
Simulation of Multi-perspective Declarative
Process Models

Lars Ackermann(B), Stefan Schönig, and Stefan Jablonski

University of Bayreuth, Bayreuth, Germany
{lars.ackermann,stefan.schonig,stefan.jablonski}@uni-bayreuth.de

Abstract. Flexible business processes can often be represented more
easily using a declarative process modeling language (DPML) rather
than an imperative language. Process mining techniques can be used to
automate the discovery of process models. One way to evaluate process
mining techniques is to synthesize event logs from a source model via sim-
ulation techniques and to compare the discovered model with the source
model. Though there are several declarative process mining techniques,
there is a lack of simulation approaches. Process models also involve multi-
ple aspects, like the flow of activities and resource assignment constraints.
The simulation approach at hand automatically synthesizes event logs
that conform to a given model specified in the multi-perspective, declara-
tive language DPIL. Our technique translates DPIL constraints to a logic
language called Alloy. A formula-analysis step is the actual log genera-
tion. We evaluate our technique with a concise example and describe an
alternative configuration to simulate event logs based on an assumed par-
tial execution as well as on properties that are intended to be checked. We
complement the quality evaluation by a performance analysis.

Keywords: Simulation of business processes · Predictive analytics ·
Multi-perspective process mining

1 Introduction

Business process simulation supports those phases of the business process man-
agement lifecycle that aim at the analysis and improvement of processes [1]. New
versions of processes are simulated in order to determine an optimal improve-
ment. Logs produced by simulating processes are analyzed in order to predict
effectiveness or efficiency of upcoming versions of processes. Besides analysis,
another purpose of process simulation is learning about the meaning of a process.
By simulating processes, modelers and users can learn to understand their behav-
ior based on selected log contents [2]. From cognitive science we learn that
studying and observing “good examples” of artifacts, here processes, develop
their comprehension [3]. A third purpose of simulation is its support for testing
process mining techniques [4]. Di Ciccio et al. [5] propose to use simulation in
order to generate process logs that are used to test and improve process mining
algorithms. It becomes obvious that simulation plays an important role in the
lifecycle of business process management.
c© Springer International Publishing AG 2017
M. Dumas and M. Fantinato (Eds.): BPM 2016 Workshops, LNBIP 281, pp. 61–73, 2017.
DOI: 10.1007/978-3-319-58457-7 5



62 L. Ackermann et al.

Fig. 1. Concept of multi-perspective declarative process model simulation

Most of the available simulation techniques are tailored towards imperative
languages such as BPMN, e.g. [6,7]. Over the last years, declarative process
modeling languages (DPMLs) [8–10] and declarative process discovery tech-
niques gained more and more attraction [4,11,12]. Imperative languages model
the underlying process explicitly using flow-oriented representations. In con-
trast, declarative languages assume process executions which are restricted by
constraints. Due to this semantic gap, the transformation of, especially multi-
perspective, declarative process models to an appropriate imperative representa-
tion is still vague [13]. Consequently, simulation techniques for imperative models
are not suitable for declarative models [5] which leads to a lack of simulation
tools for the latter. The approach presented in [5] is the only representative that
is able to generate traces based on rules that restrict the temporal ordering and
the existence of activities. The simulator and the underlying modeling language
consider only control-flow constraints but no other process perspectives includ-
ing organizational and data-oriented aspects [10]. To the best of our knowledge
a multi-perspective declarative process simulation technique is not available.

The approach visualised in Fig. 1 fills this research gap with a simulation tech-
nique for multi-perspective process models that is based on Declarative Process
Intermediate Language (DPIL) [10]. We based our simulation technique on a
transformation of DPIL rules to a logic language called Alloy [14]. An important
advantage of using Alloy, in contrast to simulation tools designed for imperative
models, is that DPIL rules and Alloy logic expressions have a direct correspon-
dence. Alloy ships with an analyzer that is able to exhaustively produce unique
examples and counter examples for a given Alloy model. It is possible to produce
logs with desired characteristics like size, maximum trace length, trace contents
or relative to a partial process execution trace.

This paper is structured as follows: Sect. 2 introduces DPIL. The discussion
of the contribution in Sect. 3 is based on a brief description of Alloy (cf. Sect. 2.2).
The evaluation is described in Sect. 4 and the paper is concluded in Sect. 5.

2 Background

In this section we introduce the foundations of our approach, i.e., declarative
process modelling and DPIL as well as Alloy.

2.1 Multi-perspective Declarative Process Modeling with DPIL

Research has shown that DPMLs are able to cope with a high degree of flex-
ibility [8]. The basic idea is that, without modeling anything, “everything is



Simulation of Multi-perspective Declarative Process Models 63

Table 1. Basic set of multi-perspective macros of the DPIL language

Macro Expanded pattern Semantic

Sequence(a,b) event(of b at :t) implies event(of
a at <t)

Task b cannot be started before
task a has been completed

Once(a) event(of a at :p) implies not
event(of a at <p)

Task a can be started once only

Consumes(c,i) event(of c at :t) implies write(of
i at <t)

Task c can not be started before
a data object i has a value

Produces(p,o) event(of p :t) implies write(of o
at <t)

Task p can not be completed
before a value for the data
object o is present

Role(a,r) event(of a by :id) implies
relation(subject id predicate
hasRole object r)

Task a must be performed by a
process participant in role r

Binding(a,b) event(of b by :id) implies
event(of a by id)

The tasks a and b must be
processed by the same identity

allowed”. To reduce this flexibility a declarative process model contains con-
straints which form a forbidden region for process execution paths. Indepen-
dent from a specific modelling paradigm different perspectives on a process
exist. The organizational perspective deals with the definition and the alloca-
tion of human and non-human resources to activities. Another perspective is the
data-oriented one which deals with restrictions regarding the data flow. The
Declarative Process Intermediate Language (DPIL) [10] is a multi-perspective
declarative process modelling language, i.e., it allows for representing several
business process perspectives, namely, control flow, data and especially resources
in one model. Comparable languages are data-aware Declare [15] and ConDec-
R [16]. In contrast to DPIL, the former only allows for formulating control-flow
and data-constraints and the latter provides support only for control-flow restric-
tions and resource allocation contraints. The expressiveness of DPIL and its
suitability for business process modelling have been evaluated [10] with respect
to the well-known Workflow Patterns and in industry projects, e.g. the Compe-
tence Center for Practical Process Management. Although we selected DPIL as
our example language, the principle is also applicable to other rule-based process
modeling languages.

DPIL provides a macro based textual notation to define reusable rules, shown
exemplarily in Table 1. We explain all macros using the example process model
of Fig. 2 which shows a simple process for trip management in DPIL. The process
model states, for instance, that it is mandatory for all applicants to produce the
application document for a business trip before it can be approved (produces
and consumes). Means of transport and accommodations can only be booked
after the application has been approved (sequence). Every task except booking
accommodations and means of transport can be performed at most once (once).



64 L. Ackermann et al.

Fig. 2. Process for trip management modeled with DPIL

The latter can be executed multiple times in order to allow, e.g., for flights with
stopover and multiple accommodations per trip. The task Approve application
must be performed by a resource with the role Administration. Additionally it
is required that the same person – here the applicant – books the flight and the
accommodation (binding). In the described setting there is no secretary which is
why the applicant is also responsible for collecting the tickets and for archiving
the collected documents. A process instance is finished as soon as the tickets are
collected and all documents are archived (milestone).

2.2 Alloy in a Nutshell

Alloy is a declarative language for building models that describe structures with
respect to desired restrictions. We first provide a concise and pragmatic descrip-
tion of Alloy’s language features: A signature (sig) is similar to a class in object-
oriented programming languages (OOPLs). It can be abstract and quantified. A
fact is comparable to invariants in the Object Constraint Language (OCL) [17]
and allows for specifying non-structural constraints. A function (fun) is a para-
meterizable snippet of re-usable code, that has a return type and performs com-
putations based on the given parameter values. A predicate (pred) is comparable



Simulation of Multi-perspective Declarative Process Models 65

to a function but with the limitation that its return type is always a boolean
expression. An additional major difference is that Alloy is able to run a predi-
cate, which means that the analyzer tries to find models for which that predicate
holds. An assertion (assert) can be used in combination with check commands
to test model properties. The body of facts and assertion share the same syntax
but in contrast to the former, the analyzer tries to find counter examples for a
particular assertion. For further information about the general Alloy syntax we
would like to refer to the dedicated literature [14].

3 Simulation of DPIL Models with Alloy

Due to Alloy’s declarative nature, it can be used to represent a declarative
process model. The correspondence between DPIL and Alloy as well as a map-
ping are described within this section, starting with a concise characterization.

3.1 Requirements and Functional Characteristics

Process simulation is used for the analysis of properties of business processes [1].
Our approach supports process analysis through event log generation. We iden-
tified the following requirements based on the introductory simulation purposes:

– Distinctness. Distinctness means to avoid redundant traces. This feature
keeps the set of examples as small as possible. Without this feature a log
can grow enormously without enhancing information content; its growth then
worsen its performance and clarity.

– Exhaustiveness. This feature guarantees that all possible process execution
paths of a defined maximum length are considered.

– Determinism. Determinism says that parts of the log can be replicated accord-
ing to user defined settings. This is needed to specifically weight alternative
execution paths.

– Multi-perspectivity. Processes are constituted by multiple perspectives [10].
These perspectives must be identifiable in a process log.

– Context-awareness. This property allows to analyze traces taking into account
particular process states. Such a process state might depict a certain (partial)
execution path; the log then should be analyzed whether there are processes
coinciding with that execution path. For instance, if such an execution path
depicts the beginning of a process trace, this analysis ascertains whether this
process will eventually terminate (i.e. a process trace must be found that
shows this prefix and reaches an end state).

– Reversibility. It can be useful to generate traces that explicitly violate process
specifications (counter examples). From cognitive science we adopt that
counter examples are good for gaining understanding (here: of processes) [18].

By basing the simulation on Alloy [14] the first two properties, distinctness
and exhaustiveness, are guaranteed. As a consequence, determinism is inciden-
tally achieved, too. The remaining two characteristics are explained further in
Sect. 3.4.



66 L. Ackermann et al.

3.2 Process Event Chain Meta-Model

Our approach currently focuses on three process perspectives which describes
(i) the temporal and existential relations between tasks (functional and behav-
ioral perspective), (ii) the involvement of resources (organizational perspective),
and (iii) data dependencies (data perspective). Due to this limited scope we are
able to treat activity executions as atomic and, therefore, do not have to take
into account the usual activity lifecycle. In Alloy we defined our meta model for
traces in form of process event chains (PECs) in three modules. Two of them are
shown in Listings 1.1 and 1.2. Both of them are based on another module provid-
ing only one signature, called sig AssociatedElement{}. This signature serves
as an interface for extending the meta-model with additional process elements
like variables or even elements of new perspectives like operations.

Listing 1.1 is the Alloy implementation of the well known organizational
meta-model introduced in [19]. The first line defines the module name. After-
wards, we make the mentioned AssociatedElement available by opening the
containing module. Line 4–8 allows for the definition of hierarchically struc-
tured relations where process resources [20] may be involved in based on a
subject-predicate-object (spo) notation. An example would be: John (s) hasRole
(p) Admin (o). In our corresponding Alloy-based process model we need four
additional signatures in order to represent an instance of this relation – one for
Relation itself and one for each of the contained fields.

module orgmetamodel
2 open processEventChain_commons

4 abstract sig Relation {s: one Element, p: one RelationType, o: one Element}
abstract sig Element extends AssociatedElement {}

6 abstract sig Identity extends Element{}
abstract sig Group{} extends Element{}

8 abstract sig RelationType{}

Listing 1.1. Organizational Meta-model

The structure of PECs was mainly motivated by the log structures discussed
in [21] as well as related literature and is described in Listing 1.2. After defining
the module name we make the two previously described modules available (line
2 and 3). The lines 5–17 describe the structural and the remaining lines describe
the non-structural properties of a PEC.

PEvent is an abstract “class” for a general discrete event, including a field
declaration for the unique (disj) position. The latter defines the position of the
event in the PEC. Alternatively, a more intuitive implementation would be a
Linked List. However, our performance tests showed that the proposed variant
is much faster. The signatures in line 7 and 8 are unique (keyword one) and
denote the beginning and the completion event of a process execution. Line
9 introduces the more interesting TaskEvent denoting an activity execution
and comprising an integer which is the inherited position as well as associated
information like the executed Task (cf. line 13) and the assigned organizational
resource. The Task signature is abstract and is extended in the actual Alloy
process model in order to represent concrete tasks (cf. Table 2). In order to



Simulation of Multi-perspective Declarative Process Models 67

module processEventChain_noLifecycle_multiperspect_IntBased_new
2 open processEventChain_commons

open orgmetamodel
4

// Signatures: Process Chain Element Structure
6 abstract sig PEvent { pos: disj Int }

one sig StartEvent extends PEvent{}{}
8 one sig EndEvent extends PEvent{}{}

abstract sig TaskEvent extends PEvent { assoEl: some AssociatedElement }{
10 #(Task & assoEl) = 1 }

sig HumanTaskEvent extends TaskEvent{}{
12 #(Identity & assoEl) = 1 }

abstract sig Task extends AssociatedElement{}
14 abstract sig DataObject {}

abstract sig DataAccess extends AssociatedElement{ data: one DataObject }
16 abstract sig WriteAccess extends DataAccess{}

18 // Facts: Additonal non-structural constraints
fact { ∀ intVal: Int • intVal ≥ StartEvent.pos }

20 fact { ∀ e: (PEvent - StartEvent - EndEvent) •
e.pos < (StartEvent.pos + #TaskEvent + 1) }

22 fact { EndEvent.pos ≤ (StartEvent.pos + #TaskEvent + 1) }
fact { ∀ assoEls: (AssociatedElement - Group) •

24 assoEls in TaskEvent.assoEl }
fact { ∀ do: DataObject • do in DataAccess.data }

26 fact { ∀ te: TaskEvent • #(te.assoEl & Group) = 0 }

28 // Utility Functions
fun exist(asso: AssociatedElement): set TaskEvent {

30 { te: TaskEvent • asso in te.assoEl } }
fun inBefore(curE: TaskEvent, asso: AssociatedElement): set TaskEvent {

32 { te: TaskEvent • te.pos < curE.pos and asso in te.assoEl } }
fun roleOf(id: Identity) : set Group{

34 { g: Group • some r: Relation • r.s=id and r.o in Group } }
fun dAccess(d: DataObject, type: DataAccess): one DataAccess {

36 { da: DataAccess • da in type and d in da.data } }

Listing 1.2. Process Event Chain Meta Model

distinguish between different activity types like manual and automated tasks,
the TaskEvent signature is abstract, too. In line 11 HumanTaskEvent is used
to represent a manual task and it consequently extends the TaskEvent signature.
Both signatures have an appended fact which also could be formulated using an
additional fact statement which is only a matter of personal preferences [14].
The appended facts ensure that a TaskEvent encapsulates exactly one task (line
10) and one executing resource (line 12). The lines 14–16 encode the functionality
to specify data objects and write accesses to these data objects. We decided to
extend a more general access type (DataAccess) in order to allow for extending
the meta-model with different access types like read accesses.

The lines 19–21 ensure that a process event chain starts with a StartEvent
(line 19) and ends with an EndEvent (lines 20–21) and consequently force all
TaskEvents to occur in between. The third fact ensures that the position incre-
ment between two consecutive tasks is 1. The remaining three facts ensure that
the solver only generates process elements that are “used” in at least one event
(lines 23–25) and prevents all events from containing information about organi-
zational structures (line 26), since the organizational structures can be defined
using the organizational meta-model shown in Listing 1.1.



68 L. Ackermann et al.

The first two utility functions collect all TaskEvents that involve the overall
execution of a given task (lines 29–30) or before (lines 31–32) a given event. The
function roleOf calculates all roles a particular resource has. The last function
identifies the concrete DataAccess signature for the given DataObject and type.

3.3 Transformation of DPIL Models to Alloy

Based on the process event chain meta-model presented above, we now discuss
how to transform a DPIL model into an Alloy model that contains all restric-
tions for valid process event chains. This involves two major steps: (i) Creating
signatures for tasks, roles and identities that fulfill these roles, data objects and
access objects and (ii) translating the DPIL rules to Alloy facts (cf. Table 2).

Table 2. Mapping: DPIL - Alloy

Tasks are modeled by extending the existing Task signature from the meta
model. In a similar way DPIL’s use group and documents are mapped by extend-
ing the Group and DataObject signatures, respectively. In order to type data
accesses, we additionally extend the DataAccess signature. Additionally a new
Relation signature is created to be able to easily assign a role to the desired
resources (Identity). Using this mapping it is only possible to represent flat
resource-role associations. However, based on the generic organizational meta-
model shown in Listing 1.1 it is possible to model hierarchical structures, too.

DPIL rules are modeled as Alloy facts. Alloy rules are declarative and first
select atoms belonging to particular signatures the rule shall be applied to. Using
the logical implication (→) operator one can specify rule activation (left part)
and validity conditions (right part). In order keep the rules concise, we make use



Simulation of Multi-perspective Declarative Process Models 69

of the functions contained in the process event chain meta-model like inBefore.
The current simple milestone transformation considers milestones that can be
reached when executing particular activities. Since facts are connected via con-
junction we can generate one fact per activity execution that is observed by a
milestone rule.

3.4 Simulation Configuration

There are two simulation parameters that are required in most cases [5]: (i) The
number of simulated traces (N) and (ii) the maximum trace length (L). Restrict-
ing the log size in terms of the number of traces is necessary to be able to pro-
vide a reproducible setting for trace generation. The number of events per trace
should be restricted because of potential infinite activity loops. Furthermore,
the aspect of reproducibility is also influenced by the trace length. Beside these
essential simulation boundaries additional parameters may be useful, dependent
on the simulation purpose. Though it is impossible to guess the particular simu-
lation purpose (cf. Sect. 1), this section describes three different configurations:
(i) Trace generation, (ii) context-aware simulation and (iii) property testing.

Using Alloy trace generation can be implemented by introducing an empty
predicate (sim) and configuring a run command. This can be done according to
the following template: run sim for [L] TaskEvent, [B] Int. The introduced
length parameter L can be configured directly through a scope restriction for
TaskEvents. Since we identify the position of an event in the process event chain
via an index, we also have to provide the number of integer values to generate.
This is done via the bitwidth parameter B. The Analyzer then generates integer
values in the codomain of

[
−2B

2 + 1, 2B

2

]
. Hence, B can be calculated directly

according to B = �ldL�. Via collecting all unique results produced by the Alloy
analyzer the desired amount of traces can be obtained.

Here, a context-aware simulation means that the simulation is not started at
the beginning of a particular process but “somewhere between” the start and the
end of the process. An example application is to check the satisfiability assuming
a particular process state and to generate all traces that remain. This can be
implemented by adding a fact for each assumed event that already happened
and assigning a fixed position as well as AssociatedElements to an event at this
position. The position can be calculated generically based on the position of the
StartEvent. The simulation can be started using a run command, too.

A hypothesis is an assumption regarding structure and contents of a trace.
In order to check hypotheses they have to be transformed into predicates. A
predicate can be checked in an assertion. Instead of using a run command the
check command has to be used but the parameters are the same. Running the
analyzer results either in counter examples proving that a hypothesis is wrong
or does not provide any result and, thus, corroborates a hypothesis. With this
mode selected properties of the source model can be tested.



70 L. Ackermann et al.

4 Implementation and Evaluation

In order to evaluate the simulation approach efficiently, we implemented a
model-to-text transformation using Acceleo1 which automatically translates
DPIL models into Alloy. Acceleo is an implementation of the MOF Model to
Text Transformation Language (MOFM2T)2 defined by the OMG. The trans-
formation is currently based on the macros discussed in the paper at hand. The
generated Alloy file is then used in our simulator implementation3 to generate
traces of a configurable length and amount and serializes them in the eXtensible
Event Stream (XES) [22] standard format. In order to evaluate the correct-
ness of the generated traces regarding the source process model we make use
of the same evaluation principle as in [5]. This means that we use a previously
evaluated process mining technology and try to reproduce the original process
model. For the paper at hand we utilized DPILMiner [4]. As evaluation exam-
ple we used the DPIL process model shown in Fig. 2. We configured DPILMiner
with the same set of rule templates like the simulation approach. After applying
transitive reduction techniques on the extracted model, DPILMiner reproduced
exactly the source model. Additionally, we performed property tests for all gen-
erated facts which is comparable to unit testing. These property tests have been
implemented using assertions and the check command. Another aspect of the
evaluation is the performance of the proposed simulation technique. Since the
simulation time increases with higher parameterizations for the number of traces
(N) and their maximum lengths (L), we have performed several simulations of
the continuous process model example with different configurations and results
shown in Table 3.

The performance analysis shows that the computation is mainly influenced by
the trace length. Furthermore, as a minor detail, we have no increase of computa-
tion time between the second and the third configuration (the time measurements
in parentheses). The reason was that with a maximum trace length of 10 there
are less then 100 different process event chains. For the performance analysis,
we used a Dell Latitude E6430 (Core i7-3720QM with 8 × 2.6 GHz, 16 GB mem-
ory, SSD drive and Windows 8 64 Bit). The simulator is implemented in Java
and we used a 64-Bit JVM with a maximum memory allocation pool of 4096M.
We decided to present the performance analysis without a comparison to the
technique discussed in [5] because there are large functional differences. First,
the approach presented in the paper at hand considers multiple perspectives,
which is not possible with the technique proposed in [5]. Secondly, our approach
guaranties to simulate all unique traces of a defined maximum length. Addition-
ally our simulation technique can be used in three different modes (cf. Sect. 3.4).
These major functional differences result in an increase of computation time and
in a significant decrease in terms of scalability. Thus, we can say that the app-
roach presented in [5] should be used if you need event logs with longer traces
that reflect the plain control flow. If the particular application involves multiple

1 Download: http://www.eclipse.org/acceleo, last access: July 22, 2016.
2 Standard: http://www.omg.org/spec/MOFM2T/1.0/, last access: July 22, 2016.
3 Screenshot and Download (incl. example data): http://mps.kppq.de.

http://www.eclipse.org/acceleo
http://www.omg.org/spec/MOFM2T/1.0/
http://mps.kppq.de


Simulation of Multi-perspective Declarative Process Models 71

Table 3. Performance analysis

L N Time in s L N Time in s

10 10 1.9 50 10 364.9

10 100 (2.4) 50 100 389.9

10 1000 (2.4) 50 1000 555.8

20 10 17.4 60 10 627.3

20 100 21.3 60 100 649.5

20 1000 52.8 60 1000 871.5

30 10 65.8 70 10 1167.1

30 100 71.8 70 100 1271.5

30 1000 122.3 70 1000 1697.0

40 10 159.0 80 10 2038.8

40 100 180.0 80 100 2194.3

40 1000 300.0 80 1000 2733.5

perspectives, and either the trace length is rather low or the computation time
is not a main concern we suggest to use the presented technique.

5 Conclusion and Future Work

The paper at hand describes a process simulation technique which can be used
to generate exemplary execution traces for a given process model in order to sup-
port business process management. There is only one comparable approach and
this considers only plain control-flow models. Our proposed simulation approach
primarily focuses on models that consider the behavioral, the organizational,
and the data-oriented perspective. Additionally to the generation of exemplary
traces, the simulation can be used in two additional modes, i.e. (i) context-aware
simulation and (ii) property testing. Both modes can be used for targeted process
analysis or gaining a deeper general understanding of the underlying process. A
generic meta-model for process event chains and an independent logic framework
called Alloy opens the opportunity for extensions. An open issue is the rather
low simulation performance and scalability in the case of longer process event
chains. Similar to general purpose programming languages, the same function-
ality can be developed more or less efficiently, dependent on the programming
style. Consequently, there is a huge potential for performance optimization, e.g.
the order of set joins which is a known issue in databases. Hence, we are cur-
rently planning a major evaluation study in order to get a better idea of the
driving factors for scalability. Another limitation is the small set of supported
rule templates (macros). In order to check Alloy’s applicability we formed the set
as heterogeneous as possible. Thus, extending this initial set of macros should
be rather straightforward. The presented technique focuses on trace generation



72 L. Ackermann et al.

rather than process performance analysis. Conventional simulation tools emulate
variability concerning activity durations and human decisions based on probabil-
ity distributions which cannot be modeled using Alloy. Hence, we are currently
developing a post-processing step which is able to compensate this limitation.

Acknowledgments. The authors would like to thank Prof. Westfechtel, Felix
Schwägerl (University of Bayreuth) and Prof. Daniel Jackson (MIT) for providing tips
and literature about modeling and analysis with Alloy.

References

1. van der Aalst, W.M.P.: Business process simulation revisited. Enterp. Organ.
Model. Simul. 63, 1–14 (2010)

2. Frank, U.: Multi-perspective enterprise modeling (memo) conceptual framework
and modeling languages. In: HICSS, pp. 1258–1267 (2002)

3. Brown, A.L., Kane, M.J.: Preschool children can learn to transfer: learning to learn
and learning from example. Cogn. Psychol. 20, 493–523 (1988)

4. Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: Mining the organisational
perspective in agile business processes. In: BPMDS, pp. 37–52 (2015)

5. Di Ciccio, C., Bernardi, M.L., Cimitile, M., Maggi, F.M.: Generating event logs
through the simulation of declare models. In: Barjis, J., Pergl, R., Babkin, E. (eds.)
EOMAS 2015. LNBIP, vol. 231, pp. 20–36. Springer, Cham (2015). doi:10.1007/
978-3-319-24626-0 2

6. De Medeiros, A.A., Günther, C.W.: Process mining: using cpn tools to create test
logs for mining algorithms. In: Proceedings of CPN, vol. 576 (2005)

7. Burattin, A., Sperduti, A.: PLG: a framework for the generation of business
process models and their execution logs. In: Muehlen, M., Su, J. (eds.) BPM
2010. LNBIP, vol. 66, pp. 214–219. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20511-8 20

8. Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zugal,
S.: Declarative versus imperative process modeling languages: the issue of under-
standability. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R.,
Soffer, P., Ukor, R. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp. 353–366.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01862-6 29

9. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imper-
ative versus declarative process modeling languages: an empirical investigation.
In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp.
383–394. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28108-2 37

10. Zeising, M., Schönig, S., Jablonski, S.: Towards a common platform for the support
of routine and agile business processes. In: CollaborateCom (2014)

11. Maggi, F.M., Bose, R.P.J.C., Aalst, W.M.P.: A knowledge-based integrated app-
roach for discovering and repairing declare maps. In: Salinesi, C., Norrie, M.C.,
Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38709-8 28

12. Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient
and customisable declarative process mining with SQL. In: Nurcan, S., Soffer, P.,
Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 290–305. Springer,
Cham (2016). doi:10.1007/978-3-319-39696-5 18

http://dx.doi.org/10.1007/978-3-319-24626-0_2
http://dx.doi.org/10.1007/978-3-319-24626-0_2
http://dx.doi.org/10.1007/978-3-642-20511-8_20
http://dx.doi.org/10.1007/978-3-642-20511-8_20
http://dx.doi.org/10.1007/978-3-642-01862-6_29
http://dx.doi.org/10.1007/978-3-642-28108-2_37
http://dx.doi.org/10.1007/978-3-642-38709-8_28
http://dx.doi.org/10.1007/978-3-319-39696-5_18


Simulation of Multi-perspective Declarative Process Models 73

13. Ackermann, L., Schönig, S., Jablonski, S.: Towards simulation- and mining-based
translation of resource-aware process models. In: Proceedings of ReMa (2016)

14. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2012)

15. Montali, M., Chesani, F., Mello, P., Maggi, F.M.: Towards data-aware constraints
in declare. In: Proceedings of the 28th SAC, pp. 1391–1396. ACM (2013)

16. Barba, I., Weber, B., Del Valle, C., Jiménez-Ramı́rez, A.: User recommendations
for the optimized execution of business processes. DKE 86, 61–84 (2013)

17. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Precise Modeling
With Uml (Addison-Wesley OTS). Addison-Wesley Professional, Boston (1998)

18. Zazkis, R., Chernoff, E.J.: What makes a counterexample exemplary? Educ. Stud.
Math. 68(3), 195–208 (2008)

19. Bussler, C.: Analysis of the organization modeling capability of workflow-
management-systems. In: PRIISM 1996 Conference Proceedings, pp. 438–455
(1996)

20. Object Management Group (OMG): Business process model and notation (bpmn)
version 2.0. Technical report, January 2011

21. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes, vol. 2. Springer, New York (2011)

22. Verbeek, H.M.W., Buijs, J.C.A.M., Dongen, B.F., Aalst, W.M.P.: XES, XESame,
and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72,
pp. 60–75. Springer, Heidelberg (2011). doi:10.1007/978-3-642-17722-4 5

http://dx.doi.org/10.1007/978-3-642-17722-4_5

	Simulation of Multi-perspective Declarative Process Models
	1 Introduction
	2 Background
	2.1 Multi-perspective Declarative Process Modeling with DPIL
	2.2 Alloy in a Nutshell

	3 Simulation of DPIL Models with Alloy
	3.1 Requirements and Functional Characteristics
	3.2 Process Event Chain Meta-Model
	3.3 Transformation of DPIL Models to Alloy
	3.4 Simulation Configuration

	4 Implementation and Evaluation
	5 Conclusion and Future Work
	References


