
Chapter 6
Data Processing and Adjustment

Pauca des Matura –a few but ripe –
C. F. Gauss

6.1 Introductory Remarks

In this chapter, the necessary data processing or post-processing following field mea-
surements is presented. First, the general procedures undertaken to process baseline
data are considered, followed by the adjustment of network observations. Network
observations, as was illustrated in Fig. 5.8 on 70, play an important role in moni-
toring the spatial motion of the land surface, and as such, an understanding of their
adjustment is essential. Besides showing how the observed GPS data are processed,
the chapter also presents the basics of least squares solutions, which facilitates the
adjustment of the observations, and looks at the quality assessment factors that need
to be considered after an adjustment. In general, most commercial processing soft-
ware will generate solutions once approximate positions of the occupied points, and
observational data are available.

6.2 Processing of Observations

6.2.1 Data

Satellite observations will be useless unless they can be properly processed in a
form that can lead to some meaningful solutions relevant to environmental monitor-
ing. Data processing generally proceeds in three steps (Fig. 6.1, left). The first step
involves transferring the data from the GNSS receiver or data collection device to
the computer for processing and archiving.Most commercial software are automated
and have user interactive options for transferring the data. As we have already seen,
there exist several types of GNSS receivers that can be used for data collection. With
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Data handling steps Data processing procedure

Fig. 6.1 Left GNSS data handling steps. Right data processing steps

the full operational capability of additional GNSS satellites (see Chap. 2), there will
certainly be more receivers on the market for civilian use. These receivers normally
come with their own commercial vendor processing software. For example, Trimble
receivers come with the Trimble Business Center (TBC) for processing the data.

Where multiple receivers of different types are employed in a GNSS campaign,
data from all these receivers should first be converted into a format that can be under-
stood independent of the source receiver. This format is the RINEX (Receiver INde-
pendent EXchange Format), which can be automatically performed by most vendor
software. For example, Trimble receivers will save GNSS data with an extension
‘file.dat’, while Sokkia receivers will save their data with an extension ‘file.PDC’,
both of which are in binary, which must then be converted into RINEX format, an
ASCII (American Standard Code for Information Interchange) type of data before
processing. Once the data are in RINEX format, they can then be processed using
any software.

Once the data has been transferred to a computer, the next step is preprocessing,
which is dependent upon the type of the data collected, e.g., static, and the type of ini-
tialization (see Sect. 5.4.5). Preprocessing consists of editing the data to ensure data
quality, and determining the ephemeris, where one has to choose between broadcast
and precise ephemeris (see Sect. 3.4.1) when post-processing baseline carrier-phase
observations. Autonomous hand-held receivers that use code measurements require
no post-processing, since this is automatically recorded during field operations. Edit-
ing activities done include the identification and elimination of cycle slips, editing
gaps in information, and checking station names and antenna heights. In addition,
elevation mask angles should be set during this phase, along with options to select
tropospheric and ionospheric models [1].
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6.2.2 Baseline Processing

6.2.2.1 Cycle Slips: Detection and Repair

When collecting data by GNSS methods, cycle slip is said to occur when a receiver
loses it’s ‘grip’ or ‘lock’ on a satellite. Hoffman–Wellenhof [2] define cycle slip
as a discontinuity or a jump in the GNSS carrier-phase measurement by an integer
number of cycles caused by temporary loss of signal. Signal loss can occur as a result
of one of the following factors:

• Obstruction from trees, buildings, etc.
• Lowsignal to noise ratio due to ionospheric effects,multipath or lowGNSSsatellite
elevation.

• Software failure in the receiver.
• Severe ionospheric disturbances, radio interference, and high receiver dynamics.

Once cycle slip occur during a GNSS survey, the integer count has to be re-
initialized by an equivalent “jump” Cycle. Cycle slips occur independently in L1
and L2 carriers. All observations thereafter have to be shifted by the same integer
number of cycles.

During data processing, editing and correcting for cycle slip errors is one of the
major tasks that has to be undertaken to achieve quality output. In general, the detec-
tion and correction of cycle slips becomes easy when using dual frequencies and
differenced data in a static mode. This is due to the fact that dual frequencies pro-
vide the possibility of linear combinations that give residuals that can be analyzed to
diagnose cycle slip errors. Short baselines are preferable as the effect of atmospheric
errors (ionospheric) easily cancel, thus isolating cycle slip errors. When the data is
post-processed, the detection becomes much easier as opposed to real-time position-
ing since cycle slips are always indicated by gaps in the data. Such gaps have to be
deleted before the data is fully processed.

Cycle slips could also be detected and corrected using the Kalman Filtering
approach [2]. Correction of cycle slips ensures that the observations to be used in
baseline and network adjustments are free from signals gaps. Automated procedures
for correcting cycle slips exist in commercial software.

6.2.2.2 Ambiguity Resolution

In Sect. 4.2, the concept of integer ambiguity was introduced (e.g., Fig. 4.1, p. 47).
In this section, it is considered in more detail. When measuring pseudoranges using
carrier-phases, when the receiver is first switched on, what is measured is the car-
rier ‘beat’ phase, which is the difference between the satellite-sent phase and the
receiver-generated phase. The initial integer number of cycles between the satellite
and receiver’s antenna, i.e., the integer cycle ambiguity N , is not known. For each
satellite-receiver observation, as long as the receiver maintains phase-lock to the
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satellite during observations, there exist one integer ambiguity value. Its determina-
tion is essential to ensure high quality in the estimated parameters (e.g., positions,
temperatures and pressures), which are required for high accuracy environmental
tasks (e.g., monitoring sea level changes and global warming).

Generally, there are three steps to ambiguity resolution. From the float solution
discussed in Sect. 6.2.3, potential integers values of N are generated. This can be
achieved if the coordinates of one station (i.e., the reference station) are known
so as to give an approximate baseline length, or by differencing code- and phase-
pseudorange equations. For static positioning, float solutions are used, whereas for
the kinematic approach, code-pseudorange solutions can be adopted.Once the integer
candidates of N have been generated in the first step, the correct integer combinations
are then selected in the second step such that the sum of the squares of the residual is a
minimum. This is done by inserting the selected integers in the initial equations, and
assessing in the third stepwhether the obtained residuals are the smallest. Approaches
for ambiguity determination can generally be grouped into four types; geometrical
approach, code-phase combinations, search approach, and a combination of these
approaches. The most commonly used search method is known as the LAMBDA
method developed by Teunissen [3]. For detailed discussion on these approaches,
we refer to [4].

6.2.3 Solution Types

6.2.3.1 Float and Fixed Solutions

Integer ambiguity N resolution determines whether a float or fixed solution has been
achieved during data processing (Fig. 6.2). A float solution is where the ambiguity
is determined together with other unknowns {X, Y, Z , cδt} (Eq.6.17, p. 111) and
is normally a real number. Because of this, the term ambiguity free solution is
sometimes used. The estimated parameters will, however, be of a lower accuracy
compared to those of the fixed solution, but at least better than those from triple
differencing (e.g., Fig. 4.9 on p. 57). Ambiguity-free solutions are, however, useful
for obtaining fixed solutions. The resultant solution (baseline vector) produced when
differenced carrier-phase observations resolve the cycle ambiguity is thus called a
“fixed” solution, with the exact cycle ambiguity no longer needed to be known to
produce a solution [1]. In fixed solutions, also known as ambiguity-fixed solutions,
the actual integer values are first determined, fixed, and then used in the adjustment
(Eq.6.17, p. 111). This leaves only the position parameters {X, Y, Z} and the receiver
clock bias term cδt to be determined. Fixed solutions normally lead to more accurate
position. However, when the cycle ambiguities cannot be resolved, which sometimes
occurs when a baseline distance is greater than 75km in length, a float solution may
actually be the best option [1].
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Fig. 6.2 Float and fixed GNSS solutions

Single baseline Mul -baseline

Fig. 6.3 Left Single baseline. Right Multi-baselines. The coordinates of a station A are known and
fixed, while those of B, C, and D are unknown

6.2.3.2 Baseline Solutions

For single baselines (e.g., Fig. 6.3, left), the processing (see Fig. 6.1, left) deals with
each baseline individually, or processes all baselines through a joint adjustment. The
final results depends on howwell the ambiguities and other errors are handled. Com-
mercial baseline reduction software have a variety of options that are automatically
(or manually) set to determine the most “optimum” solution where, after an initial
code solution is performed, a triple differencing is carried out followed by a double
differencing (e.g., Figs. 4.8 and 4.9 on p. 57) leading to a fixed solution in the event
that the integer ambiguities are successfully resolved [1]. Correlations between the
baselines are not necessarily taken into consideration except for network adjustment,
where they provide weight information (see Sect. 6.2.5).

If n GNSS satellites are observed, n(n − 1)/2 baselines will be adjusted with the
double-differencing offering the best solutions due to the fact that the integer nature
of the ambiguities are preserved.Most commercial software offer baseline processing
capabilities and normally provide different types of solutions, e.g., L1 Fixed (only
the L1 signal is used to derive the solution), Ionospheric-Free Fixed (both the L1
and L2 signals are used to remove ionospheric errors (e.g. Sect. 3.4.3)), and float
(see Sect. 6.2.3.1). In addition, the packages attempt to perform the most accurate
fixed solution for short lines (e.g., less than 15km for single-frequency and less than
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30km for dual-frequency receivers) [1]. As was discussed in Sect. 3.4, positioning
accuracy will depend on howwell the errors are managed. In general triple difference
accuracies are less than those of fixed and float solutions.

For baselines longer than 30–50km, if the fixed solution is not deemed to be
reliable (based on various quality indicators discussed below), then the default float
solutionmay be used. Although it is not as accurate as the fixed solution, if the session
time is long enough (e.g., 1 to 2h), it will still be fairly accurate, e.g., 20–50mm
for lines less than 75km [1]. After the baseline solutions, users can then assess the
reliability of the obtained solution from numerous statistical and graphical displays
by the commercial software.

6.2.4 Quality Assessment

The output of data processing from most commercial software will often consist
of positions (whose accuracy is a function of the items in Fig. 6.4), covariances
and residuals. Covariances are often provided in the dispersion matrix (Eq. 6.18),
which enables the analysis of the quality of the estimated positions. The square roots
of the diagonals of the dispersion matrices give the standard deviations (discussed
below). The dispersion matrix can also be used to construct error ellipses useful
for the analysis of the estimates (e.g., Fig. 6.5), and also to generate the dilution of
precision. Commercial software have set criteria upon which they base any decision
to reject bad observations or output. The software compare solutions from triple, float,
fixed, single baseline and multi-baselines to obtain the most optimum solution. The

Fig. 6.4 The accuracy of the derived values are dependent upon the geometry of the satellites, the
accuracy of the position of the reference stations, the quality of the observations, and how well the
errors have been managed. In this figure, for example, satellite geometry no. 2 is better than 1
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following quality assessment factors are what various software base their acceptance
criteria upon [1]:

• Variance ratio: A fixed solution indicates that the integer ambiguity has been
successfully resolved. Most software will compute the variance of each integer
ambiguity solution and compares the solution with the lowest variance to the next
higher variance solution. The software then impose a minimum value of the ratio
that must be exceeded, else the processor reverts to the float solution.

• Reference variance: Also known as the variance of unit weight, this value indicates
how well the computed errors in the solution compare with the a priori values for a
typical baseline. A value of 1.0 indicates a good solution. Values over 1.0 indicate
that the observed data were worse. Baselines with higher reference variances and
lower variance ratios need to be checked for possible problems (e.g., cycle slips
discussed in Sect. 6.2.2.1).

• Root-mean-square (RMS): This is a quality factor that helps the user determine
which vector solution (triple, float or fixed) to use in the adjustment and is usually
stated at a 95% confidence level. It is dependent on baseline length, the time
over which the baseline was observed, as well as ionospheric, tropospheric and
multipath errors. A lower RMS may not always indicate a good result, but will
provide a judgement on the quality of the data used in the post-processed baseline
vector.

• Repeatability: Redundant lines should agree to a level of accuracy that GNSS
is capable of measuring to. Residual plots depict the data quality of individual
satellite signals and typically vary ±5mm from the mean, with those exceeding
±15mm being suspect. If the quality assessment above are not met, one may
consider removing some or all of the baselines of a session, changing the elevation
mask, removing one or more satellites solutions and/or, if necessary, re-observe
the baseline.

• Accuracy: Indicates how close a measure or group of measures are from the “true”
value.

• Precision: This is how close a group or sample of measurements are to each
other or to their mean. A low standard deviation will indicate a high precision.
Measurements can have high precision, but a low accuracy.

• Standard deviation: This is a range of how close the measured values are from the
arithmetic average. It is obtained by taking the square root of the variance, and is
sometimes known as the “standard error”, though the two are slightly different.
A lower standard deviation indicate that the observation measurements are close
together.

6.2.5 Adjustment of GNSS Network Surveys

Network adjustment often follows baseline processing, which provide the covari-
ance matrices used as weights in the adjustment. Where the correlations between
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Fig. 6.5 Accuracy control through error ellipses, where the smaller the ellipse themore accurate the
solution. Stations near the control points have smaller ellipses. Session 1 entails observing network
A, B, C and D, while session 2 entails network C, D, E, and F

Single baseline adjustment Mul -baseline adjustment

Fig. 6.6 Left Single session solution. Right Multi-session solution. See, Fig. 6.5 for definition of a
session

baselines are considered, processing is performed first using primary, and then sec-
ondary adjustments steps. The primary adjustment step consists of baseline process-
ing, while the secondary adjustment step utilizes the raw baseline distances and
variance-covariance information obtained from the primary adjustment to improve
on the results. Processing can be done for a single session that comprises a single
baseline where one station is fixed (i.e., the coordinates are known) while the coor-
dinates of the other stations are unknown (Fig. 6.3, left), or multi-baselines where
the baselines are interconnected (Fig. 6.3, right). Figure 6.6 provides a summary of
single session processing.

In practise, it may happen for one reason or another that a session survey (e.g.,
A, B, C, and D in Fig. 6.5) is not completed, necessitating continuing the survey
to C, D, E and F at another time. In this case, two sessions are involved and a
multi-session processing is adopted. Both adjustment procedures are treated, e.g.,
in [5, 6]. Similarly to the single session adjustment, the positions obtained from the
primary adjustment provide the weights used in the secondary adjustment. The only
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exception is that the double differencing functional model used requires at least 1
common station between the sessions.

Two types of adjustment are presented in [1] as free and constrained (fixed)
network adjustment. A Free network adjustment fixes one point and for this reason,
is known also asminimally constrained. It is useful for assessing the internal accuracy
of the observed network. If the fixed point is given arbitrary values and a GNSS loop
survey is carried out with respect to it (i,e., starting from point A, through to B, C,
D, and then back to A in Fig. 6.5), the sum of the vector parameters should be zero.
Any misclose of the loop (i.e., the non-zero sum of vectors) will indicate internal
reliability. A Free network, therefore, is vital for removing poor quality observations.
Constrained (fixed) adjustment on its part fixes two or more points and assesses
external reliability with respect to these external fixed (reference) control points
(e.g., point A in Fig. 6.5). Care must be taken since these external control points also
come with their own accuracies (i.e., they are not absolute-error free), which may
be lower than those of GNSS. For adjustment, it is recommended first to process the
baseline, then the free network adjustment and finally the constrained adjustment.
Baseline data provides input data plus weights (from the standard deviations).

In undertaking GNSS surveys, it is advisable that they be adjusted and analyzed
relative to their internal consistency and external fit with existing control points. The
internal consistency adjustment (i.e., free or minimally constrained adjustment) is
important from a contract compliance standpoint, while the final, or constrained,
adjustment fits the GNSS survey to the existing network. This is not always eas-
ily accomplished since existing networks often have lower relative accuracies than
the GNSS observations being fitted. An evaluation of a survey’s adequacy should
therefore not be based solely on the results of a constrained adjustment [1].

6.3 Least Squares Solution

InChap.4, variousways ofmodellingGNSSobservationswith the aimof eliminating
orminimizing errorswere discussed.Although systematic biases can be eliminated or
corrected, randomerrors associatedwith observations normally remain andhave to be
taken care of through an adjustment procedure.Through such adjustment, coordinates
and receiver clock parameters can be estimated. In this section, we present the basics
of the “least squares” estimation method used in most commercial GNSS processing
software.

In this chapter, the term estimation has been repeatedly used. But what exactly is
estimation? In environmental monitoring, observations are normally collected with
the aim of finding or measuring changes in some desired environmental parameters
to assess specific tasks, e.g., compliance with a given legislation or policy, spatial or
temporal changes, or predicting the environmental impact of a proposed project. If
we take the case of surface displacement due to earthquakes for example, GNSSmea-
surements would be undertaken with the aim of determining the extent of the surface
movement. As was pointed out in Sect. 5.4.2, the desired environmental parameters



106 6 Data Processing and Adjustment

for monitoring spatial changes are the relative motion of positions (ΔX,ΔY,ΔZ )
with respect to some fixed network of controls (reference) points established before
the event of concern using the BACI (Before-After-Control-Impact) monitoring
model (1-1 in p. 1). In general, these relative change in position would be the
“unknown parameters” and the process of obtaining them through an adjustment
criteria is known as the “estimation of parameters”.

With improvement in instrumentation, more observations are often collected than
the unknowns. For deformable surfaces beingmonitored, such as is the case inmining
areas, or structures (e.g., bridges), several observation pointswill normally bemarked
on the surface of the body being monitored. These points would then be observed
from a network of control points set up on a non-deformable stable surface (e.g.
Fig. 5.8 on p. 70). Measurements taken between the control points and the points
being monitored (see Sect. 5.4.2) will generally lead to an overdetermined system,
i.e., more observations than unknowns, see e.g., [7–9].

The procedures that are often used to estimate the unknown parameters from the
measured values will depend on the nature of the equations relating the observa-
tions to the unknowns. These equations are normally referred to as the “functional
model”. If these equations are linear, then the task is much simpler. In such cases,
any procedure that can invert the normal equation matrix, such as least squares,
would suffice. Procedures for estimating parameters in linear models have been doc-
umented, e.g., in [9–12]. If the equations relating the observations to the unknowns
are nonlinear, they are first linearized and the unknown parameters estimated iter-
atively using the least squares method. The operation of these numerical methods
require some approximate starting values. At each iteration step, the preceding esti-
mated values of the unknowns are improved. The iteration steps are repeated until the
difference between two consecutive estimates satisfy a specified threshold. Awange
and Grafarend [7, 8] present algebraic-based procedures that avoid linearization
and iteration in order to estimate the unknown parameters from nonlinear mod-
els. Linear and nonlinear models are treated in more detail e.g., in Grafarend and
Awange [8, 9, 14].

Method of Least Squares

The least squares approach traces its roots to the work of C.F. Gauss (1777–855).
Since GNSS operates by measuring the distances between the receiver and the satel-
lites (as discussed in Sect. 3.3.2), let us consider a simple example where two dis-
tances {S1, S2} are measured from an unknown station P0 to two known stations P1

and P2 as shown in Fig. 6.7, (left). From these measured distances {S1, S2} and the
known positions {X1, Y1}P1 of station P1 and {X2, Y2}P2 of station P2, the position
{X0, Y0}p0 of the unknown station P0 can be obtained.

The nonlinear distance equations relating the measured distances to the coordi-
nates of the unknown station are expressed as

[
S2
1 = (X1 − X0)

2 + (Y1 − Y0)
2

S2
2 = (X2 − X0)

2 + (Y2 − Y0)
2,

(6.1)
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Fig. 6.7 Left Distance measurements (S1, S2) to two known stations (P1, P2) from an unknown
point P0 whose position is to be determined. Right distance measurements to three known stations
(P1, P2, P3)

which leads to the two possible solutions presented in Fig. 6.8. Now, let us consider
a case where a third station P3, is also measured, as indicated in Fig. 6.7, (right).
This gives rise to an overdetermined system of three equations with two unknowns,
expressed as ⎡

⎣ S2
1 = (X1 − X0)

2 + (Y1 − Y0)
2

S2
2 = (X2 − X0)

2 + (Y2 − Y0)
2

S2
3 = (X3 − X0)

2 + (Y3 − Y0)
2,

(6.2)

which must be used to solve the unknown coordinates X0, Y0 of station P0. In
(6.2), we have more equations than unknowns, thus necessitating the need for least
squares techniques. The equations have to be first linearized, otherwise one must
use nonlinear methods, such as those presented in [7, 8, 14]. Linear models com-
monly used for parameter estimation are elaborately presented in [9, 11]. We will
limit our discussion to the simple least squares model and refer interested read-
ers who desire a more thorough coverage of parameter estimation methods to the
works of [7–9, 11].

Least squares consist of functional and stochastic models, where a functional
model, also known as the observation equations, can be viewed as an equation relating
what has been measured (known) to what is to be estimated (unknown parameters).
In the case of a stochastic model, the weight matrix W is related to the variance-
covariance matrix Q of the observations (Eq. 6.3). The variance-covariance matrix
shows the relationship between the observations and the unknown parameters. In
general, the weight matrix is a measure of the random errors of the observations
and arises from the fact that no observation can be error free. It is related to the
variance-covariance matrix through

W = Q−1. (6.3)
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Fig. 6.8 Exact solution of the distance problem described in Fig. 6.7. P indicates the two possible
solution points based on S1, S2 from two known stations P1, P2

The diagonal elements of the matrix Q are termed variances while the off diagonal
elements are known as covariances.

In least squares terms, the equation

y = Aξ + ε, (6.4)

is a functional model relating the observation vector y to the vector of unknown
parameters ξ , with ε = y − Aξ being the vector of discrepancies (or error vector).
The vector y is comprised of the observations (measured quantities) or the differ-
ences between the measured values and those computed from the functional model
part Aξ . A is the design matrix which normally consists of the coefficients of the
unknown terms. For linear terms, the matrix A are the direct coefficients.

Example 6.1 (Design Matrix A).

Consider two simultaneous equation given as

2x + y = 4
3x − 2y = 6.

(6.5)

In (6.5), the design matrix A, vector y of observation and vector ξ of unknowns will
therefore be

A =
[
2 1
3 −2

]
, y =

[
4
6

]
, ξ =

[
x
y

]
. (6.6)
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♣ End of Example 6.1.

In GNSS satellite observations, there exist two groups of parameters namely;

1. parameters related to the geometrical range �, and
2. parameters related to biases, e.g., clock biases.

These are related by a functional model (pseudorange equation) described by
Eq. (4.15) on p.49. Let us re-write the pseudorange equation (4.15) for a satellite
1 as

F := �1 =
√

(X S − X R)2 + (Y S − YR)2 + (Z S − Z R)2 + c�t , (6.7)

where X S, Y S, Z S is the satellite’s position and X R, YR, Z R is the receiver’s position.
The receiver clock error term is designatedΔt and c is the speed of light in a vacuum.
All the other biases and errors that were discussed in Chap.4 are assumed to have
been modelled. In comparison to (6.5), (6.7) is nonlinear and cannot be expressed
directly in the form (6.4) and therefore has to be linearized. This is achieved through
the Taylor series expansion about approximate values of the unknown parameters. If
the unknown receiver coordinates X R, YR, Z R are approximated by X0, Y0, Z0, such
that ⎡

⎣ X R = X0 + ΔX
YR = Y0 + ΔY
Z R = Z0 + ΔZ ,

(6.8)

the Taylor series expansion of (6.7) about these approximate coordinates become

F := F(X0, Y0, Z0) + ∂ F(X0, Y0, Z0)

∂ X0
ΔX + ∂ F(X0, Y0, Z0)

∂Y0
ΔY+

∂ F(X0, Y0, Z0)

∂ Z0
ΔZ ,

(6.9)

where higher order terms have been neglected. This leads to the linearized pseudor-
ange equation (6.7) being written as

�1 = �0 + X0 − X S

�0
ΔX + Y0 − Y S

�0
ΔY + Z0 − Z S

�0
ΔZ + cΔt, (6.10)

with the partial derivatives being
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ F1

∂ X0
= X0 − X S√

(X0 − X S)2 + (Y0 − Y S)2 + (Z0 − Z S)2
= X0 − X S

�0

∂ F1

∂Y0
= Y0 − Y S

�0

∂ F1

∂ Z0
= Z0 − Z S

�0

∂ F1

∂c�t
= 1.

(6.11)

In order to express this equation in the functional model form (6.4), the designmatrix
A, vector y of observation for n satellites observed by a receiver, and the vector ξ of
the unknowns are expressed as:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ F1

∂ X R

∂ F1

∂YR

∂ F1

∂ Z R
1

∂ F2

∂ X R

∂ F2

∂YR

∂ F2

∂ Z R
1

. . . .
∂ Fn

∂ X R

∂ Fn

∂YR

∂ Fn

∂ Z R
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, y =

⎡
⎢⎢⎣

�1 − �01

�2 − �02

.

�3 − �0n

⎤
⎥⎥⎦ , ξ =

⎡
⎢⎢⎣

ΔX R

ΔYR

ΔZ R

cΔt

⎤
⎥⎥⎦ , (6.12)

where the values of y are pseudorange differences (measured-computed) using
approximate coordinates. Exact solutions of (6.7) are presented e.g., in Awange
and Grafarend [7, 8, 14, 15].

The requirement of least squares solution is simply that the sum of the squares of
errors ε = y − Aξ be minimized through

εT ε → min. (6.13)

If we now incorporate the weightsW of the observations from the stochastic model,
(6.13) becomes

εTWε → min. (6.14)

The minimum requirement in (6.14) is subject to the functional model (6.4).
Rewriting (6.4) as

ε = y − Aξ, (6.15)

and inserting it in (6.14) leads to

f := εTWε = (y − Aξ)TW(y − Aξ) → min. (6.16)
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In the expansion of (6.16), setting the condition d f
dx = 0 leads to the solution of

unknown vector ξ in (6.12) as

ξ̂ = (ATWA)−1(ATWy), (6.17)

with a variance-covariance matrix of the estimated parameters (receiver coordinates
and clock parameter) given by

Qx̂ = (ATWA)−1 =

⎡
⎢⎢⎣

σ 2
x σxY σx Z σxct

σyx σ 2
y σyZ σyct

σzx σzy σ 2
z σzct

σctx σcty σctz σ 2
ct

⎤
⎥⎥⎦ . (6.18)

The square root of the diagonal matrix in (6.18) gives the standard deviations of the
estimated parameters in (6.17). Equations (6.17) and (6.18) are the ones mainly used
in GNSS processing software to generate the final products. For more details, the
reader is referred to [4, 16].

6.4 Online Processing

Several internet based GNSS processing software systems are freely available to
users to process their baselines online. InAustralia for example,AUSPOS (Australian
onlineGPS processing service) enables users to send their data to a central processing
unit at Geoscience Australia via the Internet [17]. The processing software thereafter,
chooses three or more CORS stations that are near the user’s observing station and
employs them to process the user’s position. The results are then send back to the
user via email. In theUS, theOPUS (Online PositioningUser Service) has performed
similar functions as AUSPOS since March 2001 [18].

The Australian Surveying and Land Information Group (AUSLIG), which is now
part of Geoscience Australia, is Australia’s national mapping agency, providing
fundamental geographic information to support the mining, agricultural, transport,
tourism, and communications industries, as well as defence, education, surveillance
and emergency services activities [19]. OPUS is a US-based service that provides
baseline reduction and position adjustment relative to three nearby national CORS
reference stations. It is ideal for establishing accurate horizontal control relative to
the National Geodetic Reference System (NGRS), and can also be used as a quality
control check on previously established control points [1].

To use such services, for a single GNSS receiver, an AUSPOS user for example
needs to upload the dual-frequency static data in RINEX format (see discussion in
Sect. 6.2.1) as well as the antenna type and height information to a web site which
processes the data using the service provider’s software (e.g., Fig. 6.9). The antenna
type should be as defined by the International GNSS Service (IGS) and the input
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Fig. 6.9 AUSPOS - online GPS processing service. Source Geoscience Australia

antenna heights should be with respect to the IGS defined Antenna Reference Point
(ARP).

Once the data is received by the AUSPOS system, the format is checked, an
approximate user position computed from the submitted RINEX file, and data
files from the three or more nearest IGS stations acquired. The best available IGS
ephemeris and earth rotation parameters (ERPs) are then acquired, dependent upon
the observation latency. The international terrestrial reference frame (ITRF) coor-
dinates are then computed for the selected IGS stations at the observational epoch.
The user station plus the three or more selected IGS stations thus form a network
of 4 stations that is adjusted through a network adjustment procedure. Cycle slips
from the user data are removed by double differencing the carrier-phase data for
each baseline. In the network adjustment, a constrained framework (see Sect. 6.2.5)
is adopted where the three or more IGS stations are held fixed to ITRF coordinates.
When the processing is completed, a pdf file is generated and emailed to the user.

Similarly to AUSPOS, OPUS computes an average solution from the three base-
lines and the output positions are provided with an overall RMS (95%) confidence
level, along with the maximum coordinate spreads between the three CORS sta-
tions for both the ITRF and North American Datum (NAD) 83 positions [1]. How-
ever, OPUS users need to enter at least two hours of static, dual-frequency GNSS
observation.
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6.5 Concluding Remarks

This chapter has simply presented some of the aspects of data processing. For detailed
exposition, we refer the reader to [1, 2, 7–9, 13, 14, 16], as well as, the various user
manuals for the assorted instruments.
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