
Redefining a Process Engine
as a Microservice Platform

Antonio Manuel Gutiérrez–Fernández(B), Manuel Resinas,
and Antonio Ruiz–Cortés

School of Computer Engineering, University of Seville, Seville, Germany
{amgutierrez,resinas,aruiz}@us.es

Abstract. In recent years, microservice architectures have emerged as
an agile approach for scalable web applications on cloud environments.
As each microservice is developed and deployed independently, they can
be developed in the platform and programming language that best suite
their purposes, using a simple communication protocol, as REST APIs
or asynchronous event-based collaborations, to compose them. In this
paper, we argue that process engines provide an excellent platform to
develop microservices whose business logic involves complex work flows
or processes so that a Business Process language can be used as high-
level language to develop these services and a process engine to exe-
cute it. We identify the requirements for integrating a process engine
in a microservice architecture and we propose how the communication
and deployment in a microservice architecture can be handled by the
process engine.

Keywords: Process engine · Event-based asynchronous communica-
tion · Microservice architecture

1 Introduction

The popularity of microservices architecture is increasing in software devel-
opment. Opposite to monolithic designs or classic 3-layer web application,
microservice architectures propose decomposing application into small compo-
nents around business concepts. Although distributed systems are not a nov-
elty, current technology stack with web environments, cloud platforms or per-
sistence servers hinders monolithic application development and deployment.
In short, the microservice architectural style is an approach to develop a sin-
gle application as a suit of small services around business concepts (opposite
to functional responsibilities in n-layer architectures), each running in its own
platform and communicating with lightweight mechanisms [3]. The rationale
behind the microservices architecture is that decomposing complex applications

This work has been partially supported by the European Commission (FEDER), the
Spanish and the Andalusian R&D&I programmes under grants TIN2015-70560-R,
P12-TIC-1867, and P10-TIC-5906.).

c© Springer International Publishing AG 2017
M. Dumas and M. Fantinato (Eds.): BPM 2016 Workshops, LNBIP 281, pp. 252–263, 2017.
DOI: 10.1007/978-3-319-58457-7 19



Redefining a Process Engine as a Microservice Platform 253

into microservices allows evolving them independently which leads to more agile
developments and technological independence between them [4]. However, the
decomposition into microservices increases complexity of integration so the use
of event-based asynchronous communication is encouraged to also decouple inte-
gration interfaces between services. A number of organizations such as Netflix
or Twitter have moved to microservice architectures as their services grew. As
a matter of fact, one of the advantages of microservice approach is it allows to
choose the best suitable language to develop it. The decision making regarding
the platform lies on the microservice domain, developers expertise or technical
requirements.

In the last two decades, business process applications have been developed
using process engines. These systems currently support the development of web
front-ends, REST interaction and light deployments, such as a Java library
(e.g. Activiti1 or Camunda2). Traditionally, process engines have performed the
orchestrator role in Service Oriented Architectures. However, in a microser-
vice based application, this role is not strictly required as services are self
choreographed [10].

In this paper, we propose redefining the role of a process engine as microser-
vice platform instead of an orchestrator of services, for the development of ser-
vices whose business logic is a workflow, such as purchase orders in ERP. To
this end, we analyse the main required properties of a microservice and how a
process engine can be adapted to provide them as a microservice.

In the next section, we introduce an example application and introduce the
main features of a microservice architecture. In Sect. 3, we propose a methodol-
ogy to design the microservice and its interfaces with a process engine and, in
Sect. 4, we review other works related to services and process engines. Finally,
conclusions and possible work extensions are described in Sect. 5.

2 Motivation and Background

2.1 Purchase Order Management

We introduce, as an example, the development of an application that manages
Purchase Orders including their shipment logistics and bank payments. The
application starts when an employee fulfills a new purchase order, waits for bud-
get responsible validation, then deals with provider to request shipment, track
and receive it, and, lastly, handles the related account payments. This applica-
tion manages Purchase Order lifecycle and its related shipment and payment
and includes a number of decision points close to business domain. This lifecycle
can be quite straight-forward modelled as a Business Process, BP depicted in
the Fig. 1, and deployed it in a process engine. Therefore, a process engine can
fit as development platform to implement Purchase Order lifecycle.

1 http://activiti.org/.
2 https://camunda.com/.

http://activiti.org/
https://camunda.com/


254 A.M. Gutiérrez–Fernández et al.

Fig. 1. Purchase order process

In current technology context, microservices architectures have provided an
agile development pattern for scalable systems in cloud environments. These
architectures are characterized by the following features.

Organized Around Business Capabilities. Monolithic systems become
more difficult to maintain as they grow, so, following the single responsibility
principle, microservice architecture approach proposes decomposing functional-
ity into specific domain contexts to facilitate the development and testing stages
and manage scalability. These separated domain contexts are named bounded
contexts [2]. The decision about the granularity degree relies on the specific busi-
ness domain concepts and development management (team size, expertise,...) so
there are no fixed rules about decomposition scale but it should be enough small
so a single team could be the only responsible for the development of a given
microservice (and, e.g., in a development iteration, such as two weeks).

Decentralized Data Management. The microservice is responsible for man-
aging the complete lifecycle of the business objects that fall in its bounded
context (business logic, persistence,...) so that their details are encapsulated in
the microservice and the interactions between objects in different microservices
has to be performed with a public exposed interface.

Deployment in Isolation. Besides the encapsulation of the management of
objects, each microservice has to be deployed in isolation, which decouples the
development and execution platform between different microservices. There-
fore, each microservice can be developed with the most suitable language for
its purposes (considering technical or functional requirements). And, through
this isolation, a microservice can be developed and updated avoiding that the
related microservices (those that requires or provides operations from or to this
microservice) require changes.

Interaction with Other Microservices. As we introduced, the dependen-
cies between microservices are exposed with an application programming inter-
face (API). Following the boundary context, this interface should be defined in
terms of business concepts. In traditional service oriented architectures (SOAs),



Redefining a Process Engine as a Microservice Platform 255

the interactions are commonly orchestrated through a mediator. However, in
microservices architectures is preferred avoiding this orchestrated role so the
services are self choreographed with a lightweight protocol, such as REST APIs.
This choreography requires each microservice knows exact details of consumed
operations (not only domain details but also endpoints or communication pro-
tocol). Furthermore, if they communicate with a synchronous pattern, microser-
vices are dependent of consumed microservices (errors or too slow operations
block execution). To avoid this coupling, event-driven asynchronous communica-
tion are preferred in microservices architectures [6]. The asynchronous approach
requires a message broker which event consumers subscribe to and which han-
dles emitted events to the related subscribers. With this approach, the blocking
errors in consumed operations and the direct dependency between providers and
requesters (event emitter and subscriber) are avoided.

Interaction with User Interface. Lastly, microservices architectures has to
provide a proper handling of user interface. There are several approaches to
develop the whole application frontend based on different microservices. On one
side, we can develop a complete independent UI which uses the provided APIs
by microservices to handle the business data. In this approach, UI component
is highly coupled with the microservices and device-aware rendering is difficult
as the provided APIs are business guided. Other approach is each microservice
provides its own piece of User Interface and they are assembled to provide a
full front-end. This approach requires a mechanism with templates systems or
style sheets to provide a seamless appearance and it also is dependent on user
client technological context where compositions could be harder to deal with
(native applications or thick clients). And lastly, another approach is composing
UI pieces from the different microservices in the backend, so a central server
layer provides different user interfaces, for different user roles, devices, etc. This
approach relies certain control in the UI management so it could handle logic it
shouldn’t.

2.2 Purchase Order Application as Microservice Architecture

Going back to our example, our application includes three business concepts -
Purchase Orders, Shipments and Payments. Regarding the boundary contexts for
a microservice architecture, we consider a decomposition into three microservices
around these business concepts. The developers of these services should consider
functional requirements, team expertise or technological aspects to implement
them. As we introduced, business process modelling notation and process engine
are, respectively, a suitable language and platform to develop Purchase Order
logic. However, there are a number of challenges that have to be addressed in
order for the process engine to perform as a microservice platform. First, the
process engine has to support the management of the full lifecycle of Purchase
Orders, including business logic and persistence (Point 1 in Fig. 2). Second, as the
development and deployment is independent between different microservices, one



256 A.M. Gutiérrez–Fernández et al.

Fig. 2. Microservice architecture example

process engine has to be independently deployed and executed for each microser-
vice where they perform as platform (opposite to traditional single deployment
for a process-based application), as depicted in Point 2 in Fig. 2. Furthermore,
process engines usually provide management and interaction interfaces but they
have to be adapted or wrapped to communicate in asynchronous event-based
ground (Point 3 in Fig. 2) and focused on business events (not to process events).
And, last, the integration of user interfaces for the different microservices have
to be addressed.

3 Building Microservices with a Process Engine

In this section, we argue how to address the introduced microservice features
with a process engine as development platform for Purchase Order microservice.

3.1 Organized Around Business Capabilities

The example application introduced in previous section involves three business
concepts: Purchase Order, Shipment and Payment. We depicted the business
process for Purchase Orders which handles the full lifecycle of them. Shipment
and Payment have their own processes, related to different business areas as
logistics and accounting. Therefore, a decomposition into three microservices
around each business concept fits with the leading single responsibility principle
in the microservices architectures.



Redefining a Process Engine as a Microservice Platform 257

3.2 Decentralized Data Management

We have proposed developing Purchase Order microservice with a process engine
as a platform. As we introduced, this implies the process engine has to manage
the full lifecycle of Purchase Order objects. Process engines commonly self man-
age objects during business process instances and delete them after they finish
(sometimes they store them just for keeping history traceability), encapsulating
their persistence system (relational database, runtime memory,...). Therefore,
the domain object managed by microservice has to be completely handled by
one business process instance, as the Purchase Order in the Business Process
in Fig. 1 (in other case, the system should be extended to manage the objects
out of the process instance runtime or other development platform would be
encouraged).

The properties for Purchase Order Data Object are depicted in Table 1.

Table 1. Purchase order data object

Reference An unique string to identify purchase order (e.g.: ’A#432-2015’)

Description A string to humanly describe the content of the purchase order
(e.g.: ’Monitor 22”)

Date A date value related to Order date (e.g.: ’15/12/2014’)

Status An enumerated from {ordered, verified, requested, delivered,
finished} to indicate the purchase order status (e.g.: ’ordered’)

Payment Payment information (bank account, price, date,...). This
resource is managed by another microservice

Shipment Shipment information (provider, receive date,...). This resource is
managed by another microservice

In process engines, data are not a first-class citizen and they are simple man-
aged as process variables without relationship between them. Therefore relating
object requires manual handled references or extending the object model.

3.3 Deploying Process Engine Microservice

A microservice has to be self managed, i.e., each one is deployed and run inde-
pendently. Therefore, each microservice has to be deployed with their own plat-
form. Process engines have traditionally provided a platform to develop single
full process oriented applications. However, in the last years, lightweight open
source process engines, such as Activiti or Camunda, have appeared where their
process engine can be deployed as a Java library in a external application.

In the context of cloud applications, a number of solutions propose deploying
independent platforms through Virtual Machines or other approaches as Docker
containers (chapter Deployment in [6]). Therefore, the deployment of an indi-
vidual process engine to perform a single microservice (through virtualization or



258 A.M. Gutiérrez–Fernández et al.

container), enables the required self-management. Figure 3 depicts an example
stack of technologies to provide a process-engine-based microservice with a Java
process engine (such as Camunda). The business process model and their related
code to automate tasks (e.g. Java code in case of Camunda) is installed on a
Camunda instance. This instance runs over a Java Virtual Machine and its single
deployed on a Virtual Machine. Camunda stores execution data on a database
which commonly would be deployed in a separate Virtual Machine. And the two
Virtual Machines together form the microservice.

Fig. 3. Process engine microservice technology stack

As a result of this stack, there could be several process engines running simul-
taneously (one per each microservice) in the same application but the introduced
overhead is not significant and it allows that different microservices evolve and
scale independently.

We have also to point out that, in this work, we propose getting advantage of
the process engine capabilities but Business Process Management Systems also
commonly provide other functionality, such as a Process Modeller, that could
be used in the processes definition but this is not deployed or included in the
microservice.

3.4 Managing Microservice Asynchronous Communication

In order to develop an asynchronous event-based mechanism with a message
broker, such as RabbitMQ -which fully support enterprise integration patterns- is
proposed, although a similar simpler approach could be based on Atom standard
and HTTP.

We study how to communicate with the process engine through a message
broker to provide an asynchronous event-driven communication protocol, as
depicted in Fig. 4.



Redefining a Process Engine as a Microservice Platform 259

In the figure, related to our example Purchase Order, an event “New Pur-
chase Order (PO)” is emitted by an external service. Then it’s propagated to
the Purchase Order microservice (Step 1 in Fig. 4), which is subscribed to this
event. This microservice, developed with a process engine, requires handling
the event message as an operation provided by the process engine (Step 2 in
Fig. 4). This operation is mapped to a process interaction, such as the creation
of a “New Process Instance” (Step 3 in Fig. 4). The handling of “New Purchase
Order” event message as a “New Process Instance” operation in the Process
Engine is provided by an Event Mapper component. This component is part of
the process engine microservice and would responsible for: (i) Subscribing to the
microservice related events (e.g. “New Purchase Order” or “Payment Confirma-
tion”), (ii) Map the incoming event message to the own operation provided by
the process engine (e.g. “New Purchase Order” event message into “New Process
Instance” operation and the outcoming requests from the process engines into
event messages (e.g. “Process Purchase Order” request into “Process Purchase
Order” event message). This map includes the routing and adapting of messages
content.

Some process definition languages, such as BPMN, provide an event-based
explicit mechanism to communicate process from different parties. There are a
number of existing solutions to develop this Event Mapper component, such as
Spring Integration or Mule, which provide mappers of different message proto-
cols, so we can use them to different process engines (which are compatible with
the supported message protocols). Modern process engines provide a synchro-
nous management interface, commonly as a REST API, to create or interact
with process instances, so it could also be used for several purposes (as sup-
port to user interface), but in this work, we focus on providing an asynchronous
communication.

Fig. 4. Purchase order microservice with event-driven communication



260 A.M. Gutiérrez–Fernández et al.

Regardless the Event Mapper we use, to define a generic Event API and
required mappings in the Event Mapper, we identify the required interactions
with process engine that should be provided as events. These events relate with
objects, regarding the possible states in their lifecycle: (i) Propagation of Object
information, (ii) Creation of objects, (iii) Object updates. Therefore, the Event
API has to meet the following requirements:

R1: Object information. Relevant changes in objects managed by the microser-
vice process/es has to be notified through an event message.

R2: Creation of Objects. As without process instances there are no Objects, the
API has to enable process instance creation.

R3: State-Machine awareness. The object state machine is provided by business
process execution so the Event API has to enable interacting with process
instances in those points that are waiting for external data, so the process
instance can advance (and business object changes its state).

According to R1, all relevant changes in objects managed by business process
have to be notified. This can be explicitly included in the process definition with
the process language mechanisms or develop a generic mechanism of notifying
any change on Data Objects. To support R2 and R3, we analyse tasks and data
flow in business process for Purchase Orders. Regarding to R2, when a process
instance starts there is no existing Data Objects so using events different to
“New Purchase Order” should have no effect. If the process instance starting is
related to the creation of a Data Object, then it is invoked by a New Data Object
Event (i.e.: New Purchase Order Event). Regarding to R3, possible interactions
with Object workflow are:

– An explicit business process event. If the business process explicitly waits for
an external event, the object flow activates at the reception of a message (e.g.,
as intermediate event or as part of a reception task in BPMN).

– Implicit waiting task. On the one side, some tasks in process require from user
interaction (User tasks). Modern process engines usually provide a web inter-
face for this interaction so we can directly communicate with these interfaces
through HTTP. On the other side, automatic tasks can also include active
waiting for events (performed by programmatic mechanisms).

These stages in the proposed example are depicted with BPMN in Fig. 5. In
the example, when a process is instantiated (1), a Data Object for a Purchase
Order (PO) is created (from required Reference and Description values) and
its Status is initiated to ’ordered’. After budget manager checks PO, the Data
Object is updated in (2) to change the Status value to ’approved’ or ’cancelled’.
If the PO is approved, there is a request for shipment and when shipment is
received in (3), the PO Object is updated again to change the Status to ‘received’
and to relate it to shipment Data Object.

Considering the previous discussion about Message, these three events can
be related to external Messages. Purchase Order creation in (1) relates to mes-
sage “New Purchase Order”. Purchase Order update in (2) and (3) relates to



Redefining a Process Engine as a Microservice Platform 261

Fig. 5. Process flow interactions

Table 2. Mapping from events to process instance stage

Business object event Process stage

New purchase order event Start Instance

Budget manager approval User Task

Shipment received Receive Event

Purchase order update Any stage

“Budget Manager Approval” and “Shipment Received” messages. After any cre-
ation or update of Purchase Order objects, corresponding event is notified with
a “Purchase Order Update” message. A summary map for these relationships is
depicted in Table 2. As deleting a Data Object is not consistent with a process
workflow, we do not consider this event in our proposal.

3.5 Developing User Interface

In an event asynchronous communication pattern, the frontend can be developed
using this event interface. Therefore, the frontend has to be aware of Purchase
Order lifecycle to provide a consistent interface (e.g.: Interface to create a new
Purchase Order has to provide all the required data fields for a new Purchase
Order). To support any screen related to purchase order management, the user
interface should subscribe to all “Purchase Order Update” events and emit an
event after each “Purchase Order” updating (“Shipment Received” or “Budget
Manager Approval” events) or creation (“New Purchase Order” event) through
the user interface.

Process engines already feature user interface mechanisms to manage process
instances, interact with tasks, authorization, etc. However, these facilities are



262 A.M. Gutiérrez–Fernández et al.

thought to be used in a single process engine application and not integrated in
a composed application. Therefore, the frontend has to be fully developed.

4 Related Work

As far as we know, there is no approach related to use a process engine as a
platform to implement microservices. A number of research works have explored
managing business processes as services. In [9], a REST API is proposed to con-
sume a business process as a REST Resource. This idea is extended in [5] to
provide a scalable architecture for business process services, considering runtime
aspects. While both of them provide a REST API to interact with business
processes, their goal is managing them as resources while our goal is to use busi-
ness process model as the ‘programming language’ to manage -other- resources.

Other papers propose to use business processes as services orchestrators3. In
this respect, Pautasso et al. [8] propose using BPEL to compose REST services
and Bellido et al. [1] define control-flow patterns for REST services managed
by business process. The base of these proposals is to use processes for their
capabilities to provide a specific function, orchestration, in a service architecture
while our proposal focuses on providing a generic purpose platform to develop
microservices.

And, at last, Overdick [7], proposes extending BPEL to manage the state
machine of resources in REST way. They get advantage of BPEL as event han-
dler to control HTTP operations on the resources. So, while our approach is to
fully develop suitable microservices with processes, this work only provides an
extension to BPEL in order to capture and manage REST requests.

5 Conclusions and Future Work

In this paper, we have shown how to encapsulate business processes and process
engines as programming language and platform to develop a microservice.
Specifically, we first analyse the characteristics of microservice architectures to
define the requirements for a process engine to implement a microservice. With
these requirements, our proposal proposes different approaches to handle these
requirements.

This work is a first approach to support a novel platform for the indus-
try microservice architectures but there are several lines of future work. First,
this approach has to be extended to more complex aspects such as interac-
tions between processes in the same microservice or responsibility delegation
events. Second, we focus on the interface to handle business objects, but common
microservices also usually provide a management interface to monitor execution
or to control configuration properties. And, last, this approach has to be applied
to real scenarios to validate its feasibility.

3 http://www.bpm-guide.de/2015/04/09/orchestration-using-bpmn-and-
microservices/.

http://www.bpm-guide.de/2015/04/09/orchestration-using-bpmn-and-microservices/
http://www.bpm-guide.de/2015/04/09/orchestration-using-bpmn-and-microservices/


Redefining a Process Engine as a Microservice Platform 263

References

1. Bellido, J., Alarcón, R., Pautasso, C.: Control-Flow patterns for decentralized
RESTful service composition. ACM Trans. Web (TWEB) 8(1), 5 (2013)

2. Evans, E.J.: Domain-Driven Design: Tacking Complexity in the Heart of Software.
Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

3. Fowler, M.: Microservices, March 2014. http://martinfowler.com/articles/
microservices.html

4. Fowler, M.: Microservices trade-offs, January 2015. http://martinfowler.com/
articles/microservice-trade-offs.html

5. Gambi, A., Pautasso, C.: RESTful business process management in the cloud.
In: 2013 ICSE Workshop on Principles of Engineering Service-Oriented Systems
(PESOS), pp. 1–10, May 2013

6. Newman, S.: Building Microservices. O’Reilly Media, Incorporated, Sebastopol
(2015). https://books.google.es/books?id=1uUDoQEACAAJ

7. Overdick, H.: Towards resource-oriented BPEL. In: Gschwind, T., Pautasso, C.
(eds.) Emerging Web Services Technology, Volume II. Whitestein Series in Software
Agent Technologies and Autonomic Computing, pp. 129–140. Birkhäuser, Basel
(2008)

8. Pautasso, C.: RESTful web service composition with BPEL for REST. Data Knowl.
Eng. 68(9), 851–866 (2009)

9. Pautasso, C., Wilde, E.: Push-enabling RESTful business processes. In: Kappel,
G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp.
32–46. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25535-9 3

10. Richards, M.: Microservices vs Service-Oriented Architecture. O’Reilly Media,
Incorporated, Sebastopol (2015)

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservice-trade-offs.html
http://martinfowler.com/articles/microservice-trade-offs.html
https://books.google.es/books?id=1uUDoQEACAAJ
http://dx.doi.org/10.1007/978-3-642-25535-9_3

	Redefining a Process Engine as a Microservice Platform
	1 Introduction
	2 Motivation and Background
	2.1 Purchase Order Management
	2.2 Purchase Order Application as Microservice Architecture

	3 Building Microservices with a Process Engine
	3.1 Organized Around Business Capabilities
	3.2 Decentralized Data Management
	3.3 Deploying Process Engine Microservice
	3.4 Managing Microservice Asynchronous Communication
	3.5 Developing User Interface

	4 Related Work
	5 Conclusions and Future Work
	References


