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Abstract. Mapping languages allow us to define how Linked Data is
generated from raw data, but only if the raw data values can be used as
is to form the desired Linked Data. Since complex data transformations
remain out of scope for mapping languages, these steps are often imple-
mented as custom solutions, or with systems separate from the mapping
process. The former data transformations remain case-specific, often cou-
pled with the mapping, whereas the latter are not reusable across sys-
tems. In this paper, we propose an approach where data transforma-
tions (i) are defined declaratively and (ii) are aligned with the mapping
languages. We employ an alignment of data transformations described
using the Function Ontology (FnO) and mapping of data to Linked Data
described using the RDF Mapping Language (RML). We validate that our
approach can map and transform DBpedia in a declaratively defined and
aligned way. Our approach is not case-specific: data transformations are
independent of their implementation and thus interoperable, while the
functions are decoupled and reusable. This allows developers to improve
the generation framework, whilst contributors can focus on the actual
Linked Data, as there are no more dependencies, neither between the
transformations and the generation framework nor their implementa-
tions.

Keywords: Data transformations - FnO - Linked Data generation -
RML

1 Introduction

Workflows that generate Linked Data from (semi-)structured data encompass
both schema and data transformations [22]. Schema transformations involve
(re-)modeling the original data, describing how objects are related, and deciding
which vocabularies and ontologies to use [18]. Data transformations are needed
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to support any changes in the structure, representation or content of data [22],
for instance performing string transformations or computations.

Schema transformations — also called mappings — are defined as a collection of
rules that specify correspondences between data in different schemas [13]. Lately,
schema transformations are declaratively defined using mapping languages such
as the wgc-recommended R2RML [7] or its extension RML [12]. Mapping lan-
guages detach rule definitions from the implementation that executes them. This
renders the rules interoperable between implementations, whilst the systems that
process those rules are use-case independent.

However, Linked Data generation systems usually assume data transforma-
tions are done beforehand. For instance, the R2RML specification explicitly men-
tions that data transformations or computations should be performed before
generating Linked Data by generating a virtual table based on the result-set
of an sQL statement (i.e., an SQL view) [7]. Other relevant w3C recommenda-
tions and working drafts do not take data transformations into account. More
precisely, when discussing the “Convert Data to Linked Data” step, the Linked
Data Best Practices [18] recommends using mapping languages — which only
implies schema transformations — and does not distinguish data transformations
elsewhere. Similarly, csvw [27] specifies how to generate Linked Data from csv
by directly mapping the raw data values as is.

Systems that do include data transformations exist, but show one or more of
the following limitations: the schema and data transformations are uncombinable,
the allowed data transformations are restricted, the system is case specific, or
the data transformations are coupled with the implementation.

For instance, the DBpedia Extraction Framework [2] (DBpedia EF) that gen-
erates Linked Data for one of the most widely known datasets, requires very
specific data transformations, which are not available in existing systems. Thus,
a case-specific hard-coded framework that depends on an internal set of parsing
functions to generate the data values in the correct format was created. These
parsing functions are coupled with the DBpedia EF, the schema and data trans-
formations are uncombinable, and the overall system is case specific. Specifically
for the DBpedia EF, these parsing functions are of high value. Indeed, they were
created to parse manually entered (i.e., ambiguous and error-prone) data and
are used for (and thus evaluated on) the entire Wikipedia corpus.

In this paper, we propose an approach that enables (i) declarative and
machine-processable data transformation descriptions and (ii) the alignment of
schema and data transformation descriptions. To validate this approach, we
employ transformations described using the Function Ontology (Fn0) [10], and
align them with the RDF Mapping Language (RML) [12].

We apply our approach to the DBpedia EF. In the resulting system:

Schema and data transformations are combinable:
No separate systems need to be integrated.

Data transformations are independent of the mapping processor:
They are not restricted by the processor’s capabilities.
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Declarative transformations are interoperable:
The implementation can be case-independent.
Data transformations are reusable:
Their implementation is no longer dependent on the generation system.

We built and used the extended RMLProcessor with mapping documents to cre-
ate the same DBpedia dataset, allowing more types of schema transformations,
and enabling developers to work separate from contributors. The built Func-
tion Processor allows for an easier integration of data transformation libraries
with other frameworks, and the DBpedia data parsing functions are made avail-
able independently, so other use cases can benefit from these data parsing tasks
without needing to re-implement them.

The paper is organized as follows: after investigating the state of the art in
Sect. 2, we detail why aligning declarative schema and data transformations is
needed in Sect. 3. In Sect. 4, we introduce our approach, which we apply to RML
and FnO, and provide a corresponding implementation. In Sect. 5, we explain how
the DBpedia EF currently works, and prove how applying the proposed approach
enables a fully declarative system with the same functionality as the existing
DBpedia EF. Finally, we summarize our conclusions in Sect. 6.

2 State of the Art

Linked Data generation workflows require both schema and data transforma-
tions to generate the desired Linked Data [22]. Nevertheless, even though data
transformations are often required [16], recommendations or best practices were
not established so far, leading to a broad range of diverse approaches.

The simplest approaches rely on custom solutions which try to address both
schema and data transformations in a coupled and hard-coded way, such as the
DBpedia EF [2]. However, those approaches require new development cycles every
time a modification or extension is desired. For instance, any change on the data
transformations performed to generate the DBpedia dataset requires extending
the DBpedia EF. There are cases where such approaches do allow certain config-
urations, yet those configurations are limited and, at least for the DBpedia EF,
they focus on schema transformations rather than data transformations.

Similarly, case-specific solutions were established, which also couple the
schema and data transformations. For instance, XSLT- or XPath-based approaches
were established for generating Linked Data from data originally in XML format,
such as by Lange [20]. In these cases, the range of possible transformations is
limited by the respective language or syntax potential, while they can be per-
formed prior or while the mapping is performed. Similarly, even mapping lan-
guages, such as HIL [14], D2RQ [6], or R2RML [7] can be considered, as their range
of possible data transformations is determined by the range of transformations
that can be defined when the data is retrieved from the data source, e.g., data
transformations supported by SQL, performed before the mapping.

Other solutions first perform a direct mapping [1] to Linked Data, and
then perform schema and data transformations on that generated Linked Data.
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The range of possible data transformations then often depends on SPARQL, as is
the case of Datalift [25]. More customization is enabled by solutions that allow
embedded scripts inside mapping documents such as R2RML-F [11]. However,
they require existing libraries (and their dependencies) to be embedded (or pos-
sibly rewritten) within the mapping document, and are inherently limited to the
standard libraries provided by the runtime environment (e.g., runtime environ-
ments often — for safety reasons — disallow file Input/Output operations).

There are also query-oriented languages that combine SPARQL with other
languages or custom alignments to the underlying data structure. For instance,
XSPARQL [5] maps data in XML format, RgM [15] data in relational databases and
Targl' data in csv. Query-oriented languages are restricted to data transforma-
tions which can be translated when the query translation is performed, such as
R3M that requires bidirectional transformations to retain read-write access [16].

Besides the aforementioned custom solutions, there are Linked Data genera-
tion workflows which rely on distinct systems to perform the schema and data
transformations. These types of transformations cannot always be distinguished,
as data transformations may affect the original schema. Such data transformation
tools typically couple the transformation rules with their implementation, being
either format specific (e.g., XSLT for data in XML format), or generic (e.g., Open
Refine?). As the latter are targeted to contributors, they are often interactive.
Thus, most data transformation systems can be configured and this happens
often using a User Interface (UI), of which one of the most widely known is
OpenRefine. Other systems — specifically for generating Linked Data — include
the Linked Data Integration Framework (LDIF) [26], Linked Pipes [19], and
DataGraft [24]. Their support for data transformations range from a fixed pre-
defined set of transformations (e.g., LDIF and Linked Pipes) to an embedded
scripting environment (e.g., OpenRefine and DataGraft).

Lately, different approaches emerged that define data transformations declar-
atively, such as Hydra [21] for Web Services, VOLT [23] for SPARQL, or FaO [10]
as technology-independent abstraction. Hydra or vOLT depend on the underly-
ing system (Web Services and SPARQL, respectively), thus their use is inherently
limited to that system. On the one hand, using Hydra descriptions for executing
transformations only works online, and requires all data to be transferred over
HTTP, which is not always possible due to size or privacy concerns. On the other
hand, voLT only works for data already existing in a SPARQL endpoint. Describ-
ing the transformations using FnO does not include this dependency, thus allows
for reuse in other use cases and technologies.

3 Limitations and Requirements

In this section, we discuss current schema and data transformation systems
limitations (Sect. 3.1) and requirements (Sect. 3.2).

! https://targl.github.io/.
2 http://openrefine.org,/.


https://tarql.github.io/
http://openrefine.org/

Declarative Data Processing for Linked Data Generation 37

3.1 Limitations of Current Systems

Considering the current Linked Data generation systems discussed above, we
come across data transformations which are (i) uncombinable, (ii) restricted,
(iii) part of a case specific system, or (iv) coupled, as we discuss below.

Uncombinable. When schema and data transformations are executed in succes-
sive steps (e.g., in the DBpedia EF, R2RML, or Datalift), additional integration is
needed between them. However, schema and data transformations often depend
on each other. Data transformations could influence the attributes of objects
and vice versa. For instance, the calculated population of a settlement decides
whether it is called a “town” or “city”. This integration thus becomes complex,
hurts interoperability, or limits the allowed transformations.

Restricted. Data transformations are embedded, defined and coupled within
the system that executes them. Both in dedicated data transformation sys-
tems as when data transformations are embedded in mapping languages, the
range and type of transformations used is limited to the ones implemented by
the underlying system. Either a fixed set of data transformations is provided
(e.g., LDIF, Unified Views), thus no other transformations can be defined, or
a restricted scripting environment allows the definition of data transformations
(e.g., OpenRefine, R2ZRML-F). In both cases limitations exist, e.g., using addi-
tional libraries, file manipulations, or external services are often disallowed. As
such, existing tools cannot be applied for every use case. Supporting specialized
use cases then usually requires providing separate systems (e.g., GeoSPARQL [4]
for the geospatial domain). For instance, Blake et al. [23] unveiled quality issues
in DBpedia as the current extraction framework does not support basic geo-
graphic calculations, such as calculating the population density.

Case Specific. Hard-coded systems couple the reference to a certain transforma-
tion with its implementation, and also mapping languages and dedicated systems
support an opinionated set of transformations. As such, they can only be used
for certain cases, and they require changes to the source code to apply any
modifications or extensions, i.e., new developments cycles.

Coupled. So far, data transformations definitions are coupled with the imple-
mentation that executes them. For instance, data transformations specified
by OpenRefine cannot be reused in other systems, and data transformations
implemented in hard-coded systems are only available for that system and not
reusable by others. Similarly, the coverage of data transformations differs across
data sources, e.g., it is different between different SQL dialects for relational
databases, XQuery for XML documents, and JSONPath for JSON documents.
Chances of discrepancies between different systems (and the Linked Data they
produce) are thus very high.



38 B. De Meester et al.

3.2 Requirements for Future Systems

In this paper, we argue that data transformations should be (i) declaratively
specified, and (ii) aligned with declarative mapping languages. By specifying
data transformations declaratively, just as for mapping languages, we decouple
the transformations from the implementation that executes them. By aligning
them with mapping languages instead of embedding them within the mapping
languages, we remove the burden of the mapping processor to provide all needed
functionality, allowing the implementations of the data transformations to exist
separately from the generation system. This way, we achieve data transforma-
tions which are reusable, interoperable, independent, and combinable, as detailed
below.

Reusable. Data transformations implementations should be reusable across use
cases and systems, not necessarily only for Linked Data generation.

Interoperable. The declarations for data transformations should remain inde-
pendent of the underlying implementation, i.e., be interoperable. This strictly
separates the concerns of developers with those of contributors: developers can
implement and improve the tools without being required to obtain domain knowl-
edge, whilst contributors can focus on data modeling without being needed to get
acquainted with the systems’ source code. The generation of these declarations
can be facilitated using a (graphical) editor [17].

Independent. Schema and data transformation declarations should be indepen-
dent from each other. As such, their corresponding implementations also remain
independent of each other, without enforcing mutual limitations. As such, (cus-
tom) data transformations can be integrated in the mapping process, but it is not
required, i.e., they can still be executed in advance, and the mapping languages
can still be used without data transformations.

Combinable. Data transformations should be usable not only in separate steps,
but be combinable, e.g., with schema transformations. This enables, e.g., joining
and meanwhile transforming multiple input values, or conditionally change the
schema depending on the data transformations and vice versa.

4 Declarative Data Transformations

We provide a solution that implements the aforementioned declarative, machine
processable data transformations which are aligned with schema transforma-
tions to Linked Data. Its main components are (i) the FnO ontology (Sect.4.1),
which enables describing functions in a declarative and machine processable
way without making assumptions of their implementation; and (ii) the RML lan-
guage (Sect.4.2) that allows defining schema transformations (i.e., mappings)
for generating Linked Data, independent of the input format. The Function Map
is introduced, as an extension of RML, to facilitate the alignment of the two as
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explained in Sect.4.3. Details regarding our proof-of-concept implementations
are summarized in Sect.4.4. For the remainder of this paper, we will use the
following prefixes:

PREFIX fno: <http://w3id.org/function/ontology#>
PREFIX grel: <http://semweb.datasciencelab.be/ns/grel#>
PREFIX rr:  <http://www.w3.org/ns/r2rml#>

PREFIX rml: <http://semweb.datasciencelab.be/ns/rml#>
PREFIX fnml: <http://semweb.datasciencelab.be/ns/fnml#>

4.1 The Function Ontology (FnO)

The Function Ontology (Fn0) [8,10] allows agents to declare and describe func-
tions uniformly, unambiguously, and independently of the technology that imple-
ments them. As mentioned in Sect. 2, we choose FnO over other declarative lan-
guages as it does not depend on the underlying system or implementation. A
function (fno:Function) is an activity which has input parameters, output, and
implements certain algorithm(s). A parameter (fno:Parameter) is the descrip-
tion of a function’s input value. An output (fno:Qutput) is the description of
the function’s output value. An erecution (fno:Execution) assigns values to the
parameters of a function for a certain execution.

The actual implementation of the function can be retrieved separately from
its description. Depending on the system, different implementations can be
retrieved/used, e.g., a system implemented in Java can retrieve the implemen-
tation as a Java archive (JAR), whilst a browser-based system might rely on
external APIs. Via content negotiation, different systems can request and dis-
cover different implementations of the same described function [9], given that
these implementations exist. This allows a mapping processor to parse any func-
tion description, and retrieve and trigger the corresponding implementation for
executing it.

For instance, grel:toTitleCase® (Listing 1, line 1) is a function that renders
a given string into its corresponding title cased value. It expects a string, indi-
cated by the grel:stringInput property (line 4) as input. An Execution (line 6)
can be instantiated to bind a value to the parameter. The result is then bound
to that Execution via the grel:stringQutput property (line 9).

4.2 The RDF Mapping Language (RML)

R2RML [7] is the wgc-recommended mapping language for defining mappings
of data in relational databases to the RDF data model. Its extension RML [12]
broadens its scope and covers also schema transformations from sources in differ-
ent (semi-)structured formats, such as csv, XML, and JSON. RML documents [12]
contain rules defining how the input data will be represented in RDF. The main

3 Specified from the description as provided by OpenRefine on https://github.com/
OpenRefine/OpenRefine/wiki/ GREL-String- Functions#totitlecasestring-s.
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https://github.com/OpenRefine/OpenRefine/wiki/GREL-String-Functions#totitlecasestring-s

40 B. De Meester et al.

1 | grel:toTitleCase a fno:Function ;
2 fno:name "title case" ;
3 dcterms:description "return the input string in title case" ;
4 fno:expects ( [ fno:predicate grel:stringInput 1 ) ;
5 fno:output ( [ fno:predicate grel:stringQutput 1 ) .
6 :exe a fno:Execution ;
7 fno:executes grel:toTitleCase ;
8 grel:stringInput "This is an input STRING." ;
9 grel:stringOutput "This Is An Input String." .
Listing 1. Function descriptions and Executions using FnO
1 | <#Mapping> rml:logicalSource <#InputX> ;
2 rr:subjectMap [ rr:template "http://ex.com/{ID}"; rr:class foaf:Person ];
3 rr:predicateObjectMap [ rr:predicate foaf:knows;
4 rr:objectMap [ rr:parentTriplesMap <#Acquaintance> ]].
5 | <#Acquaintance> rml:logicalSource <#InputY> ;
6 rr:subjectMap [ rml:reference "acquaintance"; rr:termType rr:IRI; rr:class ex:Person]].

Listing 2. RML mapping definitions

building blocks of RML documents are Triples Maps (Listing 2: line 1). A Triples
Map defines how triples of the form (subject, predicate, object) will be generated.

A Triples Map consists of three main parts: the Logical Source, the Subject Map
and zero or more Predicate-Object Maps. The Subject Map (line 2, 6) defines how
unique identifiers (URIS) are generated for the mapped resources and is used as
the subject of all RDF triples generated from this Triples Map. A Predicate-Object
Map (line 3) consists of Predicate Maps, which define the rule that generates the
triple’s predicate (line 3) and Object Maps or Referencing Object Maps (line 4),
which define how the triple’s object is generated. The Subject Map, the Predicate
Map and the Object Map are Term Maps, namely rules that generate an RDF term
(an IRI, a blank node or a literal). A Term Map can be a constant-valued term
map (line 3) that always generates the same RDF term, or a reference-valued term
map (line 6) that uses the data value of a referenced data fragment in a given
Logical Source, or a template-valued term map (line 2) that uses a valid string
template that can contain referenced data fragments of a given Logical Source.

Other languages used for mapping (such as CSvw, XPath, and SPARQL) are
dependent on the input format (Csv, XML, and SPARQL, respectively). RML
abstracts the input source format, making it applicable in more use cases. More-
over, as the schema transformations are declared in RDF, the integration with
external vocabularies or data sources is inherently available.

4.3 Model Integration

Typically, mapping languages refer to raw data values. Therefore, aligning them
with declarative data transformations requires a way to refer to terms which are
derived from raw data, but after applying certain transformations, i.e., functions.

In the case of [R2]RML, Term Maps determine how to generate an RDF term
relying on references to raw data. Therefore, a new type of Term Map was
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1 | <#Person_Mapping>

2 rml:logicalSource <#LogicalSource> ; # Specify the data source

3 rr:subjectMap <#SubjectMap> ; # Specify the subject

4 rr:predicateObjectMap <#NameMapping> . # Specify the predicate-object-map

5

6 | <#NameMapping>

7 rr:predicate dbo:title ; # Specify the predicate

8 rr:objectMap <#FunctionMap> . # Specify the object-map

9

10 | <#FunctionMap>

11 fnml:functionValue [ # The object is the result of the function
12 rml:logicalSource <#LogicalSource> ; # Use the same data source for input
13 rr:predicateObjectMap [

14 rr:predicate fno:executes ; # Execute “grel:titleCase”

15 rr:objectMap [ rr:constant grel:titleCase ] ] ;

16 rr:predicateObjectMap [

17 rr:predicate grel:inputString H

18 rr:objectMap [ rr:reference "name" ] ] # Use as input the "name" reference

Listing 3. Alignment RML and FnO

introduced, the Function Map (fnml:FunctionMap, Listing 3: line 10). A Func-
tion Map is a Term Map generated by executing a function, instead of using a
constant or a reference to the raw data values. In contrast to an RDF Term Map
that uses values referenced from a Logical Source to generate an RDF term, a
Function Map uses values referenced from a Logical Source to execute a function
(line 12). Once the function is executed, its output value is the term generated
by this Function Map. To this end, the fnml:functionValue property was intro-
duced to indicate which instance of a function needs to be executed to generate
an output and considering which values (line 11). Such a function is described
using FnO.

This extension of one class and one property allows us to align RML and FnO,
without creating additional dependencies between the two. This is possible as
they are both declarative and described in RDF.

4.4 Implementation

As a proof of concept, we extended the RMLProcessor to support the Function Map,
available at github.com/RMLio/RML-Mapper/tree/extension-fno. In addition,
we implemented a generic Function Processor in Java which can be found at
github.com/FnOio/function-processor-java that uses the function declarations
described in FnO to retrieve and execute their relevant implementations. When
the RMLProcessor encounters a Function Map?, it extracts the function identifier
(i.e., its URI) and the parameter values as described in the mapping document or
from the data sources®, and sends those to the Function Processor. When receiv-
ing an unknown function identifier, the Function Processor discovers the relevant
implementations online [9], and obtains an implementation to be executed locally

* https://git.io/vSPDg.
5 https://git.io/vSPD6.
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if availableS. Based on the function description using Fn0, the Function Proces-
sor automatically detects how to execute the needed function and returns the
resulting value back to the RMLProcessor.

We extracted GREL functions and the DBpedia parsing Functions
(see Sect.5) as independent libraries at github.com/FnOio/grel-functions-java
and github.com/FnOio/dbpedia-parsing-functions-scala, respectively. Their
descriptions using FnO are available at semweb.datasciencelab.be/ns/grel
and semweb.datasciencelab.be/ns/dbpedia-functions respectively. Thus, we can
(re-)use these functions separately from their original systems (i.e., OpenRefine
and the DBpedia EF), but we can also — when using their descriptions in mapping
documents — require them as data transformations within the RMLProcessor.

Our resulting extension of the RMLProcessor overcomes the limitations as
stated in Sect. 3. It is capable of combining schema and data transformations. It
could already process [R2]RML statements, and now, it can also extract the Func-
tion Map and allows the Function Processor to perform the data transformations.
Next, the Function Processor is independent of the RMLProcessor, thus no limi-
tations are enforced between them, and the system does not depend on the use
case, as all schema and data transformations are specified in the mapping docu-
ment and the implementations of the needed data transformations are obtained
on the fly. Finally, all data transformations are available as stand-alone libraries,
independent of the use case, the Function Processor, or the RMLProcessor.

We also extended the RMLEditor [17] to support the definition of Function
Maps so users can easily edit mapping documents with declarative data trans-
formations, without needing prior knowledge about RML or FnO. The default
version of the RMLEditor considers the GREL functions, but any other function
may be available. A screencast showcasing how the RMLEditor was extended
can be found at www.youtube.com/watch?v=-38pkkTxQls. In total, users from
16 companies and research institutes profit from this RMLEditor extension in
addition to the DBpedia community.

5 Application to DBpedia

In this section, we show the current DBpedia generation workflow (Sect.5.1), the
changes we implemented (Sect.5.2), and validate our approach (Sect. 5.3).

5.1 Current Generation Workflow with the DBpedia EF

DBpedia is a crowd-sourced community effort to extract structured informa-
tion from Wikipedia and make this information available on the Web [2]. Data
from DBpedia is generated in two parts: The first maps data from the relation-
ships already stored in the underlying relational database tables and the second
directly extracts data from the article texts and infobox templates within the

6 Currently, Java snippets and JARs are supported, as the latter allows using additional
dependencies in the implemented functions.
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articles [3]. Figurel shows the current DBpedia EF, specifically focused on the
RDF generation from infobox templates (i.e., the second part). The grey area
denotes the DBpedia-specific implementation, and the cogs denote the successive
processing steps.

Infobox templates are text fragments inside the article text with specific
syntax to denote certain visualizations (e.g., ‘{{’ and ‘}}’ denote the begin-
ning and ending of an infobox table, respectively). The DBpedia EF consists of
the following steps: step a, all Wikipedia pages containing infobox templates
for the relational database are selected. Then, step b, only the significant tem-
plates which are contained in these pages are selected and extracted. Step c,
each template is then parsed to generate the desired triples (i.e., the subject
and predicate-object pairs). Afterwards, step d, object values are further post-
processed, i.e., (1) when these object values contain Wiki links, suitable URI refer-
ences are generated (the bottom arrow of step d in Fig. 1), otherwise, (ii) uniform
typed literals are generated by parsing the strings and numeric values (the top
arrow of step d). The data of DBpedia is structured using the dedicated DBpedia
Ontology”: a cross-domain ontology, which has been manually created based on
the most commonly used infoboxes within Wikipedia.

LY PRI T,

- ~
5 a; N -

R _— -

select extract transform schema transform data

Fig. 1. The current generation workflow: successive hard-coded processes (a) select
pages, (b) extract infoboxes, (c) transform the schema, and (d) transform the data,
either by generating URIs (bottom arrow) or by using hard-coded parsing functions
(top arrow).

The extracted infobox contains a textual representation of a list of key-
value pairs, e.g., the item ‘established = 4 October 1830’. After assigning
per key a fixed predicate from the DBpedia Ontology and a fixed data type to
the value [3], each value is processed individually according to that datatype.
Wiki links are converted to meaningful URIs, but other values need to be parsed.
However, since there are not many restrictions on the design of Wikipedia tem-
plates, the format of these manually entered values can be very diverse. For
instance, when revisiting the previous example, the same date can be writ-
ten down as ‘04-10-1830’, ‘1830, 4 10’, ‘October 4th 1830’, etc. Many other
types of discrepancies occur, for example, using different numbering formats

" http://dbpedia.org/ontology.
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Fig. 2. The new generation workflow: after (a) selecting pages and (b) extracting the
infoboxes using the original framework, (v) both schema and data transformations are
combined using an interoperable mapping processor and reusable parsing functions,
specified by a fully declarative mapping document.

(e.g., ‘1 000 000’ vs ‘1E6’ vs ‘1 million’), or using different units than speci-
fied in the template (e.g., ‘area km2 = 11,787 sqmi’). This situation is aggra-
vated because information in Wikipedia is crowd-sourced, thus these differences
in cultures and countries — coming from different contributors of Wikipedia —
can occur within one page, together with already existing inaccuracies inherent
to manual entries, such as typos and misspellings.

To accommodate to this situation, the DBpedia EF consists of a large amount
of parsing functions that fruitfully handle most edge cases. Each of these parsing
functions were tested against thousands of values coming from Wikipedia. They
are thus very robust and essential to the generation framework. However, they
form an internal set of functions, hard-coded in the framework. Each change in
these parsing functions requires another development cycle for the entire frame-
work, but, moreover, they cannot be reused for other use cases. As valuable as
these parsing functions are, they are hidden deep within the DBpedia EF.

Hence, the following limitations arise. First, the DBpedia EF successively per-
forms the schema and then the data transformations, which limits its capabilities,
e.g., it is currently not possible to join multiple values from the infobox tem-
plates to form one output value, nor is it possible to connect with external data
sources. Second, all transformations are hard-coded. Changes require knowledge
of the source code and involve new development cycles. Third, all parsing func-
tions are embedded in the framework, making them non-reusable and use-case
specific.

5.2 New Generation Workflow with RML and FnO

We apply our system that enables declarative data transformations which can
be aligned with schema transformations to the the DBpedia EF as can be seen
in Fig. 2. In step a, Wikipedia pages containing infobox templates are selected.
Then, in step b, the significant templates are selected and extracted from those
pages. Finally, in step v, on these templates, schema and data transformations
are performed together to achieve the resulting RDF.
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Steps a and b provide the input data and have not changed. Step v however
is performed using the RMLProcessor, the transformations are declared using
a DBpedia mapping document, and the DBpedia parsing functions are used as
stand-alone library. The generation of the DBpedia mapping document in RML
based on the existing mappings in the DBpedia EF has been done in previ-
ous work®. This work has been extended to include the data transformation
descriptions.

fnoio.github.io/dbpedia-demo/ allows users to try out the possible customiza-
tions of the new DBpedia EF. Changes can be made to a mapping document —
used for the country-infobox template — both for schema and data transforma-
tions. Both the DBpedia parsing functions as the GREL functions are loaded. It is
thus possible to, e.g., change string values using GREL functions, or use a differ-
ent parsing function, whilst also changing the schema transformations, without
needing prior knowledge of the DBpedia EF.

5.3 Validation

By applying our approach to DBpedia, we have not only created a fully declara-
tive system that is capable of extracting the same RDF data from the Wikipedia
infoboxes as the current DBpedia EF, we also achieve the following;:

Combinable schema and data transformations. Before, schema and data
transformations were executed in successive steps in the DBpedia EF. Con-
sequently, the data transformations were executed based on the data type
as assigned by the schema transformations, and transformations applying to
both schema and data were not supported. Now, data transformations can
be specified within the structure, not just the data type, and joining multi-
ple input values, or conditionally assigning types based on the data values
becomes possible.

Independent schema and data transformations. Before, all data parsing
functions needed to be hard-coded inside the DBpedia EF, as existing tools
did not provide the required data transformation capabilities. Now, all data
parsing functions are separate libraries, and no dependencies exist between
these data parsing functions and the DBpedia EF.

An interoperable system. Before, the DBpedia EF was a hard-coded system
depending on a custom mapping document that mapped keys to predicates of
the DBpedia Ontology, after which hard-coded data transformations were per-
formed. Every change in the generation process required a new development
cycle. This explains why the DBpedia EF has been developed by only forty-
two developers?. Now, no dependencies exist between the implementation
and the specification of the generated Linked Data, as schema transforma-
tions, data transformations, and their alignment are all specified declaratively.
The adjusted RMLProcessor remains a use-case independent system, and the

8 www.mail-archive.com/dbpedia-discussion@lists.sourceforge.net /msg07837.html.

9 See github.com/dbpedia/extraction-framework.
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declarations do not depend on any implementation, separating the concerns
of the contributors with those of the developers.

Reusable data transformations. Before, all data parsing functions were
embedded in the DBpedia EF, making it even harder for developers to improve
its code. The core team that improved the DBpedia EF parsing functions con-
sisted of barely six out of the forty-two people. Now, all parsing functions
exist as a stand-alone library, without dependencies to the original DBpedia
EF, RML or FnO. They can be used and improved or extended by anyone, for
any use case. The common problem of parsing manually entered data has
just become more easy as this set of functions can now freely be used: it has
been tested on the Wikipedia corpus, is capable of resolving many typos and
ambiguities, and now no longer depends on the use case or data source type.
Its usage has been made user-friendly by including data transformations in
the RMLEditor.

6 Conclusion and Future Work

Linked Data generation encompasses both schema and data transformations.
However, in this paper, we identified that data transformations in current Linked
Data generation processes are uncombinable with the schema transformations,
restricted by the mapping language, part of a case-specific system, or non-
reusable.

Our proposed approach specifies data transformations declaratively and
aligns them with declarative schema transformations. We employed this app-
roach by aligning FnO with RML and provided an implementation by extend-
ing the RMLProcessor and building the Function Processor. As validated on
the DBpedia EF, schema and data transformations remain independent but are
combinable. The created system is interoperable and data transformations are
reusable across systems and data sources. The DBpedia EF now supports more
schema and data transformations, separates the concerns between contributors
and developers, and the DBpedia parsing functions are available as independent
libraries.

In the future, we aim to reuse well-tested descriptive data transformations,
such as the DBpedia parsing functions to facilitate different use cases.
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