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Abstract. As the number of wastewater treatment plants (WWTPs) increases
worldwide and the effluent quality requirements become more demanding, the
issue of energy efficiency has been attracting increasing attention from an
environmental and economic point of view. However, defining and measuring
energy efficiency in WWTPs is still a challenge. Energy efficiency is typically
approximated by energy intensity, i.e. kWh/m3. However WWTPs can perform
different functions (i.e. removing of COD, removing of N and/or P, resource
recovery, producing an effluent free of pathogens), or perform the same function
with different technologies, making the comparison of WWTPs a challenging
task. Thus, common energy intensity indicators have limited value, as they do
not provide enough information of the WWTPs operation. Furthermore, changes
in energy intensity are just approximate indicators for changes in energy effi-
ciency since they are affected by external (exogenous) factors.
This study describes how linear regression analysis can be used as a means to

estimate energy efficiency in WWTPs, by accounting for the impact of external
factors and the diversity of treatment functions. Likewise, based on the analysis
of a relatively large sample of WWTPs, the effect of some important variables
on energy efficiency is discussed, which open possibilities for improving
benchmarking comparability of WWTPs.
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1 Introduction

Modern wastewater treatment plants (WWTPs) count with a number of on- and offline
sensors that provide data on the performance of the plant. However, plant management
does not always take full advantage of the analysis of process data. One of the potential
uses of plant operation data is the evaluation of energy efficiency, which can be carried
out by benchmarking. However, defining and measuring energy efficiency in WWTPs
is still a challenge. Energy efficiency is typically approximated by energy intensity,
despite several shortcomings related to this measure (Longo et al. 2016). Energy
intensity is defined as the amount of energy use per unit of activity (e.g. volume of
treated wastewater). Changes in energy intensity are just approximate indicators for
changes in energy efficiency since they are affected by external (exogenous) factors
such as the influent characteristics, climate factors, scale effect of plant size and other
construction parameters. Furthermore, considering that WWTPs perform different
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functions, i.e. removing of COD, removing of N and/or P, resource recovery, pro-
ducing an effluent free of pathogens, general energy intensity indicators (i.e. kWh/m3 or
kWh/PE) have limited value, as they do not provide enough information of the
WWTPs operation.

This abstract has two goals. We will describe how linear regression models can be
used as a means to determine energy efficiency in WWTPs, while accounting for the
impact of external factors. Likewise, based on the analysis of a relatively large sample
of WWTPs, we will discuss the effect of some important variables on energy efficiency.
Based on these indicators, it is then possible to identify the saving potential that can be
reached with improvement in the level of energy efficiency (Chung 2011).

Literature that attempts to analyse the impact of operational variables on the energy
efficiency is relatively scarce and sometimes contradictory (Longo et al. 2016). Hence,
the analysis undertaken here explicitly takes into account energy consumption, and
allows identifying the variables in the process that are drivers for energy consumption
and, thus can be used to draw better comparisons among plants.

2 Materials and Methods

2.1 Data Collection

The data about energy consumption and operation of WWTP were gathered (i) by
web-search engines with keywords: ‘wastewater’, ‘WWTP’, ‘energy’, ‘energy con-
sumption’, ‘energy performance’, ‘energy efficiency assessment’, ‘energy bench-
marking’, ‘life cycle assessment’, and (ii) collecting energy data from regional water
agencies (in particular from Germany, Spain and Switzerland) by private communi-
cations. A total of 415 WWTPs from different countries were inventoried. The data
included and calculated for the analysis are summarized in Table 1.

SecTreat and TertTreat are categorical variables for technology employed for
secondary treatment and presence or not of tertiary treatment, respectively. SIZE is
plant actual capacity expressed as person equivalent (PE). FLOW is average influent
flowrate expressed in m3/day. PLF and DIL are two indices defined as plant load factor
and dilution factor, calculated as follow:

PLF ¼ served PE
design PE

100½%� ð1Þ

DIL ¼ daily influent flowrate
served PE

½L=PE � d� ð2Þ

CODinf, CODeff, Ninf, Neff, Pinf and Peff are respectively chemical oxygen
demand, nitrogen and phosphorus concentration in the influent and effluent of the plant.
Temp is outdoor temperature. Finally Y1, Y2 and Y3 are total energy demand, volumetric
and load basis energy intensity.
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3 Methodology

In this study, a linear regression approach is used to control for aspects that systemat-
ically influence the energy use at WWTPs. Regression models describe the relationship
between a depended variable, Y, and independent variables, X. The dependent variable
is also called the response variable. Independent variables are also called explanatory or
predictor variables. Preliminary data analysis has shown that energy efficiency has a
nonlinear dependency of operational variables (Longo et al. 2016). Therefore, using a

Table 1. Summary of variables considered for the exploratory analysis

Variable Variable name Abbreviation Range Units

X1 Secondary
treatment

SecTreat ‘BNR’; ‘MBR’; ‘CAS’;
‘Extended Aeration’;
‘M/H-rate AS’; ‘Oxidation
Ditch’; ‘Trickling filter’

–

X2 Tertiary
treatment

TerTreat YES - NO –

X3 Plant size SIZE 19–500,118 PE
X4 Average

flowrate
FLOW 6–126,082 m3/d

X5 Plant load
factor

PLF 1–512 %

X6 Dilution factor DIL 69–1,565 L/(PE�d)
X7 Influent COD

concentration
CODinf 96–1,820 mgCOD/L

X8 Effluent COD
concentration

CODeff 5–1,009 mgCOD/L

X9 Influent N
concentration

Ninf 6–151 mgN/L

X10 Effluent N
concentration

Neff 0–76 mgN/L

X11 Influent P
concentration

Pinf 0.5–27.6 mgP/L

X12 Effluent P
concentration

Peff 0–8 mgP/L

X11 Outdoor
Temperature

Temp 9.5–19.5 °C

Y1 Energy
consumption

E 10–36,563 kWh/day

Y2 Volumetric
based energy
intensity

EUI_Vol 0.05–6.43 kWh/m3

Y3 Load based
energy
intensity

EUI_PE 9.41–546 kWh/PE�year
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log-log functional form it is possible to determine a linear model describing the energy
use in function of the explanatory variables. The log-log estimated equation is given by:

lnY ¼ bo þ lnX bþ e ð3Þ

After estimating the log-log model, the b coefficients can be used to determine the
impact of independent variables (X) on dependent variable (Y). In fact the coefficients
in a log-log model represent the elasticity of Y variable with respect to X variable. In
other words, the coefficient is the estimated percent change in your dependent variable
for a percent change in the independent variables. The sign of the coefficient gives the
direction of the effect. Moreover, e, which represents the difference between actual and
predicted average energy use, defines the relative energy inefficiency versus an
equivalent plant with average performance.

Three different response variables, Y, were modelled here (as reported in Table 1)
in order to study impact of external factors on total energy consumption (Y1) and on
two common energy intensity indicators (Y2 and Y3), which are commonly used as
proxy of energy efficiency when comparing WWTPs performance. The models
obtained were refined and checked for outliers, variegate multicollinearity, leverage
and whether improper functional forms were used.

4 Results and Discussion

4.1 Estimated Energy Use Models

Following the previously described procedures three regression models were tested in
order to describe the relationship between energy consumption and operational
parameters in the following way:

lnYi ¼ bo þ bSecTreatSecTreatþ bTerTreatTerTreatþ bTemplnTempþ bPElnPE

þ bPLFlnPLFþ bDILlnDILþ bNoutlnNoutþ e;
ð4Þ

where Yi is one of the three dependent variables modelled as reported in Table 1.
The estimation results of the WWTPs energy demand model using different

dependent variables are given in Table 2. The estimated coefficients are statistically
significant in all models and show that the effect of the covariates on the dependent
variable has the expected sign. For easier interpretation, the plots of estimated effects of
predictors in the fitted models are presented in Fig. 1.

4.2 Impact of Operational Conditions on Energy Consumption

Plant size. It has been reported that the size of WWTPs influences its energy efficiency
(Longo et al. 2016), which is confirmed by this study. Plant size has the largest effect in
M1, and its elasticity found was 0.91 (Table 2), thus it results that on average 1 percent
increase in plant size is associated with 0.91 percent increase in total energy
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consumption. Moreover, considering the used econometric specification (log-log), a
positive coefficient included in the range 0\bi\1 indicates that the impact of the
independent variable becomes smaller as it increases, which is consistent with previous
studies reporting that larger plants are normally more energy efficient. Likewise, Fig. 1
shows how, as size increases energy efficiency decreases, leading to an improvement of
energy efficiency as measured by these indicators.

Table 2. Estimated WWTPs energy demand function

Parameter M1 (Y = kWh/day) M2 (Y = kWh/m3) M3 (Y = kWh/PE)

Intercept −0.403*** (0.059) −0.835*** (0.122) −1.051*** (0.153)
SecTreat (Trickling filter)
BNR 0.430*** (0.063) 0.893*** (0.131) 1.123*** (0.165)
Extended aeration 0.420*** (0.066) 0.871*** (0.136) 1.096*** (0.172)
M/H-rate AS 0.317*** (0.078) 0.659*** (0.162) 0.829*** (0.204)
Trickling filter-AS 0.330*** (0.125) 0.684*** (0.259) 0.860*** (0.326)
MBR 0.548*** (0.112) 1.138*** (0.233) 1.431*** (0.293)
Oxidation ditch 0.316*** (0.090) 0.655*** (0.188) 0.824*** (0.236)
CAS 0.370*** (0.119) 0.768*** (0.247) 0.966*** (0.310)
TerTreat (NO)
YES 0.132** (0.051) 0.275** (0.107) 0.346** (0.135)
lnTemp 0.084*** (0.021) 0.174*** (0.043) 0.219*** (0.055)
lnSIZE 0.912*** (0.018) −0.348*** (0.037) −0.438*** (0.047)
lnPLF −0.114*** (0.015) −0.237*** (0.031) −0.299*** (0.039)
lnDIL 0.038** (0.018) −0.599*** (0.038) 0.100** (0.048)
lnNout 0.095*** (0.015) −0.197*** (0.032) −0.248*** (0.041)
Root mean squared error 0.273 0.565 0.711
Adjusted R-Squared 0.926 0.681 0.496

*** Significant at 1% level; ** Significant at 5% level; * Significant at 10% level.

Fig. 1. Plot effect of estimated models M1 (left), M2 (centre) and M3 (right). This plot shows
the estimated effect on the response variable from changing each predictor vales from one value
to another. The two values are chosen to produce a relatively large effect on the response. The
circles show the magnitude of the effect and the lines show the upper and the lower confidence
limits for the main effect
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Type of treatment. Different technologies, which tend to have different costs and
operational characteristics, are used worldwide. Designers choose specific treatment
type based on environmental standards and socio-economic factors in order to maximize
the effectiveness of WWTPs. As WWTPs usually operate in different conditions,
comparing the performance of WWTPs using different technologies is not trivial. Our
analysis confirms that the type of treatment plays an important role in determining
energy performance and the results are reported in Fig. 2. MBR are characterized by the
higher energy consumption for the three models, due to their intensive membrane
aeration rate. In contrast, the less energy intensive technology was found to be tricking
filtration. The rest of technologies, correlated with higher energy consumption than
tricking filter but lower than MBR, do not present significant differences when compared
among themselves (results not shown). On the contrary plant carrying out additional
tertiary treatment were found on average to have a 13% higher energy consumption with
comparison to plant carrying out only secondary treatment (Table 2, M1).

Under-over capacity. The estimated PLF elasticity is positive and highly significant in
all three models. Plants receiving lower loads compared to design values present a
significantly worse energy performance, since energy consumption decreases when
approaching values of 100% and keeps decreasing for overloaded plants. The results
suggest that plant oversize should be as much as possible reduced the design phase
and/or by revamping operation with division in two or more treatment lines in order to
adapt process operation to seasonal variation of pollution load.

Influent characteristics. Another factor that impact negatively energy use at WWTPs is
influent dilution. Influent characteristics are critical factors of WWTP performance
greatly impacting several key parameters for operation (such as C/N ratio, aeration
requirement, sludge production etc.…). From the analysis of our dataset energy

Fig. 2. Adjusted plot of energy use (M1) for type of secondary treatment. This plot shows the
fitted response as function of variable secondary treatment type, with other predictors averaged
out by averaging the fitted values over the data used in the fit. Adjusted points are computed by
adding the residual to the adjusted fitted values for each observation.
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consumption increases when increasing the DIL. Thus, keeping the rest of variables
constant, (i.e. size, load factor and nitrogen concentration in the effluent) a plant
receiving a more diluted wastewater has higher energy consumption. This effect it is
clearer in M3 (Fig. 1) where energy consumption is normalized on the load entering the
plant (Y3(kWh/PE)). In this case increasing DIL has a strong negative effect on energy
efficiency due to additional energy consumption for influent pumping. Moreover, the
coefficient for DIL is found to be negative and very high in M2, confirming that
kWh/m3 is a poor proxy for the energy efficiency as it is highly influenced by the
degree of dilution of the wastewater.

Nitrogen removal treatment intensity. Nitrogen effluent concentration is expected to be
positively correlated with energy consumption. In fact when controlling for influent
dilution, lower nitrogen concentration in the effluent is supposed to cause higher energy
consumption for aeration. As expected, Nout is positively and significantly associated
with higher energy consumption at WWTPs in all three models.

Temperature. Temperature has a complex effect on a WWTP operation. On the one
hand increasing the temperature increases the biological activity, both the substrate
uptake rate as the endogenous respiration. On the other hand, oxygen solubility
decreases sharply when increasing temperature, leading to a higher energy demand for
aeration. It is difficult to conclude which of these effects prevail. Table 2 shows that an
increase of outdoor temperature (taken as a proxy of water temperature) is related to an
increase of energy consumption suggesting that, in the analysed range, the higher
aeration energy demand may be more significant.

5 Conclusion

This study describes how linear regression analysis can be used as a means to deter-
mine energy efficiency in WWTPs, by accounting for the impact of external factors.
Likewise, based on the analysis of a relatively large sample of WWTPs, the effect of
some important variables on energy efficiency is discussed, which open possibilities for
improving benchmarking comparability for WWTPs. This analysis confirms that
energy intensity indicator (i.e. kWh/m3) is not an accurate proxy for energy efficiency
given that changes in energy intensity are a function of changes in several factors.
Based on these findings, it is then possible to identify the saving potential that can be
reached with improvement in the level of energy efficiency. Finally, due to its relative
simplicity, the analysis here discussed can be easily reproduced by engineers, auditors
or water utilities, helping them with the decision-making process when investing on
energy efficiency measures.
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