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26.1 Introduction

Cyberspace is the electronic world created by interconnected networks of
Information Technology (IT) and the information on those networks. It can
be defined as the interdependent network of IT infrastructure, including the
Internet, telecommunication networks, computer systems, and embedded industrial
processors and controllers. Cyberspace is a global commons where more than 1.7
billion people are linked together to exchange ideas and services [1]. Moreover, it
underpins almost every facet of a modern society and provides critical support for
the economy, civil infrastructure, public safety, and national security.

However, recent events have indeed demonstrated that cyberspace could be
subjected, at the speed of light and in full anonymity, to severe attacks with drastic
consequences. One particular research revealed that 90% of corporations have been
the target of a cyber attack, with 80% suffering a significant financial loss [2]. In
addition, the cyber security report [1] elaborated that in a recent 1 year period, 86%
of large North American organizations had suffered a cyber attack where the loss
of intellectual property as a result of these attacks doubled between 2011 and 2015.
Moreover, the report alarmed that more than 60% of all the malicious code ever
detected, originating from more than 190 countries, was introduced into cyberspace
solely in 2016.
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To this end, generating effective cyber threat intelligence is indeed an effective
approach that would aid in preventing, inferring, characterizing, analyzing, and
mitigating various Internet-scale malicious activities. Thus, in this chapter, we aim
to generate such cyber threat intelligence related to two specific types of malicious
actives, namely probing and DDoS events, and their corresponding orchestrated
campaigns, by analyzing the darknet IP space.

26.1.1 Background

In this section, we provide brief yet relevant background information related to the
concerned topics.

Probing Activities Probing or scanning events [3] could be defined by the task
of executing reconnaissance activities towards enterprise networks or Internet-
wide services, searching for vulnerabilities or ways to infiltrate IT assets. Such
events are commonly the primary stage of an intrusion attempt that enables an
attacker to remotely locate, target, and subsequently exploit vulnerable systems [4].
They are basically a core technique and a facilitating factor of various subsequent
cyber attacks. Readers that are further interested in inner details related to probing
activities are kindly referred to the following surveys [5, 6].

DDoS Activities Denial of Service (DoS) attacks are characterized by an explicit
attempt to prevent the legitimate use of a service. Distributed DoS (DDoS) attacks
employ multiple attacking entities (i.e., compromised machines/bots) to achieve
their intended aim. DDoS attacks could be related to flooding attempts, in which
the bots directly attack the victim, or they could be rendered by amplification
attempts, where the attacker employs third party servers known as open amplifiers to
indirectly launch the attack towards the victim. Readers that are interested in more
details related to DDoS activities are kindly referred to [7].

Darknets A network telescope, also commonly referred to as a darknet or an
Internet sink [8], is a set of routable and allocated yet unused IP addresses [9].
It represents a partial view of the entire Internet address space. From a design
perceptive, network telescopes are transparent and indistinguishable compared with
the rest of the Internet space. From a deployment perspective, it is rendered by
network sensors that are implemented and dispersed on numerous strategic points
throughout the Internet. Such sensors are often distributed and are typically hosted
by various global entities, including Internet Service Providers (ISPs), academic and
research facilities, and backbone networks. The aim of a darknet is to provide a lens
on Internet-wide malicious traffic; since darknet IP addresses are unused, any traffic
targeting them represents a continuous view of anomalous unsolicited traffic.

Orchestrated Campaigns A number of malicious activities could operate within
the context of large-scale campaigns. These render a new era of such malicious
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events, since they are distinguished from previous independent incidents as (1) the
population of the participating bots is several orders of magnitude larger, (2) the
target scope is generally the entire IP address space, and (3) the bots adopt well-
orchestrated, often botmaster coordinated, stealth scan strategies that maximize
targets’ coverage while minimizing redundancy and overlap. Readers that are further
interested in inner details related to large-scale orchestrated malicious campaigns
are kindly referred to [10].

In this chapter, we aim to infer and characterize probing and DDoS orchestrated
campaigns by uniquely analyzing darknet traffic.

26.1.2 Organization

The remaining of this chapter is organized as follows. In the next section, we
address the problem of inferring independent and orchestrated probing events
while in Sect. 26.3, we focus on inferring and characterizing DDoS events and
large-scale campaigns. In Sect. 26.4, we review some literature work to demonstrate
the uniqueness of the presented work. We conclude this chapter in Sect. 26.5 by
summarizing the offered contributions and pinpointing several topics that are worthy
of being investigated in the future.

26.2 Probing Campaigns

In this section, we present methods to infer independent and orchestrated probing
events by scrutinizing darknet data. Further, we present some results characterizing
such events.

26.2.1 Inferring Probing Events

Motivated by recent cyber attacks that were facilitated through probing [11],
limited cyber security intelligence, and the lack of accuracy that is provided by
scanning detection systems, this section presents a new approach to fingerprint
Internet-scale probing activities. The rationale of the proposed method states that
regardless of the source, strategy, and aim of the probing, the reconnaissance
activity should have been generated using a certain literature-known scanning
technique (i.e., TCP SYN, UDP, ACK, etc. [5]). We observe that a number of
those probing techniques demonstrate a similar temporal correlation and similarity
when generating their corresponding probing traffic. In other words, the observation
states that we can cluster the scanning techniques based on their traffic correlation
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Fig. 26.1 Sessions
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statuses. Subsequently, we can differentiate between probing and other darknet
malicious traffic based on the possessed traffic correlation status. We can as well
attribute the probing traffic to a certain cluster of scanning techniques (i.e., the
probing activity, after confirmed as probing, can be identified as being generated
by a certain cluster of techniques that possess similar traffic correlation status).
To identify exactly which scanning technique has been employed in the probing,
we statistically estimate the relative closeness of the probing traffic in comparison
with the techniques found in that cluster. To enable the capturing of traffic signals
correlation statuses, the proposed method employs the Detrended Fluctuation
Analysis (DFA) technique [12]. Elaborative details about the modus operandi of
the proposed inference method could be found in [13].

Empirical Results We employ around 10 GB of real darknet data to evaluate
the inference approach. We first applied the approach to attempt to differentiate
between scanning and darknet backscattered traffic (i.e., DoS related activity).
Figure 26.1 represents how the 700 sessions were distributed and fingerprinted.
It is shown that probing activity corresponds to 87% (612) of all the sessions.
This scanning to backscattered traffic ratio is somehow coherent with other darknet
studies [14]. To evaluate the scanning fingerprinting capabilities of our approach,
we experimented with Snort’s sfPortscan preprocessor using the same 612 sessions
that were fingerprinted as probing. Snort’s sfPortscan detected 590 scans. After a
semi-automated analysis and comparison that was based on the logged scanning
traffic flows, we identified that all the 612 scans that our approach fingerprinted as
probing activity include sfPortscan’s 590 scans. Therefore, relative to this technique
and experimenting with this specific data set, we confirm that our approach yielded
no false negative, with only 2% as false positives.

26.2.2 Inferring and Characterizing Probing Campaigns

To infer orchestrated probing campaigns, for each of the previously inferred probing
event, we generate their feature vectors as summarized in Table 26.1. The machinery
that would generate such vectors is summarized in [15].
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Table 26.1 Probing feature
vectors

Employed probing technique

Probing traffic (random vs patterns)

Employed pattern

Adopted probing strategy

Nature of probing source

Type of probing (targeted vs dispersed)

Signs of malware infection

Exact malware type/variant

Probing rate

Ratio of destination overlaps

Target port

To automatically infer orchestrated probing events, the approach leverages all the
previously extracted inferences and insights related to the probing sessions/sources
to build and parse a Frequent Pattern (FP) tree. In such a tree, each node after
the root represents a feature extracted from the probing sessions, which is shared
by the sub-trees beneath. Each path in the tree represents sets of features that co-
occur in the sessions, in non-increasing order of frequency of occurrences. Thus,
two sessions that have several frequent features in common and are different just
on infrequent features will share a common path in the tree. The proposed approach
also employs the FP tree-based mining method, FP-growth, for mining the complete
set of generated frequent patterns. As an outcome, the generated patterns represent
frequent and similar probing behavioral characteristics that correlate the probing
sources into orchestrated probing events.

Empirical Results We evaluate the proposed approach using 330 GB of darknet
data. We visualize the outcome of the feature vectors as depicted in Fig. 26.2.
Such “flower-based” result intuitively and creatively illustrates how the FP-tree is
constructed. Recall that the tree depicts frequent probing features that co-occur in
the probing sessions, which are generated by the probing behavioral analytics. One
can notice several groupings or clusters that depict probing events sharing various
common machinery. For the sake of this work, we have devised a parsing algorithm
that automatically build patterns from the FP-tree that aim at capturing orchestrated
probing events that probe horizontally; probe all IPs by focusing on specific ports.

The proposed approach automatically inferred the pattern that is summarized
in Table 26.2. The pattern permitted the detection, identification, and correlation of
846 unique probing bots into a well-defined orchestrated probing event that targeted
the VoIP (SIP) service. It is shown that this event adopted UDP scanning, probed
around 65% of the monitored dark space (i.e., 300,000 dark IPs) where all its bots
did not follow a certain pattern when generating their probing traffic. Further, the
results demonstrate that the bots employed a reverse IP-sequential probing strategy
when probing their targets. Moreover, the malware responsible for this event was
shown to be attributed to the Sality malware.
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Fig. 26.2 Visualization of the outcome of the probing behavioral analytics in the FP-tree

Table 26.2 The inferred
pattern capturing a large-scale
orchestrated probing event

Employed probing technique: UDP

Probing traffic (random vs patterns): Random

Employed pattern: Null

Adopted probing strategy: Reverse IP-sequential

Nature of probing source: Bot

Type of probing (targeted vs dispersed): Dispersed

Signs of malware infection: Yes

Exact malware type/variant: Virus.Win32.Sality.bh

Probing rate: 12 pps

Target port: 5060

26.3 DDoS Campaigns

In this section, we present techniques to infer distributed and orchestrated DDoS
events by analyzing real darknet data. In addition, we present some results charac-
terizing these large-scale activities.
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26.3.1 Inferring DDoS Events

This section leverages darknets to identify independent DDoS attacks. To achieve
its aim, our approach adopts three steps: (1) selecting backscattered packets from
victims’ replies; (2) extracting session flows corresponding to malicious activities;
and (3) inferring DDoS attacks by employing a detection algorithm. First, in order
to select backscattered packets, we adopt the technique from [16] that relies on
flags in packet headers, such as TCP SYN+ACK, RST, RST+ACK, and ACK.
However, this technique might cause misconfiguration as well as scanning probes
(i.e., SYN/ACK Scan) to co-occur within the backscattered packets. In order to filter
out the misconfiguration, we use a simple metric that records the average number
of sources per destination darknet address. This metric should be significantly
larger for misconfiguration than scanning traffic [17]. Second, in order to filter
out scanning activities, we split the connections into separate session flows, each
of which consists of a unique source and destination IP/port pair. The rationale
for this is that DDoS attempts possess a much greater number of packets sent to
one destination (i.e., flood) whereas portsweep scanners have one or few attempts
towards one destination (i.e., probe). Third, we aim to confirm that all the extracted
sessions in fact reflect real DDoS attempts. To accomplish this, we employ a
modified version of the DDoS detection parameters from [18] to label a session
as a single DoS attack. Algorithm 1 displays our detection mechanism. We proceed
by merging all the previously extracted sessions that have the same source IP (i.e.,
victim) to extract DDoS attacks.

Empirical Results Similar to the probing analysis, the data is based on the
previously darknet data set collected during the same period. We inferred thousands
of DDoS attacks, as per Fig. 26.3a, where the majority were shown to abuse TCP
services (62%), ICMP (21%), and UDP (17%). Furthermore, as shown in Fig. 26.3b,
these attack types are distributed as follows: 82% for TCP flooding, 14% for DNS
flooding, and the remaining are ICMP flooding events.

26.3.2 Inferring and Characterizing DDoS Campaigns

In the previous sections, we elaborated on the components of the systematic
approach for inferring DDoS activities targeting a unique organization. In this
section, we extend the approach by proposing a clustering approach to infer orches-
trated DDoS campaigns that target multiple victims. This permits the fingerprinting
of the nature of such campaigns. For example, it could be identified that a specific
DDoS campaign is specialized in targeting financial institutions while another
campaign is focused on targeting critical infrastructure. Further, such clustering
approach allows the elaboration on the actual scope of the DDoS campaign to
provide cyber security situational awareness; how large is the campaign and what is
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Algorithm 1 DDoS detection engine
1: In the algorithm:
2: Each flow f contains packet count (pkt_cnt) and rate (rate)

Tw: Time Window
p_th: Packet Threshold
r_th: Rate Threshold
Tn: Time of packet number n in a flow
pkt: Packet

3: Input: A set of darknet flows F where each f in F is composed of a pair of <source IP,
destination IP> leveraging a series of consecutive packets that share the same source IP
address.

4: Output: DDoS attack flows
5:
6: for each f in F do
7: attack_flag D 0
8: pkt_cnt D 0
9: T1 D pkt_gettime(1)

10: Tf D T1 C Tw
11: while pkt in f do
12: Tn= pkt_gettime()
13: if Tn < Tf then
14: pkt_cnt++
15: end if
16: end while
17: rate D pkt_cnt

Tw
18: if pkt_cnt > p_th & rate > r_th then
19: attack_flag D 1
20: end if
21: end for

62%
21%

17% TCP

ICMP

UDP

(a)

82%

14%

4%

TCP Flooding

DNS Flooding

ICMP Flooding

(b)

Fig. 26.3 DDoS: major protocols and distribution. (a) Abused protocols, (b) Attack distribution

its employed rates, when attacking the various victims. Additionally, the proposed
approach could be leveraged to predict the campaign’s features in terms of rate and
number of involved machines.

To achieve this task, our approach employs the following statistical-based mech-
anism. First, backscattered sessions are extracted as previously discussed. Second,
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the notion of fuzzy hashing [19] between the different sessions is applied. Fuzzy
hashing is advantageous in comparison with typical hashing as it can provide a
percentage of similarity between two traffic samples rather than producing a null
value if the samples are different. This popular technique is derived from the
digital forensics research field and is typically applied on files or images [19]. Our
approach explores the capabilities of this technique on backscattered DDoS traffic.
We select the sessions that demonstrate at least 20% similarity. We concur that
this threshold is a reasonable starting point and aids in reducing false negatives.
Third, from those similar sessions, we employ two statistical tests, namely the
Euclidean and the Kolmogorov–Smirnov tests [20] to measure the distance between
the selected sessions. We extract those sessions that minimize the statistical distance
after executing both tests. The rationale of the latter approach stems from the need
to cluster the sessions belonging to multiple victims that share a maximized similar
traffic behavior while minimizing the false positives by confirming such similarity
using various tests. Note that, we hereafter refer to the use of the previous two
techniques as the fusion technique. The outcome of the proposed approach are
clustered diverse victims that are inferred to be the target of the same orchestrated
DDoS campaign.

Empirical Results In this section, we present the empirical evaluation results. We
employ the DDoS campaign clustering model as discussed in the previous section to
demonstrate how multiple victims could be modeled as being the target of the same
campaign.

26.3.2.1 TCP SYN Flooding on Multiple HTTP Servers

To demonstrate the effectiveness of the approach, we experiment with a 1 day
sample retrieved from our darknet data set. We extract more than 600 backscattered
DDoS sessions and apply fuzzy hashing between the sessions, by leveraging deep-
toad, a fuzzy hashing implementation. The outcome of this operation is depicted
in Fig. 26.4a, where the victims are represented by round circles while directed
arrows illustrate how the various victims were shown to be statistically close to
other targeted victims. It is important to note that we anonymize the real identity of
the victims due to sensitivity and legal reasons. Subsequently, the Euclidean and the
Kolmogorov–Smirnov tests are executed to exactly pinpoint and cluster the victims
that demonstrate significant traffic similarity. Figure 26.4b shows such result while
Table 26.3 summarizes the outcome of the proposed DDoS campaign clustering
approach. From Fig. 26.4b, one can notice the formation of root nodes, advocating
that the approach is successful in clustering various victims that are the target of the
same DDoS campaign.

In general, the approach yielded, for 1 day data set, 13 unique campaigns where
each campaign clusters a number of victims ranging from 2 to 125 targets.
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Fig. 26.4 DDoS clustering. (a) Fuzzy hashing clustering. (b) Fusion technique clustering

Table 26.3 Summary of the DDoS campaign clustering approach

Technique

Unique
campaign
count

Campaign
of 2
victim
machines

Campaign
of 3
victim
machines

Campaign
of 4
victim
machines

Campaign
of 5
victim
machines

Campaign
of 6
victim
machines

Campaign
of 125
victim
machines

Euclidean 16 6 2 3 3 1 1

KS 16 6 2 3 2 2 1

Fusion 13 6 1 2 2 1 1

26.4 Related Work

In this section, we review the related work on various concerned topics.

Extracting Probing Events Li et al. [21] considered large spikes of unique source
counts as probing events. The authors extracted those events from darknet traffic
using time-series analysis; they first automatically identified and extracted the rough
boundaries of events and then manually refined the event starting and ending times.
At this point, they used manual analysis and visualization techniques to extract
the event. In an alternate work, Jin et al. [22] considered any incoming flow that
touches any temporary dark (grey) IP address as potentially suspicious. The authors
narrowed down the flows with sustained suspicious activities and investigated
whether certain source or destination ports are repeatedly used in those activities.
Using these ports, the authors separated the probing activities of an external host
from other traffic that is generated from the same host. In contrast, in this work, we
propose a method that exploits a unique observation related to the signal correlation
status of probing events. By leveraging this, we are able to differentiate between
probing and other events and subsequently extract the former from incoming darknet
traffic.
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Analyzing Probing Events The authors of [22, 23] studied probing activities
towards a large campus network using netflow data. Their goal was to infer
the probing strategies of scanners and thereby assess the harmfulness of their
actions. They introduced the notion of gray IP space, developed techniques to
identify potential scanners, and subsequently studied their scanning behaviors. In
another work, the authors of [21, 24, 25] presented an analysis that drew upon
extensive honeynet data to explore the prevalence of different types of scanning.
Additionally, they designed mathematical and observational schemes to extrapolate
the global properties of scanning events including total population and target scope.
In contrary, we aim at inferring large-scale probing and DDoS campaigns rather
than focusing on analyzing probing events.

Probing Measurement Studies In addition to [26, 27], Benoit et al. [28] presented
the world’s first Web census while Heidemann et al. [29] were among the first to
survey edge hosts in the visible Internet. Further, Pryadkin et al. [30] offered an
empirical evaluation of IP address space occupancy whereas Cui and Stolfo [31]
presented a quantitative analysis of the insecurity of embedded network devices
obtained from a wide-area scan. In a slightly different work, Leonary and Loguinov
[32] demonstrated IRLscanner, a tool which aimed at maximizing politeness yet
provided scanning rates that achieved coverage of the Internet in minutes. In this
work, as previously mentioned, we strive to infer large-scale campaigns rather than
solely providing measurements of particular events.

Botnet Detection Frameworks A number of botnet detection systems have been
proposed in the literature [33–36]. Some investigates specific channels, others might
require deep packet inspection or training periods, while the majority depends on
malware infections and/or attack life-cycles. To the best of our knowledge, none of
the proposals is dedicated to tackle the problem of inferring large-scale probing and
DDoS campaigns. Further, in this work, we aim to achieve that task by analyzing
the dark IP space and by focusing on the machinery and netflow characteristics of
the received darknet traffic, without requiring content analysis or training periods.

26.5 Concluding Remarks

This chapter aims at generating effective cyber threat intelligence to aid in proactive
and defensive protection of cyberspace. To this end, several techniques to detect
and identify large-scale orchestrated probing and DDoS campaigns by leveraging
real darknet data were elaborated. On one hand, we presented approaches that
addressed the problem of inferring probing activities, which are typically the
precursors of future cyber attacks. In particularity, we discussed an approach
rooted in time-series fluctuation analysis to identity probing activities as well as
attribute such events to a certain technique. Further, we leveraged this inference
approach to detect orchestrating probing events, by proposing a feature generation
and clustering approach. The latter is based on a set of behavioral data analytics
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and the employment of a data mining method. On the other hand, we designed and
developed darknet-based techniques to infer and characterize independent DDoS
attacks. Additionally, we addressed the problem of DDoS campaigns by exploiting
fuzzy and statistical methods. Empirical evaluations based on real darknet data
demonstrated that the devised techniques, methods, and approaches are effective
in inferring and characterizing such stealthy and devastating events.

26.5.1 Considerations and Research Gaps

Developing and deploying cyber security capabilities to combat contemporary
threats in general, and cyber campaigns in particular, require several considerations.
First, characterizing security information requires access to real attack data sets,
which is relatively difficult to access or obtain. Second, developing techniques might
not be as simple as deploying them. For instance, deploying darknet-based models
require access to real hardware devices. Furthermore, deploying such techniques
must be approved by authorities (network administrators, Internet Service Providers,
etc.) and therefore necessitate significant collaborative effort and coordination. Our
future plan is to deploy our models in real-time and leverage such capabilities to
develop an Internet-scale situation awareness system, working closely with our
partners and affiliations.

From the conducted research, we can extract the following points/research
gaps:

• Inferring and attributing botnets or malicious campaigns by solely monitoring
the dark IP space is very challenging due to the passive nature of such IP
space. Therefore, other interactive techniques such as honeypots could be used
in conjunction with darknet analysis to enhance botnet investigation.

• Packet analysis is the only technique employed on darknet data to investigate
spoofing activities. This method is rendered by inspecting ICMP packets and
TTL values. Minimal research has been executed to study spoofing events
through darknet analysis. Therefore, spoofing is still a noteworthy malicious
activity that needs more attention from the security research community.

• Despite the existence of few collaborative darknet projects, more darknet
resources and information sharing efforts should emerge to infer and attribute
large-scale cyber activities. Indeed, establishing a worldwide darknet information
exchange is a capability that requires collaboration and trust; however, this
collaboration necessitates the implementation of numerous global policies and
undoubtedly would raise serious privacy concerns.

• There exists a need to explore darknet data to generate cyber threat intelligence
for other evolving paradigms, include the Internet-of-Things (IoT) and Cyber-
Physical Systems (CPS).
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