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Abstract A Sign Language Recognition (SLR) system translates signs performed
by deaf individuals into text/speech in real time. Low cost sensor modalities, inertial
measurement unit (IMU) and surface electromyography (sEMG), are both useful to
detect hand/arm gestures. They are capable of capturing signs and are comple-
mentary to each other for recognizing signs. In this book chapter, we propose a
wearable system for recognizing American Sign Language (ASL) in real-time,
fusing information from an inertial sensor and sEMG sensors. The best subset of
features from a wide range of well-studied features is selected using an information
gain based feature selection approach. Four popular classification algorithms are
evaluated for 80 commonly used ASL signs on four subjects. With the selected
feature subset and a support vector machine classifier, our system achieves 96.16
and 85.24% average accuracies for intra-subject and intra-subject cross session
evaluation respectively. The significance of adding sEMG for American Sign
Language recognition is explored and the best channel of sEMG is highlighted.

Keywords American sign language recognition ⋅ IMU sensor ⋅ Surface
EMG ⋅ Feature selection ⋅ Sensor fusion

J. Wu (✉)
Department of Computer Science and Engineering, Texas A&M University, College Station,
USA
e-mail: jian.wu@tamu.edu

R. Jafari
Departments of Biomedical Engineering, Computer Science and Engineering,
and Electrical and Computer Engineering, Center of Remote Health Technologies
and Systems, Texas A&M University, College Station, USA
e-mail: rjafari@tamu.edu

© Springer International Publishing AG 2017
S.U. Khan et al. (eds.), Handbook of Large-Scale Distributed Computing
in Smart Healthcare, Scalable Computing and Communications,
DOI 10.1007/978-3-319-58280-1_14

379



1 Introduction

According to World Health Organization (WHO), over 5% of the world’s popu-
lation—360 million people—has disabling hearing loss (328 million adults and 32
million children) by March, 2015. Disabling hearing loss refers to hearing loss
greater than 40 decibels (dB) in the better hearing ear in adults and a hearing loss
greater than 30 dB in the better hearing ear in children. The majority of people with
disabling hearing loss live in low- and middle-income countries. Hearing loss may
result from genetic causes, complications at birth, certain infectious diseases,
chronic ear infections, the use of particular drugs, exposure to excessive noise and
ageing. 50% of hearing loss can be prevented by taking medicines, surgery and the
use of hearing aids and other devices. However, there are still a large number of
people who have profound hearing loss which is also defined as deafness. They
often use sign language for communication.

A sign language is a language which uses manual communication to convey
meaning, as opposed to acoustically conveyed sound patterns. It is a natural lan-
guage widely used by deaf people to communicate with each other [1]. However,
there are communication barriers between hearing people and deaf individuals
either because signers may not be able to speak and hear or because hearing
individuals may not be able to sign. This communication gap can cause a negative
impact on lives and relationships of deaf people. Two traditional ways of com-
munication between deaf persons and hearing individuals who do not know sign
language exist: through interpreters or text writing. The interpreters are very
expensive for daily conversations and their involvement will result in a loss of
privacy and independence of deaf persons. The text writing is not an efficient way
to communicate because writing is too slow compared to either spoken/sign lan-
guage and the facial expressions during performing sign language or speaking will
be lost. Thus, a low-cost, more efficient way of enabling communication between
hearing people and deaf people is needed.

A sign language recognition (SLR) system is a useful tool to enable commu-
nication between deaf people and hearing people who do not know sign language
by translating sign language into speech or text [2, 3]. Figure 1 shows a typical

Fig. 1 Typical application of sign language recognition system
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application of sign language recognition system. The SLR system worn by deaf
people facilitates the translation of the signs to text or speech and transfer it to the
smart phones of the people who can hear and speak. The spoken language of
individuals who do not know sign language is translated into sign language
images/videos by speech recognition systems. The speech recognition systems is
not considered in this book chapter. The real-time translation of sign language
enable deaf individual to communicate in a more convenient and natural way.

Similar to spoken languages, different countries have different sign languages.
About 300 sign languages are currently being used all over the world. Due to the
differences, the SLR should be trained and customized for every individual sign
language. In our work, we have considered ASL. ASL dictionary includes thou-
sands of signs, but most of them are not commonly used. In this chapter, 80 most
commonly used signs are selected from 100 basic ASL signs [4, 5]. A sign is made
up by five parts: hand shape, hand orientation, hand location, hand and arm
movement and facial expression. Facial expression is more complicated and is not
considered in this chapter.

Vision-based and glove-based SLR systems are well-studied systems which
capture signs using cameras and sensory glove devices, respectively [6–10].
However, each of these two modalities has their own limitations. Vision-based
systems suffer from occlusion due to light-of-sight factor. Moreover, cameras are
mounted fixed in the environment and thus they can only be used in a limited range
of vision. They are also considered to somewhat invasive to user’s privacy. The
glove-based systems are usually expensive which limits their usage in daily life.

Wearable inertial measurement unit (IMU) based gesture recognition systems
attract much research attention due to their low cost, low power consumption and
ubiquitous sensing ability [11, 12]. An IMU consists of a 3-axis accelerometer and a
3-axis gyroscope. The accelerometer measures 3-axis acceleration caused by
motion and gravity while the gyroscope measures 3-axis angular velocity. A surface
electromyography (sEMG) sensor is able to capture muscle electrical activities and
can be used to distinguish different gestures since different gestures have different
muscle activity patterns [13, 14]. For sign language recognition systems, the wrist
worn IMU sensor is good at capturing hand orientations and hand and arm
movements while sEMG does well in distinguishing different hand shapes and
finger movements when the sensors are placed on the forearm. Thus, they are
complementary to each other capturing different information of a sign and the
fusion of them will improve the system performance [15]. Fortunately, the IoT
platforms offer information from various sensor modalities and thus the perfor-
mance of SLR would be enhanced by data fusion. However, additional sensor
modalities will generate highly complex, multi-dimensional and larger volumes of
data which introduce additional challenges. Challenges to address include increase
in power consumption of wearable computers which will impact the battery life
negatively and reducing the impact of modalities that appear to be too noisy and
will degrade the performance of the classifiers.

In this book chapter, we propose a real-time wearable system for recognizing
ASL by fusing inertial and sEMG sensors. Although such a system has been studied
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for Chinese Sign Language [16], to the best of the authors’ knowledge this is the
first time such a system is studied for the ASL. In this chapter, we first propose an
adaptive auto-segmentation algorithm that determines the period during which the
sign is performed. A wide range of well-established features are studied and the best
subset of features are selected using an information gain based feature selection
scheme. The feature selection determines the smallest feature subset which still
provides good performance. It reduces the possibility of over-fitting and the smaller
feature size is more suitable for wearable systems. Four commonly used classifi-
cation algorithms are evaluated for intra- and inter-subject testing and the signifi-
cance of adding sEMG for SLR is explored. When the best classifier is determined,
the power consumption and the scalability of the classifiers are also considered.

The remainder of this book chapter is organized as follows. The related work is
discussed in Sect. 2. Our lab customized sEMG data acquisition and IMU hardware
platforms are introduced in Sect. 3. The details of our system are explained in
Sect. 4, followed by the experimental setup in Sect. 5. The experimental results are
explained in Sect. 6 and limitations are discussed in Sect. 7. At last, the chapter is
concluded in Sect. 8.

2 Related Work

SLR systems are broadly studied in the field of computer vision with camera as a
sensing modality. Two vision-based real-time ASL recognition systems are studied
for sentence level continuous American Sign Language using Hidden Markov
Model (HMM) [6]. The first system is evaluated for 40 signs and achieves 92%
accuracy with camera mounted on the desk. The second system is also evaluated for
40 signs and achieves 98% accuracy with camera mounted on a cap worn by the
user. A framework for recognizing the simultaneous aspects of ASL is proposed
and it aims at solving the scalability issues of HMM [7]. The signs are broken down
into phonemes and are modeled with parallel HMM. It reduces HMM state space
dramatically as the number of signs increases. Another vision-based SLR system is
studied for a medium vocabulary Chinese Sign Language [17]. It has two modules
and the first module consists of three parts: robust hand detection, background
subtraction and pupil detection. The second module is a tiered-mixture density
HMM. With the aid of a colored glove, this system achieves 92.5% accuracy for
439 Chinese Sign Language words. In another work, three novel vision based
features are learned for ASL recognition [18]. The relationship between these
features and the four components of ASL is discussed. It yields 10.99% error rate on
a published dataset. A Chinese Sign Language recognition system is proposed to
address the issue of complex background in the environment [19]. The system is
able to update the skin color model under various lighting conditions. A hierar-
chical classifier is used which integrates Linear Discriminant Analysis (LDA),
Support Vector Machine (SVM) and Principle Component Analysis (PCA).
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Glove-based SLR systems recognize signs using multiple sensors on the glove.
They are usually able to capture finger movements precisely. A glove-based Aus-
tralian SLR system is proposed using some simple features and achieves 80%
accuracy for 95 AUSLAN signs [20]. Another glove-based system is studied using
artificial neural network classifier and it offers 90% accuracy for 50 ASL signs [9].
A flex sensor based glove is introduced recently that can be used to recognize 26
alphabets [21].

Similar to glove-based systems, the low cost wearable accelerometer and sEMG
based SLR systems do not require cameras to be mounted at a certain location while
they cost less than glove-based systems. Therefore, this kind of wearable SLR
system is gaining more popularity. The importance of accelerometer and sEMG for
recognizing gestures is studied [22]. The results show accelerometer and sEMG do
well in capturing different information of a gesture and the fusion of them improve
the system performance. In another work, 5–10% performance improvement is
achieved after fusing these two modalities [23]. The sample entropy based feature
set is proven to be effective for both accelerometer and sEMG and the system
achieves 93% accuracy for 60 Greek Sign Language signs using this feature set
[24]. A Chinese SLR framework is proposed fusing data from an accelerometer and
4-channel sEMG sensors [16]. It automatically determine the beginning and ending
of a sign based on sEMG signal strength. Multi-stage classifications are applied to
achieve an accuracy of 96.8% for 120 Chinese signs with sensors deployed on two
hands. At the first stage, LDA is used for both accelerometer and sEMG to detect
hand shape and hand orientation, respectively. In the meantime, a multi-stream
HMM is applied for sEMG and accelerometer features. At the second stage, the
decisions achieved from the first stage are fused with a Gaussian mixture model.
Despite the good performance, multiple stages and multiple classifiers are not
favorable for real-time wearable computers based applications. Recently, the same
group proposes a component-based vocabulary-extensible sign language recogni-
tion system [25]. In this work, the sign is considered to be a combination of five
common sign components, including hand shape, axis, orientation, rotation, and
trajectory. There are two parts of this system. The first part is to obtain the
component-based form of sign gestures and establish the code table of target sign
gesture set using data from a reference subject. In the second part, which is
designed for new users, component classifier are trained using a training set sug-
gested by the reference subject and the classification of unknown gestures is per-
formed with a code matching method. Another system is proposed to detect seven
German sign words with 99.82% accuracy achieved using an accelerometer and one
channel sEMG [26]. However, this work is not extensively evaluated for a large
number of signs and does not include auto-segmentation which makes it difficult to
operate in real time. The major differences between our work and the previous
works are as follows: (1) An adaptive auto-segmentation is proposed to extract
periods during which signs are performed using sEMG. (2) The best feature subset
is selected from a broad range of features using information gain criterion and the
selected features from different modalities (e.g. accelerometer, gyroscope and
4-channel sEMG) are discussed. (3) Gyroscope is incorporated and the significance
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of adding sEMG is analyzed. (4) Although such a system has been studied for
Chinese Sign Language [16], our work is the first study for American Sign Lan-
guage recognition fusing these two modalities.

3 Hardware Description

A. IMU Sensor

Figure 2 shows the 9-axis motion sensor customized in our lab. The InvenSense
MPU9150, a combination of 3-axis accelerometer, 3-axis gyroscope and 3-axis
magnetometer, severs as the IMU sensor. A Texas Instruments (TI) 32-bit micro-
controller SoC, CC2538, is used to control the whole system. The board also
includes a microSD storage unit and a dual mode Bluetooth module BC127 from
BlueCreation. The system can be used for real-time data streaming or can store data
for later analysis. It also has an 802.15.4 wireless module which can offer low
power proximity measurement or ZigBee communication. In this book chapter, the
sampling rates for accelerometer and gyroscope are chosen to be 100 Hz which is
sufficient for the sign language recognition system [27].

B. sEMG Acquisition System

sEMG measures the electrical activity generated by skeletal muscle. Figure 3 shows
a customized 16-channel Bluetooth-enabled physiological signal acquisition sys-
tem. It can be used for ECG, sEMG and EEG data acquisition. The system is used
as a four channel sEMG acquisition system in this study. A TI low power analog
front end, the ADS1299, is used to capture four channel sEMG signals and a TI

Fig. 2 Motion sensor board
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MSP430 microcontroller is responsible for forwarding data to a PC via Bluetooth.
A resolution of 0.4 μV is achieved setting a gain of 1 on the ADS1299. Covidien
Kendall disposable surface EMG patches are attached to skin and the same elec-
trodes are used as introduced in our previous work [28].

Generally, sEMG signals are in the frequency range of 0–500 Hz depending on
the space between electrodes and muscle type [29]. To meet the Nyquist criterion,
the sampling rate is chosen as 1 KHz, which is usually used in surface EMG based
pattern recognition tasks [30].

4 Proposed SLR System

The block diagram of our proposed multi-modal ASL recognition system is shown
in Fig. 4. Two phases are included: training phase and testing phase. In the training
phase, the signals from 3-D accelerometer (ACC), 3-D gyroscope (GYRO) and four
channel sEMG are preprocessed for noise rejection and synchronization purposes.
The sEMG based auto-segmentation technique obtains the beginning and ending of
a sign for both IMU and sEMG. As the segmentation is done, a broad set of
well-established features are extracted for both IMU and sEMG signals. All
extracted features are then put into one feature vector. The best feature subset is
obtained using an information gain (IG) based feature selection scheme. Four
different classifiers are evaluated (i.e. decision tree, support vector machine,
NaïveBayes and nearest neighbor) on the selected feature subset and the best one is
selected. In the testing phase, the same techniques are repeated for preprocessing
and segmentation. The selected features are extracted and recognition of the sign is
achieved by the chosen classifier.

Fig. 3 8-channel sEMG acquisition system
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A. Preprocessing

The synchronization between IMU and sEMG data is important for fusion. In our
system, IMU data samples and sEMG data samples are sent to a PC via Bluetooth
and time-stamped with the PC clock. The synchronization is done by aligning
samples with the same PC clock. Bluetooth causes a transmission delay (5–20 ms)
for both IMU and sEMG data and this small synchronization error is negligible for
the purposes of our system. To remove low frequency noise in sEMG, a 5 Hz IIR
high pass filter is used since the frequency components of sEMG beyond the range
of 5–450 Hz are negligible [31]. The raw data is used for accelerometer and
gyroscope.

B. Segmentation

Automatic segmentation is crucial for real-time applications. It extracts the period
during which each sign word is performed such that the features can be extracted on
the correct segment before classification is done. For certain parts of some signs,
only finger movements are observed and no obvious motion signal can be detected
from the wrist. Thus, sEMG signals are used for our automatic segmentation
technique since sEMG signals can capture larger number of movements.

To explain our segmentation technique, we first define the average energy E of
four sEMG channels in an n sample window in Eq. (1). Sc(i) denotes ith sample of
cth channel of sEMG. m is total number of channels which equals four in our case.
A non-overlapping sliding window is used to calculate E in every window. The
length of the window is set to 128 ms, which covers 128 samples with the 1000 Hz
sampling frequency. If E in five continuous windows are all larger than a threshold
T, the first sample of the first window will be taken as the beginning of a gesture. If
E in four continuous windows are all smaller than the threshold, the last sample in
the last window is considered to be the ending of this gesture.
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Fig. 4 Diagram of proposed system
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Different people have different muscular strengths which will result in different
E. A simple threshold may not be suitable for all subjects. An adaptive estimation
technique is proposed to adjust the threshold according to different subjects and
different noise levels on-line. The proposed approach is explained in two steps. In
the first step, the average energy E is calculated for five continuous windows. If all
five E is smaller than a * T, it is assumed no muscle activity is detected and the
threshold is updated with b * T in the second step. a is called the converge
parameter and this reduces the threshold T when quiet periods are detected. b is the
diverge parameter which enlarges the threshold T as the noise level increases. The
values of a, b and T are set to be 0.5, 4 and 0.01 for the system empirically. 0.01 is
much bigger than E for all subjects and the user is requested to have a 2–3 s quiet
period at the beginning of system operation to have the system converge to a
suitable threshold.

C. Feature Extraction

A broad range of features have been proposed and studied for both sEMG and IMU
sensors for recognizing activities or gestures. In this chapter, these well-studied
features are investigated [32–36]. Tables 1 and 2 list features and their dimensions
from sEMG and IMU, respectively. The sEMG features are extracted for all four
channel signals and the total dimension is 76. The IMU sensor features are extracted
for 3-axis accelerometer, 3-axis gyroscope and the magnitude of accelerometer and

Table 1 SEMG features

Feature name (dimension) Feature name (dimension)

Mean absolute value (1) Variance (1)
Four order reflection coefficients (4) Willison amplitude in 5 amplitude ranges (5)
Histogram (1) Modified median frequency (1)
Root mean square (1) Modified mean frequency (1)
Four order AR coefficients (4)

Table 2 IMU sensor features

Feature name (dimension) Feature name (dimension)

Mean (1) Variance (1)
Standard deviation (1) Integration (1)
Root mean square (1) Zero cross rate (1)
Mean cross rate (1) Skewness (1)
Kurtosis (1) First three orders of 256-point FFT coefficients (3)
Entropy (1) Signal magnitude area (1)

AR coefficients (10)
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gyroscope. The number of total IMU features is 192. The sEMG and IMU features
are cascaded into a 268 dimension feature space.

D. Feature Selection

For classification, it is important to select the most useful features. There are usually
two approaches to select the most useful features. The first approach is to define
most useful and relevant features from a domain expert. For those experts who are
familiar with their field, they usually know what the useful features are for certain
tasks. The second approach is to select a certain subset features from an extensive
number of features. Since even a domain expert may not be aware of all best
features, thus the second approach is preferred. In this chapter, we use the second
approach to select a subset of features from a wide range of features. It reduces over
fitting problems and information redundancy in the feature set. It is also helpful if a
small feature set is required by certain applications with limited computational
power.

There are three different feature selection methods which are filter methods,
wrapper methods, and embedded methods [37]. Wrapper methods generate scores
for each feature subset based on a specific predictive model. Then, cross validation
is done for each feature subset. Based on the prediction performance, each subset is
assigned a score and the best subset is chosen. Filter methods use general mea-
surement metrics of a dataset to score a feature subset instead of using the error rate
of a predictive model. Some common measures are mutual information and
inter/intra class distance. The embedded methods perform the feature subset
selection in conjunction with the model construction. In our work, an information
gain filter method is used in conjunction with a ranking algorithm to rank all the
features. The best n features form the best feature subset which is evaluated with
different classifiers. The choice of n is discussed in Sect. 5. Compared to wrapper
methods, the features selected by filter methods will operate for any classifier
instead of working only with a specific classifier.

E. Classification

Four commonly used classification algorithms are investigated in this chapter:
decision tree (DT) [38], support vector machine (LibSVM) [39], nearest neighbor
(NN) and NaiveBayes. The implementations of these classifiers are achieved by
Weka, a popular open source machine learning tool [40]. LibSVM uses radial basis
function (RBF) kernel and uses a grid search algorithm to determine the best kernel
parameters. The default parameters are applied for other classifiers. In machine
learning, it is usually hard to determine which classifier is more suitable for a
specific application and thus it is worth testing several algorithms before we choose
one.
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5 Experimental Setup

A. Sensor Placement

The signs can involve one hand or two hands. In our work, we only look at the right
hand movements for both one-hand or two-hand signs. If they system is deployed
on two hands, it will increase the recognition accuracy. Figure 5 shows the sensor
placement on right forearm of the user. Four major muscle groups are chosen to
place four channel sEMG electrodes: (1) extensor digitorum, (2) flexor carpi radialis
longus, (3) extensor carpi radialis longus and (4) extensor carpi ulnaris. The IMU
sensor is worn on the wrist where a smart watch is usually placed. To improve
signal-to-noise ratio of sEMG readings, a bi-polar configuration is applied for each
channel and the space between two electrodes for each channel is set to 15 mm
[41]. The electrode placements are also annotated in the figure.

B. Data Collection

In this chapter, we selected 80 most commonly used ASL signs in daily conver-
sations. The data is collected from four subjects (three male subjects and one female
subject). The subjects performed the signs for the first time and did not know the
ASL prior to the experimentation. For each subject, the data collection includes
three sessions which were performed on three different days. During each session,
all signs were performed 25 times. The dataset has 24,000 instances in total.

Inertial 
Sensor

Fig. 5 Placement of sEMG
electrodes
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C. Experiments

To evaluate our system, four experiments are carried out: intra-subject testing, all
cross validation, inter-subject testing and intra-subject cross session testing. In
intra-subject testing, the data from the same subject from all sessions are combined
and for each subject, a ten-fold cross validation is conducted. Ten-fold validation
means that the data is split into 10 parts randomly and the model is trained with 9
parts and is tested on the 10th part. This process is carried out 10 times and the
average performance outcome is considered the cross validation result. In all cross
validation, all the data from different subjects from different days are combined.
The ten-fold cross validation is performed similarly. In the inter-subject testing, the
model is trained with data from three subjects and is tested on the fourth subject.
This process is repeated four times. The feature selection for the first three
experiments is performed during all cross validation since it has all the data and it
will offer better generalization for classification models. The fourth experiment is
called intra-subject cross session testing. The feature selection and model training
are done with two sessions of data from the same subject and tested on the third
session. This process is repeated three times for each subject and the average is
taken over. The experiment indicates how well the model will perform with new
data and a new subject.

6 Experimental Results

A. Auto-segmentation

In this chapter, no gold standard (e.g. video record) is included to determine the
accuracy of our auto-segmentation technique. However, we approximately evaluate
our auto-segmentation performance by looking at the difference in the number of
signs each subject performed and the number of signs our system recognized. We
define an error rate as in (2):

ER=
detected nums− performed numsj j

perfomed nums
ð2Þ

detected nums and performed nums are the numbers of signs our algorithm detected
and numbers of signs the user actually performed, respectively. Our approach
achieves 1.3% error rate which means our auto-segmentation algorithm performs
well. The intra-subject classification results in Sect. 5. C also indicate suitable
performance of the segmentation.
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B. Feature Selection

All features are ranked with information gain criterion and the features with highest
scores are chosen to form the best feature subset. To decide the size of best feature
set, all cross validation is performed on four different classifiers as feature subset
size increases from 10 to 268.

Figure 6 shows the accuracies of four classifier as the selected feature size
increases. All classifier accuracies increase as the feature size increases. However,
when the feature size is larger than 120 for the LibSVM and nearest neighbor, the
accuracies decrease due to the over-fitting. This proves the feature selection is
necessary. Table 3 shows the data points for four classifiers when they achieve the
best accuracy.

It is shown in Fig. 6, when feature subset size becomes 40, LibSVM already
offers 96.16% accuracy. The feature size is determined to be 40 in order to save
computational cost for wearable systems. Among the 40 features, the numbers of
features selected from different sensors are shown in Table 4. More than half of the
features are selected from accelerometer which means accelerometer plays the
principal role in recognizing signs. Accelerometers measure both gravity and
acceleration due to the motion. Gravity is the major part of accelerometer mea-
surements and captures the hand orientation information. It indicates hand orien-
tation plays a more important role when recognizing different signs. 10 gyroscope

Number of features
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Fig. 6 Results of feature selection

Table 3 Optimal data point of feature selection

Classifier Optimal point
(feature number, accuracy) (%)

NaiveBayes (270, 82.13)
Neareast neighbor (120, 98.73)
Decision tree (100, 78.00)
LibSVM (120, 98.96)
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features are chosen which indicates the hand and arm rotation is also important. It is
necessary to include sEMG sensors since nine features are selected from sEMG.

To have a better understanding of the importance of each individual feature, the
rankings of 40 features are listed in Table 5. In the table, Acc_x, Acc_y and Acc_z
represent accelerometer readings along x-axis, y-axis and z-axis, respectively.
Similarly, Gyro_x, Gyro_y and Gyro_z are gyroscope readings along x-axis, y-axis
and z-axis, respectively. From the table, the accelerometer contributes to the most
highly ranked features which means the most significant modality of our system is
the accelerometer. The gyroscope features are not as highly ranked as the
accelerometer, but they have higher rankings than sEMG features. From the table,
sEMG contribute least among all three. Among accelerometer and gyroscope fea-
tures, the most important ones include mean, integration, standard deviation, RMS
and variance. Mean absolute value, variance and RMS are valuable features for
sEMG signal. One interesting observation of sEMG features is that four selected
features from channel one have higher ranks than the others from channel two and
channel four. Channel one is placed near the wrist where a smart watch is usually
worn. In reality, if only one electrode is allowed, channel one could selected and it
can be integrated into a smart watch without introducing a new device.

C. Classification Results

Table 6 shows the classification results of intra-subject testing on four subjects. In this
experiment, each classifier is trained and tested with data from the same subject. We
can see that nearest neighbor and LibSVMachieve high accuracies while decision tree
classifier obtains the lowest accuracy. Nearest neighbor classifier is a lazy learning
classifier and it does not require a trained model. In the testing phase, it compares the
testing instance with all instances in the training set and assigns it a same class label as
the most similar instance in the training set. It will require a large computation power
as the number of training samples increase and thus is not suitable for our wearable
SLR system. LibSVM trains a model based on training data. As the size of training set
increases, it only increase the training time without affecting the time needs in testing
phase. This is crucial for real time wearable computer based applications. Therefore,
LibSVM is selected for our system. The results achieved for 80 signs are consistent
with the results obtained for 40 signs in our prior investigation [42]. It indicates our
technique scales well for intra-subject testing.

Table 7 shows classification results of all cross validation. For all classifiers, the
classification results with sEMG and without sEMG are given. The performance
with sEMG is when the performance achieved using all 40 selected features while

Table 4 Number of features selected from different sensors

Sensor Number of feature selected Sensor Number of feature selected

Accelerometer 21 sEMG2 2
Gyroscope 10 sEMG3 0
sEMG1 4 sEMG4 3
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performance without sEMG is when the performance obtained using 31 features
selected from accelerometer and gyroscope. The performance improvements by
adding sEMG are also listed in the table. Among four classifiers, LibSVM achieves
the best performance in accuracy, precision, recall and F-score while NaiveBayes
gives the worst performance. The accuracy, precision, recall and F-score are very
close to each other for all classifiers which indicates all classifiers achieve balanced
performance on our dataset. With 40 features, LibSVM achieves 96.16% accuracy.
It is consistent with the results (95.16%) we obtained for 40 sign words with 30
features in our prior study [42]. This proves the scalability of approach for all cross
validation test.

Table 5 Fourty selected features

Rank# Feature
name

Rank# Feature name Rank# Feature name Rank# Feature name

1 Mean of
Acc_y

11 RMS of
Gyro_x

21 RMS of sEMG1 31 Signal
magnitude
area of Acc_x

2 Mean of
Acc_z

12 RMS of
amplitude of
accelerometer

22 Zero cross rate
of Acc_y

32 Variance of
sEMG4

3 RMS of
Acc_x

13 Mean of
amplitude of
accelerometer

23 Variance of
Gyro_z

33 Entropy of
Gyro_x

4 RMS of
Acc_z

14 Mean of Acc_x 24 Standard
deviation
Of Gyro_z

34 RMS of
sEMG4

5 RMS of
Acc_y

15 Signal
magnitude area
of Acc_x

25 Variance of
Acc_y

35 Signal
magnitude
area of
Gyro_x

6 Integration
of Acc_y

16 Standard
deviation
of Acc_z

26 Standard
deviation
of Acc_y

36 Zero cross rate
of Acc_z

7 Integration
of Acc_x

17 Variance of
Acc_z

27 Modified mean
frequency of
sEMG1

37 Mean absolute
value of
sEMG4

8 Integration
of Acc_z

18 Standard
deviation
of Gyro_z

28 Mean absolute
value of sEMG1

38 Signal
magnitude
area of
Gyro_z

9 Entropy of
Acc_x

19 Variance of
Gyro_x

29 First
auto-regression
coefficient of
Acc_x

39 RMS of
sEMG2

10 RMS of
Gyro_z

20 Variance of
sEMG1

30 Mean absolute
value of sEMG2

40 Mean of
amplitude of
gyroscope
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The improvement after adding the sEMG modality is most significant for
NaiveBayes classifier. It achieves about 15% improvement for all four classification
performance metrics. However, for our chosen classifier LibSVM, the accuracy
improvement is about 4% while the error rate is reduced by 50%. It indicates the
sEMG is necessary and significant. The significance of sEMG is further analyzed in
next section.

Figure 7 shows the average accuracy of inter-subject testing for both 80 sign
words and 40 sign words. The figure shows none of four classifier achieves good
performance. LibSVM is still the best classifier. There are three reasons for such
low accuracies. First, different people perform the same signs in different ways.
Second, all subjects in our experiment are first time ASL learners and never had
experience with ASL before. Even though they follow the instructions, the gestures
for the same signs are different from each other. Third, different subjects have very
different muscular strength and thus leading to different sEMG features for same
signs. From the comparison between accuracy of 40 signs and 80 signs, our
technique offers low accuracy for all classifiers consistently. The low performance
suggests our system is not suitable for inter-subject applications and it is recom-
mended that our system should be trained on each individual to provide good
performance.

Table 6 Results of intra-subject validation

NaiveBayes (%) DT (%) NN (%) LibSVM (%)

Subject 1 88.81 83.89 96.6 98.22
Subject 2 97.01 91.54 99.16 99.48
Subject 3 92.74 81.97 92.89 96.61
Subject 4 91.15 77.98 95.77 97.23
Average 93.68 83.85 96.11 97.89

Table 7 Results of all-cross validation

NaiveBayes (%) DT (%) NN (%) LibSVM (%)

Accuracy with sEMG 63.87 76.18 94.02 96.16
Accuracy without sEMG 48.75 68.93 87.62 92.29
Improvement 15.12 7.25 6.4 3.84
Precision with sEMG 66.9 76.3 94.0 96.7
Precision without sEMG 51.8 69.0 87.7 92.3
Improvement 15.1 7.3 6.3 4.4
Recall with sEMG 63.9 76.2 94.0 96.7
Recall without sEMG 48.8 68.9 87.7 92.3
Improvement 15.1 7.3 6.3 4.4
F-score with sEMG 63.6 76.2 94.0 96.7
F-score without sEMG 47.6 68.9 87.6 92.3
Improvement 16.0 7.3 6.4 4.4

394 J. Wu and R. Jafari



The first three experiments show our system achieves suitable performance if the
system is trained and tested for the same subject and the system obtains less ideal
performance for inter-subject testing. We further investigate how well the system
will generalize for new data collected in future for the same subject. Figure 8 shows
the results of the intra-subject cross session testing in which the feature selection is
performed and the classifier is trained with two days data from the same each
subject and is tested on data of the third day for the same subject. This process is
repeated three times for the same subject and the accuracy measures are averaged.
We can see that both NaiveBayes and decision tree yield poor accuracies while
LibSVM offers best accuracy. Table 8 shows the average accuracy of different
classification algorithms between four subjects. LibSVM achieves 85.24% which is
less suitable than the 96.16% of intra-subject testing. Two reasons may explain this
performance decrease. The first reason is that the user may have placed the sensors
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at slightly different locations for the sEMG and IMU sensors, and with a slightly
different orientation for the IMU sensor. The second reason is that all four subjects
are first time learner who have not developed consistent patterns for signs. They
may have performed the same signs somewhat differently on different days.

D. Significance of sEMG

From the analysis of inter-subject testing in previous section, the error rates for the
accuracy, precision, recall and F-score are reduced by about 50%. In this section, we
analyze the importance of sEMG in details. From the previous discussion,
accelerometer and gyroscope are more important than sEMG. However, in ASL,
there are some signs that have similar arm/hand movement and different hand shape
and finger configurations (e.g. fist and palm). For these signs, they will have similar
accelerometer and gyroscope readings and the IMU is not able to distinguish these
signs. The sEMG is able to capture the difference of these signs since they will have
different muscle activities. Figure 9 shows an example of sequences of postures
when the user is performing two signs ‘Please’ and ‘Sorry’. We can see from the
figures, the arm has the same movement which is drawing a circle in front of chest.
The inertial sensor will offer same readings for these two different signs. However,
the hand is closed (i.e. fist) when performing ‘Sorry’ while it is open (i.e. palm)
when performing ‘Please’. This difference can be captured by sEMG and thus they
will be distinguishable if sEMG is included.

Table 8 Results of
intra-subject cross session
testing

Classifier Accuracy (%) Classifier Accuracy (%)

NaiveBayes 50.11 NN 81.37
DT 46.01 LibSVM 85.24

Fig. 9 Sequence of postures when performing ‘Please’ and ‘Sorry’

396 J. Wu and R. Jafari



In order to show how sEMG will enhance recognition performance of each
individual sign, the improvement on the true positive (TP) rate of each individual
sign is investigated. TP rate is rate of true positive and true positives are number of
instances which are correctly classified as a given class. Figure 10 shows the TP
rate improvement for 80 signs and the improvement is sorted in descend order.
From the figure, we can see that for most of signs (last 29–80), the rate of
improvement is within the range of [−5, 5]%. However, for the signs from 1 to 11,
the improvement is bigger than 10% which is very helpful for recognizing these
signs. In Table 9, 10 signs are listed with the highest TP rate improvement. We can
see that ‘Sorry’ and ‘Please’ are both improved significantly since they are confused
with each other. In reality, it is important to eliminate the confusion between signs
which have similar motion profile but different sEMG characteristics. Therefore, the
sEMG is significant for our system.
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Fig. 10 TP rate improvement of all signs

Table 9 10 signs with most
TP rate improvement

Sign ID Sign Improvement (%)

29 Thank 21
19 My 18.2
9 Have 16.7
24 Please 16.7
37 Work 16.5
57 Tall 14.3
67 Girl 13.9
26 Sorry 13.8
76 Doctor 12.5
66 Boy 12.5

Wearable Computers for Sign Language Recognition 397



7 Limitations and Discussion

The wearable inertial sensor and sEMG sensors based sign language
recognition/gesture recognition systems have become more and more popular in
recent years because of low-cost, privacy non-intrusive and ubiquitous sensing
ability compared with vision-based approaches. They may not be as accurate as
vision-based approaches. A vision-based approach achieves 92.5% accuracy for
439 frequently used Chinese Sign Language words [17]. Although we have not
tested for such a large number of signs, it may be challenging with wearable inertial
and sEMG systems to recognize such a big number of signs. Another disadvantage
with wearable inertial sensor and sEMG based sign language recognition system is
that the facial expression is not captured.

In our study, we observe that the accelerometer is the most significant modality
for detecting signs. When designing such systems, if fusion of multiple modalities is
not possible, the suggested choice order of these three are: accelerometer, gyro-
scope and sEMG. The significance of sEMG is to distinguish sets of signs which
are similar in motion and this is crucial for sign language recognition. For some
gesture recognition tasks, if gesture number is not big and there are no gestures
which are very similar in motion, one inertial sensor may be sufficient for the task to
reduce the system cost.

Our system offers high accuracy for both 40 signs and 80 signs for intra-subject
testing and all cross validation. This shows our system is scalable for American
Sign Language recognition if the system is trained and tested on the same subjects.
However, very low accuracy is achieved for inter-subject testing which indicates
our system is not very suitable for use on individuals if the system is not trained for
them. We have talked to several experts of American Sign Language and they think
it is reasonable to train for each individuals since even for expert, they will perform
quite differently from each other for the same signs based on their preference and
habits. This is the major limitation of sign language recognition systems. Our
system is studied and designed to recognize individual signs assuming a pause
exists between two sign words. However, in daily conversation, a whole sentence
may be performed continuously without an obvious pause between each words. To
recognize continuous sentence, a different segmentation technique or other possi-
bility models should be considered.

Machine learning is a powerful tool for different applications and is gaining a lot
of popularity in recent years in wearable computer based applications. However, it
is important to use it in a correct way. For different applications, different features
and different classifiers may have significantly different performance. It is suggested
to try different approaches to determine the best one. The other point is that the
classifier parameters should be carefully tuned. In our approach, if we do not choose
the correct parameters for LibSVM, only 68% accuracy can be achieved.
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As IoT emerges, the information from different sensing modalities could be
explored. When designing applications, data from different sources should be
considered and verified if they are complementary and the fusion of the modalities
could potentially enhance the application performance.

8 Conclusion

A wearable real-time American Sign Language recognition system is proposed in
this book chapter. This is a first study of American Sign Language recognition
system fusing IMU sensor and sEMG signals which are complementary to each
other. Our system design is an example of fusing different sensor modalities and
addressing computation cost challenge of wearable computer based SLR due to the
high-dimensional data. Feature selection is performed to select the best subset of
features from a large number of well-established features and four popular classi-
fication algorithms are investigated for our system design. The system is evaluated
with 80 commonly used ASL signs in daily conversation and an average accuracy
of 96.16% is achieved with 40 selected features. The significance of sEMG to
American Sign Language recognition task is explored.
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