk analysis. How is this communicated to the device? Does
it access the list of restricted environments once from a server, are they fixed or
can a device decide them for itself? Can it judge using a policy if a location is
restricted? The rule also gives a security objective: prevent malicious users from
sending proprietary pictures. The guidelines are given, however, for the case of a
legitimate user using MMS or email. It may not be sufficient to stop a sufficiently
motivated malicious user.

Our approach does not try to enforce the policy by checking the app’s code
for programming errors. Rather we act as a “glue-layer” between the high-level
policy and the tools and trust relationships used to implement them. We capture
the goals of the policy rules so that the delegations of trust, tools implementing
the policy and their configuration are made explicit. This gives us greater clarity
as to which tool is being trusted to implement what policy. It allows us to see
who is being trusted to make which decisions, and use automatic-tools to uncover
problematic aspects of the policy [14]. Continuing with the example above, we
can encode this in SP4BYOD as:
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’company’ says ’risk−analyst’ can-say

Location:L isHighSecurityFacility.

’company’ says Device:D mustDisableIn(Location, ’camera’)
if Location isHighSecurityFacility.

’company’ says Device:D mustDisableIn(Location, ’mms’)
if Location isHighSecurityFacility.

’company’ says User:U hasSatisfied(’proprietary pictures policy’)
if U hasDevice(D),

D mustDisableIn(Location, ’camera’),
D mustDisableIn(Location, ’mms’),
Location isHighSecurityFacility.

After checking the policy we generate a proof tree that shows how the policy
was satisfied. These proof trees not only show how the policy was followed but
also provide an audit trail. In a company decisions may be delegated to different
departments. Auditors can see what happened when things go wrong. They
know who made what decision, and whether they made it through following
policy rules or as a stated fact.

3 Instantiating SecPAL

SecPAL was developed as a distributed access control language [12]. It is designed
to be have a clear readable syntax, and intuitive semantics. It is also designed
to be extensible, which makes it ideal for extending to create new languages. All
SecPAL statements are said by an explicit authority. The authority can say a
fact (that something is described by a predicate), a delegation (that someone
else can-say a fact), or a role assignment (that something can-act-as something
else). This statement optionally contain conditional facts, and constraints that
must be satisfied before the authority will say the statement.

To create SP4BYOD we instantiate SecPAL with four kinds of facts common
in BYOD policies: can, has, is and must. Like other SecPAL-based instantia-
tions [25,26] we extend the syntax of facts to support these constructs.

Fact Meaning

subject canAction The subject is permitted to perform the action

subject hasAction The subject has performed the action

subject isType The subject is a member of the type

subject mustAction The subject must perform the action

Facts of the must-kind represent obligations, actions to complete if a partic-
ular scenario presents itself. For these facts, we add a rule to check we perform
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the obligation. This rule should be checked periodically to ensure compliance.
Our implementation contains tooling to generate these rules automatically, by
parsing the policy.

〈speaker〉 says 〈subject〉 hasSatisfiedObligation〈Action〉
if 〈subject〉 must〈Action〉,

〈subject〉 has〈Action〉.

Facts using is predicates give types to variables. SP4BYOD inherits from
SecPAL’s (and Datalog’s) safety condition that the body of a statements must
reference all the variables in the head. This can lead to some boilerplate code
in policies that may obscure their meaning. To simplify the policies, we add
syntactic sugar for facts giving variables their type (variable isType). Variables
in the head of the statement of the form Type : Variable are replaced by the
variable and a condition Variable isType is added to the condition. The two
statements shown below (taken from the SANS policy) are equivalent, however
we feel the example on the right is easier to read.

’company’ says Device

canConnectToAP(X)

if X isOwnedByCompany,

Device isDevice,

X isAP.

’company’ says Device:D

canConnectToAP(AP:X)

if X isOwnedByCompany.

4 BYOD Policies

We examined 5 policies and encoded them into SP4BYOD looking for common
idioms. We selected these policies as they came from a variety of domains.

– The first is the Security Policy Template: Use of Handheld Devices in a Cor-
porate Environment, published by the SANS Institute [3]. This policy is a
hypothetical policy published to help companies mitigate the threats to cor-
porate assets caused by mobile devices. Companies are expected to modify
the document to suit their needs. The policy is general; not specific to any
particular industry, device, or country’s legislation.

– The second is taken from the Healthcare Information Management System
Society (HiMSS) [27]; a US non-profit company trying to improve healthcare
through IT. The HiMSS policy is relatively short and contains concerns spe-
cific to healthcare scenarios. It is written as a contract the users agree to
follow. In contrast, every other policy we looked at is written as an organi-
sation imposing rules on users they should follow to ensure compliance. The
policy is designed as a sample agreement for a system trying to manage per-
sonal mobile devices in a healthcare environment.

– The third is taken from a British hospital trust [28] and describes the BYOD
scheme used in practice at the hospital.
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Table 1. Summary of the contents of each of the BYOD policies.

SANS HiMSS NHS Edinburgh Sirens

Number of rules 33 15 56 20 25

SP4BYOD statements 71 21 58 10 39

Policy coverage 33 (100%) 14 (93%) 40 (71%) 10 (100%)a 22 (88%)

Rules using Acknowledgement 2 10 11 1 6

Rules using Delegation 23 5 33 2 13

Rules describing a restriction 18 3 8 1 5

Principal Speaker Company User nhs-trust Records-management Department
aThe Edinburgh policy contains a large number of rules that whilst marked as such are in fact just

descriptions of the document. All the policy rules that described restrictions or relationships were imple-

mented in SP4BYOD.

– Finally, we looked at two simpler policies from The University of Edin-
burgh [29] and a company specialising in emergency sirens [30]. These policies
are simpler, and shorter than the other policies we looked at comprised of
much more general rules.

We summarise the policies in Table 1. Each policy contains a series of rules,
which we implemented by one or more SP4BYOD statements. The policy cover-
age represents the number of rules that have an SP4BYOD description attached.

All five of the policies make use of acknowledgements. The use of an acknowl-
edgements could be because enforcing that rule in a policy through technical
means is undesirable. It could indicate policy authors care more that the sub-
jects are aware of the rules than they do for rigorous enforcement. All but the
HiMSS policy have rules that include locking down a device by disabling fea-
tures. All but the Edinburgh policy have rules that look at what should happen
if a user loses their device. The rest have rules that require employees inform
someone when something happens. Common concerns, such as these, suggest
where future MDM software should focus their efforts.

Only the NHS and SANS policies, the two most complex policies, describe
when a device can install an app and what kinds of apps are installable. In both
policies this expressed as a delegation to the appropriate groups to authorize an
app. For example, in the SANS policy the IT-Department are responsible for
deciding what apps can be installed. The NHS policy, however, is significantly
more complicated. Apps have to be approved by three different groups (the IGC,
the Employee’s manager, and the relevant group for either clinical or business
cases) before the Trust will say that an employee can install an app.

NHS: Apps for work usage must not be downloaded onto corporately issued mobile
devices (even if approved on the NHS apps store) unless they have been approved
through the following Trust channels: Clinical apps; at the time of writing there are
no apps clinically approved by the Trust for use with patients/clients. However, if
a member of staff believes that there are clinical apps or other technologies that
could benefit their patients/clients, this should be discussed with the clinical lead
in the first instance and ratification should be sought via the Care and Clinical
Policies Group. A clinical app should not be used if it has not been approved via
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this group. Business apps; at the time of writing there are no business (i.e., non-
clinical) apps approved by the Trust for use other than those preloaded onto the
device at the point of issue. However, if a member of staff believes that there are
apps or other technologies that could benefit their non-clinical work, ratification of
the app must be sought via the Management of Information Group (MIG). An app
should not be used if it has not been approved via this group. Following approval
through Care and Clinical Policies and/or MIG, final approval will be required
through Integrated Governance Committee. Use of paid apps must be agreed in
advance with the device holder’s line manager and there should be a demonstrable
benefit.

’nhs−trust’ says App isUsable if App hasMet(’clinical−use−case’).
’nhs−trust’ says App isUsable if App hasMet(’business−use−case’).
’nhs−trust’ says ’cacpg’ can-say App:A hasMet(’clinical−use−case’).
’nhs−trust’ says ’mig’ can-say App:A hasMet(’business−use−case’).
’nhs−trust’ says App isInstallable

if App hasMet(’final−app−approval’), App isUsable.

’nhs−trust’ says ’igc ’ can-say App hasMet(’final−app−approval’).
’nhs−trust’ says Device canInstall(App)

if App isInstallable, App isApprovedFor(Device).

’nhs−trust’ says Employee:Manager can-say

App:A isApprovedFor(Device)

if Manager isResponsibleFor(Device).

We might expect corporate policies to describe what apps can be installed in
terms of the apps functionality. This does not appear to be the case, however.
As part of selecting the apps, an IT department or group may choose to use
advanced instrumentation and policies [9]. Alternatively, they may manually
chose apps to form a curated app store as some MDM vendors allow. From the
perspective of the policy, it is more important who makes the decision rather
than what they chose, however.

5 Authorization Example

As a worked-example consider the NHS rules for finding approved apps (Sect. 4).
Suppose an employee, Alice, wished to get an app, com.microsoft.office,
installed on their device. To do so, Alice would have to convince the device that:

’nhs−trust’ says ’ alices −phone’ canInstall(’com.microsoft.office ’).

Alice wishes to use the app for business so to satisfy the policy Alice must
collect the following statements:

– ’nhs−trust’ says ’com.microsoft . office ’ isInstallable.

For this, she needs a statement from the Management of Information Group
that it has a business use-case. She also needs approval from the Integrated
Governance Committee.
1. ’mig’ says ’com.microsoft . office ’ hasMet(’business−use−case’).



Capturing Policies for BYOD 319

2. ’ igc ’ says ’com.microsoft . office ’ hasMet(’ final −app−approval’).

– ’nhs−trust’ says ’com.microsoft . office ’ isApprovedFor(’alices−device’). To get
this she needs a statement from the manager responsible for Alice’s device
(Bob) approving the app.
3. ’bob’ says ’com.microsoft . office ’ isApprovedFor(’alices−device’).

4. ’nhs−trust’ says ’bob’ isResponsibleFor(’alices−device’).

– Additionally, she needs the following typing statements.
5. ’nhs−trust’ says ’com.microsoft . office ’ isApp.

6. ’nhs−trust’ says ’bob’ isEmployee.

Alice obtains the statements by contacting each of the speakers. Each may
either give her the statement she needs or may give her additional rules. For
example, the MIG and IGC may be happy to state their statements (after a
review). When checking if the app is an App in Item 5, the NHS trust may be
instead inclined to delegate further. They could reply that if the App is in the
Google Play store then they are convinced it is an app. Alice would then have
to obtain additional statements if she wanted to prove this statement. As with
SecPAL, all statements should have a signature from their speaker proving they
said the statement. Alternatively, the speaker could refuse to give the statement,
either because they do not believe it to be true, or they cannot give an answer.
In this case, Alice would have to look for an alternative means to prove the
statement or accept that they cannot install the app.

When the statements have been collected Alice can use a SecPAL inference
tool (such as AppPAL1) to check the policy has been satisfied. The generated
proof from the tool lets auditors review how the decision was made, and verify
the decision-making process.

6 BYOD Idioms

When examining the policies, we noticed two particular idioms in many policies:
acknowledgements and delegation. We describe both idioms in greater detail,
and show how they can be implemented in SP4BYOD, below. MDM tools and
research have focussed so far on implementing restrictions on apps and devices
[8,31,32]. Implementing these controls is a vital aspect of BYOD policies and
all 5 of the policies we looked at had rules that described restrictions (Table 1).
Every policy also contained rules that required employees acknowledgements,
however. Only the SANS policy (which is configuration focussed) contained more
rules that required restrictions than acknowledgements. All the policies contained
more rules featuring delegation relationships than functionality restrictions.

Delegation and Roles Within Policies. Delegation is an important part of
each of the policies. Each of the policies describes through rules how separate
entities may be responsible for making some decisions. These rules can be a

1 https://github.com/apppal/libapppal.

https://github.com/apppal/libapppal
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delegation to an employee’s manager to authorize a decision (as in the NHS
policy). It could be to technical staff to decide what apps are part of a standard
install (as in the sirens and SANS policies).

SP4BYOD requires an explicit speaker for each statement. Speakers can dele-
gate to others by making a statement about what they can-say. When translating
the policies, the author of the policy is used as the primary speaker of the pol-
icy’s rule (Table 1). For the HiMSS policy, where the user states what they will
do rather than the company stating what they must, the user is the primary
speaker. All the policies describe multiple entities that might make statements
and delegate. With SP4BYOD policies any speaker can delegate a decision to
another speaker (with restrictions on re-delegation). The delegation might be to
a user to acknowledge a policy, or it might be to other groups in the company
who are responsible for certain decisions.

In all the policies we looked at the majority of the decisions are made by three
groups of speakers: the company, the IT-department, and the users or employ-
ees. All the policies also delegate to a user (apart from HiMSS where the user
is the primary speaker). The user is typically responsible for providing infor-
mation, such as agreements to policies, reporting devices missing, and updating
passcodes. In the Sirens, SANS and NHS policy each describe an IT-department
who are delegated to make some decisions. The HiMSS policy describes an xyz-
health-system who act similarly to an IT-department. These decisions are more
varied and can overlap with the responsibilities of the company. In the NHS and
SANS policies, the IT department is responsible for maintaining lists of activated
devices. In the Sirens and SANS policies, the IT department maintains a list of
what is installable on a device or not.

When a policy decision requires input from a third-party delegation is used.
For example, an employee’s manager has to authorise an app install. The SecPAL
can-say statement is the basis for a delegation. We can ask the HR department
to state who is someone’s manager.

’company’ says ’hr−department’ can-say

Employee:E hasManager(Employee:M).

If we wish to delegate to someone, we can add conditionals to the can-say state-
ment that enforces any relationship between the delegating and delegated par-
ties.

’company’ says Manager can-say

Employee canInstall(App:A)

if Employee hasManager(Manager).

7 Conclusions

We have presented SP4BYOD: an instantiation of SecPAL for BYOD policies.
Using an SP4BYOD formalization of 5 BYOD policies we have identified that
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whilst delegation and acknowledgement form a large part of written BYOD poli-
cies, existing BYOD tools ignore them. BYOD policies contain delegation and
trust relationships that define who is responsible for making different decisions in
a company. Sometimes that is administrators and technical staff deciding what
to permit inside the company, and sometimes it is the user’s themselves agreeing
to follow a policy. Previous work has focussed on the technical staff’s decisions
and developing new ways to automate their decisions. Our work looks at the
policies at a higher level tracking, managing and authorizing policies based on
what people have said and what tools were run.

SP4BYOD improves upon existing MDM tools by allowing sophisticated del-
egation relations and by providing a declarative language for expressing policies.
The language gives greater flexibility to policy authors and allows them to write
policies that depend on other policies rather than predefined settings and groups.
It lets us track what users have agreed to, what their policies are, how they are
specified, and how they are satisfied.

Acknowledgements were used in all the policies, but were not a part of MDM
tools. A purely speculative explanation for this might be that the people using
the MDM software (the IT department) do not care about the acknowledge-
ments, and that another department (HR perhaps) are responsible for tracking
what corporate policies employees have agreed to and have their own methods
for dealing with that. Future work will aim to further explore how these acknowl-
edgements are used within a company and how to manage them in a practical
manner.

Related systems, such as GSN described in Subsect. 1.1, use a graphical nota-
tion. Whilst SecPAL-based languages are designed to be readable, diagrams can
help make authors write policies and auditors understand them. Future work
will look at extending SecPAL’s notation to create such diagrams and further
aid readability.

Acknowledgement. All the policies we looked at require their subjects to be aware
and acknowledge certain rules or policies, and that the company may perform certain
actions. For example, the NHS and HiMSS policies state that the organisation will
wipe devices remotely to protect confidential information a user loses their device.
Both policies also say that employees would lose personal information if they had it on
the device and the company needed to erase it. The employee is required to be aware
of this, and in the case of the HiMSS policy, agree to hold the company harmless for
the loss.

Both the SANS and the siren-company policies use acknowledgements to link to
other sets of rules that employees should follow. These policies are not further specified,
and in the case of an acceptable use policy may be hard to enforce automatically. The
SANS policy requires that all employees follow an email security, acceptable use, and an
eCommerce-security policy. The Sirens policy expects an employee to use their devices
ethically and abide by an acceptable use policy.

When there is a (usually separate) set of rules and concerns employees should be
aware of acknowledgements are used. The company may not wish to enforce these
separate rules automatically, however. For instance, a company may have an ethics
policy that says employees should not use devices for criminal purposes. The company
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is not interested in, or capable of, defining what is criminal. They trust their employees
to make the right decision and to be aware of the rules.

To implement these in SP4BYOD, a policy author creates two rules: the
first stating their employees must have acknowledged the policy, the sec-
ond delegating the acceptance of the policy to the employee themselves.
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Abstract. Conventional state-of-the-art image steganalysis approaches
usually consist of a classifier trained with features provided by rich image
models. As both features extraction and classification steps are perfectly
embodied in the deep learning architecture called Convolutional Neural
Network (CNN), different studies have tried to design a CNN-based ste-
ganalyzer. This work proposes a criterion to choose either the CNN
designed by Xu et al. or the combination Spatial Rich Models (SRM)
and Ensemble Classifier (EC) for an input image. Our approach is stud-
ied with three steganographic spatial domain algorithms: S-UNIWARD,
MiPOD, and HILL, and exhibits detection capabilities better than each
method alone. As SRM+EC and the CNN are only trained with MiPOD
the proposed method can be seen as an approach for blind steganalysis.

Keywords: Steganalysis · Spatial domain · CNN · SRM+EC

1 Introduction

During this past decade many steganographic algorithms have been proposed to
hide a secret message inside a cover image. Such embedding schemes can operate
in the spatial domain, like for example MiPOD [20], S-UNIWARD [7], HILL [15],
WOW [8], HUGO [16], or STABYLO [3] but also in the frequency domain as
J(PEG) counterpart of S-UNIWARD. When designing such an algorithm the
objective is to provide an approach that changes the cover image as little as
possible. The less the cover is modified, the less likely the stego image containing
the message is to be detected and thus the more secure the steganographic
scheme is. Obviously, assessing the security of steganographic tools has given rise
to the dual challenge of detecting hidden information, also called steganalysis.

The wide majority of image steganalysis approaches are two-step. The first
stage exhibits useful information on image content by computing a set of features
and the second one uses them to train a machine learning tool to distinguish
cover images from stego ones. For the first step, different Rich Models (RM) have
been proposed for the spatial domain (SRM) [5] and the JPEG one [10], while
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for the second step the most common choice is Ensemble Classifier (EC) [12].
This combination RM+EC is used in many state-of-the-art image steganalysis
tools. As an illustration, in [5] stego images obtained with the steganographic
algorithm HUGO have been detected with errors of 13% and 37%, respectively,
for embedding payloads of 0.4 and 0.1 bpp. These errors were slightly reduced
(12% and 36%) in [9] thanks to an improved rich model.

Deep learning [14,19] has led to breakthrough improvements in various chal-
lenging tasks in computer vision, becoming the state-of-the-art for many of them.
A key reason for this success is the current availability of powerful computing
platforms, and more particularly GPU-accelerated ones. Among the different
network architectures belonging to this family of machine learning methods,
Convolutional Neural Networks (CNN) [13] are very efficient to solve image clas-
sification problems. As steganalysis is a similar problem, since the objective is to
classify an input image as either a cover or a stego, the design of a CNN-based
steganalyzer has received increasing attention for the past few years.

From an architecture point of view, a CNN is a feedforward network composed
of two parts matching exactly the two steps used in conventional steganalysis. The
first part, called the convolutional part, consists of one or several layers trained to
extract feature maps becoming smaller with the layer depth. The second one is
composed of some fully-connected layers trained simultaneously to perform the
classification task. Hence, CNN does not only learn how to classify, but also how
to automatically find a set of features giving a better representation of the input
image thanks to 2D convolution kernels. A feature map is usually produced by
a three-step process: a combination of filtered maps of the previous layer (or the
input image for the first layer), a nonlinear processing by a neuron, and finally a
size reduction through pooling (see [13] for more details).

The remainder of this paper proceeds as follows. Section 2 presents related
works. The next section first recalls the CNN architecture designed by Xu
et al. [23]. After an experimental study, we focus on why it sometimes fails
to detect some stego images. Section 4 is devoted to our proposal: a criterion to
choose the best suited method between CNN and SRM+EC. The paper ends
with a section that summarizes the contributions and outlines suggestions for
future work.

2 Related Works

2.1 Steganography

To be self-sufficient, this article recalls the key ideas of the three most secure
steganographic tools, namely S-UNIWARD [7], MiPOD [20], and HILL [15]. For
each of these algorithms, a distortion function ρ associates to each pixel the cost
of modifying it. More formally, for a given cover X, let ρ(X) be the matrix whose
elements represent the cost of increasing or decreasing by 1 the corresponding
pixels. By ranking pixels according to their value in ρ(X), one can compute the
set of pixels whose modification induces the smallest detectability. For instance
the distortion function ρU of S-UNIWARD is defined by:
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ρU (X) =
3∑

k=1

1
|X � Kk| + σ

� |Kk|�, (1)

where � is a convolution mirror-padded product, Y � is the result of a
180◦rotation of Y , Kk, 1 ≤ k ≤ 3 are Daubechies-8 wavelet kernels in the
three directions, and σ is a stabilizing constant. It should be noticed that the
multiplicative inverse is element-wise applied. An element of ρU (X) is small
if and only if there are large variations of large cover wavelet coefficients in
the three directions.

In MiPOD, the distortion function ρM is obtained thanks to a probabilistic
approach. More precisely, let β be the matrix defined as the probabilities to
increase by 1 the image pixels. The objective of such a scheme is then to find
probabilities which minimize a deflection coefficient, Σσ−4β2, where σ is the
residual variance matrix of image pixels. Notice that the product is element-
wise applied and the sum concerns all the elements of the matrix. Thanks to a
Wiener filter and a Lagrangian method, β can be computed. Considering such
pixel probabilities, the distortion cost ρM is defined by:

ρM (X) = ln
(

1
β

− 2
)

. (2)

Finally, the distortion function ρH of the HILL steganographic scheme is
based on combinations of convolution products. However, contrary to the dis-
tortion function ρU of S-UNIWARD, this one combines a high-pass filter H1 and
two low-pass filters L1 and L2. More precisely, ρH is defined by:

ρH(X) =
1

|X � H1| � L1
� L2, where H1 =

⎡

⎣
−1 2 −1

2 −4 2
−1 2 −1

⎤

⎦ (3)

and L1 (resp. L2) is a 3 × 3 (resp. 5 × 5) mean matrix.
In all aforementioned schemes, the distortion function reflects the underlying

image model. To summarize, ρ returns a large value in a easy-defined or smooth
area, whereas in a textured or “chaotic” area, i.e., with no model, it returns a
small value.

2.2 CNN-Based Steganalysis

The first attempt at designing a CNN-based steganalyzer for image steganaly-
sis is due to Tan et al. [21]. Their proposal, a stacking of convolutional auto-
encoders, yielded for HUGO a detection error more than twice as bad as the one
given by SRM+EC: 31% compared to 14% for a payload of 0.4 bpp.

Qian et al. [18] have proposed for 256 × 256 input images a CNN consisting
of a convolutional part of 5 layers producing at the end 256 features, which are
then processed by a fully-connected part of two hidden layers and a final output
one of two softmax neurons. The preliminary high-pass filtering is done using
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a 5 × 5 kernel, called F0, similar to the 5 × 5 kernel predictor obtained in [6].
As noticed by Fridrich and Kodovský in [6], this kernel is inspired by a specific
embedding algorithm, namely HUGO, but it worked well for the other stegano-
graphic algorithms they tested. The detection performance of this CNN was still
slightly lower than the state-of-the-art SRM+EC steganalyzer, but Pibre et al.
[17] improved it thanks to a CNN with a different shape.

In comparison with the work of Pibre et al., the CNN we designed in [2]
being shallow, was quite different and calling into question some assumptions
previously made. On the one hand, we proposed a convolutional part of two
layers: a first layer reduced to a single 5×5 kernel trained to replace F0, followed
by a layer using large kernels (almost as large as the image size). On the other
hand, the resulting set of 256 features (for an input image of 512 × 512 pixels)
was so discriminating that the fully-connected network doing the classification
task could be shortened to the two final softmax neurons. Unfortunately, our
work, as well as the one of Pibre et al., suffers from a crippling drawback: stego
images were always obtained by using the same embedding key. The work by
Qian et al. might suffer from the same drawback too.

More recently, the works [22,23] by Xu et al. have shown that CNN-based
steganalysis remains competitive with conventional steganalysis. In [23] they
first proposed a structural design of CNNs for steganalysis that is neither large,
nor deep, and learns from noise residuals, since they considered as input image
the one issued from high-pass filtering using the kernel F0. The architecture of
such convolutional networks, which is the basis of our work presented there-
after, will be described in detail in the next section. The experiments they com-
pleted have considered two spatial content-adaptive steganographic algorithms:
S-UNIWARD and HILL. They have shown that the performance gained by an
ensemble of five CNNs is comparable to the one of SRM+EC. In the following
work [22], Xu et al. decided to study the merging of CNNs and ensemble classifier.
The background idea is to train a second level classifier using information pro-
vided by CNNs. Furthermore, they also sligthly modified the architecture of the
original CNN designed in [23]. This new CNN architecture has one more layer and
changed pooling sizes in the previous ones. In addition to the ensemble method
[23], called PROB, where EC will use the output of 16 CNNs instead of five,
they defined two further ensemble methods. The first one, called PROB POOL,
is supposed to lower the loss of information induced by the pooling operation.
Indeed, when the stride value is larger than one, some sampling operations are
dropped. For a stride value p > 1, applying the pooling on a block of p×p pixels
gives a single value, whereas for a stride of 1 the same block would have been
replaced by p × p values. The idea is thus to also consider independently each
remaining p× p− 1 possible sampling. The second new ensemble method, called
FEA, is simpler: it uses an architecture merging the convolutional part and the
ensemble classifier. From the experiments done with these 6 ensemble scenarios
(two possible sizes for the final vector of features and three methods), Xu et al.
concluded that it might be interesting to replace the fully-connected part of the
CNN by EC for image steganalysis.
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Finally, we can notice the latest work [24] by Zeng et al. dealing with JPEG
domain steganalysis. They propose to start by manually applying to the input
image the first two phases of DCTR [10], namely a convolution followed by
Quantization & Truncation (Q&T). They use 25 residual images, where each is
obtained by using a 5×5 DCT basis pattern, and three Q&T combinations. Then,
for each group of residual maps for a given Q&T combination, a subnetwork
corresponding to a simplified version of the convolutional part proposed by Xu
et al. in [23] is trained to produce a feature vector of 512 components. To obtain
the final prediction, the three vectors are concatenated and given as input to
a three-layer fully connected network, which is trained together with the three
subnets. Based on the experiments performed on more or less large databases of
images issued from ImageNet, the authors claim that their proposal outperforms
all other existing steganalysis approaches.

3 Convolutional Neural Networks for Image Steganalysis

3.1 The CNN Architecture Proposed by Xu et al. [23]

Like almost all the previous research works on CNNs for image steganalysis in
the spatial domain, Xu et al. proposed an architecture that takes as input a high-
pass filtered (HPF) version of the input image as shown in Fig. 1(a). Therefore,
they used the kernel denoted by F0 in [6,17,18] to highlight noise residuals. This
filtering is obviously of great importance, since it provides the input information
to the CNN, and thus must be suited to the classification task. The relevance of
this kernel comes from its design for rich models. A classification part reduced
to output neurons means that a linear classification is able to distinguish covers
from stegos using the features produced by the final convolutional layer.

Starting with a HPF image of 512×512 pixels, the convolutional part results
in 128 features, as shown in Fig. 1(b). Each of the four first layers successively
halves the image size by generating feature maps using an average pooling, while
the fifth one replaces each feature map by a single value obtained through a global
average pooling. Layers 1 and 2 learn 5×5 kernels, and the remaining layers 1×1
ones, the idea being to avoid an overfitting of the CNN to image content and/or
stego noise. Layer 1 has also a specific function applied onto the outcome of the
convolution, namely the absolute function (ABS), supposed to ensure that the
model takes care of the symmetry in noise residuals like in rich models [6]. Batch
normalization (BN) [11] is performed in every convolutional layer. A mixing of
Tanh and ReLU non-linear activation offered the best performance.

3.2 Detection Performance Evaluation of the CNN

To study and assess the performance of Xu et al. proposal, which was originally
evaluated using a modified version of Caffe toolbox, the corresponding CNN
has been implemented with the open source software library TensorFlow. The
implementation is available on download from GitHub1. All the experiments are
1 https://github.com/rcouturier/steganalysis with CNN and SRM.git.

https://github.com/rcouturier/steganalysis_with_CNN_and_SRM.git
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Fig. 1. CNN proposed by Xu et al. [23]: (a) overall architecture and (b) detailed view.

performed on a NVIDIA Tesla Titan X GPU, using as cover database the well-
known BOSSBase [1]. Six stego images are associated to each cover image. They
are obtained by embedding a message with S-UNIWARD, MiPOD, and HILL
schemes considering two different payload values: 0.1 and 0.4 bpp. During a
training execution a CNN is trained on a set of 5,000 cover-stego pairs and its
detection performance assessed on a the remaining 5,000 pairs. Both training
and testing sets are built by randomly picking pairs of images.

Notice that even if we implemented exactly a CNN according to the proposal,
there is a major difference in comparison with the original work in the way the
final prediction is obtained. In [23] Xu et al. generated from a training set five
different non-overlapping 4,000/1,000 splits and each of them is used to train
separately a CNN occurrence. The final prediction for a given test image is then
obtained by averaging the five output probabilities.

Let us explain how the final prediction is computed with a set of T trained
CNNs which are denoted as CNN1,CNN2, . . . ,CNNT . First of all, each CNNi,
1 ≤ i ≤ T , memorizes its L last versions provided by the L last training epochs
obtained all along the program execution. These internal CNNs are denoted as
CNN1

i ,CNN2
i , . . . CNNL

i . Each of these internal CNNs gives an answer, which is
0 if the tested image I is declared as cover and 1 otherwise. Finally, the average
of all the values is computed, and a discrete answer is returned by each CNN
depending on whether this average is greater or equal to 0.5 or not. This is
formalized for each i, 1 ≤ i ≤ T , by:

is stego(I,CNNi) =

⎢⎢⎢⎣ 1
L

L∑

j=1

is stego(I,CNNj
i ) + 0.5

⎥⎥⎥⎦ . (4)
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The aggregation of these results must take into consideration the fact that
an image I we want to classify is used in training step in some CNNi or not. Let
us consider the set TI = {i|1 ≤ i ≤ T and I is used in testing step of CNNi} and
TI be its cardinality. The number TI counts the number of times I is used as a
testing image by some CNNs. The final answer is then the discrete answer of the
average of all the CNNs that have used I as testing image. This is formalized by:

is stego CNN(I) =

⌊
1
TI

∑

i∈TI

is stego(I,CNNi) + 0.5

⌋
. (5)

Indeed, as both training and testing sets are built by randomly picking images,
the number of times an image I is in a test set varies.

Due to the huge computation cost we have only trained CNNs using MiPOD
dataset and tested them directly on the S-UNIWARD and HILL ones. Hence,
we can assess whether a CNN is competitive in a blind steganalysis approach.

The key training parameters for reproducible experiments are discussed
thereafter. First, a CNN is trained for a maximum number of training epochs
Emax set to 1, 000 and 300, respectively, for embedding payloads of 0.1 and
0.4 bpp, without any overfitting control with a validation set. To compute the
prediction given by a network CNNi, L = 20 occurrences are used. Second, the
network parameters are optimized by applying a mini-batch stochastic gradient
descent, a typical choice in deep learning. We have used a mini-batch size of
64 samples. The gradient descent parameters are: a learning rate initialized to
0.001, but with no weight decay, and a momentum set to 0.9.

The obtained average detection errors are reported in Table 1. The first line
labelled with “Caffe [23]” recalls values given in [23]. It should be noticed that
“X” means that HILL has not been evaluated with the Caffe framework. The
second line gives the average error rates from T = 12 independent training runs
of the TensorFlow implementation for embedding payload of 0.4 bits per pixel.
The third gives the average error rates for 200 runs with classical SRM+EC. In
this latter context maxSRMd2 [4] has been used as a feature set. Finally, the last
line gives the results obtained when the training stage is executed with images
modified by MiPOD, whereas the testing stage is executed with images modified
with another embedding scheme (SRM+EC and maxSRMd2 are still used).

From the values given in this table we can draw several conclusions. First,
despite the differences highlighted previously, for a payload of 0.4 bpp the Tensor-
Flow implementation produces nearly the same performance for S-UNIWARD
and HILL than the original Caffe one, while for 0.1 bpp the performance is
worse due to the blind context. Second, we observe that SRM+EC results in
the best performances for S-UNIWARD in case of non-blind steganalysis. Third,
for MiPOD the CNN approach is still competitive with SRM+EC. Fourth, the
CNNs trained by only making use of the MiPOD dataset can provide a simi-
lar detection accuracy for S-UNIWARD and HILL, even if for the payload of
0.1 bpp a larger degradation of the accuracy can be noticed. Obviously, the low-
est detection error is gained for the embedding scheme which has provided the
training data. Fifth, CNNs outperform SRM+EC in blind steganalysis context
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Table 1. Average detection error as a function of classifier (original Caffe by Xu et al.,
our TensorFlow trained only with MiPOD at 0.4 bpp, and SRM+EC) and of payload.

S-UNIWARD MiPOD HILL

0.1 0.4 0.1 0.4 0.1 0.4

Caffe [23] 42.67 19.76 X X 41.56 20.76

TensorFlow 47.38 20.52 43.72 19.36 46.79 20.25

SRM+EC 39.84 18.06 41.18 21.42 42.96 23.31

SRM+EC (blind) 40.57 20.85 41.18 21.42 43.35 23.99

with a payload of 0.4 bpp, which means that CNNs allow a better generalization
to different steganographic algorithms.

3.3 Characterizing the Mis-CNN-Classified Images

Let us start with some illustrative examples of images describing the typical
behavior of the CNN in the case of MiPOD with payload 0.4 bpp. Figure 2
presents four case examples where for each we have the cover image and the cor-
responding differences between it and the stego one. From the images showing
the differences we can distinguish two groups of images according to the pixels
modified by the embedding process. It clearly appears that for both images shown
on the upper line, 1388.pgm and 8873.pgm, MiPOD mainly modifies pixels cor-
responding to edges. For 1911.pgm and 3394.pgm, changes are scattered without
obviously highlighting any underlying image edge. Consequently, since a CNN
mainly learns to detect underlying edges, one can easily guess that the CNN-
steganalyzer is able to detect both cover and stego for 1388.pgm and 8873.pgm,
whereas it fails for the two other images. We are then left to provide a metric
on images which reflects the difficulty to perform the CNN classification task.

Since the aforementioned steganographic schemes have their own distortion
function ρ, we decided to study whether a metric can be deduced from it.
Therefore, for each image I of the BossBase we have performed 200 classifi-
cation procedures with SRM+EC (thanks to maxSRMd2) for the embedding
algorithm MiPOD at payload 0.4 bpp. Figure 3(a) presents the resulting scat-
ter plot of (ρU (I), eSRM+EC(I)) pairs and the curve linking the mean error of
each class, whereas the bar displays its corresponding standard deviation. This
figure is obtained for S-UNIWARD, while Fig. 3(c) and (e) are the correspond-
ing ones for HILL and MiPOD. Similarly, Fig. 3(b), (d), and (f) show the scat-
ter plots, curve, and error bars, for the CNN. In that case, (ρU (I), eCNN(I)),
(ρH(I), eCNN(I)), and (ρM (I), eCNN(I)) are the average testing error obtained
after training 12 independent networks. This low number explains why in com-
parison with the SRM+EC steganalysis context the points are less vertically
spread. The scalar ρU (I) is the mean of all the matrices ρU (X) presented in
Eq. (1), where U means S-UNIWARD. ρM (I) has a similar definition for MiPOD.
Finally ρH(I) is not directly the mean of all the matrices ρH(X) of HILL. Due to
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(a) Cover 1388.pgm and differences. (b) Cover 8873.pgm and differences.

(c) Cover 1911.pgm and differences. (d) Cover 3394.pgm and differences.

Fig. 2. Examples of differences images between cover and corresponding stego when
embedding is performed using MiPOD with a payload of 0.4 bpp.

its definition (Eq. (3)), some extremely large values may result from an extremely
small denominator and lead to a meaningless mean value. To avoid this behavior,
extremely large values are excluded from the computation.

By focusing on Fig. 3(a), (c), and (e), it can be first deduced that the detection
error of SRM+EC is quite independent of ρ. Secondly, considering Fig. 3(b)
and (d), we can deduce that the CNN testing error continuously decreases with
respect to ρU (I) and with ρH(I). The good correlation between the prediction
accuracy of the CNN for a given image I and the value of ρ(I) can be observed in
the two former cases but not in the last one. The functions ρU and ρH are thus
an indicator of the CNN accuracy. For instance, in Fig. 2, for the misclassified
images we obtain ρU (1911) = 2.1 and ρU (3394) = 3.06; on the other hand for
the well detected images we get ρU (1388) = 7.05 and ρU (8874) = 7.39. Thus ρU
and ρH enable to cluster the images in two groups which are in accordance with
those noticed at the beginning of the section.

4 Taking the Best from CNN and SRM+EC Predictions

4.1 Choosing the Best Method for a Given Input Image

We have shown that the lower the distortion function mean ρU of an input image
is, the more difficult it will be for the CNN to correctly detect whether the image
is a cover or a stego. Conversely, SRM+EC gives rather regular detection errors,
without showing too much sensitivity to ρU , being robust against the image
structure. A look at Fig. 3(a) and (b) shows that we can take advantage from
these different behaviors to improve the detection performance on the BossBase.

In fact, SRM+EC and the CNN can be combined due to complementary
purposes. As can be seen in Fig. 4, from the largest ρU value up to the point
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(a) Detection error w.r.t image ρU

value for SRM+EC.
(b) Detection error w.r.t image ρU

value for the CNN by Xu et al.

(c) Detection error w.r.t image ρH

value for SRM+EC.
(d) Detection error w.r.t image ρH

value for the CNN by Xu et al.

(e) Detection error w.r.t image ρM

value for SRM+EC.
(f) Detection error w.r.t image ρM

value for the CNN by Xu et al.

Fig. 3. Relation between testing errors and distortion function mean.

where both curves intersect the CNN is the most competitive, whereas after,
towards the lowest ρU value, it is SRM+EC which is the most accurate. Formally,
this can be expressed as follows for an input image I, once ρU (I) is computed:

if ρU (I) < ρ∩
U use SRM+EC prediction, otherwise use CNN prediction (6)

where ρ∩
U corresponds to the intersection abscissa. For Fig. 4, we have obtained

ρ∩
U = 6.6. Let us emphasize that the same approach can be applied to S-

UNIWARD and HILL algorithms, leading to different values for ρ∩
U .
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Fig. 4. Average error of CNN and SRM+EC for MiPOD 0.4 bpp w.r.t ρU .

Overall, the feature set generated by a spatial rich model is so large and
diverse that it is able to give predictions yielding almost the same level of accu-
racy, regardless of the pixels modified by the embedding process. Moreover, the
computing of the features is precisely defined. Conversely, the CNN learns to
extract a set of features to fulfill its classification task according to the data
given during the training step. Therefore, it will be well-suited to process images
having the same kind of embedding than the main trend in the training set.
In other words, images having low ρU values are so underrepresented in the
BossBase that they have a limited influence during the training process.

4.2 Detection Performance Evaluation of the Proposal

Table 2 presents in its last column the average detection error obtained for
the three steganographic algorithms. The first column gives the performance
of SRM+EC computed on images I such that ρU < ρ∩

U , this last value is shown
in the second column, while the third column shows the results gained from
CNN for the remaining images. The proposal improves the detection perfor-
mance for each embedding algorithm. For a payload of 0.4 bpp, S-UNIWARD
has the lowest error rate with 14.82%, whereas for MiPOD and HILL we have
values slightly below 17%. The lines labelled as non blind correspond to situa-
tions where SRM+EC was trained with the same algorithm than the one used
to perform the embedding. Conversely, the lines denoted as blind mean that
SRM+EC was trained with MiPOD and then used to detect S-UNIWARD or
HILL. This also explains why for both blind and non blind situations the CNN
gives the same error when both cases use the same value for ρ∩

U . For the lower
payload of 0.1 bpp, the improvements provided by our method are also clearly
visible. These results are also somewhat surprising, since they are obtained by
training only CNNs using images embedding hidden messages with MiPOD. This
means that even if each steganographic algorithm has its own distortion func-
tion, there is certainly a high redundancy among the modifications they made
on the same cover image.
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Table 2. Average detection error according to ρ∩
U for different embedding payloads.

Payload (bpp) SRM+EC ρ∩
U CNN CNN+SRM+EC

0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4

S-UNIWARD non blind 40.08 20.01 9.2 7.1 23.36 8.25 38.06 14.82

S-UNIWARD blind 41 22.05 9.2 6.9 23.36 9.5 38.88 15.87

MiPOD non blind 42.13 23.89 8 6.6 25.84 9.26 37.82 15.65

HILL non blind 43.48 24.51 8.9 6.6 21.88 9.78 40.24 16.22

HILL blind 44.30 25.41 8.3 6.6 27.72 9.78 40.64 16.61

A closer look on the performances of each steganalyzer on the subset of
images it has to classify according to ρ∩

U explains why our proposal is relevant.
Indeed, in comparison with the performances shown in Table 1 we can remark
that the SRM+EC error rate is slightly worse than on the whole dataset. Thus
we take advantage from the low error rate of the CNN at a price of a slightly
worse misclassification by SRM+EC. Another point to notice is the evolution in
opposite directions of ρ∩

U and payload values, which means that, as expected, the
scatterness of the modified pixels increases and thus is more difficult to detect
with the current CNN architecture. Nevertheless, our approach allows us to build
a competitive blind steganalyzer, which gives lower detection errors than CNN
based only or SRM+EC based only approaches.

5 Conclusion and Future Work

Over the past two years the design of deep learning based approaches for image
steganalysis in spatial domain, using more particularly convolutional neural net-
works, has received an increasing attention due to their impressive successes on
many classification tasks. Recently, Xu et al. have introduced a CNN architec-
ture, which, to the best of our knowledge, is the most competitive one compared
to rich models with ensemble classifier. In this paper, we have investigated when
this CNN architecture fails in order to propose a method improving the detection
performance on the BossBase for different spatial steganography algorithms.

Thanks to a TensorFlow implementation of the CNN, giving nearly the same
detection performance than the original Caffe one for S-UNIWARD and HILL,
we have found a metric strongly correlated with the CNN classification perfor-
mance. This metric consists in the mean of all the elements in the cost matrix
provided by the distortion function ρ of the considered steganographic algorithm
for the input image. We have shown that the lower this latter value ρU for S-
UNIWARD is, the more the CNN fails to correctly detect if the image is a cover
or a stego. Fortunately, the CNN and SRM+EC detection errors evolve in dif-
ferent ways according to the metric function. By computing the intersection of
the corresponding curves we are then able to define a reliable criterion allowing
to decide, for an input image, when to use the CNN or SRM+EC to obtain the
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most accurate prediction. The experiments done considering the steganographic
algorithms S-UNIWARD, HILL, and MiPOD, have validated the proposed crite-
rion, since it has always led to improved detection performance, regardless of the
embedding payload value. Another contribution of this work is to have designed
a steganalyzer insensitive to the embedding process (blind detection).

Our future work will focus on two aspects. First, it might be interesting to
subdivide the BossBase in disjoint subsets according to the average distortion
function value and to train several CNNs on them. However, to be able to train a
CNN for low ρU values, the database should be expanded to include more images
corresponding to this case. Second, CNNs dealing with spatial domain steganaly-
sis work on a single high-pass filtered version of the input image. Therefore, we
plan to replace the single filter by a filter bank, an approach which in the case
of the JPEG domain steganalysis seems to be successful according to [24].
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Abstract. Binary code fingerprinting is a challenging problem that
requires an in-depth analysis of binary components for deriving iden-
tifiable signatures. Fingerprints are useful in automating reverse engi-
neering tasks including clone detection, library identification, authorship
attribution, cyber forensics, patch analysis, malware clustering, binary
auditing, etc. In this paper, we present BinSign, a binary function fin-
gerprinting framework. The main objective of BinSign is providing an
accurate and scalable solution to binary code fingerprinting by comput-
ing and matching structural and syntactic code profiles for disassemblies.
We describe our methodology and evaluate its performance in several use
cases, including function reuse, malware analysis, and indexing scalabil-
ity. Additionally, we emphasize the scalability aspect of BinSign. We
perform experiments on a database of 6 million functions. The indexing
process requires an average time of 0.0072 s per function. We find that
BinSign achieves higher accuracy compared to existing tools.

Keywords: Code fingerprinting · Static analysis · Reverse engineering

1 Introduction

1.1 Reverse Engineering and Function Fingerprinting

Fingerprinting binary functions can be of paramount importance in reverse engi-
neering. Function fingerprinting has many applications including compiler iden-
tification [3], authorship analysis, clone detection, vulnerability detection, prove-
nance analysis, malware detection, malware classification [2], etc. One benefit of
function fingerprinting is tagging a suspicious binary as malicious or benign. The
number and complexity of malware attacks have been growing significantly. In
2015, around 431 million new malware variants were uncovered [6]. Contrary
to conventional signature-based detection, heuristic-based techniques are more
effective and robust in detection and classification of new variants [35].

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
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1.2 Approach

An effective fingerprinting approach produces a unique and compact represen-
tation of the functionality of a binary function. Functions that perform similar
functionalities should be assigned similar fingerprints. It must also be robust to
minor byte-level discrepancies and differences in the structure of the Control-
Flow-Graph (CFG). The probability of a fingerprint collision must be negligible.
In this paper, we present BinSign, a fingerprinting framework for binary func-
tions, which consists of two main components: (1) Scalable fingerprint generation
and indexing of a large dataset, (2) Fingerprint matching. Our fingerprint gen-
eration approach relies on a set of features that are extracted from assembly
functions combined with structural information from partial CFG traces.

To avoid pairwise comparison of a large volume of fingerprints, we use three
mechanisms to facilitate achieving a scalable matching process. First, we lever-
age Locality-Sensitive Hashing (LSH) [34] and min-hashing [11] for selecting
candidates. Second, we apply a filter based on the number of basic blocks of the
CFG. Finally, BinSign system is distributed on multiple machines using Rabbit
MQ [32] in order to further improve the performance and scalability. In addition,
BinSign utilizes the Jaccard similarity to compute similarity scores between the
target function and each candidate. To improve accuracy, features are ranked
according to their significance while calculating the similarity score.

1.3 Contributions

Our contributions can be summarized as follows:

– We propose a fingerprinting approach for binary functions using features that
capture syntactic, semantic and structural information of a function.

– We design and implement an efficient and scalable matching framework to
match a target function fingerprint against a large repository of fingerprints.

– We evaluate BinSign in several use cases, including function reuse, malware
analysis, obfuscation resilience, and function indexing scalability.

1.4 Paper Organization

This paper is structured as follows. Section 2 presents the underlying algorith-
mics of the components of our fingerprinting methodology, including the details
of the fingerprint generation and matching algorithms. Experimental results are
discussed in Sect. 3. Section 4 reviews the state-of-the-art approaches. Conclud-
ing remarks are ultimately presented in Sect. 5.

2 BinSign Methodology

BinSign utilizes meaningful features for function fingerprinting, which comprises
of two main steps: fingerprint generation and fingerprint matching.
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2.1 Threat Model

We design BinSign to help in the reverse engineering process. It is designed to be
resilient to changes in the code such as those introduced by different compilers.
The fingerprints are designed to be resilient to light obfuscation including register
replacement, register reassignment, dead-code insertion, code substitution, name
stripping, and removal of symbolic information. BinSign is not intended to
replace the reverse engineering process, but merely to support it. Unpacking
and de-obfuscation lie outside the scope of our threat model.

2.2 Feature Extraction

It is important to select the right features that characterize the semantics of pro-
grams. The semantics of code operations can be captured by analyzing mnemonic
groups and operand types even if the symbols are stripped. Each function’s fin-
gerprint includes a feature vector vfi ∈ V in the form of key/value pairs (ki, vi).

Features are extracted at two levels: global and tracelet features. Features
that describe each basic block (such as the constants in that block) are combined
into tracelet features. The structure of the CFG is captured in the function’s
fingerprint through the tracelet features (Table 1). The global features occur
once per function and describe the function as a whole, such as the return type
and function size (Table 2). The symbols “#” and “∗” denote “number of” and

Table 1. Tracelet features

Data Constants Constants, Strings, #Constants, #Strings

Functionality Tags #API Tags, #Library Tags, #Mnemonic Groups

Tracelet Info. #Instructions, #Operands, Code Refs., #Code Refs.,

Function Calls, #Function Calls, Imported Functions,

#Imported Functions

Table 2. Global features

Data Constants #Constants, #Strings

Prototypes Return Type, Arguments, #Arguments, *Arguments

Functionality Tags #API Tags, #Library Tags, #Mnemonic Groups

Function Info. *Function, *Local Variables, Function Flags,

Tracelets, #Tracelets, #Instructions, #Code Refs.,

#Out Calls, #Basic Blocks
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“size of”, respectively. Some features are common to both tracelet features and
global features. We take into consideration the following groups of information.

Characterization of Function Prototype: Each prototype carries valuable
information, such as the return type, the number and types of arguments.

Composition of CFG Instructions: These features capture the number
of basic blocks and types of instructions in each block. The mnemonics and
operands are extracted and normalized. The normalized mnemonics list con-
tains a generalized representation of the instructions, with operands numbered
according to their types. General registers are replaced with 1, memory refer-
ences are coded as 2, etc. After that, a simple frequency analysis is performed:
the number of occurrences of each instruction, and the total number of calls to
registers and memory addresses are determined. Then, the instruction mnemon-
ics are classified into 15 groups based on the type of operation. Next, the total
number of instructions and the number of instructions per group are computed.

Types of Local, System, and API Calls: Functions can be categorized
according to the execution outcome on a system. System calls are interaction
points with the operating system and provide valuable information on the run-
time behavior. These calls are used to assign functionality tags. A functional-
ity tag is an annotation assigned to code fragments that provides a high-level
description of the context and side effects. Tags are useful for fast identification of
specific groups of operations. As described in [33], a function is assigned multiple
tags if it encloses several system calls. Moreover, combinations of functionality
tags can describe the overall functionality of the code regions and highlight the
sequence of actions carried out for performing them (e.g., CRY+FIL+NET is
translated to crypto-operations on a file, followed by network communication).

2.3 Fingerprint Generation

The fingerprint generation process is depicted in Fig. 1. The approach consists
of: (1) Disassembling and CFG extraction, (2) tracelet generation and feature
extraction, and (3) feature hashing. In the following, we detail these steps.

Disassembling and CFG Extraction: Given a binary file, the first step is to
disassemble it using the industry-standard disassembler IDA Pro [8]. In order
to capture the structural information of a function, we take into consideration
its CFG because it captures syntactic elements (assembly instructions) and rela-
tionships (jumps/calls) between blocks.

Tracelet Generation: One of the objectives of BinSign is to generate finger-
prints that capture not only the syntactic information of a function, but also
its structure. The intent is to capture all execution traces of a function. How-
ever, extracting all paths from a CFG is computationally expensive, especially
for large functions. Moreover, it would be redundant to consider the common
nodes between different paths multiple times. To counter this issue, we adopt
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Fig. 1. Fingerprint generation

the idea presented in [17], by decomposing function CFGs into partial traces of
execution, namely tracelets. In BinSign, tracelets are comprised of two basic
blocks. This means that each edge in the CFG results in one tracelet. Consider-
ing a larger number of basic blocks per tracelet results in redundant information
without offering additional benefits. This solution allows us to generate execution
traces more efficiently and without losing in functionality since all CFG nodes
and edges are visited. After disassembling the function, extracting its CFG, and
generating tracelets, the features described in Sect. 2.2 are extracted.

Signature Hashing: We apply min-hashing [11] in order to produce a com-
pact representation of the signature. In essence, min-hashing is a technique that
reduces the dimensionality of a set using a number of hash functions. Min-
hashing is applied to the normalized instructions. The function’s normalized
instructions constitute a suitable representation of the functionality and can be
used effectively in the fingerprint matching process. Each instruction is normal-
ized by replacing the operands with a number that represents the operand’s type.
Then, every normalized instruction is hashed using all hash functions and the
minimum hash value is selected. The collection of the minimum hash values rep-
resents the signature hash. Multiple random numbers (seeds) are used in order
to generate many different hash functions. The seeds are generated randomly
beforehand, and remain constant every time a new fingerprint is generated.

2.4 Fingerprint Matching

Through the matching process (Fig. 2), a candidate set is selected. After that,
the similarity between each candidate and the target is computed.

Fingerprint Candidate Selection: Two filters are implemented. First, the
functions are filtered by the number of basic blocks. Second, LSH [34] is used.
The idea is to divide the hash values of the min-hash signature into bands.
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Fig. 2. Fingerprint matching

Each band consists of multiple hash values. A fingerprint from the dataset is
considered as a candidate if all hash values match in at least one band. The
values of each band in the target min-hash signature is used to create a query to
obtain candidates from the database. The results of all the queries are combined
into the candidate set. Through multiple experiments, we find that a band size
of seven hash values and a total of thirty bands constitute a suitable signature.
Since LSH approximates the Jaccard similarity, this choice of band size and
number of bands sets the similarity threshold to about 60%. According to [34]
an approximation of the threshold is calculated as ( 1

b)
1r , where b represents the

number of bands and r the size of band. To further reduce false positives, we
also filter the fingerprints based on the number of basic blocks. It is unlikely
for a function with a small number of basic blocks to match a function with
a significantly larger number of blocks. Through experiments, we find that a
threshold of 30% for the difference in the number of basic blocks is appropriate.

Fingerprint Similarity Computation: A similarity score between the target
fingerprint and each fingerprint in the candidate set is calculated using the Jac-
card similarity. More precisely, the Jaccard similarity between the global features
is calculated then combined with the Jaccard similarity between the tracelet
features. Each feature in the fingerprint has a different effect on the similarity
score, as some features are more significant than others. Therefore, each fea-
ture that influences the similarity score has a different weight. The weights are
assigned using the gain ratio attribute evaluation algorithm provided by Weka
[10] for ranking the features. Weka is a tool that offers implementations of several
machine learning algorithms. This is performed through a supervised machine
learning process where the names of the functions are known.

3 Experimental Results

We perform several experiments to evaluate BinSign in terms of accuracy, per-
formance, and scalability. We also compare the accuracy with existing tools.
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3.1 Dataset Description

To evaluate the scalability, we include fingerprints of 6 million functions gener-
ated from well-known libraries, malware samples, and system dynamic library
files from Microsoft Windows. Additionally, we focus our matching experiments
on slightly more than 23,000 functions of our dataset for a more precise evalua-
tion of the accuracy. These functions are from different versions of the libraries:
libpng, sqlite, and zlib. These files are compiled using Visual Studio (MSVC)
2010 and 2013. Zeus and Citadel malware samples are also included in the
dataset. In our experiments, function names are not used during the matching
process, but only for verification. If the candidate with the highest similarity
score does not have the same name as the target function, we examine both
functions manually. Manual examination is only performed for verification to
calculate the accuracy, but it is not required by BinSign.

3.2 Comparison with Existing Tools

This experiment compares the accuracy of BinSign against Diaphora [7] and
PatchDiff2 [9]. The tools Diaphora and PatchDiff2 are both IDA Pro plugins
that can be used for comparing binary files. Diaphora offers different options
when matching binary functions. We deactivate the option of using unreliable
methods. We also activate the option of ignoring the function names.

We use the libraries libpng, sqlite, and zlib compiled using two compilers.
We then compare the two binary files of each library resulting from the com-
pilation using MSVC 2010 and MSVC 2013. By using two different compilers, we
introduce some noise into the binary functions so that there are some differences
introduced by the compilers. We attempt to match the functions in the file com-
piled by MSVC 2010 as the target set against the functions in the file compiled by
MSVC 2013. We match each function in the target set using BinSign by finding
the function in the candidate set with the highest similarity score.

Table 3. Function matching comparison between tools

Tool name Library #Target functions #Correct matches Accuracy

Diaphora libpng 620 408 65.81%

sqlite 1489 657 44.12%

zlib 156 79 50.64%

PatchDiff2 libpng 620 510 82.26%

sqlite 1489 937 62.92%

zlib 156 122 78.21%

BinSign libpng 620 553 89.19%

sqlite 1489 1391 93.42%

zlib 156 134 85.90%
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Table 3 displays the results of the comparison. The accuracy is calculated by
finding the percentage of the correctly matched functions to the total number of
functions in the binary file. BinSign consistently achieves the highest accuracy
between the tools being compared. This is due to the fuzziness of the method
BinSign is using to perform the matching. This allows BinSign to be more lenient
when dealing with the modifications presented by different compilers. The dif-
ference in accuracy is due to the types of features considered by these tools and
that they require an exact match for some of the features.

3.3 Function Reuse Detection

We attempt to detect reused functions between versions 1.2.5, 1.2.6, 1.2.7, and
1.2.8 of the zlib library, as well as between the libraries zlib and libpng.

Each version is used to match the corresponding functions in its consecutive
version. We also attempt to match reused functions from zlib library in libpng.
After manual inspection, we identify 52 reused functions. The function is consid-
ered to be matched correctly if the corresponding function in the other version
of the library is ranked first with the highest similarity score.

Table 4. Function reuse detection results

Library versions #Functions Threshold Accuracy #Candidates Time

zlib1.2.5-zlib1.2.6 169 60% 89.47% 24970 3.9 s

65% 78.11% 11372 2.8 s

zlib1.2.6-zlib1.2.7 183 60% 94.67% 30881 3.7 s

65% 90.71% 14947 2.5 s

zlib1.2.7-zlib1.2.8 178 60% 98.79% 26965 4.5 s

65% 88.76% 12003 3.7 s

zlib1.2.8-libpng1.6.17 52 60% 100% 4474 4.7 s

65% 100% 2147 4.4 s

The results are shown in Table 4. The LSH similarity threshold is set once to
60% and once to 65%. The number of candidates presented in Table 4 is the sum
of the size of the candidate sets for all target functions. Figure 3 plots the number
of target functions against the total number of candidates. Increasing the number
of functions increases the total number of candidates. There are other factors that
affect the total number of candidates such as the size of the target functions.
Smaller functions contain fewer distinctive features. As a result, they tend to
have a larger candidate set. Therefore, the total number of candidates does not
only depend on the number of target functions, but also on their characteristics
and size. Figure 4 shows how the number of basic blocks of the functions affects
the matching time. Most of the time is spent on computing the similarity scores.
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Fig. 3. Number of Target Functions
vs. number of Candidates

Fig. 4. Number of Basic Blocks vs.
Matching Time

Therefore, the number of candidates and the size of the functions are important
factors that affect the matching time.

The difference in accuracy when the LSH threshold is set to 60% against
65% is more significant in the first and third rows of Table 4. This is due to more
functions with LSH similarity scores lying between 60% and 65% in these cases.
When we compare the second and third rows of the table, we see that the third
row has a better accuracy score when the threshold is set to 60%. However, this
is not the case when it is set to 65%. This is because the comparison displayed
in the third row includes more functions with similarity scores between 60% and
65%, which are filtered out when the threshold is increased.

3.4 Scalability Evaluation

We index 6 million fingerprints and measure the time it takes. On average, the
indexing process requires around 0.0072 s per function. This includes the time
for fingerprint generation and database communication.

Fingerprint Methodology Scalability: Using min-hashing and LSH, we
enhance the scalability by selecting a candidate set through the banding tech-
nique. To speed up the process, only candidates that are selected through our
filters are considered instead of brute force matching.

Implementation Scalability: We implement a distribution mechanism (Fig. 5)
using RabbitMQ [32]. It is an open source messaging software based on the inter-
national standard Advanced Message Queuing Protocol (AMQP) [5]. Thanks
to its simplicity, we find that it is more suitable to our purposes than other
distribution frameworks that require a lot of processing for data analysis and
synchronization with the server, leading to a lot of overhead, and thus slowing
the process. To index several files, the binaries are distributed to different work-
ers. The distribution is done depending on the power of each worker machine.
Each worker runs multiple instances of IDA Pro simultaneously to process the
files, generate the fingerprints, and store them in the database. Note that RxPY
(reactive extension) is used to run the code in an asynchronous manner. The
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Fig. 5. Architecture of the distribution process

distribution is performed on a server machine with an Intel Xeon CPU E5-2630
v3 @2.40 GHz (2 processors) and 128 GB of RAM running Microsoft Windows
Server 2008 64-bit, along with a PC with an Intel Core i7 CPU 920 @2.67 GHz
and 12 GB of RAM running Microsoft Windows 7 64-bit.

3.5 Resilience to Different Compiler Optimization Levels

We use MSVC 2013 to compile version 1.2.8 of zlib with four optimization levels.
MSVC 2013 offers the optimization levels: disabled optimization (Od), minimize
size (O1), maximize speed (O2), or full optimization (Ox). We compile the zlib
library with full optimization (Ox) and use the resulting binary functions as the
target to match functions compiled using other optimization levels.

The results are presented in Table 5. The lowest accuracy score of 65.05%
occurs when matching the fully optimized (Ox) functions against disabled opti-
mization (Od). Compiling with optimization level O1 produces more similar
functions to the fully optimized functions, which results in 87.85% accuracy. We
find that compiling with the optimization levels Ox and O2 seem to produce
identical assembly code in this case. Therefore, comparing the code compiled
with O2 against O1 would produce similar results to Ox against O1.

After taking a closer look, we find that the size of the target functions has
an effect on the accuracy. The accuracy of matching functions with different

Table 5. Results of matching different
optimization levels

Optimization levels Overall accuracy Average time

Ox vs. Od 65.05% 4.2 s

Ox vs. O1 87.85% 4.3 s

Ox vs. O2 100.00% 0.26 s

Fig. 6. Number of Basic Blocks vs. Accu-
racy
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number of basic blocks is displayed in Fig. 6. The functions with higher number
of basic blocks are matched with higher accuracy. This is due to the fact that
larger functions tend to contain more distinctive features. Small functions usually
have features and structures that are fairly common. Therefore, there is a higher
probability of mismatching smaller functions than larger ones.

When comparing the optimization levels Ox and Od, we notice a dip in the
graph, which might seem counter-intuitive. This is because smaller functions
(with 5 to 10 basic blocks) may have less room for optimization. However, larger
functions (with 10 to 20 basic blocks) contain higher possibilities for optimiza-
tion. Functions that are even larger (with around 25 basic blocks) tend to have
more distinctive features, which increases the accuracy of the matching process.

3.6 Malware Similarity Analysis

Since the functions in Citadel are derived from the functions in Zeus [30], we
match one of these functions, namely the RC4 function. Citadel reuses the RC4
stream cipher function from Zeus with minor modifications [33]. IDA Pro iden-
tifies 642 functions in Zeus and 896 functions in Citadel. We then generate
fingerprints for all the functions and attempt to match the RC4 function. The
time it takes to match the RC4 function is 0.463 s.

We find that the top match was in fact the modified RC4 function with a
similarity score of 0.68787. The other matches with lower similarity scores are
from different library files. The CFG of RC4 functions in Zeus and Citadel can
be seen in Fig. 7a and b respectively. Although the number of basic blocks in the
two CFG’s is different, the RC4 function is still identified because the difference
in the number of basic blocks is less than 30%.

Since many of the functions in Citadel are derived from the functions in Zeus,
we attempt to match all the functions in Zeus. BinSign matches 591 out of 642
functions in Zeus to functions in Citadel. Out of the matched functions, 517
functions are matched with a high similarity score above 90% (Table 6).

3.7 Obfuscation Resilience

Although heavy obfuscation is out of the scope of our threat model, we provide
some insight into its effects. We use the Obfuscator-LLVM [25] for this purpose.

Table 6. Candidates of RC4 function
from Citadel

Function Similarity score

sub 42E92D 0.68787

sub 10034D0A 0.40042

png set sCAL 0.35377
Fig. 7. CFG of RC4 function in (a) Zeus
and (b) Citadel
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It offers three obfuscation techniques: control flow flattening, instruction substi-
tution, and bogus control flow. After applying the three obfuscation techniques
to a piece of code in C++, we add the three different obfuscated functions to
the dataset. The function that results from instruction substitution is identified
as a match with a high similarity score of 0.84399, which shows resilience to this
type of obfuscation. However, the obfuscated functions resulting from control
flow flattening and bogus control flow are not identified. The number of basic
blocks increased by more than 30%. Therefore, the fingerprints are filtered out
by our filter that considers the number of basic blocks.

4 Related Work

This section reviews research on binary fingerprinting and related domains.

4.1 Exact and Inexact Fingerprint Matching

Several studies focus on fingerprinting library functions in binary files (e.g., [12,
22,23]). Some approaches use exact matching and apply byte-level sequence pat-
terns. IDA Pro is an industry-standard disassembler that is widely used by
reverse engineers [23,28]. It provides a built-in capability for recognizing stan-
dard library functions and hex code sequences that are generated by common
C-family compilers through IDA F.L.I.R.T [22]. Although F.L.I.R.T is a useful
mechanism, it has limitations. Library functions with small byte-level discrepan-
cies are not recognized. The inability to perform inexact matching is a major lim-
itation. Other studies examine flexible signature matching techniques alongside
graph-based analysis to measure the similarity between programs [12,13,18,23].
Such approaches show higher recall in comparison to exact matching.

4.2 Graph-Based Binary Fingerprinting

The BinDiff algorithm [18] inspired some works that use graph matching for
various purposes (e.g., [4,13–15,21,23,27,28]). One limiting factor is placing the
attention on structural similarity, ignoring the instruction semantics of each
basic block. Instruction hash comparison is a simple, fast technique to finger-
print functions and assembly instructions [24]. A hash value can represent the
semantics of basic blocks. The work in [29] terms such values as semantic juice.

4.3 Source and Binary Clone Detection

Research on source code clone detection investigates four types of clones [16,26].
Type I clones are exact clones. Type II clones preserve the syntactic structure
with changes in identifiers, layout, comments, and types. Type III clones have
altered fragments. Type IV clones are semantic clones. Applying source code
clone detection techniques to disassemblies is challenging due to limited source-
level information. The research on binary clone detection measures the similarity
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between binary files [1,12,15,19,20,31]. The approach presented in [15] measures
the provenance similarity of binaries using symbolic execution. Morphological
analysis and static code synchronization is another solution for binary clone
detection [12]. These approaches are good candidates for detecting types III and
IV clones. The dynamic analysis techniques that monitor input/output behavior
of functions result in lower false positive rates in detection of type IV clones [24].

5 Conclusion

In this paper, we defined the main components of function fingerprinting,
described the algorithms, and the processes of fingerprint generation and match-
ing. The methodology was evaluated in terms of function matching, malware
analysis, obfuscation resilience, and scalability. We showed that the methodol-
ogy is effective and can improve the accuracy of exact and inexact fingerprint
matching. BinSign outperformed existing tools and achieved a higher accuracy
score. We also described different measures undertaken to ensure BinSign’s scal-
ability. BinSign performed efficient fingerprint generation of 6 million functions
such that the indexing process required 0.0072 s per function on average.
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Abstract. Cracking-resistant password vaults have been recently pro-
posed with the goal of thwarting offline attacks. This requires the gener-
ation of synthetic password vaults that are statistically indistinguishable
from real ones. In this work, we establish a conceptual link between
this problem and steganography, where the stego objects must be unde-
tectable among cover objects. We compare the two frameworks and high-
light parallels and differences. Moreover, we transfer results obtained in
the steganography literature into the context of decoy generation. Our
results include the infeasibility of perfectly secure decoy vaults and the
conjecture that secure decoy vaults are at least as hard to construct as
secure steganography.

1 Introduction

User-chosen passwords are still the most common authentication standard in
online services and users likely cumulate a high number of passwords for different
domains. To alleviate the memory effort and possibly let users choose stronger
passwords, IT security professionals recommend the use of password vaults (also
called “password managers”), which store a user’s set of passwords in a container
generally encrypted using a single master password.

This encrypted container, stored together with domains and usernames in
plaintext, allows users to access websites by just remembering a single pass-
word. Furthermore, it can be stored on several (potentially) insecure devices
and be backed up in the cloud. Thus, an attacker might get hold of such a
container [13,16] and mount an offline attack against the master password. In com-
parison to online attacks, which are likely blocked by websites detecting multiple
failed login attempts, the effectiveness of an offline attack is only limited by the
attacker’s computational power. Brute-force attacks are likely successful, as it was
shown that human-chosen master passwords have limited entropy and are rela-
tively easy to guess [3,7].

Although current password-based encryption (PBE) schemes (e.g., PKCS#5
[12]) adopt countermeasures (like the use of a key-derivation function to increase
the encryption key entropy, salting to prevent rainbow attacks, or iterative hash-
ing to slow down brute-force attacks), none of these methods can prevent a suc-
cessful offline attack, as an attacker will always be able to recognize the correctly
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decrypted result. In fact, all wrong master password candidates will provide a
response that clearly does not resemble user-chosen passwords.

To circumvent this problem, so-called cracking-resistant password vaults
(CRPVs) have been proposed [2,5,10]. The purpose of all CRPVs is to provide an
attacker with honey or decoy vaults even if she decrypts the vault under a wrong
master password. These decoy vaults have to be (statistically) indistinguishable
from the real vault, so that the real vault is undetectable among decoys and the
attacker is forced to mount additional online login attempts to identify it.

Another area in information security that shares the protection goal of unde-
tectability is steganography [9]. A steganographer wants to communicate a secret
message over a communication channel monitored by a warden (the attacker in
that scenario). The steganographer covertly communicates by modifying a so-
called cover object (e.g., a digital image) and obtaining a stego object that is
sent to the intended recipient, and she wants stego objects to be undetectable
among cover objects by the warden.

We can summarize the contributions of our paper as follows:

1. we point out the parallels of CRPVs and steganography (Sect. 2);
2. we present a unified model of password vaults and CRPVs (Sect. 3);
3. we transfer established results and security definitions from steganography

to the domain of CRPVs, show that perfect security for CRPVs is infeasible
and propose the notion of ε-security instead (Sect. 4);

4. we highlight the differences between CRPVs and steganography, conjecturing
that secure CRPVs are at least as hard to construct as secure steganography
(Sec. 5).

Finally, we give an overview of the results obtained and future directions in
Sect. 6.

2 Merging Two Streams of Related Work

The already highlighted protection goal of object undetectability represents a
clear parallel between CRPVs and steganography, and both communities have
made strikingly similar advances.

To overcome security weaknesses of the first CRPV system proposed in [2],
the authors of [5] propose the NoCrack system, where decryption under any mas-
ter password yields a plausible decoy vault. The instant creation of decoy vaults is
achieved by applying the mechanism of Honey Encryption and Decryption [11].
Despite the name, this approach does not change the encryption/decryption
itself, but rather adds another encoding/decoding layer. In particular, a so-called
distribution transformation encoder (DTE) encodes a plaintext into a bit string
and decodes bit strings to plaintexts. The DTE is designed in such a way that
random bit strings are decoded to plaintexts following a target statistical dis-
tribution, which is hard-coded into the DTE [11]. For instance, an application
proposed in [11] is a DTE that mimics the distribution of RSA secret primes
and outputs synthetic primes when decoding a uniform bit string. As we will
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describe in Sect. 3.2, a specific DTE is used in the NoCrack system to generate
decoy vaults when a wrong master password is used to decrypt the container. A
similar approach in steganography has been proposed in 1992, where so-called
mimic functions [17] are used. Here, Huffman encoding is employed to create text
that is statistically indistinguishable from human written text while embedding
the secret message. The technique was then extended to arithmetic encoding in
model-based steganography [15], where parts of the cover object are replaced by
other parts that follow an estimated distribution, similarly to DTEs.

To demonstrate the security of NoCrack, the authors of [5] show that a
machine-learning based ranking attack cannot detect the real vault among
decoys. A further improvement to the NoCrack system is proposed in the most
recent work on CRPVs [10], where the target distribution of the DTE is empir-
ically mixed with the one of the real vault (thus decreasing the statistical
difference between real and decoy vaults), and it is also tested against machine-
learning classifiers. A relevant similarity to steganography exists, where machine-
learning based attacks are used and the results obtained by this are employed
to influence “design principles leading to more secure steganography” [8, p. 69].

The NoCrack system [5] with the extension proposed in [10] currently rep-
resents the state-of-the-art for CRPVs. In fact, [10] first shows a weakness of
the NoCrack system, arguing that the correct vault can be statistically distin-
guished from the decoys. To achieve this, they use the Kullback-Leibler diver-
gence (KLD) between real and decoy vault distribution, which was proposed as
an information-theoretical security measure in steganography in 1998 [4].

Due to the high dimensionality of cover and stego objects, steganographers
often design their embedding strategies according to projections of the whole
objects, which are typically simplified models with lower dimensionality [15].
On her side, the warden can employ a different projection that enables her to
detect stego objects [9]. This triggered a cat-and-mouse race towards the best
projection. In the same way, the DTE in CRPVs reproduces the distribution of
a specific projection and the authors of [10] identify the security weaknesses of
NoCrack by adopting a different one.

Summarizing, the shared protection goal of undetectability has also led to
the use of similar approaches and tools, although, to the best of our knowledge,
this link has not been established in the literature yet. This further motivates us
to exploit known results in steganography for CRPVs regarding security issues.

3 Password Vault Model

In this section, we formalize a unified model for CRPV systems. In Sect. 3.1 we
first introduce a general definition for vault objects and identify potential influ-
encing factors. Then, we describe the main components of a CRPV in Sect. 3.2,
focusing on the Honey Encryption and Decryption scheme used.
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3.1 Defining Password Vaults

Password vaults essentially contain credential data. We can formalize credentials
as triples (d,u,pw), where d is the domain, u is the username employed and pw is
the secret password chosen by the user. Then, a vault v is a tuple of N credential
triples that can be arranged as

v = (d1, . . . ,dN ,u1, . . . ,uN ,pw1, . . . ,pwN ). (1)

In practice, d1, . . . ,dN and u1, . . . ,uN are plaintext while the vector

x .= [pw1, . . . ,pwN ] (2)

containing the passwords is encrypted to a ciphertext C under a master password
mpw (also user-chosen). We explicitly consider the case where domains and
usernames are not encrypted, as in [5,10], and thus the object to be modeled is
given by the vector x. Then, with a slight abuse of notation, in the rest of the
paper we will use the term “vault” to indicate only x instead of the entire tuple
v. We can see x as a realization of a random vector X with sample space χL (χ
is the alphabet of symbols used and L is the sum of the N password lengths)
and joint probability distribution Preal.

The first part of v, composed by domains and usernames, can have influ-
ence on x. It is known that different websites usually adopt specific policies
forcing the user to follow certain constraints in choosing the password [2], for
instance by requiring a minimum number of symbols, a minimum number of
digits and special characters, or the use of both upper- and lower-case letters.
Moreover, usernames are often also human-chosen and correlation between the
choice of username and password could exist. Thus, the distribution Preal should
be conditioned on the knowledge of domains and usernames, although exist-
ing approaches do not always exploit this information. For instance, one of the
attacks in [10] specifically uses nonconformity to password policies to successfully
detect the real vault among the decoys produced by NoCrack [5].

Even if we discard the dependency on domains and usernames, estimating
Preal is a challenging task, since the statistical behaviour of human-chosen pass-
words in a vault is highly complex and hard to model. In fact, the partition of
x into independent components (for instance, modeling single password distri-
bution and assuming independence among domains) is highly questionable, as
passwords of the same user are typically strongly correlated [2].

Thus, we deal with a joint distribution of L symbols which is hardly observ-
able. However, existing approaches [5,10] employ a projection Proj(x) of the
entire vector x and estimate the distribution PProj(X) from available datasets,
which is then used to generate synthetic vaults.

3.2 Mimicking Vault Distribution

CRPVs extend conventional PBE schemes, where a successful or unsuccessful
decryption is perfectly recognized, by introducing the use of decoy vaults. We
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Fig. 1. Honey Encryption and Decryption mechanisms in CRPVs.

now describe how the state-of-the-art CRPV (NoCrack [5]) works and specify
which changes are proposed in [10].

NoCrack is a CRPV system that consists of a specific Honey Encryption and
Decryption scheme. As introduced in Sect. 2, the peculiarity of such a mechanism
is the use of a DTE, which is a pair of functions (encode, decode) with the
following properties:

– the input of encode is a password vault x and the output is a binary string s.
Conversely, decode takes as input any bit string s and outputs a vault x. It
is required that a DTE is correct, that is, decode(encode(x)) = x.

– If applied to uniformly distributed bit strings, decode should output vaults
whose projections follow a known distribution PProj(X).

The authors of [5] devise strategies based on different projections and assump-
tions, e.g., considering �-gram and Probabilistic Context Free Grammar (PCFG)
models, but the details of DTE design are out of the scope of this section.

The resulting system works as depicted in Fig. 1. For the sake of clarity, we
represent the Honey Encryption (HE) and Honey Decryption (HD) modes of the
CRPV separately, and for the latter we further distinguish the case of HD with
the correct and wrong master password. As mentioned in Sect. 2, Fig. 1 shows
that the DTE (encode, decode) is used in combination with a pair of functions
(encrypt, decrypt), which are based on standard techniques and will not be
discussed in detail (we refer the reader to [5] for a thorough description).

When the user chooses the password vault xreal and the master password
mpwreal, the HE mode is activated (see Fig. 1(a)). The vault xreal is processed
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by the encode function to obtain the string sreal, which is then encrypted under
mpwreal into a ciphertext Creal by means of encrypt.1

In order to get access to xreal, the user has to decrypt the ciphertext Creal

by submitting to the system the master password mpwreal, thus activating the
HD mode. If Creal is decrypted under the correct master password mpwreal, the
user gets as output the real vault xreal as shown in Fig. 1(b).

If an attacker trial-decrypts Creal under a wrong master password, decrypt
outputs a random bit string sdecoy. This string is then given to decode that trans-
forms it into a decoy password vault xdecoy, which is delivered to the attacker
(see Fig. 1(c)). From her side, the attacker receives a set of password vaults (as
many as the number of trial-decryptions), which includes xreal if and only if
mpwreal has been used for trial-decrypting.

Regardless of the quality of the algorithm decode (i.e., how accurately it
transforms random strings into vaults following PProj(X)), the use of a DTE will
result in a joint distribution Pdecoy of the decoded vaults that is an approximation
of Preal. They should be as similar as possible, but the quality of Pdecoy as
approximation of Preal depends on the projection chosen and the database used
for the training. In fact, in the attack in [10] the authors identify the correct
vault among all the decoys by exploiting a different projection PProj(X) enabling
a better distinction. Their improvement then consists exactly in designing the
DTE by taking into accounts some statistical properties of the real vault.

4 Security of CRPV Systems

In this section we discuss the security of CRPV systems. First, we compare and
translate the definition of perfect security from steganography to the domain of
CRPVs in Sect. 4.1, arguing that this is fundamentally related to the knowledge
of the distribution Preal. Then, in Sect. 4.2 we analyze the computational bounds
encountered in studying Preal, giving insights on the practical difficulties in esti-
mating this distribution. Finally, we extend the definition of ε-security to the
domain of CRPVs in Sect. 4.3.

4.1 Perfect Security

In steganography, the goal of the steganographer is to transform cover objects
x(0) to stego objects x(1) containing the secret message, in such a way that the
resulting distribution of stego objects Pstego is close to the distribution of cover
objects Pcover. The setup of an attack against a general steganographic system
is depicted in Fig. 2(a): depending on the position of the switch (red), cover
or stego objects appear on the communication channel. The warden does not
control the switch but monitors the channel and applies detect to every object
x(i) that she observes. The output of detect is either 0 indicating that the object

1 In case of password addition or updating, xreal is modified and encoded to a new
string sreal, which is then encrypted under mpwreal to obtain a new ciphertext.
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Fig. 2. Comparison of attacks against steganography and CRPVs (Color figure online)

is assumed to be a cover object or 1 if the warden classifies it as stego. The
warden wants to identify a secret communication, so her goal is to detect the
stego objects among covers.

Attacks against CRPVs can be translated to a very similar setup, as depicted
in Fig. 2(b). Here, the attacker has an encrypted password vault Creal and chooses
a set of n master passwords for trial-decryption that might contain the real
master password mpwreal but will be mostly composed of wrong passwords
mpwwrong. Again, the switch (red) indicating whether the chosen password was
real or wrong is not under the control of the attacker, although she can decide
which and how many master passwords to submit. By this, she ends up with n
different password vaults xi and she also applies detect to every object xi she
observes. The output of detect is either real, indicating that xi was generated by
inputting mpwreal or decoy, if a mpwwrong was chosen. The goal of the attacker
is to detect the real vault among the decoys.

Figure 2 opens the way for a formal relationship between Pcover and Pstego

from steganography and Preal and Pdecoy in CRPVs. Intuitively, we can view the
distribution of real vaults Preal as the counterpart of the cover distribution Pcover,
as both are given by nature and cannot be influenced by either the attacker nor
the defender. Both, the distribution of the decoy vaults Pdecoy and the stego
distribution Pstego somehow depend on Preal and Pcover, respectively.

Based on this analogy, we can recall the definition of perfectly secure stegano-
graphic system given in [4] and extend it to CRPVs. According to [4], perfect
security in steganography is achieved if and only if the Kullback-Leibler diver-
gence (KLD) between Pcover and Pstego is zero, i.e.:

KLD(Pcover||Pstego) = 0. (3)

Accordingly, perfect security in CRPV systems is achieved iff:

KLD(Preal||Pdecoy) = 0. (4)
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In light of that, the action of the detect function in the CRPV domain can be
formulated in an hypothesis testing framework, where the null and alternative
hypotheses are given by:

H0: the observed object follows Preal (i.e., it is a real vault)
H1: the observed object follows Pdecoy (i.e., it is a decoy vault) (5)

The identification of the real vault is achieved by repeatedly performing the
hypothesis test on the n vaults by means of detect. Having zero KLD between
two distributions essentially means that they are exactly the same distribution.
Thus, with perfect security, the hypotheses in (5) are undecidable.

A fundamental question is whether perfect security in the sense of (4) is
possible at all and under which assumptions. In steganography, it is commonly
agreed upon by now that this is only possible for so-called artificial cover sources,
i.e., sources for which the joint distribution Pcover is fully known, including any
conditional dependencies. However, artificial sources do rarely exist in practice.
In contrast to that, we deal with empirical cover sources, whose distribution is
obtained outside the steganographic system from a finite set of observations.

The difference between artificial and empirical cover sources has been pro-
posed in [1], where it is observed that perfect security defined as in (4) generally
exists for artificial sources but is impossible for empirical sources. This is related
to the fact that in the latter case Pcover is arguably incognisable, and statistical
representations by means of proper projections of the sample space will never
achieve a zero KLD.

As mentioned in Sect. 3.2, existing datasets with a finite number of vaults
are used to train the DTEs, which then replicate specific statistical properties
observed (for instance, �-gram statistics or PCFG statistics). In the next section,
we show how hard it is to provide a full characterization of Preal, arguing that
Preal belongs to the class of empirical distributions and is indeed incognisable.

4.2 Computational Bounds for the Estimation of Preal

As we introduced in Sect. 3, in order to fully represent real vaults x, we should
consider them as vectors of L symbols regardless of the actual partitioning in
different passwords. Thus, each x is the realization of a L-dimensional discrete
random vector X = [X1, . . . , XL] and the corresponding distribution function
Preal is a joint distribution of L random variables with sample space χ.

Then, Preal can be expressed by means of the chain rule as follows:

Preal(x) =
L∏

�=1

PX�|X1:�−1=x1:�−1(x�), (6)

where Xi:j is the random vector composed of the random variables (r.v.) in X
from index i to index j and xi:j is its realization, PX|Y=y(·) is the conditional
probability mass function (cpmf) of a r.v. X given the realization y of a random
vector Y and we define PX1|X1:0(x1)

.= PX1(x1).
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Fig. 3. Representation of the joint and Markov chain distributions.

Let us now suppose to estimate Preal starting from an available dataset of
password vaults, i.e., to approximate each cpmf by means of relative frequencies.
In the following, we perform a simple feasibility analysis where we compute the
minimum numerosity of the dataset that is necessary to estimate the cpmfs. In
doing that, we first consider the joint distribution Preal in (a) and then the case
of a specific projection (Markov models) in (b) and (c):

(a) Joint distribution. We want to have an approximation of every cpmf
in (6). Thus, we need PX�|X1:�−1=x1:�−1(·) for each possible realization x1:�−1

of X1:�−1, and this holds for � = 1, . . . , L. A pictorial representation is
reported in Fig. 3(a). For each � a number of |χ|�−1 cpmfs are then involved.
Thus, even assuming that each cpmf is estimated by one single observation
(i.e., the support of each cpmf will consist in a single character) the number
of necessary vaults is given by |χ|�−1. If γ = log10(|χ|), it is then O(10γ(�−1)).
Let us consider an optimistic setup where a vault contains 10 passwords with
average length of 5 characters [2,7], so that we can reasonably fix L = 50.
Moreover, let us assume an alphabet corresponding to the printable ASCII
characters, thus |χ| = 95 and γ ≈ 1.97. The number of vaults required for
the estimation of every PX50|X1:49=x1:49(·) with one observation would have
a decimal order of magnitude at least equal to γ(50−1) = 96.5. The number
of protons in the universe is estimated by the Eddington number and it is
assumed to have on order of magnitude equal to 79. It is worth pointing out
that password policies could reduce this number as not the whole alphabet
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should be used. However, even supposing a restrictive policy where only
digits are allowed, this would still result in 1049 necessary vaults.

(b) Markov chain of order �̄−1. In [5] and [10], DTEs based on �̄-gram models
are trained on an external corpus. As an example, they consider �̄ = 4 and
estimate the cpmf PX4|X1:3=[H,e,l](l) as the number of occurrences of the
substring “Hell” divided by the number of occurrences of the substring
“Hel” in the corpus. Then, by repeating this for each 3-grams, they estimate
a cpmf for each of them and use it to design the DTE.2

This is equivalent to considering Markov chains of order �̄ − 1, that is, it
is assumed that the probability of a character in a certain position depends
only on the previous �̄−1 characters in the vault. As represented in Fig. 3(b),
expression (6) is then approximated as

Preal(x) ≈ PX1(x1) · . . . · PX�̄−1|X1:�̄−2=x1:�̄−2
(x�̄−1)

·
L∏

�=�̄

PX�|X�−�̄+1:�−1=x�−�̄+1:�−1
(x�). (7)

Again, to obtain each cpmf in expression (7) we would need to observe at
least once each possible realization of each Xi:j such that j − i = �̄ − 1, and
we can again consider a lowerbound of the minimum number of necessary
vaults to be O(10γ(�̄−1)). We report in Table 1 the exponent γ(�̄ − 1) as a
function of �̄ in the same setup as before (|χ| = 95).

A proper length of the Markov chain is hard to determine and the choice
relies on heuristic considerations. However, as we optimistically assumed an
average password length equal to 5 symbols, in order to capture the depen-
dencies between different passwords in the vault we should at least consider
a Markov chain of order 5 (�̄ = 6), so that the probability of the 6-th symbol
(likely the first character of the second password) depends also on the real-
ization of the first one. From Table 1, we have that a dataset of at least 7.7
billion (≈ 109.89) vaults would be necessary for this purpose. As of December
2016, the world population was estimated at 7.5 billion, thus implying that
the dataset should contain at least one vault for every human being on earth.

(c) Markovmodel of order �̄−1with relaxed assumptions.We can assume
that, for a fixed �̄, only a fraction p of the cpmfs is actually relevant and the
remaining ones can be considered as uniform or estimated via smoothing tech-
niques, as suggested in [5] when building the Markov-based DTE. Then, we
can assume that a number of observations T > 1 is required for each cpmf
in order to have a more accurate approximation. By doing so, the number
of vaults is lower bounded by p · |χ|�̄−1 · T , thus it is O(10δ+γ(�̄−1)) where
δ = log10(pT ). The order of magnitude δ + γ(�̄ − 1) is tabulated in Table 2
for different values of p and T and �̄ fixed to 6. The values show that even con-
sidering as relevant the 0.1% of the realizations of X1:5 and accepting a single

2 It is to be noted that the authors estimate the cmpfs from datasets of single pass-
words instead of entire vaults.
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Table 1. Order of magnitude of the minimum number of vaults necessary to the
estimation of all the cpmf’s when considering a Markov chain of order �̄ − 1.

�̄ 2 3 4 5 6 7 8 9 10

γ(�̄ − 1) 1.97 3.96 5.93 7.91 9.89 11.89 13.84 15.82 17.80

Table 2. Lowerbound of the minimum number of vaults for the estimation of all the
cpmfs when considering a Markov chain of order 5.

p/T 1 5 10 20

0.001 6.85 7.55 7.85 8.15

0.2 9.15 9.85 10.15 10.45

0.4 9.45 10.15 10.45 10.75

0.6 9.63 10.33 10.63 10.93

0.8 9.75 10.45 10.75 10.05

observation of each related cpmf (T = 1) would require a number of vaults
that almost equals the population of Austria (around 8.5 million).

In this framework, we should consider that, while the popular RockYou
dataset contains more than 32 million passwords in total, the only database
of vaults available at the moment (PBvault, see [5]) consists of 276 vaults only.
Coupled with the analysis above, which already relies on simplifying assumption
like the independence of password from domains and usernames, this strongly
motivates our concern on the observability of the full distribution Preal, or even
an approximated version of it. So, we can safely say that Preal is incognisable.

4.3 ε-security

According to our observations in the last subsection, the equality in (4) express-
ing perfect security is hardly achievable in practice, thus suggesting to consider
a non-zero statistical distance between Preal and Pdecoy. In [4], the definition of
ε-security is introduced, where a system is called ε-secure if

KLD(Preal||Pdecoy) ≤ ε. (8)

If we recall the hypothesis testing framework in (5), we can encounter two dif-
ferent kind of errors:

Type I error: classifying the real vault as a decoy.
Type II error: classifying a decoy vault as the real one.

Denoting with α and β the probabilities of Type I and Type II errors, respec-
tively, inequality (8) is relevant to derive bounds for α and β. With this respect,
the Type I error is more relevant than the Type II error for an attacker, since
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once the real vault is discarded there is no other possibility to successfully obtain
the correct passwords. If we accept non-zero KLD, and thus, that α and β cannot
be minimized at the same time, we can reasonably think that an attacker would
try to achieve α = 0 to the detriment of β. It can be shown [4,14] that, if (8)
holds and α = 0, the Type II error probability is subject to the lower bound.

β ≥ 2−ε. (9)

Inequality (9) provides an interesting link to the required number of online
login attempts. In fact, in performing brute force attacks, the attacker will be
provided with a set of n vaults, supposedly including the real one. If she enforces
α = 0 (i. e., the real vault is not misclassified), the number φ of plausible candi-
date vaults identified by detect will be approximately at least:

φ = 1 + (n − 1)2−ε. (10)

Assuming no further refinements of the candidate selection, φ/2 represents the
expected number of online login attempts the attacker is forced to execute.
This also addresses an issue that was not explicitly discussed in [10], i.e., the
relationship between the ability of detecting the real vault and the total number
of decoy vaults. In fact, the authors of [10] consider n = 1000 (including the real
vault), while an attacker will have to deal with a dramatically higher value of n
(equal to the number of trial decryptions) and the performance of the ranking
operation in this case is not studied.

5 Differences Between Steganography and CRPVs

Previous sections concentrated on the similarities of steganography and CRPVs,
neglecting obvious differences. In this section, we highlight the main differences
and point out their influence on the security of both systems.

(i) Message embedding. The most obvious difference between steganog-
raphy and CRPVs is that in steganography we want to embed a mes-
sage, which has no direct counterpart in CRPVs. But, in accordance with
steganography literature, message embedding can be either seen as a ran-
domization of encode or naturally implemented in an adapted version of
the DTE. The message encoding problem in steganography is mainly solved,
due to the existence of asymptotically perfect codes [6]. So, this difference
will not affect the security comparison.

(ii) Attacker’s influence. Another evident difference is the role of the
attacker: in steganography, the warden passively monitors the communi-
cation channel and has little influence on the total number n of objects she
observes or the relative amount of cover or stego objects. In contrast to that,
an attacker against a CRPV can choose (up to her computational bound)
how often she samples Pdecoy and, thus, might refine her model of Pdecoy as
accurately as her computational power allows. Even with knowledge of the
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steganographic algorithm, this is not possible for a warden. Furthermore,
with CRPVs the attacker knows that there is at most one real vault. This
additional knowledge of an attacker against CRPVs, most likely will have
a negative influence on the achievable security of CRPVs.

(iii) Guessing strategy. Another degree of freedom that is available to an
attacker against CRPVs but not to a steganographic warden is the guess-
ing strategy for the master passwords. If we assume that master passwords
are human-chosen, every strategic attacker will choose master passwords in
decreasing order of probability, following some model about the prior dis-
tribution of master passwords Pmpw. For the same arguments explored in
Sect. 4.2, Pmpw is incognisable. But, the lower dimensionality with respect
to Preal and the higher number of (single) passwords available, e. g., Rock-
You, would allow for a more accurate estimate of the joint distribution.

(iv) Oracle queries. Finally, the possibility of confirming or disproving a vault
candidate identified by detect with an online login is probably the highest
advantage an attacker against a CRPV has over a warden in steganography.
Each online login acts like an oracle query, and the number is only limited by
the number of passwords in the vault and the maximum number of wrong
login attempts allowed by the different websites. The attacker against a
CRPV not only exactly knows when she has the real vault, even negative
oracle responses can be used to further refine her estimate of Pdecoy and
thus possibly further decreasing β. A warden can only dream of such an
oracle in steganography.

Summarizing the above, we conjecture that secure CRPVs are at least as
hard to construct as secure steganography. Although far away from a formal
proof, the existing differences between steganography and CRPVs suggest that
the advantage in knowledge an attacker against any CRPV possesses over a
warden in steganography will make security of CRPVs ever harder to achieve.

Ultimately, achievable security depends on the evolution of the real distrib-
utions. If a cover channel consisting of noise is plausible, then secure steganog-
raphy reduces to cryptography with the protection goal of indistinguishability
of ciphertexts from random sequences. If the users of password vaults choose
truly random passwords, constructing secure CRPVs reduces to the generation
of random looking sequences. But then, we do not need CRPVs anymore.

6 Conclusion

In this paper we have shown that the parallels between CRPVs and steganog-
raphy go deeper than the protection goal of undetectability: both fields experi-
enced a similar development, starting from encoding schemes and ending with the
employment of machine learning to influence the design of more secure schemes.
While research on CRPVs only started in 2010, the field of digital steganogra-
phy can look back on more than 25 years of scientific research, thus allowing us
to transfer known results to the domain of CRPVs. We believe that leveraging
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established results in steganography will increase the awareness of researchers
when designing new approaches to CRPVs.

Specifically, we argued that the joint distribution of real vaults Preal is incog-
nisable, due to the data requirements for its full estimation. Even for an approx-
imated version, a dataset containing one password vault for every human being
currently living on earth would be needed. The incognisability of Preal implies
that achieving perfect security in CRPVs is as hard as constructing perfectly
secure steganographic systems in case of empirical sources, thus infeasible in
practice. We follow up by arguing that we should rather consider ε-security
instead of perfect security. Again, we can leverage established results in steganog-
raphy and show that we can lower bound the expected amount of online login
attempts an attacker is forced to execute when attacking an ε-secure CRPV.

Finally, we conjecture that security in CRPVs is at least as hard to achieve
as security in steganography due to the differences in both domains’ setup. An
attacker against a CRPV has several advantages when mounting an attack over
a warden in steganography: she can choose the number of trial-decryptions, thus
getting a very accurate estimate of the distribution of decoy vaults; she can apply
an advanced guessing strategy against the master password, following recent
research on how humans choose passwords; and, last but not least, every online
login attempt acts as an oracle query, giving the attacker a certain response on
whether the vault she faces is the real one or a decoy.

Future work should include formal proofs regarding the effects of the
attacker’s knowledge on the security of CRPV systems. Moreover, we believe
that the conceptual link between steganography and CRPVs is based on the
employment of Honey Encryption. Thus, our observations could be extended to
other applications of Honey Encryption in practical systems.
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Abstract. The variety of Internet voting schemes proposed in the liter-
ature build their security upon a number of trust assumptions. The crit-
icality of these assumptions depends on the target election setting, par-
ticularly the adversary expected within that setting. Given the potential
complexity of the assumptions, identifying the most appropriate Internet
voting schemes for a specific election setting poses a significant burden
to election officials. We address this shortcoming by the construction of
an election-dependent security evaluation framework for Internet vot-
ing schemes. On the basis of two specification languages, the core of
the framework essentially evaluates election-independent security models
with regard to expected adversaries and returns satisfaction degrees for
security requirements. These satisfaction degrees serve election officials
as basis for their decision-making. The framework is evaluated against
requirements stemming from measure theory.

1 Introduction

Significant research efforts have been made to establish security requirements for
Internet voting schemes [8,9,14,15]. Amongst the most prevalent requirements,
there are vote secrecy (also referred to as vote privacy [6,21]), i.e. an adversary
must not be able to establish the link between the voter and her cast vote, vote
integrity, i.e. an adversary must not be able to undetectably manipulate votes,
and eligibility, i.e. an adversary must not be able to cast votes for abstaining
voters. The numerous Internet voting schemes proposed in the literature, e.g.
[1,3,5,11,21], implement these requirements by making certain assumptions. For
example, the JCJ/Civitas [5,11] scheme builds vote secrecy upon the assumption
that the device used to cast a vote is trustworthy. Pretty Good Democracy [21]
enforces vote secrecy in the presence of malicious voting devices, yet the scheme
assumes that the voter can cast her vote without adversarial influence. The
criticality of these assumptions, and therefore the security of Internet voting in
general, differs within different election settings. To face this reality, our goal is
to construct an election-dependent security evaluation framework for Internet
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voting schemes that measures to what extent an Internet voting scheme satisfies
security requirements within concrete election settings.

Related Work. Several works have addressed the assessment of risks for electronic
voting systems [2,4,12,17,19,20] by deriving threats trees for these systems. The
fine-grained threats considered in these works require decision makers to assign
probabilities to specific threats. Reviewing threat trees for Internet voting sys-
tems poses a significant burden on election officials, e.g. [7] provides a 18-page
threat tree for Internet voting. While this approach facilitates the interpreta-
tion of large and complex threat trees, the approach is tailored towards system
analysts. Hence, the approach does not foresee the incorporation of election
settings by election officials. Volkamer and Grimm [24] propose the concept of
resilience terms to capture complex trust distributions of Internet voting schemes
and to express which central entities have to be trusted in order to fulfill secu-
rity requirements. These trust distributions do, however, not incorporate the
election setting into the security evaluation and expression. Furthermore, adver-
saries might consider other attack targets to violate security requirements, for
instance voting devices or influencing voters throughout the vote casting process.
On the foundation of resilience terms, Schryen et al. [23] develop a quantitative
trust metric upon propositional logic. As foundation for their quantification, the
authors determine resilience terms for security requirements in distributed sys-
tems. Thereafter, they compute the probability that security requirements might
be violated on the basis of failure probabilities of individual entities. The app-
roach inherits one essential shortcoming of the resilience term evaluation, namely
the fact that the evaluation focuses on central entities of the voting system.

Contribution. We build the election-dependent security evaluation framework
upon two specification languages: The language of qualitative security models
enables system analysts to specify the security of Internet voting schemes in an
election-independent manner, i.e. system analysts specify canonical assumptions
about adversarial capabilities under which the scheme enforces security require-
ments. Intuitively, these canonical assumptions indicate the weakest successful
adversary (refer to Pamula et al.’s notion [18]) in terms of abstract capabilities.
The language of election settings allows election officials to specify their election
settings in terms of expected adversaries and the number of voters. Upon the
specification of qualitative security models and an election setting, the frame-
work computes satisfaction degrees of Internet voting schemes with regard to
the security requirements within the concrete election setting. Before its actual
construction, the requirements for the security evaluation framework are deter-
mined. Ultimately, the framework is evaluated against these requirements.

2 Requirements for the Security Evaluation Framework

By its nature, the envisioned framework closely relates to the mathematical
concept of a measure (refer for instance to Salamon [22]). We therefore base the
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requirements for the construction upon the properties of a measure and adapt
them to our context. The first property a measure possesses is that it must assign
the empty set of the σ-algebra in the measure space, to the measurement 0.
Transferring this property to our context, two requirements are derived:

First, if the Internet voting scheme under investigation faces an adversary
that has no capabilities, then the scheme’s satisfaction degrees must be 1 with
regard to all security requirements, unless the security requirement can be vio-
lated without any adversarial capabilities1. We refer to this requirement as no
capabilities – perfect security. Second, if the Internet voting scheme under inves-
tigation proves to be resistant against a specific adversarial capability, then in
the presence of any two adversaries that differ only with regard to that capabil-
ity, the scheme’s satisfaction degrees are equal. We refer to this requirements as
capability resistance.

The second property a measure possesses is continuity. In measure theory,
the property of continuity is defined by stating that (1) the measurement of the
union of a countable infinite sequence of increasing sets (En)n∈N is equal to the
measurement of the last set of the infinite sequence and (2) the measurement of
the intersection of an infinite sequence of decreasing sets (En)n∈N is equal to the
measurement of the last set of the infinite sequence. Transferring this property,
we require that if the Internet voting scheme under investigation faces a sequence
of adversaries, of which the capabilities converge towards the capabilities of a
fixed adversary, then also the scheme’s satisfaction degrees in the presence of
the sequence of adversaries converges towards the scheme’s satisfaction degree
in the presence of the fixed adversary.

The third property a measure possesses is monotonicity. In terms of measure
theory, the property ensures that the measurement of a subset of another set
from the σ-algebra must be smaller than the measurement of the set. The fourth
property a measure shall must possess is σ-additivity. In terms of measure theory,
the property requires that the measurement of a union of disjoint subsets of
the σ-algebra equals the sum of the measurement of the disjoint subsets. Both
properties are transferred to the context of security evaluation for Internet voting
schemes. Hence, we require that if the Internet voting scheme under investigation
faces two adversaries, of which one is stronger than the other, then the scheme’s
satisfaction degrees must not be larger when facing the stronger adversary as
compared to the weaker adversary.

3 Construction of the Security Evaluation Framework

The section is dedicated to the construction of the security evaluation framework.
We emphasize that the herein presented construction mainly builds upon our
previous construction published in 2016 [16]. Before diving into the details of the
construction, we provide the necessary definitions. We subsequently show how

1 This holds for instance true if vote secrecy is not required and the Internet voting
scheme under investigation publishes the relation between a voter and her vote.
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the security of Internet voting schemes is assessed by evaluating the election-
independent security within the concrete election settings.

3.1 Definitions

Before presenting the construction of the security evaluation framework, we recall
several definitions [16] while we slightly adapted the notations for this paper.

Definition 1 (Qualitative Adversary Model). Let an Internet voting
scheme A with the set of instantiated capabilities CA be given. An adversary
model AA, or simply adversary, against scheme A is defined by a subset of
instantiated capabilities CA, i.e. AA ⊆ CA.

Definition 2 (Qualitative Security Model). Let an Internet voting scheme
A with the set of instantiated capabilities CA be given. We say that

MA,r,i = (αA,r,i
1 ∨ · · · ∨ αA,r,i

ξA,r,i)

with αA,r,i
j = (cA,r,i

j,1 ∧ · · · ∧ cA,r,i

j,λA,r,i
j

) and cA,r,i
j,k ∈ CA

is a qualitative security model of A with regard to security requirement r and
impact level i if there exists a set of adversaries S = {A1, . . . ,AξA,r,i} where Aj

is specified by capabilities {cA,r,i
j,1 , . . . , cA,r,i

j,λA,r,i
j

}, such that

1. all adversaries A ∈ S are capable of causing impact i on r, and
2. for all adversaries A ∈ S, there is no adversary A′ ⊂ A such that A′ is

capable of causing impact i on r, and
3. for all adversaries A′ capable of causing impact i on r, there is an adversary

A ∈ S, such that A ⊆ A′.

Definition 3 (Resistance Against Abstract Capability). Let an Internet
voting scheme A with the set of instantiated capabilities CA and the qualitative
security models MA,r,1, . . . ,MA,r,n be given. We say that the scheme A is resis-
tant against capability Co ∈ C with regard to requirement r, if for all impact
levels 1 ≤ i ≤ n and for all cA,r,i

j,k in all αA,r,i
j , capability cA,r,i

j,k ∈ CA is not an
instantiation of Co.

Definition 4 (Election Setting). Given probability distributions PC1 , . . . ,PCl

for all abstract capabilities Co ∈ C, the number of eligible voters nel, and the
number of expected voters nex, a tuple of the form

E = (PC1 , . . . ,PCl
, nel, nex)

is referred to as an election setting.

While being generous in definition, we simply require election officials to
provide uniform distributions U(a, b) for adversarial capabilities probabilities.
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3.2 Determination of Satisfaction Degrees in Election Settings

As baseline of the framework, we show how to evaluate qualitative security
models within specific election settings. Therefore, it is first shown how the
probability of an adversary violating a qualitative security model can be calcu-
lated. Thereafter, it is outlined how Monte-Carlo simulations [13] are adapted
for the quantitative evaluation of qualitative security models against probabilis-
tic adversaries. The herein described algorithms build upon our previous work
[16, Sect. 7.3]. As we noticed that this description is difficult to understand, we
present, in the following paragraphs, the algorithm in a more readable manner.
We abbreviate the probability of the event that the adversary A satisfies a secu-
rity model X or possesses a specific (abstract or instantiated) capability, i.e.
PA(X = 1), by P (X).

Determination of Satisfaction Degrees with Given Probabilities. To
determine the satisfaction degree of an Internet voting scheme A with qualitative
security models MA,r,i under given probabilities P (Co) for all Co ∈ C and
under n impact levels (the instantiation of impact levels will be explained in the
following paragraph), the following function f(P (C1), . . . , P (Cl)) is defined:

1. For each instantiated impact level 1 ≤ i ≤ n, the probability formula of the
qualitative security model is evaluated based on the given probabilities. Note,
we show in [16, Sect. 7.1] how to transform qualitative security models into
probability formulas.

2. For each instantiated impact level 1 ≤ i ≤ n, a risk value is calculated by
multiplying the normalized impact i

n with the evaluated probability formula
of the respective qualitative security model.

3. The largest risk value is identified.
4. The satisfaction degree estimator is the inverse of the largest risk value.

Extension Towards Probabilistic Adversaries. Rather than precise prob-
abilities, election officials assign probability distributions to adversarial capabil-
ities. While we currently assume that instantiated capabilities are independent,
the framework is generated in a way that also caters for dependent instantiated

Algorithm 1. Satisfaction Degree Estimation (SDE)
Input: Level size n, probabilities {P (Ci)}l

i=1

Output: Satisfaction degree estimator e

1 for i ← 1, 2, . . . , n do pi ← P (
∨ξA,r,i

j=1 αA,r,i
j )P (C1),...,P (Cl)

2 for i ← 1, 2, . . . , n do ri ← pi · i
n

3 rmax ← max1≤i≤n ri.
4 e ← 1 − rmax

5 return e
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capabilities. Therefore, to determine the satisfaction degree of an Internet vot-
ing scheme A with regard to a security requirement r within a specified election
setting E, we build upon Monte-Carlo simulations [13]. Therefore, the following
process is defined:

Instantiation of Impact Levels. The number of impact levels and probability
formulas are instantiated by the number of eligible voters nel and the number
of expected voters nex.

Generation of Monte-Carlo based Satisfaction Degree Estimators. The following
steps are conducted m times (number Monte-Carlo iterations). The process steps
are shown for the j-th Monte-Carlo iteration.

1. For each abstract adversarial capability Co ∈ C, an estimator of the proba-
bility P (Co) is sampled according to the probability distribution PCo

.
2. For each vector of probability estimators p

(j)
1 , . . . , p

(j)
l , f is called.

Conducting these two steps yields samples of the following random variable:

M := f(P (C1), P (C2), . . . , P (Cl))

Processing of Satisfaction Degree Estimators. We define the statistical satisfac-
tion degree of scheme A with regard to requirement r and election setting E as
the expected value of random variable M , i.e. E(M).

3. To approximate E(M) by the m satisfaction degree estimators generated in
step 2, namely e1, . . . , em, the average of these estimators is calculated. Hence,
the empirical satisfaction degree Mm (in the remainder simply referred to as
satisfaction degree) of scheme A with regard to requirement r and election
setting E is defined as:

Mm :=
1
m

(e1 + · · · + em) =
1
m

m∑

k=1

f(p(k)1 , p
(k)
2 , . . . , p

(k)
l )

By the weak law of large numbers, it holds that the empirical satisfaction
degree converges in probability towards the statistical satisfaction degree,
i.e. Mm m→∞−→ E[M ].

To evaluate the quality of the empirical satisfaction degree with regard to
the statistical satisfaction degree, a confidence interval is calculated. Within this
work, we focus on the core of the framework and omit the confidence interval
from further consideration (see [16] for further details).

4 Evaluation of the Security Evaluation Framework

After its construction, the security evaluation framework is evaluated with regard
to the requirements determined in Sect. 2. The following proofs build upon the
weak law of large numbers and hold therefore for a sufficiently large number of
Monte-Carlo iterations.
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Algorithm 2. Monte-Carlo based Satisfaction Degree Computation (MCSDC)
Input: Iterations m, probability distributions {PCi}l

i=1

Output: Satisfaction degree Mm

1 for j ← 1, 2, . . . , m do p
(j)
1 ← P (C1) ∼ PC1 , . . . , p

(j)
l ← P (Cl) ∼ PCl

2 for j ← 1, 2, . . . , m do ej ← SDE(n, p
(j)
1 , . . . , p

(j)
l )

3 Mm ← 1
m

∑m
j=1 ej .

4 return Mm

No Capabilities – Perfect Security. The first requirement that the secu-
rity evaluation framework shall possess is that the satisfaction degree of all
schemes must be 1 with regard to all security requirements, if the adversary
has no capabilities, unless the security requirement can be violated without any
adversarial capabilities. This void of capabilities is equivalent to the absence of
randomness as the adversary’s capability is determined. Hence the probability
distributions that are passed by the election official, degenerate to determinis-
tic functions. Within a probabilistic framework, such deterministic functions are
called constant random variables. Their distribution function is the Dirac delta
function δx, where x ∈ R denotes the point of mass [10]. In particular, it holds
U(a, a + 1/n) n→∞−−−−→ δa. Hence, for each Co ∈ C the Dirac delta function δ0 is
passed, as there is only one probability that can be assigned to the event that
an adversary has capability Co, namely zero.

Theorem 1. Let δ0 be the distribution function for all abstract capabilities
Co ∈ C. The satisfaction degree of scheme A is 1 for all security require-
ments r, unless the security requirement can be violated without any adversarial
capabilities.

Proof. If the probability of having an abstract capability Co ∈ C is 0 for all
Co ∈ C, then all instantiated capabilities cA,r,i

j,k , with 1 ≤ k ≤ λA,r,i
j for the

impact level i have probability 0, i.e. P (cA,r,i
j,k ) = 0. This leads to P (αA,r,i

j ) = 0
and thus

P (
ξA,r,i∨

j=1

αA,r,i
j ) ≤

ξA,r,i∑

j=1

P (αA,r,i
j ) = 0.

As this holds true for all impact levels, the maximum risk of all impact levels
equals 0. Consequently, the satisfaction degree estimator results in 1. Given the
fact that the random variables for capability probability have their entire density
at 0, each Monte-Carlo iteration assigns the value 0 to all capability probabilities.
Hence, the resulting random variable M has its entire density on the value 1,
such that E(M) = 1. 	


Capability Resistance. The second requirement refers to the resistance of
Internet voting schemes against specific abstract adversarial capabilities.
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Theorem 2. Let Internet voting scheme A be resistant against abstract capa-
bility Co with regard to requirement r. Let P (C1), P (C2), . . . , P (Co), . . . , P (Cl)
denote random variables for the probabilities of adversarial capabilities
C1, C2, . . . Co, . . . Cl. If random variable P (Co) is replaced by a differently distrib-
uted random variable P (Co)′, then the resulting satisfaction degrees of scheme
A with regard to requirement r do not differ.

Proof. For the random variables P (C1), P (C2), . . . , P (Co)′, . . . , P (Cl), we denote
the random variable generated by the Monte-Carlo simulations by:

M ′ := f(P (C1), P (C2), . . . , P (Co)′, . . . , P (Cl))

Due to A’s resistance, it holds for all cA,r,i
j,k in all αA,r,i

j that cA,r,i
j,k is no instan-

tiation of Co. Consequently, function f is neither affected by random variable
P (Co) nor by P (Co)′. As a consequence, it holds

M = f(P (C1), P (C2), . . . , P (Co), . . . , P (Cl))
= f(P (C1), P (C2), . . . , P (Co)′, . . . , P (Cl)) = M ′,

and hence E(M) = E(M ′). 	


Continuity. Election officials provide uniform probability distributions for
capability probabilities, e.g. distributions P (Ci) ∼ U(ai, bi), i = 1, 2, . . . , l. To
prove continuity of the framework with regard to the expected adversary, we
study the framework’s result under sequences of random variables (P (Ci,n))n∈N

where P (Ci,n) ∼ U(ai, bi + 1/n) for i = 1, 2, . . . , l. We say that continuity
is given if the framework’s results are identical under the random variables
P (Ci) ∼ U(ai, bi) and P (Ci,n) ∼ U(ai, bi + 1/n) for n converging to infinity.
Formally, this is expressed as follows:

E(Mn) = E( f(P (C1,n), P (C2,n), . . . , P (Cl,n)) )
n→∞−→ E( f(P (C1), P (C2), . . . , P (Cl)) ) = E(M)

Before proving the main theorem, we define two lemmata. Due to space
limitations, we omit proofs of the lemmata herein2.

Lemma 3. The satisfaction degree estimator for requirement r in scheme A is
continuous with regard to a sample probability P (Co) for any Co ∈ C.

Definition 5. A sequence of random variables (Xn)n∈N weakly converges to a
random variable X, if for every continuous function f , it holds

limn→∞
∫

Xn

f(x)dPXn
=

∫

X

f(x)dPX ,

where PXn
denotes the probability distribution of Xn and PX the probability

distribution of X, shortly Xn
d−→ X.

2 These proofs will be published in a technical report.
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Lemma 4. Let X ∼ U(a, b) be a uniformly distributed random variable and
let (Xn)n∈N ∼ U(a, b + 1/n) be a sequence of random variables. Then it holds
Xn

d→ X.

Theorem 5. Let P (Ci) ∼ U(ai, bi), i = 1, 2, . . . , l denote uniformly distributed
random variables for the probabilities of adversarial capabilities Ci. The sat-
isfaction degree of A with regard to requirement r is continuous with regard
to any weakly convergent sequence of random variables (P (Ci,n))n∈N where
P (Ci,n) ∼ U(ai, bi + 1/n) for i = 1, 2, . . . , l.

Proof. Let Mn denote a framework’s satisfaction degree calculation for a given
sample of random variables pi,n ← P (Ci,n), i = 1, 2, . . . l. For the random vari-
ables P (C1,n), P (C2,n), . . . , P (Cl,n), we denote the resulting random variable
generated by f as:

Mn := f(P (C1,n), P (C2,n), ..., P (Cl,n)).

Analogously to Mm, we define the satisfaction degree calculated by the frame-
work as Mm

n = 1
m

∑m
k=1 f(p(k)1,n, p

(k)
2,n, . . . , p

(k)
l,n ). By the law of large numbers,

Mm
n

m→∞−→ E[Mn] holds. Given the weak convergence of P (Ci,n) n→∞−→ P (Ci)
(refer to Lemma 4) and the fact that the satisfaction degree estimator is contin-
uous (refer to Lemma 3), it holds:

Mn = f(P (C1,n), P (C2,n), . . . , P (Cl,n)) d−→ f(P (C1), P (C2), . . . , P (Cl)) = M

For the sequence of expected values (E[Mn])n∈N, it consequently holds:

|E[Mn] − E[M ]| = |E[Mn − M ]| n→∞−→ 0

	


Monotonicity. We study the framework’s result under the random variables
P (Ci) ∼ U(ai, bi), i = 1, 2, . . . , o, . . . l, when P (Co) is exchanged by a random
variable P (Co)′ ∼ U(a′

o, b
′
o) with a′

o ≥ ao and b′
o ≥ bo. We say that monotonic-

ity is given if the framework’s result is larger under P (Ci) ∼ U(ai, bi), i =
1, 2, . . . , c, . . . l than under the same set where P (Co) is exchanged by a random
variable P (Co)′. Formally, this is expressed as follows:

E(M ′) = E( f(P (C1), P (C2), . . . , P (Co)′, . . . , P (Cl)) )
≤ E( f(P (C1), P (C2), . . . , P (Co), . . . , P (Cl)) ) = E(M)

Before proving the main theorem, we define two lemmata. Due to space
limitations, we omit proofs of the lemmata herein.

Lemma 6. The satisfaction degree estimator for requirement r in scheme A is
non-increasing with regard to a sample probability P (Co) for any Co ∈ C.
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Lemma 7. Let two random variables X ∼ U(a, b) and Y ∼ U(c, d) with c ≥ a
and d ≥ b be given. For any non-decreasing function f , it holds:

E[f(X)] ≤ E[f(Y )]

Theorem 8. Let P (Ci) ∼ U(ai, bi), i = 1, 2, . . . , c, . . . , l denote uniformly dis-
tributed random variables for the probabilities of adversarial capabilities Ci. The
satisfaction degree of A with regard to requirement r is non-increasing with when
random variable P (Co) is exchanged by P (Co)′ ∼ U(a′

o, b
′
o), with a′

o ≥ ao and
b′
o ≥ bo.

Proof. For P (C1), . . . , P (Co)′, . . . , P (Cl), we denote the resulting random vari-
able generated by f by M ′, and the respective expected value by E[M ′].

By Lemma 7 and the fact that the satisfaction degree estimator is non-
increasing (refer to Lemma 6), we are able to conclude that

E(M ′) = E( f(P (C1), P (C2), . . . , P (Co)′, . . . , P (Cl)) )
≤ E( f(P (C1), P (C2), . . . , P (Co), . . . , P (Cl)) ) = E(M). 	


5 Conclusion

We constructed an evaluation framework for Internet voting schemes that incor-
porates the expertise of system analysts and election officials to evaluate schemes
within concrete election settings. The framework’s internal consistency was eval-
uated against requirements derived from measure theory.

We summarize limitations of the constructed framework as basis for future
research: The framework’s generic nature requires election officials to estimate
probability distributions for abstract adversarial capabilities. Estimating pres-
ence probabilities on this level of abstraction might be more challenging than esti-
mating probabilities of concrete capabilities for election officials and should be
investigated in the future. Currently, the framework does not incorporate vary-
ing adversary motivations, i.e. probability distributions remain invariant over
different election types and sizes. We assume adversaries specified by qualitative
security models to always succeed. One might consider refining the constructed
framework towards assigning success probabilities to qualitative security models.

In the future, the framework will be generalized further: Among these gener-
alizations, the framework will be extended towards the case in which instantiated
capabilities might be considered dependent. Based upon its actual concept, the
framework will be extended to handle non-uniform probability distributions for
abstract capabilities, i.e. normal distributions. Furthermore, we plan to pub-
lish the framework as collaborative platform: There, security experts are invited
to discuss and jointly determine qualitative security models of Internet voting
schemes. After specifying their election setting, the platform should support elec-
tion officials to determine the most adequate voting scheme(s) for their setting.
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Abstract. Piracy is a persistent headache for software companies that
try to protect their assets by investing both time and money. Program
code obfuscation as a sub-field of software protection is a mechanism
widely used toward this direction. However, effectively protecting a pro-
gram against reverse-engineering and tampering turned out to be a
highly non-trivial task that still is subject to ongoing research. Recently,
a novel obfuscation technique called Control Flow Linearization (CFL)
is gaining ground. While existing approaches try to complicate analysis
by artificially increasing the control flow of a protected program, CFL
takes the exact opposite direction: instead of increasing the complexity
of the corresponding Control Flow Graph (CFG), the discussed obfusca-
tion technique decreases the amount of nodes and edges in the CFG. In
an extreme case, this means that the obfuscated program degenerates
to one singular basic block, while still preserving its original semantics.
In this paper, we present the DeMovfuscator, a system that is able
to accurately break CFL obfuscation. DeMovfuscator can reconstruct
the control flow, making only marginal assumptions about the execu-
tion environment of the obfuscated code. We evaluate both the perfor-
mance and size overhead of CFL as well as the feasibility of our app-
roach to deobfuscation. Overall, we show that even though CFL sounds
like an ideal solution that can evade the state of the art deobfuscation
approaches, it comes with its own limitations.

1 Introduction

Software protection (i.e., obfuscation) is a technique used to transform code to
make it harder for a human to analyze and understand. In an ideal scenario, obfus-
cated software maintains its original functionality but it becomes impenetrable
to reverse engineering. Therefore, obfuscation offers all the necessary protection
mechanisms to software authors that want to protect the internal operations of
their programs from the prying eyes of reverse engineers. Here, we can define two
groups of software authors: (i) software vendors who want to protect sensitive
and confidential data shipped together with a piece of software and (ii) malware
authors who want to evade detection by anti-virus scanners or to hinder inspection
by security analysts. Both groups seek software obfuscation for their own purposes.
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
S. De Capitani di Vimercati and F. Martinelli (Eds.): SEC 2017, IFIP AICT 502, pp. 385–398, 2017.
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Over the years, there has been proposed a wide range of obfuscation tech-
niques that were mostly focused on hiding the original control flow by artifi-
cially increasing complexity [3,8,24]. For instance, O-LLVM achieves this by
employing Control Flow Flattening (CFF), a technique that conceals the exe-
cution sequence of basic blocks [16]. This can also be achieved by employing
virtualization-based obfuscation techniques. A recent example of such an obfus-
cator is Matryoshka [15] which nests multiple layers of virtualization to cloak
the functionality of a protected program.

Although obfuscation appears as an optimal solution, it has its own weak-
nesses. There exist solutions, called deobfuscators, that are centered around a
symbolic execution engine and are able to penetrate various obfuscation tech-
niques [26]. KLEE [7] is an example of such a state of the art symbolic execution
engine that, however, requires the presence of the source code. angr [21,22] and
BAP [6] are symbolic execution solutions that do not have a similar requirement.
Nevertheless, current approaches for symbolic execution depend on the presence
of instructions that explicitly modify the control flow during path enumeration.

Recently, a novel technique, called Control Flow Linearization (CFL), makes
all control flow changes implicit. In fact, jump free programming is entirely
feasible without loosing Turing completeness [11]. CFL constitutes a way of
preventing symbolic execution engines from enumerating all satisfiable paths
through a program. Therefore, deobfuscation relying on symbolic execution fails
to recover the full Control Flow Graph (CFG) of a program protected by CFL.
This is extremely useful for the software authors that desire to hide the internal
operations of their programs. In essence, the Movfuscator [2], which is to the
best of our knowledge the only real world implementation of CFL, helps software
to defend itself from reverse engineering.

However, as with any other solution, CFL is not bulletproof. In this
paper, we show that it is possible to construct a generic deobfuscator, called
DeMovfuscator, that can reconstruct the control flow, making only marginal
assumptions about the execution environment of the obfuscated code. In addi-
tion, we evaluate both the performance and size overhead of CFL as well as
the feasibility of DeMovfuscator. Overall, we show that even though CFL
sounds like an ideal solution that can evade the state of the art deobfuscation
approaches, it is not impenetrable.

In summary, we make the following main contributions:

– We describe the concept of CFL as a novel obfuscation technique and evaluate
it in terms of performance and size overhead.

– We propose a generic deobfuscation algorithm to counter CFL and show the
effectiveness of our approach.

– We evaluate our approach by recovering the CFGs of various obfuscated bina-
ries, including those of several third-party programs that emerged during past
computer security competitions (Capture-the-Flag contests).

– We exhibit the advantages of our deobfuscation approach when compared
with state of the art symbolic execution techniques.

– We show that CFL, although promising, is far from being perfect.
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2 Background

In this section, we describe the concepts of CFL and instruction substitution
before we shortly describe the Movfuscator [2], an existing example of an
obfuscator that implements both CFL and instruction substitution.

2.1 Control Flow Linearization

We call a program linearized if it consists of only one singular basic block (exclud-
ing initialization of the environment) that ends in a jump targeting itself. Figure 1
shows an example of such a program. CFL makes the control flow of a program
implicit by removing all control flow changing instructions without loosing Tur-
ing completeness [11].

Fig. 1. Classification of CFL related to CFF and the original program.

The central idea of CFL is to duplicate all writable program variables in mem-
ory and to re-route all write accesses to either a real set of data or scratch
data. This enables the processor to formally execute all instructions in the pro-
gram while only a subset of instructions affects the current program state. This
effect is used to simulate the execution sequence of the basic blocks of the orig-
inal program and consequently to simulate jumps without the need for branch
instructions. In the following paragraphs, we structure this approach to provide
a generic transformation strategy to construct linearized programs.

Without the availability of conditional jumps, all instructions of a program
need to be executed. We can simulate (un)conditional jumps by mitigating the
side effects of memory writes that are not caused by the currently intended basic
block. If the effects of the instruction writing to memory should not be visible
to the program, we need the code to write to the scratch version of a variable
in memory; otherwise the write operation should target the real version of the
variable.
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Next, we assign a unique label to each basic block of the original program.
For simplicity, we use each basic block’s virtual address in memory as its label.
We also introduce a global state variable that during each point in execution
holds the label of the currently executing basic block. Thus, during execution
of the linear program, the program is at all times able to calculate if the current
block should write to the real program state or to the scratch version.

Jumps connecting the basic blocks are realized as transitions of the global
state variable. This is achieved by appending code that updates the state
variable to each basic block. Note that the state variable itself also consists
of a real and a scratch location, as basic blocks that are not targeted by
the current state also have to discard their updates to the state variable.
Based on this construction, any jump predicate can be re-written as the base
address of the state variable plus the Boolean result of the jump predicate,
where true equals 1 and false equals 0. This allows to unconditionally execute
each instruction but only if the corresponding predicate is true, the side-effects
of the instruction will become visible to the global program state.

Adhering to this construction, it is possible to merge all basic blocks of the
original program into one linear basic block without any branch instruction.
This effectively mitigates the use of symbolic execution engines to analyze and
deobfuscate the generated program as we will see in Sect. 4. To re-trigger the
execution of the program and to give other basic blocks the possibility to execute
their payload, a final jump transferring control from the end to the start of the
linearized program is appended.

2.2 CFL on the x86 Platform

When implemented for the Intel x86 architecture, CFL faces several challenges.
To begin with, while a hypothetical Turing Machine operates on an infinite
amount of memory, contemporary von-Neumann systems typically provide only
a finite number of addressable bytes in memory. Thus, with finite memory, deref-
erences of unmapped memory regions can occur if the non-linearized version of
the program assigns an invalid value to a index variable (e.g., a pointer in C) at
the global scope. Even though the dereference with an out-of-bounds index might
not be reachable from the point where the new value is assigned in the original
program, the linearized version will execute the dereference and throw away the
side effects later, which might lead to an instant program crash. To mitigate
this issue, CFL can be extended to guard memory dereferences by adding an
instruction that sets dereferenced operands to a known good value if the basic
block containing the instruction is not active during execution.

Another problem of linearized programs is their ability to call into other
functions, as a function call effectively introduces branches into a linearized pro-
gram. Such high-level primitives can be adopted in two ways. Either the call to a
function can be replaced by the called function itself, a process usually referred
to as inlining, or local variables holding function pointers can be introduced.
In the latter case, a variable would point to either the correct call target or to
a single ret instruction depending on if the basic block containing the call is
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marked for execution. The two presented ways of handling function calls lead
to two different results of the linearization: In the latter case, each function is
linearized to one block, whereas in the former case the whole program including
all functions is transformed to one block.

2.3 Instruction Substitution

While not directly related to CFL, the Movfuscator [2] employs instruction
substitution to obfuscate a given binary. In context of obfuscation, instruction
substitution refers to the process of replacing one or more instructions by an
computationally equivalent sequence of instructions that is more difficult to
understand for an analyst. Common instructions that are used for instruction
substitution are: ADD, ROR, and XOR. Note however, that even restricting substi-
tution to transform to only MOV instructions can reach Turing completeness.

Literature discusses instruction substitution in terms of increasing instruction
diversity [16] for obfuscation, steganographic applications [13] or in form of case
studies of malware [5]. However, decreasing the variety of instructions contained
in a program is a relatively new idea that, to the best of our knowledge, has first
been proposed by Dolan in a formal way [11]. Dolan shows that in an extreme
case, instruction substitution can be performed such that the transformed pro-
gram consists of at most one instruction type: the mov instruction. We adhere to
Domas’ terminology and call the process of substituting a program with exclu-
sively mov instructions movfuscation. It is evident that instruction substitution
implies CFL, if instructions explicitly changing the control flow are replaced.
Both techniques are, however, applicable orthogonally to each other.

2.4 Formalizing the MOVFUSCATOR

Using the concepts introduced above, we describe the Movfuscator, which
is to the best of our knowledge, the only public implementation of CFL and
instruction substitution. The Movfuscator is implemented as a compiler back
end of the Little C Compiler (LCC) [14], capable of compiling programs writ-
ten in ANSI C. The Movfuscator is organized as a virtual machine whose
instructions are implemented by only mov instructions.

The Movfuscator VM consists of four byte-addressable general purpose
registers with a machine word size of 32 bits. A stack pointer register points to a
full descending stack consisting of 32 bit words. The Movfuscator VM uses an
instruction pointer (ip) that addresses the program at a basic block granularity
(we will use the terms ip and target interchangeably). That is, the instruction
pointer always points to the beginning of the currently executing basic block.
A status register storing comparison results with zero-, signed-, overflow-, and
carry-flag works analogously to the x86 status register.

The basic execution is governed by the virtual instruction pointer target
and the on flag. The former contains a label, the virtual address of the basic
block that should be executed. It is updated at the end of each basic block of the
original program, effectively implementing jump instructions. The on register is
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a performance optimization: instead of predicating each memory write access
with the result of the comparison label == ip, the comparison is done only at
the beginning of each basic block and the result is stored in on. At the end of
each basic block, on is set to false and target reflects the outgoing edge of
the current basic block.

Arithmetic operations are performed by an ALU that is capable of 32 bit
integer computations. All computations are performed using look up tables.
This constitutes a challenge as the machine word size is equal to the num-
ber of addressable bits in the address space. As such, look up tables for all
arithmetic and logical instructions grow bigger than the addressable memory
space. To circumvent this problem, the inputs for computations are split up into
smaller values on which computations are performed using two-dimensional look
up tables.

The execution of the generated linearized basic block is re-scheduled infinitely
during program execution. To restart execution, the Movfuscator generates
code that transfers the control flow to the beginning of this code. To do so, the
code configures itself to be its own, nestable SIGILL handler; execution can be
re-triggered at the end of the instruction stream using an illegal mov-instruction.

To interface with the OS, the Movfuscator follows the application binary
interface as defined by external libraries. This means that the obfuscated pro-
gram sets a special memory location external to the target function’s entry
in the plt section. Afterwards, it prepares the function arguments on the stack
pointed to by the esp register prior to writing the correct return address on the
stack and triggering a segfault by a NULL pointer dereference. This enables the
Movfuscator to call external functions only if execution is enabled by on. As
a matter of fact, there exists a fault memory location that contains a valid
pointer (no segfault) followed by a NULL pointer that can be accessed similar
to other variables. The reason for triggering the segfault is that it provides a
mov-only way of directing the execution towards a signal handler (SIGSEGV)
that calls the actual library function contained in external.

To prevent generating code with a 1:1 relationship between the original x86
and the Movfuscator VM’s instructions and to defend against pattern recogni-
tion, the Movfuscator employs two hardening techniques. The first is register
shuffling. Instead of statically assigning registers, the generated code randomly
uses one of the eax, ebx, ecx, edx general purpose registers for computa-
tions. The second is instruction re-ordering. The Movfuscator does a primi-
tive, “overly restrictive” data-dependency analysis on the generated code. This
analysis identifies independent pairs of instructions that can be re-ordered with-
out destruction of the program’s semantics.

3 Deobfuscation—Control Flow Recovery

In this section we introduce the DeMovfuscator.1 Our deobfuscation algo-
rithm is a linear-sweep algorithm that operates in four stages. All assumptions
1 https://kirschju.re/demov.

https://kirschju.re/demov
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we make are generic for every binary generated by the Movfuscator. Note that
while this might seem to be very specific to the Movfuscator, we argue that
all obfuscators that implement CFL are per design required to contain similar
building blocks. Therefore, our approach is general for different CFL implemen-
tations. Our algorithm consists of the four steps introduced in the following.

Finding Key Structures. In this phase we infer the location of critical data
structures such as the global variable on indicating whether execution is enabled.
Our assumptions are carefully tailored to be applicable to invariants that all
linearized programs generated by the Movfuscator satisfy. We also reconstruct
the semantic meaning of the respective look up tables that are later used to
recover arithmetic computations performed by the code.

Identifying Labels. From instructions that enable execution (i.e., set on to
true), we employ a backward data-flow analysis. Reconstruction of the label
is performed by an automatic theorem prover. As a side-effect, this step also
reconstructs the location of the global state variable target.

Identifying Jumps and Calls. From instructions that disable execution (i.e.,
set on to false), we infer jumps and thus basic block boundaries.

Reconstructing the CFG. Using the gained information, we patch the original
binary to make the control flow explicit again.

In the first step, we are required to find critical management data struc-
tures of the state machine that were generated by the obfuscator. We first derive
the location of the on data structure from the static initialization code. Note
that while a simple pattern matching approach would be sufficient (the sta-
tic initialization code is approximately the same for all binaries generated by
the Movfuscator modulo special compiler flags that omit parts), we improve
resilience against changes and further applicability of our approach by recon-
structing the location of on using taint analysis. At a high level, our algorithm
determines the location of an instruction that has the shape of instruction β as
seen in Fig. 2. In the following we write r{N} to denote an arbitrary x86 general
purpose register. From instruction β, we start a backward taint analysis to infer
the origin of register r1. If a construction like the above is found, and b points to
data that has been statically initialized to true, we assume a to be the location
of sel on, an array whose first entry contains a pointer to the global scratch
location and secondly a pointer to on.

After having identified the location of sel on, we continue by identifying the
labels of the basic blocks contained in the original program. This is achieved
by scanning for an instruction that uses sel on as a base address for an indirect

Fig. 2. Finding sel on Fig. 3. Usage of sel on
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memory access (instruction γ in Fig. 3). From this location we employ forward
taint analysis to find the point where on is set to 1 (true). In such a case, we
know that the detected instruction is responsible for selecting the on variable
or the scratch variable depending on the result of the predicate stored in r1.

We perform a backward taint analysis from γ to reconstruct the predicate
that evaluated to the value in r1. The backward analysis continues until: (i) the
beginning of the program is reached, (ii) we find another instruction modifying
on, or (iii) all taint is sanitized. We then reconstruct the syntax tree of the
predicate that evaluates to the truth value contained in r1 from the tainted
instructions. To obtain the original semantic meaning of the operations, we use
a-priori knowledge about the look up tables that implement the operations of
the Movfuscator ALU: whenever an instruction accesses a look up table in
static memory, we determine the result of the operation for two preselected
arguments which are known to evaluate to distinct values for each computation
that the virtual ALU is capable of. This approach enables us to reason about
the arithmetic and logical operations contained in the reconstructed predicates.

The result of the above step is a Boolean formula that represents the equality
check of the basic block’s label and the virtual instruction pointer ip indicating
whether the current basic block should be executed. From this formula the algo-
rithm obtains the location of the virtual ip as well as the label of the current
basic block. The latter is obtained by constraining the predicate to 1 (true) and
solving the formula for ip. In this step, our implementation uses the automatic
theorem prover z3 [10]. By repeating the above procedure, the algorithm is able
to determine the labels of all basic blocks of the program.

In the third step we use the knowledge gained in the second step to evaluate
jump and call instructions. Jumps and calls are identified using an approach very
similar to the identification of labels. The algorithm performs a second linear
sweep and identifies instruction sequences that disable execution by setting on
to 0 (false), which is illustrated in Fig. 4. This is needed to determine whether
the control flow change is performed conditionally or unconditionally. We use the
same technique as explained earlier involving backward taint analysis starting at
instruction δ to compute the syntax tree of the predicate contained in r1. Using
z3 we can decide whether the predicate evaluates to either a constant value, in
which case the control flow change occurs unconditionally or alternatively to a
formula containing symbolic values, which indicates an conditional jump.

To recover the target basic block label, we need to identify modifications
of the virtual ip (instruction ε in Fig. 5). In this example, if r0 is the memory

Fig. 4. Distinguishing conditional and
unconditional jumps

Fig. 5. Distinguishing direct and indi-
rect control flow changes
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location of ip then consequently c is the memory location of sel target, an
array holding the global scratch location at index 0 and target at index 1.

After deriving the location of sel target we have to distinguish indirect
jumps from direct jumps and calls. This is done by analyzing not only the value
of r1 but also the source of the predicate contained in r2 for each access of
sel target. Table 1 lists the different decision rules used to determine the type
of the control flow change. A basic block never targeted by a jump succeeding
an unconditional direct jump is assumed to be a return target. Consequently, we
assume the preceeding basic block to end with a call. Note that we do not infer
outgoing edges for indirect jump targets, as this is a difficult problem which is
heavily discussed by literature. A promising way of resolving indirect jumps is
for example using value set analysis [4]. However we want to underline that our
algorithm finds the basic blocks that constitute the indirect jump targets.

Table 1. Control flow changes depending on predicate sources and values written.

Predicate source Value written Recovered control flow change

Immediate Constant Unconditional direct jump

Immediate Formula Conditional direct jump

Stack Ignored Return from call

Other memory Ignored Indirect jump

Following all steps explained above, the algorithm constructs a list of nodes
and edges that form the control flow graph of the original program. We use this
information to generate images depicting the control flow as well as a patched
executable. We do this by ordering all jumps and labels by their respective
virtual address and interpreting them as nodes. We iterate over all nodes once.
If the current node is a call label, we add an edge to the next element, if it is a
conditional jump we add a node in between the current and the next node and
add edges between the current and the intermediate node as well as between
the intermediate and the next node. In case of an unconditional jump we just
add an edge to the target of the particular jump instruction. After this step,
all weakly connected nodes form a function and can be merged. By analyzing
the calls made from each function, we can then reconstruct the call graph of the
analyzed obfuscated binary.

4 Evaluation

To estimate the cost of the obfuscation in terms of size and run-time overhead,
we obfuscated three sample programs Primes, Factorial, and SHA-256. Primes
is an implementation of the Sieve of Eratosthenes calculating all prime numbers
smaller than 5 · 107, while Factorial calculates the factorial 20! using a one-
dimensional loop. To understand the overhead of programs that are closer to real-
world applications, we also evaluated an implementation of the secure hashing
algorithm using program SHA-256.
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Table 2. Overhead in terms of run-time (seconds) and code size (bytes).

Primes Factorial SHA-256

Non-lin. Lin. Non-lin. Lin. Non-lin. Lin.

Non-sub. 0.88 s 5.03 s <0.01 s <0.01 s 0.02 s 0.4 s

240 B 928 B 1884B 1936 B 5672 B 8564 B

Sub. 62.82 s 289.47 s <0.01 s <0.01 s 8.09 s 60.57 s

16, 957 B 16, 957 B 10, 684B 10, 684 B 213, 740 B 213, 740 B

Every program produced eight data points: size and run-time for the non-
linearized, non-substituted unobfuscated version as generated by gcc version
5.3.1, the linearized and substituted version as generated by the Movfuscator
version 2.0 and two versions that were obfuscated using only one of the mecha-
nisms. The linearized, non-substituted version was generated by rewriting the C
source code according to Movfuscator while the non-linearized, substituted
version is the output of our deobfuscator applied to the movfuscated version. All
run times are averaged over ten runs as measured on a Intel Core i7-4770 clocked
at 3.4 GHz. For the aforementioned combinations of obfuscation techniques we
also added the net size of the generated code in bytes excluding overhead intro-
duced by the executable format. The results can be seen in Table 2.

The measurements show that the linearization itself already leads to a noti-
fiable increase in both run-time overhead and binary size. For example, the
SHA-256 program runs about 20 times slower after linearization, while code
size increases by roughly a factor of two. This magnitude of overhead makes
the obfuscation unsuitable for real-time applications, but could still be used to
protect critical parts of an algorithm’s implementation. Instruction substitution
however leads to a significant overhead both in run-time as well as in binary
size. As the calculation of a hash for one megabyte of data takes more than one
minute, we argue that this kind of obfuscation is not usable in practice. Note
that the size values for the linear and the non-linear version in Table 2 are the
same as they differ only by the patched bytes that our deobfuscation algorithm
introduced. As relative distances need to remain the same, the size overhead
does not change.

To determine the correctness of our deobfuscation algorithm, we compared
the CFG of the pre-obfuscated version with the control flow graph of the deob-
fuscated version of four sample programs: Primes, Factorial, AES-128, and SHA-
256. Table 3 shows the time required to run our deobfuscation algorithm on the
tested binaries. In all cases, except with the simple factorial algorithm, it was
faster to deobfuscate the obfuscated binary and to execute the deobfuscated
result, than to execute the obfuscated version.

Table 3. Deobfuscation times of the implementation of our algorithm.

Primes Factorial SHA-256 AES

0.47 s 0.213 s 0.824 s 3.68 s
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We chose SHA-256 and AES-128 to show that DeMovfuscator works on
programs performing complex operations. For AES-128, we followed the official
NIST specification on standardized AES vectors and verified that the results of
encryption and decryption matched the expected outcomes [12]. To understand
the qualitative behavior of our algorithm, we compared the CFG generated from
the obfuscated Primes program with its known, unobfuscated C source code. The
reconstructed CFG closely matches the original program. This proves that even
if a program has been obfuscated with CFL, deobfuscation is still possible.

A good way to show the generality of our approach is to create a pool of
binaries, obfuscate them, and then try to reconstruct their CFGs. Internet is
obviously the best existing pool to collect binaries. Another source we used to
harvest binaries is computer security competitions (Capture-the-Flag contests).
These contests often contain clever-crafted binaries which are ideal for our eval-
uation. To this end, we used both sources and indeed our algorithm was able
to reconstruct the control flow for all collected binaries. Our algorithm already
became handful in previous Capture-the-Flag contests where it helped us to find
an input accepted by the binary and therefore solving the task.

To study the impact of movfuscation on a symbolic execution engine, we
reproduced the results of Firmalice [21] and measured execution times for the
clean, the movfuscated, and the deobfuscated version of the Fauxware example
backdoor. We used angr from the official repository at commit fe3027 and con-
figuring it to prevent angr from concretizing symbolic memory accesses during
the operation of the Movfuscator ALU. As angr currently does not imple-
ment the sigaction syscall used by the Movfuscator, we adjusted the obfus-
cated version to call library functions using the PLT rather than the SIGSEGV
handler. We also patched out the calls to sigaction and replaced the final illegal
instruction with a proper jump to re-trigger execution of the basic block. The
Fauxware executable asks for a username and a password and compares them
against a database of legitimate credentials. There also exists an execution path
that checks the input against hard coded credentials and thus effectively bypasses
the authentication step. To find the existence of the backdoor, the original work
proposes to use path exploration to check whether there exists an satisfiable
path to the code that should only be reachable for legit users without entering
credentials from the user database. We applied the script performing the detec-
tion to the original, the obfuscated, and the deobfuscated version of the binary
and measured execution times. As Table 4 shows, the backdoor can be found
in short time before obfuscation. As the executable is intentionally kept simple,
already the second explored path triggers the backdoor condition. Nevertheless,
analyzing the same executable in its obfuscated version, angr times out after
reaching the maximum number of executed basic blocks. Note that even though
the Movfuscator generates code consisting of only one basic block, angr
counts multiple basic blocks due to the invocation of library functions and a
maximum number of instructions that one basic block can contain. Internally
the path exploration seems to be unable to reason about symbolic values, as
the number of paths (1) shows. We tried to re-run the experiment without a
threshold and let it continue for 6 h without being presented with a result.
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Table 4. Execution times of the angr symbolic execution engine to detect a backdoor
in an example executable.

Clean Obfuscated Deobfuscated

# basic blocks executed 37 99,999 87

Execution time (s) 5.1 1704.3 17.9

Explored paths 2 1 3

Executable size (bytes) 5400 5,962,776 5,962,776

After applying our deobfuscation algorithm to the obfuscated binary we let
symbolic execution explore the binary and angr was able to find the backdoor
in less than 20 s. One interesting observation is that angr needed to explore
one additional path. We suppose this to be founded in internal path scheduling
discrepancies. The run-time of our deobfuscation algorithm to generate a patched
version of this example with reconstructed control flow amounted about 0.18 s
(averaged over 10 runs).

5 Related Work

The topic of obfuscation to protect software is subject of active research in
the academic community. Junod et al. propose O-LLVM [16], an obfuscator
operating on LLVM intermediate representation. Offering a capricious variety of
obfuscation techniques we only highlight CFF in context of our work. CFF [24]
is an obfuscation technique targeting the concealment of a protected software’s
control flow. Ghosh et al. proposed Matryoshka [15], which serves exemplary for
the class of process-level-virtualization (or emulation)-based obfuscation. This
obfuscation technique works analogous to CFF, except that basic block schedul-
ing is governed dynamically by an arbitrarily chosen byte code of a virtual CPU.
Several commercial state of the art obfuscators in the industry such as VMPro-
tect [1], EXECryptor [23], and Themida [17] also employ virtualization-based
obfuscation to complicate analysis. It is noteworthy that all of the aforemen-
tioned obfuscation techniques aim to increase the complexity of the control flow
by inserting additional nodes and edges into the CFG. CFL, on the other hand
takes the opposite direction by decreasing the complexity of the CFG. Linear
obfuscation was introduced by Wang et al. [25]. The authors propose to obfuscate
trigger conditions by using unsolved conjectures such as the Collatz sequence to
attack symbolic execution. This concept is orthogonal to CFL and can be com-
bined when the on or the target registers are read or updated.

The problem of emulation-based obfuscation has been studied for more than
a decade. Rolles [18] proposes to use templating languages to generate a com-
piler that is capable of translating a VMProtect protected sample back to the
x86 architecture. Sharif et al. [20] propose a deobfuscation technique for emu-
lators based on execution traces and dynamic taint analysis. Coogan et al. [9]
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compute the relevance of instructions within an instruction trace based on data-
flow towards system calls. This approach allows to further reduce the number of
assumptions about the obfuscator used but as a drawback only considers parts
of the program covered by the trace. Yadegari et al. [26] overcome this limitation
by combining instruction traces with concolic execution [19]. Their results heav-
ily rely on the quality of the symbolic execution engine—an assumption that
does not hold for instance for programs obfuscated using the Movfuscator.

6 Conclusion

In this work, we evaluated to the best of our knowledge the only publicly available
implementation of CFL. Our evaluation shows that instruction substitution is
not applicable in real world scenarios due to its high overhead in terms of execu-
tion time and code size. However, the significant overhead and the concealment
of explicit control flow changes poses a major challenge to dynamic symbolic
execution. We have shown a state of the art symbolic execution engine to fail at
path enumeration when analyzing a linearized executable. We have also shown
that this problem can be recovered by employing our deobfuscation algorithm
and applying symbolic execution to the deobfuscated version. In addition to the
run-time overhead, which might be acceptable for the obfuscation of a small but
critical part of an algorithm, CFL has a major drawback due to its structure.
It depends on the existence of both a block selection register, like the target
register within the Movfuscator, and a global on flag governing execution.
Our investigation revealed that these registers are relatively easy to detect, as
they have to be initialized within the static initialization part of the obfuscated
binary and are accessed at the beginning and the end of each basic block of the
original program during execution. To harden future CFL implementations the
locations of those registers have to be concealed such that static analysis cannot
reason about the basic blocks of the program.
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Abstract. Offensive and defensive players in the cyber security sphere
constantly react to either party’s actions. This reactive approach works
well for attackers but can be devastating for defenders. This approach
also models the software security patching lifecycle. Patches fix security
flaws, but when deployed, can be used to develop malicious exploits.

To make exploit generation using patches more resource intensive, we
propose inserting deception into software security patches. These ghost
patches mislead attackers with deception and fix legitimate flaws in code.
An adversary using ghost patches to develop exploits will be forced to use
additional resources. We implement a proof of concept for ghost patches
and evaluate their impact on program analysis and runtime. We find that
these patches have a statistically significant impact on dynamic analysis
runtime, increasing time to analyze by a factor of up to 14x, but do not
have a statistically significant impact on program runtime.

1 Introduction

Software developers release programs to the public every day, but this code is not
perfectly written. As stated by Mosher’s Law of Software Engineering: “Don’t
worry if it doesn’t work right. If everything did, you’d be out of a job” [18]. Thus
developers release code that has flaws and subsequently provide the necessary
patches to fix the flawed code.

These patches are released with varying frequency, depending on the severity
of the flaw as well as developer resources. Software security patches have a higher
severity rating than non-security patches because these vulnerabilities could neg-
atively impact other programs and services present on the machine. Thus, when
a security flaw is discovered, a patch to fix this flaw usually follows shortly after.
This trend is shown by a report released in 2016 where the average time the
top five most frequently exploited zero-day vulnerabilities remained undetected
once an attack was released was 7 days and the average time to install a patch
for these vulnerabilities once the patch was released was 1 day [23].

Despite the speed with which these flaws are detected and updated, patches
also inherently have a negative impact on the software: revealing the location of
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vulnerabilities and the type of security vulnerability being patched. This provides
a blueprint for attackers as they develop exploits for vulnerable systems. Exploit
generation research shows that attackers can use patches to find vulnerabilities
and use these results to develop exploits for unpatched code [6,10].

One solution to make this blueprint more difficult to understand is to obfus-
cate the traditional patch [4,9,25]. This approach will make the patch more
difficult to statically analyze, but dynamic analysis tools exist that can analyze
obfuscated code [24] and the location of the patch is not masked. Therefore, addi-
tional techniques must be applied to software patching to enhance its security.

Thus, an additional technique we propose is to apply deception to software
security patching to enhance its security. One method we propose to deceive
attackers injects a faux patch, composed of one or more fake patches into tra-
ditional patches. These misleading updates could influence attackers’ ability
to identify a legitimate patch, making exploit generation using patches more
resource intensive. While not an absolute solution to the problem of patch-based
exploit generation, these misleading updates could increase the resources needed
to reverse-engineer patches, which is the first step in exploit generation and
along with other deceptive and detection techniques could make these attacks
more cost intensive. We call the combination of a faux patch and a legitimate
patch(es) for a single program a ghost patch.

Definition. Ghost patches are composed of two components: a legitimate patch,
made of traditional patches, and a faux patch, made of fake patches. The legiti-
mate patch component fixes any vulnerability or vulnerabilities that may exist
in the program. These traditional patches are actual fixes for vulnerable code.
The faux patch component is additional code meant to mislead attackers. Each
fake patch within a faux patch suggests a fake vulnerability.

Ghost patches provide the same level of security as traditional patches, but
could confuse attackers analyzing the code. This extra time and effort attackers
spend analyzing the code would increase the time between a patch release and an
exploit release. This could provide end-users more time to patch their vulnerable
systems, causing fewer attacks to succeed.

Related Work. Researchers have applied deceptive techniques to software
patches, but we believe our work is the first full treatment that applies, imple-
ments and analyzes fake code to software security patches, specifically patches
for input validation vulnerabilities. Araujo et al. [2,3] apply deception to security
vulnerabilities such as Heartbleed and Conflicker. Their work focuses on fixing
a patch by detecting an attack and diverting the runtime environment to a
sanitized virtual environment that appears vulnerable. Researchers though have
developed techniques to reliably distinguish sandbox environments from real user
machines [27]. Thus, an attacker can identify when they are being monitored and
deceived. This technique also does not camouflage legitimate patches, thus, an
adversary can easily identify these patches using a diff between a patched and
unpatched program. Ghost patches do mask the location of legitimate patches
among other plausible code updates, making an adversary’s task of identifying
the legitimate patch more resource intensive.
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Fake patches have also been mentioned by Bashar et al. [4] and Oh [19]
as ways to deceive attackers. Our work differs from these by implementing a
compiler solution using LLVM [15] to add fake patches to code and evaluating
their impact on program analysis and runtime. Adding false code to improve
code stealth and make reverse engineering of an entire program more difficult
has been explored [14].

Work by Collberg et al. also discuss bogus control flow statements [8]. Bogus
control flow statements are control flow statements that mislead reverse engi-
neering techniques and static analysis tools. This technique focuses on making
legitimate paths in a program more difficult to identify to prevent attackers from
bypassing sections of code (i.e. registration, validation, DRM, etc.). This work is
similar to our approach, as both attempt to add additional statements making
code more difficult to understand. Bogus control flow mainly attempts to pre-
vent bypassing critical code segments, while ghost patches attempt to increase
the resources necessary to develop patch-based exploits. Our approach differs as
dynamic and static analysis tools will be influenced by our approach (i.e. increase
analysis runtime) while applying dynamic analysis to bogus control flows will
expose the legitimate path in the code. Researchers also have presented the idea
of inserting beaconing code traps where return-oriented-programming (ROP)
gadgets would be expected by adversaries [11]. Our work differs as we imple-
ment an automated technique to enhance the security of patches for input val-
idation vulnerabilities. Coppens et al. suggest code diversification can be intro-
duced using patches to increase the effort necessary for exploit generation [10].
This approach would force attackers to generate multiple exploits to achieve
widespread compromise, increasing the effort and resources needed to exploit a
program compared to everyone having the same code with the same vulnera-
bility. This work though does not attempt to mask the legitimate patch, thus
an attacker could easily identify and analyze legitimate patches to code that fix
legitimate vulnerabilities.

Our contributions from this work are as follows:

– Presentation of a novel methodology to develop and insert fake patches.
– Implementation of a proof-of-concept to inject fake patches in code with input

validation vulnerabilities that could result in integer over/under-flows.
– Experimentation with dynamic analysis tool to analyze impact of fake patches.

The rest of this work is organized as follows: Section 2 discusses background
information, Sect. 3 introduces our approach to applying deception to put vali-
dation patches, Sect. 4 explains how we evaluate a faux patch, Sect. 5 presents
results from evaluating our proof of concept, Sect. 6 reviews limitations and
challenges of ghost patches as well as discusses potential solutions, and Sect. 7
concludes this work.

2 Background

Deception. Deception has been used in computing since the 1970s [12,16,21,22].
Since its introduction, a variety of deceptive tools have been developed to bolster
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computer defenses. Examples of deceptive tools are those that generate decoy doc-
uments [20] and honeyfiles [29]. These documents are planted to attract attention
away from critical data or resources and alert defenders of potential intrusions or
exfiltration attempts.

Our research will use decoy document properties to develop fake patches. The
definition of deception in computation states that any intentional act of mislead-
ing to influence decision making classifies an act as deception [1,28]. Thus, ghost
patches are intentionally placed in code to mislead attackers. Deception can also
be broken into two components, simulation, showing the false, and dissimulation,
hiding the real. Simulation and dissimulation are broken down into three sepa-
rate components. Simulation is comprised of mimicking, inventing, and decoying
and dissimulation is comprised of masking, repackaging, and dazzling [26].

Fake patches are an application of showing the false by mimicking and decoy-
ing and hiding the real by dazzling. They show the false by including charac-
teristics of real patches, mimicking a real patch and attracting attention away
from traditional patches as a decoy. Fake patches hide the real by reducing the
certainty of which patches are real and which are decoys.

Exploiting Patches. Attackers can use patches to develop exploits. One approach
statically reverse-engineers the patched code to determine the vulnerability being
fixed. Another approach dynamically analyzes patched code to determine new
paths that have been added compared to unpatched code. These new paths
suggest that a vulnerability can be exploited in the unpatched program by gen-
erating input that follows the new path in the patched program.

Using either approach, attackers can view the actual lines of code being
changed among program versions. With our approach, fake patches will be pre-
sented along with traditional patches, forcing adversaries using static analysis to
distinguish between each type of patch before generating malicious input. The
fake patches that we add can be executed by benign input without altering the
program’s semantics, forcing adversaries using dynamic analysis to distinguish
which paths are legitimate and which are deceptive. Research has also shown
that exploits can be generated automatically and quickly based on detecting
new “checks” in patched code [6].

Input Validation Vulnerabilities. This work targets input validation vulnerabili-
ties. A common patch to these types of vulnerabilities is to add boundary checks
in the form of if-statements [6]. Thus, given a patch and unpatched program,
a diff between the two programs will show additional branch statements in the
patched version. These branch statements can be used to then determine input
values that will exploit an unpatched program.

3 Approach

This research studies how a fake patch can be implemented in conjunction with
a traditional patch and measures its impact on program analysis and runtime.
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These fake patches should alter the control flow of a program, but not the data
flow of information. Thus, given two programs, one with a ghost patch and the
other with a traditional patch, the final output should be identical.

Our approach is based on the trend that input validation vulnerabilities are
patched by adding conditional statements that validate the value of variables
that can be tainted by malicious input [6]. Thus, to deceive attackers, we add
fake patches to code that mimic these input validation conditional statements,
making exploit generation using patches more resource intensive.

3.1 Threat Model

We consider attackers who are using patches to develop exploits and have access
to both patched and unpatched versions of a program, and can control and
monitor the execution of both as our threat model.

Ghost patching is designed for input validation vulnerabilities that have not
been discovered by the public or do not have a widely available exploit. If there
are scripts that already exploit a well known vulnerability, ghost patches can
still be applied but with less effectiveness. Public exploit databases1 or “under-
ground” forums could be monitored to determine if exploits have been developed.

We specifically look at input validation vulnerabilities that involve integers.
These vulnerabilities can be exploited because of a lack of boundary checking and
can cause subtle program misbehavior through integer overflows or underflows.

Finally, ghost patches target input validation vulnerabilities in enterprise
scale systems. Due to performance constraints, embedded or real time systems
do not present a suitable environment for ghost patches.

3.2 Properties of Ghost Patches

This work applies concepts from decoy documents to deceptive patches. Decoy
documents are fake documents inserted into a file system or on a personal com-
puter and are meant to intentionally mislead attackers. These documents also
mimic real documents and are decoys meant to attract attention away from
critical data. Bowen et al. and Stolfo et al. have conducted research on decoy
documents [5,20] and created a list of properties that decoy documents should
embody. We slightly modify these properties and present in Table 1 our list of
fake patch properties as well as whether the property is trivial to implement or
requires further experimentation.

3.3 Implementation Properties

The implementation of fake patches applies deception to patching because it
attracts attention away from a traditional patch, but does not impact the data
flow of the function being patched. Fake patches should be designed such that
they are not marked as dead-code and removed from the binary as a result of
1 https://www.exploit-db.com/.

https://www.exploit-db.com/
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Table 1. Fake patch properties

Property Explanation Implementation effort

Non-interfering Fake patches should not interfere with
program output nor inhibit performance
beyond some threshold determined on a
case to case basis

Experimentation

Conspicuous Fake patches should be “easy” to locate
by potential attackers

Easy

Believable Fake patches should be plausible and not
immediately detected as deceptive

Easy

Differentiable Traditional and fake patches should be
distinguishable by developers

Experimentation

Variability Fake patches should incorporate some
aspect of randomness when implemented

Easy

Enticing Fake patches should be attractive to
potential attackers such that they are not
automatically discarded

Experimentation

Shelf-life Fake patches should have a period of
time before they are discovered

Experimentation

compiler optimization nor should they be trivial to identify by attackers. These
patches should also address the properties outlined in Sect. 3.2. Implementation
components of a fake patch should at a minimum include at least one randomly
generated value and a conditional statement. Other implementation specifics
depend on the actual program being patched.

Control Flow. Fake patches having conditional statements that alter control flow
will make them apparent to attackers using static and dynamic analysis tools.
This addresses the conspicuous property. This also mimics the trend of patches
for input validation vulnerabilities.

Mimicking this trend could deceive attackers by showing changes that are
expected but fake, addressing the enticing property. Experimentation will show
how fake patches effect overall program runtime, addressing the non-interfering
property. We implement fake patch conditional statements such that they include
the destination or left-hand-side of an LLVM intermediate representation store
instruction in the original program mathematically compared to a randomly
generated value. The use of a random value address the variability property.

We form the body of if-statements by adding code that solves different mathe-
matical expressions with the original program’s value as input. These expressions
do not alter the value of the legitimate variable; thus, data flow is preserved. The
body of fake patch statements should be plausible for the program being patched.
This suggests that the body of a fake patch should be developed based on the
behavior of the program being patched.
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3.4 Post Testing

After applying a ghost patch to software, further testing should be conducted
for the following:

1. Evaluating ghost patch impact on software runtime and program memory
(i.e. lines of code).

2. Verifying ghost patch does not introduce incompatibilities by applying unit
testing.

A ghost patch should be evaluated for its impact on the program’s perfor-
mance to determine if it is feasible. This determination is dependant upon each
program and the execution environment of the program. The memory impact
of a ghost patch should also be considered. The size of a ghost patch should be
reasonable for end-users to download and apply to vulnerable systems. Develop-
ers should establish an upper threshold such that the feasibility is measurable
and can be validated. Conjectures about patch size and acceptable runtime are
outside of the scope of this research. We do analyze the statistical impact of
ghost patches on program runtime and program analysis.

3.5 LLVM Workflow

The workflow of our LLVM prototype begins with a traditionally patched file
(we assume developers have previously created a traditional patch). First, this
traditionally patched file is compiled using clang. This creates intermediate rep-
resentation bytecode of the traditionally patched program. Next, this file is com-
piled a second time, applying our ghost patch LLVM pass. This pass adds one
or more fake patches to the traditionally patched file. The fake patches are
also implemented in intermediate representation bytecode. This stage creates a
new ghost patched program. Next, this ghost patched program is compiled into
binary using the clang compiler. If the file being patched is part of a larger
project, the build tool for the project should be mapped to clang to ensure the
project gets compiled with the correct flag(s). After the ghost patched code is
compiled, the patched and unpatched (this file is before any traditional patch
has been applied) binaries are supplied to a binary diff tool, such as bsdiff, to
create a patch file that can be distributed and applied to unpatched programs.
A work flow diagram of this process is shown in Fig. 1.

3.6 Implementation

We implemented a proof of concept that addresses input validation vulnerabil-
ities involving integer variables. We believe our approach can be extended to
other variable types and data structures without loss of generality. Our imple-
mentation uses LLVM and is about 300 lines of C++ code.
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Fig. 1. Complete flow to create a ghost patch using LLVM and bsdiff

4 Evaluation

The prototype of an LLVM program was developed on an Ubuntu 14.04 x86 64
virtual machine. We used LLVM (version 3.4) to develop our pass because its
front end compiler allows optimizations to be developed that can be applied
to programs agnostic of the language they are written in. We use KLEE [7]
(version 1.3) to dynamically analyze our vulnerable code because it evaluates
paths through a program using symbolic execution, which can efficiently analyze
programs without enumerating every possible input value. Thus, results from
Klee represent a best case scenario for attacker resource utilization. The VM has
2 cores and 4 GB RAM. All experiments were also run on this virtual machine.

4.1 Simple Example

We evaluated our approach using the example below, which allows a user to enter
two values and then copies each value into an integer variable and lacks input
validation code. Then some, operations are performed and the results returned.



Ghost Patches: Fake Patches for Fake Vulnerabilities 407

int calculate(int alpha, int beta);

int main(){
int a,b,c;
int d = 9;

printf("Enter a value: \n");
scanf("%d", &a);
printf("Enter another value: \n");
scanf("%d", &b);

c = calculate(a,b);
printf("Value of C: %d\n",c);

a = b + d;
if(a > 27)

c = c * d;
else

b = a - b;

d += d;
return a;

}

int calculate (int alpha, int beta){
if(alpha > 88)

return (alpha + beta);
else

return (alpha * beta);
}

Experimentation. To evaluate our approach, we compare the length of time for
Klee [7], a symbolic execution, dynamic analysis tool, to analyze a legitimately
patched and faux patched version of the code. We use the runtime of Klee to
measure the impact of a faux patch on exploit generation. We exploit the fact
that each new branch will be analyzed because fake patches are indistinguishable
from traditional patches from a software perspective.

To show the effect of our approach on program analysis, we evaluate whether
the time to dynamically analyze traditionally patched code is significantly dif-
ferent statistically when compared to dynamically analyzing fake patched code
using a t test. We also evaluated program runtime using this same experimental
structure to determine fake patch’s effect on program performance.
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5 Results

5.1 Runtime Analysis

Using our simple code example, we collected runtime values using the time com-
mand for both the original program and a faux patched program. Figure 2 shows
the difference in program runtime between a fake patched program and the
unpatched program across 100 executions. Using this data, we determined the
statistical significance of this difference in runtime using a t test. We concluded
that there was no statistical significance between the runtimes for the original
program and the faux patched program.

Fig. 2. Difference in faux patched vs. unpatched program runtime

5.2 Program Analysis

We collected values for the runtime of Klee using the time command as it ana-
lyzed an unpatched, traditionally patched and faux patched version of our simple
code example. Figure 3 represents the runtime for each program across 100 exe-
cutions. A t test using these values reveled that there is a statistical significance
in Klee’s runtime between a traditionally patched program and a faux patched
program. This suggests that it is more resource intensive to analyze a faux
patched program compared to a traditionally patched program, thus analyzing
ghost patches would also require more resources.

6 Discussion

Our proof of concept implementation shows that the application of deception,
in the form of fake patches, to software patching is feasible. Our evaluation
shows that a faux patch does have an impact on exploit generation, increasing
the number of branches in a program, by increasing the resources necessary
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Fig. 3. Klee runtime analysis

to analyze a program. These same patches also impact a program’s runtime,
but this effect is not statistically significant. This suggests that deception can be
used to make exploit generation using patches more resource intensive, enhancing
the security of software patches. We believe that with additional research and
testing, this approach, either as a standalone technique or in conjunction with
other deceptive and detection methods, could impose an exponential increase
in program analysis, making exploit generation based on patches an expensive
operation, while only adding a minimal increase in program runtime. Our proof
of concept implemented and analyzed above supports this claim.

Patch Obfuscation. There are limitations associated with ghost patches that
could provide attackers an advantage in identifying fake patches or minimizing
their impact on program analysis. Attackers could use exploit generation tools
that perform analysis in parallel [6] to distribute the analysis load across multiple
machines and optimize exploit generation. One solution is to develop fake patches
that increase the length of each path in a program such that tools are unable
to develop an exploit. Another solution is to implement polymorphic patches.
Ghost patches can utilize randomization to create polymorphic patches that can
be distributed based on different heuristics (i.e. based on region, OS version, or
staggered by time). The non-deterministic nature of a polymorphic ghost patch
could make exploit development more difficult because the same patch would
not be applied to each end system. In this case, the traditional patch would
also have to be altered for each patch instance to prevent attackers who utilize
multiple instances of a patch to expose the legitimate vulnerability.

Based on our observations, traditional patches for input validation vulner-
abilities detect malicious input and return gracefully from the function. This
prevents a compromise, but when viewing a binary diff, searching for differ-
ences that add return commands could be an identification technique. Applying
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obfuscation to fake and legitimate patches or to the function being patched could
increase the difficulty in distinguishing between each type of patch. Future work
will explore obfuscation techniques to make code more difficult to understand
[13] and control flow more difficult to evaluate [17].

Active Response Patches. Based on the non-interfering property, faux patches
should not alter the semantics of the program; the verify step will expose that
fake patches do not alter program behavior. Thus, at worst, a brute force app-
roach could expose the vulnerability by analyzing program behavior for each
path in a program and identifying which change a program’s behavior.

One solution is to use the active response technique for legitimate patches.
Active response patches prevent a vulnerability from being exploited but respond
to exploits using the same response as an unpatched program. The response
could return sanitized data from the actual machine or transfer execution to a
honeypot environment [2]. This masking would increase the resources necessary
for dynamic analysis tools to identify unpatched systems. Further research will
develop techniques that hinder or prevent exploit verification.

Approach Limitation. Another limitation is that based on our experiments,
ghost patches only have a dynamic analysis impact when there are multiple
store operations within a program’s intermediate representation (i.e. operations
that includes an = sign). Programs that use standard functions (i.e. memmov,
memcpy) to assign values semantically perform the same operation, but are
represented differently syntactically, and thus a fake patch cannot be applied.

Adding new lines of code also could add unexpected vulnerabilities. The faux
patch code is like any other code that could have a vulnerability. Ghost patched
code could also be attacked. Providing attackers with additional paths that could
be attacked could result in a denial of service type of attack that slows overall
program runtime which could impact the machine’s performance.

Future work will extend our tool to compile and add fake patches to more
complex code. Additional testing will give insight into the effectiveness of ghost
patches. We believe because of the simplistic nature of our approach (i.e. adding
conditional statements using the store instruction), its’ statistically significant
increase in program analysis time will not be lost. We also believe that because
of the fake patch if-statement body’s code, the difference in runtime will not be
statistically significant.

7 Conclusion

This work proposed, implemented and evaluated ghost patching as a technique
to mislead attackers using patches to develop exploits against input validation
vulnerabilities. We discuss fake patch properties as well as analyze a proof of
concept using LLVM. Through experimentation, we found that fake patches add
latency to program runtime that is not statistically significant while adding a sta-
tistically significant amount of latency to program analysis. If used by program
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developers as they develop patches for security flaws, we believe faux patches
could disrupt the exploit generation process, providing more time for end users
to update their systems.
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Abstract. Unsafe memory accesses in programs written using popular
programming languages like C and C++ have been among the leading
causes of software vulnerability. Memory safety checkers, such as Soft-
bound, enforce memory spatial safety by checking if accesses to array ele-
ments are within the corresponding array bounds. However, such checks
often result in high execution time overhead due to the cost of executing
the instructions associated with the bound checks. To mitigate this prob-
lem, techniques to eliminate redundant bound checks are needed. In this
paper, we propose a novel framework, SIMBER, to eliminate redundant
memory bound checks via statistical inference. In contrast to the existing
techniques that primarily rely on static code analysis, our solution lever-
ages a simple, model-based inference to identify redundant bound checks
based on runtime statistics from past program executions. We construct
a knowledge base containing sufficient conditions using variables inside
functions, which are then applied adaptively to avoid future redundant
checks at a function-level granularity. Our experimental results on real-
world applications show that SIMBER achieves zero false positives. Also,
our approach reduces the performance overhead by up to 86.94% over
Softbound, and incurs a modest 1.7% code size increase on average to
circumvent the redundant bound checks inserted by Softbound.

1 Introduction

Many software bugs and vulnerabilities in applications (that are especially writ-
ten using C/C++) occur due to unsafe pointer usage and out-of-bound array
accesses. Security exploits, that take advantage of buffer overflows or illegal mem-
ory reads/writes, have been a major concern over the past decade. Some of the
recent examples include: (i) In February 2016, a Google engineer discovered a
stack overflow bug in the glibc DNS client side resolver inside getaddrinfo() func-
tion that had the potential to be exploited through attacker-controller domain
names, attacker-controlled DNS servers or man-in-the-middle attack [10]; (ii)
In 2016, Cisco released security patches to fix a buffer overflow vulnerability in
the Internet Key Exchange (IKE) version 1 (v1) and IKE version 2 (v2) code
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of Cisco ASA Software that could allow an attacker to cause a reload of the
affected system or to remotely execute code [5].

In order to protect software from spatial memory/array bound violations,
tools such as Softbound [12] have been developed that maintains metadata such
as array boundaries along with rules for metadata propagation when loading or
storing pointer values. By doing so, Softbound makes sure that pointer accesses
do not violate boundaries through runtime checks. While such a tool offers pro-
tection from spatial safety violations in programs, we should also note that they
often incur high performance overheads due to the following reasons. (a) Array
bound checking incurs extra instructions in the form of memory loads and stores
for pointer metadata and the propagation of metadata between pointers during
assignments. (b) In pointer-intensive programs, such additional memory accesses
can introduce memory bandwidth bottleneck, and further degrade system
performance.

To mitigate runtime overheads, static techniques to remove redundant checks
have been proposed, e.g., ABCD [3] builds and solves systems of linear inequal-
ities among bound and index variables, and WPBound [14] statically computes
the potential range of target pointer values inside loops to avoid Softbound-
related checks. As the relationship among pointer-affecting variables (i.e., vari-
ables, whose values can influence pointers) and array bounds become more com-
plex, static analysis is less effective and usually cannot remove a high percentage
of redundant array bound checks.

In this paper, we propose SIMBER, a novel approach that verifies condi-
tions for eliminating bound checks on the fly by harnessing runtime information
instead of having to rely on discovering redundant checks solely during compile-
time or using static code analysis. SIMBER is effective in removing a vast major-
ity of redundant array checks while being simple and elegant. The key idea is to
infer the safety of a pointer dereference based on statistics from prior program
executions. If prior executions show that the access of array A with length L at
index i is within bound, then it is safe to remove the checks on any future access
of A with length no smaller than L and an index no larger than i.

In summary, this paper makes the following contributions:

1. Instead of solely relying on static code analysis, SIMBER utilizes runtime
statistics to check whether array bound checks can be eliminated. Our exper-
imental results show that SIMBER can discover a high number of redundant
bound checks through analyzing the variables that can affect the pointer
values.

2. We determine a bound check as redundant only if previous executions
deem the checks to be unnecessary and current execution satisfy the con-
dition derived from such prior execution history. This helps SIMBER to
guarantee zero false positives.

3. We evaluate using applications from SPEC2006 benchmark suite [1] that
have the highest performance overheads in Softbound: bzip2, lbm, sphinx3
and hmmer. In these experiments, we observe that our approach reduces the
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performance overheads of spatial safety checks by over 86.94% compared to
Softbound.

2 Background

Softbound stores the pointer metadata (array base and bound) when pointers are
initialized, and performs array bound checks (or validation) when pointers are
dereferenced. For example, for an integer pointer ptr to an integer array intAr-
ray[100], Softbound stores ptr base = & intArray[0] and ptr bound = ptr base +
size(intArray). When dereferencing pointers, Softbound obtains the base and
bound information associated with the target pointer ptr, and does the fol-
lowing check: if the value of ptr is less than ptr base, or, if ptr+size is larger
than ptr bound, the program terminates. A disadvantage with this approach is
the high runtime performance overheads associated with metadata tracking and
bound checks especially on pointers that are largely benign or safe. Figure 1
shows the runtime overhead incurred by Softbound-instrumented applications
over un-instrumented application as baseline in SPEC2006 benchmarks [1].

Fig. 1. Runtime performance over-
head incurred by Softbound

We note that some prior works [3,14]
have proposed static analysis techniques to
eliminate redundant bound checks. In SIM-
BER, we propose a novel framework where
the redundant bound check elimination is
performed with the guidance of runtime
statistics. Our results show that even lim-
ited amounts of runtime statistics can be
a quite powerful tool to infer the safety of
pointer dereferences, and eliminate unneces-
sary pointer bound checks.

Consider the example shown in Fig. 2,
where foo(dest, src, n) copies the first n
characters in string src to dest, and replaces remaining characters with blocks
of 4-character pattern ‘0000’. To guarantee safe pointer usage, Softbound checks
(denoted by CHECK SB) will be added before each pointer dereference, e.g., in
lines 8, 9, and 20. Thus, bound checks are performed for each iteration of the
for and while loops, resulting in high execution time (performance) overhead.

A static approach such as ABCD [3] relies on building constraint systems for
target pointers and programs to remove redundant bound checks. In particular,
it identifies that indices i and j in foo() must satisfy i ≤ j from the conditions in
line 18. Therefore, bound checks on ∗(dest+i) in line 8 is deemed redundant given
the checks performed on ∗(dest+ j) in line 20. However, such static approaches
cannot be effective in eliminating other bound checks where such static inferences
cannot be made (e.g., in lines 9 and 20). Further, bound information for both
pointers dest and src needs to be kept and propagated inside foo() at runtime.

In this paper, we show that (conditionally) removing all the bound checks
in foo() is indeed possible using SIMBER. Our solution stems from two key
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Fig. 2. Example code illustrating bound checks performed by SoftBound

observations. First, redundant bound checks can be effectively identified by
examining different runs of foo(). Consider pointer dereference ∗(src + i) in
line 10 as an example. Let i(k) and src bound(k) denote the value of index i
and the bound of array src in the kth run, which is already determined to be
bound-safe, i.e., i(k) ≤ src bound(k). It is easy to see that any future runs of
foo() satisfying i ≤ i(k) and src bound ≥ src bound(k) will also be bound-safe,
due to the following chain of inequalities i ≤ i(k) ≤ src bound(k) ≤ src bound,
implying i ≤ src bound. Second, through a simple dependency analysis, we find
that the value of index i is only positively affected by input variable n. Due to
this positive dependency, the redundant-check condition i ≤ i(k) is guaranteed if
we have n ≤ n(k). Thus, bound checks for ∗(src+ i) in line 9 can be determined
as redundant by comparing input variables n and src bound with that of previ-
ous runs, which entirely removes all checks and bound propagation in foo() at
function-level.

3 Overview of System Design

SIMBER consists of five modules: Dependency Graph, Statistical-guided Infer-
ence, Knowledge Base, Redundant checks removal and Check-HotSpot Identifi-
cation. Figure 3 presents our system diagram. Given a target pointer, SIMBER
aims to determine if the pointer dereference needs to be checked. First, SIMBER
collects values of pointer-affecting variables which can affect the target pointer.
It constructs multi-dimensional safe regions where the values of such pointer-
affecting variables do not result in bad program behavior (e.g., program crash,
buffer overflow). In the current program execution, if the data point representing
pointer-affecting variables is inside the safe region, then this pointer dereference
is determined to be safe.

3.1 Dependency Graph Construction

Dependency Graph (DG) is a bi-directed graph G = (V, E) that represents pro-
gram variables as vertices in V, and models the dependency between the variables
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Fig. 3. SIMBER overview and key modules

and array indices/bounds through edges in E . We construct a DG for each func-
tion by including all if its pointers and the pointer-affecting variables that could
affect the value of pointer. We add trip count (number of times a branch is taken)
as auxiliary variables to assist the analysis of loops.

Definition 1 (DG-Node). The nodes in dependency graphs are the variables
that can affect the pointers such as (a) the variables that determine the base of
pointers through pointer initialization, assignment or casting; (b) variables that
affect the offset and bound of pointers like array index, pointer increment and
variables affecting memory allocation size; (c) Trip Count (TC): the number of
times a branch (in which a target pointer value changes) is taken.

Definition 2 (DG-Edge). DG-Node v1 will have an out-edge to DG-Node v2
if v1 can affect v2.

Abstract Syntax Tree (AST) is commonly used by compilers to represent the
structure of program code, and to analyze the dependencies between variables
and statements. We use Joern tool [18] to generate AST for each function.

Algorithm 1. Dependency graph construction for a given function foo()
1: Input: source code of function foo()
2: Construct AST of function foo()
3: Initialize V = φ, E = φ
4: for each variable v in AST do
5: V = V + {v}
6: for each statement s in AST do
7: for each pair of variables j, k in s do
8: add edge e(j, k) to E according to Remark 1
9: Output: Dependency-Graph G = (V, E)

Algorithm 1 shows the pseudocode of Dependency Graph (DG) construction
for a given function, foo(). First, we obtain all of the pointers and their corre-
sponding pointer-affecting variables, and represent them as DG-Nodes. Second,
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we traverse dependency graph and identify adjacent DG-Nodes that represent
the pointer-affecting variables associated with each target pointer. Each target
pointer will have an entry in the form of (func : ptr, var1, var2, ..., varn) where
func and ptr are the names of the function and target pointer respectively, with
vari being the name of pointer-affecting variables associated with ptr. Through
logging the values of these variables during program executions, we build condi-
tions to determine safe regions that help eliminate redundant bound checks.

Remark 1. Edges added into Dependency Graph:

E1 Assignment statements A := B B →A
E2 Function parameters Func(A,B) B↔ A
E3 Loops for.../while... Add TC to Loops
(1) Assignment inside Loops A := B TC →A
E4 Array Indexing A[i] i →A

3.2 Statistical-Guided Inference

This module builds safe regions based on the pointer-affecting variables iden-
tified by DGs, and updates the safe region through statistical inference from
previous execution. Once the pointer-affecting variables for the target pointer
are determined, SIMBER collects the values of pointer-affecting variables from
runtime profile, and produces a data point (or a vector) in Euclidean space with
the coordinates of data point being the actual values of pointer-affecting vari-
ables. The dimension of the Euclidean space is the number of pointer-affecting
variables for the target pointer.

The inference about pointer safety (for pointer-affecting variables that are
positively-correlated with the array bound) can be derived as follows: Let us
say that a data point p = (vp1, vp2, . . . , vpd) from prior execution is checked
and deemed as safe. Consider another data point q = (vq1, vq2, . . . , vqd) for the
same target pointer from current execution. If each element of q is no larger
than that of p, i.e., vq1 ≤ vp1, vq2 ≤ vp2, . . ., vqd ≤ vpd, then the bound
checks on the target pointer can be removed in the current execution. To extend
this inference to pointer-affecting variables that are negatively-correlated with
array bound, we unify the representation by converting the variable bound into
C − bound for sufficiently large constant C (such as the maximum value of
an unsigned 32-bit integer). Thus C − bound is also positively correlated, and
C − boundq ≤ C − boundp implies boundq ≥ boundp.

Definition 3 (False Positive). A false positive occurs if a bound check, that
is identified as redundant, is indeed necessary and should have not been removed.

Definition 4 (Safe Region (SR)). Safe region is an area that is inferred and
built from given data points, such that for any point within the region, the corre-
sponding target pointer is guaranteed to have only safe memory access, e.g., all
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bound checks related to the pointer can be removed with zero false positive, under
the assumption that point-affecting variables have monotonic linear relationships
with pointer bound.

Thus, the Safe Region derived from a single data point p is the enclosed area
by projecting it to each axis. In other words, it includes all vectors that have
smaller (pointer-affecting variable) values and are dominated by p. For example,
the safe region of a point (3, 2) is all of the points in the euclidian space with the
first coordinate smaller than 3 and the second coordinate smaller than 2 in R

2,
namely q = (q1, q2) : q1 ≤ 3, q2 ≤ 2. We can obtain the Safe Region of multiple
data points by taking the union of the safe regions generated by each data point.

Given a set S which consists of N data points in R
D, where D is the dimension

of data points, we first project point pi, i = 1, 2, . . . , N , to each axis and build
N -surface enclosed area in R

D, e.g., building a safe region for each data point.
The union of these N safe regions is the safe region of S, denoted by SR(S).
Thus, if a new data point q falls inside SR(S), we can find at least one existing
point p ∈ S that dominates q, i.e., q ≤ p. That is to say, the enclosed projection
area of p covers that of q, which means for every pointer-affecting variable in p
is larger than that of q.

There are data points that cannot be determined as safe based on existing
(current) safe region when q /∈ SR(S). In this case, SIMBER performs bound
checks to determine memory safety of such data points and adaptively updates
the safe region based on the outcome. More precisely, given current safe region
SR(S) and the new coming data point q /∈ SR(S), SR(S) will expand to SR(S)′

by:

SR′ = SR(S ∪ q) = SR(S) ∪ SR(q) = SR(S) ∪ {x : x ≤ q}, (1)

where {x : x ≤ q} is the set of safe points dominated by vector q. It expands
the safe region if (i) there are pointer-affecting variables in the new input q that
have a larger value than all points in current safe region SR(S), or (ii) there are
array lengths or negatively-correlated variables that have smaller values than all
points in SR(S), allowing higher degree of redundant bound check elimination
in future executions.

3.3 Knowledge Base

SIMBER stores the safe regions for target pointers in a disjoint memory space
- Knowledge Base. The data in Knowledge Base, in the format of (key, value),
represents the position and the sufficient conditions for removing the redundant
bound checks for each target pointer. Statistical Inference is triggered to compute
the Safe Region whenever the Knowledge Base is updated with newer data points
and new execution logs.

We use SQLite [2] to store our Knowledge Base. We create a table to store
conditions derived from pointer values and the corresponding pointer-affecting
variables.
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3.4 Redundant Checks Identification

SIMBER instruments functions within the program with a call to SIMBER(),
that collects pointer-affecting input parameters inside a target function, and
queries the knowledge base to obtain the conditions for eliminating array bound
checks. In particular, if the all of the data points (formed using function para-
meters) are within the safe region, the propagation of bound information and
the array bound checks can be safely removed from this target function entirely.

We maintain two versions of Check-Hotspot functions: the original version
(which contains no bound checks) and the Softbound-instrumented version (that
has bound checks and bound meta-data propagation). Based on the result of
SIMBER() outcome, we can either skip all bound checks inside the function
(if the condition holds) or proceed to call the Softbound-instrumented function
(if the condition is not satisfied) where bound checks would be performed as
shown in Fig. 2. The instrumentation of SIMBER() condition verification inside
functions leads to a small increase in code size (by about 1.7%), and we note
that such extra code is added only to a small subset of functions with highest
runtime overhead for Softbound (see Sect. 3.5 for details).

3.5 Check-HotSpot Identification

To minimize the effect of runtime bound checks, we choose Check-Hotspots func-
tions that have high levels of pointer activity. We identify Check-HotSpots as
follows: (a) We use Perf profiling tool [6] to profile two versions of programs: non-
instrumented version and softbound-instrumented source code. (b) We compute
the difference in absolute execution time spent on different functions between
non-instrumented source programs and softbound-instrumented programs to
capture the extra time spent on softbound-related code. For every function, we
calculate the function-level overhead as the ratio of the time spent on softbound-
related code to the total execution time spent in the original version. (c) We list
all of the functions with function-level overhead of at least 5% as the Check-
HotSpots.

Fig. 4. SIMBER optimized code that determines if bound checks can be removed at
function-level granularity
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3.6 SIMBER-Optimized Softbound Code

SIMBER instruments the program by adding two branches as shown in Fig. 4.
Function SIMBER() verifies whether the input variables of foo() satisfy the
condition to eliminate array bound check, and chooses one of the two possible
branches accordingly. Recall the Softbound-instrumented foo() function in Fig. 2.
The dependency graph contains edges from n to i (due to the for loop in line 6),
from src len to len (due to the assignment in line 14), from len to i (due to the
while loop in line 16), from i to j (due to the second for loop in line 18), and
from i, j to pointers src and dest (due to pointer dereference in lines 10 and 21).

We focus on bound checks for ∗(dest + j) in line 20 to illustrate SIMBER.
From the dependency graph, we find bound-affecting variables len and n, and
form a 3-dimensional vector (len, n, C − dest bound) (for large enough, constant
C) to represent the safe region corresponding to bound checks for ∗(dest + j).
Assume that C is 1024 and that three previous data points are available: P1 =
(200, 160, 1024−256), P2 = (180, 120, 1024−256) and P3 = (150, 140, 1024−512),
respectively. Per our discussion in Sect. 3.2, a safe region can be derived from
the three data point vectors in a R

3 space, i.e., SR = {x : x ≤ Pi,∀i = 1, 2, 3},
where inequality x ≤ Pi between two vectors is component-wise.

In future executions, new input variables y = (len, n, C − dest bound) are
verified by SIMBER() to determine if vector x is inside this safe region, i.e.,
y ∈ SR. As long as we can find one vector from P1, P2 and P3 that dominates
y, then the memory access of ∗(dest+ j) in line 20 is safe, allowing us to remove
all bound checks and propagation.

4 Evaluation

We use Softbound as the baseline to evaluate the effectiveness of SIMBER in
removing redundant bound checks. All measurements are made on a 2.54 GHz
Intel Xeon(R) CPU E5540 8-core server with 12 GByte of main memory. The
operating system is ubuntu 14.04 LTS.

We select several applications from SPEC 2006 benchmark suite [1] with high
performance overheads, including bzip2, hmmer from SPECint and lbm, sphinx3
from SPECfp. In the evaluation, we first instrument the applications using Soft-
bound, and use Perf [6] to identify the Check-HotSpot functions. Similar to
ABCD [3], we consider the optimization of upper- and lower-bound checks as two
separate problems. In the following, we focus on eliminating redundant upper-
bound checks, and we note that this approach can be adapted to the dual prob-
lem of lower-bound checks. We use reference inputs provided with SPEC bench-
marks. For applications that do not provide developer-supplied representative
test cases, we note that fuzzing techniques [11,16] can be used to generate test
cases. The policies considered in our evaluation are (a) Softbound-instrumented
version (denoted as Softbound). (b) SIMBER-Optimized Softbound (denoted
as S.O.S), where redundant bounds check are removed.
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Based on our Check-HotSpot identification results, we study 8 functions
shown in Table 1. We note that some Check-HotSpot functions may contribute
to high runtime overhead mainly because they are executed frequently, e.g.,
bzip2::mainGtU is called more than 8 million times, despite having small code
footprint.

4.1 Redundant Checks

To illustrate SIMBER’s efficiency in eliminating redundant bounds checks,
Table 1 shows the number of array bound checks required by Softbound, and
the number of redundant checks removed by SIMBER along with rate of false
positives reported under S.O.S. Our results show that Softbound-related checks
can be completely eliminated by S.O.S in three out of eight cases.

Table 2 shows the execution time incurred by Check-Hotspot functions in
Softbound and S.O.S. Our experiments show that upto 86.94% improvement in
execution time overhead can be achieved by S.O.S through eliminating redundant
array bound checks inserted by Softbound. In a few functions, despite totally

Table 1. Redundant array bound checks in Check-HotSpot functions

Benchmark::Function name # Bounds checks # Redundant checks False positives

bzip2::generateMTFValues 2,928,640 1,440,891 (49.2%) 0 (0.0%)

bzip2::mainGtU 81,143,646 81,136,304 (99.9%) 0 (0.0%)

bzip2::BZ2 decompress 265,215 196,259 (74.0%) 0 (0.0%)

hmmer::P7Viterbi 176,000,379 124,960,267 (71.0%) 0 (0.0%)

lbm::LBM performStreamCollide 128277886 128277886 (100.0%) 0 (0.0%)

sphinx3::vector gautbl eval logs3 2,779,295 2,779,295 (100.0%) 0 (0.0%)

sphinx3::mgau eval 725,899,332 725,899,332 (100.0%) 0 (0.0%)

sphinx3::subvq mgau shortlist 24,704 4,471 (18.1%) 0 (0.0%)

Table 2. Execution time improvement for Check-HotSpot functions

Function name Time spent in Execution time reduction

Softbound S.O.S

bzip2::generateMTFValues 77.21 s 39.46 s 48.89%

bzip2::mainGtU 47.94 s 6.26 s 86.94%

bzip2::BZ2 decompress 35.58 s 9.10 s 74.42%

hmmer::P7Viterbi 3701.11 s 812.91 s 78.04%

lbm::LBM performStreamCollide 1201.79 s 407.06 s 66.13%

sphinx3::vector gautbl eval logs3 1580.03 s 318.10 s 79.87%

sphinx3::mgau eval 1582.68 s 473.10 s 70.11%

sphinx3::subvq mgau shortlist 270.84 s 221.81 s 18.1%
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eliminating Softbound-instrumented array bound checks, a small runtime over-
head is still incurred due to the extra code added by SIMBER to circumvent
redundant bound checks at the function-level.

4.2 Memory Overhead and Code Increase

We note that SIMBER’s memory overhead for storing Knowledge Base and addi-
tional code instrumentation are modest. Our experiments show that the worst
memory overhead is only 20 KB, and the maximum code size increase is less than
5%. Across all applications, SIMBER has an average 5.28 KB memory overhead
with an average 1.7% code increase. Overall, we reduce memory overhead by
roughly 50% compared to that of Softbound.

4.3 Case Studies

bzip2. bzip2 is a compression program to compress and decompress inputs files,
such as TIFF image and source tar file. We use the function bzip2::mainGtU
as an example to illustrate how SIMBER removes redundant bound checks.
Using Dependency Graph, we first identify nblock, i1, and i2 as the pointer-
affecting variables for the target buffer pointer. For each execution, the Statis-
tical Inference module computes and updates the Safe Region, which results in
the following (sufficient) conditions for identifying redundant bounds checks in
bzip2::mainGtU :

nblock > i1 + 20 or nblock > i2 + 20 (2)

Therefore, every time this check-hotspot function is called, SIMBER will elim-
inate bound checks if the inputs variables’ values: nblock, i1, and i2 satisfy
the conditions above. Because its safe region is one-dimensional, the condition
checks have low runtime overhead. If satisfied, the conditions guarantee a com-
plete removal of bounds checks in bzip2::mainGtU function.

As a second example in bzip2::generateMTFValue, we study the conditions
to remove bound checks on five different target pointers inside of the function.
We observed that three out of five target pointers, with constant array length,
are relatively safe from out-of-bound accesses that may also be handled through
static (pre-runtime) methods. The array bounds for the other two target pointers
are not constant, and eliminating redundant checks on these pointer require a
more careful consideration of runtime statistics and conditions formed using
pointer-affecting variables. We note that bzip2::BZ2 decompress also has similar
behavior.

hmmer. hmmer is a program for searching DNA gene sequences, and involves
many double pointer operations. There is only one Check-HotSpot function,
P7Viterbi, which contributes over 98% of the performance overhead.

Inside of the hmmer::P7Viterbi function, there are four double pointers: xmx,
mmx, imx and dmx. To cope with double pointers in this function, we consider
the row and column array bounds separately, and construct safe regions for
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each dimension. Besides the four double pointers, we also identify conditions for
identifying redundant bound checks for another 14 one-dimensional arrays and
pointers. In this case, SIMBER is able to eliminate most of the redundant checks
for these 14 one-dimensional arrays with relatively simple conditions for bound
check removal. However, for the four double pointers, SIMBER is slightly more
conservative due to higher number of dimensions in the conditions.

lbm. lbm is developed to simulate incompressible fluids in 3D, and has only one
Check-HotSpot function: lbm::LBM performStreamCollide. The function has two
pointers (as input variables) with pointer assignments and dereferencing inside
of a for loop. Using SIMBER, we obtain the bound conditions for each pointer
dereferencing. Using runtime profile, we observed that the pointer dereferences
to the same set of memory addresses repeatedly, providing an opportunity to
remove all of the bound checks after successfully verifying bound conditions in
the first iteration.

sphinx3. Sphinx3 is a well-known speech recognition system. For the first
Check-HotSpot function sphinx3::vector gautbl eval logs3, there are four target
pointers inside this function. Due to the identical access pattern, once we derive
the bound check removal conditions for one single pointer, it can also be used
for all others, allowing for the redundant checks to be eliminated simultaneously
in this function. We observed a similar behavior for a second Check-HotSpot
function sphinx3::mgau eval.

The last function sphinx3::subvq mgau shortlist also has four target pointers.
For this function, SIMBER only removed 18.1% redundant checks. On further
investigation, we found that a pointer, named vqdist, inside of this function had
indirect memory access with its index value derived from another pointer: map.
To handle such situations, we note that our DGs can be extended to include
dependencies resulting from such indirect pointer references. Since we do not
handle indirect memory accesses in the current version, we are unable to elimi-
nate any redundant bound check that Softbound may perform for this pointer.

5 Related Work

Static code analysis and tools has been widely studied for discovering program
vulnerabilities and bugs [8,20]. Nurit et al. [7] have studied techniques that
target string-related bugs in C programs with conservative pointer analysis using
abstract constraint expressions for pointer operations. Such static approaches
require extensive program modeling and analysis (e.g., by constructing constraint
solver systems) and may offer limited scope in dealing with certain vulnerabilities
that occur only at runtime (e.g., due to user input-related bugs). Wurthinger
et al. [17] use dominator tree to maintain the conditions for code blocks in Java-
based programs. CCured [13] is a type-safe system that classifies pointers to
three types: safe, sequence, dynamic, and then applies different rules to check
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them. Different from these prior works, SIMBER leverages runtime profile to
determine safe pointer accesses.

Statsym [9] proposes a novel framework to combine statistical and formal
methods to discover for vulnerable paths in program, and can dramatically reduce
the search space for vulnerable paths compared to symbolic executors such as
KLEE [4]. Additionally, some works employ machine learning to improve the effi-
ciency of static code analysis, and use the similarity of code patterns to facilitate
discovery of bugs and errors [19,20]. We note that the accuracy of such meth-
ods rely on the choice of machine learning algorithms. Hardware support to iden-
tify malicious information outflows [15] and code reuse-based attacks [21] through
buffer overflows have also been studied by prior works. SIMBER can work syner-
gistically with these approaches to improve the security of applications.

6 Conclusions and Future Work

In this paper, we propose SIMBER, a framework integrating with statistics-
guided inference to remove redundant array bound checks based on runtime
profile. Its statistical inference adaptively builds a knowledge base using program
execution logs containing variables that affect pointer values, and then uses this
information to remove redundant array bound checks inserted by popular array
bound checkers such as Softbound. SIMBER reduces performance overhead of
Softbound by up to 86.94%, and incurs a modest 1.7% code size increase on
average to circumvent redundant bound checks inserted by Softbound. Currently,
SIMBER works at function-level granularity. For future work, we will study ways
to deploy SIMBER at a finer granularity to remove redundant bound checks.
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17. Würthinger, T., Wimmer, C., Mössenböck, H.: Array bounds check elimination for
the Java HotSpot client compiler. In: 5th International Symposium on Principles
and Practice of Programming in Java, pp. 125–133. ACM (2007)

18. Yamaguchi, F.: Joern: a robust code analysis platform for C/C++ (2016). http://
www.mlsec.org/joern/

19. Yamaguchi, F., Lottmann, M., Rieck, K.: Generalized vulnerability extrapolation
using abstract syntax trees. In: Proceedings of the 28th Annual Computer Security
Applications Conference, pp. 359–368. ACM (2012)

20. Yamaguchi, F., Wressnegger, C., Gascon, H., Rieck, K.: Chucky: exposing missing
checks in source code for vulnerability discovery. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, pp. 499–510. ACM
(2013)

21. Yao, F., Chen, J., Venkataramani, G.: Jop-alarm: detecting jump-oriented
programming-based anomalies in applications. In: Proceedings of IEEE 31st
International Conference on Computer Design (ICCD), pp. 467–470 (2013)

https://security.googleblog.com/2016/02/cve-2015-7547-glibc-getaddrinfo-stack.html
https://security.googleblog.com/2016/02/cve-2015-7547-glibc-getaddrinfo-stack.html
http://www.mlsec.org/joern/
http://www.mlsec.org/joern/


Towards Systematic Privacy and Operability
(PRIOP) Studies

Rene Meis(B) and Maritta Heisel

paluno - The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Duisburg, Germany
{rene.meis,maritta.heisel}@paluno.uni-due.de

Abstract. The assessment of privacy properties of software systems
gains more and more importance nowadays. This is, on the one hand
because of increasing privacy concerns of end-users due to numerous
reported privacy breaches, and on the other hand due to stricter data
protection regulations, e.g., the EU General Data Protection Regulation
that prescribes an assessment of the privacy implications that a project
possibly has. The lack of systematic methods to assist a comprehensive
and detailed privacy analysis makes it hard for analysts to address the
end-users’ and legal requirements. In this paper, we adopt the principles
of the hazard and operability (HAZOP) studies, which have successfully
been used for safety analyses, to privacy to provide a systematic method
to identify the relevant privacy threats for a software to be developed. We
propose a method called privacy and operability (PRIOP) studies that
allows to systematically analyze the potential privacy issues that a soft-
ware to be developed might raise, based on the software’s functionality
at the requirements level.

1 Introduction

Privacy is a software quality that gains more and more attention these days.
On the one hand end-users are more concerned about privacy and call for more
transparency on how their personal information1 (PI) is processed [1]. On the
other hand different legislators prescribe that data protection/privacy impact
assessments ((D)PIAs) are performed, e.g., the European Union in the new EU
General Data Protection Regulation. A (D)PIA has to be performed for all kinds
of projects that involve the processing of PI. Its goal is to assess the implications
of the project on the data subjects’ privacy.

A central element of a (D)PIA is the identification and evaluation of pri-
vacy threats to estimate the privacy risks implied by the considered project. In
this paper, we focus on software projects and want to assist analysts to identify

1 We consider any information that is related to a natural person as personal infor-
mation. We call this natural person data subject.
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and evaluate the privacy threats of a software project as early as possible dur-
ing the development process, namely in the requirements engineering phase. To
do so, we adopt the Hazard and Operability (HAZOP) [2] studies, which have
successfully been used to assess the safety implications of a system, to a system-
atic methodology called Privacy and Operability (PRIOP) studies. We illustrate
how PRIOP can be applied based on artifacts produced by the Problem-based
Privacy Analysis (ProPAn) method [3].

The rest of the paper is structured as follows. Section 2 introduces a small
eHealth scenario as running example, and HAZOP and ProPAn as background
of this work. PRIOP is introduced in Sect. 3. Section 4 discusses related work
and Sect. 5 concludes the paper.

2 Background

Running Example. We illustrate how a PRIOP study is performed using an
electronic health system (EHS) scenario provided by the industrial partners of
the EU project Network of Excellence (NoE) on Engineering Secure Future Inter-
net Software Services and Systems (NESSoS ). This scenario is based on the Ger-
man health care system which uses health insurance schemes for the accounting
of treatments. The functionalities of the considered system cover the manage-
ment of electronic health records (EHRs) (functional requirements R1 and R2),
the interaction with mobile devices of patients (R5 and R6), the accounting
and billing of patients (R3 and R4), and providing anonymized medical data for
clinical research (R7).

In this paper, we focus on the functional requirement R3. R3 is concerned
with the problem that doctors shall be able to perform the accounting of treat-
ments that patients received from them. For this, the treatments, diagnoses, and
insurance number of the patient are passed to an external insurance application
that provides the connection to the patient’s insurance company. This insur-
ance application then returns the information which treatments are beared by
the patient’s insurance contract and the software-to-be shall create an invoice
for the treatments that are not covered by the patient’s insurance contract. For
this, the doctor additionally enters the costs for the treatments.

Hazard and Operability Studies. The international standard IEC 61882 [2]
defines what a Hazard and Operability (HAZOP) study is and a process to per-
form a HAZOP study. HAZOP aims at identifying potential hazards and oper-
ability problems. A hazard is defined as the potential source of “physical injury
or damage to the health of people or damage to property or the environment”
[2] and an operability problem is any deviation from the intended behavior of
the system that leads to non-conformance with its (functional) requirements.
During a HAZOP study small parts of a system are analyzed in isolation. To
systematically identify the potential hazards or operability problems of these
parts, HAZOP proposes the eleven guide words NO, MORE, LESS, AS WELL
AS, PART OF, REVERSE, OTHER THAN, EARLY, LATE, BEFORE, and
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AFTER. These guide words are interpreted in the context of the behavioral char-
acteristics of the part under consideration and lead to deviations of the intended
behavior. The derived deviations for a part are documented together with the
possible causes of the described situation, its consequences, and safeguards that
shall prevent the occurrence of this situation, or reduce the consequences the
deviation may have in a template.

In this paper, we adapt HAZOP to be used in the context of a privacy threat
analysis. Next, we introduce the Problem-based Privacy Analysis (ProPAn)
method that can be used as a starting point for a PRIOP study.

Problem-Based Privacy Analysis. To perform a privacy threat analysis,
first, the system, consisting of the machine (software to be developed) and the
environment it shall be integrated in (cf. [4]), has to be analyzed. To be more
precise, it has to be known (1) which PI of which data subjects is processed by
the machine, (2) how is this PI collected by the machine, (3) where and how
is the PI stored, and (4) to which other entities the machine provides the PI it
processes.

Fig. 1. Problem diagram for functional requirement R3

In this paper, we demonstrate PRIOP based on inputs provided by the
Problem-based Privacy Analysis (ProPAn). ProPAn is a systematic and tool-
supported2 method to perform a privacy analysis starting with a set of func-
tional requirements. The functional requirements represent a decomposition of
the overall problem of building the machine and they have to be modeled as prob-
lem diagrams following Jackson’s problem frame approach [4]. Figure 1 shows the
problem diagram for requirement R3 of the EHS example.

It shows on the left the machine EHS (box on the left) and its interfaces
(lines between the boxes) to the environment (boxes in the middle). The envi-
ronment of the machine consists of domains. Jackson distinguishes three types
of domains. Biddable domains (B) are usually people, lexical domains (X) are
physical representations of data, and causal domains (C) are objects that behave
according to a given specification. The relevant environment for R3 consists of
the lexical domains EHR (representing the electronic health records) and Invoice
(representing the invoices for treatments that the patient’s insurance contracts
do not cover), the causal domain InsuranceApplication (which is the interface

2 http://www.uml4pf.org/ext-propan.

http://www.uml4pf.org/ext-propan
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to the patients’ insurances to perform the accounting of treatments patients
received), and the biddable domain Doctor (who initiates the accounting).

On the right, the problem diagram shows the functional requirement R3
(dashed oval on the right) and its references to the environment. Jackson distin-
guishes two kinds of references from functional requirements to domains. First, a
requirement can refer to (dashed line) an event, action, or state of a domain due
to which the environment shall behave in the desired way. This desired behavior
of the environment is expressed using the second kind of reference. That is, a
requirement can constrain (dashed line with filled arrow head) events, actions, or
states of a domain. R3 refers to the event that the Doctor initiates the account-
ing and to the EHRs of the involved patients, which contain the PI treatments,
diagnoses, insurance number, and the patients billing information. Additionally,
R3 constrains that the InsuranceApplication provides the feedback which treat-
ments are covered by the patients’ insurance contracts and that a corresponding
invoice is created for treatments not beared by the patient’s insurance.

Fig. 2. Excerpt of a graph that visualizes how PI of patients is processed

ProPAn helps an analysis team that incorporates expertise in requirements
engineering, privacy, and the application domain to (1) elicit privacy-relevant
domain knowledge [5], (2) identify the PI processed by the system and how
it flows through it [6], and (3) derive the relevant privacy requirements for
the machine [3]. Figure 2 shows an excerpt of a graph that visualizes the flow
of patient’s PI due to the functional requirements. This graph is a result of
ProPAn’s steps to identify the PI that is processed by the system and how it
is processed by the system. The gray highlighted part of the graph shows the
information flows that were elicited due to R3. The flows outside of the gray
part originate from other functional requirements or domain knowledge. The
gray printed domains represent designed domains, and the white domains rep-
resent given domains. According to Jackson, designed domains are part of the
machine and hence, part of the development problem. In contrast, given domains
are the parts of the machine’s environment that have to be considered as they
are, i.e., their specified behavior is not under the control of the development
team and cannot be changed. The graph shows that due to R3 treatmentCosts
are collected from Doctors (flow from a given domain to a designed domain) and
stored in an Invoice together with patientBillingDetails and treatments (flows to
a designed domain). In other words, during the privacy analysis with ProPAn,
we identified and documented that an invoice contains the previously mentioned
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PI. Furthermore, insuranceNumber, treatments, and diagnoses flow to the Insur-
anceApplication (flow from a designed domain to a given domain), due to the
machine because of R3. Due to requirement R4 and elicited privacy-relevant
domain knowledge, the information provided to the InsuranceApplication flows
further to InsuranceEmployees and the patientBillingDetails and treatmentCosts
are sent to a FinancialApplication (R4) and further to its employees to perform
the billing.

The privacy requirements considered by ProPAn are based on the six protec-
tion goals for privacy proposed by Hansen et al. [7]. These consists of the classical
security requirements confidentiality (SC), integrity (SI), and availability (SA)
and the privacy goals unlinkability, transparency, and intervenability. We refined
the privacy goal unlinkability based on the work of Pfitzmann and Hansen [8] to
the privacy requirements anonymity (UA), pseudonymity (UP), undetectability
(UU), and data unlinkability (UD). The privacy goal transparency was refined
by us in [9] into information requirements for the collection (TC), storage (TS),
and flow (TF) of PI, and informing about exceptional cases (TE) concerning
the processing of PI. In [10] we refined the privacy goal intervenability into
intervention requirements for data subjects (ID) and authorities (IA).

In this paper, we consider the artifacts produced by ProPAn as input for
PRIOP, but any method supporting points (1)–(3) (mentioned above) can be
used.

3 Privacy and Operability Studies

PRIOP aims at a systematic privacy and operability analysis of a software
project. Figure 3 visualizes the central steps (arrows) of a PRIOP study and the
created artifacts (boxes). First, the software project has to be decomposed into
subproblems. PRIOP does not prescribe how the decomposition is achieved. For
example, Jackson’s problem frame approach can be used to derive the project’s
subproblems. For each of these subproblems, we create a table for further analy-
sis. This table should contain a short summary of the subproblem that is consid-
ered and should mention who is involved in the PRIOP study of the subproblem.
Then each subproblem is categorized based on its functionality, as discussed later
in this section. For each identified category of the subproblem a block is added
to the subproblem’s table. Finally, the PRIOP guide words have to be consid-
ered for every combination of subproblem and category. The consideration of a

Fig. 3. Steps and artifacts of a PRIOP study
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guide word results in a row in the block of the considered category in the table
of the considered subproblem. In the following, we provide more details on the
categorization of subproblems and the consideration of guide words.

PRIOP Operation Categories. During the analysis of the identified subprob-
lems, we distinguish four categories of how PI can be processed by the machine.
These categories are collection, storage, flow, and deduction of PI. An operation
is in the category collection, if it describes that information is collected by the
machine from a given domain. Operations in the category storage are concerned
with the storage of PI at designed domains. If an operation causes a flow of PI
from the machine to a given domain, then it is in the category flow. Operations
in the category deduction are concerned with the deduction or computation of
PI based on other information.

An operation can be in none (i.e., it does not process PI) or multiple of these
categories, depending on the characteristics of the operation. This differentiation
of operation categories helps to systematically assess the characteristics of a
subproblem in order to identify privacy threats that it possibly causes. To refer
to all of these categories simultaneously, we will use the term processing.

If the PRIOP study is performed based on ProPAn, then we consider the
functional requirements as subproblems and can perform their categorization
automatically based on the artifacts created by this method. For requirement R3
of the EHS example, we can see from Fig. 2 that it is concerned with the collection
of PI from Doctors, the storage of PI at the domain Invoice, and sending PI to
the InsuranceApplication. Figure 2 also shows which PI is collected, stored, and
flows. Furthermore, the ProPAn model documents (not shown in this paper)
that the PI treatmentCosts is derived from the PI treatments, diagnoses, and
insuranceContracts by doctors based on the feedback provided by the insurance
application. Hence, R3 belongs to all operation categories.

PRIOP Guide Words. We consider all HAZOP guide words as useful to
identify privacy threats, because these guide words describe in general the devi-
ations that can occur in all kinds of operations a subproblem may be concerned
with. We add one additional guide word, namely INCORRECT. This guide
word shall cover the cases in which operations are performed incorrectly or with
incorrect information as an input. Table 1 shows all PRIOP guide words and
our deviation patterns for the four previously introduced operation categories.
If these deviation patterns are used for a concrete subproblem, then the terms
in angle brackets (< >) have to be instantiated for the subproblem (cf. column
deviations in Table 2). The term <PI> is instantiated with the PI that is col-
lected/stored/flown/deduced due to the subproblem. If a subproblem is in the
category flow, then the term <target> has to be instantiated with the given
domains to which the PI flows. Furthermore, there are some terms in italics.
While the other terms can be instantiated based on the combination of operation
category and subproblem, the italic terms have to be instantiated under consid-
eration of the concrete deviations the guide words imply. The terms <other PI>

and <additional PI> have to be instantiated with the PI that is considered
to be unintendedly collected/stored/flown/deduced. <other domain>, <other
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target>, and <additional target> have to be instantiated with the domains
to which information flows unintendedly.

The PRIOP Template. The previously introduced guide words shall help to
identify deviations of the intended behavior of the operations a subproblem is
concerned with. These deviations can lead to violations of privacy requirements
and the subproblem’s operability. In the case that such an identified deviation
leads to a violation of a privacy requirement, the deviation is a privacy threat.
We developed a template that is based on the templates proposed to be used in
HAZOP studies in [2], but enhanced with additional fields to allow to elicit and
document attributes that are needed for a later risk evaluation of the identified
privacy threats.

An excerpt of the PRIOP template instance for R3 of the EHS example is
shown in Table 2. We omit the general information about the subproblem and the
people involved in the PRIOP study. In Table 2, we see for each operation cate-
gory a block (introduced with a row with black background). We selected one or
two guide words for each operation category block to illustrate how the proposed
template could be filled. For each operation category it is documented from, at,
to, or by which domain which PI is collected, stored, flows, or is deduced, respec-
tively. The columns are separated into three areas.

The first two columns show the considered guide word for the row and the
deviations it can lead to for the operation category and the considered subprob-
lem. Our deviation patterns shown in Table 1 can be used as starting point for
the derivation of the deviations implied by a guide word. The terms <PI> and
<target> can be instantiated with the corresponding information provided in
the operation category block. Nevertheless, the deviation pattern instances need
to be modified to fit into the context of the subproblem. The deviations possibly
represent privacy threats or operability issues.

The second area consists of the third and fourth column. In this area, the
analysis team has to document the identified causes that possibly lead to the
deviations. Additionally, the likelihood of each cause shall be documented. The
analysis team should agree on a common likelihood scale, be it qualitative or
quantitative. A common scale will make it easier to homogeneously evaluate the
risks implied by the identified privacy threats.

The third area consists of the last three columns. This area is concerned
with the consequences the deviations may have on the privacy requirements
or the operability of the subproblem. The consequences are first documented
as free text, then the harmed privacy requirements are explicitly listed, and it
is documented to which degree the described consequences impact the listed
privacy requirements. Similar to the likelihood scale, the analysis team has also
to agree on a consequence scale.

If the analysis team identified possible causes for a guide word and conse-
quences that harm privacy requirements, then the deviation represents a privacy
threat. Whether and how this threat has to be further assessed is in most cases
determined using a risk matrix that defines which combinations of likelihood and
consequence of a threat are acceptable and which are not. Our template already
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Table 1. Deviation patterns for the all combinations of proposed guide words and
operation categories
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provides this information such that a risk matrix can easily be filled based on
an instantiated template.

We only discuss the last row of the template instance for R3 in Table 2.
The row is concerned with the deduction of the treatment costs for treatments
not covered by the patients’ insurance contracts which is performed by doctors
based on the result of the accounting provided by the insurance application.
The deviation that is derived for the guide word REVERSE is that the patient’s
PI healthInsurances, diagnoses, and treatments can be deduced from treatment-
Costs. This deviation could be possible if the treatment costs are observed over
a longer time, e.g., because specific diagnosed illnesses could imply a series of
treatments that lead to specific treatment costs allowing to conclude from the
treatment costs the diagnosed illness and received treatments. The analysis team
decided that this is rarely possible. As a consequence the financial employees
who are able to observe the treatment costs over a longer time might be able to
deduce the treatments, diagnoses, or insuranceContracts of specific patients. The
analysis team identified that this consequence harms a confidentiality require-
ment saying that the deducable PI shall not be disclosed to financial employees.
Furthermore, the transparency requirements that are concerned with inform-
ing the patient about the flow of and exceptional cases for the deducable PI
and the related intervenability requirements for the patient and authorities are
harmed. From the documented consequence a major impact on all listed privacy
requirements is expected.

The shown template can be enriched with further columns. For example, it
can be helpful to provide additional columns to document rationales, e.g., why
a specific likelihood was selected for a possible cause, why a possible cause has
a documented consequence, or why a consequence impacts the stated privacy
requirements in the defined way. Furthermore, already existing safeguards or
possible treatments could be documented that shall either reduce the likelihood
of a possible cause or the consequence on a privacy requirement.

Relation of Guide Words to Privacy Requirements. If the taxonomy of
privacy requirements used by ProPAn (see Sect. 2) is used, we can provide addi-
tional support to instantiate the template. Based on the deviation patterns (see
Table 1), we identified the privacy requirements that are expected to be harmed
by a deviation. Table 3 shows the relations that we identified. An “X” in the
table means that a deviation implied by the guide word for the operation cat-
egory, could harm the respective privacy requirement. If a cell is empty or a
privacy requirement is not mentioned, then we do not expect a violation of this
privacy requirement for deviations implied by the respective guide word and
operation category. In Table 3, we use the abbreviations for the privacy require-
ments that were introduced in Sect. 2 and we introduce three groups (Gn) of
privacy requirements that share the combinations of guide words and operation
categories for which they are relevant. This mapping of combinations of guide
words and operation categories to privacy requirements shall help to identify the
privacy requirements that are harmed by an identified deviation, but it could also
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Table 3. Privacy requirements that might be harmed by guide words’ deviations

Guide words Collection Storage Flow Deduction

G1, TC G3 TF G1, TS G3 G1, TF G3 TC G1, G2 G3

NO, LESS, PART
OF, INCORRECT

× × × ×

MORE, AS WELL
AS, EARLY, LATE,
BEFORE, AFTER

× × × × × × × ×

REVERSE × × × × × × × × ×
OTHER THAN × × × × × × × × ×
G1 = {SI, SA, TE, ID, IA}, G2 = {TC, TF, TS}, G3 = {SC, UU, UA, UD, UP}

serve as a starting point to elicit scenarios that violate the privacy requirements
under consideration of the guide word and operation category.

We identified that for all combinations of guide words and operation cat-
egories the privacy requirements integrity (SI), availability (SA), exceptional
information (TE), data subject intervention (ID), and authority intervention
(IA), which all belong to group G1, might be harmed. This is, because every
change in the behavior of an operation could damage the integrity and avail-
ability of the processed information, and every change of the way that the PI
is processed by the machine could lead to exceptional cases about which the
data subject has to be informed and that could violate intervention options the
data subject or authorities have. Additionally, all modifications of how PI is
collected, stored, or flows can lead to a violation of the transparency require-
ments collection, storage, and flow information, respectively. A change in the
deduction of information might affect collection, storage, and flow information
requirements (G2).

Group G3 consists of the privacy requirements confidentiality (SC), undetect-
ability (UU), anonymity (UA), data unlinkability (UD), and pseudonymity (UP).
These requirements might be relevant for the guide words MORE, AS WELL
AS, OTHER THAN, EARLY, LATE, BEFORE, and AFTER in all operation
categories, because the guide words imply either that more, additional or other
information is processed by the machine, or in a different order, earlier, or later as
expected, which could lead to a violation of these requirements. Note that for the
guide words MORE, EARLY, LATE, BEFORE, and AFTER, the requirements
about the PI that is processed are affected. In contrast, for the guide words
AS WELL AS and OTHER THAN, the requirements about the additional or
other PI that is processed in addition to or instead of the PI that originally
should be processed could be harmed. The guide words NO, LESS, PART OF,
and INCORRECT are not implying a violation of the privacy requirements in
group G3, because they only concern that fewer or incorrect PI is processed,
which does not harm the privacy requirements contained in G3. The guide word



438 R. Meis and M. Heisel

REVERSE is interpreted differently depending on the operation category (cf.
Table 1). Hence, for the categories collection, flow, and deduction it might harm
the requirements in G3, but for the category storage it does not.

The transparency requirement flow information (TF) might be harmed by
deviations for the guide words REVERSE and OTHER THAN in the opera-
tion category collection, because they possibly imply a flow from the machine to
another domain that is not intended. Similarly, collection information require-
ments (TC) might be harmed by deviations for the guide word REVERSE in
the operation category flow. This is, because these scenarios would consider that
instead of sending information to other domains, the machine would receive
(collect) this or even other information which might be unintended.

Discussion. The procedure described in [2] to perform a HAZOP study stresses
that for an analysis, the team has to carefully select the guide words that are
considered for the system under consideration. Similarly, it can be the case that
only a subset of the proposed guide words is relevant for a PRIOP study of a
specific software project and that even additional guide words are identified as
important. Hence, we do not claim that our selection of guide words represents
a complete set of guide words relevant for the identification of privacy threats
of a software project, but expect that it provides a good foundation.

Similarly, the operation categories could be extended. For example, Gürses
[11] mentions that information can be collected, used, processed, distributed,
or deleted. Collection and distribution (flow to other domains) are covered by
our proposed categories. Usage contains from our point-of-view deduction and
storage, but other kinds of usage might be identified for a concrete system as
additional operation categories. Processing is considered by us as a high-level
term describing that something is done with the PI, be that collection, storage,
etc. Deletion is an additional category that is worth to analyze in future work,
because it is only partly covered by PRIOP. The HAZOP standard does not
categorize operations in a way that we propose in this work, but we think that
making these operation categories explicit can help analysts to identify scenarios
that lead to a harm of privacy requirements. Nevertheless, it can also be valuable
to consider the guide words for a given subproblem without considering the
operation categories, because this could prevent that the scope of the considered
deviations is unnecessarily limited to the operation categories.

Anyway, no method for the identification of any kind of threats can guarantee
to elicit a complete set of relevant threats [12]. Nevertheless, we think that
our proposed systematic analysis will help analysts to identify, evaluate, and
document the privacy threats relevant for their software projects.

An important point that always needs to be assessed critically is the scaleabil-
ity of a proposed analysis method. If we perform a PRIOP study, then we have to
fill in a template for every subproblem. For each operation category a subprob-
lem is assigned to, we have to consider the 12 guide words. That means that in
the worst case, we have to fill in 48 rows of the proposed template for each sub-
problem. Our observation is that this maximum is rarely reached. If it is reached,
this is an indicator that the subproblem could be further decomposed into sim-
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pler subproblems, because it includes collection, storage, flow, and deduction of
PI. Overall, we expect that the effort that has to be spent to perform a PRIOP
study scales linearly with the complexity of the software project. The central
attributes describing the complexity of the software project for a PRIOP study
are the number of subproblems, data subjects, and PI that shall be processed
by the machine. For the EHS example, we filled out 168 rows in total. This took
us 28 h in total and 10 min per row in average.

Limitations of PRIOP are that (1) the analysis of the subproblems in iso-
lation may not be sufficient if threats arise from the combination of different
functionalities, (2) the analysis is limited to the documented subproblems and
hence, PRIOP will not help in identifying privacy threats if subproblems are
missing or lack important details, and (3) the success of a PRIOP study depends
on the analysis team. To address limitation (3), we encourage that the analysis
team has to incorporate expertise in requirements engineering, privacy, and the
application domain.

4 Related Work

Deng et al. [13] propose a privacy threat analysis framework called LINDDUN.
LINDDUN considers the high-level privacy threats linkability, identifiability,
non-repudiation, detectability, information disclosure, content unawareness, and
policy/consent noncompliance, which are negations of popular privacy goals. For
the considered system, a DFD (data flow diagram) is created. For each combina-
tion of privacy threat and DFD element kind, a threat graph is provided. These
are used to derive the possible concrete privacy threats that have to be handled.
Based on the high-level privacy threats, the authors also suggest PETs (pri-
vacy enhancing technologies) that shall help to mitigate the concrete threats. In
comparison to our work, the threat graphs of LINDDUN provide more detailed
information that may help to identify whether a high-level privacy threat is rele-
vant or not. But it is possible that the usage of these threat graphs unnecessarily
limits the scope of the privacy threat analysis. In future work, we want to elab-
orate how LINDDUN and PRIOP could be combined to provide better support
for the identification of privacy threats.

Several authors investigated the needs of (D)PIAs and methodologies that
can be followed in order to perform a (D)PIA. Wright [14] gives an overview
of the state of the art in PIA. Oetzel and Spiekermann [15] describe a method-
ology to support a complete process for a PIA, and Bieker et al. [16] describe
a methodology for a DPIA under the EU General Data Protection Regulation.
The proposed methodologies describe which steps have to be performed in which
order to perform a (D)PIA, but they do not describe concrete techniques that
can be used to systematically identify privacy threats. PRIOP can be used to
realize the threat identification and risk evaluation steps of the proposed meth-
ods. Alnemr et al. [17] propose a DPIA methodology for clouds. They support
the identification of privacy threats based on an exhaustive questionnaire. This
questionnaire is complementary to PRIOP, and we want to investigate in future
work how the questionnaire can be integrated into PRIOP.
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5 Conclusions

In this paper, we present with PRIOP a systematic method to identify and
document privacy threats and operability issues of software projects. During
a PRIOP study, possible deviations of the software project’s subproblems are
examined under consideration of the four operation categories collection, storage,
flow, and deduction. The deviations of a subproblem in the context of the relevant
operation categories are derived using the twelve proposed PRIOP guide words.
Deviation patterns are provided by PRIOP for all combinations of guide words
and operation categories to support an analysis team. The identified deviations
for the guide words then have to be further analyzed for possible causes and
consequences they might have on the privacy requirements of the software project
or the operability of the subproblem. To further support the execution of a
PRIOP study, we provide a mapping that shows which privacy requirements
could be harmed by a deviation for a combination of guide word and operation
category. The documentation created using PRIOP can be used to further assess
the risks implied by the identified privacy threats. We illustrated PRIOP using
an EHS example and artifacts produced with the ProPAn method.

In future research, we will integrate PRIOP into the ProPAn tool to benefit
from the artifacts created using the ProPAn method. Furthermore, we want to
investigate how generic threats, e.g., in the form of threat patterns as introduced
by Uzunov and Fernandez [18] for security, can be related to the operation
categories and guide words to further assist the identification of privacy threats.
The evaluation of PRIOP using a real case study is also future work.
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Abstract. Data minimisation is a privacy-enhancing principle consid-
ered as one of the pillars of personal data regulations. This principle
dictates that personal data collected should be no more than necessary
for the specific purpose consented by the user. In this paper we study
data minimisation from a programming language perspective. We define
a data minimiser as a pre-processor for the input which reduces the
amount of information available to the program without compromising
its functionality. We give its formal definition and provide a procedure
to synthesise a correct data minimiser for a given program.

1 Introduction

According to the Article 5 of the EU General Data Protection Regulation pro-
posal “Personal data must be [. . . ] limited to what is necessary in relation to
the purposes for which they are processed” [12]. This principle is called data
minimisation. From a software perspective, data minimisation requires that the
input data not semantically used by a program should neither be collected nor
processed. The data processor could be seen in this context as to be the adver-
sary (or attacker), as she knows all the information available after the input is
collected (before the program execution) and thus can exploit the inputs.1

The goal of the data minimisation process is to minimise the input data so
only what is necessary is given to the program. Whenever the input data exactly
matches what is necessary we may say that the minimisation is the best. Best
minimisation is, however, difficult to achieve in general since it is not trivial to
exactly determine what is the input needed to compute each possible output.

Fig. 1. Program Pbl computes benefit level.

1 In other scenarios the adversary only has access to the outputs (cf. [27]).
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Fig. 2. Monolithic and distributed minimisation architectures.

As an example of minimisation let us consider the program Pbl shown in
Fig. 1, whose purpose is to compute the benefit level of employees depending on
their salary (that we assume to be between $0 and $100000). For the sake of
simplicity, in what follows we drive our analysis on worst-case assumptions. A
quick analysis shows that the range of the output is {false, true}, and conse-
quently the data processor does not need to precisely know the real salaries to
determine the benefit level. Each employee should be able to give any number
between 0 and 9999 as input if eligible to the benefits, and any number between
10000 and 100000 otherwise, without disclosing real salaries.

In other words, data minimisation is the process of ensuring that the range
of inputs provided to a program is reduced such that when two inputs result in
the same response, then one of them can be considered redundant. Minimality
is an information-flow property related to the notions of required information
release [9], and of strong dependency (a.k.a. non-interference) [10]. Minimality
can also be seen as one relating cardinalities: ideally, a program satisfying data
minimisation should be one such that the cardinality of the possible output is
equal to the cardinality of the input domain.

In a distributed setting the concept of minimisation is more complex since
the minimisation process is not monolithic anymore as the data may be collected
from multiple independent sources (users). Figure 2 gives an illustration of this
difference in the case of a static minimiser run by the client.

We will see that in general we cannot decide whether a program is minimal,
or compute in the general case a “best” minimiser. In order to statically compute
a minimiser for a program we need to compute its kernel. In the monolithic case
this is just a partition of the input domain so that all the inputs in a partition
get mapped to the same output. A minimiser in this case can be constructed by
choosing a representative for each partition, and mapping all elements in that
partition to the chosen representative. The distributed case is more complex.
Though producing the coarsest possible partition is uncomputable, in practice it
may be computed for specific cases. This is true for programs not having complex
loops, mutual recursive calls, nor using libraries for which we have neither access
to the code nor the specification. Our analysis does not completely exclude such
programs as it might still be done in practice if suitable invariants are given,
by providing formal specifications about libraries, or by sacrificing complete
automation and allowing a man-in-the-loop to guide the analysis.

In this paper we address data minimisation with the following contributions:
(i) We provide a formal definition of the concept of minimisers for a program
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used to achieve data minimisation (Sect. 3) with respect to an explicit attacker
model (Sect. 2); (ii) We show how we can compare minimisers, leading to the
definition of best minimiser for a given program (Sect. 4); (iii) We propose a
(semi-)procedure to generate minimisers and prove its soundness and termina-
tion (Sect. 5); (iv) We provide a proof-of-concept implementation (DataMin) to
compute minimisers, based on symbolic execution and the use of a SAT solver
in order to exemplify our approach.

The accompanying technical report [1] contains an application of our proof
of concept to different prototypical programs, as well as more detailed examples
and the proofs of the theorems and lemmas presented in the rest of the paper.

2 Attacker Model

In order to define data minimisation we consider an explicit attacker model. In
practice a malicious server may have a secondary use for the data (defined as
“using personal data in a different way than the primary reason why they were
collected” [8]). We define here an attacker model having the following compo-
nents: (i) an explicit model of a hidden secondary use of the data, and (ii) an
explicit model of what the attacker learns about the data from observing the
result of processing the data. We will develop a definition of minimisation which
guarantees that an attacker learns no more about the private data than he can
deduce from the legitimate output of the program.

To model the hidden secondary use, we suppose the attacker uses a second
program denoted by a function h ∈ I → O′. Thus the attacker is defined by a
pair of functions p and h (the legitimate use and the hidden use of the data,
respectively), and the attacker’s computation is given by the function 〈p, h〉 ∈
I → O × O′ defined by 〈p, h〉(i) def= (p(i), h(i)).

If the goal of the attacker is to learn something about the inputs by observing
the output of 〈p, h〉 then it is easy to see that the worst case is when h is the
identity function. In the following section we will show that if the input is first
minimised using a best possible minimiser m, then what the attacker learns from
〈p, h〉 ◦m is no more than what is learned by p alone (with ◦ being the standard
function composition operator). Here we assume that the attacker knows the
minimiser m. To do this we model the attacker knowledge explicitly, as has
become more common recently (e.g. [4,5,7]).

Definition 1 (Knowledge). Let u ∈ I be an input, and f a function in I → O.
The knowledge about u obtained through f by observing f(u), written K(f, u),
is defined to be the set {v | f(u) = f(v), v ∈ I}.

Thus K(f, u) is the largest set of possible input values that could have led to
the output value f(u). This corresponds to an attacker who knows the function
f and the output f(u) and makes perfect logical deduction about the possible
values of the input. Note that the smaller the knowledge set, the less uncertainty
the observer has over the possible value of the input. The knowledge relation
induces an order on programs: the bigger the knowledge set for a given input,
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the less a program will disclose information about the input. This is reasonable
given that if more input values are mapped to the same output, more difficult
it will be to guess what is the exact input when observing the output of a
computation. We have then the following order between programs:

Definition 2 (Disclosure ordering). We say f discloses less or as much infor-
mation as g, written f � g, iff for all u ∈ I we have K(g, u) ⊆ K(f, u).

If f and g are knowledge equivalent, we write f ≡ g. For example, func-
tions denoted by (·mod2) and (·mod4) (with postfix notation) are related by
(·mod2) � (·mod4) (knowing the last bit discloses less information than know-
ing the last two bits). However, (· > 0) is incomparable to either of them.

3 Data Minimisers

We will consider two types of minimiser depending on how the data is collected:
monolithic and distributed. Monolithic collection describes the simple case when
personal data is collected from a single location. In the distributed case, inputs
from multiple subjects, we assume that we cannot minimise one input using
knowledge of the other inputs in the setting of Fig. 2. The aim now is to defined
a notion of data minimiser – a program to be deployed at a data source (one per
source in the distributed case) – which can remove information from data in a
way that (in the best case) the remaining information is enough for the server
to compute the intended function p, and (in the best case) nothing more.

Semantics of Minimisation. Let us consider the program in Fig. 3 to discuss the
need for a semantic definition of minimisation. In this program, x2 is syntac-
tically needed to evaluate the condition (�.3). However, this condition always
evaluates to true. In the same way, x3 is not semantically needed to compute
the value of y since it is both added and substracted (�.4). As a consequence, it
would be possible to get the same result by rewriting the program with only the
input x1 without modifying its behavior. If x2 and x3 are personal data, then
the semantic approach is better likely to help us to limit the collection than
the syntactic approach. So, the program could be refactored by taking only the
input x1 while retaining the same output behaviour. Though this would work, it
requires a change in both the data collected and in the interface of the program.

Instead, we propose to keep the program unchanged and we rely on the idea
that the information behind x2 and x3 (in this specific example) can be protected
by providing fixed arbitrary values for them, instead of refactoring the program.
This means the program does not need to be modified for the data processor
to propose better guarantees. This approach allows a better modularity and a
better integration in the software development cycle. To see this, let us consider
the program shown in Fig. 1. In this case, any employee earning less than $10000
can disclose any figure between 0 and 9999 and any employee earning at least
$10000 can disclose any figure between 10000 and 100000 without affecting the
output of the program. Thus a corresponding data minimiser could be as shown
in Fig. 4, where the representative values are taken to be 0 and 10000.
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Fig. 3. Example of a semantically unnecessary
syntactic necessity.

The value output by this
minimiser, which is the value of
repr salary, can then be pro-
vided as input to the correspond-
ing program (standing for the
variable salary). The behaviour
of the program will remain the
same while the actual salary of
the employee is not needlessly
passed to the program. This holds even when an employee earns exactly the
amount of repr salary since the data processor receiving this value cannot
distinguish when it is the case or not.

Fig. 4. Minimiser for Pbl (see Fig. 1).

Following this approach, we
study both monolithic and dis-
tributed cases as shown in Fig. 2
where M and

⊗n
i=0 Mi are a

monolithic and a distributed
minimiser respectively (each Mi

is a local minimiser), P is the
program, ui are input values, rui

are input representatives, and o
are outputs.

3.1 Monolithic Case

Let us assume a program P constituting a legitimate processing of personal data
for which the data subject had consented to the purpose. We abstract it through
a function p which ranges over I → O. Since we aim at building pre-processors
for the program, we consider a minimiser m with type I → I.

Definition 3 (Monolithic minimiser). We say m is a monolithic minimiser
for p iff (i) p ◦ m = p and (ii) m ◦ m = m.

Condition (i) states correctness: using the pre-processor does not change the
result of the computation. Condition (ii) ensures that m chooses representative
inputs in a canonical way, i.e., m removes information from the input in one go.

3.2 Distributed Case

In general a computation over private data may require data collected from
several independent sources. We will thus extend our definition to the distributed
setting. This is the general case where a program dp is a function of a product of
input domains, dp ∈ ∏n

i=0 Ii → O. The idea for the distributed minimiser will
be to have a local minimiser mi ∈ Ii → Ii for each source Ii, combined into
an input processor as dm =

⊗n
i=0 mi, where for f ∈ A → A′ and g ∈ B → B′

we have f ⊗ g ∈ A × B → A′ × B′. This is based on the assumption that each
argument of dp is provided by a different data source.
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Definition 4 (Distributed minimiser). We say dm is a distributed min-
imiser for dp iff (i) dm is a monolithic minimiser for dp and (ii) dm has the
form

⊗n
i=0 dmi (with dmi being Ii → Ii functions—called local minimisers, for

i ∈ {0, . . . , n}).
The first condition ensures that dm is actually a minimiser while the second

one ensures that each input is treated independently. The latter is the key dif-
ferentiator between monolithic and distributed minimisers. Each function dmi

is only provided with an input from Ii. Intuitively, this means that if two input
values at a given position belong to the same equivalence class, then this must
hold for all possible values provided for the other positions. For example, if the
values 0 and 1 from I0 belong to the same equivalence class, then each pair of
input tuples 〈0, x, y〉 and 〈1, x, y〉 for all (x, y) ∈ ∏2

i=1 Ii have to belong to the
same equivalence class (two by two, meaning these can be different classes for
each pair: 〈0, 1, 2〉 and 〈1, 1, 3〉 may not belong to the same equivalence class,
though 〈0, 1, 2〉 and 〈1, 1, 2〉 have to). This is formally stated in Proposition 1
below, which relies on the definition of the kernel of a function, which induces a
partition of the input set where every element in the same equivalence class is
mapped to the same output.

Definition 5 (Kernel of a function). If f ∈ I → O then the kernel of f is
defined as ker(f) = {(u, v) | f(u) = f(v)}.
Proposition 1. If m is a monolithic minimiser for p, then m is a distributed
minimiser for p iff for all (u, v) ∈ ker(m), for all input positions i, and all input
vectors w, (w[i �→ ui],w[i �→ ui]) ∈ ker(m) where the notation w[i �→ ui] denotes
a vector like w except at position i where it has value ui.

This proposition gives a data-based characterisation of data minimisation,
which will be useful when building minimisers in Sect. 5. Before building min-
imisers, we explain how to compare them in the next section.

4 Best Minimisers

Now that we defined minimisers as pre-processors modifying the input, we see
that there may exist many different minimisers for a given program. Thus we
are interested in being able to compare these minimisers. Indeed, since the iden-
tity function is a minimiser for all programs p, then it is clear that the simple
existence of a minimiser does not guarantee any kind of minimality. One way
to compare minimisers is to compare the size of their ranges – a smaller range
indicates a greater degree of minimality (cf. Proposition 2 below). A more pre-
cise way to compare them is by understanding them in terms of the lattice of
equivalence relations [24]. The set of equivalence relations on I forms a complete
lattice, with the ordering relation given by set-inclusion of their defining sets of
pairs. The identity relation (denoted by IdI) is the bottom element, and the
total relation (denoted by AllI) is the top.

The following proposition provides some properties about the order relation
between programs (cf. Definition 2), including its relation with the kernel.
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Proposition 2 (Disclosure ordering properties). (1) f � g iff ker(f) ⊇
ker(g) (2) f ◦ g � g (3) f � 〈f, g〉 (4) 〈f, f〉 � f (5) f � g implies |range(f)| ≤
|range(g)|
where 〈f, g〉 is the function x �→ (f(x), g(x)) (see Sect. 2).

4.1 Monolithic Case

The disclosure ordering allows us to compare the minimisers of a given program,
defining a best minimiser to be one which discloses no more than any other.

Definition 6 (Best monolithic minimiser). We say that m is a best mono-
lithic minimiser for p iff (i) m is a monolithic minimiser for p and (ii) m � n
for all minimisers n for p.

In this simple (monolithic) form, minimisation is easily understood as injectivity.

Proposition 3 (Monolithic best minimiser injectivity). A monolithic
minimiser m for a program p is a best one iff p|range(m) is injective (with
p|range(m) the restriction of the program p over the range of m).

Now we can show that using a minimiser m at the client guarantees that the
attacker 〈p, h〉 learns no more about the input than which can be learned by
observing the output of the legitimate use p (the proof follows from the ordering
between minimisers and Proposition 2).

Theorem 1. If m is a best monolithic minimiser for p then for all hidden uses
h we have 〈p, h〉 ◦ m ≡ p.

The proof of the following theorem proceeds by building a best monolithic min-
imiser from kernel of p.

Theorem 2. For every program p there exists a best monolithic minimiser.

4.2 Distributed Case

As for the monolithic case, we have an ordering between distributed minimisers.
We define the notion of a best minimiser for the distributed case as follows (�
is the order between functions, i.e. the inverse of the kernel set inclusion order).

Definition 7. (Best distributed minimiser). We say dm is a best distrib-
uted minimiser for dp iff (i) dm is a distributed minimiser for dp and (ii)
dm � dn for all dn distributed minimisers for dp.

In the following we show that there always exists a best distributed minimiser.

Theorem 3. For every distributed program dp there exists a best distributed
minimiser.
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Note that there is a price to pay here: the best distributed minimiser may
reveal more information than the best monolithic minimiser. An example is the
OR function where the identity function is a best distributed minimiser, but
in the monolithic case we can minimise further by mapping (0, 0) to itself, and
mapping all other inputs to (1, 1). Similarly to Proposition 1, we give a data-
centric characterisation of best distributed minimisers as follows.

Proposition 4 (Data-based best distributed minimisation). If dm is
a best distributed minimiser for dp, then for all input positions i, for all v1
and v2 ∈ Ii such that v1 �= v2, there is some u ∈ range(dm) such that
dp (u[i �→ v1]) �= dp (u[i �→ v2]).

5 Building Minimisers

We describe here how data minimisers are built. This (semi-)procedure is not
complete for the best minimisers since obtaining a best minimiser is not com-
putable in general. Besides, and more pragmatically, our procedure is built on
top of a theorem prover and a symbolic execution engine, and it is thus lim-
ited by the power of such tools. Our procedure follows the toolchain depicted
in Fig. 5. Before describing the procedure in detail, we briefly recall concepts
related to symbolic execution.

Fig. 5. Toolchain of the (semi-)procedure to generate minimisers.

5.1 Symbolic Execution

This step corresponds to the two leftmost boxes of the toolchain shown in Fig. 5.
Symbolic execution has been pioneered in [17] as a way to reason about symbolic
states reached by a program execution. A symbolic execution of a program is an
execution of the program against symbolic inputs. Expressions are symbolically
evaluated and assigned to variables. The state of this execution includes the
values of the program (modelled as a mapping called store), and path conditions
(boolean expressions ranging over the symbolic inputs, specifying the conditions
to be satisfied for a node to be reached). Assignments modify the symbolic value
of variables, whereas conditions and loops create branches distinguished by their
path conditions. This execution generates a symbolic execution tree where each
node is associated to a statement and each arc to a transition of the program. A
state is associated to each node and the root node corresponds to the input of
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Fig. 6. Symbolic execution tree of Pbl (see Fig. 1).

the program. Each leaf in the tree corresponds to a completed execution path,
and no two leaves have the same path condition.

Let us consider again program Pbl from Fig. 1. A representation of the possible
paths for Pbl is shown in Fig. 6 where the digits 1 and 2 correspond to the lines
of the program, Sto is the corresponding store, and PC is the path condition
at this point (�.3 of the program does not have any effect in this representa-
tion). The possible execution paths for this program lead to two main outputs,
where either benefits == true or benefits == false. Thus the best min-
imiser should distinguish the two cases and return a representative value leading
to the same output as if the program were to be executed with the “real” value
assigned to salary. This is the case for the data minimiser described in Fig. 4.
Moreover, any change of value for repr salary leads to a change in the salary
computed by the main program: this minimiser is indeed a best minimiser.

Loops in programs require an invariant. Failing to provide good invariants
results in weaker path conditions failing to capture all of what is theoretically
knowable about the states of the symbolic execution. To find the best invariant
is a difficult problem and still an active field of research [13].

In our approach the program P is symbolically executed along with the
assertions coming from the specification S. We assume that we have a global
precondition for the program P , given in the specification S of the program,
denoted Pre〈P, S〉. In our example, the conditions 0 ≤ s and s ≤ 100000 are
part of the preconditions as shown in Fig. 6. This produces a symbolic execution
tree equipped with the corresponding path conditions PC and Sto attached to
its nodes. In what follows we define a symbolic characterisation of the program
P under specification S capturing the conditions at the end of the execution.

Definition 8 (Symbolic characterisation of a program). We say Γ is a
symbolic characterisation of a program P under specification S, written Γ〈P,S〉,
iff Γ collects the preconditions, stores, and path conditions to be satisfied for
each possible output of P : Γ〈P,S〉 � Pre〈P, S〉∧

(∨
l∈Leaves〈P,S〉 (PC(l) ∧ Sto(l))

)
,

where Leaves〈P, S〉 returns the leaves of the symbolic execution tree of P under
specification S, and PC(·) and Sto(·) return the path condition and the state
associated to a leaf, respectively.

For the example in Fig. 1, the (simplified) symbolic characterisation is:
Γ〈Pbl ,Sbl〉 = (0 ≤ s ∧ s ≤ 100000) ∧ ((s < 10000 ∧ salary = s ∧ benefits =
true) ∨ (s ≥ 10000 ∧ salary = s ∧ benefits = false)).
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The symbolic characterisation induces an equivalence class giving a partition
of the state space according to the different possible outputs. A solver uses this
to get a representative for each class, which is the next step in our procedure.

5.2 Static Generation of Minimisers

We show here how best minimisers are generated from the symbolic execution
tree. The monolithic case is a particular case of the distributed one. The con-
struction spans over the DataMin box shown Fig. 5.

The input domain of the semantic function dp having n+1 inputs is
∏n

i=0 Ii

and the corresponding input variables of dp are denoted as xi. A local function
dmi is generated for each input xi ∈ Input(DP). We are still interested in the
different possible outputs of dp but we cannot directly use its kernel as in the
monolithic case since this would require all the minimisers to have access to
the data at other data source points. Instead of this, each data source point
assumes that the data to be disclosed by other points could take any possible
value in their domain. Thus we need to compute, for each input variable xi,
the equivalence classes over its domain such that the value o of the output of
the program remains the same for all possible assignments to the other inputs
variables xj for all j ∈ ({0, . . . , n}\{i}).

The algorithm of Fig. 7 shows how the distribution of the inputs is taken
into account. Here, min (�.1) stands for the minimiser being built (as a map
containing the local minimiser min[i] (�.5) for each input i (�.3)), Inputs (�.3)
denotes the inputs of the program, and Γ (�.4) denotes the formula of the sym-
bolic characterisation of the program. The notation φ[y/x] denotes the formula
φ in which y replaces x and == the logical equality (�.8).

Fig. 7. Distributed data minimiser generation (excerpt).
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Primitives depending on a theorem prover are called at three locations in
the algorithm. The first one, check() (�.6) checks whether or not a logical for-
mula is satisfiable. Then, model() (�.7) applied to a formula returns a satisfying
valuation. These two primitives are linked as it is only possible to find such a
valuation for satisfiable formula. Finally, quantif elim() (�.9) is a procedure to
eliminate (both universal and existential) quantifiers in a formula, thus simpli-
fying a formula by removing the corresponding symbols.

After initialising min, holding the minimisers as a map from inputs i to tuples
(weakest precondition, representative) (�.1), a new logical variable i′ is declared
(�.2). At this point, all the inputs (�.3) and the output o of the program already
exist as logical variables (implicitly introduced with Γ which is an input of this
algorithm). The new logical variable i′ is used to control variations on one input
during the procedure (�.8). Then, the algorithm iterates over all the inputs (�.3).
The symbolic characterisation Γ is assigned to the variable γ (�.4) (which will
be reinitialised at each iteration of the loop of �.3). The original Γ will be used
to build formulas to be solved while the fresher γ will be used to control the
loop (�.6). The minimiser min is then initialised for the current input i (�.5).
The algorithm loops over all equivalence classes for the current input i. This is
ensured by (i) representing each equivalence class by its weakest precondition wp
(�.7–10), (ii) conjuncting the negation of the weakest precondition wp found to
the symbolic characterisation γ (�.10), and (iii) looping as long as there is another
equivalence class to be covered by checking the satisfiability of γ conjuncted with
the negation of all previous conditions (�.6).

We now explain in more detail how the weakest preconditions are found (�.7–
10). A satisfying valuation of the characterisation γ is requested from the solver
and assigned to the variable model (�.7). The valuation of variable x can be
called by model[x]. A formula (assigned to the variable formula) is then built in
two steps. First, we conjunct Γ , Γ [i′/i], and the formula i′ == model[i] (�.8).
This fixes Γ [i′/i] to the case where i′ is equal to the satisfying valuation found
previously (�.7). Once the formula has been built, the quantifiers are eliminated
by calling a solver (�.9). This gives the weakest precondition corresponding to an
equivalence class of the inputs (the one corresponding to the value of model[i]).
This equivalence class wp is then added to the minimiser min[i] along with its
representative model[i] (�.10) before being excluded from the control γ (�.11)
before a new iteration, until exhaustion of the equivalence classes (�.6).

This algorithm builds a map function min which is used to generate the code
for the atomic minimisers in a post-processing step (not shown here).

Theorem 4 (Soundness). The algorithm of Fig. 7 builds a best distributed
minimiser dm for program dp.

Soundness of this algorithm relies on Proposition 4, on the fact that the
representative assigned to each equivalence class is fixed, on the proof of existence
from Theorem 3, and on the soundness of the external procedures called.
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Theorem 5 (Termination). The algorithm of Fig. 7 terminates when the
number of inputs and the number of equivalence classes on these inputs are
finite, and the calls to the external solver terminate.

This is proven by showing that all the loops in the algorithm iterate over sets
built from inputs and equivalence classes. The set of inputs is not modified in
the loops while the condition of (�.6) strictly decreases in terms of the number
of times it is satisfiable. However, it terminates only if there is a finite number of
equivalence classes for the current input. Since we depend on external procedures,
termination of our algorithm also depends on the termination of such procedures.

5.3 DataMin Implementation

The (semi-)procedure described in this section has been implemented in Python
as a proof of concept named DataMin.2 We rely on the Symbolic Execution
Engine of the KeY Project [16]. This symbolic executor is run against a program
P written in Java for which a minimiser should be generated. DataMin generates
the symbolic characterisation Γ〈P,S〉 and builds the partitioning k〈P,S〉 and the
sectioning r〈P,S〉 functions. The theorem prover Z3 [23] is called through its API
to solve constrains as needed. We currently support only a limited range of data
structures but could be extended thanks to the many theories on which Z3 relies.

Finally, DataMin generates the minimiser as a set of Java files to be run
by the data source points before disclosing the data. These files are directly
compilable and ready to be exported as Java libraries to ease their use. This
whole process runs in reasonable time for the examples provided in the archive
(less than a second, given that Python is run in its interpreted mode). For the
first example (monolithic with a loop) the solver used (Z3 ) was not able to
totally eliminate quantifiers. We thus manually eliminated quantifiers by using
the Redlog system [11]. This limitation comes from the external tools and not
from the procedure proposed. The second example (distributed) does not suffer
from this limitation and shows how multiple atomic minimisers are generated.

6 Final Discussion

We provided a formal definition of data minimisation in terms of strong depen-
dency and derived concepts, and introduced the concept of a data minimiser
defined as a pre-processor to the data processor. We considered both the mono-
lithic and distributed cases. Finally, we provided a proof-of-concept implementa-
tion to obtain data minimisers for a given program. Our approach is semantics-
based, so finding a distributed minimiser is undecidable in general.

Formal and rigorous approaches to privacy have been advocated for some
time [28], but the data minimisation principle has not been precisely defined in
the past, as stated in [15]. A related work is the notion of minimal exposure [3],
which consists in performing a preprocessing of information on the client’s side
2 http://www.cse.chalmers.se/research/databin/files/datamin.zip.

http://www.cse.chalmers.se/research/databin/files/datamin.zip
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to give only the data needed to benefit from a service. In this setting, if the
requested service can be modeled as a ∨ b, then if a is true then only a will be
disclosed: they reduce the number of inputs provided, but do not reason on the
domain of the inputs as we do.

Minimality is closely related to information flow, and we have used several
ideas from that area [10,18,26]. A semantic notion of dependency has been intro-
duced in [22], where it is used to characterise the variables in an expression that
are semantically relevant for the evaluation of the expression. Our notion is
related to this but much more fine-grained. A notable difference in the formali-
sation of minimality compared to usual definitions of information flow is that the
former is a necessary and sufficient condition on information flow, whereas most
security formulations of the latter are sufficient conditions only (e.g., noninter-
ference: public inputs are sufficient to compute public outputs). An exception is
Chong’s required information release [9] which provides both upper and lower
bounds on information flows. For this reason many static analysis techniques for
security properties (e.g. type systems) are not easy to use for minimality—an
over-approximation to the information flows is not sound for minimality. The
necessary and sufficient conditions embodied in minimisers appear to be closely
related to the notion of completeness in abstract interpretation [14], where a
minimiser m plays the role of a complete abstraction. Some work on quantitative
information flow aiming at automated discovery of leaks also rely on analysis of
equivalence classes [6,20]. We could use several of the ideas in [6] to improve our
implementation.

Equivalence partitioning by using symbolic execution was first introduced
for test case generation in [25], and later used by the KeY theorem prover [2].
Symbolic execution has limitations, especially when it comes to handling loops.
Though being a main concern in theory and for some applications, while loops
do not seem to be as widespread as for loops in practice. For instance, Malacaria
et al. have been able to perform a symbolic execution-based verification of non-
interference security properties from the C source of the real world OpenSSL
library [21]. Different other techniques relying on symbolic execution and SAT
solvers are presented in [29] to form nsqflow, a tool dedicated at measuring
quantitative information flow for large programs. They also target realistic pro-
grams and thus show the feasibility to decide about non-interference properties
in programs.

Acknowledgements. This research has been supported by the Swedish funding
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Abstract. In this paper, we apply the differential privacy concept to
neighborhood-based recommendation methods (NBMs) under a proba-
bilistic framework. We first present a solution, by directly calibrating
Laplace noise into the training process, to differential-privately find the
maximum a posteriori parameters similarity. Then we connect differen-
tial privacy to NBMs by exploiting a recent observation that sampling
from the scaled posterior distribution of a Bayesian model results in
provably differentially private systems. Our experiments show that both
solutions allow promising accuracy with a modest privacy budget, and
the second solution yields better accuracy if the sampling asymptotically
converges. We also compare our solutions to the recent differentially pri-
vate matrix factorization (MF) recommender systems, and show that our
solutions achieve better accuracy when the privacy budget is reasonably
small. This is an interesting result because MF systems often offer better
accuracy when differential privacy is not applied.

Keywords: Recommender · Collaborative filtering · Differential privacy

1 Introduction

Recommender systems, particularly collaborative filtering (CF) systems, have
been widely deployed due to the success of E-commerce [25]. There are two
dominant approaches in CF. One is matrix factorization (MF) [12] which mod-
els the user preference matrix as a product of two low-rank user and item feature
matrices, and the other is neighborhood-based method (NBM) which leverages
the similarity between items or users to estimate user preferences [7]. Generally,
MF is more accurate than NBM [25], while NBM has an irreplaceable advantage
that it naturally explains the recommendation results. In reality, industrial CF
recommender and ranking systems often adopt a client-server model, in which
a single server (or, server cluster) holds databases and serves a large number of
users. CF exploits the fact that similar users are likely to prefer similar prod-
ucts, unfortunately this property facilitates effective user de-anonymization and
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
S. De Capitani di Vimercati and F. Martinelli (Eds.): SEC 2017, IFIP AICT 502, pp. 459–473, 2017.
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history information recovery through the recommendation results [5,18]. To this
end, NBM is more fragile (e.g. [5,16]), since it is essentially a simple linear combi-
nation of user history information which is weighted by the normalized similarity
between users or items. In this paper, we aim at preventing information leakage
from the recommendation results, for the NBM systems. Note that a related
research topic is to avoid the server from accessing the users’ plaintext inputs,
and many solutions exist for this (e.g. [19,26]). We skip the details here.

Differential privacy [9] provides rigorous privacy protection for user informa-
tion in statistical databases. Intuitively, it offers a participant the possibility to
deny his participation in a computation. Some works, such as [14,33], have been
proposed for some specific NBMs, which adopt correlations or artificially defined
metrics as similarity [7] and are less appealing from the perspective of accuracy.
It remains as an open issue to apply the differential privacy concept to more
sophisticated NBM models, which automatically learn similarity from training
data (e.g. [22,27,29]). Particularly, probabilistic NBM [29] models the depen-
dencies among observations (ratings) which leads user preference estimation to
a penalized risk minimization problem to search optimal unobserved factors (In
our context, the unobserved factor is similarity). It has been shown that the
instantiation in [29] outperforms most other NBM systems and even the MF or
probabilistic MF systems in many settings.

1.1 Our Contribution

Due to its accuracy advantages, we focus on the probabilistic NBM systems in
our study. Inspired by [4,13], we propose two methods to instantiate differentially
private solutions. First, we calibrate noise into the training process (i.e. SGD) to
differential-privately find the maximum a posteriori similarity. This instantiation
achieves differential privacy for each rating value. Second, we link the differential
privacy concept to probabilistic NBM, by sampling from scaled posterior distri-
bution. For the sake of efficiency, we employ a recent MCMC method, namely
Stochastic Gradient Langevin Dynamics (SGLD) [32], as the sampler. In order
to use SGLD, we derive an unbiased estimator of similarity gradient from a
mini-batch. This instantiation achieves differential privacy for every user profile
(rating vector). Our experimental results show that differentially private MFs
are more accurate when privacy loss is large (extremely, in a non-private case),
but differentially private NBMs are better when privacy loss is set in a more
reasonable range. Even with the added noises, both our solutions consistently
outperform non-private traditional NBMs in accuracy. Despite the complexity
concern, our solution with posterior sampling (i.e. SGLD) outperforms the other
from the accuracy perspective.

2 Preliminary

Generally, NBMs can be divided into user-user approach (relies on similarity
between users) and item-item approach (relies on similarity between items) [7].
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Probabilistic NBM can be regarded as a generic methodology, to be employed
by any other specific NBM system. Commonly, the item-item approach is more
accurate and robust than the user-user approach [7,16]. In this paper, we take the
item-item approach as an instance to introduce the probabilistic NBM concept
from [29]. We also review the concept of differential privacy.

2.1 Review Probabilistic NBM

rui The rating that user u gave item i

sij The similarity between item i and j

R ∈ R
N×M Rating matrix

R>0 ⊂ R All the observed ratings or training data

S ∈ R
M×M Item similarity matrix

Si ∈ R
1×M Similarity vector of item i

R−
u ∈ R

M×1 u’s rating vector without the item being modeled

αS , αR Hyperparameters of Si and rui respectively

f(Si, R
−
u ) Any NBM which takes as input the Si and R−

u

p(∗) Prior distribution of ∗
p(Si|αS) Likelihood function of Si conditioned on αS

p(rui|f(∗), αR) Likelihood function of rui

Suppose we have a dataset with N users and M items. Probabilistic NBM
[29] assumes the observed ratings R>0 conditioned on historical ratings with
Gaussian noise. Some notation is summarized in the above table. The likelihood
function of observations R>0 and prior of similarity S are written as

p(R>0|S, R−, αR) =

M∏

i=1

N∏

u=1

[N (rui|f(Si, R
−
u ), α−1

R )]Iui ; p(S|αS) =

M∏

i=1

N (Si|0, α−1
S I)

(1)

where N (x|μ, α−1) denotes the Gaussian distribution with mean μ and precision
α. R− indicates that if item i is being modeled then it is excluded from the
training data R>0. f(Si, R

−
u ) denotes any NBM which takes as inputs the Si

and R−
u . In the following, we instantiate it to be a typical NBM [7]:

r̂ui ← f(Si, R
−
u ) = r̄i +

∑
j∈I\{i} sij(ruj − r̄j)Iuj

∑
j∈I\{i} |sij |Iuj

=
SiR

−
u

|Si|I−
u

(2)

r̂ui denotes the estimation of user u’s preference on item i, r̄i is item i’s mean
rating value, Iuj is the rating indicator Iuj = 1 if user u rated item j, otherwise,
Iuj = 0. Similar with R−

u , I−
u denotes user u’s indicator vector but set Iui = 0 if

i is the item being estimated. For the ease of notation, we will omit the term r̄i
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and present Eq. (2) in a vectorization form in favor of a slightly more succinct
notation. The log of the posterior distribution over the similarity is

− logp(S|R>0, αS , αR) = − log p(R>0|S, R−, αR)p(S|αS) =

αR

2

M∑

i=1

N∑

u=1

(rui − SiR
−
u

|Si|I−
u

)2 +
αs

2

M∑

i=1

(||Si||2) + M2 log
αs√
2π

+ log
αR√
2π

M∑

i=1

N∑

u=1

Iui

(3)

Thanks to the simplicity of the log-posterior distribu-
tion (i.e.

∑M
i=1

∑N
u=1(rui − SiR

−
u

|Si|I−
u

)2 +
∑M

i=1(||Si||2), where we omit the constant
terms in Eq. (3)). We can have two approaches to solve this risk minimization
problem.

– Stochastic Gradient Descent (SGD). In this approach, log p(S|R>0, αS , αR)
is treated as an error function. SGD can be adopted to minimize the
error function. In each SGD iteration we update the gradient of similarity
(−∂ log p(S|R>0,αS ,αR)

∂Sij
) with a set of randomly chosen ratings Φ by

Sij ← Sij − η(
∑

(u,j)∈Φ

(r̂ui − rui)
∂r̂ui

∂Sij
+ λSij) (4)

where η is the learning rate, λ = αS

αR
is the regular parameter, the set Φ

may contain n ∈ [1, N ] users. In Sect. 3, we will introduce how to build the
differentially private SGD to train probabilistic NBM.

– Monte Carlo Markov Chain (MCMC). We estimate the predictive distribution
of an unknown rating by a Monte Carlo approximation. In Sect. 4, we will
connect differential privacy to samples from the posterior p(S|R>0, αS , αR),
via Stochastic Gradient Langevin Dynamics (SGLD) [32].

2.2 Differential Privacy

Differential privacy [9], which is a dominate security definition against infer-
ence attacks, aims to rigorously protect sensitive data in statistical databases.
It allows to efficiently perform machine learning tasks with quantified privacy
guarantee while accurately approximating the non-private results.

Definition 1 (Differential Privacy [9]). A random algorithm M is (ε, σ)
-differentially private if for all O ⊂ Range(M) and for any of all (D0,D1)
which only differs on one single record such that ||D0 − D1|| ≤ 1 satisfies

Pr[M(D0) ∈ O] ≤ exp(ε)Pr[(M(D1) ∈ O] + σ

And M guarantees ε-differential privacy if σ = 0.

The parameter ε states the difference of algorithm M’s output for any (D0,D1).
It measures the privacy loss. Lower ε indicates stronger privacy protection.
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Laplace Mechanism [8] is a common approach to approximate a real-valued
function f : D → R with a differential privacy preservation using additive noise
sampled from Laplace distribution: M(D) Δ= f(D) + Lap(0, ΔF

ε ), where the
ΔF indicates the largest possible change between the outputs of the function f
which takes as input any neighbor databases (D0,D1). It is referred to as the
L1-sensitivity which is defined as: ΔF = max

(D0,D1)
||f(D0) − f(D1)||1.

Sampling from the posterior distribution of a Bayesian model with bounded
log-likelihood, recently, has been proven to be differentially private [30]. It is
essentially an exponential mechanism [15]. Formally, suppose we have a dataset
of L i.i.d examples X = {xi}L

i=1 which we model using a conditional probability
distribution p(x|θ) where θ is a parameter vector, with a prior distribution p(θ).
If p(x|θ) satisfies supx∈X ,θ∈Θ| log p(x|θ)| ≤ B, then releasing one sample from
the posterior distribution p(θ|X ) with any prior p(θ) preserves 4B-differential
privacy. Alternatively, ε differential privacy can be preserved by simply rescaling
the log-posterior distribution by a factor of ε

4B , under the regularity conditions
where asymptotic normality (Bernstein-von Mises theorem) holds.

3 Differentially Private SGD

When applying the differential privacy concept, treating the training model
(process) as a black box, by only working on the original input or finally out-
put, may result in very poor utility [1,4]. In contrast, by leveraging the tight
characterization of training data, NBM and SGD, we directly calibrate noise
into the SGD training process, via Laplace mechanism, to differential-privately
learn similarity. Algorithm 1 outlines our differentially-private SGD method for
training probabilistic NBM.

Algorithm 1. Differentially Private SGD
Require: Database R>0, privacy parameter ε, regular parameter λ, rescale parameter

β, learning rate η, the total number of iterations K, initialized similarity S(1).
1: S(1) = S(1) · β 
 rescale the initialization
2: for t = 1 : K do
3: • uniform-randomly sample a mini-batch Φ ⊂ R>0.
4: ΔF = 2emax

τ
C


 emax = 0.5 + ϕ−1
t+1

; |Si|Iu ≥ C
5: eui = min(max(eui, −emax), emax) 
 eui = r̂ui − rui

6: G =
∑

(u,i)∈Φ eui
∂r̂ui
∂Si

+ Laplace( γKΔF
ε

) 
 γ = L
L

7: S(t+1) ← S(t) − η(βG + λS(t)) 
 up-scale the update
8: end for
9: return S(t+1)

According to Eqs. (3) and (4), for each user u (in a randomly chosen mini-
batch Φ) the gradient of similarity is

Gij(u) = eui
∂r̂ui

∂Sij
= eui(

ruj

SiI
−
u

− r̂ui
Iuj

SiI
−
u

) (5)
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where eui = r̂ui − rui. For the convenience of notation, we omit Sij < 0 part in
Eq. (5) which does not compromise the correctness of bound estimation.

To achieve differential privacy, we update the gradient G by adding Laplace
noise (Algorithm 1, line 6). The amount of noise is determined by the bound
of gradient Gij(u) (sensitivity ΔF) which further depends on eui, (ruj − r̂uiIuj)
and |Si|I−

u . We reduce the sensitivity by exploiting the characteristics of training
data, NBM and SGD respectively, by the following tricks.

Preprocessing is often adopted in machine learning for utility reasons. In our
case, it can contribute to privacy protection. For example, we only put users
who have more than 20 ratings in the training data. It results in a bigger |Si|I−

u

thus will reduce sensitivity. Suppose the rating scale is [rmin, rmax], removing
“paranoid” records makes |ruj − r̂uiIuj | ≤ ϕ hold, where ϕ = rmax − rmin.

Rescaling the value of similarity allows a lower sensitivity. NBM, see Eq. (2),
allows us to rescale the similarity S to an arbitrarily large magnitude such
that we can further reduce the sensitivity (by increasing the value of |Si|Iu).
However, the initialization of similarity strongly influences the convergence of
the training. Thus, it is crucial to balance the convergence (accuracy) and the
value of similarity (privacy). Another observation is that the gradient down-
scales when enlarging the similarity, see Eq. (5). We can up-scale the gradient
monotonically during the training process (Algorithm1, lines 1 and 7).

The prediction error eui = r̂ui − rui decreases when the training goes to
convergence such that we can clamp eui to a lower bound dynamically. In our
experiments, we bound the prediction error as |eui| ≤ 0.5 + ϕ−1

t+1 , where t is
the iteration index. This constraint trivially influences the convergence under
non-private training process.

After applying all the tricks, we have the dynamic gradient bound at iteration
t as follows: max(|G(t)|) ≤ (0.5 + ϕ−1

t+1 ) ϕ
C . The sensitivity of each iteration is

ΔF = 2max(|G(t)|) ≤ 2(0.5 + ϕ−1
t+1 ) ϕ

C .

Theorem 1. Uniform-randomly sample L examples from a dataset of the size
L, Algorithm1 achieves ε-differential privacy if in each SGD iteration t we set
ε(t) = ε

Kγ where K is the number of iterations and γ = L
L .

Proof. In Algorithm 1, suppose the number of iterations K is known in advance,
and each SGD iteration maintains ε

Kγ -differential privacy. The privacy enhancing
technique [3,11] indicates that given a method which is ε-differentially private
over a deterministic training set, then it maintains γε-differential privacy with
respect to a full database if we uniform-randomly sample training set from the
database where γ is the sampling ratio. Finally, combining the privacy enhancing
technique with composition theory [9], it ensures the K iterations SGD process
maintain the overall bound of ε-differential privacy. ��

4 Differentially Private Posterior Sampling

Sampling from the posterior distribution of a Bayesian model with bounded
log-likelihood has free differential privacy to some extent [30]. Specifically, for
probabilistic NBM, releasing a sample of the similarity S,
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S ∼ p(S|R>0, αS , αR) ∝ exp(

M∑

i=1

N∑

u=1

(rui − SiR
−
u

|Si|I−
u

)2 + λ

M∑

i=1

||Si||2) (6)

achieves 4B-differential privacy at user level, if each user’s log-likelihood is
bounded to B, i.e. max

u∈R>0

∑
i∈Ru

(r̂ui − rui)2 ≤ B. Wang et al. [30] showed that

we can achieve ε-differential privacy by simply rescaling the log-posterior distri-
bution with ε

4B , i.e. ε
4B · log p(S|R>0, αS , αR).

Posterior sampling is computationally costly. For the sake of efficiency, we
adopt a recent introduced Monte Carlo method, Stochastic Gradient Langevin
Dynamics (SGLD) [32], as our MCMC sampler. To successfully use SGLD, we
need to derive an unbiased estimator of similarity gradient from a mini-batch
which is a non-trivial task.

Next, we first overview the basic principles of SGLD (Sect. 4.1), then we
derive an unbiased estimator of the true similarity gradient (Sect. 4.2), and
finally present our privacy-preserving algorithm (Sect. 4.3).

4.1 Stochastic Gradient Langevin Dynamics

SGLD is an annealing of SGD and Langevin dynamics [23] which generates
samples from a posterior distribution. Intuitively, it adds an amount of Gaussian
noise calibrated by the step sizes (learning rate) used in the SGD process, and
the step sizes are allowed to go to zero. When it is far away from the basin of
convergence, the update is much larger than noise and it acts as a normal SGD
process. The update decreases when the sampling approaches to the convergence
basin such that the noise dominated, and it behaves like a Brownian motion.
SGLD updates the candidate states according to the following rule.

Δθt =
ηt

2
(Δ log p(θt) +

L
L

L∑

i=1

Δ log p(xti|θt)) + zt; zt ∼ N (0, ηt) (7)

where ηt is a sequence of step sizes. p(x|θ) denotes conditional probability distri-
bution, and θ is a parameter vector with a prior distribution p(θ). L is the size
of a mini-batch randomly sampled from dataset X L. To ensure convergence to
a local optimum, the following requirements of step size ηt have to be satisfied:∑∞

t=1 ηt = ∞;
∑∞

t=1 η2
t < ∞. Decreasing step size ηt reduces the discretiza-

tion error such that the rejection rate approaches zero, thus we do not need
accept-reject test. Following the previous works, e.g. [13,32], we set step size
ηt = η1t

−ξ, commonly, ξ ∈ [0.3, 1]. In order to speed up the burn-in phase of
SGLD, we multiply the step size ηt by a temperature parameter  (0 <  < 1)
where

√
 · ηt � ηt [6].

4.2 Unbiased Estimator of The Gradient

The log-posterior distribution of similarity S has been defined in Eq. (3). The
true gradient of the similarity S over R>0 can be computed as

G(R>0) =
∑

(u,i)∈R>0

gui(S; R>0) + λS (8)
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where gui(S;R>0) = eui
∂r̂ui

∂Si
. To use SGLD and make it converge to true poste-

rior distribution, we need an unbiased estimator of the true gradient which can
be computed from a mini-batch Φ ⊂ R>0. Assume that the size of Φ and R>0

are L and L respectively. The stochastic approximation of the gradient is

G(Φ) = Lḡ(S, Φ) + λS ◦ I[i, j ∈ Φ] (9)

where ḡ(S,Φ) = 1
L

∑
(u,i)∈Φ gui(S,Φ). I ⊂ B

M×M is symmetric binary matrix,
and I[i, j ∈ Φ] = 1 if any item-pair (i, j) exists in Φ, otherwise 0. ◦ presents
element-wise product. The expectation of G(Φ) over all mini-batches is,

EΦ[G(Φ)] =
∑

(u,i)∈R>0

gui(S; R>0) + λEΦ[S ◦ I[i, j ∈ Φ]] (10)

EΦ[G(Φ)] is not an unbiased estimator of the true gradient G(R>0) due to the
prior term EΦ[S ◦ I[i, j ∈ Φ]]. Let H = EΦ[I[i, j ∈ Φ]], we can remove this bias
by multiplying the prior term with H

−1 thus to obtain an unbiased estimator.
Follow previous approach [2], we assume the mini-batches are sampled with
replacement, then H is Hij = 1 − |Ii||Ij |

L2 (1 − |Ij |
L )L−1(1 − |Ii|

L )L−1, where |Ii|
(resp. |Ij |) denotes the number of ratings of item i (resp. j) in the complete
dataset R>0. Then the SGLD update rule is the following:

S(t+1) ← S(t) − ηt

2
(Lḡ(S(t), Φ) + λS(t) ◦ H

−1) + zt (11)

4.3 Differential Privacy via Posterior Sampling

To construct a differentially private NBM, we exploit a recent observation that
sampling from scaled posterior distribution of a Bayesian model with bounded
log-likelihood can achieve ε-differential privacy [30]. We summarize the differen-
tially private sampling process (via SGLD) in Algorithm2.

Algorithm 2. Differentially Private Posterior Sampling (via SGLD)
Require: Temperature parameter �, privacy parameter ε, regular parameter λ, initial

learning rate η1. Let K larger than burn-in phase.
1: for t = 1 : K do
2: • Randomly sample a mini-batch Φ ⊂ R>0.
3: ḡ(S(t), Φ) = 1

L

∑
(u,i)∈Φ eui

∂r̂ui

∂S
(t)
i


 gradient of S (mini-batch)

4: zt ∼ N (0, � · ηt) 

√

� · ηt � ηt

5: S(t+1) ← S(t) − ε
4B

· ηt
2

(Lḡ(S(t), Φ) + λS(t) ◦ H
−1) + zt

6: ηt+1 = η1
tγ

7: end for
8: return S(t+1)

Now, a natural question is how to determine the log-likelihood bound B?
( max
u∈R>0

∑
i∈Ru

(r̂ui − rui)2 ≤ B, and see Eq. (6)). Obviously, B depends on the
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max rating number per user. To those users who rated more than τ items, we
randomly remove some ratings thus to ensure that each user at most has τ
ratings. In our context, the rating scale is [1,5], let τ = 200, we have B =
(5 − 1)2 × 200 (In reality, most users have less than 200 ratings [13]).

Theorem 2. Algorithm2 provides (ε, (1 + eε)δ)-differential privacy guarantee
to any user if the distribution P ′

X where the approximate samples from is δ-far
away from the true posterior distribution PX , formally ||P ′

X − PX ||1 ≤ δ. And
δ → 0 if the MCMC sampling asymptotically converges.

Proof. Essentially, differential privacy via posterior sampling [30] is an exponen-
tial mechanism [15] which protects ε-differential privacy when releasing a sample
θ with probability proportional to exp(− ε

2ΔF p(X|θ)), where p(X|θ) serves as the
utility function. If p(X|θ) is bounded to B, we have the sensitivity ΔF ≤ 2B.
Thus, release a sample by Algorithm 2 preserves ε-differential privacy. It compro-
mises the privacy guarantee to (ε, (1 + eε)δ) if the distribution (where the sample
from) is δ-far away from the true posterior distribution, proved by [30]. ��
Note that when ε = 4B, the differentially private sampling process is identical
to the non-private sampling. This is also the meaning of some extent of free
privacy. It starts to lose accuracy when ε < 4B. One concern of this sampling
approach is the distance δ between the distribution where the samples from and
the true posterior distribution, which compromises the differential privacy guar-
antee. Fortunately, [24,28] proved that SGLD can converge in finite iterations.
As such we can have arbitrarily small δ with a (large) number of iterations.

5 Experiments and Evaluation

We test our solutions on two real world datasets, ML100K and ML1M [17], which
are widely employed for evaluating recommender systems. ML100K dataset has
100 K ratings that 943 users assigned to 1682 movies. ML1M dataset contains 1
million ratings that 6040 users gave to 3952 movies. In the experiments, we adopt
5-fold cross validation for training and evaluation. We use root mean square error

(RMSE) to measure accuracy performance: RMSE =

√∑
(u,i)∈RT (rui−r̂ui)2

|RT | ,

where |RT | is the total number of ratings in the test set RT .

5.1 Experiments Setup

In the following, the differentially-private SGD based PNBM is referred to
as DPSGD-PNBM, and the differentially-private posterior sampling PNBM is
referred as DPPS-PNBM. The experiment source code is available at Github1.
We compare their performances with the following baseline algorithms.

1 https://github.com/lux-jwang/Experiments/tree/master/dpnbm.

https://github.com/lux-jwang/Experiments/tree/master/dpnbm
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– non-private PCC and COS: Differentially-private Pearson correlation (PCC)
or Cosine similarity (COS) NBMs exist (e.g. [10,14,33]), with worse accuracy
than the non-private algorithms. We directly use the non-private ones.

– DPSGD-MF: Differentially private matrix factorization from [4], which cali-
brates Laplacian noise into the SGD training process.

– DPPS-MF: Differentially private matrix factorization from [13], which exploits
the posterior sampling technique.

We optimize model parameters using a heuristic grid search method, as follows.

– DPSGD-PNBM: The learning rate η is searched in {0.1, 0.4}, and the itera-
tion number K ∈ [1, 20], the regular parameter λ ∈ {0.05, 0.005}, the rescale
parameter β ∈ {10, 20}. The neighbor size Nk = 500, the lower bound of
|Si|Iu : C ∈ {10, 15}. In the training process, we decrease K and increase
{η, C} when requiring a stronger privacy guarantee (a smaller ε).

– DPPS-PNBM: The initial learning rate η1 ∈ {8 · 10−8, 4 · 10−7, 8 · 10−6},
λ ∈ {0.02, 0.002}, the temperature parameter  = {0.001, 0.006, 0.09}, the
decay parameter ξ = 0.3. Nk = 500.

– DPSGD-MF: η ∈ {6·10−4, 8·10−4}, K ∈ [10, 50] (the smaller privacy loss ε the
less iterations), λ ∈ {0.2, 0.02}, the latent feature dimension d ∈ {10, 15, 20}.

– DPPS-MF: η ∈ {2 · 10−9, 2 · 10−8, 8 · 10−7, 8 · 10−6}, λ ∈ {0.02, 0.05, 0.1, 0.2},
 = {1 · 10−4, 6 · 10−4, 4 · 10−3, 3 · 10−2}, d ∈ {10, 15, 20},ξ = 0.3.

– non-private PCC and COS: For ML100K, we set NK = 900. For ML1M, we
set NK = 1300.

5.2 Comparison Results

We first compare the accuracy between DPSGD-PNBM, DPSGD-MF, non-
private PCC and COS and show the results in Fig. 1 for the two datasets respec-
tively. When ε ≥ 20, DPSGD-MF does not lose much accuracy, and it is better
than non-private PCC and COS. However, the accuracy drops quickly (or, the

Fig. 1. Accuracy comparison: DPSGD-PNBM, DPSGD-MF, non-private PCC, COS.
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RMSE increase quickly) when the privacy loss ε is reduced. This matches the
observation in [4]. In the contrast, DPSGD-PNBM maintains a promising accu-
racy when ε ≥ 1, and is better than non-private PCC and COS.

Fig. 2. Accuracy comparison: DPPS-PNBM, DPPS-MF, non-private PCC, COS.

DPPS-PNBM and DPPS-MF preserve differential privacy at user level. We
denote the privacy loss ε in form of x×τ where x is a float value which indicates
the average privacy loss at a rating level, and τ is the max rate number per user.
The comparison is shown in Fig. 2. In our context, for both datasets, τ = 200.
Both DPPS-PNBM and DPPS-MF allow accurate estimations when ε ≥ 0.1 ×
200. It may seem that ε = 20 is a meaningless privacy guarantee. We remark that
the average privacy of a rating level is 0.1. Besides the accuracy performance is
better than the non-private PCC and COS, from the point of privacy loss ratio,
our models match previous works [13,14], where it is showed that differentially
private systems may not lose much accuracy when ε > 1.

Fig. 3. Accuracy comparison between DPSGD-PNBM and DPPS-PNBM
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DPSGD-PNBM and DPPS-PNBM achieve differential privacy at rating level
(a single rating) and user level (a whole user profile) respectively. Below, we try
to compare them at rating level, precisely at the average rating level for DPPS-
PNBM. Figure 3 shows that both solutions can obtain quite accurate predictions
with a privacy guarantee (ε ≈ 1). With the same privacy guarantee, DPPS-
PNBM seems to be more accurate. However, DPPS-PNBM has its potential
drawback. Recall from Sect. 4, the difference δ between the distribution where
samples from and the true posterior distribution compromises differential privacy
guarantee. In order to have an arbitrarily small δ, DPPS-PNBM requires a large
number of iterations [24,28]. At this point, it is less efficient than DPSGD-
PNBM. In our comparison, we assume δ → 0.

5.3 Summary

In summary, DPSGD-MF and DPPS-MF are more accurate when privacy loss
is large. DPSGD-PNBM and DPPS-PNBM are better when we want to reduce
the privacy loss to a meaningful range. Both our models consistently outperform
non-private traditional NBMs, with a meaningful differential privacy guarantee.
Note that similarity is independent of NBM itself, thus other neighborhood-
based recommenders can use our models to differential-privately learn Similarity,
and deploy it to their existing systems without requiring extra effort.

6 Related Work

A number of works have demonstrated that an attacker can infer the user sensi-
tive information, such as gender and politic view, from public recommendation
results without using much background knowledge, e.g. [5,31]. Randomized data
perturbation is one of earliest approaches to prevent user data from inference
attack in which people either add random noise to their profiles or substitute
some randomly chosen ratings with real ones, e.g. [20,21]. While this approach is
very simple, it does not offer rigorous privacy guarantee. Differential privacy [9]
aims to precisely protect user privacy in statistical databases, and the concept
has become very popular recently. [14] is the first work to apply differential pri-
vacy to recommender systems, and it has considered both neighborhood-based
methods (using correlation as similarity) and latent factor model (e.g. SVD).
[33] introduced a differentially private neighbor selection scheme by injecting
Laplace noise to the similarity matrix. [10] presented a scheme to obfuscate user
profiles that preserves differential privacy. [4,13] applied differential privacy to
matrix factorization, and we have compared our solutions to theirs in Sect. 5.
Secure multiparty computation recommender systems allow users to compute
recommendation results without revealing their inputs to other parties. Many
protocols have been proposed, e.g. [19,26]. Unfortunately, these protocols do not
prevent information leakage from the recommendation results.
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7 Conclusion

In this paper, we have proposed two different differentially private NBMs, under
a probabilistic framework. We firstly introduced a way to differential-privately
find the maximum a posteriori similarity by calibrating noise to the SGD training
process. Then we built differentially private NBM by exploiting the fact that
sampling from scaled posterior distribution can result in differentially private
systems. While the experiment results have demonstrated that our models allow
promising accuracy with a modest privacy budget in some well-known datasets,
we consider it as an interesting future work to test the performances in other
real world datasets.
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Abstract. In a profile-based authentication system, a user profile is
stored at the verifier and later used to verify their authentication claim.
A profile includes user-specific information that is privacy sensitive. In
this paper we propose a non-cryptographic approach to providing pri-
vacy for user profile data in profile-based authentication systems, using
an efficient construction of random projection: a linear dimension reduc-
ing transform that projects the profile and the verification data to a lower
dimension space, while preserving relative distances of the vectors and so
correctness of authentication. We define privacy measures for two types
of profiles: a single vector profile and a multivector profile, derive theoret-
ical bounds on the privacy and correctness of privacy enhanced systems,
and verify the results experimentally on two profile-based authentication
systems: a face-biometric system and a behavioural based authentica-
tion system. We discuss our results and propose directions for future
research.

Keywords: Profile privacy · Random projection · Profile · Biometrics

1 Introduction

Traditional entity authentication systems that rely on secrets (e.g. passwords,
secret keys), or hardware tokens, are vulnerable to credential theft and credential
sharing. This latter vulnerability not only allows users to share their credentials
with others to bypass security of subscription services (e.g. online games), but
also has been used for delegation (subcontracting) of work to others [1] resulting
in the breach of the company security policy. In a profile-based authentication
system, a user’s authentication claim is compared with their stored profile that
is constructed during a trusted registration process. A profile is one or more
vectors of feature values, each sampling a feature that captures some user-specific
property. The profile data is stored at the verifier and is used to accept or
reject an authentication claim of a user that presents their verification data. The
verifier uses a matching algorithm that compares the verification data with the
stored profile and decides to accept, or reject, the claim. A traditional biometric
system [2,3] is a profile-based authentication system where the profile data and
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verification data are each a single vector, and matching is by measuring the
distance between the two. A more recent type of profile-based authentication
system, sometimes referred to as implicit authentication system (IA) [4], uses a
user profile that is a vector of random variables whose distribution is specific to
the user. A feature is stored as a set of samples that represent the distribution of
the feature, and the verification (matching) algorithm compares the distribution
of the verification data (represented by a second sample set) with the profile
data to determine if they are from the same distribution.

Privacy. Profile data carry sensitive personal information that must be protected
from the verifier. Ideally the verifier should only be able to use the profile data
for the verification decision. In practice however profiles can be used to learn
about users’ behaviour and interests for marketing and advertising, or track them
across websites. Biometric profiles are uniquely identifying, and are of extreme
sensitivity from privacy view point. Behavioural profiles also reveal user private
information such as their health conditions, physical abilities or user skills and
behaviour, as well as pattern of usage of applications and devices. Richer profiles
(i.e. more behaviour data) lead to higher accuracy in authentication and this
provides incentive to employ more user data, and “to keep it around for a longer
period of time” [5].

An immediate solution to protecting privacy of profile data against the ver-
ifier is to store them in encrypted form and design the verification algorithm
as a computation in encrypted domain, or use a secure two party computa-
tion protocol. These approaches in their general form [6] are computationally
expensive and are primarily of theoretical interest. One can tailor more efficient
secure computation systems for computationally simple verification algorithms,
such as finding linear sums [7], but this cannot be easily extended to more gen-
eral matching algorithms such as KS-test used in this paper (See Sect. 2). In [8]
random projection of profile data was proposed to provide profile privacy for bio-
metric data. Authors showed that, using a random transformation matrix whose
elements are generated using a Gaussian distribution, one can project profile
vectors to a lower dimension space, such that the correctness of the verification
algorithm is maintained. Authors also showed that the approach allows change-
ability of the profile, which is a desirable security property. Our work builds on
this result and strengthens and extends in a number of ways.

Our Work. The setting. We consider a profile-based authentication system with
an honest-but-curious verifier who follows the protocol but would like to glean
information about users from their stored data. We define correctness and secu-
rity of the authentications system using Success Rate (SR), False Acceptance
Rate (FAR) and False Rejection Rate (FRR) (See Definition 1).

To provide profile privacy, a trusted registration authority (RA) performs user
registration during which the following two things happen: (i) after checking the
user’s credentials, the RA generates a random matrix R[u] that will be stored on
the user’s device, and (ii) use the user’s device (with the embedded transform) to
generate their transformed profile R[u]X[u], where X[u] is the original user profile.
(Note that the user profile stays private to the RA also.) The user identifier and
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the transformed profile, (u,R[u]X[u]), will be securely sent to the verifier. (The
system can be designed such that the transform be generated by the device, and
remain unknown to the RA.) In a user authentication session, verification data
is generated by the device, transformed using the embedded transform, and sent
to the verifier. For efficient computation we use discrete random matrices whose
elements are generated according to Eq. (1) (Sect. 2).

Privacy model and theoretical results. We consider two cases: single-vector pro-
files, and multivector profiles. For single-vector profiles the adversary, denoted
by AFV adversary, wants to find the original Feature Values. Our notion of pri-
vacy in this case is in terms of the expected mean and variance of the adversary’
error in finding these values (See Definition 3, item (1)). For multivector profiles,
the Feature Distribution adversary denoted by AFD adversary, wants to learn
the distribution of the feature. Definition 3, item (2) introduces the notion of
π-Distribution-Privacy, where π is the fraction of features (in the feature vector)
that remain “close” to their original distributions, given the adversary’s knowl-
edge. We consider two types of adversary knowledge: (i) the adversary knows
the distribution of random matrices, but does not know the random matrix R[u]

that is assigned to the user, and (ii) the adversary knows R[u]. This latter case
corresponds to the extreme case that the user device has been compromised and
R[u] has been leaked. These two types of knowledge are shown by subscripts
D and R, respectively. Thus we have AFV

D , AFV
R , AFD

D , and AFD
R adversaries,

where the superscripts show the goal, and the subscripts show the knowledge type.

Single vector profiles. Proposition 1 gives the mean and variance of error for the
best (least expected error) AFV adversary strategy for finding the profile vector.
Theorem 2 uses this result to quantify the privacy level of the system against
this adversary. When the projection matrix R[u] is known to the adversary,
Proposition 1, item (ii), gives the expected mean and variance of error, and
Theorem 2, item (ii), shows the privacy level against a AFV

R adversary.

Multivector profiles. Using the best estimation strategy on each profile vector we
obtain an estimate of the multivector profile, that is compared with the original
one, and closeness of each estimated feature with the original one is determined. To
quantify closeness of an estimated feature distribution to its original distribution,
we use KS-test [9] for two one-dimensional probability distributions. Proposition 1,
items (i) and (ii), show that the variance of the estimated values is high and so
the original feature distribution cannot be recovered. In our experiments we will
experimentally find the π values of the adversaries AFD

D and AFD
R .

We use the set of matrices that are generated using a discrete distribution.
The correctness of authentication system in this case is shown in Sect. 3. Using
a discrete distribution reduces the computation of profile transform to addition
and subtraction only and so becomes very efficient (no multiplication).

Experimental results. To evaluate the above framework we considered the fol-
lowing profile-based authentication system.
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Our profile-based authentication systems. For single-vector profiles we designed a
simple face recognition algorithm with a matching algorithm that for verification
uses k-Nearest-Neighbors (kNN) algorithm [10], with k = 1 (verification uses the
closest profile in the profile database to the presented verification vector). This
profile-based authentication was evaluated using the face-biometric data that
was downloaded from AT&T Laboratories [11], and shown to have comparable
performance to face-biometric system in [12].

For multivector system we used a profile-based behavioural biometric system
called Draw a Circle (DAC) [13]. This is a challenge-response authentication
system in which profile data and verification data consist of 30 and 20 profile
vectors, respectively. The verification algorithm, for each feature, matches the
distribution of the feature samples in the verification data against the corre-
sponding distribution of feature samples in the profile data using Kolmogorov
Smirnov-test (KS-test) [9], and then combines the results, using the meta-data
analyzer VoteP [14], into a final accept, reject decision. More details about DAC
is in Sect. 4. The success rate of the above systems, before using random projec-
tion, are 94.16% and 94.40%, respectively.

Profile projection. We assign a m × k random matrix R[u] that is generated
using the distribution, described by Eq. (1), to each user. For correctness, our
experimental results show that after projection, the FRR and FAR of both sys-
tems improve: in the case of face-biometric system, FRR and FAR both become
close to 0.0, while for DAC, they are slightly lower than their original values.
This is due to the combination of the distance preserving property of RP, and
the fact that each user has an individual matrix. For privacy evaluation we use
the same matrices and k values. For AFV

D and AFV
R adversaries in the face-

biometric system, our results show that for higher k values, although the mean
of estimated error becomes smaller, but as expected, because of large variance,
the estimated value will be different from the original value. For DAC we used
AFD

D and AFD
R adversaries that aim at feature distributions. We measured the

similarity between the original and estimated profile and showed that feature
distributions were not be preserved and this was even true for AFD

R when the
projection matrix is known. Details of experiments are given in Sect. 4.

Profile changeability. This property ensures that by changing user matrix, one
can effectively refresh the stored (projected) profile. Although this is not the
focus of this work, we report our experiment in Sect. 4.3. that shows perfect
ability to refresh the profile.

The rest of the paper is organized as follows. Section 2 provides the back-
ground. Section 3 describes our setting, privacy attacks and measures for quan-
tifying privacy, and provides privacy analysis for different attack scenarios, and
Sect. 4 gives the experimental results. Section 5 summarizes related works, and
Sect. 6 concludes the paper.
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2 Preliminaries

A metric space Mm is a set of points equipped with a non-negative distance
function d : Mm × Mm → R that satisfy, non-negativity, symmetry and tri-
angular properties. We consider elements of Mm to be vectors of length m
with components in R, i.e. Mm ⊂ R

m. For two vectors X,Y ∈ Mm, where
X = {X1,X2, ...,Xm} and Y = {Y1,Y2, ...,Ym}, we consider the Euclidean
distance d(X,Y) =

√∑m
i=1(Xi − Yi)2.

For two subsets A and B of Mm, we consider each set as samples of an
underlying distribution, and use the distance between the two underlying dis-
tributions using Kolmogorov-Smirnov (KS) test in [9], as the distance D(A,B)
between the two subsets.

Two-sample Kolmogorov-Smirnov (KS) test [9] is a non-parametric
hypothesis testing method for equality of two distributions, each represented
by a set of points. For two sample sets of size n and n′, the test measures D,
the maximum distance between two cumulative empirical distribution functions,
and rejects the null hypothesis at level α if D > c(α)

√
(n + n′)/(nn′). The test

outputs a P-value which is the confidence level of the test.

VoteP method [14] is a method of combining the results of multiple KS-tests,
and obtain the combined P-value. We use this method to combine the result of
feature similarity tests to obtain the verification decision. The method finds the
number of P-values that are above a given threshold, and accepts the hypoth-
esis if the fraction of these P-values (over all P-values) is above some specific
threshold.

Performance Measures. Let fa, tr, fr and ta denote the number of false accep-
tance, true rejection, false rejection and true acceptance instances of an experi-
ment (e.g. verification of claims). False Acceptance Rate (FAR), False Rejection
Rate (FRR) and the Success Rate (SR) are defined as follows:

FAR = fa/(fa+tr), FRR = fr/(fr+ta), SR = (ta+tr)/(ta+fr+tr+fa).

Random projection(RP) is a dimension reduction transformation that uses
random matrices to project a vector X ∈ R

m, to a vector X′ = 1√
kσr

RX,

X′ ∈ R
k, using a random matrix Rk×m, k < m, where σr is the standard devia-

tion of entries of R[u]. The important property of this transformation is that it
preserves pair-wise Euclidean distances between the points in the metric space
R

m, up to an error that can be estimated for the dimension reduction parame-
ter. Existence of distance-preserving dimension reduction transformations fol-
lows from the following Lemma.

Johnson-Lindenstrauss(JL) Lemma [15]. Let ε ∈ (0, 1) and Mm ⊂ R
m

be a set of n vectors and k = 4ln(n)
ε2/2−ε3/3 . There exists a Lipshcitz mapping

f : Rm → R
k such that for all u, v ∈ Mm:

(1 − ε)d2(u, v) ≤ d2(f(u), f(v)) ≤ (1 + ε)d2(u, v)
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For a given projected dimension k, to satisfy the above inequality for a small ε
(i.e. to preserve distances up to ε), one needs to have a sufficiently small n (sparse
set). In profile-based authentication systems, sparseness of the profile vector
space is a requirement for the correctness of the system (otherwise matching
verification data against the profile will have high error) and so the required
condition is satisfied.

The proof of JL Lemma constructs the RP transform using matrices whose
entries are sampled from a Gaussian distribution [15]. It has been shown exper-
imentally (e.g. in [16]) that the result also holds if R is generated by a zero
mean and unit variance distribution. In [17], it is proved that the property will
hold if the matrix entries are sampled individually and independently, from the
following three-valued distribution,

Pr(x = +1) =
1
2s

, Pr(x = 0) = 1 − 1
s
, Pr(x = −1) =

1
2s

, (1)

Theorem 1 ([17]). Suppose Mm ⊂ R
m be a set of n vectors projected onto R

k

using the transform f : Rm → R
k defined as f(u) = 1√

kσr
Ru for u ∈ Mm, where

R is a k × m matrix generated using the distribution given in Eq. (1) and σr is
the standard deviation of entries of R. Given ε, β > 0 let k0 = 4+2β

ε2/2−ε3/3 log(n).
If k ≥ k0 then with probability at least 1 − n−β for all u, v ∈ Mm we will have:

(1 − ε)d2(u, v) ≤ d2(f(u), f(v)) ≤ (1 + ε)d2(u, v)

We use s = 3 that results in many zeros in the matrix and speeds up the
computation (only 1

3 of the data are actually processed) and called it sparse
random projection.

Minimum-norm solution. Let X′ = RX, where X′ ∈ R
m and R ∈ R

k×m

and k < m. This system of linear equations has m − k degrees of freedom.
Among all solutions of the system, the solution X̂ = RT (RRT )−1X′, known
as the minimum-norm solution, minimizes the Euclidean norm of the solution

‖X̂‖ =
√∑m

t=1 X̂
2
i [18]. In [19] the following result is proven about this solution.

For a fixed X ∈ R
m, let � pairs (X′

j, Rj), 1 ≤ j ≤ � be given, where Rj ∈
R

k×m entries are generated using a Gaussian distribution with zero mean and
X′

j = RjX. Let X̂j denote the minimum-norm solution of the linear system
X′

j = RjX. Then, the mean of the estimation error of X will be zero. This
suggests that, given the projected value X′ of a vector X, the minimum-norm
solution of the system of linear equation that can be written for the projected
profile, provides a good estimation of X.

3 Privacy-Preserving Profile-Based Authentication
Systems

A profile-based authentication system consists of three types of entities: (i) a
group of users U that must be authenticated; (ii) a trusted registration authority
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(RA) that interacts with a user u and generates a profile X[u] for them; and (iii)
a verifier V that interacts with a user, and using the profile and the presented
verification data decides if the user’s claim is valid or not. The set of user profiles
is stored in a profile database DB at the verifier. There are two types of profile-
based systems, depending on the nature of profile data (and verification data).

(i) The profile of user u, X[u], is a single vector X[u] ∈ Mm, and can be rep-
resented as a 1 × m vector with elements from R. Biometric systems can
generate such profiles (e.g. fingerprint data). In practice one may use multi-
ple instances of the profile vector to achieve better accuracy in verification.

(ii) The profile of user u, X[u], is a set of n profile vectors X[u]
j ∈ Mm (for

1 ≤ j ≤ n) where each X[u]
j consists of m feature values, i.e. X[u]

j =

{X[u]
j1 ,X[u]

j2 , ...,X[u]
jm}. We refer to these vectors as feature vectors. A profile

thus can be represented as an n × m matrix with elements from R. Behav-
ioural authentication data (e.g. keystroke, mouse dynamics etc.) generate
this kind of profile.

Note that in (i), the actual feature values provide information about the
user, while in (ii), the distribution of a feature that is captured by a set of
sample points, provide identifying information.

3.1 Correctness and Security

Correctness and security of profile-based authentication system is define by two
parameters ε-FRR, and δ-FAR.

Definition 1. (ε, δ)-security: A profile-based authentication system provides
(ε, δ)-security if it satisfies the following:
For the claimed identity u and the verification data Y[v], the matching algorithm
outputs M(X[u],Y[v]) = 0 (reject) with probability at most ε, if u = v, and
outputs M(X[u],Y[v]) = 1 (accept) with probability at most δ, when u �= v.

Pr[M(X[u],Y[v]) = 0 | u = v] ≤ ε; Pr[M(X[u],Y[v]) = 1 | u �= v] ≤ δ;

Changeability of a profile-based authentication captures the ability to refresh
a user profile while maintaining correctness and security.

Definition 2. ζ-changeability: A privacy-preserving profile-based authentica-
tion system provides ζ-changeability if it satisfies the following:
For transformed profile X′[u] = RuX[u] and the verification data Y′[v] = RvX[u],
the matching algorithm outputs M(X′[u],Y′[v]) = 1(accept) with probability at
most ζ, if Ru �= Rv.

Pr[M(RuX[u], RvX[u]) = 1 | Ru �= Rv] ≤ ζ.
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3.2 Privacy Model

Privacy transform must not be significantly adversely affect the correctness of
authentication, and must protect the profile data.

Correctness after applying privacy transform. Let a profile X[u] be mapped to
X′[u], and the verification date Y[v] be mapped to Y′[u]. To preserve correctness
of authentication, ideally we must have, M ′(X′[u],Y′[u]) = 1, if M(X[u],Y[v]) =
1, and M ′(X′[u],Y′[u]) = 0, if M(X[u],Y[v]) = 0 where M() and M ′() are the
matching algorithm used before applying the transform and the one used in the
projected space.

Privacy Attacks. We define four types of adversaries AG
K that are distinguished

by their (i) attack goal (G), and their (ii) prior knowledge (K). The goal
G ∈ {FV,FD} where FV denotes Feature Value and FD denotes Feature Dis-
tribution. These goals are for single and multivector profiles, respectively. The
prior knowledge of the adversary is denoted by K ∈ {D,R}, where D denote
the distribution that is used for the generation of the random matrices, and
R denotes the actual user matrix. Thus we have AFV

R , AFD
R , AFV

D and AFD
D

adversaries. Assume the adversary has the transformed profile of a user X′[u] (or
transformed verification data).

Definition 3. Let f be a random transformation. Our privacy notions are:
1. (μ, λ)-Value-Privacy: Let f applied to a profile vector X of length m, result
in X′. Then f provides (μ, λ)-Value-Privacy for the ith feature in X(i.e. Xi),
against an attacker AFV , if given X′, the best strategy of AFV for Xi satisfies,
E[Xi − X̂i] ≤ μ and V ar[Xi − X̂i] ≤ λ, where E[Xi − X̂i] and V ar[Xi − X̂i]
are the expected value and the variance of the attacker’s normalized estimation
error under the random transformation, respectively.
2. π-Distribution-Privacy: Let f be applied to a multivector profile X, result-
ing in X′. Then f provides π-Distribution-Privacy against an attacker AFD

if the best strategy of AFD results in an estimated profile in which at most π-
percent of features pass a statistical closeness test with the corresponding features
in the original profile.

3.3 Privacy Transform

We use the privacy transformation given in Eq. (1). A user u is associated with
a k×m matrix R[u] that is generated using this distribution (in our experiments
we use s = 3). Correctness of the privacy enhanced authentication follows from
Theorem 1, using M ′ = M .

3.4 Privacy Analysis

We have the following results.

Privacy adversaries AFV . The system of linear equations X′[u] =
1√
kσr

R[u]X[u] is under-determined and has infinite number of solutions. For a
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fixed unknown X[u] and the set of random R[u] matrices, the minimum-norm
solution of the above system is known to be the best estimate in the sense that
the estimation error of X[u] will have a distribution with zero mean and small
variance. We adopt this solution as the best estimate for AFV

R attacker who
knows R[u] and the projected profile.

In the case of AFV
D , they can generate an RP matrix R′[u] according to the

distribution, and estimate X[u] using minimum-norm solution, hoping that the
estimated value is close to the real value. The following proposition gives the
mean and variance of the best estimation for the cases, (i) attacker AFV

R and
(ii) attacker AFV

D . The proof is given in AppendixA.

Proposition 1. Let R[u] be a k ×m RP matrix with entries sampled from Eq. 1
with parameter s. For the projected profile X′[u] = 1√

kσr
R[u]X[u], we have, (i)

If X′[u] and distribution of R[u] entries are known and X̂[u]
i is the best estima-

tion for the ith component of X[u] obtained using minimum-norm solution, the
mean and variance of the estimation error X[u]

i − X̂[u]
i will be μi = X[u]

i , and

σi
2 = 1

k

∑m
t=1 X

[u]
t

2
.

(ii) If X′[u] and R[u] are known and X̂[u]
i is the estimation of the ith component of

X[u] obtained using minimum-norm solution, the mean and variance of the esti-

mation error X[u]
i − X̂[u]

i will be, μi = 0, and σ2
i = 1

k ((s−1)X[u]
i

2
+

∑
t�=i X

[u]
t

2
),

respectively.

The above propositions lead to the following theorem.

Theorem 2. (i) Random projection as defined in Proposition 1 provides
(μi, λi)-Value-Privacy against AFV

D for the ith component of X[u], and we have

μi = X[u]
i , and λi

2 = 1
k

∑m
t=1 X

[u]
t

2
.

(ii) Random projection as defined in Proposition 1 provides (μi, λi)-Value-
Privacy against AFV

R for the ith component of X[u], and we have μi = 0, and

λ2
i = 1

k ((s − 1)X[u]
i

2
+

∑
t�=i X

[u]
t

2
).

Note that in both above cases, due to the large variance of the estimation
error, the attacker’s best estimation will be highly unreliable.

Privacy adversaries AFD. Proposition 1 shows that for AFD
D the expected

error and variance of the ith feature, when s = 3, will be μi = X[u]
i , and

λi
2 = 1

k

∑m
t=1 X

[u]
t

2
, respectively. The high variance of error, results in the esti-

mation values to vary significantly from the mean, and so the original feature
distributions will not be recovered by the attacker. For AFD

R , using Proposition 1

and s = 3, we have μi = 0 and λi
2 = 1

k (2X[u]
i

2
+

∑
t�=i X

[u]
t

2
). Again due to the

large variance of the error, the probability that an estimated value be close to
the original feature values will be negligible.
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Table 1. Comparison of correctness before and
after projection. Random projection improve the
system correctness a bit.

Matrices Face-biometric

Before RP After RP

k = 56 k = 66 k = 110 k = 355

FAR(%) 3.66 0.0 0.0 0.0 0.0

FRR(%) 16.66 0.0 0.0 0.0 0.0

SR(%) 94.16 100.0 100.0 100.0 100.0

Matrices DAC

Before RP After RP

k = 25 k = 35 k = 45

FAR(%) 5.64 5.12 2.82 2.30

FRR(%) 5.40 5.40 2.70 2.70

SR(%) 94.40 95.09 97.42 97.89

Fig. 1. A Challenge from server
side and the user’s response

4 Experiments

We will use our privacy transform on a single vector, and a multivector, profile-
based authentication system, referred to as face-biometric system and DAC,
respectively. We will measure the correctness and privacy of the transformed
systems against AFV

D , AFV
R , AFD

D , and AFD
R adversaries. First we give a brief

overview of the face-biometric system and DAC and their corresponding match-
ing algorithms.

A face-biometric user authentication system. We use the face database
used in the paper [12] and published in [11]. A face image is represented by
a vector of length 10304 (each value [0,255]). The database has 40 users, each
represented by 10 face images. We designed and implemented a simple matching
algorithm that uses kNN algorithm with k = 1. Using multiple sample face for
each user we obtained success rate of 98.0%, FRR of 2.0% and FAR of 0.0%,
which are comparable with the original results reported in [12].

DAC (Draw A Circle). DAC is a behavioural authentication for mobile
devices. DAC is a challenge-response system that is implemented as a two level
game: In Level 1, the challenge is a random circle that must be drawn from a
given starting point. In Level 2, the challenge is a circle with a given starting
point, that disappears after 3 s. There are 55 features in Level 1, and 56 in Level
2 (Table 1 in [13]). Figure 1 shows the system interface of DAC. Verification algo-
rithm, for each feature, measures closeness of presented verification data with
the corresponding profile feature data using KS-test, and combines the resulting
P-values using VoteP method [14].

4.1 Correctness Experiments

Face-biometric. We measured the correctness of face-biometric system before and
after RP, using FAR, FRR and SR metrics. We used, k = {56, 66, 110, 355}. From
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Fig. 2. Comparison of theoretical and experimental mean of error X
[u]
i − X̂

[u]
i for k =

355 where distribution of R[u] is known to the attacker. The experimental mean and
variance of the estimation error is large for all k.

the 10 available feature vectors for a user, one vector models their single vector
profile and the remaining 9 vectors are used as verification claims. For this data-
set kNN with K = 1, the results are given in Table 1, showing that the privacy
transform with individual user RP matrices, has improved the correctness, for
all k values, making it close to 1.0. As discussed earlier this is because of the
combination of distance preserving property, and the use of individual matrices
that increases the distinguishability of the data of different users in the space.

DAC. For DAC we use a database of 39 users. Each profile consists of 30 fea-
ture vectors (collected during registration), and 20 other vectors for verifica-
tion. We calculate FAR, FRR and SR of DAC, before and after projection,
for k = {25, 35, 45}. By reducing k, we expect FAR and FRR of the system to
increase because more information will be lost. Table 1 shows that FAR and FRR
will remain below 6.0% for different values of k, even when k = 25. The success
rate in all cases is higher than 94.0%, and again random projection improves the
correctness results.

4.2 Privacy Evaluation

Privacy Evaluation for the two systems are below.

Face-biometric system. We transformed each profile in the face-biometric
system using 10,000 random matrices of size k ×m, where m is the length of the
feature vector. Matrices are generated using the distribution in (1).

For AFV
R attacker, for each projected profile we found the minimum-norm

solution, X̂[u], as the best estimate of the original profile assuming the matrix
was known. For AFV

D we repeated the same process, using a random matrix that
was generated according to the known distribution. We calculated the mean and
the standard deviation of the estimation error for each feature i, X[u]

i − X̂[u]
i , for

each profile, and compared the results with Theorem 2, for k = {56, 66, 110, 355}.
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Fig. 3. Comparison of theoretical and practical mean of error X
[u]
i − X̂

[u]
i for k = 355

where R[u] is known. The experimental mean and variance of the estimation error is
large for all k.

Using Theorem 2, these choices of k correspond to ε = {1, 0.75, 0.50, 0.25} (accu-
racy of distance preservation) and β = {2.66, 2.64, 2.58, 2.62}, where 1 − n−β =
0.99 is the probability of successful distance preservation for n = 50. The first
sub-figure of Fig. 2 gives the mean of estimation error for k = 355 for each
feature, assuming AFV

D . This conforms with our theoretical results showing that
the mean of the estimated value is zero. The second sub-figure of Fig. 2 gives
the results for the variance of the estimation error for k = 355 and shows that
the error has a very large variance of the order of 106, hence very unreliable
estimation for the attacker.

The first sub-figure of Fig. 3 shows the theoretical and experimental results
for the mean of the error for AFV

R , and the last sub-figure of Fig. 3 show similar
results for variances of the estimation error for every feature. It can be seen that
the variance is large (of the order of 106), indicating that even AFV

R will obtain
negligible information about feature values. For both cases, the results for other
k values are given in the full version of the paper.

In both attack scenarios, decreasing k results in higher error variance and so
further reducing the dimension of data will improve privacy but this will be at
the cost of correctness. Note that dimension reduction must maintain sparseness
of the space and so the optimum value of k must be found experimentally.

DAC. We transformed each profile using 10,000 random matrices generated
using the distribution given by Eq. (1). For AFD

R , we obtained the best estimate of
the 30 transformed feature vectors by calculating the minimum-norm solutions,
assuming the matrix is known. Then we used KS-test to measure the similarity
between the distribution of features in the estimated set of vectors and the
original ones, as the measure of the attacker’s success. For AFD

D we performed the
same experiment, using random matrices that were generated from the known
distribution.

The first sub-figure of Fig. 4 shows the portion of features that passed the KS-
test in game level 2, for 15 users, assuming AFD

D . The experiments are done with
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Fig. 4. The distribution of R[u] and R[u] itself is known: distribution of less than
(4%) and (11%) of features estimated close to the original one in game Level 2, for 15
different users.

k = {25, 35, 45} that according to Theorem 2 correspond to distance preserving
parameters of ε = {0.31, 0.26, 0.22}, and β = 1.17 which indicates 1 − n−β =
0.99 for n = 10. The second sub-figure of Fig. 4 shows similar results for same
parameters, assuming AFD

R .
Our results show that for both attack scenarios only in a small fraction

of features distributions could be correctly estimated. For k = {25, 35, 45},
in the case of AFD

D this fraction is {3.78, 3.51, 3.24}%. For AFD
R the val-

ues increase to {7.80, 9.10, 10.19}%. Thus, our approach achieves better than
(4%)-Distribution-Privacy for AFD

D and better than (11%)-Distribution-Privacy
against the extreme attacker AFD

R . Similar results were obtained for game level
1 and are not presented due to limited space.

4.3 Changeability Evaluation

In [8] authors evaluated changeability property of RP for single vector profile.
We extend this result to multivector profile. For a profile X[u], for each k, we used
1,000 random matrices to transform X[u] into {X′[u]

1 ,X′[u]
2 , ....,X′[u]

1000}. We used
our matching algorithm, to measure the similarity of every pair of profiles that
are transformed using two different random matrices, to estimate the probability
of M(X′[u]

j ,X′[u]
i ), 1 ≤ i, j ≤ 1, 000 (i �= j) return accept. From 999 × 1, 000

claims for each k = {25, 35, 45}, none of the (X′[u]
j ,X′[u]

i ) pairs was accepted.
The average % of features that pass the KS-test (α = 0.05) for different k is as
15.26%, 14.70% and 14.46%, respectively.

5 Related Works

RP has been used for private data mining [19], and RP for profile privacy and
achieving changeability of biometric data is considered in [8]. In this work the
projection matrix uses continuous Gaussian distribution and a single matrix is
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used to transform all user’s biometric data. Authors analyse correctness and pri-
vacy and provide experimental results for an attack scenario where the attacker
knows, or tries to recover, the random matrix. The paper does not consider the
case that only the distribution of the matrix entries are known to the adver-
sary. The paper focusses on biometric profiles (not behavioural) and does not
consider distribution privacy attacks where the attacker’s goal is to recover the
distribution of features. The accuracy results in [8] are worse than ours. This is
because the same RP is used for all profiles. Using Gaussian distribution results
in higher storage and computational overhead compared to discrete distribu-
tion that we use. Other non-cryptographic approaches to privacy includes data
perturbation [20,21], or adding noise to the data [22]. These approaches cannot
be directly used for profile privacy because they will affect the output of the
matching algorithm.

Behavioural authentication systems [23] come in many forms such as key-
stroke, touch dynamics or game playing [24,25]. DAC is an active challenge-
responses behavioural-based authentication system. Privacy protection of pro-
files can use cryptographic approaches [7], but this approach is limited to special
matching algorithms.

6 Concluding Remarks

Profile-based authentication provides a powerful method of increasing confidence
in authentication results, and protecting against a range of new attacks that
defeat traditional authentication systems. Profile data is privacy sensitive and
must be protected. We proposed a non-cryptographic approach, using RP, for
privacy enhancement of profile-based authentication systems that rely on a sin-
gle, or multivector, profiles. We provided a framework for analysing privacy
enhancement of profile-based authentication systems, theoretically derived the
privacy level that is offered by RP, and experimentally showed the effectiveness
of RP as a privacy preserving transform. Our future work includes applying the
transform to other profile-based authentication systems, and investigating opti-
mal reduction of dimension such that the privacy is maximized while correctness
results are maintained.

Acknowledgement. This research is in part supported by TELUS Communications
and Alberta Innovates Technology Futures, Canada.

A Proof of Proposition 1

Proof of Proposition 1(i)

Proof. Suppose σr be the variance of the distribution used to generate entries
of R[u]. Let εij be the ijth entry of R[u]T R[u]. We have εij =

∑k
t=1 rtirtj , and

E[εij ] = E[
k∑

t=1

rtirtj ] =
k∑

t=1

E[rtirtj ] =

{
kσr

2 i = j
0 i �= j
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that means R[u]T R[u] ≈ 1
kσr

2 I. We know, the minimum-norm solution

of the linear system of equations X′[u] = 1√
kσr

R[u]X[u] is given by =

R[u]T (R[u]R[u]T )−1R[u]X[u], which due to R[u]T R[u] ≈ 1
kσr

2 I can be written

as ≈ 1
kσr

2 R[u]T R[u]X[u] = 1√
kσr

R[u]TX′[u].

Knowing the matrix R[u], the attacker can estimate the variance of the
entries of R[u], σ̂r and use it to calculate the minimum-norm solution as
≈ 1√

kσ̂r
R[u]TX′[u]. Therefore we will have E[X̂[u]

i ] = E[ 1
kσrσ̂r

∑m
t=1 εitX

[u]
t ] =

σr

σ̂r
X[u]

i , and

V ar[X̂
[u]
i ] =E[X̂

[u]
i

2
] − E

2
[X̂

[u]
i ] =

1

k2σ2
r σ̂r

2 E[(

m∑

t=1

εitX
[u]
t )

2
] − (

σr

σ̂r

X
[u]
i )

2

=
1

k2σ2
r σ̂r

2 E[

m∑

t=1

εit
2
X

[u]
t

2
+

m∑

p,q=1
p�=q

εipX
[u]
p εiqX

[u]
q ] − (

σr

σ̂r

X
[u]
i )

2

=
1

k2σ2
r σ̂r

2 X
[u]
i

2
E[εii

2
] + E[

m∑

t=1
t�=i

X
[u]
t

2
εit

2
] − (

σr

σ̂r

X̂
[u]
i )

2

=
1

k2σ2
r σ̂r

2 X
[u]
i )

2
E[(

k∑

t=1

rti
2
)
2
] +

m∑

t=1
t�=i

X
[u]
t

2
E[(

k∑

f=1

rfirft)
2
]) − (

σr

σ̂r

X
[u]
i )

2

=
1

k2σ2
r σ̂r

2 X
[u]
i )

2
E[

k∑

t=1

rti
4
+

k∑

p�=q

rpi
2
rqi

2
]+

m∑

t=1
t�=i

X
[u]
t

2
E[

k∑

f=1

rfi
2
rft

2
+

k∑

p,q=1
p�=q

rpirptrqirqt]) − (
σr

σ̂r

X
[u]
i )

2

=
1

k2σ2
r σ̂r

2 (X
[u]
i

2
(ksσr

4
+ k(k − 1)σr

4
) + kσr

4
m∑

t=1
t�=i

X
[u]
t

2
) − (

σr

σ̂r

X
[u]
i )

2

Assuming σ̂r = σr we will have: E[X̂[u]
i − X[u]

i ] ≈ 0 and V ar[X[u]
i − X̂[u]

i ] =
s−1

k X[u]
i

2
+ 1

k

∑
t�=i(X

[u]
t )2 where s is the parameter of the distribution of R[u].

Proof of Proposition 1(ii)

Proof. The attacker can generate a k × m matrix R̂[u] using the known distrib-
ution (as an estimate for R[u]) and use it to estimate X[u] similar to the case of
known R[u], as follows.

X̂[u] = 1√
kσr

R̂[u]TX′[u] = 1
kσr

2 R̂[u]T R[u]X[u]

Let ε̂ij be the ijth entry of R̂[u]T R[u]. That is ε̂ij =
∑k

t=1 r̂tirtj and X̂[u]
i =

1
kσr

2

∑k
t=1 ε̂itX

[u]
t .

We have E[ε̂ij ] = E[
∑k

t=1 r̂tirtj ] = 0 and E[ε̂2ij ] = E[(
∑k

t=1 r̂tirtj)2] =
E[

∑k
t=1 r̂2tirtj

2 +
∑k

p,q=1
p�=q

r̂pirpj r̂qirqj ] = kσr
4
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Therefore, we get E[X̂[u]
i ] = 1

kσr
2 E[

∑m
t=1 ε̂itX

[u]
t ] = 0 and

V ar[X̂
[u]
i ] = E[X̂

[u]
i

2
] − E

2
[X̂

[u]
i ] =

1

k2σr
4

E[
m∑

t=1
ε̂itX

[u]
t

2
] =

1

k2σr
4

E[
m∑

t=1
ε̂
2
itX

[u]
t

2
+

m∑

p,q=1
p�=q

ε̂ipX
[u]
p ε̂iqX

[u]
q ] =

1

k

m∑

t=1
X

[u]
t

2

Therefore we will have: E[X[u]
i − X̂[u]

i ] = X[u]
i and V ar[X[u]

i − X̂[u]
i ] =

1
k

∑m
t=1 X

[u]
t

2
.
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Abstract. Advances in Information and Communication Technology
(ICT) have had significant impact on every-day life and have allowed us
to share, store and manipulate information easily and at any time. On
the other hand, such situation also raises important privacy concerns. To
deal with such concerns, the literature has identified the need to intro-
duce a Privacy by Design (PbD) approach to support the elicitation
and analysis of privacy requirements and their implementation through
appropriate Privacy Enhancing Technologies. However, and despite all
the work presented in the literature, there is still a gap between pri-
vacy design and implementation. This paper presents a set of Privacy
Process Patterns that can be used to bridge that gap. To demonstrate the
practical application of such patterns, we instantiate them in JavaScript
Object Notation (JSON), we use them in conjunction with the Privacy
Safeguard (PriS) methodology and we apply them to a real case study.

Keywords: Privacy Process Patterns · Requirements engineering ·
Information security modelling

1 Introduction

Information Privacy is considered as an important challenge for Information
and Communication Technology (ICT). With more and more sensitive and con-
fidential information stored, shared and manipulated at digital level [1], both
individuals and organisations expect appropriate measures to ensure privacy of
such information. However, this is not easy, as privacy is a multifaceted concept
with various impact and ways of achievement which depends, amongst other
things, on the environments in which it is required to be achieved.
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Although the paradigm of Privacy by Design (PbD) has been proposed as a
feasible solution to such situation, there are still major challenges that require
further research and development. In particular, a challenging task in the con-
text of PbD is moving from a design (where the privacy requirements of an
information system have been elicited) to an implementation that fulfils those
requirements. This is problematic for two main reasons. On one hand, there is
little expertise on how best to align privacy requirements (from the design stage)
to Privacy Enhancing Technologies (PETs) [2] at implementation stage. On the
other hand, software engineers, who need to deal with both the design and the
implementation stages, lack detailed knowledge of PETs to ensure correct imple-
mentation. This paper contributes towards these two challenges by proposing a
set of Privacy Process Patterns to enhance detailed knowledge of PETs and a
clear alignment between privacy properties (requirements) and PETs. Moreover,
we are demonstrating how these patterns can be used as part of a privacy-aware
methodology to bridge the gap between design and implementation. To improve
the usability of such patterns, we instantiate them with JavaScript Object Nota-
tion (JSON), using a template that could be adapted by any programming lan-
guage. Moreover, we present our patterns in the context of an existing privacy-
aware methodology called PriS [3] and we apply our work to a real case study
to illustrate practical applicability of the work.

The paper is structured as follows. Section 2 discusses the related work, while
Sect. 3 presents the Privacy Process Patterns. Section 4 describes their implemen-
tation and Sect. 5 illustrates their application to a case study. Finally, Sect. 6
concludes the paper.

2 Related Work

Patterns have been adopted into software engineering as they encounter each
problem in a systematic and structured way. Privacy patters, specifically, have
been used as a way to model privacy issues. In [4] privacy patterns are used for
web-based activity and especially for conveying privacy policies to end-users dur-
ing online interactions. Traditional design patterns are described in [5], identify-
ing 45 patterns for the design in ubiquitous computing environments, 15 of which
focused on privacy. The authors in [6] propose a pattern language which contains
12 patterns for developing anonymity solutions for various domains, including
anonymous messaging, anonymous voting and location anonymity. This work
moves on the right direction regarding the modelling of privacy requirements
but it fails to combine privacy elicitation concepts for capturing privacy require-
ments. In [7], six patterns that focus on how to establish boundaries for interac-
tion are presented, focusing on the filtering of personal information in collabora-
tive systems. Finally, the author in [8] presented two privacy patterns, applying
this approach to security issues by proposing a set of security patterns to be
applied during the software development process.
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3 Privacy Process Patterns

Privacy Process Patterns are patterns being applied on privacy related processes
in order to specify the way that the respective privacy issues will be realised
through a specific number of steps, including activities and flows connecting
them. They assist developers to understand, in a better and more specific way,
how to implement the various privacy properties. The use of Privacy Process
Patterns is considered as a more robust way for bringing the gap between the
design and the implementation phase of a system or module of it.

The proposed pattern structure follows the so-called Alexandrian format [9]
which is already accepted and used for the definition of security patterns [10].
This format is efficient enough for the description of the Privacy Process Pat-
terns, matching the fields of each pattern when this is expressed with JSON.
Through definition field, we give a comprehensive definition of the property.
The fields problems and forces present the goals that need to be fulfilled and the
forces that need to be considered when choosing to use this pattern, respectively.
The fields benefits and liabilities present the advantages and the disadvantages
that are identified in each privacy property. The field implementation techniques
covers all the possible techniques that satisfy the respective property. From the
range of the proposed implementation techniques, the developers can choose the
most appropriate technology based on the privacy process patterns applied on
every privacy-related process. Finally, the field of related patterns indicates which
patterns have similar characteristics with the examined one, which patterns are
closely related in terms of functionality and with which other patterns it can be
utilised.

This work describes the five basic privacy properties [11–14] namely
anonymity, pseudonymity, unlinkability, undetectability and unobservability. Our
intention is to define a general template for privacy properties that can be used
to describe other properties additionally to the five we enlisted above. This is
a preliminary work aiming to identify all possible privacy concepts that need
to be addressed when designing privacy-aware systems and provide a structured
description in order for the developers to take advantage of and manage to han-
dle privacy in a robust way, linking the gap between design and implementation
phases. The impact of the selection of respective privacy concepts and the com-
plexity of their applicability is a very interesting topic, but it is not the main
focus of this paper. This template comprises a guide for the developers who can
understand in a better and more structured way how to implement each privacy
concept.

3.1 Anonymity

– Definition: Anonymity is a characteristic of information that does not per-
mit a personally identifiable information principal to be identified directly
or indirectly. During anonymization, identity information is either erased or
substituted

– Problem: The user of a service cannot be identified
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– Forces: Large number of users in the same network is required
– Benefits: (i) Supports users in accessing services without disclosing their iden-

tity, (ii) Users are more freely expressed, since freedom from user profiling is
achieved (behaviour of users or other privacy-infringing practices), (iii) Free-
dom from location tracking, (iv) Minimal user involvement (they do not have
to modify their normal activities for anonymity services)

– Liabilities: (i) Maintain users’ accountability while anonymous, Performance
(latency, loss of functionality, bandwidth, etc.), (ii) Usability of information
(too much data obfuscation can undermine the usefulness of data), (iii) Abuse
of privacy (malicious users), (iv) User count (large anonymity set), (v) User
friendliness (if the users have to adapt a lot to achieve anonymity, they may
start judging where they should have anonymity), (vi) Law enforcement (the
anonymity might have to be liftable to investigate on crime suspects)

– Implementation techniques:
• Anonymizer products, services and architectures: Browsing pseudonyms

[15], Virtual Email Addresses, Trusted third parties, Crowds [16], Onion
routing [17], DC-nets [18], Mix-nets (Mix Zone) [19], Hordes [20], GAP
[21], Tor [22], Aggregation Gateway [23], Dynamic Location Granularity

• Track and evident erasers: Spyware detection and removal, Hard disk data
eraser, User data confinement pattern, Use of dummies

– Related patterns: Pseudonymity, unlinkability

3.2 Pseudonymity

– Definition: Pseudonymity is the utilisation of an alias instead of personally
identifiable information

– Problem: Ensuring that an entity cannot be linked with a real identity during
online interactions

– Forces: Use authenticated services without disclosing identifiable information
– Benefits: (i) Supports users in accessing services without disclosing their real

identity, (ii) Permits the accumulation of reputational capital, (iii) The user is
still accountable for its actions, (iv) A user may have a number of pseudonyms,
(v) Fills the gap between accountability and anonymity, (vi) Hides the iden-
tity of the participants, (vii) Prevents unforeseen ramifications of the use of
online services

– Liabilities: (i) Maintains users’ accountability while pseudonymous, (ii) Abuse
of privacy (malicious users) (iii) Forgery/impersonation, (iv) Law enforcement
(the anonymity might have to be liftable to investigate on crime suspects),
(v) Extensive usage of the same pseudonym can weaken it

– Implementation techniques:
• Administrative tools: Identity management, Biometrics [24], Smart cards

[25], Permission management
• Pseudonymizer tools: CRM personalisation [26], Application data man-

agement, Obligation management, Mixmaster
– Related patterns: Anonymity, authentication
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3.3 Unlinkability

– Definition: Unlinkability is the use of a resource or a service by a user without
a third party being able to link the user with the service

– Problem: (i) Users’ identifiable information is not protected, (ii) The strength
of unlinkability is depended on the number of nodes belonging to the unlink-
ability set

– Forces: Enforce users’ privacy regarding the linkability with the service used
– Benefits: (i) Protect users’ privacy when using a resource or service by not

allowing malicious third parties to monitor which services are used by the user,
(ii) The intentional severing of the relationships (links) between two or more
data events and their sources, ensures that a user may make multiple uses
of resources or services without others being able to link the uses together,
(iii) Requires that users and/or subjects are unable to determine whether the
same user caused certain specific operations in the system, (iv) Minimise risks
to the misuse of the privacy-relevant data and to prohibit or restrict profiling

– Liabilities: (i) Maintain a large unlinkability set, (ii) Equal distribution of traf-
fic between the potential senders and the potential recipients, (iii) Unidirec-
tional pseudonyms should be preferred because omnidirectional pseudonyms
are susceptible to profiling

– Implementation techniques:
• Anonymizer products, services and architectures: Trusted third parties,

Surrogate keys, Onion routing, DC-nets, Mix-nets, Hordes, GAP, Tor,
Aggregation Gateway

• Pseudonymizer tools: CRM personalisation, Application data manage-
ment

• Track and evident erasers: Spyware detection and removal, Browser clean-
ing tools [27], Activity traces eraser, Hard disk data eraser, Use of dum-
mies, Identity Federation Do Not Track Pattern

– Related patterns: Undetectability, anonymity

3.4 Undetectability

– Definition: Undetectability is the inability for a third party to distinguish
who is the user (among a set of potential users) using a service

– Problem: The strength of undetectability depends on the number of nodes
belonging to the undetectability set

– Forces: Enforce users’ privacy by allowing them to use a service without being
detected by a malicious third party

– Benefits: (i) Protect users’ privacy when using a resource or service by not
allowing malicious third parties to detect which services are used by the
user, (ii) The attacker cannot sufficiently detect whether a particular Item
of Interest (IOI) exists or not, e.g. steganography, (iii) The attacker cannot
sufficiently distinguish whether it exists or not

– Liabilities: (i) Maintain a large undetectability set, (ii) Equal distribution of
traffic between the potential senders and the potential recipients
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– Implementation techniques:
• Administrative tools: Smart cards, Permission management
• Information tools: Monitoring and audit tools
• Anonymizer products, services and architectures: Hordes, GAP, Tor
• Track and evidence erasers: Spyware detection and removal, Browser

cleaning tools, Activity traces eraser, Hard disk data eraser, Identity Fed-
eration Do Not Track Pattern

• Encryption tools: Encrypting email [28], Encrypting transactions [29],
Encrypting documents

– Related patterns: Unlinkability, unobservability

3.5 Unobservability

– Definition: Unobservability is the inability of a third party to observe if a
user (among a set of potential users) is using a service

– Problem: The strength of unobservability set depends on the strength of: (i)
The sender/recipient anonymity set, (ii) The sender/recipient undetectability
set

– Forces: Users privacy is enforced since they can use a resource or service
anonymously and without being detected regarding the service used when the
state of IOIs should be indistinguishable from any IOI (of the same type) at
all when we want to send messages that are not discernible from e.g. random
noise

– Benefits: (i) Anonymity and Undetectability enforcement per service, (ii)
Ensures that a user may use a resource or service without others, especially
third parties, being able to observe that the resource or service is being used,
(iii) Requires that users and/or subjects cannot determine whether an oper-
ation is being performed

– Liabilities: (i) Depends on the successful implementation of both anonymity
and undetectability, (ii) Strong encryption required demanding many
resources, (iii) Slower communication due to complex calculations

– Implementation techniques:
• Administrative tools: Smart cards, Permission management
• Anonymizer products, services and architectures: Hordes, GAP, Tor
• Track and evidence erasers: Spyware detection and removal, Hard disk

data eraser, Identity Federation Do Not Track Pattern
– Related patterns: Anonymity, undetectability

4 Privacy Process Patterns Implementation

4.1 PriS Methodology

The implementation of the aforementioned Privacy Process Patterns follows an
abstract approach, enabling them to be applied to any requirements engineer-
ing methodology. In order to substantiate the applicability and usefulness of
the Privacy Process Patterns that have been presented in Sect. 3, we opted to
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apply them on a privacy requirements engineering methodology, i.e. PriS (Pri-
vacy Safeguard). This methodology incorporates privacy requirements into the
system design process and has been developed so as to assist designers on elic-
iting, modelling, designing privacy requirements of the system to be and also to
provide guidance to the developers on selecting the appropriate implementation
techniques that best fit the organisation’s privacy requirements. PriS provides a
set of concepts for modelling privacy requirements in the organisation domain
and a systematic way-of-working for translating these requirements into system
models, adopting the use of Privacy Process Patterns as a way to (i) describe
the effect of privacy requirements on business processes and (ii) facilitate the
identification of the system architecture that best supports the privacy-related
business processes. PriS methodology comprises the following four activities that
are presented below in an abstract way, as the implementation of them will be
thoroughly described in Sect. 5, through a real case study:

1. Elicit privacy-related goals. This step concerns the elicitation of the privacy
goals that are relevant to a specific organisation. It usually involves a num-
ber of stakeholders and decision makers (managers, policy makers, system
developers, system users, etc.)

2. Analyse the impact of privacy goals on organisational processes. The second
step is to analyse the impact of these privacy goals on processes and related
support systems

3. Model affected processes using privacy process patterns. Having identified the
privacy-related processes, the next step is to model them, based on the rele-
vant privacy process patterns

4. Identify the technique(s) that best support/implement the above process. The
final step is to define the system architecture that best supports the privacy-
related process identified in the third step. Again, privacy process patterns
are used to identify the proper implementation technique(s) that best sup-
port/implement corresponding processes

The proposed framework uses the concept of goal as the central and most
important concept. Goals are desired state of affairs that need to be attained.
Goals concern stakeholders, i.e. anyone that has an interest in the system design
and usage. Also, goals are generated because of issues. An issue is a statement
of a strength, weakness, opportunity or threat that leads to the formation of
the goal. Privacy is a highly regulated area in Europe. The protection of users’
privacy is stated in many European and national legislations through the form
of laws, policies, directives, best practices, etc. [30]. Thus, legal issues need to
be taken under consideration during the identification of functional and non-
functional requirements. Goal identification needs to take under consideration
all these elements before further analysis is conducted.

As shown in Fig. 1, there are two types of goals in the proposed framework,
namely organisational goals and privacy goals. Organisational goals express the
organisation’s main objectives that need to be satisfied by the system into con-
sideration. In parallel, privacy goals are introduced because of specific privacy



498 V. Diamantopoulou et al.

Fig. 1. Conceptual model

related properties. Through the privacy goals, the realisation of the identified
privacy properties is achieved. Thus, all privacy related properties that need to
be realised, should be addressed as specific privacy goals. Privacy goals may
have an impact on organisational goals. In general, a privacy goal may cause
the improvement/adaptation of organisational goals or the introduction of new
ones. In this way, privacy issues are incorporated into the system’s design. Every
model has at least one organisational goal, but may have no privacy goals, thus
the respective relationships (1..* and 0..*) among the organisational and pri-
vacy goal with the generic concept of goal. Goals are realised by processes. The
relationship between goals and subgoals is many to many, in the sense that one
goal can be realised from one or more processes and one process can support the
realisation of one or more goals.

4.2 Expression of PriS with JSON Format

Another reason for choosing PriS in order to apply the proposed structure of the
Privacy Process Patterns is their expression of its structure in JSON format [31]
and the reasoning it facilitates through this format. Prior to PriS, the transmis-
sion from the design to the implementation phase was vague; developers did not
have a methodology to automate this process, i.e. the selection of most suitable
privacy enhancing technologies to apply in their context. PriS extended version
is expressed in the JSON format, which is an Open Standard used to transmit
data objects consisting of attribute-value pairs [32]. The attribute is immutable
and corresponds to the concepts of the model. The suggested patterns are generic
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enough for being used in every Requirements Engineering method. The JSON
format is an example to represent their ability to link the expressed knowledge
in a more structured and closer to programmer format in order to bridge the gap
between the design the and the implementation phase. One of the most common
issues in the RE world is that developers find hard to implement the design out-
comes, especially if these are related to system’s non-functional requirements.
JSON format assists the developers in the realisation of the identified privacy
concerns (requirements) and a way that they can be implemented using a struc-
tured low level expression language and not generic/abstract software engineer-
ing diagrams. Of course, JSON can be replaced by other structured XML-like
formats. However, its wide use and dynamic nature of the template inspired us
to express our work using this format. The value is mutable and corresponds
to the values assigned based on the analysis of the respective system. JSON
template assist on the direction of simplifying the process for the developers of
implementing what had been suggested from the design phase, by expressing
the conceptual business process in this format. This format is preferable since
it can raise developers’ awareness in understanding the outcomes of the afore-
mentioned reasoning. Based on the proposed framework, every identified privacy
requirement is expressed in a structured textual format using the JSON format.
Through this JSON template, a more formalised expression of the whole set of
concepts is achieved, and developers can understand the privacy requirements
that need to be satisfied and the processes that need to be altered for addressing
the privacy properties.

The PriS JSON template, presented in Fig. 2a, is in accordance with the
four activities of PriS presented previously. The object Privacy requirement
consists of the Title, the Privacy Goal that it wishes to achieve, the specific
Organisational Goal that it relates to, the Process, and the Privacy Enhancing
Technologies. The organisational goal consists of its Title, its Parent Goal, its
Child Goal, and its Decomposition Type. The attribute Process indicates which
process is affected. It contains the Title, the Parent Process, the Child Process
and finally, the Process Pattern that needs to be satisfied. From the field of
process pattern, we realise which privacy pattern we will implement. Finally, the
attribute Privacy Enhancing Technologies assists developers on the selection
of the set of most appropriate existing privacy enhancing technologies related to
the specific privacy properties.

Figure 2b depicts the Privacy Process Pattern template expressed with JSON
format, enhancing PriS methodology. The template follows the same structure as
it was described in Sect. 3, containing the fields name, context, problems, forces,
benefits, liabilities, implementation techniques, and finally, related patterns. This
final field contains all the available techniques that can satisfy the examined
privacy requirement. The difference among this field and the one of Privacy
Enhancing Technologies, which is included at the general template, is that the
first one contains all the potential solutions, where the latter picks only the ones
that satisfy the specific organisational goal. The template of the privacy process
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(a) (b)

Fig. 2. PriS and Privacy Process Pattern JSON template

pattern will be included in the general template of the PriS JSON template to
enhance the Process Pattern attribute.

5 Illustration of the Privacy Process Patterns

A real case study, in which PriS methodology has already been implemented to,
and can be used to examine the applicability of the proposed Privacy Process
Patterns’ template, is the one of Aegean Career Unit. Specifically, University of
the Aegean has built a software system for its Aegean Career Office. A detailed
description of the Career Office System can be found in [33]. The scope of this
case study was the identification of all respective concepts based on the PriS
framework for conducting privacy-aware analysis based on the system’s context
and the stakeholders’ requirements. The main objective of the Career Office
system of the University of the Aegean is boundary management, i.e. helping
students to manage the choices and transitions they need to make on exit from
their studies in order to proceed effectively to the next step of their life. The
Career Office system is described by three main principles that form the three
primary organisational goals, namely: (a) Provide Career Information, (b) Offer
Guidance through Events and (c) Maintain a lifelong communication with the
graduates. In Fig. 3, the goal model of the examined case study is depicted. We
analyse only the principle ‘Maintain a lifelong communication with the gradu-
ates’ for simplicity reasons.

In accordance with the first step of PriS, the main privacy requirement iden-
tified along with stakeholders, was the following: “Graduates’ anonymity should
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Fig. 3. Goal model

be enforced when collecting the completed questionnaires”. For protecting grad-
uates’ privacy, it is of major importance to ensure that all types of analysis
and produced results don’t lead to any form of privacy violation directly or
indirectly. Based on the organisation’s context, graduates must be ensured that
nobody, especially malicious third parties, will be able to reveal the name or
other elements that may lead to the identification of the graduate that submits
the answered questionnaire; when graduates send information through the career
office portal, it must be ensured that others will not be able to reveal any per-
sonal identifiable information. Following the identified requirement, the privacy
goal that needs to be addressed and fulfilled is the anonymity goal.

Proceeding to the second step of PriS methodology, we need to identify the
impact of this goal in the Career Office system, and thus, the identification of
the organisational goals and subgoals that deal with the specific requirement
is vital. For satisfying the anonymity goal, the main goal, subgoal and process
affected are the following:

– Main Goal: Maintain a lifelong communication with the graduates (G3)
– Subgoal: Make follow up research concerning the professional progress of the

graduates by sending them questionnaires (G 3.3)
– Main Process: Conduct Graduates Surveys (P4)
– Subprocess: Collect Responses (P 4.3)

The third step of PriS indicates the modelling of the affected processes, using
privacy process patterns. For realising the identified privacy goals, the respective
processes that implement the privacy-related subgoals were identified. Thus, for
the anonymity goal, the respective process that identifies the operationalised
subgoal G3.3 is P4 and specifically, the ‘P4.3 Collect Responses’. For assisting the
realisation of privacy goals on processes, privacy process patterns are introduced.
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(a) (b)

Fig. 4. Instantiation with JSON

Specifically, for every privacy goal, a respective privacy process pattern may be
introduced on to the privacy-aware processes leading to the realisation of the
privacy requirements by the respective PET in a more mature and concrete way.

By applying the relevant privacy process pattern on the respective privacy-
related process, it is easier for the designer to identify the appropriate PETs,
leading to the successful satisfaction of the respective goals. In the anonymity
pattern, the user initiates a request for using a service to the system. The system
checks the request and proceeds with the decision of preserving user’s anonymity
(in case the type of service requested should satisfy this privacy goal) or exe-
cutes the identification task which leads the user to the process of providing their
real credentials for granting access to use the requested service. Finally, accord-
ing to PriS, the final step is the identification of the technique(s) that best
support/implement the aforementioned procedures, the designer along with the
stakeholders and the organisation’s developer team decide the most appropriate
PET for realising the identified privacy goals. The definition of selection crite-
ria for the most adequate PET is out of the scope of this paper. In the given
scenario, from the different options presented in Fig. 4b, our analysis has identi-
fied and suggested to the stakeholders the following PETs, presented in Fig. 4a:
Crowds, Onion Routing, Tor and GAP Protocol.
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6 Conclusions

This paper presents a set of privacy process patterns that can be used to bridge
the gap between privacy design and implementation, and their instantiation
in JSON. These patterns are illustrated using the Career Office system of the
University of the Aegean. Although, due to lack of space we have focused on the
definition of five patterns, more patterns can be defined using the same template.

Future work includes the development of a privacy pattern language that will
further assist developers in building the gap between design and implementation
phase. In addition, we are planning to extend our work to elicit and define privacy
patterns in new domains, such as Internet of Things and Cloud Computing.
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Abstract. Frequent itemset mining is a fundamental data analytics
task. In many cases, due to privacy concerns, only the frequent itemsets
are released instead of the underlying data. However, it is not clear how
to evaluate the privacy implications of the disclosure of the frequent item-
sets. Towards this, in this paper, we define the k-distant-IFM-solutions
problem, which aims to find k transaction datasets whose pair distance is
maximized. The degree of difference between the reconstructed datasets
provides a way to evaluate the privacy risk. Since the problem is NP-
hard, we propose a 2-approximate solution as well as faster heuristics,
and evaluate them on real data.

Keywords: Inverse Frequent itemset Mining · Column generation

1 Introduction and Related Work

Frequent itemsetmining [1] is a crucial datamining taskwhich has numerous appli-
cations in knowledge discovery such as recommendation, classification, etc. Many
efficient implementations exist, [5], all of which assume that the underlying data-
base is accessible to the data miner. However, often privacy concerns prohibit the
direct release of data. Since frequent itemsets can serve as a good proxy for the
underlying data and still enable different kinds of analysis, often they are released
instead. Prior work has examined whether it is possible to find the original dataset
from the frequent itemsets, defined as the Inverse frequent set mining (IFM) prob-
lem and studied from several different perspectives [4,6,7,9]. IFM aims to find
a transaction dataset D that satisfies a given set of itemset support constraints
(i.e., the support or frequency of an itemset should be contained within the speci-
fied numeric interval). Wang and Wu [13] also introduced the ApproSUPP problem,
where they asked whether it is possible to satisfy the various support constraints
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in an approximate fashion and presented an ILP formulation along with heuristic
strategies. Several alternative heuristics have also been proposed [10,14]. However,
while IFM provides a measure of the degree of difficulty in inverting a set of sup-
port constraints into a dataset producing these, there is no notion of how different
that dataset is from the original that needs to be protected.

In this paper, we precisely tackle this problem. We formulate a new prob-
lem called the k-distant-IFM-solutions which combines the IFM problem with
elements of K-anonymity [11] and L-diversity [8]. Specifically, the problem con-
sists in finding k IFM solutions (transaction datasets) whose pair distance is
maximized. This ensures that we have at least k different solutions to the IFM
problem that are all potentially quite different. Since any of these could be the
source, and are as different as possible from each other, this gives a minimum
bound on the degree of privacy afforded by the frequent itemsets. We show that
the problem is NP-hard, and give a 2-approximation based on the greedy strat-
egy. However, given the complexity of the underlying problem, we also develop a
heuristic based on an ILP formulation (see [12]) that is quite efficient. Thus, our
work is orthogonal to all of the prior work, since it considers the problem of find-
ing multiple datasets meeting the given set of support constraints, and provides
a better estimate of the risk of disclosure through the frequent itemsets.

2 Problem Statement

Let I be a set of items. An itemset I is a subset of I. A transaction Dataset
D is a pair (TD,#D), where TD is a set of transactions (i.e. itemsets) contained
in D and #D : 2I → N is a function assigning to each transaction a number of
duplicates such that if t ∈ TD then #D(t) > 0, otherwise #D(t) = 0.

Example 1. Let I = {a, b, c}. Following is an example of a transaction database
where #D(t) = 0 for each transaction t that is not present in TD and #D(t) > 0
for transactions that are present in TD.

D
{a,b}
{a}

{a,b}
{a,b}

{a,b,c}
{a,b,c}

⇒
TD #D
{a} 1

{a,b} 3
{a,b,c} 2

Given an itemset I, the support of I w.r.t. D is
support(I,D) =

∑
t∈TD,I⊆t #D(t) and its frequency

is frequency(I,D) = support(I,D)
|D| . Given a dataset

D, the frequent itemset mining problem aims to find
all of the itemsets whose frequency is greater than
a given threshold.

In our paper, we assume that instead of releasing
the actual dataset, only a set of itemsets is released
along with their frequencies due to privacy concerns. However, in this case, the
problem that we study is the extent to which it is possible to retrieve the orig-
inal dataset D. This is related to the Inverse Frequent itemset Mining (IFM)
problem, which aims to find a dataset such that the frequencies of a set of given
itemsets for that dataset are in a specific range interval. IFM is formally defined
as follows:
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The IFM problem. Given a set of items I, two integer numbers sl, su, a set of
support constraints S of the form (I, l, u) where I is an itemset on I and l, u ∈ N
with l ≤ u. The IFM problem, denoted as IFM(I, sl, su, S), consists in finding
a dataset D such that sl ≤ |D| ≤ su and ∀(I, l, u) ∈ S : l ≤ support(l,D) ≤ u.

Given a set of support constraints S, IFM provides information about degree
of difficulty of generating a dataset that produces those frequent itemsets. How-
ever, note that while the solution to IFM enables malicious users to find a dataset
that also meets the same support constraints, it does not say anything about
whether this is the real dataset or how different it is from the real dataset.
Indeed, given a set of support constraints S, more than one dataset solution
can exist for the IFM problem. While this increases uncertainty in terms of the
actual dataset, it may not significantly increase privacy since all of the datasets
might be quite similar, thus actually reducing privacy.

Thus, to enable evaluation of the privacy risk associated with frequent itemset
disclosure, we formalize a new problem called k-distant-IFM-solutions, i.e. find
k IFM solutions whose pair distance is maximized. If we can find a sufficient
number of solutions that are quite different from each other, then it significantly
increases the degree of uncertainty and thus privacy. We can also take into
consideration the problem of finding subset of support constraints or a perturbed
version that can maximize the pair distance among all of the k IFM solutions.

2.1 K-distant-IFM-solutions Problem

We first define the distance between two datasets, and then formalize the
actual problem. While Jaccard or Hamming distance is a good metric to mea-
sure the distance between two individual transactions, they cannot directly be
used to measure the difference among the collection of transactions. In our
problem, the number of duplicate transactions has a significant meaning and
therefore we chose to define our own metric that extends the Hamming dis-
tance for collection of transactions. Furthermore, we use the edit distance con-
straint to ensure that the different datasets obtained are sufficiently apart from
each other based on our distance metric. Consider a case where the dataset
D1 = {{a, b, c}, {a, b, c}, {a, b, f}} and D2 = {{a, b, c, h}, {a, b, c, h}, {a, b, f, h}}.
Since there are no transactions in common, (D1,D2) = 6 is the maximum dis-
tance that can be obtained. However, these datasets are exactly the same except
for the item h. The edit distance constraint addresses this issue.

Given two datasets D1 and D2 over I, we define the function dist(D1,D2)
between D1 and D2 as

dist(D1,D2) =
∑

t∈TD1∪TD2

|#D1(t) − #D2(t)|

This distance is a metric, but we omit the proof due to lack of space.

2.2 k-distant-IFM-solutions

Given a set of items I, a positive integer number k, two integer numbers sl, su,
a set of support constraints S of the following form (I, l, u) where I is an
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Algorithm 1. Greedy Algorithm
1: procedure greedyAlgorithm(I, S)
2: SD = ∅;
3: Choose D∗ ∈ SOL(I, S)
4: while (|SD| ≤ k) do
5: SD = SD ∪ {D∗};
6: Choose D∗ ∈ arg maxD∈SOL(I,S)\SD pairDist(SD ∪ D);
7: end while
8: return SD;
9: end procedure

itemset on I and l, u ∈ R. The k-distant-IFM-solutions problem consists of
finding a set of k datasets SD = {D1, . . . ,Dk} such that for each D ∈ SD,
D is a solution of IFM(I, sl, su, S), and the pair distance pairDist(SD) =∑

Dj ,Di∈SD,i>j dist(Di,Dj) is maximized.

Theorem 1. The k-distant-IFM-solutions problem is NP-hard.

Since finding even one solution of IFM(I, sl, su, S) is NP-hard (as shown in [4]),
finding k solutions is also NP-hard.

3 Proposed Approach

We now discuss how this problem can be solved. Let us assume SOL(I, S) is
the set of all datasets that are the solution of IFM(I, S).

Thus, the k-distant-IFM-solutions can be formalized as

SD∗ ∈ arg max
SD⊆SOL(I,S),|SD|=k

pairDist(SD)

For this problem, Borodin et al. [3] show that if the function dist is a
metric, then the Greedy Algorithm (Algorithm 1) gives a 2-approximate solu-
tion. However, we still need to specify how steps 3 and 6 of Algorithm 1
will be executed, i.e. how to choose D∗ ∈ SOL(I, S) (for step 3) and D∗ ∈
arg maxD∈SOL(I,S)\SD pairDist(SD ∪ D) (for step 6). Step 3 simply requires
finding a solution for IFM, which is well understood. For the sake of simplicity
and efficiency, we simply choose the first feasible solution instead of choosing a
solution randomly. We denote the problem in Step 6 as the Maximum Distant
Dataset and now show how to solve it.

3.1 Maximum Distant Dataset

The goal of maximization is to maximize the difference between the created
dataset and existing datasets. Thus, we would like to find a dataset D that max-
imizes

∑
D′∈SD dist(D′,D), which is equivalent to maximizing pairDist(SD∪D).

In order to solve the Maximum Distant Dataset we provide an ILP formulation.
This formulation is based on three kinds of variables:
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– a real variable xt, for each possible transaction t ⊆ I, modeling the number of
duplicates #(t) for each transaction t in the dataset that we have to generate
(we relax the assumption that number of duplicates is an integer number);
Effectively, the variable xt gives the support count of the transaction t in the
newly created dataset.

– a real variable yD
t , for each D ∈ SD and t ∈ TD, modeling the values

|#D(t) − xt|; Note that for all transactions t present in the existing datasets,
|#D(t) − xt| gives the absolute difference in support for such transactions in
each dataset D. For the transactions t that are not present in the existing
datasets, xt directly gives the support of such transactions in the new dataset.

– a binary variable zD
t , for each D ∈ SD and t ∈ TD, that is used to emulate

the absolute value |#D(t) − xt|.
Now, the formulation is as follows:

maximize
∑

D∈SD

( ∑

t∈TD

yD
t +

∑

t⊆I,t�∈TD

xt

)
(1)

∑

t⊆I,I⊆t

xt ≥ l (I, l, ) ∈ S (2)

∑

t⊆I,I⊆t

xt ≤ u (I, , u) ∈ S (3)

∑

t⊆I
xt ≥ sl (4)

∑

t⊆I
xt ≤ su (5)

#D(t) − xt ≤ yD
t D ∈ SD, t ∈ TD (6)

−#D(t) + xt ≤ yD
t D ∈ SD, t ∈ TD (7)

#D(t) − xt + 2 ∗ kt ∗ (1 − zD
t ) ≥ yD

t D ∈ SD, t ∈ TD (8)

−#D(t) + xt + 2 ∗ kt ∗ zD
t ≥ yD

t D ∈ SD, t ∈ TD (9)
xt ≥ 0 t ⊆ I (10)

yD
t ≥ 0 D ∈ SD, t ∈ TD (11)

zD
t ∈ {0, 1} D ∈ SD, t ∈ TD (12)

Where, kt = min(su,min(I, ,u)∈S,I⊆t u).

As can be seen, we have two groups of constraints. The first group of con-
straints from 2 to 5 defines the minimum support, the maximum support, the
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minimum size and the maximum size, respectively. The second group constraints
from 6 to 9 contribute in modeling the absolute value |#D(t)−xt| is equal to yD

t .
More specifically, constraints 6 and 7 impose that |#D(t) − xt| ≤ yD

t ensuring
that the variable yD

t is an upper bound of the absolute difference between xt and
#D(t). Constraints 8 and 9 impose that only one condition between #D(t) − xt

and xt − #D(t) has to be greater than or equal to yD
t . Latter two constraints

ensure that yD
t is also the lower bound of the absolute difference between xt

and #D(t). The constraints from 6 to 9, together, ensure that yD
t = #D(t) − xt.

However, note that only one of the constraints between 8 and 9 can be met. zDt
is the decision variable activating one of these two constraings, while kD

t is the
smallest constant that is large enough to ensure that these constraints are met.
Finally, the maximization function (expression 1) maximizes the degree of differ-
ence in support for transactions present, which exactly models the maximization
of distance metric defined in Sect. 2.1.

Usually, adding more constraints to an integer linear program reduces
the search space by improving the bound obtained by the linear formulation
and consequently reduces the computation time. Therefore, we define addi-
tional constraints and variables imposing that the value yD

t = |#D(t) − xt|
is max(#D(t), xt) − min(#D(t), xt). The real variables yD

t,max and yD
t,min model

max(#D(t), xt) and min(#D(t), xt), respectively. The revised ILP is given below.
Note that in this case, the integer variables and the constraints are polynomial
in the description of SD and S, respectively. The main issue is represented by
the exponential number of real variables xt due to all the possible transactions
t ⊆ I. Thus, these linear programs cannot really be directly solved. However, we
can use an alternative technique called the branch and price algorithm (see [2]).

#D(t) ≥ yD
t,min D ∈ SD, t ∈ TD (13)

xt ≥ yD
t,min D ∈ SD, t ∈ TD (14)

#D(t) ≤ yD
t,max D ∈ SD, t ∈ TD (15)

xt ≤ yD
t,max D ∈ SD, t ∈ TD (16)

#D(t)(1 − zD
t ) ≤ yD

t,min D ∈ SD, t ∈ TD (17)

xt − kt ∗ (1 − zD
t ) ≤ yD

t,min D ∈ SD, t ∈ TD (18)

(#D(t) − kt) ∗ zD
t + kt ≥ yD

t,max D ∈ SD, t ∈ TD (19)

xt + kt ∗ zD
t ≥ yD

t,max D ∈ SD, t ∈ TD (20)

yD
t,max − yD

t,min = yD
t D ∈ SD, t ∈ TD (21)

yD
t,max + yD

t,min = #D(t) + xt D ∈ SD, t ∈ TD (22)

yD
t,min ≥ 0 D ∈ SD, t ∈ TD (23)

yD
t,max ≥ 0 D ∈ SD, t ∈ TD (24)
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Algorithm 2. HeuristicSolver
1: procedure HeuristicSolver((SD, S, sl, su))
2: Generate integer linear program P according SD, S, sl and su where the set of

variables with prefix x is only equal to {xt|D ∈ SD, t ∈ TD};
3: Relax in P the binary constraints the variables with prefix z;
4: Solve the program P ;
5: Find a new transaction t (if it exists) by solving the price problem;
6: while (t exists) do
7: Add the variable xt in P ;
8: Solve the program P ;
9: Find a new transaction t (if it exists) by solving the price problem;

10: end while
11: Add in P the binary constraints on the variables with prefix z;
12: Solve the program P ;
13: Obtain from the solution of P the dataset D;
14: return D;
15: end procedure

3.2 Heuristic Solver

The branch and price algorithm is a branch and bound algorithm that at each
branch solves the relaxed problem (i.e. the linear one) by using column genera-
tion techniques. Given that the number of variables is huge, column generation
techniques make the problem tractable. Instead of working on the entire set of
variables, the column generation technique starts with a prefixed number (in our
case the variables related to all the transactions in SD) and at each iteration it
generates a new variable or column (a new transaction) whose reduced cost is
negative [4,7]. In order to generate a new variable a new problem called price
problem has to be solved. The price problem consists of finding a new column
with negative reduce cost, which is strictly related to the simplex algorithm [12]
and how it works. Note that the specific price problem changes based on the
underlying LP or ILP formulation. In prior work [7] the problem in Definition 2
has already been formalized as a linear program whose constraints are the con-
straints from 2 to 5. [7] also solves it with a column generation techniques and its
price problem. In our problem we start by considering all the variables referring
to all the transactions in SD. Then the new variables or columns that we have
to generate are those not involved in the constraints from 6 to 22. The main idea
is to use the column generation techniques to solve the relaxation formulation
where all the binary variables are substituted with real variables restricted to
[0, 1]. Then, use all the columns generated in the column generation algorithm
to solve the ILP version. Algorithm 2 gives the details.

Price Problem. The pricing problem consists in finding a new transaction
different from all the previous transactions whose reduced cost is negative. It is
known that the reduced cost of a column can be expressed as a linear combination
of the dual variable associated to each constraint of the linear program (see [6]).
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Let dsl, dsu, dlI and duI (where (I, , ) ∈ S) be the dual variables associated
to the constraints of the kinds 2, 3, 4 and 5. The reduced cost of a transaction
t is rc(t) = 1 + dsl + dsu +

∑
I⊆t,(I, , )∈S(dlI + duI). Given the set of current

datasets generated SD, the set of all the different transactions present in SD
is defined as tr(SD) =

⋃
D∈SD TD. Now, we show an integer linear program

solving the price problem. A generic transaction is a set of items then we can
represent this transaction by using |I| binary variable {qi|i ∈ I} s.t. if the item
i is contained in t then qi = 1 or qi = 0 otherwise. In order to model the reduced
cost function, it is essential to know which of the itemset in S are contained in the
new transaction. Therefore, we define a set of binary variables {hI |(I, , ) ∈ S}
s.t. if the itemset I (with (I, , ) ∈ S) is contained in the new transaction then
hI = 1 or hI = 0 otherwise.

The objective function represents the reduced cost of the new transaction.
The first two constraints 26 and 27, impose that whether the transaction rep-
resented by the set of variables {qi|i ∈ I} contains an itemset I, the variable
hI is equal to 1 or 0 otherwise. The third constraint 28 imposes that the edit
distance between each transaction in tr(SD) and the new one has to be greater
than or equal to the constant minED. minED can be one if we only want that
the current transaction should be different by each other, but can be more than
one to enforce that all the transactions in all the K datasets generated are very
different. This parameter is very important in order to produce datasets differ-
ent not only in terms of number of duplicates, but also in terms of transaction
structure. The last constraint 29 imposes that the transaction is not an empty
set. Thus, the following integer linear program finds a new transaction s.t. its
reduced cost is minimized. Note that after solving this ILP program we have to
check if the reduced cost is negative, and only continue to iterate if so. Other-
wise, the heuristic solver stops because there does not exist any transaction with
negative reduced cost.

minimize 1 + dsl + dsu +
∑

(I, , )∈S

hI · (dlI + duI) (25)

hI ≤ qi (I, , ) ∈ S, i ∈ I (26)
∑

i∈I

qi ≤ |I| − 1 + hI (I, , ) ∈ S (27)

∑

i∈t

(1 − qi) +
∑

i∈I\t
qi ≥ minED t ∈ tr(SD) (28)

∑

i∈I
qi ≥ 1 (29)

qi ∈ {0, 1} i ∈ I (30)
hI ∈ {0, 1} (I, , ) ∈ S (31)
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4 Experimental Evaluation

We now discuss the experimental evaluation. Three datasets – 2 real datasets
(BMS-Webview-1, BMS-Webview-2) and a synthetic one (T10I4D100K) – were
used to conduct experiments. The dataset parameters are given in Table 1. Each
instance of our problem is represented by several parameters: sizemax (su),
sizemin (sl), set of items (I), set of support constraints S (at different levels of
support), support values (ρ), k (number of different datasets to be generated),
edit distance (minED). Sizemax and Sizemin were obtained for each dataset by
adding and subtracting 10000 from the size of the original dataset, respectively

Table 1. Dataset description

Dataset name Real
dataset size

Distinct
items

Avg. trans.
Size

Max trans.
Size

sl su

BMS WebView1 59602 497 2.5 267 49602 69602

BMS WebView2 77512 3340 4.6 161 67512 87512

T10I4D100K 100000 870 10 300 90000 110000

(a) BMS Webview1: ρ = 0.9%, MinED = 1 (b) BMS Webview2: ρ = 0.9%, MinED = 1

(c) T10I4D100K: ρ = 0.9%, MinED = 1

Fig. 1. Varying k and interval threshold Δ
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(a) BMS WebView1: Δ = 0.05, MinED = 1 (b) BMS WebView2: Δ = 0.15, MinED = 1

(c) T10I4D100K: Δ = 0.15, MinED = 20

Fig. 2. Varying support threshold

(as noted in Table 1). minED was set to 1, 10, 20, 30, and K was varied from 2
to 11 (inclusive).

In order to generate the support constraints, of the form (I, l, u), we compute
the set of the frequent itemsets from each datasets where the minimum support
value δ was varied in the range 0.2%, 0.3%, 0.4%..., 0.9%, 1%. The lower and the
upper bound threshold for each frequent itemset I were obtained by using the
following formulas l = support(I,D) ∗ (1 − Δ) and u = support(I,D) ∗ (1 + Δ)
where the interval threshold (Δ) was set to values 0.0, 0.05, 0.1, 0.15, 0.2. Thus,
when Δ = 0.0, we have that l = u = support(I,D).

All experiments were carried out on machines with CentOS7 (x86-64) Oper-
ating System, 2 Xeon Processors (E5-2620 v3 @ 2.40 GHz), and 256 GB RAM.
We report the execution time as well as the pairDist calculated for each dataset.

Varying Δ: We first observe the impact of varying itemset interval threshold
Δ on execution time. k (the number of datasets to create) has been varied from
2–11. It was observed that the execution time was almost constant with varying
interval threshold Δ values in the interval {0.0, 0.05, 0.1, 0.15, 0.2} for all the
three datasets except for Δ = 0.0 for which execution time increased. Figures 1a–
c represent the impact of k-anonymity values and interval threshold values on
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(a) BMS WebView1: Δ = 0.05, k=2 (b) BMS WebView2: Δ = 0.15, k=4

(c) T10I4D100K: Δ = 0.15, k=3

Fig. 3. Varying edit-distance for different Δ and k

execution time for the three datasets. The results show that as we increase the
value of delta, the flexibility allowed to the solver also increases and it quickly
finds a feasible solution.

Varying support threshold values: We next observe the impact of varying
k along with varying support threshold values on the execution time for solving
a k-distant-IFM-solution. Figures 2a–c show the impact of varying k on execu-
tion time. It can be noted that while the time required is different for the three
datasets for the different support threshold values, it does not change much
with respect to k. For BMS Webview-2 and T10I4D100K datasets with varying
ρ%, similar trend is observed. In [7] (which models IFM with linear programs),
increasing ρ% decreases the execution time. However, for integer linear formu-
lations with more constraints, search space is decreased and it is easier to find a
solution. Therefore, increase in ρ%, increases the execution time.

Due to the significant computational resources required and the large number
of experiments to be carried out, we were only able to carry out experiments for
a few values of support for BMS Webview2 dataset. But we did check to make
sure that the overall behavior is the same. For T10I4D100K dataset, lower values
of support lead to a huge number of frequent itemsets. Therefore, we limited the
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(a) BMS WebView1: Δ = 0.15, MinED = 10 (b) BMS WebView2: Δ = 0.20, MinED = 30

(c) T10I4D100K: Δ = 0.15, MinED = 1 (d) BMS WebView1: ρ = 0.4%, MinED = 20

(e) BMS WebView2: ρ = 0.5%, MinED = 1 (f) T10I4D100K: ρ = 0.8%, MinED = 10

Fig. 4. Average Distance w.r.t varying ρ and Δ

experiments to higher values of support. Also, the behavior of execution time
with respect to k is clear even when k is limited to 11, which was sufficient reason
not to go beyond 11 for k as these operations are computationally expensive.

Varying edit-distance values: We next observe the impact of varying edit-
distance values in the range [1, 10, 20, 30]. Figures 3a–c show the impact on
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execution time for the three datasets. We can generally observe that time does
not significantly change by varying the edit distance.

Pairwise average distance varying k, ρ and Δ: Finally, we observe the effect
of varying k, ρ and Δ on the pairwise distance. Firstly, for varying support con-
straints ρ and k, Figs. 4a–c show the impact of k w.r.t. distance/((k ∗ (k−1))/2)
values for the three datasets. Here, no specific trend can be observed. However,
if we consider that our approach is based on 2-approximation algorithm, these
trends can be considered constant within an approximation range. Similarly, if
we consider the case where we vary ρ, it can be observed that as the support
increases, the average distance decreases and vice-versa (of course within the
approximation range). This shows that as the amount of information about the
distribution of the itemsets disclosed increases, the privacy risk increases (several
transaction databases nearby each other).

Secondly, for varying interval threshold Δ, Figs. 4d–f show the impact of k
values w.r.t. distance/((k ∗ (k − 1))/2) for the three datasets. We can observe
that as interval Δ decreases, the average distance also decreases. Essentially,
increasing the support interval size for each itemset increases the uncertainty of
the itemset distribution and thus decreases the privacy risk. Additionally, note
that in Fig. 4c and f, there is a peak in the plots between k = 2 and k = 3. This
is because Algorithm 1 in line 3 initialize the SD with an arbitrary transaction
database which is not chosen in a way that would maximize the distance of the
future transaction database candidates.

5 Conclusion

In this paper we define the K-distant-IFM-solutions problem, that enables eval-
uation of the frequent itemset disclosure risk and propose a solution for it. The
experimental evaluation shows that the proposed approach is effective. In our
future work, we plan to develop methodologies that are able to perturb the
support of the itemsets disclosed in order to minimize the disclosure risk. In
addition, we plan to extend these techniques to work with sequence mining as
well – where we consider sequences rather than itemsets.
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Abstract. Forward-secure signatures minimize damage by preventing
forgeries for past time periods when a secret key is compromised.
Forward-secure signature schemes are useful for various devices such as
logging systems, unattended sensors, CCTV, dash camera, etc. Consid-
ering sensors equipped with limited resources and embedded real-time
systems with timing constraints, it is necessary to design a forward-secure
signature scheme with minimal overhead on signer’s side.

This paper proposes the first forward secure digital signature schemes
with constant complexities in signature generation, key update, the size
of keys, and the size of a signature. The proposed algorithms have O(k3)-
time complexity for each signing and key update algorithm and O(k)-size
secret keys where k is an RSA security parameter. We prove the security
of our proposed schemes under the factoring assumption in the random
oracle model and present a concrete implementation of our schemes to
demonstrate their practical feasibility.

Keywords: Forward secure · Digital signature · Fast signing/update ·
Factoring

1 Introduction

Forward-secure signature schemes mitigate the damage caused by a secret key
exposure. The role of the digital logs and data as forensic values has boosted the
need for strong authenticity of data. For example, audit logs record the “what
happened when by whom” of the system. The forensic value of audit logs makes
them an attractive target for attackers [1]. An active attacker compromising a
logging machine can modify log entries related to the past, erasing records of the
attacker’s previous break-in attempts. Forward secure digital signature schemes,
of which goal is to preserve the validity of past signatures even if the current
secret key has been compromised, become an effective solution to prevent this
active attack as well as to provide strong authenticity for the recorded video
frames.
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Briefly, a forward-secure signature scheme divides the total time into T time
periods and uses a different secret key in each time period (while the public
key remains fixed). Each subsequent secret key is computed from the current
secret key via a key update algorithm. Although it is ideal to have constant
complexities regardless of the parameter T in computations and storage sizes
overall, it is a challenging work. In the first forward-secure signature scheme
proposed by Anderson [2], the size of secret key increases linearly with T . In
the Bellare and Miner (BM) scheme [3] both public and secret key sizes are
constant, but the signing and the verification time (of a single signature) grows
linearly with T . Itkis and Reyzin [4] (IR) propose a scheme to have constant
complexities in signing and verification, however, at the expense of key update
time and the secret key size which grow logarithmically with T . Malkin et al.
[5] (MMM) proposed a generic forward secure signature scheme based on a hash
chain tree with a constant size public key. Although the secret key size, the
signature size, signing and verifying time are O(log T ), theoretically, the actual
computation time and the storage requirement seem to be independent of T
since the hash computation and size are relatively small compared with a public
key signature scheme which it uses internally. However a signature in MMM
contains two public keys and two signatures with an O(log T ) size hash chain.
The resulting signature size is 4 times larger than BM and IR.

One of main hurdles when forward-secure signature schemes are deployed
in the real systems is located in their non-constant signing/update overhead.
For example, in the video recording devices for streaming applications, a cap-
tured video frame is compressed periodically, e.g., every 33 ms. If a signature
is generated for each frame, the signature computation with key update should
be completed within 33 ms. When an incident occurs, the stored video frames
and their signatures are used for forensic analysis. In this scenario, the signing
and update time should be short enough to meet the time constraint. On the
contrary, the verification of the signatures may be performed when a forensic is
required.

The goal of this paper is to construct forward-secure signature schemes effi-
cient enough to cover even resource- and/or time-constraint devices such as
unattended sensors and surveillance real-time streaming systems. To achieve this
goal, the computation and size complexities on signer’s side should be short and
constant at least. For the practical usage like other previous schemes, the pub-
lic key size also needs to be constant. Setup and verification times not directly
related with the signing device are comparatively less important.

Contributions. Our schemes extend the Bellare-Miner (BM) scheme [3] and
the Abdalla-Reyzin (AR) scheme [6] to provide a short and constant signature
computation time. The proposed schemes, denoted as Fast-BM and Fast-AR,
require the same constant size memory for secret/public keys, and generate the
same constant size signatures as BM and AR, respectively. The signature compu-
tation time complexity is O(k3) in our schemes, while the signature computation
time complexity is O(k2T ) in the BM scheme, and O(k2lT ) in the AR scheme,
where l is a security parameter representing the bit length of the hash output,
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k is a security parameter denoting the bit length in RSA (modulo N is k-bit inte-
ger), and T represents the number of periods. Surprisingly, there is no significant
performance degradation in other metrics, while we optimize the signing algo-
rithms of BM and AR. In the experiment, our algorithms generate a signature
and update their secret keys in 25 ms with security parameters k = 2048 and l
= 160 regardless of the total number of periods T . The results show that our
proposals are fast enough not only for normal applications but also for real-time
streaming applications. The proposed Fast-BM and Fast-AR schemes are secure
under the factoring assumption in the random oracle model.

We begin, in the next section, by describing background for forward secure
digital signature schemes. Section 3 proposes our fast forward secure digital sig-
nature schemes with explaining the underlying schemes. Section 4 discusses the
security of the proposed schemes. In Sect. 5, experimental results present quan-
titative measurements. We describe related work in Sect. 6 and summarize our
conclusion in Sect. 7.

2 Background

This section reviews the syntax and security definitions of a forward secure
digital signature scheme and defines its formal notion of security. All definitions
provided here are based on those given in [3,6]. We also present the underlying
cryptographic assumptions that our proposal relies on. We introduce some basic
notations. If S is a set then s

$← S denotes the operation of picking a random
element s of S. We write A(x, y, · · · ) to indicate that A is an algorithm with
inputs x, y, · · · and by z ← A(x, y, · · · ) we denote the operation of running A
with inputs (x, y, · · · ) and letting z be the output.

2.1 Forward Secure Signature Schemes

A forward secure signature scheme is a key-evolving signature scheme. We follow
the definition of forward secure signature schemes in [3,6].

Definition 1 (Key-evolving signature scheme). A key-evolving digital sig-
nature scheme is a set of four algorithms: FSIG = (Setup, Sig, Upd, Ver), where:

– Setup: The key generation algorithm is a probability algorithm which takes as
input a security parameter l and the total number of periods T and returns a
pair (SK0, PK), the initial secret key and the public key.

– Sig: The signing algorithm takes as input the secret key SKi for the current
time period i and the message M to be signed, and returns a pair 〈i, s〉, the
signature of M for time period i.

– Upd: The key update algorithm takes as input the secret key SKi for the
current interval and returns a new secret key SKi+1 for the next interval.

– Ver: The verification algorithm takes as input the public key PK, message
M and a candidate signature 〈i, s〉, and returns 1 if 〈i, s〉 is a valid signature
of M , or 0, otherwise. It is required that VerPK(M,SigSKi(M)) = 1 for every
message M and time period i.
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We assume that the secret key SKj for period j ≤ T always contains the
value j itself and also contains the value T of the total number of periods. Finally,
we adopt the convention that SKT+1 is the empty string and Upd(SKT ) returns
SKT+1.

Security: The adversary executes the usual adaptive chosen-message attack
(cma) until it breaks in and learns the secret key for a given time period. The
adversary is then considered successful if it can create a valid forgery on a new
message for a previous time period. Formally, this adversary, denoted by F , is
modeled via the following experiment. The adversary, denoted by F , runs in
three phases. In the cma phase, F has access to a sign oracle. F is allowed to
query multiple signatures in the same period. In the break-in phase, F is given
the secret key SKj for the specific interval j. Finally, in the forgery phase (forge),
F outputs a pair of a signature and a message. The adversary is successful if
it forges a signature of any new message (not previously queried to the signing
oracle) for any time period prior to j. The formal experiment is described in the
following:

F-Forge(FSIG,F) :

(SK0, PK)
$← Setup(k, · · · ,T);

j ← 0
repeat

j ← j + 1; SKj ← Upd(SKj); d ← F
SigSKj

(·)
(cma, PK)

until (d = breakin) or (j = T )
If (d �= breakin) and (j = T ) then j ← T + 1
(M, 〈b, s〉) ← F (forge, SKj)
If Ver(M, 〈b, s〉) = 1 and 1 ≤ b < j

and M was not queried of SigSKb
(·) in period b

then return 1 else return 0

Definition 2 (Forward-security). Let FSIG=(Setup, Sig, Upd, Ver) be a key-
evolving signature scheme and F an adversary as described above. Let Succfwsig

(FSIG[k, · · · ,T],F) denote the probability that the experiment F-Forge(FSIG[k,
· · · , T ], F ) returns 1. Then the insecurity of FSIG is the function

InSecfwsig(FSIG[k, · · · ,T]; t, qsig) = max{Succfwsig(FSIG[k, · · · ,T],F)},

where the maximum is taken over all adversaries F making a total of at most
qsig queries to the signing oracles across all the stages and for which the running
time of the above experiment is at most t.

3 Fast Forward Secure Digital Signature Schemes

Our proposed schemes extend the previous forward secure signature schemes
proposed by Bellare and Miner (BM) [3] and by Abdalla and Reyzin (AR) [6].
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Since the way of extension is the same for each, we describe our scheme focusing
on the AR version (which has a simpler parameter setting). We first overview the
scheme proposed by Abdalla-Reyzin (AR) in [6] and then describe our proposed
schemes.

3.1 Overview of the AR Scheme

The AR scheme [6] defines T the maximum number of periods and extends the
2l-th root signature scheme [7] to have the forward security property. The initial
secret key S0 is arranged as 2l(T+1)-th root of a public key U . For each period, the
secret key is updated by raising it to the 2l power and thus the secret key at the
period j becomes Sj = S2l(T+1−j)

0 . At period j, the signer proves the knowledge
of the 2l(T+1−j)-th root of U , of which computational cost is proportional to T .
Thus, as T increases, the signing time increases. The size of T depends on the
application and is possibly large in general to avoid frequent setups. For instance,
assume that a signature is generated and a secret key is updated every second.
In order to provide a forward security in this device for a year, T should be no
less than 31,536,000 (=60×60×24×365). AR (of which signature computation
depends on T ) may be impractical to be used for applications with this large T
setting.

3.2 Fast-AR

Algorithm 1 summarizes the key setup, the secret key update, the sign, and the
verification of our proposed algorithm called Fast-AR. In the proposed algorithm,
all numbers including secret keys (Sj), a public key (U), random numbers (R),
and their exponentiations (Y ) are chosen in 〈g〉 where g is a generator of a large
subgroup in Z∗

N . In the following, we describe our approach and details of each
algorithm.

Setup: We generate a safe RSA (or a safe-prime product RSA) modulus N = pq
where p, q, p′, and q′ are primes such that p = 2p′ +1, and q = 2q′ +1. Note that
p and q are congruent 3 mod 4 and N becomes a Blum integer. Pick a random
element g s.t. g generates a maximum subgroup in Z∗

N , i.e. ord(g) = 2p′q′ and
s.t. −1 �∈ 〈g〉. Note that this holds for about half of the elements in Z∗

N , and it
is easily tested. In addition, the Jacobi symbol of g, (g|N) = −1.

Additionally, we compute X = g2
l(T+1)

mod N . Using g and X, we can
efficiently compute l(T + 1) squaring operations of any group element in 〈g〉,
given the order of the element. Thus, to compute U = S2l(T+1)

0 mod N where
S0 = gs mod N for some known s, we compute Xs mod N instead. (The same
technique is used in the sign algorithm.)

Since the group size φ(N)(= (p − 1)(q − 1)) is known at setup, computation
of X = g2

l(T+1)
mod N has O(k3)-time complexity. A secret key S is chosen from

〈g〉 by selecting a random number s in ZN/2 and computing S = gs mod N . A
public key U (≡S2l(T+1) ≡ gs2l(T+1) ≡ Xs(modN)) is computed by raising X to
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the s as we describe above. After computing a secret key and a public key, the
primes p, q and the chosen random number s are discarded. g and X are stored
in a secret key.

Sign and Update: In AR, the signing overhead occurs mainly due the com-
putation of Y ← R2l(T+1−j)

mod N for a chosen random R at period j. Since
the computation requires l(T + 1 − j) squaring operations of R, the computa-
tion complexity is proportional to T . Recall that we select a generator g (of a
maximum subgroup of Z∗

N ) and compute g2
l(T+1)

denoted as X in advance. In
the signing procedure of our scheme, we generate R by raising g to a random
number e in ZN/2. Then since Y is R2l(T+1) ≡ ge2l(T+1) ≡ Xe(modN), Y can be
computed by raising X to the e. So the computation time of Y does not rely on
T . After computing R and Y , e is erased. Note that the computation of Y in our
scheme is different from AR: Y = R2l(T+1)

in our scheme, while Y = R2l(T+1−j)
in

AR. I.e., the computation of Y in our scheme is independent of period j, unlike
AR. Therefore, after we compute X = g2

l(T+1)
once (in setup), it can be reused

at every period. The verification in our scheme is modified accordingly, which is
slightly different from AR and slower than AR, but has the same computation
complexity as AR.

Algorithm 1. Fast-AR
function Setup(k, l, T )

Pick random p′ and q′ such that p(= 2p′ + 1), q(= 2q′ + 1), p′, q′ are prime, and p and q are
k/2 bit and set N ← pq

Pick a random element g s.t. g generates a maximum subgroup in Z∗
N , i.e. ord(g) = 2p′q′, and

such that −1 �∈ 〈g〉
x ← 2l(T+1) mod (p − 1)(q − 1); X ← gx mod N

s
$← ZN/2; S0 ← gs mod N ; U ← Xs mod N

SK ← (N, T,g,X, 0, S0); PK ← (N, U, T )
return (PK, SK)

end function

function Upd(SK) : parse SK as (N, T,g,X, j, Sj)
if j=T then SK ← ε

else SK ← (N, T,g,X, j + 1, S2l

j mod N)
end if
return SK

end function

function Sig(M, SK) : parse SK as (N, T,g,X, j, Sj)

e
$← ZN/2; R ← ge mod N ; Y ← Xe mod N ;σ ← H(j, Y, M); Z ← RSσ

j mod N

return (j, (Z, σ))
end function

function Ver(M, PK, sign) : parse PK as (N, U, T ); parse sign as (j, (Z, σ))
if Z ≡ 0(modN) then return 0
else

Y ′ ← Z2l(T+1)
/Uσ2lj

mod N
if σ = H(j, Y ′, M) then return 1
else return 0
end if

end if
end function
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The key update algorithm is the same as AR, which requires l times squaring
operations only.

Verification: As mentioned early, our verification algorithm is slightly different
from AR due to the different exponentiation number for Y . While the verifi-
cation tests whether Y is equal to Z2l(T+1−j)

Uσ in AR, it checks whether Y is
equal to Z2l(T+1)

/Uσ2lj

in our scheme. On average, our verification requires twice
computation than AR.

Correctness: For a given signature of (j, (Z, σ)) for message M , the verification
is to check whether σ = H(j, Y ′,M) where Y ′ ← Z2l(T+1)

/Uσ2lj

. Since Z =
RSσ

j = geS2ljσ
0 and (ge)2

l(T+1)
= Xe = Y , Z2l(T+1)

= Y Sσ2lj2l(T+1)

0 = Y Uσ2lj

.
So the verification works correctly.

4 Security Analysis

Since the proposed Fast-AR scheme is similar to the existing AR scheme except
that numbers are chosen in 〈g〉 rather than Z∗

N in a signature generation, the
security proof is similar to the proof of AR.

Let k and l be two security parameters. Let p = 2p′ + 1, q = 2q′ + 1, p′,
and q′ be primes and N = pq be a k-bit integer (Since p ≡ q ≡ 3 (mod 4), N
is a Blum integer). Let Q denote the set of non-zero quadratic residues modulo
N . Note that for x ∈ Q, exactly one of its four square roots is also in Q. In
the following description, x

$← 〈g〉 denotes that r
$← ZN and x ← gr mod N for

ord(g) = 2p′q′.

Lemma 1. Given α �= 0, λ > 0, v ∈ Q and X ∈ 〈g〉 such that vα ≡ X2λ

(mod
N) and α < 2λ, one can easily compute y such that v ≡ y2(modN).

Proof. Let α = 2γβ where β is odd. Note that λ > γ. Let β = 2δ + 1.
Then (v2δ+1)2

γ ≡ vα ≡ X2λ

(modN), so v2δ+1 ≡ X2λ−γ

(modN). Note that
it is allowed to take roots of degree 2γ since both sides are in Q. Let
y = X2λ−γ−1

/vδ mod N . Then y2 ≡ X2λ−γ

/v2δ ≡ v(modN). Note that since
α < 2λ, λ − γ − 1 ≥ 0.

Theorem 1. If there exists a forger F for FSIG[k, l,T] that runs in time at most
t, asking at most qH hash queries and qS signing queries, such that Succfwsig

(FSIG[k, l,T],F) ≥ ε, then there exists an algorithm A that factors Blum integers
generated by FSIG.key(l,T) in expected time at most t′ with probability at least
ε′, where t′ = 2t + O(k2lT + k3), and ε′ = (ε−23−kqS(qH+1))2

2T 2(qH+1) − ε−23−kqS(qH+1)
2l+1T

.

Proof. Suppose that there exists a forger F against Fast − AR scheme that
succeeds with ε in time t. We construct an algorithm A using F as a subroutine
to factor a given Blum-Williams integer N with a probability of ε′ within t′ time.
The goal is to find a pair (p, q) such that N = pq.
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A is constructed as follows:

Setup

1. select g
$← Z∗

N such that −1 �∈ 〈g〉 [Given a safe RSA modulus N , with
probability about 1/2 we have ord(g)=2p′q′.]

2. w
$← 〈g〉; v ← w2 mod N [Will try to find a square root of v that is different

from w.]

3. b′ $← {1, · · · , T} [Choose break-in period hoping that the break-in will occur
after b′ period, and the forgery will be at b′ or earlier.]

4. U ← v2l(T −b′)
[The intention is that Sb′2

l

= v mod N .]
5. PK ← (N,T, U) [Build a public key.]

Now, we will explain how A simulates.

Simulation

1. Hash query simulation: If H(j, Y,M) is undefined then H(j, Y,M) $←
{0, 1}l. It returns H(j, Y,M).

2. Sign query for M at the j-th period: If j ≤ b′ then Z
$← 〈g〉; σ

$← ZN/2;

Y ← Z2l(T+1)

v2l(T −b′+j)σ
mod N . Y satisfies that Z2l(T+1) ≡ Y U2ljσ(modN) since

Uσ = v2l(T −b′)σ mod N . If H(j, Y,M) is defined then A sets fail1 ← true and
aborts the execution of F ; otherwise H(j, Y,M) ← σ. A returns (j, (Z, σ)).
Since there are at most qH entries defined in tables H, the probability that
fail1 happens is at most qH/2l per sign query. Consider j > b′. Since secret
Sj = v2l(j−b′−1)

, Sig(M,SK) can be performed and (j, (Z, σ)) is returned.
3. Update simulation: If j ≤ b′ then nothing is performed. Otherwise

Upd(M,SK) is called.
4. Break-in simulation at the b-th period: If b ≤ b′ then A sets fail3 ← true and

aborts the execution of F . Otherwise, A returns Sb such that Sb = S2l(b−b′)
b′ =

v2l(b−b′−1)
.

Factoring of N
Assume that F outputs a forged signature (j, (Z, σ)) for a message M where

σ is a hash query for H(j, Y,M). Assume that the forgery period j is no later
than the break-in period b′ or j ≤ b′. If F forges the signature without querying
on H(j, Y,M) then A sets fail2 ← true and aborts the execution of F . A resets
F with the same random tape as the first time, and runs it again, giving the
exact same answers to all F ’s queries before the hash query of H(j, Y,M). On

the query of H(j, Y,M), A comes up with a new answer σ′ $← {0, 1}l, sets
H(j, Y,M) ← σ′. Then F returns (j, (Z ′, σ′)). If the second forgery was not
based on hash query on H(j, Y,M) then A fails.
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We know the following two equations must hold: Z2l(T+1) ≡ Y U2ljσ (mod N)
and Z ′2l(T+1) ≡ Y U2ljσ′

(mod N). Dividing, we get ( Z
Z′ )2

l(T+1) ≡ U2lj(σ−σ′)

(mod N). From the setup, we know that U ≡ v2l(T −b′)
(mod N). So we can

write ( Z
Z′ )2

l(T+1) ≡ v2l(T+j−b′)(σ−σ′) (mod N). Taking roots of degrees 2l(T+j−b′)

of both sides, which we are allowed to do because both sides are in Q and
remain in Q, because v is a square, vσ−σ′ ≡ ( Z

Z′ )2
l(b′+1−j)

(mod N). By applying
Lemma 1, our algorithm can easily compute a square root of v, denoted as x,
by setting α = σ − σ′, X = Z/Z ′, and λ = l(b′ + 1 − j). If x ≡ ±w mod N then
abort. Otherwise, we compute h ← gcd(w−x,N) which is a non-trivial factor of
N . Note that to argue the extracted square root of v differs from ±w, subgroup
〈g〉 should contain at least another square root of v which is not −w. It cannot
be −w since −1 does not belong to 〈g〉 by construction. Such an element exists
in 〈g〉 because, if the Jacobi symbol of g equals to −1 (or (g|N) = −1), gp′q′

must be a non-trivial square root of unity in Z∗
N . As a consequence, gp′q′ · w is

another square root of v that belongs to 〈g〉. Since the signing oracle and the
break-in oracle never use w, the knowledge extractor allows to extract gp′q′

with
probability 1/2. The computations of the probability and the running time are
identical to [6].

5 Experiment

We implement the proposed Fast-BM and Fast-AR schemes using openssl
library in C. For comparison, we implement BM [3], AR [6], IR, optimized IR
(IROpt) [4], and MMM [5]. We use GQ [8] as public key signature scheme in
MMM. All schemes except MMM generate a short size signature of which size is
k while MMM generates a signature of which size is 4k, where k is the bit-length
of RSA modulus N . The experiment is performed on Intel i5 2.6 GHz laptop
with 16 GB RAM under OS X. The hash length (l) is fixed to 160 bit.

Figure 1 illustrates the key setup time, the signing time per message, the key
update time, and the verification time per message by varying the number of
periods T from 10 to 100000 denoted as x axis when the security key parameter
k is 2048. The y axis represents the execution time in second.

Figure 1(a) shows the setup time. As T increases, the setup time becomes
significantly large in IR and IROpt. For instance, it is 1,000 s when T = 100,000,
and it will be 10,000 s when T = 1,000,000 in IR and IROpt while in Fast-BM
and Fast-AR it is a few ten seconds in which a safe RSA is generated.

Figure 1(b) represents the signing time per message. The signing time is pro-
portional to T in BM and AR while it is independent of T in IR, IROpt, MMM,
Fast-BM and Fast-AR. Note that the signing time complexity is O(k3) in Fast-
BM and Fast-AR where k represents the bit length of modulus N .

Figure 1(c) indicates the key update time. In BM, AR, MMM, Fast-BM, and
Fast-AR, the key update time is constant only depending on k and l while it is
proportional to T and log T in IR and IROpt, respectively.



532 J. Kim and H. Oh

101 102 103 104 105
10−3

10−2

10−1

100

101

102

103

Number of periods (T)

se
co

nd

BM AR IR
IROpt MMM Fast-BM

Fast-AR

(a) Setup time

101 102 103 104 105

10−3

10−2

10−1

100

101

102

103

(b) Sign time per message

101 102 103 104 105

10−3

10−2

10−1

100

101

102

103

(c) Key update time

101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

102

103

(d) Verification time per message

Fig. 1. Execution time variation as T varies when l = 160 and k = 2048

Figure 1(d) denotes the verification time. The verification time is proportional
to T in BM, AR, Fast-BM and Fast-AR since T number of exponentiation oper-
ations are performed for verification in those algorithms, while it is irrelevant to
T in IR, IROpt, and MMM.

Figure 2 illustrates the setup, signing, update, and verification times by vary-
ing k which is the bit-length of RSA modulus N when l = 160 and T = 10000.
The setup time increases faster in IR, IROpt, Fast-BM, and Fast-AR since they
use a safe RSA where N = pq, p = 2p′ + 1, q = 2q′ + 1, and p, q, p′, q′ are prime.
When k is 2048, BM, AR, MMM, Fast-BM, and Fast-AR algorithms show a
similar setup time.

Figure 2(b) shows the signing time per message. Since the signing time in
all algorithms except Fast-BM and Fast-AR is proportional to k2 if T and l are
fixed, the signing time increases similarly in all algorithms as k increases. On the
other hand, the time increases faster in Fast-BM and Fast-AR as k increases.
Fast-AR is as fast as Fast-BM while AR is l time slower than BM since Fast-AR
does not require l(T + 1) squares.
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Fig. 2. Execution time variation as k varies when T = 10000

Figure 2(c) shows the key update time. As k increases, the key update time
increases in all schemes. In IR and IROpt, the key update time increases slowly
since the effect of T against k decreases where the update time complexities in
IR and IROpt are O(k2T ) and O(k2 log T ) while they are O(k2) in the other
algorithms.

Figure 2(d) represents the verification time. Regardless of k, IR and IROpt
show the shortest verification time.

Table 1 summarizes the key sizes, setup time, signing time per message, key
update time, and verification time in BM, AR, IR, IROpt, MMM, Fast-BM and
Fast-AR. Fast-BM and Fast-AR reduce the signing time compared with BM and
AR without sacrificing the other parameters.
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6 Related Work

The pioneering studies addressing the forward secure signatures were first pro-
posed by Anderson [2] and subsequently formalized by Bellare and Miner in [3].
In a forward-secure signatures scheme, the forward- security property is attained
by dividing time into T discrete intervals, and using a different secret key within
each interval. The main challenge in designing forward-secure signature schemes
is efficiency: an ideal scheme must have constant (public and secret) key sizes,
constant signature size as well as constant signing, verification, and (public and
secret) key update operations.

In the first category, the schemes use some generic method in which a master
public key is used to certify the current public key for a particular time period
(via a chain of certificates). Usually, these schemes increase storage space by
noticeable factors in order to maintain the current (public) certificates and the
(secret) keys for issuing future certificates. They also require longer verification
times than ordinary signatures do, because the verifier needs to verify the entire
certificate chain in addition to verifying the actual signature on the message.
There is, in fact, a trade-off between storage space and verification time. These
schemes include the tree-based scheme of Bellare and Miner [BM99] (requiring
storage of about O(log T ) secret keys and non-secret certificates, and verification
of about O(log T ) ordinary signatures), the scheme of Krawczyk [9] (requiring
storage of T non-secret certificates, and verification of only 2 ordinary signa-
tures), and the scheme of Malkin et al. [5] has constant-size public key while the
secret key size, the signature size, signing and verifying time are O(log t) where
t denotes the time interval index which is less than T . The scheme of Holt [10]
has constant-size secret key and signatures but requires T non-secret certificates
storage/communication to verify signatures. The generic construction proposed
by Libert et al. [11] has a non-constant signature size and computational over-
head and the exact complexities depend on the underlying schemes.

In the second category, the schemes are built upon standard signature
schemes. The main advantage of these schemes is that they achieve better depen-
dence on T . In particular, they typically have constant size parameters. The
first such scheme is based on the Fiat-Shamir signature scheme [3]. Abdalla and
Reyzin scheme [6] shortens secret and public keys of at the expense of signing
and verifying time. Itkis and Reyzin scheme [4] has shorter signing and verifying
time derived from the underlying Guillou-Quisquater signature scheme [8] at
the expense of logarithmic key update time and the secret key size. Kozlov and
Reyzin [12] propose another scheme based on a similar optimizing technique used
in [4]. The scheme is an improved version of [4], and the key update time and
the secret key size grow logarithmically in T . However, linear-time operations
are needed at the beginning of each period in the scheme.

Boyen et al. [13] proposed a forward-secure signature scheme, where the
secret key is encrypted with a second factor such as a user’s password and can
be updated in its encrypted form. The scheme in [13] based on [14] features a
constant signing time at the expense of its key update time in O(log T ), its secret
key size in O(log2 T ), its public key size in O(log T ), and comparatively stronger
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cryptographic assumption. It makes use of a very specific mathematical setting
consisting of groups equipped with a bilinear mapping whose computation is
expensive. Abdalla et al. [15] proposed a variant of [4] to have a much tighter
security reduction, however, assuming stronger security assumptions.

7 Conclusion

In this paper, we propose fast forward secure digital signature schemes called
Fast-BM and Fast-AR which provide fast signing and key update with constant
size public and secret keys, and a short constant size signature. The proposed
schemes are applicable to real-time surveillance streaming applications as well
as the traditional forward secure signature systems. In the proposed schemes,
the signing and the key update are performed in O(k3) meaning that they are
independent of the maximum period T , where k denotes the bit length of module
N in RSA. In real implementation, the signing and the update can be performed
within 25 ms in the proposed schemes regardless of T when k = 2048 while they
require 200 ms in the optimized IR. The signature size is only 2240 bit when
k = 2048, and l = 160 in our schemes. Fast-BM and Fast-AR schemes are secure
under the factoring assumption in the random oracle model which is a weaker
assumption than a strong RSA which IR is based on.
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Abstract. Risk analysis on Android is aimed at providing metrics to
users for evaluating the trustworthiness of the apps they are going to
install. Most of current proposals calculate a risk value according to
the permissions required by the app through probabilistic functions that
often provide unreliable risk values. To overcome such limitations, this
paper presents RiskInDroid, a tool for risk analysis of Android apps
based on machine learning techniques. Extensive empirical assessments
carried out on more than 112 K apps and 6 K malware samples indicate
that RiskInDroid outperforms probabilistic methods in terms of precision
and reliability.

Keywords: Risk analysis · Android security · Static analysis · Machine
learning

1 Introduction

Android is still the most widespread mobile operating system in the world, as
more than 300 millions Android-enabled smartphones have been sold only in
the third trimester of 2016 [1]. Therefore, it remains a sensitive target for mal-
ware that aim at exploiting its diffusion to reach a high number of potential
victims. Since users have access to a high number of apps through public mar-
kets and external web sites, they need reliable tools to rate the trustworthiness
of apps they are going to install. App rating is empirically calculated according
to different risk analysis techniques. Currently, most of them calculate a risk
index value (hereafter, RIV) through probabilistic methods applied to the set
of permissions required by the app. We argue that such approaches suffer from
intrinsic limitations in terms of both methodology and setup. To prove this, we
apply some optimizations to existing techniques at the state of the art, and we
evaluate them through an extensive empirical assessment on a dataset made by
112.425 apps and 6.707 malware samples. Then, we propose a novel approach
based on machine learning techniques that we implemented in an open source

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
S. De Capitani di Vimercati and F. Martinelli (Eds.): SEC 2017, IFIP AICT 502, pp. 538–552, 2017.
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tool, i.e., RiskInDroid1 (Risk Index for Android). Finally, we evaluate the per-
formance of RiskInDroid on the same dataset, thereby proving that the proposed
methodology outperforms probabilistic approaches.

Structure of the Paper. The rest of the paper is organized as follows: Sect. 2
briefly introduces the Android architecture and the permission system, while
Sect. 3 summarizes the related work and introduces probabilistic approaches.
Section 4 discusses some optimization for probabilistic methods and proves their
reliability through an extensive experimental assessment. Section 5 proposes our
machine learning-based methodology while Sect. 6 summarizes its empirical eval-
uation. Finally, Sect. 7 concludes the paper and points out some future work.

2 Android in a Nutshell

Android is made by a layered architecture (see Fig. 1) where the top layer hosts
both system and user apps. System apps come with the Android distribution
itself and provide basic functionality (e.g., calendar, email, . . . ), while user apps
are packed into compressed archives (i.e., the APKs) and made available to users
on different external sources (e.g., app markets or web sites). Below the app
layer lies the Application Framework that provides a set of modular components
that apps can use to access system and device resources.

Fig. 1. The Android OS architecture.

1 Freely available at: http://www.csec.it/riskindroid.

http://www.csec.it/riskindroid
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Android also contains a set of C/C++ native libraries granting optimized
core services (e.g., DBMS, 2D/3D graphics, Codecs, . . . ). The Android Runtime
provides virtual machines to execute the apps bytecode. The Hardware Abstrac-
tion Layer (HAL) is a set of libraries allowing the Application Framework to
access the actual hardware. The Linux Kernel is at the bottom of the architec-
ture and grants basic OS functionality as Interprocess Communication (IPC),
memory and process management.

Security and Permissions. Android assigns a unique Linux user ID at Kernel
layer to each app upon installation, thereby sandboxing the execution of apps in
separate Linux users. Android authorizes apps to access core system resources
through Android Permissions (hereafter, APs) that are required by the app and
granted by the user upon installation or at runtime2. APs are declared in an
XML file, i.e., the Android Manifest, contained in the APK. To get services from
core Android APIs, the app should have the corresponding AP. There currently
exist more than 130 APs3, divided into four categories, namely, (1) Normal,
i.e., basic authorizations that are automatically provided by the system upon
installation, (2) Dangerous, required for accessing core APIs, they are granted
by the user, (3) Signature, granted to apps signed by the same developer, and (4)
SignatureOrSystem, automatically granted to system apps. We refer to the whole
set of Android permissions as APSet. Apps are expected to require the least set
of permissions sufficient to work properly, albeit they are often overprivileged
[2]. Apps can also be underprivileged, but in this case they are expected to fail
during execution.

3 Related Work

The scientific literature related to risk analysis of Android apps is rather lim-
ited and mostly focused on APs, so we also take into account works regarding
malware classification because we expect to see some relationships between mal-
ware and high risk apps. Currently available proposals are probabilistic, i.e., the
RIV indicates the probability that an app can be a malware, according to sta-
tistical analysis carried out on datasets containing both apps (that are expected
to be mostly benign) and well-known malware samples. In [3], authors propose a
method for detecting risk signals according to the frequency of security-sensitive
APs. The RIV is calculated according to bayesian probabilistic models that com-
pare the APs required by each app with those requested by other apps in the
same category (that must be known a priori). Furthermore, authors define three
properties that should be granted by any probabilistic function calculating a
RIV for apps, namely, (i) monotonicity (i.e., removing an AP should lower the
RIV), (ii) coherence (i.e., malware should have higher RIVs than apps), and

2 It depends on the Android version. Older Android versions (<v. 6) require all per-
missions to be granted at install time, while newer versions allow the user to grant
them dynamically at runtime.

3 https://developer.android.com/guide/topics/manifest/permission-element.html.

https://developer.android.com/guide/topics/manifest/permission-element.html
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(iii) ease of understanding (i.e., the RIV of an app should be clearly under-
standable to the user, and it should allow straightforward comparison among
values).

Also [4] proposes a methodology for calculating a RIV for apps according
to their category. More specifically, for each category, the kind and number of
required APs are empirically inferred, thereby identifying permission patterns
belonging to apps in each category. Then, the RIV is calculated by measuring a
distance between the set of APs required by the app and the permission patterns
of its category. Notwithstanding the encouraging empirical results obtained on
a dataset made by 7.737 apps and 1.260 malware samples, the main limitation
of the approach is in the need to know in advance the category of the app.
Such information can be often unreliable as categories are manually chosen by
developers4. Maetroid [5] evaluates app risk according to both APs and metadata
information related to the developer’s reputation and the source app market.
The risk is calculated according to declared APs only, and by assigning static
weights to each AP. Maetroid does not provide a quantitative RIV, but assigns
each app in one (out of three) risk category. A framework for app risk analysis
is discussed in [6]. It is made by three layers carrying out static, dynamic and
behavioral analysis, respectively. The framework combines the results from each
layer and builds up the RIV. Unluckily, the framework is purely theoretical
and lacks of any empirical evaluation, thereby making difficult to assess the
viability of the approach. DroidRisk [7] is a quantitative method for calculating
a RIV. DroidRisk is trained on a set of 27.274 apps and 1.260 malware samples,
whereby it calculates the distribution of declared APs (i.e., those contained in
the Android Manifest file). Then, DroidRisk applies a probabilistic function that
calculates a RIV according to the kind and the potential impact of APs required
by the app. More specifically, DroidRisk calculates a RIV for an app A according
to two values for each AP pi, namely the probability and the impact. Slightly
extending the original notation, given a set of APs S, the probability L(pi, S)
is the probability that pi ∈ S is required in the dataset, i.e., the number of
apps requiring pi on the total set of apps in the dataset; the impact I(pi, S)
is a weight statically applied to each pi ∈ S according to its category (i.e.,
I(pi, N) = 1, I(pi,D) = 1.5, where N stands for the set of Normal APs and D
for the set of Dangerous ones). Then, the RIV RA for an app A is calculated as∑

pi∈{N�D}
(L(pi, {N � D}) ∗ I(pi, {N � D})), where � indicates the disjoint union

between N and D.

Discussion. We argue that probabilistic methods suffer from some limitations.

1. They are unable to recognize as dangerous the malware that require a limited
set of APs; conversely, they averagely provide high RIVs for apps requiring
many APs.

2. Current proposals deal with declared APs only, without deepening, for
instance, which APs are actually exploited by the app. Due to the

4 https://support.google.com/googleplay/android-developer/answer/113475?hl=en.

https://support.google.com/googleplay/android-developer/answer/113475?hl=en
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monotonicity of probabilistic risk indexes, relying only on declared permis-
sions can impact the reliability, as apps are often overprivileged by their
developers [2] and can therefore obtain too high RIVs.

3. Probabilistic methods statically define the impact of APs, that is, all
APs belonging to the same category (e.g., Normal, Dangerous, Signature,
SignatureOrSystem) equally impact the estimation of the RIV. This choice
does not allow to provide different impacts to APs, e.g., according to their
distribution on the set of malware.

4. The validity of RIV is strictly dependent with the chosen dataset, as well as
the ratio between apps and malware samples; therefore, the dataset should
be large enough - w.r.t. the set of available apps and malware samples - to
be statistically significant to calculate a reliable RIV.

We argue that more reliable RIVs can be obtained through a machine learning
approach based on

– four sets of permissions for each app A, namely
1. Declared Permissions (DAPA), i.e., declared in the Android Manifest file;
2. Exploited permissions (EAPA), i.e., APs that are actually exploited in

the app code;
3. Ghost permissions (GAPA), i.e., APs that the app tries to exploit in the

code, but they are not declared in the Android Manifest file;
4. Useless permissions (UAPA), i.e., declared APs that are not exploited in

the app code.
– a statistically significant dataset. Our dataset is made by 112.425 apps and

6.707 malware samples from different sources. In details, apps comes from
the Google Play Store5 (98.162 apps), Aptoide6 (7.516 apps), and Uptodown7

(6.747 apps). Malware samples have been mostly taken from the DREBIN
dataset [8] (5.560 samples); the remaining samples come from publicly avail-
able repositories, namely the Contagio dataset [9], the Husted’s dataset [10]
and the Bhatia’s dataset [11].

– dynamic impact for each AP, calculated on the basis of its distribution on
the whole dataset. The aim is to weigh APs according to their statistical
distribution over malware samples and apps.

4 Reliability of Probabilistic Risk Indexes

In this section, we empirically evaluate the reliability of RIVs calculated through
probabilistic methods. To this aim, we extend the methodology proposed in [7] by
introducing the notion of dynamic impacts. Dynamic impacts allow to take into
account the characteristics of a statistically significant dataset in the calculation
of a probabilistic RIV. It is worth noting that all current proposals adopt static
impacts, i.e., defined according to some heuristics but independently from the
characteristics of the dataset. In order to apply dynamic impacts, an extensive
statistical analysis on the dataset must be carried out in advance.
5 http://play.google.com/store/apps.
6 http://www.aptoide.com/page/apps.
7 http://en.uptodown.com/android.

http://play.google.com/store/apps
http://www.aptoide.com/page/apps
http://en.uptodown.com/android
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4.1 Statistical Analysis on APs

We took into account the dataset described in the previous section, i.e., made by
112.425 apps and 6.707 malware samples. We systematically extracted informa-
tion on the four sets of permissions from each app in the dataset. We built a Per-
mission Checker tool that given an app A (i.e., an APK file) in input, it provides
back statistics on each AP set. DAPA is straightforwardly retrievable from the
Android Manifest file, while EAPA, GAPA and UAPA are inferred through static
analysis. More in details, the Permission Checker carries out reverse engineering
on the APK to retrieve the app bytecode. Then, for each method invocation
in the bytecode, the Permission Checker analyzes the APs required to execute
the method. In the end, the Permission Checker builds a set PSA containing all
APs exploited in the bytecode. Remaining sets are built as follows:

– EAPA = {pi|pi ∈ DAPA ∧ pi ∈ PSA};
– GAPA = {pi|pi /∈ DAPA ∧ pi ∈ PSA};
– UAPA = {pi|pi ∈ DAPA ∧ pi /∈ PSA};

We indicate with DAP, EAP, GAP, and UAP, the disjoint union of single
app permissions sets, for all apps in the dataset, namely: DAP =

⊎
A DAPA,

EAP =
⊎

A EAPA, GAP =
⊎

A GAPA, and UAP =
⊎

A UAPA.

Table 1. Statistics on APs on the dataset

AP Set MALWARE APPS

MAX AP AVG AP Std. dev. MAX AP AVG AP Std. dev.

DAP 87 10.67 5.76 96 5.84 4.39

EAP 15 4.25 3.19 24 3.81 2.40

GAP 9 1.15 1.26 23 2.9 2.11

UAP 84 6.42 4.58 91 2.03 2.78

Discussion. Table 1 summarizes global statistics on the four AP sets. Such val-
ues indicate that malware declare more APs than apps on average (i.e., 10.67
vs. 5.84) but they exploit very few of them (i.e., 4.25). Furthermore, malware
seldom try to exploit undeclared APs (AV GGAP = 1.15) in comparison to apps
(AV GGAP = 2.9). Figures 2 and 3 show the distribution of the top ten APs for
malware and apps, respectively. For each AP, the y-axis shows the percentage
of malware/apps having the AP.

Some APs related to networking are equally divided between malware
and apps, e.g., INTERNET, ACCESS NETWORK STATE and ACCESS WIFI STATE;
since apps often require to connect to Internet, it is difficult to evaluate
the RIV according to these APs. Other APs are required more frequently
by malware than apps; for instance, a comparison between DAP plots in
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Fig. 2. Top 10 APs for malware
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Fig. 3. Top 10 APs for apps

Figs. 2 and 3 suggests that an app requiring the READ PHONE STATE, the
RECEIVE BOOT COMPLETED and the READ CONTACTS could be potentially danger-
ous. The biggest gap between malware and apps is related to SMS APs; in fact,
as shown in the DAP plot of Fig. 2, 2 out of 10 APs deal with SMS (i.e., SEND SMS
and RECEIVE SMS), while no SMS-related APs appear in the DAP plot of Fig. 3.
It is worth noticing that albeit almost 50% of malware require SEND SMS, and
more than 40% require RECEIVE SMS, they seldom exploit them (as shown by
the absence of such APs in the corresponding EAP set)8.

4.2 Dynamic Impacts

We argue that calculating a RIV according to the distribution of APs on malware
and apps in the dataset may improve the accuracy of current probabilistic risk

8 Complete statistics are available at: http://www.csec.it/riskindroid.

http://www.csec.it/riskindroid
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indexes. To empirically assess this thesis, we apply the probabilistic method
proposed in DroidRisk [7] on our dataset using both static and dynamic impacts.
We consider static impacts as defined in the original DroidRisk paper, namely,
I(pi, N) = 1 for pi being a Normal AP, and I(pi,D) = 1.5 for pi being a
Dangerous one. We define a dynamic impact as follows:

I(pi, S) =
P (pi|M,S)
P (pi|A,S)

(1)

being P (pi|M,S) the probability that a malware requires pi in the set S, and
P (pi|A,S) the probability that an app requires pi in the same set S. In this way,
the impact value increases as APs are more often required by malware than apps,
and vice versa. Note that also in this case, the probability for pi is calculated as
the number of malware/apps requiring pi on the total number of malware/apps
in the dataset. It is also worth noting that the value of dynamic impacts is
independent from the AP category. Since DroidRisk takes into consideration only
declared permissions, we calculated dynamic impacts only for declared APs, i.e.,
I(pi,DAP ). Table 2 shows an excerpt of dynamic impacts w.r.t. the dataset.

Table 2. Dynamic impacts for DAPon the full dataset.

4.3 Evaluating Probabilistic Methods

We carry out an empirical assessment aimed at evaluating (i) if the usage of
dynamic impacts could improve the quality of probabilistic RIV, (ii) to which
extent probabilistic methods are reliable, and (iii) understand potential improve-
ments towards more reliable RIVs.

Discussion. Our analysis indicates that the average RIV for apps is slightly
lower with static impacts (i.e., 52.87 vs. 58.43); on malware, this gap is wider
(i.e., 71.29 vs. 86.10). Figure 4 shows the RIV distribution for both malware
and apps in the dataset based on static and dynamic impacts. We consider 20
classes of RIVs, each comprising all apps having a RIV between 5i and 5i +
5%, where i ∈ {0, . . . , 19}. The x-axis of each plot indicates the RIV, while
the y-axis indicates the number of RIVs in each class. It is worth noting that
in both cases malware have higher RIV on average, thereby suggesting that
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Fig. 4. Risk Index Values with static (left) and dynamic (right) impacts.

probabilistic methods are reliable in principle. However, our results also bring
out their limitations. First, malware and apps histograms in Fig. 4 often overlap,
thereby indicating that probabilistic methods may sometimes provide similar
RIVs for malware and apps. In this case, the reliability of RIV depends on
the gap between the overlapping histograms. For instance, let us consider the
60%–65% class for static impacts, where both histograms are almost equal; this
indicates that each app having a RIV in this interval have rather the same
chance to be a malware or not: this would be acceptable for RIVs around 50%
only. Dynamic impacts allow to keep the gap in each class wider, at the cost
of widening the overlap interval (i.e., histograms overlap from 50% and 80%
with static impacts, and from 40% to 95% for dynamic impacts). Furthermore,
RIV is averagely high for apps (>40%) and it does not span on the whole value
interval (i.e., from 0% to 100%). Finally, as previously conjectured, probabilistic
methods are unable to recognize as risky the malware that declare few or none
APs (consider the overlap on class 0%–5% in both plots).

5 RiskInDroid: A Machine Learning-Based Risk Index

We argue that the intrinsic limitations of probabilistic methods applied to
APs can be overcome by machine learning techniques able to build up more
reliable RIVs. In this section we present the methodology at the basis of RiskIn-
Droid, then we provide an extensive empirical assessment of the tool.

5.1 Methodology

Machine learning techniques are used for classifying elements, i.e., given a set of
classes, they evaluate each element and assign a class to it. Therefore, they
are particularly suitable for binary classification of malware. However, some
techniques also provide a probability value related to the prediction. We leverage
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machine learning techniques to classify apps into two classes, i.e., malware and
non malware, and we use the classification probability to build up a RIV. For our
purpose, we adopt the scikit-learn library [12], that implements a set of machine
learning techniques and provides a probability function for some of them.

Machine learning techniques require feature vectors to compare and classify
elements. In our context, elements are apps, and features are APs. We define
feature vectors as follows: given APSet the set of APs, for each app A we define
four feature vectors FV A

S , with S ∈ {DAPA, EAPA, GAPA, UAPA}. Each FV
is a binary vector of cardinality —APSet—, where FV A

S [i] = 1 if pi ∈ S, and
FV A

S [i] = 0 otherwise. We adopt a supervised learning approach. Supervised
learning requires classifiers to be trained on a training set before being applied
to classify new elements. We train a set of supervised classifiers on a subset of
the dataset and then we use them to classify the remaining APKs.

5.2 Selection of Classifiers

The scikit-learn library implements 15 supervised classifiers with probability
estimation, which means that they adopt proper techniques to provide a proba-
bility value for each classification result (also for algorithms that do not natively
provide a probability on classification like, e.g., SVM and Decision Trees). In
order to choose the more reliable ones, we empirically evaluated them on three
sets randomly extracted from the dataset and containing the same number of
apps and malware samples each (i.e., 6.707 malware samples and 6.707 apps),
considering only DAP as permission set. We select classifiers according to three
empirical rules:

1. Accuracy > 90%, in order to discard the less reliable classifiers.
2. 4% < AVG Score < 95%, to avoid binary classifiers, i.e., that tend to

provide scores around 100% for malware and 0% for apps.
3. 5% < Std. Dev. to exclude classifiers that distribute in a little subset of the

whole interval.

We evaluated the classifiers (using the default parameters provided by scikit-
learn) by applying the K-fold cross validation [13] with K = 10. In a nut-
shell, the K-fold cross validation (see Fig. 5 for an example with K = 4) is an
iterative statistical method where the dataset is divided into K independent sets
(i.e., folds), each with approximately the same number of elements. At each iter-
ation on K, the ith fold acts as the testing set, while the remaining k − 1 folds
form the training set. The testing set is used to validate the model built through
the training set. The accuracy value is calculated according to the number of
samples in the testing set whose class have been predicted correctly. The advan-
tage of K-fold cross validation is that all samples are used both to train and
to test the model, thereby reducing the overfitting problem that occurs when a
model classifies correctly in the training set but not in the testing one.

At each iteration, a classifier is trained on a training set of about 1342 ele-
ments (i.e., 671 apps and 671 malware samples) and tested with the remaining
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Fig. 5. Example of 4–fold cross validation

Table 3. Empirical evaluation of classifiers in the scikit-learn library

Classifier AVG accuracy Malware Apps

AVG Score σ AVG Score σ

Support Vector Machines (SVM) 94.89 94.83 7.42 4.73 8.34

Gaussian Naive Bayes (GNB) 84.64 99.87 1.82 0.05 1.11

Multinomial Naive Bayes (MNB) 90.69 94.88 7.65 4.89 6.29

Bernoulli Naive Bayes (BNB) 89.97 99.07 4.87 0.69 4.19

Decision Tree (DT) 95.68 99.68 3.29 0.73 3.62

Random Forest (RF) 96.73 97.31 8.19 4.09 8.87

AdaBoost (AB) 94.19 52.83 1.45 47.48 1.44

Gradient Boosting (GB) 95.11 94.28 8.99 6.88 10.26

Stochastic Gradient Descent (SGD) 93.62 97.61 6.89 4.80 9.30

Logistic Regression (LR) 94.96 93.36 8.23 4.85 9.38

Logistic Regression CV (LR-CV) 94.93 96.41 8.21 4.71 9.21

K-Nearest Neighbors (K-NN) 94.29 98.69 6.22 4.82 11.34

Linear Discriminant Analysis (LDA) 93.88 98.11 6.42 1.93 6.18

Quadratic Discriminant Analysis (QDA) 78.18 100 0.31 0.06 1.32

Multilayer Perceptron Neural Network (MPNN) 97.06 99.12 4.31 1.68 5.51

9 sets, assuming that a score (i.e., the probability associated with the classifi-
cation) ≥50% implies recognizing the element as malware, while a score <50%
implies that the element is not malware. By comparing the nature of the element
with its classification, we are able to recognize the correctness of the evaluation.
The accuracy value is calculated as the ratio between the number of correct
classifications on the total number of classified elements. The average score and
standard deviation (i.e., σ) statistics are calculated on the classification probabil-
ities returned by classifiers in the testing phase. Results are reported in Table 3.
Since all classifiers had a very similar behavior on all three sets, we report the
average value for each metric.

Discussion. GNB, BNB and QDA grant low accuracy, while DT, RF, SGD,
LR-CV, K-NN, LDA and MPNN have too high average score for apps. Finally,
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Table 4. Average RIV calculated by probabilistic methods and RiskInDroid.

APK category Static impacts Dynamic impacts RiskInDroid

Malware 71.29 86.10 84.34

Apps 52.87 58.43 16.89

AB has a low standard deviation and provides similar scores for malware and
apps (i.e., from 47% to 53% in both cases). Only four classifiers meet all require-
ments, namely, SVM, MNB, GB and LR. Therefore, we chose to adopt them in
RiskInDroid.

6 Experimental Results

RiskInDroid has been developed in Python and implements the selected four
classifiers. For each app A, RiskInDroid calculates the RIV on all four APs sets
(i.e., DAPA, EAPA, GAPA, and UAPA), by combining the corresponding fea-
ture vectors in a unique one, i.e., FV A

all = FV A
DAPA

‖FV A
EAPA

‖FV A
GAPA

‖FV A
UAPA

.
The RIV is calculated as the average score value of all four classifiers. To train
each classifier in RiskInDroid, we applied the 10-fold cross validation on one
of the three sets used to evaluate the classifiers. We also used the same set to
empirically assess whether applying all four APs sets may improve the accuracy.
To this aim, our tests returned the following average accuracy values: 92.93%
for DAP, 88.36% for EAP, 79.12% for GAP, 91.09% for UAP, and 94.87% for all
sets. Therefore, we chose to consider all sets.

Discussion. Table 4 shows the average RIV calculated by RiskInDroid, w.r.t.
probabilistic methods in the previously discussed configurations. RiskIn-
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Fig. 6. Distribution of RIV: probabilistic methods vs RiskInDroid.
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Droid substantially lowers the average RIV for apps. Figure 6 compares the
distribution of RIVs with probabilistic methods based on dynamic impacts and
RiskInDroid. The latter distributes RIVs on the whole risk interval, and restricts
the histogram overlapping in the center of the interval. This is reasonable as the
median value implies the maximum uncertainty (i.e., RIV = 50% means that
the APK has the same probability to be malware or not).

RiskInDroid and Malware Detection. We further evaluated the reliability of
RIVs by assessing the relationship between apps with high RIVs and malware.
More in detail, we selected all apps having RIV> 75%, and we analyzed them
through VirusTotal9, a free suite hosting more than 50 online antivirus. Such
antivirus are signature-based, i.e., they compare the app with a set of known
malware footprints. For each analysis, VirusTotal also provides the number of
antivirus (i.e., flags) recognizing the submitted APK as malware.

Table 5 summarizes the results. They indicate that the methodology at the
basis of RiskInDroid is promising and the corresponding RIVs are reliable, since
some apps having high RIV are also recognized as malware by VirusTotal. How-
ever, it is worth pointing out that high RIV does not necessarily imply that
an app is malware. For instance, social network apps require a lot of dangerous
permissions and manage user data; such apps are risky for the security and pri-
vacy of the end user, but they are not malware. Finally, the experiments with
VirusTotal indicate that apps from Google Play are less likely to be malware
w.r.t. those provided by Aptoide and Uptodown: this is an expected result as
Google Play carries out security assessments on its apps10.

Performance of RiskInDroid. The performance of RiskInDroid has been evalu-
ated on a general purpose desktop PC equipped with an Intel i7-3635QM @ 3.40
GHz, and 16 GB RAM. Table 6 summarizes the results. Performance of classi-
fiers is evaluated in terms of average time and standard deviation, during the
training and the testing phase. Using all sets decreases the average performance
up to 240% during the training phase. However, it is worth noticing that this
phase is executed once at the beginning. Instead, the testing phase is very quick
and lasts in few millisecs both with one and all sets, thereby suggesting to adopt
all four sets to obtain a higher accuracy.

Table 5. App analysis with VirusTotal: Experimental Results.

APK source # apps with RIV >75% % of apps with Flags > X

Flags> 1 Flags> 3 Flags> 5 Flags> 10 Flags> 15

Google Play 635 14.6% 9.4% 8.7% 7.8% 7.1%

Aptoide 125 26.5% 12.6% 123% 12% 8.5%

Uptodown 86 24.4% 15.6% 8.9% 4.4% 2.2%

9 http://www.virustotal.com.
10 http://googlemobile.blogspot.it/2012/02/android-and-security.html.

http://www.virustotal.com
http://googlemobile.blogspot.it/2012/02/android-and-security.html
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Table 6. Performance of RiskInDroid on a set of 13.414 APKs (6.707 apps and 6.707
malware samples)

Classifiers Training phase Testing phase

DAP only All sets DAP only All sets

AVG T [ms] σ [ms] AVG T [ms] σ AVG T [ms] σ [ms] AVG T σ [ms]

SVM 43460 60 97170 870 15 4 18 5

MNB 32 4 53 11 6 3 7 3

GB 5620 52 21806 403 9 3 11 5

LR 81 9 188 11 4 2 5 2

Total 49193 67 119220 890 34 12 41 15

7 Conclusion and Future Work

In this paper we empirically assessed the reliability of probabilistic risk index
approaches for Android apps, and we proposed a novel methodology based on
machine learning aimed at overcoming the shortcomings of the probabilistic
solutions. We implemented the methodology in a tool, RiskInDroid, that we
empirically evaluated. Future development of this research includes extending
the feature set beyond APs, by taking into account suspicious API calls and
URLs, both recognizable in the bytecode through the static analysis technique
we adopted to build the permission sets.
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Abstract. Every year, e-service providers report losses of billions of dol-
lars due to fraud. Despite their huge efforts in implementing sophisticated
fraud detection systems on top of their e-services, fraud effects seem to be
rather increasing than decreasing. As a result, fraud risk assessment has
been introduced as a fundamental part of e-service providers’ prevention
strategies. In particular, identifying potential fraud risks and estimat-
ing their impacts are two essential requirements to prevent fraud risks
while developing and delivering e-services to customers. In this paper, we
show that fraud patterns can be used to perform fraud risk assessment.
We analysed real fraud incidents from an e-service domain – Telecom,
and identified six fraud patterns, which are recurrently used to com-
mit fraud. We then use those patterns in the same scenario in order to
demonstrate their applicability to fraud risk assessment.

Keywords: Fraud pattern · Risk assessment · Security · Fraud ·
E-service

1 Introduction

Over the past years, security and risk assessment have become essential require-
ments in the successful development of information systems and electronic ser-
vices of enterprises [1]. In particular, since e-services (e.g. Internet marketing,
telecommunication services and banking services) are delivered using technolog-
ical means, it is of utmost importance to perform risk assessment in order to
minimise or even prevent risks. One of the most relevant forms of risks which
prevail in a wide range of e-service domains is fraud risk [2]. Fraud risk is a
complex combination of social, financial and technological risks including mis-
uses resulting from the flaws and weaknesses of e-services themselves. Therefore,
preventing fraud is extremely relevant, since fraud negatively affects the global
e-service revenue; for instance, in 2015, fraud affected the global Telecom rev-
enue by almost $38.1 billion (USD) [3]. Thus, risk assessment is essential not
only to counter fraud but also to keep e-services profitable and secured [4,5].
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Typically, frauds are perpetrated by individuals, organised groups of indi-
viduals, employees or third parties with a set of goals targeting the weak parts
of e-services [6]. For an individual who has a service contract with a service
provider and uses it for individual purposes, the goal of perpetrating fraud is lim-
ited to individual benefit (e.g. using the service without/little payment). Beyond
the individual benefit, organised fraudsters can potentially disrupt the business
process of an enterprise (e.g. by colluding with third parties). In order to achieve
their goals, they target customers, infrastructures of service providers (e.g. Pri-
vate Branch Exchange – PBX systems), the service or product itself (e.g. ser-
vice plan, credit card) and the entities involved in the process of delivering the
e-services.

Until recently, a number of researches has focused on fraud detection methods
such as [7–9]. In [2,6], authors present an extensive review and comparison of
fraud detection approaches. Contrary to the many approaches which exist in
fraud detection, fraud risk assessment has not been the target of many works.
Authors in [10,11] have focused on fraud risk assessment. They proposed a value-
based approach which can be used to identify and prioritise frauds, in particular,
those occurring due to collusion with third parties. Although authors identified
and focused on one of the most recurrent patterns that fraudsters use, they
pointed out the need of performing fraud risk assessment with other types of
fraud patterns in order to strengthen the security of e-services.

Considering that and given the wide range of methods and techniques to
perpetrate fraud in e-services, fraudsters are able to use common but inter-
changeable patterns to achieve their goals. Thus, in this paper, we identify six
fraud patterns from an e-service domain – the Telecom services. We therefore
demonstrate how fraud patterns could be used to perform risk assessment of
e-services and serve as a tool for preventing fraud risks.

The rest of the paper is organised as follows. Section 2 highlights concepts of
fraud, e-services and fraud assessment in e-service. Section 3 presents the main
methodology followed to produce the fraud patterns and use them towards fraud
risk assessment. Section 4 describes the fraud domain model used to ease the
interpretation of frauds. Section 5 presents an overview of the fraud incidents
observed to identify the fraud patterns. Section 6 presents the identified fraud
patterns followed by the application of the fraud patterns in a given scenario,
namely Telecom services, which is then introduced in Sect. 7. Section 8 discusses
the main advantages of this approach and highlights the open challenges and the
limitations of the proposed approach; followed by the main conclusions of this
paper in Sect. 9.

2 Background

2.1 Fraud Risk in E-services

Fraud has several meanings that depend on the contexts. According to the Fraud
Advisory Panel (www.fraudadvisorypanel.org), an anti-fraud community based
in England, “fraud is the deliberate use of deception or dishonesty to deprive,

www.fraudadvisorypanel.org
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disadvantage or cause loss (usually financial) to another person or party”. While
this definition can be applied to a wide extent of auditing fraud, the Communi-
cation Fraud Control Association (CFCA) [3] has defined fraud as “the use of
telecommunication services or products with no intention of payment”. There-
fore, fraud risks in e-services are understood as events that allow fraudsters to
misuse the service either to gain personal benefit or to the benefit of organised
fraudsters. In this paper, we focus and explore those fraud risks that have impact
on the service providers from the perspective of fraudsters.

2.2 Fraud Risk Assessment

Based on ISO 31000 [12], the risk management process includes five processes:
establish context, risk assessment, risk treatment, monitoring and review, and
communication and consulting. Risk assessment is an integral part of the risk
management process, which is the concept of managing risks against enter-
prise objectives. More specifically, fraud risk assessment (FRA) is defined as
the process of identifying, analysing and estimating fraud risks in a service.

Considering the impact of fraud on service providers, it is essential to prevent,
detect and prepare the appropriate counter-measures. There exist a number of
different approaches for fraud detection [2,6]; however, preventing fraud through
identifying and analysing business processes, transaction flows and other entities,
still lacks the focus of the research community [4].

2.3 Fraud Patterns

The concept of patterns for security was initially introduced by Yoder and
Barcalow [13]. The authors proposed seven security patterns that software devel-
opers should consider when developing their software applications. Since then,
different types of security patterns were proposed (e.g. patterns for cryptography
and access control [14]). “A security pattern describes a particular recurring secu-
rity problem that arises in specific contexts, and presents a well-demonstrated
generic solution for it” [15]. As such, the use of patterns has benefited security
in several areas including software development. Inspired by this concept, we
developed fraud patterns from the recurring fraud risks in the e-service domain.
Fraud patterns not only help to describe recurring fraud risks in e-services but
increase the potential of having in place preventive solutions. As a first step we
have focused on the identification of the most relevant fraud risks.

3 Methodology

The whole process of a service provider from services delivery to the service pay-
ment process can be considered as a system. In such systems, one of the main chal-
lenges that directly or indirectly affect the revenue of service providers is fraud.
Fraud risks are enabled when the weaknesses of the valuable assets (including
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their service) of service providers are exploited by fraudsters. Fraud risk assess-
ment (FRA) is an approach to reduce the effects of fraud risks substantially –
which is the goal of service providers. To develop a FRA approach, it is neces-
sary to first develop a domain model or ontology of concepts related to fraud risks
of such systems. Thus, we first adopted and extended the model introduced by
[16]. By extending this model, we were able to develop a domain model specific
for FRA. The domain modelling allowed us to better describe fraud risks in a par-
ticular domain. We considered the Telecom domain, and analysed five real fraud
incidents in this domain. The analysed fraud incidents are business-related and
are the result of different types of Telecom services (e.g., voice, PBX, roaming and
Internet services). To develop the patterns, we applied the FRA domain modelling
and interpreted the real fraud incidents. We identified six recurring and relevant
patterns currently used by most fraudsters and actually present in more than one
fraud incident. Finally, the applicability of the identified patterns is demonstrated
by modelling the entities involved in the use case (Telecom domain scenario) and
directly applying the fraud patterns to the model.

4 Fraud Risk Assessment Domain Model

In Information Systems Security Risk Management (ISSRM) [16] there exist
different concepts that can easily be interpreted as concepts of FRA. The three
groups of concepts mentioned in ISSRM – risk-based, asset-based and treatment-
based concepts – could be adapted to the FRA domain model into concepts of
fraud, assets and preventive measures. Based on this model, we defined a FRA
domain model as shown in Fig. 1.

Fig. 1. Domain model for FRA (Fraud Risk Assessment): From left to right – concepts
of preventive measures, concepts of fraud and concepts of assets

Concepts Related to Fraud

– Fraud enabler – is the potential weakness or possibility that enables a fraud
to happen when exploited by a fraud agent.
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– Fraud agent – is a fraudster or attacker who acts as an agent to perpetrate
the fraud. A fraud agent uses fraud method and exploits fraud enablers.

– Fraud method – is an approach that a fraud agent follows to perpetrate the
fraud.

– Fraud threat – is the combination of fraud agent and one or more fraud
enablers. It targets one or more assets and its frequency/likelihood contribute
for a fraud risk to happen.

– Fraud risk – is the combination of a fraud threat with one or more fraud
enablers which negatively impacts one or more of the assets – direct or indirect
assets.

– Impact – the negative effect of a fraud risk that harms one or more of the assets
of the service provider. The impact on service provider can be interpreted in
terms of money or reputation, by which both affect the revenue of the service
provider.

Concepts Related to Assets

– An asset is any valuable entity of a service provider which could be targeted
by one or more fraud agents (attackers/fraudsters); assets can be direct or
indirect.

Direct Assets can be directly estimated when affected by fraud; they include
income of a service provider or revenue/income for a given service (e.g. call,
messaging, data, Internet services) by a service provider.
Indirect Assets cannot be directly estimated when affected by fraud; they
include reputation and customer data.

– Security objective – is the protection measure that is applied to one or
more assets. From the perspective of service providers, the security objec-
tives include protection of direct and indirect assets including confidentiality,
integrity and availability of services, prevention of service misuses and cus-
tomer data protection (privacy).

Concepts Related to Preventive Measures

– Preventive measure – is a part of fraud risk management; it is not part of
a FRA. We include it into the domain model as it contributes to show the
importance of FRA (e.g. preventive requirement specification based on FRA).
It describes the treatment approach to a given fraud risk. This can be achieved
by:
producing a prevention requirement – potential prevention requirements that
need to be implemented in the system to protect the assets of the service
provider, and/or
producing a new or modified policy – which is designed based on the assess-
ment results of FRA. It could be enforced at the service level, organisational
level, or customer level.
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5 Modelling the Telecom E-services Domain

The FRA domain model is applicable to different types of e-service domains (e.g.
health insurance, Internet marketing, Telecom), where fraud is part of the risks
of the respective services. In this paper, we considered the Telecom domain. In
this domain customers subscribe to Telecom services. In the process of delivering
the services, the Telecom providers are suffering from different types of frauds
leading to important revenue loss [3,17,18].

5.1 Fraud Scenarios

Due to space limitation, we briefly describe the five scenarios spanning different
types of real frauds. In the next subsection we further focus on two of the most
relevant frauds, which are then interpreted using the domain model in Tables 1
and 2.

Fraud case 1

Name: Service plan misuse with the involvement of a third party
Target: Income of the targeted Telecom service provider
Goal: To gain financial benefit and use the service without payment.

Fraud case 2

Name: Identity theft to use the call-forwarding functionality of (a) post-paid
contract(s)

Target: Income of the targeted Telecom service provider
Goal: Call selling, using service without payment

Fraud case 3

Name: Stealing credentials to make unauthorised calls from a PBX system
Target: Credentials of the PBX system and income of the Telecom service

provider
Goal: Financial gain (e.g. by call selling) and using service without payment

Fraud case 4

Name: Abusing fixed line network credentials during service set-up process
of an Internet access service

Target: Income of the Telecom service provider
Goal: Using service without payment

Fraud case 5

Name: Service plan misuse to perform roaming fraud
Target: Income of the Telecom service provider
Goal: To gain financial benefit
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Table 1. Fraud case 3. Stealing credentials to make unauthorised calls from a PBX
(Private Branch Exchange) system

Description A fraudster is able to retrieve a victim’s telephony credentials
from a PBX and sets up a call divert to a destination number
of his choice for the victim’s phone number. The fraudster
then activates call forwarding to other Telecom destinations –
mostly located abroad. The fraudster then makes the highest
number of possible parallel calls through the diverted phone
number. Calls or forwards triggered by the attacker are billed
on a per-minute-basis to the victim’s postpaid account. The
destination Telecom passes a share of the received
call-termination fees to the fraudster, thereby providing a
payout per minute for incoming calls as incentive to generate
as much incoming traffic as possible to the Telecom network

Fraud enabler – Vulnerabilities of the PBX
– Weak configuration of policies at PBX (e.g. remote access to
the PBX)
– The availability of Telecom providers that could pay out the
income share to the fraud agents who can manage to generate
a lot of call traffic to customers of those Telecoms

Fraud agent A fraudster who is an outsider

Fraud method Call forwarding, social engineering, impersonation

Fraud threat Revenue share

Asset Credentials and income of the service provider

Security objective Confidentiality of credentials and misuse protection

Fraud risk – A bill with high cost to the customers
– The customer might not pay the bill

Impact Financial damage and service disruption (unavailability)

Preventive measure – Implementation of strong PBX policies
– Create awareness of social engineering to the customer
– PBX maintenance

5.2 Fraud Pattern Development

In order to identify the fraud patterns, we modelled the Telecom domain using the
five aforementioned scenarios. We have interpreted these frauds using the fraud
domain model developed in Sect. 4. Tables 1 and 2 show the modeling of two of the
five scenarios. Note that the goals of fraudsters are diverse, but we only focused on
those which have an important effect to the Telecom service provider.

6 Fraud Risk Patterns (FRPs)

Fraud risk patterns (FRPs) are similar to security patterns described in [15,19],
which describe a particular recurring security problem that arises in specific
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Table 2. Fraud case 4. Abusing fixed line network credentials during service set-up
process of an Internet access service (DSL connection)

Description A fraudster orders a land-line Internet connection with a
Telecom provider. In doing so, he uses fake customer data. An
order confirmation will be sent to the fraudster’s address,
stating a service connection date. Sometime before a
technician visits the place, fixed line network credentials will
be sent via letter to the fraudster. The fraudster takes the
credential letter as soon as it arrives and uses the respective
credentials for SIP authentication, logging on to the TSP’s
telephony server from another location (securing its
anonymity)

Fraud enabler – Poor identity check
– Service availability before the necessary devices are installed

Fraud agent A fraudster who pretends to be a real customer

Fraud method – Exploiting poor identity checks
– Exploiting the time interval before the service charge is
recorded

Fraud threat Call selling, service distortion and social engineering of service
provider

Asset Income of the service provider

Security objective Misuse protection

Fraud risk Impersonation of customers and scamming the service
provider

Impact Financial damage

Preventive measure – The message conversations between the customer and the
service provider should be certified
– Start the service once the apparatus is configured
– The credentials must be sent only to legal user with certified
identify

contexts, and present a well-proven generic solution for it. In our context, we are
interested in recurring fraud risks against the valuable assets of service providers.

After defining each of the five fraud incidents using the FRA domain model
(cf. Sect. 4), we have observed each of the fraud cases and found a list of recur-
ring fraud enablers targeting the assets of the Telecom (e.g. the service itself
and the income). Fraud agents (fraudsters) have different goals in perpetrating
a fraud, most of them target the Telecom service to gain a lot of money – which
indirectly affects the income of the Telecom for that specific service. Each of
the fraud cases has security objectives and can mainly be categorised into three
security objectives: misuse protection, CIA (confidentiality, integrity and avail-
ability) and privacy (data protection). In the process, we produced three groups
of FRPs: patterns related to service-misusing, patterns due to system vulnera-
bilities and patterns related to privacy (data protection). In this paper, we are
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interested analysing the first two groups of patterns. The FRPs identified below
are distributed across the five fraud cases.

Patterns Related to *service-misusing*

FRP 1 – Impersonation (of customers or service providers)
Context. This describes a situation where a fraudster pretends as a legal customer
or a representative from a service provider to achieve his/her goal. In the Fraud
case 3, for instance, the fraudster provides wrong information about his personal
information including the address to impersonate a legal customer in order to
get credentials necessary to commit the fraud. Beyond this, the fraudster can
have a different approach to get the credentials by impersonating the technician
of the service provider to get the credentials from a legal customer.
Target. This pattern targets customers and service providers. It is observed in
the Fraud cases 3, 4 and 2.

FRP 2 – Time interval-based misuses
Context. In this pattern, the fraud is perpetrated following the availability of a
service without the knowledge of the service provider or in a condition where
the service provider could not recover the damage caused by the fraud. In Fraud
case 4 (see Table 2), for instance, the service provider sends the call credentials
before the necessary infrastructure is configured at the customer place, while
the service is activated and available to be used. In the case of VoiP telephony,
the credentials are enough to set up a remote connection and perform the fraud.
Obviously the main fraud enabler is the availability of the service before it is
accountable to the customer. Note: This kind of fraud could also be exploited
by a third party – stealing the credentials, in which case it follows FRP1.
Target. The target of this pattern is generally time-dependent activities. It is
observed in the Fraud cases 4 and 5.

FRP 3 – Misusing the service by overdoing beyond the expected limit
Context. In this pattern, a fraudster uses the service beyond the expected usage
limit of “normal” customers. For example, in a service plan misuse case, a fraudster
tries to generate a lot of call traffic while keeping himself undetected by the fraud
detection system installed at the service provider side. This is a very common fraud
that a Telecom service provider is facing, which needs careful service planning.
Target. The target of this pattern is the service and its tariff plan. We observed
this kind of fraud pattern in all of the Fraud cases 1 to 5.

FRP 4 – Fraud due to invisible collusions
Context. In this pattern, a fraudster perpetrated the fraud in an organised entity
where other customers or service providers are involved directly or indirectly to
gain financial benefit. A rational fraudster uses all possible ways of getting the
benefit from the service either by installing a PBX system that helps to sell calls
or randomly generating calls to expensive destination. In this case, the fraudster
will make an agreement with a third party (mostly another Telecom service
provider) to terminate calls to expensive destinations. In return, the fraudster
gets his income share generated by committing the fraud with the third party.



562 A.S. Yesuf et al.

Target. This pattern targets the service providers and the weaknesses on their
services. It is observed in the Fraud cases 1, 2 and 5.

Patterns Due to *vulnerabilities of the system*

FRP 5: Unsecured (uncertified) communication
Context. This describes a fraud pattern due to lack of secure communication
between different business entities in a given context. For instance, when a user
has a possibility to register as a new customer via the Internet, the user might
use a forged identity and delivery address unless the system implements a way
of user certification. This allows fraudsters to trigger the process of creating a
contract or an account to gain the advantages that a forged identity can get.
Target. This pattern targets the communication channel between entities in the
e-service. It is observed in the Fraud case 4.

FRP 6: Exploiting infrastructure vulnerabilities
Context. This is a situation where technical weaknesses of the infrastructure at
a service provider or at a customer point contribute to a fraud. In Fraud case 3,
for instance, a weak configuration of the remote access policy of the PBX system
is the main triggering factor for fraudsters to target the PBX.
Target. This fraud pattern targets the infrastructures used to deliver the e-
services. It is observed in the Fraud cases 3 and 4.

7 Application of FRPs to Telecom Services

So far, we have presented fraud patterns identified from the real fraud incidents.
In this section, we use an e-service from the Telecom domain, namely the roaming
service, to apply the fraud patterns and show how they could be used for fraud
risk assessment. To do the fraud risk assessment, first the necessary entities need
to be described. Then, for each fraud pattern, the potential fraud risks would be
identified. At last, the potential fraud risks should be estimated based on their
impact on the service provider.

7.1 Case Study Description

Roaming is one of the Telecom services which allows customers to use calling
and messaging services while they are abroad. It involves different independent
actors: the customer, the visited and the home service provider. We focus on the
calling service of roaming for the sake of simplicity.

The customer. A customer creates a contract (either flat-rate or pre-paid) with
the home service provider to get call services – roaming. He is responsible to pay
for the services he has used.

The home service provider (HSP). A HSP is responsible for providing calling
services to their customers within the coverage of customers’ contract. The HSP
maintains the usage data of customers including access locations in a database –
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home location register (HLR). To prepare the invoice for the roaming service of
a customer, the HSP should receive call detail records (CDR) from the visited
service provider. The CDR is the usage data of a customer stored in the visited
service provider. The payment for the roaming service is based on the number
of minutes that the customer calls while roaming.

The visited service provider (VSP). A VSP will have a roaming service agreement
with the HSP to provide roaming service to the customers of the HSP when the
customers use the service within the VSP network. The VSP is responsible for
storing and sending the CDRs of the customer to the HSP. Based on technologies
implemented at the VSP, the reporting time varies. According to the technol-
ogy Near-Real-Time Roaming Data Exchange (NRTRDE), the time to report is
limited only to four hours.

Entities in the Case Study

The e-service under assessment can be represented in a structural model, which
represents the necessary entities for the assessment. Each of the fraud pattern
targets a specific set of e-service entities such as actors, activities, services, com-
munication channels and infrastructures. Finding a suitable modelling language
to handle all types of e-service entities is a future work. An example model to
represent the relations between actors in a semi-structured model is shown Fig. 2.

– Actors. Customer (type: human), HSP (type: service provider), and VSP
(type: service provider). The actor HSP can be expressed with its employees
such as customer services, technicians and commercial managers.

– Activities.

Time-dependent activities. VSP sends CDR file of customer to HSP within
certain time interval; A flat-rate roaming customer pays every month for the
service he used;
Non-time-dependent activities. Customer creates contract or subscribes to a
service; The HSP has roaming service agreement with the VSP; the customer
is able to use the roaming service while being in theVSP ’s network, and maybe
creates an agreement with VSP to commit fraud (i.e., invisible to the HSP).

– Services.

Assets. The roaming service (type: service); the payment (type: income)
Service usage limit. Contracts between customer and provider (for pre-paid
contracts – the customer can use as long as the account balance is above
zero, for flat-rate contracts – mostly the customer has yearly contracts payable
monthly); between HSP and VSP (payment for the services that the customer
of the HSP gets – paid per number-of-minutes of calls)

– Communication channels. At the time of the contract creation, the com-
munication between the customer and the HSP is either through letters,
emails, on-line registration or personally at the customer service. File transfer
from VSP to HSP is through encrypted channel between the two
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Fig. 2. A semi-structured model for the roaming service case

– Infrastructures.HSP database and VSP database systems (type: NRTRDE
or other)

7.2 Risk Assessment

Fraud risk assessment is the process of describing the e-service under assessment,
analysing fraud risks and estimating their impacts. The goal of risk analysis is
to identify the potential fraud enabling factors using FRPs. To achieve this goal,
we have to check all the fraud patterns against the service described above; due
to space limitation, we only show this for FRP1 and FRP2. Each fraud pattern
targets different entities in the e-service. A strategy of identifying the potential
fraud enabling factors is by asking questions whether each FRP enables fraud
targeting entities in the given e-service.

To estimate the potential impact to the HSP, we can use a qualitative mea-
surement: high, medium and low. High is when the impact of the fraud is sub-
stantial to the HSP that they lose a lot of money beyond the expected expenses.
Low is when the impact of fraud is within the customer’s contract limit though
has an effect on the income of the HSP. Medium is between the scale high and
low. For each example fraud identified, we provide high level preventive measures
in terms of security requirements.

FRP1 – impersonation. As the target of FRP1 is customers and service
providers, and the goal of fraudsters in this fraud pattern is to gain financial
benefit or use the service without payment, the question should be: how could
customer and HSP possibly be impersonated in the roaming case so that fraud-
sters gain financial benefit or use the service without payment? Here are some
examples:

1. A fraudster could impersonate the customer-service of the HSP to create a
flat-rate roaming contract. The fraudster can then generate calls at least for
a month until the service is interrupted.

– Impact. High as the service provider is the main target by the fraudster.
– Preventive measures. (1) Strong identity check (e.g. credit check with

authorised third party) (2) train the personnel at customer-services about
the threats of impersonation;
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2. A customer who has a flat-rate roaming contract could be impersonated to
clone his SIM-card or to lose his device as it allows a fraudster to commit
fraud until the fraud detection system detects it or a customer informs the
HSP to stop the service.

– Impact. Medium because the customer is the main target affected by the
fraudster, so enforced to pay. In the cases where the customers did not
realise the fraud and did not report to the HSP or the fraud detection
system didn’t detect, the effect might go beyond the customer to affect
the income of HSP.

– Preventive measures. (1) Inform the customers who have contracts with
the HSP about the common fraud patterns that they might be suspicious
(2) advance the fraud detection mechanism to handle SIM cloning and
similar impersonation techniques;

3. A fraudster creates a roaming service contract via the HSP’s online registra-
tion portal with fake identity and credit information.

– Impact. High because the fraudster could resell the service until identified
and this directly affects the HSP.

– Preventive measure. The registration portal should certify users and check
their credit.

FRP2 – time interval-based misuse. The targets of FRP2 are time-
dependent activities. So, the question should be: How would time-dependent
activities be used to misuse the service? Here are some examples:

1. Because of the time-delay before the VSP sends the CDRs of a customer,
fraudster could use the roaming service to call to an expensive destination
without being detected or the service being interrupted. This is mainly dan-
gerous if the fraud detection technology is weak at the VSP side.

– Impact. High because (1) there is an unpaid bill by the fraudster and (2)
the HSP has to pay the termination fee (for the calls terminated in the
VSP network).

– Preventive measures. (1) Limit the amount of time taken to send the
CDRs of customers from VHP to HSP (2) Install standardised technolo-
gies with both HSP and VSP to prevent modification of CDRs – some-
times this is difficult to implement at VSPs due to lack of jurisdiction).

2. When a fraudster manages to get a flat-rate roaming service, the time-limit
to pay the monthly service charge is in danger.

– Impact. High because flat-rate services mostly have no usage limitation
which leaves the HSP with the unpaid bill.

– Preventive measure. The HSP should ensure that the customer has not
been involved in a fraudulent behaviour (e.g. with the help of credit check
organisations).
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8 Discussion

Fraud patterns can successfully be applied not only in the process of FRA, but
as well as for producing security requirements and policies. One of the main
benefits relies on the fact the each of the fraud patterns targets a specific entity
within the e-service model. The description of e-services (e.g. using appropri-
ate modelling languages) thus plays an important role in using them for risk
assessment. Since fraud patterns have been identified from five recurring fraud
incidents in Telecom e-services, it would be valuable to perform the validation
and improvement of those with real practices. Furthermore, the applicability of
fraud patterns has only been shown in one domain; other e-services and domains
would be interesting for demonstrating the applicability of fraud patterns in FRA
of e-services in general. Note, that while performing FRA of e-services allowed
us to identify fraud risks, it is also important to put fraud detection approaches
in place to gain the full advantages of fraud management.

9 Conclusion and Future Work

Fraud pattern is a handy way of identifying fraud risks from the perspective of
fraudsters. They are an essential part of fraud risk assessment to ease the task of
fraud managers to put their preventive measures in place before the fraudsters
damage the assets (directly or indirectly). This also increases the security and
profitability of e-service providers.

Even though the fraud patterns identified in this paper are from a limited
set of existing frauds, they are important to guide future development on fraud
patterns. Therefore, to enhance the fraud patterns, we plan to develop a fraud
risk assessment tool and apply the fraud patterns for different e-service domains
beyond the Telecom domain.
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(eds.) IESS 2017. LNBIP, vol. 279. Springer, Cham (2017)

6. Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Netw.
Comput. Appl. 68, 90–113 (2016)



Using Fraud Patterns for Fraud Risk Assessment 567

7. Hilas, C.S., Mastorocostas, P.A.: An application of supervised and unsupervised
learning approaches to telecommunications fraud detection. Knowl. Based Syst.
21(7), 721–726 (2008)

8. Ruiz-Agundez, I., Penya, Y.K., Garcia Bringas, P.: Fraud detection for voice over
IP services on next-generation networks. In: Samarati, P., Tunstall, M., Posegga,
J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp.
199–212. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12368-9 14

9. Farvaresh, H., Sepehri, M.M.: A data mining framework for detecting subscription
fraud in telecommunication. Eng. Appl. Artif. Intell. 24(1), 182–194 (2011)

10. Ionita, D., Wieringa, R.J., Wolos, L., Gordijn, J., Pieters, W.: Using value models
for business risk analysis in e-Service networks. In: Ralyté, J., España, S., Pastor,
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19. Rrenja, A., Matulevičius, R.: Pattern-based security requirements derivation from
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Abstract. The code reuse attack (CRA) has become one of the most
common attack methods. In this paper, we propose gadget weighted tag-
ging (GWT), a flexible framework to protect against CRAs. In GWT,
we firstly find all possible gadgets, which can be used in CRAs. Then,
we attach weighted tags to these gadgets based on the lengths and types
of the gadgets, and the weighted values are configurable. At last, GWT
monitors the weighted tag information at runtime to detect and prevent
CRAs. Furthermore, combining with the rule-based CFI, GWT+CFI
can precisely confirm the gadget start and greatly reduce the num-
ber of possible gadgets, compared to the baseline GWT. We imple-
ment a hardware/software co-design framework to support GWT and
GWT+CFI. The results show that the performance overheads of GWT
and GWT+CFI are 2.31% and 3.55% respectively, and GWT can defeat
variants of CRAs, especially those generated by automated tools.

1 Introduction

Code reuse attack (CRA) has become the primary attack vector nowadays.
Attackers find special code snippets called gadgets, ending with an indirect
branch instruction, and then manipulate program control flow to chain gadgets
together to construct a malicious program. The CRA is proved to be Turing-
complete and can be generated by automated tools [1]. Therefore, the CRA is
an attack approach which is easy-to-use, hard-to-detect and can be applied to
any purpose.

Many defense mechanisms have been proposed to protect against CRAs, and
control flow integrity (CFI) [3,15] is thought to be one of the most promising
ways. However, CFI has high complexity and low efficiency [4]. In order to design
a practicable CFI, some researches [5,6,10,11] propose the coarse-grained CFI
to realize a looser notion of control flow integrity without the static control-flow
graph (CFG). Abandoning CFG to reduce complexity, the coarse-grained CFI
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Fig. 1. The gadgets in normal program and CRA

is a tradeoff between security and efficiency. Hence, the security of the coarse-
grained CFI is lower than the CFI based on CFG. Some recent papers [8,12–14]
have proved that the coarse-grained CFI could be bypassed by CRAs with special
gadgets.

We observe that all possible gadgets, which can be used in CRAs, only take a
part of the whole code space. As shown in Fig. 1, gadgets in normal programs are
discontinuous usually, whereas the CRA is composed of a contiguous sequence
of gadgets. Additionally, with some special gadgets inserted, such as long-NOP
gadgets and call-preceded gadgets [7,14], CRAs may pretend to be normal pro-
grams. Therefore, we can distinguish CRAs from normal programs by monitoring
both normal gadgets and special gadgets at runtime.

In this paper, we propose gadget weighted tagging (GWT), a flexible frame-
work to detect and prevent CRAs. In GWT, we classify all possible gadgets into
three major types on the basis of their effects on CRAs: functional gadgets, NOP
gadgets and normal codes. Then, we configure different weighted scores to these
gadget types, and attach weighted tags to the gadgets in binary files. Finally,
GWT computes the probability of CRA occurrence by dynamically monitoring
the weighted tags at runtime.

Moreover, we propose GWT+CFI, since we discover that the control-flow
rules in coarse-grained CFI are good supplements to the GWT. GWT+CFI
can accurately identify the gadget start, and significantly reduce the num-
ber of potential gadgets. Hence, it is more precise to find possible gadgets in
GWT+CFI, compared to the baseline GWT.

Several important parameters used in GWT, such as weighted scores for
different gadget types, are configurable. Thus, users can modify the parameters
as needed. Furthermore, if users discover some special gadgets, they can add
the new gadget types into the GWT, and allocate different weighted scores for
the gadget types. As a result, GWT can detect variants of CRAs with different
gadgets, and the security of GWT can be further improved with adding more
gadget types.
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When a new CRA attack method or a new gadget type is proposed, the ways
to construct the attack or to find the gadget should also be introduced. Hence, in
GWT, we can reuse the ways to find the potential gadgets in programs, according
to the descriptions in previous papers. Additionally, we can find and mark possible
gadgets in GWT by reusing automated tools for CRA generation [1].

We apply GWT and GWT+CFI in a hardware/software co-design frame-
work. The results show that the performance overheads of GWT and GWT+CFI
are 2.31% and 3.55% respectively. Moreover, GWT can detect all CRAs gener-
ated by Q [1], and variants of CRAs with special gadgets.

The key contributions of this paper are summarized as follows:

(1) We propose gadget weighted tagging (GWT), a novel framework to prevent
CRAs, which is of high-flexibility, high-security, low-overhead and easy to
apply.

(2) We propose GWT+CFI, GWT combining with the rule-based CFI, which
can find possible gadgets more precisely, compared to the baseline GWT.

(3) We implement a hardware/software co-design to support GWT and
GWT+CFI, and evaluate its security effectiveness and performance over-
head.

2 Background and Related Work

2.1 Code Reuse Attacks (CRAs)

The basic idea of CRAs is to reuse instructions from the existing code space to
implement malicious operations. In order to achieve attack purposes, attackers
should firstly find a set of instruction sequences (called gadgets) from the entire
code space, and then link the selected gadgets into a gadget chain to construct
a malicious program. In short, the CRA is composed of a contiguous sequence
of gadgets.

A gadget usually has several normal instructions for computation and an
indirect branch instruction to change control flow to link gadgets. For simplicity,
we focus on three most common indirect branch instructions in this paper: call,
return and indirect-jump. Furthermore, the gadgets used in CRAs have two
important features as follows:

(1) Sparse Distribution. Every gadget should end with an indirect branch
instruction, however, the indirect branch instructions only take a small part
of the whole program. Moreover, attackers need gadgets containing special
operations to construct a malicious program, or to bypass defense mech-
anisms, such as CFI. Thus, many existing gadgets may not meet for the
special needs of attackers. As a result, the gadgets, which are useful for
CRA construction, are quite rare in normal programs.

(2) Small Size. The gadgets with more instructions can perform more oper-
ations, however, they also inevitably lead to more side effects and some of
them may conflict with each other. Hence, attackers usually prefer to dis-
cover the short and simple gadgets only with the intended operations [1],
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instead of using long and complex gadgets. In fact, the gadgets in real CRAs
usually have only 2 to 6 instructions [6].

According to the difference of the indirect branch instructions, CRAs can be classi-
fied into return-based ROP (return-oriented programming) and jump-based JOP
(jump-oriented programming). In ROP, the stack pointer esp is used as the pro-
gram counter in a return-oriented program. Instead, JOP uses a dispatch table
to manage gadget addresses. The program counter of JOP is the register pointing
into the dispatcher table [2], and an special dispatcher gadget is used to drive
control flow. Thus, the dispatcher gadget is a key sign of JOP, which usually con-
tains an self-modification operation and an indirect jump instruction. Generally,
any gadget ending with an indirect jump instruction, that carries out the following
algorithm, can be considered as a candidate of dispatcher gadget [2].

pc ←− f(pc);
goto *pc;

2.2 Control Flow Integrity (CFI)

There are many CFI implementations that have been proposed [3–6,10,15]. We
divide these CFI methods into two main kinds: CFG-based CFI and rule-based
CFI.

CFG-based CFI, also is known as fine-grained CFI, enforces the control flow
to adhere to control-flow graph (CFG) generated by static program analysis.
CFG-based CFI is high security, and can detect any illegal control flow transfers.
However, it is almost impossible to generate an ideal CFG containing all possible
control-flow paths, and the performance overhead of CFG-based CFI is high [4].
Furthermore, some recent works [16,17] have proposed CRA attack methods to
bypass the CFG-based CFI with unideal CFG. In addition, even the ideal CFG-
based CFI could be also bypassed by control flow bending [18] combining with
the non-control-data attack.

Rule-based CFI, that is also called coarse-grained CFI, uses several control-
flow rules to defend against CRAs, instead of CFG. Therefore, the rule-based CFI
is low-overhead and easy to implement. The control flow rules can be classified
into two types as following.

(1) Control-Flow Transfer Rules. These rules stipulate the destinations of
different indirect branch instructions [9,11].

(1.1) RETURN: a return instruction should point to an instruction right after
a call instruction.

(1.2) CALL: a call instruction should start execution at the entry point of a
function.

(1.3) Indirect-JUMP: an indirect-jump instruction should point to either a
position inside the same function, or an entry point of another function.

(2) Code Length Rules. These rules stipulate the code length of gadgets,
and the chain length of CRA attacks [5,6].
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(2.1) Gadget Length: a short code snippet (e.g. 2–6 instructions) ending with
an indirect branch instruction is a gadget, whereas a longer code snippet
is not a gadget.

(2.2) CRA Length: a long gadget chain (e.g. 6 gadgets) is a CRA, whereas a
shorter gadget chain is not a CRA.

2.3 Legal Gadgets

The rule-based CFI has several definite rules to recognize gadgets. However,
attackers can find some special gadgets that obey these rules, called legal gadgets
in this paper. As a result, legal gadgets are mistaken for normal codes by the rule-
based CFI, so that CRAs consisting of legal gadgets can bypass the rule-based
CFI. There are several kinds of legal gadgets to bypass different control-flow
rules.

(1) Call-Preceded (CP) Gadget. A call-preceded instruction is any instruc-
tion in the address space of the application that immediately follows a call
instruction [14]. A call-preceded gadget is a gadget that its first instruction
is a call-preceded instruction. Thus, CP gadgets are legal destinations of any
return instruction.

(2) Entry-Point (EP) Gadget. An entry-point gadget is a gadget starting at
the entry point of a function. Hence, EP gadgets are legal destinations of
any call or indirect-jump instruction.

(3) Long-NOP Gadget. A long-NOP gadget [7,14] is a gadget that contains
enough instructions to obey the gadget length rule of rule-based CFI, and
does not induce any side effects, i.e., the content of all registers and memory
area used by the CRA is preserved. Therefore, attackers can use short and
useful gadgets to perform malicious operations, and use long-NOP gadgets
to bypass the rule-based CFI.

3 Threat Model

In this paper, we focus on defending against code reuse attacks. We assume that
attackers have full control over data and stack/heap memory regions. In addition,
we also assume that the attackers can modify all key registers of processors.

We assume that the DEP technology has already been realized, thus it forces
the attackers to use CRA attacks. Moreover, we do not consider the gadgets
consisting of a sequence of unintended instructions, such as in x86 platform with
variable instruction sizes, since they can be detected by CFI [9].

Furthermore, we will introduce our approach, GWT, in two different systems.

(1) Baseline System. The baseline system does not have any special security
mechanism, and is only protected by the DEP technology.

(2) Protected System. The protected system supports the DEP technology
and the rule-based CFI with control-flow transfer rules as described in
Sect. 2.2.
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4 Gadget Weighted Tagging

4.1 Finding Gadgets

(1) Finding Gadget End.
The only strict limit of gadgets is ending with an indirect branch instruction
(return, call and indirect-jump). Thus, all code snippets ending with an
indirect branch instruction can be considered as gadgets in theory. Therefore,
we should discover all indirect branch instructions in program codes, and
take these instructions as the gadget end.

(2) Defining Gadget Types.
Q [1], the state-of-the-art automated tool for CRA generation, uses func-
tional kinds to identify gadgets. Q defines nine kinds of gadgets, includ-
ing NoOp, Jump, MoveReg, LoadConst, Arithmetic, LoadMem, StoreMem,
ArithmeticLoad, and ArithmeticStore [1]. In Q, every gadget should have
and only have one kind to define its function, and Q proposes a discovery
algorithm to recognize the functional kind of each gadget.
In GWT, we define four types of gadgets as shown in Fig. 2. The functional
gadget includes the eight kinds of gadgets defined in Q, except the NoOp
gadget. The dispatcher gadget and the syscall gadget are two special types
of functional gadgets. Because the two types of gadgets play critical roles
in CRAs, we take them as separate types out from the normal functional
gadgets.

(2.1) Functional Gadget. The functional gadget is a gadget that can perform
a fixed and useful operation without any side effect, such as arithmetic
calculation, branching, or loading data from memory. We use a method
similar as Q [1] to identify functional gadgets. Details of the algorithm to
identify the functional gadgets can be found in [1]. However, the original
algorithm of Q can only be used to discover return-based gadgets and
construct ROP chains. Hence, we have added new features, such as dis-
covering indirect-jump instructions and syscall instructions, to find jump-
based gadgets to construct JOP chains, and to discover syscall gadgets
and legal gadgets in GWT.

(2.2) Dispatcher Gadget. The dispatcher gadget is an special functional gad-
get, which ends with an indirect jump instruction and contains an self-

Fig. 2. The gadget types in GWT
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modification operation to the jump destination. Furthermore, the dis-
patcher gadget plays a key role in the JOP [2]. It essentially maintains
an virtual program counter and executes the JOP program by advancing
it through one gadget after another.

(2.3) Syscall Gadget. The syscall gadget is an special functional gadget end-
ing with an system call instruction. To make CRA attacks simpler, attack-
ers can carefully construct attacks that consist of a small number of gad-
gets, and then inject code. For example, attackers can use the syscall
gadget to invoke an system call to alter the execute bit on an attacker-
controlled buffer (i.e. destroy the DEP protection), and then redirect con-
trol flow to it [12].

(2.4) NOP Gadget. The NOP gadget is a gadget which has neither useful
operations nor side effects to CRAs. It includes the NoOp gadget in Q and
long-NOP gadgets described in Sect. 2. To ensure that the NOP gadget
does not break the semantics of the CRA chain, the NOP gadget should
make use of only a small set of registers [14]. Generally, the NOP gadget
can be used to confuse defense mechanisms, such as the rule-based CFI
[5,6].
We define a parameter in GWT, MaxRegMod, which means the maximum
number of registers modified by the NOP gadget. If a gadget is not a
functional gadget and the registers modified by this gadget are not larger
than MaxRegMod, then the gadget is a NOP gadget. Else, the gadget is
not a NOP gadget (i.e. normal code).

(3) Finding Gadget Start (Maximum Gadget Length).
It is simple to find the gadget end (i.e. indirect branch instructions),
whereas to identify the gadget start is difficult. In previous papers, the
code length is always used to recognize gadgets, since longer gadgets lead
to more side effects and may conflict with other gadgets. Usually, the
maximum length of a meaningful gadget is 6 instructions [6]. However,
attackers can still find some special gadgets (e.g. long-NOP gadgets),
which are long enough and have few side effects to CRAs, to break the
limits.
In GWT, the classified gadget type still depends on code length, however,
we add a new gadget type (i.e. NOP gadget) to mitigate the above prob-
lem. A long enough gadget, which has few side effects, could be recognized
as a NOP gadget in GWT, instead of normal code in previous papers. A
gadget will be identified as normal code, only if the gadget contains too
many instructions leading to significant side effects.

(3.1) The Maximum Length of the Functional Gadget. From the gadget
end of a functional gadget, walks backwards one by one (instruction),
until the gadget is not a functional gadget. Then, the instruction number
is the maximum length of the functional gadget, and the first instruction
is the start of the functional gadget. Because the dispatcher gadget and
the syscall gadget both belong to the functional gadget, the maximum
lengths of the two types of gadgets are the same as the functional gadget.
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Table 1. Weighted scores of different gadget types

Gadget type value (3 bits) Gadget type Weighted score

000 Normal code Zero clearing

001 Functional gadget 1

010 Dispatcher gadget 2

011 Syscall gadget 4

100 NOP gadget 0

Others Undefined –

(3.2) The Maximum Length of the NOP Gadget. It is similar as the
functional gadget. Increases the code length of a NOP gadget, until the
gadget is recognized as normal code. Then, the code length is the maxi-
mum length of this NOP gadget.

4.2 Weighted Tagging

In GWT, we attach the weighted tag to each gadget end (i.e. indirect branch
instruction). The structure of weighted tag is shown in Fig. 3, and it has 32 bits
and contains 3 parameters. The gadget type has 3 bits, and the meaning of this
parameter is shown in Table 1. The maximum length of functional gadget has
14 bits, and the maximum length of NOP gadget has 15 bits.

We define five different gadget types, including normal code, functional gad-
get, dispatcher gadget, syscall gadget and NOP gadget. Normal code means the
gadget can not be used in any CRA, and other four gadget types are introduced
in Sect. 4.1. Different gadgets have different effects on CRAs, hence, we propose
weighted scores to mark different gadget types. The foundation of weighted scores
is the dangerousness and importance of each gadget type. With a higher score,
the gadget type is more dangerous and important, and is also more possible to
be used in CRAs.

The specific weighted score of each gadget type is shown in Table 1, and
it is configurable. (i) The NOP gadget does not contain any useful operation
for CRAs, and thus it has only 0 point. (ii) The functional gadget contains an
useful and constant operation for CRAs, so it gets 1 point. (iii) The dispatcher
gadget is a key sign of the JOP, and it is appeared every other gadget in the
JOP, hence it has 2 points. (iv) System call is the start point of many important
kernel functions of OS, and using the system call can significantly reduce the
difficulty of CRA construction. Consequently, one common purpose of CRAs is
to perform an special system call, and the syscall gadget is more important than
other gadget types, which has 4 points. (v) Since the CRA is composed of a
contiguous sequence of gadgets, if the current gadget is normal code, there is
no CRA at present. As a result, the weighted score of the normal code is zero
clearing.
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We add the gadget tag information into the program executable file by anno-
tation. The prior of every indirect branch instruction is a weighted tag annota-
tion. Moreover, tag annotation starts with a prefetch instruction to retain binary
compatibility, which is the similar as other methods [3,9]. The prefetch instruc-
tion is followed by the weighted tag information. Because we assume that the
system supports the DEP technology, the weighted tag annotation can not be
modified by attackers.

Fig. 3. Weighted tag information for gadget end

4.3 Monitoring Gadget Tags

At runtime, we assume that codes between two indirect branch instructions
construct a potential gadget, and we identify the type of the potential gadget by
its code length and the weighted tag information attached to the second indirect
branch instruction. Furthermore, we define four simple intermediate variables to
calculate the probability of CRA occurrence: current gadget type (CGT), current
gadget length (CGL), real gadget type (RGT) and CRA occurrence index (COI).

CGL is used to record the code length of the current potential gadget, and
CGT is used to record the gadget type of the current gadget tag. When an
instruction is executed, the CGL adds one to itself. When an indirect branch
instruction is executed, it is the boundary between two potential gadgets. There-
fore, CGT records the gadget type of the corresponding tag, while CGL records
the current gadget length for RGT computation, and then starts a new count of
code length for the next gadget.

RGT, which is computed based on the CGT and CGL, records the real
type of the current gadget at runtime. The detailed algorithm process of RGT
is described in Fig. 4. The MaxFunc is the maximum length of the functional
gadget, and the MaxNOP is the maximum length of the NOP gadget.

We use COI to denote the possibility of the CRA occurrence. If the COI is
larger, then it is more likely CRA will occur. Furthermore, we define MaxCOI,
the maximum value of COI. If the COI is larger than MaxCOI, then we assume
that a CRA occurs. The COI is calculated based on RGT and weighted scores
of gadget types, and the detailed algorithm process of COI is described in Fig. 4.

4.4 Hardware Implementation

Figure 5 shows the hardware implementation for GWT. It contains three impor-
tant hardware modules: control-flow monitor (CFM), weighted tag configuration
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Fig. 4. The algorithm process of RGT and COI

(WTC) and CRA detecting module (CDM). In addition, we assume that the
rule-based CFI has already been implemented.

The CFM is the main module for weighted information monitoring. It records
the number of instructions executed (CGL) and gadget type (CGT) of current
gadget at runtime. When an indirect branch instruction is executed, the CFM
computes real gadget type (RGT) based on CGL and CGT, and then sends the
RGT to the CDM. The CDM computes COI, and compare it to the MaxCOI.
If the COI is larger than MaxCOI, then a CRA occurs, and thus CDM should
send an exception to report an attack. The detailed computation algorithms of
these parameters are described in Fig. 4.

The WTC stores the parameters used by CFM and CDM, such as MaxCOI
and weighted scores. Additionally, these parameters are configurable. Users can
modify these parameters as needed. For example, if users want to improve system
security, they can reduce the MaxCOI, or increase the weighted scores of gadgets.
Furthermore, we assume that attackers can not directly change these parameters
stored in WTC.

Fig. 5. Hardware implementation of GWT
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5 GWT Combining with CFI

5.1 Motivation of GWT+CFI

One main shortage of GWT is that GWT can not precisely confirm the gadget
start. Only using the gadget length to identify the gadget start is not clear
enough. Therefore, we propose GWT+CFI, combining GWT and the rule-based
CFI together. The rule-based CFI fits our approach very well, and introduces
two benefits into the GWT.

(1) Gadget Start. In order to bypass the rule-based CFI, attackers can only
use some special gadgets, such as call-preceded (CP) gadgets and entry-point
(EP) gadgets. Fortunately, the two types of gadgets both have fixed start
points: call-preceded instruction and the function entry. Consequently, we
can precisely identify the gadget start in GWT+CFI.

(2) Gadget Number. Except legal gadgets, other illegal gadgets can be
detected by the rule-based CFI. As a result, the number of gadgets that
can be used in CRAs is reduced significantly in GWT+CFI. Therefore, we
can locate useful gadgets in code space more accurately.

5.2 Finding Legal Gadgets

The major difference between GWT and GWT+CFI is the gadget discovery. In
GWT+CFI, we only need to discover legal gadgets. On the other stages, such
as gadget weighted tagging and monitoring, the GWT+CFI is almost the same
as the GWT.

In GWT+CFI, we should find all indirect branch instructions firstly, and take
them as the gadget end. Then, we should also find the gadget start. The start
point of a CP gadget is a CP instruction, and the start point of an EP gadget is
the function entry. Consequently, we can identify all legal gadgets based on the
gadget start and end. At last, we should select useful gadgets from these legal
gadgets. It is almost the same as the Sect. 4.1, to distinguish functional gadgets,
dispatcher gadgets, syscall gadget, NOP gadgets and normal codes, as shown in
Fig. 6.

Note that one indirect jump instruction can jump to any position inside the
same function, that does not violate the control-flow transfer rules of CFI. Hence,
attackers may find legal gadgets without CP instruction or function entry by
indirect jump instructions. Therefore, if we find that a function contains indirect
jump instructions, the gadget discovery inside this function should follow the
baseline GWT, instead of GWT+CFI.

6 Security Analysis

Because the hardware architecture of GWT is very simple, it is only used to
record gadget information and compute COI. As a result, for simplicity, we
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Fig. 6. The gadget types in GWT+CFI

implement a software method based on pintools [20] to simulate hardware func-
tionality of GWT for security analysis. Pintools [20] are dynamic program analy-
sis tools, which can manage the execution of every instruction. In addition, we
select widely-used programs in Ubuntu /bin and /usr/bin/. In order to keep the
balance between security and stability, we set the MaxRegMod is 6, MaxCOI is
6, and the weighted scores are the same as the Table 1.

Since the main difference between GWT and GWT+CFI is the gadget dis-
covery, the CRA detection of GWT+CFI is almost the same as the GWT. Hence,
we mainly focus on the security analysis of GWT in this section.

6.1 Gadget Discovery

In GWT, the average number of all possible gadgets is about 1072 in each pro-
gram with average 40KB code size, and thus the gadgets take only a small part of
the whole program codes. The average numbers of functional gadgets, dispatcher
gadgets, syscall gadgets and NOP gadgets are 452, 7, 1.5 and 612 respectively.
Furthermore, the average length of all possible gadgets is about 9.9 in each pro-
gram. The average length of functional gadgets, including the dispatcher gadgets
and syscall gadgets, is 5.3, and the average length of NOP gadgets is 13.3, as
shown in Fig. 7.

In GWT+CFI, the average number of legal gadgets is about 471, which
decreases significantly compared to the baseline GWT, especially the legal func-
tional gadgets. The average numbers of functional gadgets, dispatcher gadgets,
syscall gadgets and NOP gadgets are 45, 0.9, 0.15 and 425 respectively. Con-
versely, the average length of legal gadgets is about 13.5, which is longer than
the GWT. The average lengths of functional gadgets and NOP gadgets are 7.7
and 14.1, as shown in Fig. 7.

MaxRegMod is the maximum number of registers modified, and defines the
boundary between NOP gadgets and normal codes. Obviously, increasing the
MaxRegMod will increase the maximum lengths of potential NOP gadgets, and
include more normal codes into NOP gadgets. Thus, it may also increase the false
positive rates of GWT. Figure 8 shows the changes of average lengths of NOP
gadgets in GWT and GWT+CFI, with the MaxRegMod increasing. Although
a processor has 32 registers, many registers have special purposes, and only 8
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registers can be used for general-purpose computation usually. As a result, the
average length of NOP gadgets has little change, after MaxRegMod is larger
than 8. Additionally, because NOP gadgets have few effects on CRAs, and the
weighted score of NOP gadget is zero, appropriately increasing MaxRegMod will
not affect the CRA detection rate of GWT usually.

Fig. 7. The average numbers (left) and the average lengths (right) of different gadgets
in GWT and GWT+CFI

Fig. 8. The average lengths of NOP gadgets in GWT and GWT+CFI

6.2 Practical Attacks

We test GWT against CRAs generated by Q [1], which can automatically gener-
ate ROP payloads for given programs. Since we have already marked all possible
gadgets in these programs, GWT can easily detect the attacks consisting of gad-
gets, and count the weighted scores of gadgets in the CRA chains. Moreover,
since Q can only generate return-based gadgets, the gadgets are normal func-
tional gadgets in GWT, thus their weighted scores are 1 point. As a result, if
the gadget number is larger than the MaxCOI, a CRA is detected. At last, the
GWT can successfully detect 100% all the payloads generated from more than
100 applications under the directory /bin and /usr/bin/.

Then, we try to build some CRAs manually to bypass GWT. A practical
way is to structure a short and simple gadget chain to close DEP, and then to
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inject malicious codes [12]. At last, we build a few CRAs to close DEP in a well-
designed targeted program, which contain only a syscall gadget, a functional
gadget and several NOP gadgets. The COI of these CRAs is 5, which is smaller
than MaxCOI (6). However, it is very difficult to construct practical attacks
to bypass GWT, since we can not find such satisfactory gadgets in real-world
programs.

The weighted score of gadget types and MaxCOI are two critical parameters
for CRA detection. Larger weighted scores and smaller MaxCOI can offer higher
security, but may also increase the false positive ratio. Thus, we should define
proper values to balance the security and stability. Figure 9 demonstrates the
CRA detection rate and false positive rate of GWT with different MaxCOI.
With the MaxCOI increasing, GWT needs more gadgets to identify the CRAs.
CRAs generated by Q usually consist of 20–40 gadgets, and thus to set MaxCOI
less than 20 can detect most CRAs generated by Q. On the other hand, with the
MaxCOI decreasing, GWT may mistake some normal programs for CRAs. For
example, a normal program invokes a system call, and this system call may be
recognize as a syscall gadget. If we set MaxCOI less than 4, GWT will mistake
the system call invoked by this normal program for a CRA.

Fig. 9. The CRA detection rate (left) and the false positive rate (right) of GWT

7 Performance Analysis

In this section, we implement hardware architecture of GWT and GWT+CFI
in RTL (Register Transfer Level) using Verilog on a Loongson processor. More-
over, we select workloads from the SPEC CPU2006 benchmark [19], and these
benchmarks are compiled using the GNU version of GCC at O3 optimization
level.

We compare the performance overheads of GWT, RBCFI (rule-based CFI)
and GWT+CFI on the target applications and the system. Note that we only
perform RBCFI with three control-flow rules as described in Sect. 3 (i.e. pro-
tected system). We perform assembly-level instrumentation of the binaries for
both GWT and RBCFI to insert the additional information needed to perform
the checks for both methods.
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As shown in Fig. 10, the performance overhead of GWT is just about 2.31%
on the average and it is less than 6% for all benchmarks. Furthermore, the
performance overhead of GWT+CFI is about 3.55% on the average and it is less
than 9% for all benchmarks, which includes the overhead of GWT as well as the
overhead of rule-based CFI.

Fig. 10. Performance overheads of different methods (normalized to the baseline
system)

8 Conclusions and Future Work

In order to defend against CRAs, we propose GWT, a flexible, low-overhead and
high-security framework. GWT discovers and marks all potential gadgets with
static program analysis, and then dynamically monitors the weighted gadget
tags at runtime to calculate the probability of CRA occurrence. Furthermore,
we propose GWT+CFI, GWT combining with the rule-based CFI, can more
precisely find possible gadgets in code space, compared to the baseline GWT. We
implement GWT and GWT+CFI in a hardware/software co-design system. The
results show that the performance overheads of GWT and GWT+CFI are 2.31%
and 3.55% respectively, and GWT can defeat variants of CRAs with different
gadgets, especially those generated by automated tools. Moreover, GWT can be
further optimized by adding more special gadget types and better gadget type
classification.

The identification of the functional gadget, the NOP gadget and the normal
code in GWT is not perfect. Attackers may manually find some useful gadgets
which are identified as NOP gadgets in GWT, or find some NOP gadgets which
are recognized as normal codes in GWT. Therefore, we plan to propose more
precise methods to distinguish the gadget types. Additionally, it is our future
work to insert discovery algorithms of special gadgets to improve the security of
GWT, such as function-based gadgets.
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