
Chapter 4
Mathematical Modelling

If I were again beginning my studies, I would follow the advice
of Plato and start with mathematics.

Galileo Galilei

4.1 Introductory Remarks

When talking about mathematical models, most readers normally associate this con-
cept with a very complex notion. In this chapter, the GPS mathematical models are
presented in very simple terms that will allow the reader to understand how errors are
managed and positions finally extracted from the observations discussed in Sect. 3.3.
In addition, it will be shown how errors can be eliminated or avoided through the
design of a GNSS survey. The intended outcomes of this chapter are to assist the
reader to:

(i) Know and understand the nature of code- and phase-pseudorange observation
equations (derived from Sect. 3.3) and their uses.

(ii) Know how various GPS observational errors can be modelled through simple
observation techniques.

(iii) Understand the basic concepts of static, kinematic, Differential GPS (DGPS),
and relative positioning modes and their uses.

More detailed discussions can be found, e.g., in [1, pp. 107–116], [2, pp. 181–
201], and [3, pp. 170–187, 250–261]. Here, the focus is on the observations, models,
and the subsequent configurations that enable the solution of positions and other
parameters required for environmental monitoring.

Before looking at the mathematical formulations that underpin the GPS observa-
tions, let us briefly examine how these satellites orbit in space (i.e., space segments
discussed in Sect. 3.2.1). In general, the motions of planets in space obey the three
Johannes Kepler’s laws:
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(i) The orbital path of a planet takes the shape of an ellipse, with the sun located
at one of its focal points.

(ii) The (imaginary) line connecting the sun to any of the planet sweeps equal areas
of the orbital ellipse over equal time intervals.

(iii) The ratio of the square of the planets orbital period and the cube of the mean
distance from the sun is constant.

TheseKeplerian laws apply not only to the planets, but also to artificial satellites (e.g.,
GNSS) orbiting theEarth. The orbital path takes the shape of an ellipse,with the Earth
located at one of its focal points. Satellite orbits are characterized by their altitudes,
i.e., Low Earth Orbiting (LEO) satellites (up to 2000km), e.g., GRACE (Gravity
Recovery And Climate Experiment) and COSMIC (Constellation Observing System
for Meteorology, Ionosphere, and Climate), which together with GNSS satellites
provide useful tools for environmental monitoring at continental scales as we shall
see in part II of the book. Besides LEO satellites, we have Medium Earth Orbiting
(MEO) satellites (5000–20,000km) in which GNSS satellites fall, and Geostationary
Earth Orbiting (GEO) satellites, orbiting at about 36,000km, and which comprise
communication satellites.

In a perfect situation, a satellite orbit should ideally follow the idealKeplerian laws
in which all forces except the Earth’s gravitational force are neglected, the Earth’s
gravitational field is radially symmetric, and there exists no atmospheric drag. In
reality, however, the central and non-central gravitational forces act on the satellites.
In addition, other forces acting on the satellites include gravitational attraction of
the Sun, Moon and planets; solar radiation pressure; and magnetic forces. All the
other forces other than the central gravitational force are normally grouped under
perturbing forces.

Modelling of GPS observations makes use of satellite positions broadcast through
navigation messages (see e.g., Sect. 3.3.1). This is of particular importance in instan-
taneous positioning (i.e., in real-time positioning). Understanding how to model the
orbital errors of GNSS satellites is therefore a good starting point towards achieving
more accurate positions and other environmental monitoring parameters. For other
applications that require post-processing of GNSS data, and which the results may
not be immediately required, such as those of long termmonitoring of environmental
changes (e.g., sea level), precise ephemeris (see Sect. 3.4.1) should be used.

4.2 Observation Equations

For code ranging, let us consider that a signal is send by a satellite at time t s and
received by a ground-based receiver at time tr (see e.g., Sect. 3.3.2). The time taken
by the signal to travel from the satellite to the receiver would therefore be

Δt = tr − t s . (4.1)
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Due to clock errors (see e.g., Sect. 3.4.2) in the transmitting satellite (i.e., δs) and the
receiving receiver (i.e., δr ), Eq. (4.1) becomes

Δt = {tr + δr } − {t s + δs} = Δt + Δδ, (4.2)

which when multiplied by the speed of light c (e.g., Eq. 3.1) gives the distance
between the satellite and the receiver. Since time difference is used, the derived dis-
tance between the satellite and the receiver, i.e., code-pseudorange (e.g., Sect. 3.3.2)
is obtained from (4.2) by

R(t) = cΔt = c(Δt + Δδ) = �(t) + cΔδ(t) , (4.3)

where R(t) is themeasured pseudorange, �(t) the geometric (true) unknown distance
between the satellite and the receiver, and cΔδ(t) is the range bias.

For precise GPS measurements, carrier-phase measurements are often used to
obtain ranges. Consider the phase ϕs(t) (cycles) with a frequency f s (cycles per
second) to have been sent by a satellite. At the receiver, a phaseϕr (t)with a frequency
fr is generated. Taking the start time of the signal as t0, the time passed in the GPS
system fromwhen the signal was sent from the satellite to the receiver will be tsr . The
relationship between frequency and phase is such that the frequency is the derivative
of phase, see e.g., [2, p. 72]

f = dϕ

dt
. (4.4)

From (4.4), phase can be obtained by integrating the frequency from the initial time
t0 to t as

ϕ =
∫ t

t0

f dt, (4.5)

which leads to
ϕ = f (t − t0). (4.6)

For the initial time t0 = 0, (4.6) yields ϕ(t0) = 0. When the satellite signal reaches
the receiver, it is

• reconstructed with phase ϕs = f s(t − tsr ), and
• compared with the receiver generated signal with phase ϕr = fr (t)

Using Eq. (3.1) relating speed, distance and time, tsr is given as �/c, which when
substituted for tsr in ϕs = f s(t − tsr ) leads to

ϕs = f s(t − �

c
). (4.7)

The reconstructed signal is then written as
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ϕs(t) = f s t − f s
�

c
− ϕ0s, (4.8)

while for the receiver generated signal, (4.7) becomes

ϕr (t) = fr t − ϕ0r . (4.9)

In (4.8) and (4.9), ϕ0s and ϕ0r arise from the satellite and receiver clock errors.
Considering the clock errors to be δs and δr for the satellite and receiver, respectively,
from (4.2) and using ϕ0s = − f sδs and ϕ0r = − frδr , the phase measured at a time
t is given by

ϕs
r (t) = ϕs(t) − ϕr (t) = − f s

�

c
+ f sδs − frδr + ( f s − fr )t. (4.10)

Expressing the receiver-satellite clock bias term as Δδ = δr − δs and using the
frequency-wavelength relation f = c/λ, assuming the satellite frequency f s and
receiver frequency fr to be equal to the nominal frequency f , (4.10) is rewritten as

Δϕ(t) = −�

λ
(t) − c

Δδ

λ
(t), (4.11)

where Δϕ is the measured phase expressed in terms of the measured pseudorange
�, wavelength λ, and the speed of light c.

Besides expressing the phase in terms of pseudorange as in (4.11), it can also be
expressed in terms of the initial instantaneous fractional measurement immediately
when the receiver is switched on at time t0. At this stage, the receiver still does not
know the integer number N of cycles between it and the satellite, i.e., the integer
ambiguity (cf. Eq. 3.2). If a satellite is tracked by the receiver without loosing lock,
this integer number remains the same (see e.g., Fig. 4.1). The phase at time t can
therefore be expressed in-terms of the measured value at time t plus the unknown
integer number of cycles N since the initial time t0 as [2, p. 89]

Δϕ(t) = Δϕ0(t) + N , (4.12)

Comparing Eqs. (4.11) and (4.12), one obtains

λΔϕm(t) = �(t) + cΔδ(t) + λN , (4.13)

where Δϕm(t) = −Δϕ0(t) is the measurable phase at epoch t . Note that (4.13) is
similar to (4.3), only that it has the ambiguity term N added. Hence, the difference
between code-pseudorange andphase-pseudorange in positioningwithGPS satellites
is that the former is only concerned with the position X,Y, Z of a receiver while
the later is concerned with determining the receiver’s position plus the unknown
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Fig. 4.1 How does the integer ambiguity arises? When a receiver is switched on, the number of
complete cycles, known as integer ambiguity N , is unknown. The receiver measures the phase, i.e.,
fraction of a cycle shown in the figure. As subsequent measurements are taken, it is possible to
determine the N whose value remains constant as shown in the figure

ambiguity term N . Note that the phase observation in (4.13) has been multiplied
by the wavelength λ to convert it into a distance measurement. In Sect. 6.2.2.2 on
p. 99, the ambiguity solution is discussed in more detail.

4.3 Models

The word “model” has about 8 meanings,1 ranging from a small object that is built
to represent in detail another, often larger, object, to an animal whose appearance
is copied by a mimic in Zoology. Model is a term that we often meet in daily life.
For example, it is common for architects to work with models as a representation of
the real world, or for people to display clothing as we see on the TV. It is also often
common to hear people speak of role models, i.e., people they would like to emulate.

Mathematical models can also be seen as a representation of ideas using formulae
as objects. An encyclopedic definition of a mathematical model is given as follows2:

A mathematical model is an abstract model that uses mathematical language to describe the
behaviour of a system.Mathematicalmodels are used particularly in the natural sciences and
engineering disciplines (such as physics, biology, and electrical engineering) but also in the
social sciences (such as economics, sociology and political science); physicists, engineers,
computer scientists, and economists use mathematical models most extensively.

1http://www.thefreedictionary.com/model.
2http://encyclopedia.thefreedictionary.com/Mathematical+model.

http://www.thefreedictionary.com/model
http://encyclopedia.thefreedictionary.com/Mathematical+model
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Fig. 4.2 GPS positioning
geometry. Normally two
positions of the receiver’s
position indicated by the star
(*) in the figure will be
given, one of which will be
on the Earth’s surface while
the other in space (outside
the Earth’s surface)

An abstract model (or conceptual model) in the definition above is a theoretical
construction that represents physical, biological or social processes, with a set of
variables and a set of logical and quantitative relationships between them. In what
follows, mathematical models are used to relate the measured GPS pseudoranges
to their geometrical equivalent, and to model the observational errors discussed in
Sect. 3.4.

A simple way to conceptualize a mathematical model in GPS operations involves
distance measurements from a ground-based receiver to GPS satellites. In this case,
the distance, which is a measurable quantity is geometrically represented by an
equation that relates it to the position of the ground receiver and those of the satellites.
The geometrical (true) distance S between the satellite and the receiver is represented
by the model

S =
√

(X j − Xr )2 + (Y j − Yr )2 + (Z j − Zr )2, (4.14)

where {X j ,Y j , Z j } is the position of a satellite j and {Xr ,Yr , Zr } is the receiver’s
position. Since the distance from the satellite to the receiver S is measured, and
the satellite’s position {X j ,Y j , Z j } is known from the transmitted ephemeris (e.g.,
Sect. 3.3.1), only the receiver’s position {Xr ,Yr , Zr } needs to be determined from
Eq. (4.14). Geometrically, to determine the three coordinates {Xr ,Yr , Zr } of the
receiver’s position, an intersection of three spherical cones, each representing a dis-
tance Si |i = 1, 2, 3 is performed (see e.g., Fig. 4.2). Distance measurements to only
one satellite puts the user’s position anywhere within the sphere defined by distance
S1. Measurements to two satellites narrows the solution to the intersection of the two
spheres S1 and S2. A third satellite is therefore required to definitely fix the user’s
position. This is achieved by the intersection of the third sphere S3 with the other
two (Fig. 4.2).

If direct distance measurements to the satellites were possible, Eq. (4.14) would
suffice to provide the user’s position. However, as already stated earlier, distance
measurements to satellites are not direct owing to the satellites’ and receivers’ clock
errors, errors in the satellites’ positions, atmospheric delays, and receiver related
errors such as phase centering and multipath discussed in Sect. 3.4. The distance
Eq. (4.14), therefore, converts to the pseudorange equation
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�
j
i =

√
(X j − Xr )2 + (Y j − Yr )2 + (Z j − Zr )2 , (4.15)

where �
j
i has now replaced Si and contains the error uncertainties (cf. Eq. 6.7 on

p. 109). Since the satellites’ clock errors can be modeled while the receiver’s clock
errorsmust be determined as unknowns, the code pseudorangeEq. (4.3) then becomes

R(t) + cδ j (t) = �(t) + cδi (t) , (4.16)

where at time t , R(t) is the measured range, δ j (t) and δi (t) are the satellite and
receiver clock errors, �(t) the geometrical pseudorange from Eq. (4.15) and c is
the velocity of propagation (i.e., speed of light). In Eq.4.16, the addition of cδi (t)
as an unknown to the receiver’s position {Xr ,Yr , Zr } leads to four unknowns to
be determined. This means, therefore, that instead of three satellites required to
determine the receiver’s position (e.g., Fig. 4.2), four satellites are required (Fig. 4.4).
The fourth satellite is used to determine the receiver clock bias cδi (t).

When four satellites are observed as required for positioning, four pseudorange
equations are formed from (4.16) and (4.15) as

R1 = [(X1 − Xr )
2 + (Y 1 − Yr )2 + (Z1 − Zr )

2]1/2 + cδ
R2 = [(X2 − Xr )

2 + (Y 2 − Yr )2 + (Z2 − Zr )
2]1/2 + cδ

R3 = [(X3 − Xr )
2 + (Y 3 − Yr )2 + (Z3 − Zr )

2]1/2 + cδ
R4 = [(X4 − Xr )

2 + (Y 4 − Yr )2 + (Z4 − Zr )
2]1/2 + cδ

, (4.17)

with the four unknowns being the receiver’s 3D position (Xr ,Yr , Zr ) and the receiver
clock bias cδ. With the observations of more satellites, Eq. (4.17) retains the four
unknown with increased number of equations thereby necessitating the use of least
squares solutions discussed in Sect. 6.3. Examples of algebraic methods for solving
Eq. (4.17) are presented in Awange et al. [1, 4, 5]. It should be mention here that the
accuracy of the obtained receiver’s position from Eq. (4.17) depends upon the accu-
racies of range measurements, the accuracy of each satellite’s position, the accuracy
by which the atmospheric parameters are modeled, the accuracy upon which the
receiver measures time (i.e., clock synchronization, signals processing, signal noise,
etc.), the geometry of the satellite and the length of time taken to observe [6]. For
practical use, the determined receiver’s geocentric coordinates (Xr ,Yr , Zr ) in the
GPS’s WGS-84 system can then be transformed to the user’s local reference datum
(see e.g., Sect. 5.6.1). This is often done automatically by the processing software.

For the phase-pseudorange, in addition to the receiver’s position and receiver
clock uncertainties, the integer ambiguity N which corresponds to the unknown
number of complete cycles the signal has travelled from the satellite to the receiver
must be added as an unknown. Equation (4.13) is then modeled by

λΔϕm(t) + cδ j (t) = �(t) + cδi (t) + λN . (4.18)
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Similarly to Eqs. (4.3) and (4.13), comparison between Eqs. (4.16) and (4.18) reveal
similarities, with (4.18) having the additional term of λN on the right-hand side. The
solution of the right-hand side of (4.16), when inserted into the right-hand side of
(4.18), leads to the solution of N . For this reason, code-pseudorange finds use in the
linear combination of code and phase approaches for solving the integer ambiguity
unknown N (e.g., Sect. 6.2.2.2).

The models (4.16) and (4.18) only become valid once other errors associated with
the ionospheric effect I , tropospheric effect T and multipath m have been modeled.

4.3.1 Static and Kinematic Positioning

Static positioning is where a receiver is set up on top of a tripod or pillar at some point
of interest andmeasurements are taken, see e.g., Fig. 4.3. The stationary receiver takes
observations from a minimum of four satellites (e.g., Fig. 4.4) for example every 10s
(or as set by the user) for up to one hour or more to achieve a more precise position
than is possible by a stand-alone instantaneous reading. During this period, it is hoped
that the number of satellites either remains at the minimum of 4, or more, with an
adequate PDOP (see Sect. 3.4.5). This would potentially lead to a better solution for
the unknown ambiguity N , and better solutions of position Xr ,Yr , Zr . It should be
pointed out, however, that the occupation time being recommended by some receiver
manufactures, e.g., Sokkia, is currently less than 30min. This decrease in occupation
time is attributed to improved receiver technology andmodernization of the satellites
as discussed in the preceding chapters.

Consider, for example, the code-pseudorange model (4.16). For a stationary
receiver, 3 unknown receiver position {Xr ,Yr , Zr } and 1 unknown receiver clock bias
have to be determined. For each observational epoch, we have an additional receiver
clock bias as an unknown. If n is the number of satellites that can be observed in
static mode and m the number of epochs, the following relation can be written [2, p.
185]

nm ≥ 3 + m, (4.19)

which gives

m ≥ 3

n − 1
. (4.20)

Therefore, for static point positioning, for n = 4,m ≥ 1, gives the minimum number
of satellites and epoch needed to solve the three receiver coordinates and the receiver
clock bias (see, e.g., Fig. 4.4). Exact solutions of these 4 equations to obtain point
positions with GPS have been presented e.g., in [1, pp. 107–116], [7–10] and [11].

For kinematic positioning, the antenna is moving onboard a pole, boat or vehicle.
In this mode of point positioning, there exist more unknown points since the receiver
is in motion. The unknown coordinates now change from the static mode of 3 to 3m,
i.e., for each epoch of measurement while in motion. The addition of the receiver
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Fig. 4.3 A static receiver
stationed on a tripod at point
G2 of Curtin University
(Bentley Campus), Australia

Fig. 4.4 Absolute point
positioning using GPS
satellites (see, e.g., Fig. 4.3)
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clock bias m gives a total of 4m unknowns leading to

nm ≥ 4m, (4.21)

which leads to
n ≥ 4. (4.22)

The position of the receiver in motion can therefore be determined at any epoch t as
long as a minimum of 4 satellites are visible.

4.3.2 Differential GPS (DGPS)

Absolute point in Sect. 4.3.1 (i.e., Fig. 4.4) is not suitable for applications requiring
high accuracies such as the provision of controls for monitoring deformation, e.g., of
dams. The reason for this is largely due to the errors discussed in Sect. 3.4. In order
to minimize these errors and obtain higher accuracies, GPS can be used in relative or
differential positioning mode [6]. The differential positioning method, also known
as Differential GPS (DGPS) is one of the techniques most commonly used to model
positioning errors in order to improve the accuracy of the final solutions. In this
approach, code-pseudoranges are simultaneouslymeasured by two receiverswith one
receiver occupying a known reference station (see Figs. 4.5 and 5.5). The reference
station calculates the geometric pseudorange bymaking use of the satellite’s position
through ρ

j
g = ‖Xr − Xs‖, where Xr are the coordinates of the reference station and

Xs those of the satellite (from the received ephemeris). Since the positions of the
satellite Xs = {X j (t),Y j (t), Z j (t)} and that of the receiver Xr = {XA,YA, ZA} at
a reference station are both known, the geometrical distance �

j
g is computed from

(4.15) as

� j
g = ‖Xr − Xs‖ =

√
(X j (t) − XA)2 + (Y j (t) − YA)2 + (Z j (t) − ZA)2. (4.23)

If �
j
ma is the measured pseudorange at the reference station A, then the pseudorange

corrections (PRC) Δ�A for point A are given by

PRC = Δ�A = � j
g − � j

ma, (4.24)

where the correction term PRC = Δ�A comprises the range, satellite, and receiver
bias terms corresponding to station A and the range rate correction. PRC are due
to errors discussed in Sect. 3.4, which are assumed to be similar at both stations (A
and B) due to their close proximity. PRCs are transmitted to the roving receiver at
location B in real-time using communication link (e.g., radio, satellite, or cell phone
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Fig. 4.5 DGPS positioning. One receiver is placed at a known reference station (e.g., A) and
the other at a location B whose position is desired. The measured pseudoranges at station A are
compared to the actual values computed from the satellites’ and receivers’ positions using Eq.4.23.
The difference between the measured and the computed values give the pseudoranges corrections
PRC , which are send from receiverA to receiverB via a communication link to correct themeasured
pseudoranges of station B, assuming that the stations are close enough such that the same errors
affecting A also affect B. If the stations are close the atmospheric conditions are largely the same
for both stations. DGPS positions are obtained in real-time at decimeter level accuracy

links) to correct itsmeasured pseudoranges, which are then used to derive its position.
For example, the measured pseudorange �

j
mb at station B would be corrected by

�
j
Bcorr = �

j
mb + Δ�A. (4.25)

As an example (see, e.g., [6]), consider that the computed range, i.e., the dis-
tance between the satellite antenna and the receiver antenna �

j
g for station A

is 20,000,000m and the measured code-pseudorange �
j
ma is 19,999,990. Then,

Δ�A = 20, 000, 000 − 19, 999, 990 gives 10 as the pseudorange correction, which
is transmitted to correct the pseudorange measured by the satellite at B using (4.25)
as �

j
Bcorr = �

j
mb + 10. Pseudorange measurements to each satellite at location B

is corrected in the same manner and the resulting corrected pseudoranges used to
determine the position of B using Eq. (4.17). The coordinates of B will be relative to
those of A, hence they belong to the same datum. If more than one reference station
is used to obtain the pseudorange corrections, then the corrections may further be
refined using the network of reference stations. A network of stations transmitting
differential GPS corrections are termed “augmented GPS”, which are discussed in
Sect. 5.4.4.2.

Improvements to the positioning accuracy depend on the accuracy of the known
station’s location, the accuracy of the satellite positions, and the mode of operation
(i.e., whether code or phase). For phase pseudorange, (4.25) becomes

λϕ
j
Bcorr = �

j
MB + Δ�A + λN j

AB . (4.26)
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Several countries have service providers who operate DGPS. The user only needs
to have one receiver and use nearby DGPS station to obtain the corrections at some
cost. In Australia, for example, DGPS services are provided by the Australian Mar-
itime Safety Authority (AMSA), as well as private companies, e.g., FUGRO. DGPS
with carrier-phase ranges is applicable for real-time kinematic operations where the
ambiguity is resolved using a technique known as On-The-Fly (OTF) as discussed
in Sect. 5.4.6.

4.3.3 Relative Positioning

In the DGPS technique discussed above, pseudorange corrections and range-rate
changes computed from a known station are transmitted via communication link and
used to correct those of the unknown station. In relative positioning, instead, the
baseline vector is computed and added to the coordinates of the reference station to
obtain those of the unknown station (see, e.g., Fig. 4.6). Also, in contrast to DGPS,
which is performed in real-time, relative positioning requires post-processing of
data, where simultaneous carrier-phase observations from both reference and rover
stations are processed.

If one considers the positions of the known reference station A (Fig. 4.6) as

XA =
⎡
⎣ X
Y
Z

⎤
⎦ , (4.27)

and the computed baseline vector as

ΔXAB =
⎡
⎣ΔX

ΔY
ΔZ

⎤
⎦ , (4.28)

then the position XB of the rover station B is given by

XB = XA + ΔXAB . (4.29)

Relative positioning can be performed through single-, double-, and triple differ-
encing in both static and kinematic modes (see Sect. 4.3.1).

1. In single differencing, two ground receivers occupying the reference station A
and a rover station B simultaneously observe one satellite j (see, e.g., Fig. 4.7).
Using Eq. (4.18), the two phase range equations are differenced (subtracting one
from the other) as
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Fig. 4.6 Relative
positioning. One receiver is
placed at a reference station
A whose position is known
and the other at a rover
location B whose position is
sought. Baseline vectors are
computed during
post-processing of the data
and added to the coordinates
of A to obtain those of B. No
radio link is required as in the
case of DGPS (Fig. 4.5), and
post-processing of the data is
necessary hence positions
are not obtained in real-time

Fig. 4.7 Single differencing.
Two receivers A and B
simultaneously observing the
same satellite j. This
technique eliminates the
satellite clock errors
(e.g., Eq.4.30)

λΔϕ
j
A(t) + cδ j (t) = �

j
A(t) + cδA(t) + λN j

A

λΔϕ
j
B(t) + cδ j (t) = �

j
B(t) + cδB(t) + λN j

B

λ
[
Δϕ

j
B − Δϕ

j
A

]
(t) =

[
�
j
B − �

j
A

]
(t) + c [δB − δA] (t) + λ

[
N j

B − N j
A

] ,

(4.30)
which simplifies to

λΔϕ
j
AB(t) = �

j
AB(t) + cδAB(t) + λN j

AB . (4.31)

The significance of the results from Eq. (4.31) is that the satellite clock bias term
cδ j (t) is eliminated.

2. Double differencing refers to the case where, again, two ground receivers occupy
the reference station A and rover station B, but now simultaneously observe two
satellites, j and k (see, e.g., Fig. 4.8). In this case, (4.31) is written for the second
satellite k as

λΔϕk
AB(t) = �kAB(t) + cδAB(t) + λNk

AB . (4.32)
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Differencing (4.31) and (4.32) leads to

λΔϕ
j
AB(t) = �

j
AB(t) + cδAB(t) + λN j

AB

λΔϕk
AB(t) = �kAB(t) + cδAB(t) + λNk

AB

λ
[
Δϕk

AB − Δϕ
j
AB

]
(t) =

[
�kAB − �

j
AB

]
(t) + λ

[
Nk

AB − Nk
AB

] , (4.33)

which simplifies to
λΔϕ

jk
AB(t) = �

jk
AB(t) + λN jk

AB . (4.34)

Equation (4.34), knownas thedouble differencing equation, is themost commonly
used equation in processingGPS data. The importance of this equation is that both
the satellite and receiver clock errors are eliminated.

3. Finally, double differencing can be done at two epochs, t1 and t2, to give a triple
difference (see, e.g., Fig. 4.9). In this case, Eq. (4.34) will be written for both
epochs and differenced to give

λΔϕ
jk
AB(t1) = �

jk
AB(t1) + λN jk

AB

λΔϕ
jk
AB(t2) = �

jk
AB(t2) + λN jk

AB

λ
[
Δϕ

jk
AB(t2) − Δϕ

jk
AB(t1)

]
= �

jk
AB(t2) − �

jk
AB(t1)

, (4.35)

which simplifies to
λΔϕ

jk
AB(t12) = �

jk
AB(t12), (4.36)

where the unknown ambiguity term λN jk
AB corresponding to ambiguities λNA and

λNB for satellites j and k have been eliminated. Triple differencing is relevant
to GPS positioning in that clock errors and the unknown integer ambiguity term
N have been eliminated. Triple differencing is useful as an alternative approach
for solving the unknown integer ambiguity term N and is often used to obtain
the initial solutions of station coordinates in what is known as a float solution.
These initial solutions are then used in the double differencing models to obtain
a rigorous solution in what is termed the fixed solution. Section6.2.3.1 presents
detailed discussion on float and fixed solutions.

4.4 Concluding Remarks

In summary, this chapter has introduced the codes and phase GPS observation equa-
tions and has highlighted the similarities and differences between these equations.
The differences occur in terms of the measured quantities (i.e., time and phase) and
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Fig. 4.8 Double
differencing. Two receivers,
A and B, simultaneously
observe the same satellites j
and k. This is the most
commonly used Eq. (4.34) to
process GPS data during
post-processing

Fig. 4.9 Triple differencing.
Two receivers, A and B,
simultaneously observe the
same satellites, j and k, at
times t1 and t2. The
advantage of this differenced
solution is the capability of
eliminating the unknown
ambiguity term N leading to
float solutions needed to
obtain more accurate fixed
solutions (see e.g.,
Sect. 6.2.3.1)

the addition of the unknown integer ambiguity term N on the phase equation. In
general, the configurations confirm the well-known practise of using more than four
satellites for positioning in both static and kinematic modes. Positioning accuracies
can be improved by using DGPS or relative positioning techniques, which model
errors associated with the atmosphere and clock errors. In particular, single, dou-
ble and triple differencing eliminates satellite, receiver and ambiguity error terms,
respectively.

It should be emphasized that the accuracies of phase observations are in the cm-
mm level range, while those of code are in meters. Code-pseudorange observations
are, however, relevant since they do not suffer from the unknown integer ambiguity
and can thus be used to offer quick (or even instantaneous) environmental solutions
that do not require higher accuracy, e.g., locating a waste damping site. They could
also be used (similarly to triple differencing solutions) to provide the initial solutions
required in the double differencing to resolve the integer ambiguity N in order to
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obtain fixed solutions. This could be of benefit in environmentalmonitoring tasks that
require accurate observations. In the next chapter, we will provide a more in-depth
discussion of the field procedures of the techniques discussed in this chapter.
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