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Preface

The demand for deployment of large-scale distributed computing technologies in
healthcare domain has increased due to the enormous growth in healthcare data.
Millions of devices are unceasingly generating healthcare data every day, which
depicts the evolving nature of smart healthcare services. Moreover, numerous
research works emphasizing on patient monitoring, fall detection, activity recog-
nition, and Body Area Networks (BAN) have been carried out in the recent past.
However, it has become evident that integration of traditional healthcare practices
with large-scale distributed computing technologies ensures the efficient provision
of smart health services and is also instrumental to their widespread acceptance.

Currently there are several books that cover the topics related to pervasive health
care and mobile health. However, to the best of our knowledge there is no specific
book that comprehensively reports the efforts made to integrate pervasive health-
care with the large-scale and distributed computing approaches. This book provides
advanced perspectives and visions for the cutting-edge research in ubiquitous health
care with emphasis on large-scale computing techniques. The topics covered in the
book mainly emphasize on large-scale architectures and high-performance solutions
for smart healthcare, healthcare monitoring using large-scale computing techniques,
Internet-of-Things (IoT) and big data analytics for healthcare, Fog Computing,
mobile health, large-scale medical data mining, advanced machine learning meth-
ods for mining multidimensional sensor data, smart homes, and resource allocation
methods for the BANs.

This book covers the topics ranging from the theory, concept, and systems, to the
applications of large-scale healthcare systems for ubiquitous healthcare services.
The book contains high quality chapters contributed by internationally renowned
researchers working in domains, such as e-Health, pervasive and context-aware
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computing, cloud, grid, cluster, and big data computing. We are optimistic that the
topics included in this book will provide a multidisciplinary research platform to the
researchers, practitioners, and students from biomedical engineering, health infor-
matics, computer science, and computer engineering.

Fargo, USA Samee U. Khan
Sydney, Australia Albert Y. Zomaya
Islamabad, Pakistan Assad Abbas
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About the Book

1. This book includes the latest research efforts in the field of smart healthcare. To
maximize the readers’ insight into the domain, integration of smart healthcare
services with large-scale distributed computing systems has been emphasized.

2. Particular consideration has been devoted to the theoretical and practical aspects
of wide array of emerging large-scale healthcare applications and architectures,
including the remote health monitoring, wearable devices, activity recognition
for rehabilitation, mobile health, and cloud computing.

3. The book explains the concept of healthcare big data in great details and
includes several chapters focusing on data quality in large-scale healthcare
datasets.

4. The book includes several case studies which will provide readers a real per-
spective of the smart healthcare domain.

5. The book will be an exceptional resource for diverse types of readers including
academics and researchers from several disciplines, such as health informatics,
computer science, and computer engineering.

Keywords: Pervasive health, Cloud computing, Distributed systems, Fall detection,
Activity recognition, Home health monitoring, Body area networks, Wearable
sensors, Dimension reduction, Scalability, Sensor data management, Internet-
of-Things, Mobile health (m-health), Data quality.
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Introduction to Large-Scale Distributed
Computing in Smart Healthcare

Assad Abbas, Samee U. Khan and Albert Y. Zomaya

1 Background Information

Conventional healthcare services have seamlessly been integrated with the perva-
sive computing paradigm and consequently cost-effective and dependable smart
healthcare services and systems have emerged [1]. Currently, the smart healthcare
systems employ Body Area Networks (BANs) and wearable devices for pervasive
health monitoring and Ambient-Assisted Living (AAL). The BANs utilize smart
phones and numerous handheld devices to ensure pervasive access to the healthcare
information and services [2]. However, due to the intrinsic limitations in terms of
the CPU speed, storage, and memory, the mobile and several smart computing
devices appear scanty to handle huge volumes of unceasingly generated sensor data
[3]. The collected data is used for multiple purposes, such as tele monitoring,
activity recognition tasks, and therapies. In addition, the aforementioned data is
highly complex and multi-dimensional and consequently is difficult to handle using
the conventional computing procedures. Therefore, integrating the BANs with
large-scale and distributed computing paradigms, such as the cloud, cluster, and
grid computing is inevitable to handle the processing and storage needs arising due
to continuously originating data from the BANs [1, 4].

Moreover, the contemporary research efforts mostly focus on health information
delivery methods to ensure the information exchange across various devices at a

A. Abbas (✉)
COMSATS Institute of Information Technology, Islamabad, Pakistan
e-mail: assadabbas@comsats.edu.pk

S.U. Khan
North Dakota State University, Fargo, USA
e-mail: samee.khan@ndsu.edu

A.Y. Zomaya
The University of Sydney, Sydney, Australia
e-mail: albert.zomya@sydney.edu.au

© Springer International Publishing AG 2017
S.U. Khan et al. (eds.), Handbook of Large-Scale Distributed Computing
in Smart Healthcare, Scalable Computing and Communications,
DOI 10.1007/978-3-319-58280-1_1

1



small scale. Consequently, the efforts have been very limited in connecting several
BANs remotely through the servers. Therefore, the need to develop large scale
solutions, such as Internet of Things (IoT), Cloud Computing, and Fog Computing
to connect heterogeneous devices to transmit and process large amounts of data
without requiring rigorous explicit human-to-human and human-to-machine inter-
actions increases manifold [5]. Moreover, integrating the High Performance
Computing (HPC) paradigms with the BANs and smart healthcare services brings
several key benefits including scalability, storage, and processing to handle online
and offline streams of data [6].

2 New Research Methods to Integrate the Smart
Healthcare and Large-Scale and Distributed Computing
Paradigm

In the recent past, plentiful research has been carried out pertaining to human
activity recognition for rehabilitation, fall detection, mobile health, pervasive
computing, and home health monitoring. However, very few researchers have only
considered utilizing large-scale distributed computing methodologies in conjunc-
tion with smart healthcare systems. Considering the high growth of healthcare data
flowing into the systems, this is the appropriate time to devise methodologies that
are capable enough to proficiently deal with the data from its origination to pro-
cessing and from processing to storage. Currently, there is no specific book that
comprehensively reports the efforts made to integrate pervasive healthcare and
BANs with the large-scale distributed computing approaches. Therefore, this book
provides advanced perspectives and visions for the cutting edge research in smart
healthcare with emphasis on large-scale and distributed computing systems in smart
healthcare, QoS and resource allocation issues of BANs, healthcare IoT, Fog
Computing, data quality and big data analytics for healthcare, machine learning
methods, and models for multidimensional data.

This book explores the intersection of e-health services and distributed com-
puting paradigm to improve the overall delivery of healthcare services. The book
explains several recently emerged topics, such as IoT, Fog Computing, and big data
in context of their large-scale implementation in healthcare domain.

The topics in the book have been mainly divided into five parts. Part I includes
chapters on High Performance Computing and Large-Scale Healthcare Architec-
tures. Part II of the book contains chapters on Data Quality and Large-Scale
Machine Learning Models for Smart Healthcare whereas chapter on the IoT, Fog
Computing, and mobile and connected health are included in Part III of the book.
Part IV contains chapters that establish the connection between wearable devices
and distributed computing for activity recognition and patient monitoring. Part V
contains chapters on resource allocation, Quality of Service (QoS), and
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context-awareness in smart healthcare. A brief description of each of the chapters is
given below.

Part I: High Performance Computing and Large-Scale Healthcare
Architectures

Part I of the book comprises of four chapters mainly focusing on high perfor-
mance computing and big data architectures for smart healthcare. Chapter 2 dis-
cusses the challenges in designing algorithms and systems for healthcare systems
followed by a survey on various relevant solutions. The chapter also discusses
next-generation healthcare applications, services, and systems related to big
healthcare data analytics. Chapter 3 proposes a task-level adaptive MapReduce
Framework to process streaming data in healthcare. This framework extends the
generic MapReduce architecture by designing each Map and Reduce task as a
scalable daemon process. The proposed architecture is claimed to be capable of
scaling up and scaling down the resources as per real-time demands.

Chapter 4 presents a brief introduction of optical brain imaging techniques and
highlights challenges specific to such techniques. Moreover, this chapter also
introduces a massively parallel GPU based Monte Carlo simulation framework.
Furthermore, the chapter explores a number of optimization techniques to improve
computational efficiency and discusses the current and potential applications of this
technique in biomedical imaging. Chapter 5 gives a concise review of Building
Automation and Control Systems (BACS) addressing healthcare issues in the home
environments. The strong aspect of the chapter is that it emphasizes on the effects of
the BACS on well-being and health. The BACS can be considered as a large-scale
network of distributed, interacting, and autonomous components where the size
(scale) of the network is depending on the number of components, such as heating,
ventilating, air-conditioning and refrigeration (HVAC&R), lighting, and window
blinds/shades control. As a result, a BACS can contribute to the optimization of the
physical environment toward individual users’ needs, health, and well-being.

Part II: Data Quality and Large-Scale Machine Learning Models for Smart
Healthcare

Part II comprises of four chapters on the importance of data quality and
large-scale machine learning models for smart healthcare. Chapter 6 presents a
detailed discussion on the data quality issues in Electronic Health Records (EHRs)
and highlights the challenges pertinent to data that are crucial for the interoper-
ability and standards across healthcare organizations. In particular, the discussion
focuses on the large-scale Database Management Systems (DBMSs) and the
importance of data quality for intelligent interfaces, structured data entry, and
mobile computing. Chapter 7 covers all aspects of large-scale knowledge mining
for medical and diseases investigation. A genome-wide association study is used in
the chapter to determine the interactions and relationships for Alzheimer disease
(AD). The chapter is a useful resource for details on mining the large-scale medical
datasets for accurate diagnosis using big data methods.

Chapter 8 gives an overview of machine learning methods for analysis of
heterogeneous and high dimensional healthcare data and also describes the effects
of dimension reduction on the computational efficiency. The chapter reviews two
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case studies to evaluate the patients’ health related concerns through data-driven
models. Chapter 9 discusses the major issues related to large-scale and distributed
architectures involving mobile sensing data for healthcare research, data curation,
data provenance, and the data quality.

Part III: Internet-of-Things, Fog Computing, and m-Health
Part III of the book contains chapters on Internet-of-Things (IoT), Fog Com-

puting, and mobile and connected health. Chapter 10 analyzes the ideas and impacts
of the based healthcare systems on the design of new e-health solutions and also
highlights various challenges, for example privacy and confidentiality to estimate
the successful adoption of the IoT based e-health system. To ensure the widespread
acceptance of the e-health systems, the chapter establishes six objectives and
suggests that the development of future healthcare systems should primarily be
based on the IoT, big data, and cloud computing. Chapter 11 defines and explores
Fog Computing (FC) in the context of medical IoT. The chapter presents discussion
on the FC as a service-oriented intermediate layer in IoT, providing an interface
between the sensors and cloud servers for orchestrating connectivity, data transfer,
and providing a queryable local database. The experimental results demonstrate that
the FC can minimize the obstacles of existing cloud-driven medical IoT solutions
and can significantly enhance the overall performance of the system in terms of
computing intelligence, transmission, storage, configurability, and security.

Chapter 12 presents an innovative medical image cloud solution that enables
accessible mobile healthcare and supports the hierarchical medical care services in
China. A real scenario of regional medical imaging centers is also presented to
compare its operational feasibility in comparison with traditional Picture Archiving
and Communication Systems (PACS) services. Chapter 13 describes issues of the
innovative large-scale technological developments for the community healthcare
and well-being in context of developing nations with particular emphasis on
receivers’ perspective. The chapter presents discussion on utilizing large-scale
technologies and their effective provision in community support and also highlights
the benefits of Software-as-a-Service (SaaS) and mobile health infrastructure.

Part IV: Wearable Computing for Smart Healthcare
Part IV of the book comprises of six chapters that present variety of information

on wearable devices and distributed computing for activity recognition and patient
monitoring. Chapter 14 proposes a wearable system for recognition of American
Sign Language (ASL). The proposed system design is an example of fusing dif-
ferent sensor modalities and addressing computation cost challenge of wearable
computer based Sign Language Recognition (SLR) due to the high-dimensional
data. The study is claimed to be the first American Sign Language recognition
system fusing Inertial Measurement Unit (IMU) sensor and surface Electromyog-
raphy (sEMG) signals which are complementary to each other. Chapter 15 intro-
duces a novel ECG anomaly detection technique to be implemented in the cloud.
The proposed technique which works by comparing the beat segments against a
normal beat, succeeds in fulfilling all the necessary prerequisites for large-scale
monitoring. The complexities of such systems are also highlighted and real-time
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signal processing methods and heuristics are applied in the chapter to estimate the
boundary limits of individual beats from the streaming ECG data.

Chapter 16 presents a motion recognition method to the upper-limb prosthetic
and robotic devices with emphasis on myoelectric pattern recognition techniques.
The potential of distributed computing in healthcare with particular focus on the
design and development of robust upper-limb rehabilitation devices has been dis-
cussed in the chapter. Chapter 17 proposes a novel data segmentation technique that
harnesses the power of change point detection algorithm to detect and quantify any
abrupt changes in sensor data streams of smart earrings. The presented framework
is evaluated on two wearable sensor-based daily activity benchmark datasets to
attest the scalability and adaptation of the presented techniques for other activity
and large-scale participatory sensing health applications.

Chapter 18 outlines several challenges that developers, patients, and providers
face in recent times. Several commercial platforms for health monitoring are
reviewed and their impacts are discussed. The chapter also includes recently
developed Berkeley Telemonitoring Framework and Android-based open source
solution for development of health-monitoring applications. Chapter 19 describes
the exploitation of physiological sensors and related signal processing methods to
enhance monitoring care in patients with mental disorders. The authors in this
chapter describe a pervasive and wearable system comprising of a comfortable
t-shirt with integrated electrodes to monitor bipolar patients to support the diagnosis
in clinical settings.

Part V: Resource Allocation, Quality of Service (QoS), and Context-
awareness in Smart Healthcare

Part V of the book contains chapters on resource allocation in large-scale smart
healthcare systems, QoS, and context-awareness. Chapter 20 reviews recent pro-
gress on multiple energy sources for BANs and the corresponding energy har-
vesting techniques. In particular, discussion on multi-node communications with
energy harvesting for large-scale BANs where complicated network structures are
employed is presented. Apart from conventional energy sources, for example
photovoltaic, thermoelectric, and electromagnetic energy harvesting that can be
applied in BAN, the chapter also describes the energy sources, such as kinetic and
biochemical energy harvesting that are exclusively adopted on human body for
BAN. Chapter 21 proposes an Analytic Hierarchy Process (AHP) based algorithm
to manage m-QoS based on Telemedicine service selection, evaluation, and
assessment on the priority and urgency basis by randomly selecting three decision
parameters namely throughput, delay and jitter, to provide cost-effective and quality
life to emergency patients at remote location in the hospital.

Chapter 22 presents an ontology based system to collect the contextual data,
before, during, and after a digestive surgery. The proposed system is used in a
clinical setting as a part of the E-care medical monitoring platform and is applied to
the rehabilitation process after a digestive surgery to collect the data. The collected
data are subsequently statistically analyzed to make decisions regarding the
patients’ health status. Chapter 23 presents a methodology to design a multi-agent
telemonitoring platform. The preliminary results show that this platform is able to
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assist health professionals in providing an automated processing of data sent from
the sensors and automatically generating alerts in order to detect and report risk
situations.

3 Perspective on Future Research Directions

Despite the effectiveness of large-scale computing techniques in healthcare delivery
methods and services, there are certain areas that need further investigation. The
first possible direction for future research is to investigate the potentials of
deploying the IoT based solutions for epidemic control and predict possible disease
breakouts. The aforementioned solutions can definitely be beneficial for community
healthcare in general and for developing economies in particular because despite all
of the economic and financial issues still large number of people possess smart-
phones. Devising techniques that emphasize on epidemic data collection through
smartphones can help government agencies in efficiently identifying the affected
areas. Off course at individual and consumer level, implementation of such methods
is challenging due to high involved costs but is certainly possible at government
level.

The second potential area to be emphasize on is the curation of healthcare
datasets. Veracity of healthcare data not only ensures the accuracy of the moni-
toring procedures but can also lead to energy efficiency if effective dimension
reduction techniques are applied on the healthcare data. In fact, the inception of
BANs and the IoT in healthcare have resulted in excessive data volumes and
thereby increased number of features. Therefore, to truly benefit from the paral-
lelism offered by big data tools and techniques, the machine learning methods
capable of optimizing the datasets while preserving the accuracy are needed.

Another direction worth exploring in context of smart healthcare services is the
privacy and security of healthcare data. Although the health data privacy and
security in general attained significant attention of the researchers in past, measures
are needed to ensure the privacy of the healthcare applications and methodologies
typically designed for smartphones and several other handheld devices.
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Big Healthcare Data Analytics: Challenges
and Applications

Chonho Lee, Zhaojing Luo, Kee Yuan Ngiam, Meihui Zhang,
Kaiping Zheng, Gang Chen, Beng Chin Ooi and Wei Luen James Yip

Abstract Increasing demand and costs for healthcare, exacerbated by ageing pop-

ulations and a great shortage of doctors, are serious concerns worldwide. Conse-

quently, this has generated a great amount of motivation in providing better health-

care through smarter healthcare systems. Management and processing of health-

care data are challenging due to various factors that are inherent in the data itself

such as high-dimensionality, irregularity and sparsity. A long stream of research has

been proposed to address these problems and provide more efficient and scalable

healthcare systems and solutions. In this chapter, we shall examine the challenges in
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designing algorithms and systems for healthcare analytics and applications, followed

by a survey on various relevant solutions. We shall also discuss next-generation

healthcare applications, services and systems, that are related to big healthcare data

analytics.

Keywords Healthcare ⋅ Data analytics ⋅ Big data ⋅ Machine learning

1 Introduction

Large amounts of heterogeneous medical data have become available in various

healthcare organizations and sensors (e.g. wearable devices). Such data, which is

called Electronic Health Records (EHR), is the fundamental resource to support

medical practice or help derive healthcare insights. Previously, most of the medical

practices were completed by medical professionals backed by their experiences, and

clinical researches were conducted by researchers via painstakingly designed and

costly experiments. However, nowadays the rapidly increasing availability of EHR

is becoming the driving force for the adoption of data-driven approaches, bringing

the opportunities to automate healthcare related tasks. The benefits may include ear-

lier disease detection, more accurate prognosis, faster clinical research advance and

better fit for patient management.

While the promise of Big Healthcare Analytics is materializing, there is still a

non-negligible gap between its potential and usability in practice. Heterogeneity,

timeliness, complexity, noise and incompleteness with big data impede the progress

of creating value from data. Big Healthcare Analytics is no different in general. To

make the best from EHR, all the information in EHR must be collected, integrated,

cleaned, stored, analyzed and interpreted in a suitable manner. The whole process

is a data analysis pipeline where different algorithms or systems focus on different

specific targets and are coupled together to deliver an end-to-end solution. It can also

be viewed as a software stack where in each phase there are multiple solutions and the

actual choice depends on the data type (e.g. sensor data or text data) or application

requirements (e.g. predictive models or cohort analysis).

There are mainly two types of EHR data, namely electronic medical records
(EMR) and sensor data. There are two major directions of the advancement of Big

Healthcare Analytics related to EMR data and sensor data respectively. One is to

provide better understanding and interpretation about the basic EMR from hospi-

tals. The key challenges are to detect the specific characteristics of EMR data and

build customized solutions for every phase of the data analysis pipeline. The other

is to benefit from the development of new technologies of sensors (e.g. capturing

devices, wearable sensors, and mobile devices) by getting more medical related data

sources. The key challenges are to support real time data processing and real time

predictive models.
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Fig. 1 EMR data consisting of structured data, unstructured text data and image data etc. Source
http://adni.loni.usc.edu/data-samples/

EMR Data: With the development of electronic healthcare information systems,

more and more EMR data is collected from hospitals and ready to be analyzed.

EMR data is time series data that records patients’ visits to hospitals. As shown in

Fig. 1, EMR data typically includes socio-demographic information, patients’ med-

ical history and heterogeneous medical features such as diagnoses, lab tests, med-

ications, procedures, unstructured text data (e.g., doctors’ notes), image data (e.g.,

magnetic resonance imaging (MRI) data) and so on. The effective use of EMR can

be extremely helpful in data analytics tasks such as disease progression modelling,

phenotyping, similar patient and code clustering [54] and so on. However, mining

from EMR data is challenging due to the following reasons. First, EMR data is high-

dimensional as a large number of medical features have to be captured. Second, EMR

data is often dirty or incomplete due to the collection being done over a long period

of time; consequently, this data has to be treated before it can be used. Third, EMR

data is typically collected irregularly by hospitals as patients tend to visit the hospi-

tal only when necessary. Consequently, we have to address challenges such as high-

dimensionality, sparsity, noise, missing data, irregularity and bias when we design

analytics solutions.

Sensor Data: With the wide use of sensors in collecting data for monitoring and

better responding to the situational needs, sensor signals or data streams are also

common in healthcare data. From a big data perspective, such sensor signals exhibit

some unique characteristics. The signals originate from millions of users and sen-

sor/mobile devices, form an extremely large volume of heterogeneous data streams

in real time. Figure 2 shows example networks with various sensors/mobile devices,

where the data streams are generated.

http://adni.loni.usc.edu/data-samples/
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Fig. 2 Network of interconnected sensors (e.g., mobile phones, cameras, microphones, ambient

sensors, smart watches, smart lenses, skin-embedded sensors [114], intestinal gas capsules [48])

that produce healthcare data streams

With the advancement in sensor technology and miniaturization of sensor devices,

various types of tiny, energy-efficient and low-cost sensors are expected to be widely

used for improving healthcare [2, 15, 29]. These sensors form wireless networks

such as Internet of Things [21], wearable networks [5] and in-body nano-scale net-

works [67, 69], and generate massive and various types of data streams. Monitoring

and analyzing such multi-modal data streams are useful for understanding the phys-

ical, psychological and physiological health conditions of patients. For examples,

surveillance cameras, microphones, pressure sensors installed in a house can track

the daily activities of elderly people remotely and can help detect falls
1
; EEG and

ECG sensors can capture changes in patients’ emotions and help control the severity

of stress and depression [89, 91, 116]; Carbon nano-tube sensors measuring oxygen

saturation and pH of the body, which are bio-markers to react against cancer tissues,

help doctors to manage patients [55, 103]. For many healthcare applications, such

data must be acquired, stored and processed in a real-time manner. However, there

are limitations in implementing the real-time processing of enormous data streams

with a conventional centralized solution that does not scale well to process trillions

of tuples on-the-fly [21]. Instead, distributed architectures [1, 35, 47, 60, 75, 115]

are more amenable to scalability and elasticity to cater to different workloads.

Implementing the next-generation smart healthcare systems, especially those for

supporting Big Healthcare Analytics, requires us to carefully examine every phase

in the data analysis pipeline, and adjust the methods by modelling the specific med-

ical context. An overview of existing solutions would be of value to those who

want to implement a new solution or application. With this in mind, we hereby pro-

vide an overview of healthcare data analytics and systems in this chapter. Based on

the different types of EHR data and their characteristics introduced earlier, we next

1
http://www.toptenreviews.com/health/senior-care.

http://www.toptenreviews.com/health/senior-care
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outline several challenges in big healthcare data analytics and review various pro-

posals with respect to these challenges in Sect. 2. Section 3 describes several key

steps for processing healthcare data before doing data analytics. Section 4 presents

various healthcare applications and services that can be supported by data analytics,

and various healthcare systems. We summarize and discuss potential directions in

Sect. 5.

2 Challenges

Mining EMR data is challenging because of the following reasons:

high-dimensionality, irregularity, missing data as well as sparsity, noise and bias.

Figure 3 shows a real-life patient matrix to help readers better understand different

challenges in EMR data. Each challenge will be described in detail.

2.1 High-Dimensionality

EMR data typically consists of hundreds to thousands of medical features. This gives

rise to the high-dimensionality problem. To illustrate, in a sample data set from a

real-world longitudinal medical database of National University Hospital, for 10000

patients over a one year period, there are 4143 distinct diagnosis codes. However,

nearly 80% of the patients have fewer than 10 diagnosis codes and about 70% of

them have fewer than four visits to the hospital, which makes each patient’s feature

vector high-dimensional and sparse. Similar characteristics are observed from public

Fig. 3 EMR data of patients
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data sets. In a diabetes readmission data set from UCI Machine learning Repository,
2

there are about 900 distinct diagnosis codes, but most patients are associated with

fewer than three diagnosis codes. In a subsample of 10000 patients, extracted from a

data set provided by Centers for Medicare and Medicaid Services (CMS) 2008–2010,

we find nearly 88% of the patients have fewer than four diagnosis codes, although

there are 153 distinct diagnosis codes in total.

Dealing with very high-dimensional data is challenging, as it introduces more

parameters into the model, making the model much more complex. Also, high-

dimensional data is highly likely to be associated with noise and sparsity problems.

To address the high-dimensionality problem, there are two main categories of dimen-

sionality reduction methods, namely feature selection and feature extraction.
3

2.1.1 Feature Selection

Feature selection is the process of selecting a subset of relevant predictive features

for model construction [34]. Common feature selection methods include filter meth-

ods, wrapper methods and embedded methods [34]. Filter methods select significant

features independent of models. These methods will rank the features according to

their relations to the predicted features and are usually univariate. Filter methods are

computationally efficient and robust to over-fitting but the relations between features

are neglected. Different from filter methods, wrapper methods take the relationships

between features into consideration. A predictive model will be built to evaluate the

combinations of features and a score will be assigned to each set of feature combina-

tions based on the model accuracy. Wrapper methods take a much longer time since

they need to search a large number of combinations of features. Also, if the data is

not enough, this method will have over-fitting problem. Embedded feature selection

methods shift the process of feature selection into the building process of the model.

Embedded methods have the advantages of the previous two methods, fast and robust

to over-fitting as well as considering relationships between features. Unfortunately,

these methods are not generic as they are designed for specific tasks with certain

underlying assumptions. For healthcare analytics, univariate analysis and stepwise

regression are widely adopted. These two methods belong to filter methods and wrap-

per methods respectively.

In [68], a univariate analysis as well as a multivariate logistic regression with

stepwise forward variable selection are implemented to perform feature selection.

Among the initial 20 or so manually selected features, five of them are finally found

to be significantly associated with readmission within 30 days for a population of

general medicine patients in Singapore and are included in the final model. These

features include age, Charlson comorbidity index, white cell count, serum albumin

and number of emergency department (ED) visits in previous six months. In [53],

a modified stepwise logistic regression is performed to do feature selection in order

2
https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008.

3
http://www.kdd.org/kdd2016/topics/view/dimensionality-reduction.

https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
http://www.kdd.org/kdd2016/topics/view/dimensionality-reduction
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to predict heart failure readmissions. In this work, with the help of domain experts,

95 condition categories (CC), two demographic variables (age and gender) and two

procedure codes are included as candidate features. After feature selection, 37 fea-

tures are considered in the final model. In [106], a backward stepping feature selec-

tion method is used to select significant features for the final model. 48 patient-level

and admission-level features are collected from 4812 patients that are discharged in

Ontario. Among these variables, only four of them, namely, length of stay in days,

acute (emergent) admission, comorbidity (Charlson comorbidity index score) as well

as number of ED visits during previous six months, are finally found out to be sig-

nificant to the readmission prediction task.

2.1.2 Feature Extraction

Apart from feature selection methods, we may perform feature extraction to learn

low-dimensional latent representations of original features to reduce dimensional-

ity. The main idea of feature extraction is to embed original features in a lower-

dimensional space where each dimension corresponds to a combination of original

features. Compared with the features derived by feature selection methods, the fea-

tures learned by feature extraction are much more difficult to interpret. There are

mainly two categories of feature extraction methods, depending on whether the trans-

forming methods are linear or non-linear. Linear transforming methods may struggle

in discovering complex non-linear relationships between the original features while

non-linear transforming methods are much more difficult to optimize and are more

likely to be trapped in local optima.

In [57], Gaussian process regression is used to infer longitudinal probability den-

sities for uric acid sequences. Following this transforming step, an auto-encoder is

then used to infer meaningful features from the transformed probability densities.

When configuring the hidden layer of the deep learning model, the dimension of the

hidden layer could be set smaller than the visible layer so as to avoid learning the

identity transformation.

In [105], a modified Restricted Boltzmann Machine (RBM) is trained to embed

medical objects in a low-dimensional vector space which works as a new representa-

tion for the raw high-dimensional medical feature vector. This new low-dimensional

representation is then used for assessing suicide risk.

In addition to learning non-linear low-dimensional hidden representations using

deep learning models, dimensionality reduction can also be achieved through princi-

pal component analysis (PCA). A stochastic convex sparse PCA method is developed

in [7] to effectively perform sparse PCA on EMR data so that the derived represen-

tation is both low-dimensional and interpretable.
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2.2 Irregularity

Irregularity is one of the bothersome characteristics of EMR data and provides chal-

lenges for EMR data analytics. Irregularity is caused by the fact that patients will

only have EMR data recorded when they visit hospital. As a consequence, patients’

EMR data is organized into a “longitudinal patient matrix” where one dimension rep-

resents various medical features and the other is time [108, 118], and the consecutive

patients’ EMR records will be scattered within uneven-spaced time spans. Moreover,

for different patients, the granularity of medical records varies significantly and the

time periods between visits also vary a lot.

Generally, there are three categories of methods to alleviate this irregularity issue.

The details are demonstrated as follows.

2.2.1 Use of Baseline Features

The first kind of methods is to utilize patients’ “baseline” features (i.e., the data

recorded when patients visit hospital to perform examinations for the first time) for

EMR data analytics tasks.

For instance, baseline MRI scans [100] are used to predict patients’ clinical scores

including Mini-Mental State Examination (MMSE), Dementia Rating Scale (DRS),

Auditory Verbal Learning Test (AVLT) and Alzheimer’s disease Assessment Scale-

Cognitive Subtest (ADAS-Cog). In this work, a relevance vector regression, a novel

sparse kernel method in a Bayesian network, is employed. Similarly, patients’ base-

line MRI features (together with baseline MMSE features, and some demographic

features) [27] are used to predict the one-year changes in the MMSE feature. The

whole process entails data collection and extraction from MRI data, feature dimen-

sionality reduction via PCA, prediction of future MMSE changes via robust linear

regression modelling. In [107], the association between patients’ baseline features

and changes in severity-related indicators is examined via linear mixed-effects mod-

els and the baseline features are used to predict the conversion time from amnes-

tic mild cognitive impairment (aMCI) to Alzheimer’s disease via Cox proportional

hazards models. In [95], a risk score based on patients’ baseline features and demo-

graphic features is proposed to predict the probability of developing Type 2 diabetes.

Specifically, a multivariate Cox regression model is used to assign weights to differ-

ent variables. In [26], Alzheimer’s disease patients’ baseline features are used to pre-

dict their probability for different class memberships representing different severity

levels based on a multivariate ordinal regression model using Gaussian process that

is implemented in a Bayesian network.

Another line of research focuses on multi-task learning [14]. Several works [80,

117, 119] choose Alzheimer’s disease patients as the cohort and predict their future

severity in terms of MMSE values and ADAS-Cog values in multiple timepoints.

The prediction in each timepoint is modelled as a regression task. These works

utilize patients’ baseline features and employ multi-task learning to capture the
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relationships between tasks (i.e. the prediction tasks in multiple future timepoints),

where all these tasks are trained together with constraints on the changes within

consecutive timepoints. However, there are several minor differences between these

two methods. Besides predicting patients’ future severity, [119] manages to select

a common set of features that are significant to all prediction tasks via a l2,1-norm

penalty term. [117] extends [119] in that it not only selects a common set of features

for all tasks, but also selects task-specific bio-markers via a l1-norm penalty term.

[80] proposes a further improvement of regression performance to consider the con-

sistency for prediction utilizing multi-modal data (i.e., multiple sources/forms of

medical features), and handles the missing data in both modality data and label data

via an adaptive matrix factorization approach.

The prediction performance of this category may be limited by only making use

of baseline features. This is due to under-utilization of time-related features. Since

patients’ health conditions tend to change along with time, it is of vital importance

to utilize as many time-related features available as possible other than just baseline

features. Another limitation specific to multi-task learning methods is that they can

only deal with linear relationships among features. However, in the medical area,

relationships between medical features, relationships between medical features and

labels can be quite complicated and may not be described using simple linear rela-

tionships.

2.2.2 Data Transformation

In regularly sampled series, lots of successful algorithms have been developed. How-

ever, there remain many challenging problems in handling irregular data. In the med-

ical area, we are faced with longitudinal, irregularly collected EMR data. To alleviate

this problem, some existing works organize patients’ EMR data along with time and

have divided such longitudinal data into “windows”. For instance, in [110], a prob-

abilistic disease progression model based on Markov jump process is proposed to

model the transition of disease states for Chronic Obstructive Pulmonary Disease

(COPD) patients. The EMR data is processed by segmenting the time dimension

into non-overlapping windows (i.e., encounters) with a length of 90 days, and the

regularly reorganized data is then used for further modelling and analysis.

Similarly, in [18], two kinds of features are used: daily recorded features and static

features. These two kinds of features are exploited to distill knowledge from deep

learning models (including Stacked Denoising Auto-encoder and Long Short-Term

Memory (LSTM)) by making use of Gradient Boosting Trees.

In [62], training data is processed by resampling to an hourly rate, where the mean

measurement is applied in each hourly window. The application task is to classify 128

medical diagnoses employing an LSTM model [40] to capture the dynamic patterns

in input features. In [16], the dynamic changing trends are captured using an alterna-

tive approach. After preprocessing data into overlapping “windows”, the occurrence

of a certain disease is predicted based on Multi-Layer Perceptron (MLP) with prior

domain knowledge.
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While transforming irregular data into regular time series allows us to employ

some efficient methods (such as linear algebra) directly, we need to be aware of the

side effects associated with such method. For instance, the resampling method may

possibly lead to the sparsity and missing data problems because for some features,

there could be no observations during certain time windows. Moreover, by dividing

longitudinal data into windows, the model may be less sensitive to capturing short-

time feature patterns.

2.2.3 Direct Use of Irregular Data

Contrary to the methods mentioned above, there are approaches that make use of

medical features with irregular, accurate time information directly. In [86], the com-

putation of LSTM model is adapted by incorporating the time spans between con-

secutive medical features to handle the irregularity. The proposed model is applied

to model disease progression, recommend interventions and predict patients’ future

risks. Similarly, models based on Gated Recurrent Units (GRU) [19] have been pro-

posed which simultaneously consider the masking and time durations between con-

secutive medical features in a decay term [17]. Through this decay term, the proposed

method is designed to handle irregular data directly.

This category of methods demonstrates the possibility of fully utilizing avail-

able data. However, when parameterizing time between consecutive medical fea-

tures, these methods model the decay term using a heuristic method, such as a

monotonically non-increasing function based on logarithm or a parametric method

to learn a time weight matrix [86]. Such heuristic methods may cause either under-

parameterization or over-parameterization.

2.3 Missing Data and Data Sparsity

Typically, missing EMR data can be caused by either insufficient data collection or

lack of documentation. In data collection problem, patients are not checked specifi-

cally for a certain medical feature. In documentation problem, patients are checked

for a certain feature, but either their outcomes are negative, which means that they

are not needed to be documented, or the outcomes are positive but are not recorded

due to human errors [112]. The missing data problem is further exacerbated by data

sparsity due to the fact that most patients only pay a few visits to the hospital, and

in most visits, only a couple of medical features are recorded. Fortunately, missing

data and sparsity problems share many common techniques for solving them.

In [93], various imputation methods for handling missing data are described and

broadly categorized into two categories. The first category is under the missing at
random assumption, including methods from simple ones such as case deletion,

mean imputation, to the advanced ones such as maximum likelihood and multiple

imputation. The second category is under the assumption of missing not at random,

which mainly includes selection models and pattern-mixture models.
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In [18], a simple imputation strategy is adopted in solving missing temporal fea-

tures: for features with binary values, the majority value is used for filling; for fea-

tures with numerical values, the mean values are used for imputation. In [62], the

forward-filling and back-filling methods are proposed to fill the missing data during

a resampling process. For a feature that is totally missing, the clinically normal value

suggested by medical experts is used instead.

Apart from solving the missing data problem through imputation in preprocess-

ing phase, a recent work [17] addresses missing data by incorporating two missing

patterns: masking and time duration inside the objective function of the deep learn-

ing model structure. The proposed method is designed to capture the informative

missing EMR data.

For sparsity, the above-mentioned missing data imputation methods, such as mean

imputation, forward-filling and back-filling, are also widely used to get a dense

patient matrix in order to solve the sparsity problem. Matrix densification/completion

is another method to solve the sparsity problem [118]. The basic idea of matrix

completion is to recover unknown data from a few observed entries. The algorithm

assumes that the completed data for each patient has the factorization form of two

matrices. Thus the data can be completed by multiplying these two derived matrices

to densify the raw patient matrix.

2.4 Noise

EMR data is usually noisy due to various reasons, such as coding inaccuracies,

inconsistent naming conventions, etc. Many machine learning researchers tend to

learn latent representations to derive more robust representations in order to solve

this problem. These methods include Gaussian regression models, topic models or

factorization-based methods. A Gaussian process regression is proposed in [57] to

transform the raw noisy data (uric acid sequences) into a continuous longitudinal

probability density function. This transforming step assumes that each uric acid

sequence is a set of possibly noisy samples taken from the source function. After-

wards, instead of operating on the noisy raw data, an auto-encoder takes the mean

vector of the learned Gaussian distribution to derive hidden representations. In [39],

the noise problem is resolved by learning meaningful medical concepts (or pheno-

types) in the form of tensors. Its insight is to map raw EMR data into medical con-

cepts, learn latent bases of the raw data and perform predictive tasks in the latent

space. Similar to [39], [111] factorizes the raw patient tensor into several interac-

tion tensors, each representing a phenotype. Experimental results suggest that this

method is robust to noise because it not only depends on the observed tensor but also

on various other constraints to derive the phenotype tensors. Another latent variable

model to solve the noise problem is proposed in [88], which leverages a topic mod-

elling technique to handle noise in the raw EMR data by modelling the relationships

between observations that are implicit in the raw data.
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2.5 Bias

Bias is also an outstanding characteristic of EMR data, which is regarded as a non-

negligible issue in healthcare data analytics [37, 41, 42, 87]. Bias is often considered

as biased sampling, which means that the sampling rate is dependent on patients’

states, and also dependent on doctors’ judgment on patients. Consequently, patients

are sampled more frequently when ill, but are sampled less frequently when com-

paratively healthier [42]. Other sources of bias include (i) the same patient may visit

different healthcare organizations for medical help and different organizations do

not share information between each other; (ii) patients fail to follow up in the whole

medical examination process; (iii) the recorded data in one specific healthcare orga-

nization is incomplete [37].

In [87], bias in the lab tests of EMR data is modelled by examining the relation-

ships between concrete lab test values and time intervals between consecutive tests,

and exploiting the lab test time patterns to provide additional information. Further-

more, different lab test time patterns are identified so that they can be separately

modelled when EMR data analytics and experiments are performed. The limitation

of this method is that it can only model the bias based on coarse-grained patterns,

and the intra-pattern biases remain to be unsolved.

The influence of time parametrization in EMR data analytics is studied in [42],

in which three methods of parameterizing time are compared: sequence time (i.e.,

the sequence of measurements’ occurrences after a specified start time), clock time

(i.e., the absolute time of measurements) and an intermediate warped time which is

a trade-off between the previous two. The study finds that the sequence time could

perform the best among three methods, perhaps due to clinicians’ tendency to change

sampling rate according to patients’ severity. However, the proposed time parame-

terization methods are heuristic in nature and may cause under-parameterization or

over-parameterization.

2.6 Knowledge Base

Over the years, a large number of knowledge sources in the healthcare domain have

been built and maintained to provide people with easy access to comprehensive med-

ical information. Common knowledge sources include International Classification of

Diseases (ICD-9 or ICD-10) for diagnoses, Healthcare Common Procedure Coding

System (HCPCS) for procedures, Logical Observation Identifiers Names and Codes

(LOINC) for laboratory tests. Besides, Unified Medical Language System (UMLS)

maintains useful relationship knowledge, and Lab Tests Online
4

explains the rela-

tionships between lab tests. Incorporating structured medical knowledge provides

a good basis to construct intelligent predictive models, which can then be used to

improve healthcare data analytics in terms of interpretability and predictive ability.

4
https://labtestsonline.org/.

https://labtestsonline.org/
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In [111], existing medical knowledge is incorporated into the tensor factorization

algorithm in order to derive more fine-grained phenotypes. In particular, the algo-

rithm can derive different sub-phenotypes which fall into a broader phenotype. This

can help to stratify patients into more specific subgroups.

Since knowledge has been successfully incorporated into deep learning models

in natural language processing field [9], many deep learning researchers are head-

ing towards incorporating existing medical knowledge into deep learning models in

order to improve interpretability as well as performance of the model. In [16], med-

ical ontology knowledge is incorporated into the MLP as a regularization term so as

to improve the performance of the model. A similar approach is developed in [105],

in which structural smoothness is incorporated into the RBM model via a regular-

ization term. Its basic underlying assumption is that two diseases which share the

same parent in the taxonomy are likely to possess similar characteristics.

3 Key Steps for Processing

Before EHR data (including EMR data and sensor data) is input into various models

for analysis, data needs to go through several steps of processing. Figure 4 illustrates

the pipeline for big data analysis [22, 45]. Firstly, EHR data needs to be recorded,

accessed and acquired. Secondly, obtained raw EHR data is probably heterogeneous,

composed of structured data, free-text data (such as doctors’ notes), image data (such

as MRI images) and sensor data. Hence, data extraction is of great concern for fur-

ther analysis. Furthermore, data cleansing is needed to remove inconsistencies and

errors, and data annotation with medical experts’ assistance contributes to effective-

ness and efficiency of this whole process from acquisition to extraction and finally

cleansing. Thirdly, data integration is employed to combine various sources of data,

such as different hospitals’ data for the same patient. Finally, processed EHR data

is modelled and analyzed, and then analytics results are interpreted and visualized.

In this section, several key steps for processing EHR data, namely, data annotation,

data cleansing, data integration and data analytics/modelling are described in detail

respectively.

Fig. 4 The big data analysis pipeline [45]
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3.1 Data Annotation

Incompleteness is the leading data quality issue when using EHR data to build a

learning model [10], since many study variables have missing values to various

degrees. The uncertainty of EHR data can be resolved by model inference using

various learning techniques [110]. However, the rationale of most healthcare prob-

lems can be too complex to be inferred by machines simply using limited EHR data.

In such cases, enriching and annotating EHR data by medical experts are the only

choice to help the machine to interpret EHR data correctly.

The acquisition of supervised information requires annotations by experts, result-

ing in a costlier exploitation of data. To reduce the cost involved in data annotation,

voluminous research works have been conducted. In general, most of the research

issues belong to active learning, which aims to only annotate those important data

instances while inferring others and thereby the total number of annotated data is

significantly reduced. The key idea of active learning is that learning algorithms can

achieve higher accuracy with fewer training labels if they can choose the data from

which they learn. The general solutions of active learning include reducing the uncer-

tainty in training models [59], differentiating hypotheses which are consistent with

the current learning set (i.e. Query-By-Committee) [78, 97, 102], maximizing the

expected model change after receiving a new sample [96], minimizing the expecta-

tion [90] or variance [20] of the empirical loss, maximizing the information density

among the whole query space [96] and etc.

However, in current status, all these methods have limitations in real healthcare

applications. The fundamental reason is that the supervised information in some

complex analytics tasks may be hard to be quantified by a human. Since most easy

annotating tasks can usually be well recognized by simply using machine efforts,

the required tasks for expert annotation are usually complex jobs such as inference

flow in a medical concept graph. These categories of supervised information can

hardly be annotated via quantified labels which are well studied in the active learning

community and integrated to the healthcare analytics system.

3.2 Data Cleansing

In this section, we discuss the importance of data cleansing for EHR data (includ-

ing EMR data and sensor data). As mentioned in Sect. 2.4, EMR data is typically

noisy due to several reasons, for example, coding inaccuracies, erroneous inputs, etc.

Before raw EMR data is ready for use, we should develop data cleansing techniques.

This requires us to understand the healthcare background of the dirty EMR data and

work with domain experts to achieve better cleansing performance. Data cleansing

is quite challenging when we consider sensor data. Data from sensor/mobile devices

is inherently uncertain due to lack of precisions, failures of transmissions and insta-

bility of battery life, etc. Thus, it is essentially required to (i) identify and remove
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inaccurate, redundant, incomplete and irrelevant records from collected data and (ii)

replace or interpolate incorrect and missing records with reasonably assigned val-

ues. These processes are expected to improve data quality assessed by its accuracy,

validity and integrity, which lead to reliable analytics results.

3.3 Data Integration

Data integration is the process of combining heterogeneous data from multiple

sources to provide users with a unified view. [25, 32, 36] explore the progress that

has been made by the data integration community and some principles, as well as

theoretical issues, are introduced in [24, 58].

Data integration techniques for EMR data and sensor data have different charac-

teristics. For EMR data, we need to integrate heterogeneous EMR data from different

sources including structured data such as diagnoses, lab tests, medications, unstruc-

tured free-text data like discharge summary, image data like MRI, etc. Different from

EMR data, sensor data is generated by various types of sensor/mobile devices at dif-

ferent sampling rates. The heterogeneity of abundant data types brings another chal-

lenge when we integrate data streams due to a tradeoff between the data processing

speed and the quality of data analytics. The high degree of multi-modality increases

the reliability of analytics results, but it requires longer data processing time. The

lower degree of multi-modality will improve data processing speed but degrade the

interpretability of data analytics results. The efficient data integration helps reduce

the size of data to be analyzed without dropping the analytics performance (e.g.,

accuracy).

3.4 Data Analytics and Modelling

After the three processing steps described above, we focus on EHR data analytics

and modelling part. We have proposed a healthcare analytics framework as shown

in Fig. 5. This framework is composed of four phases which can give a better repre-

sentation of medical features, and exploit the intrinsic information in EHR data and

therefore, benefit further data analytics performance. The key idea for each phase is

demonstrated as follows.

EHR Regularization: In this step, we focus on transforming the EHR data into a

multivariate time series, solving the problems of irregularity, missing data and data

sparsity, and bias as discussed in Sect. 2. The output of this phase is an unbiased,

regularly sampled EHR time series.

Medical Feature Representation: In this phase, we aim to represent the medical

features to reflect their feature-time relationships. To be specific, we learn for each

medical feature whether this feature has influence after a certain time period and

which features it poses influence on.
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Fig. 5 Our healthcare analytics framework

Medical Feature Regularization: After regularizing EHR data into a more suitable

format for analytics and representing features to reveal underlying relationships, we

now turn to re-weight medical features for better analytics results. This re-weighting

can be achieved by trading-off features’ confidence and significance and differenti-

ating common from rare, significant from noisy features.

Medical Knowledge Support: In this phase, we propose to instil medical knowl-

edge into typical machine learning and deep learning models for better analytics

performance. This will involve finding the best structures to represent existing med-

ical knowledge (i.e., domain knowledge) and developing the model training scheme

using such knowledge.

4 Healthcare Applications

This section presents several healthcare applications, services and systems that are

supported by data analytics in EMR data and sensor data. Figure 6 illustrates some

of them using EMR data.

4.1 Applications for EMR Data

4.1.1 Clustering

Clustering can help detect similar patients or diseases. Since the raw healthcare data

is not clean, there are usually two kinds of approaches for researchers to derive mean-

ingful clusters. The first approach tends to learn robust latent representations first,

followed by clustering methods while the other approach adopts probabilistic cluster-

ing models which can deal with raw healthcare data effectively. In [105], diseases are

first embedded into 200-dimension using a modified RBM model, eNRBM model.

These latent 200-dimension hidden vectors are then projected into 2D space using

t-SNE. In this 2D space, we can see several meaningful groups consisting of related

diagnoses and procedures. Similar to [79, 105] embeds raw patient vectors into latent

vectors using a modified RBM, then patient clustering is performed on these latent
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Fig. 6 An illustration of some applications using EMR data analytics. From medical history, we

can perform patient clustering, code clustering and phenotyping tasks, while regarding prediction

of patients’ future, we can do disease progression modelling and 30-day readmission prediction [53]

vectors. Experiments show some groups of patients are closely related to a specific

disease condition (say Type I diabetes). [98] identifies multivariate patterns of per-

ceptions using cluster analysis. Five different patient clusters are finally identified

and statistically significant inter-cluster differences are found. In [72], a probabilistic

clustering model is applied for multi-dimensional, sparse physiological time series

data. It shows that different clusters of patients have large differences in mortality

rates. Moreover, this clustering model can be used to construct high-quality predic-

tive models. Similarly, in [94], a probabilistic sub-typing model is proposed to cluster

time series of clinical markers in order to identify homogeneous patient subgroups.

4.1.2 Phenotyping

Computational phenotyping has become a hot topic recently and has attracted the

attention of a large number of researchers because it can help learn robust repre-

sentations from sparse, high-dimensional, noisy raw EMR data. It has several kinds

of forms including (i) rules/algorithms that define diagnostic inclusion criteria (ii)

latent factors or latent bases for medical features [49].
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Traditionally, doctors regard phenotyping as rules that define diagnostic or inclu-

sion criteria. The task of finding phenotypes is achieved by a supervised task [73].

A number of features are first chosen by domain experts, then statistical methods

such as logistic regression or chi-square test are performed to identify the significant

features for developing acute kidney injury during hospital admissions. PheKB
5

is a

phenotype knowledge base that shows many rules for different diseases and medical

conditions. Traditional methods using statistical models are easier to be implemented

and interpreted, but they may require a large amount of human intervention.

Recently, machine learning researchers are working on high-throughput methods

to derive more meaningful phenotypes. These works mainly discover latent factors or

bases as phenotypes. [39] first constructs a three-dimensional tensor which includes

patients, diagnoses as well as procedures to represent the raw input data. Then this

tensor is split into several interaction tensors and a bias tensor. Each interaction ten-

sor is a phenotype and the non-zero features in each tensor can be regarded as the

features of the corresponding phenotype. [111] is similar to [39], and it represents

phenotypes in the form of interaction tensors. However, different from [39], it empha-

sizes on imposing knowledge into the learned phenotypes and proposes to derive dis-

tinct phenotypes. In [118], raw patient data is represented using a two-dimensional

longitudinal patient matrix with one axis being time and the other being medical fea-

tures. Then the algorithm decomposes this longitudinal patient matrix into a latent

medical concept mapping matrix and a concept evolution matrix. Phenotypes can

then be obtained from the latent medical concept mapping matrix by discovering

feature groups inside the matrix. Different from traditional statistical methods, phe-

notyping algorithms based on high-throughput machine learning methods can gen-

erate a number of phenotypes at the same time. Moreover, some of the unsupervised

algorithms can derive phenotypes which are independent of prediction tasks and are

more general.

Deep learning achieves record-breaking performance in a number of image and

speech recognition tasks for its distinguished ability to detect complex non-linear

relations from raw data and the ability to learn robust high-level abstractions [8,

50]. Since body system itself is complex and highly non-linear, it may be poten-

tial for us to utilize deep learning methods to perform phenotyping tasks. [57] is

an early work that applies deep learning models in computational phenotyping. It

first applies Gaussian process regression to transform the uric acid sequence to a

probability density function. Then an auto-encoder is used to learn the hidden rep-

resentations of Gaussian distribution’s mean vectors. The learned weights of the

auto-encoder are regarded as phenotypes and the learned features are also visual-

ized. Similar to [57, 105] utilizes a simple two-layer unsupervised deep learning

model, RBM, to learn hidden representations of patients’ raw input vectors (aggre-

gated counts of medical features, such as diagnoses, procedures). Each unit of this

RBM’s hidden layer is regarded as a phenotype and this hidden vector is then used

for clustering and classification tasks. Different from [57] and [105] which employ

an unsupervised model, [16] utilizes a supervised MLP model to extract phenotypes

5
https://phekb.org/.

https://phekb.org/
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from ICU time-series data. In order to visualize MLP’s ability to disentangle factors

of variation, the authors apply tools from causal inference to analyze the learned

phenotypes quantitatively and qualitatively.

4.1.3 Disease Progression Modelling

Disease progression modelling (DPM) is to employ computational methods to model

the progression of a specific disease [76]. With the help of DPM, we can detect a

certain disease early and therefore, manage the disease better. For chronic diseases,

using DPM can effectively delay patients’ deterioration and improve patients’ health-

care outcomes. Therefore, we can provide helpful reference information to doctors

for their judgment and benefit patients in the long run.

Statistical Regression Methods

Traditionally, many related works employ statistical regression methods for DPM,

which can model the correlation between patients’ medical features and patients’

condition indicators [27, 95]. Then, via such correlation, we can have access to the

progression of patients with patients’ features. For example, in [95], an accurate risk

score model through a multivariate Cox regression model is proposed for predicting

patients’ probability of developing diabetes within five years. Similarly, in [27], a

robust linear regression model is employed to predict clinically probable Alzheimer’s

disease patients’ MMSE changes in one year.

Another line of research focuses on “survival analysis”, which is to link patients’

disease progression to the time before a certain outcome. The linking is accom-

plished via a survival function. For instance, in [85], a disease progression model

is proposed to predict liver transplant patients’ long-term survival. The objective

is to stratify patients into clusters according to their survival characteristics and

then assign different intervention strategies to different patient clusters. Similarly,

in [107], the time of patients’ progression from amnestic mild cognitive impairment

to Alzheimer’s disease is studied.

While statistical regression methods are shown to be efficient due to their simple

models and computation, we should note that this is accomplished with an underlying

assumption that the progression (i.e. medical time-series data) of a disease follows a

certain distribution. However, for real-life applications, this assumption may not be

true, and the performance of statistical regression methods would suffer. Therefore,

it could be difficult to generalize such methods to most clinical applications where

the disease progression cannot be abstracted by a certain simple distribution.

Machine Learning Methods

Existing works which employ machine learning methods to solve DPM problem are

quite various, from graphical models including Markov models [44, 110], to multi-

task learning methods [80, 117, 119] and to artificial neural networks [101].
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In [110], a Markov jump process is employed to model COPD patients’ transi-

tion behaviour between disease stages. In [44], a multi-state Markov model is pro-

posed for predicting the progression between different stages for abdominal aortic

aneurysm patients considering the probability of misclassification at the same time.

Due to the structure as directed graphs, these methods have the advantages of good

causality and interpretability. However, medical experts need to be involved to deter-

mine the causal relationships during model construction.

Another category of methods is to employ multi-task learning. In [117, 119], the

DPM problem is formalized in the multi-task learning setting as predicting patients’

future severity in multiple timepoints and select informative features of progression.

Also with a multi-task learning method, in [80], the consistency between multiple

modalities is considered in the objective function and missing data problem is han-

dled. The limitations of multi-task learning methods are two-fold. First, they only

make use of medical features corresponding to patients’ first visits to the hospital

instead of time-related features. Second, they can only deal with linear relationships

in the model.

Deep Learning Methods

In [101], an artificial neural network is employed to predict the recurrence of breast

cancer after surgery. With a deeper neural network than this, deep learning models

become more widely applicable with its great power in representation and abstraction

due to its non-linear activation functions inside. For instance, in [86], a variant of

LSTM is employed to model the progression of both diabetes cohort and mental

health cohort. They use “Precision at K” as the metric to evaluate the performance

of models. However, the lack of interpretability is a possible limitation of these deep

learning methods. Furthermore, more training data is of vital importance in order to

improve deep learning models’ performance.

4.1.4 Image Data Analysis

MRI is widely used to form images of the body using strong magnetic fields, radio

waves, and field gradients. Analyzing these images is beneficial for many medical

diagnoses and a wide range of studies focus on MRI image data classification or seg-

mentation tasks. In [52], a novel classification method that combines both fractal and

GLCM features is proven to be more effective for MRI and CT Scan Medical image

classification than previous models which only utilize GLCM features. A model that

combines deep learning algorithms and deformable models is developed in [3] for

fully automatic segmentation of the left ventricle from cardiac MRI datasets. Exper-

iments show that by incorporating deformable models, this method can achieve bet-

ter performance in terms of accuracy and robustness of the segmentation. In [4], a

review of recent methods for brain MRI image segmentation is presented.
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4.2 Applications for Sensor Data

4.2.1 Mobile Healthcare

Healthcare for ageing population has become a major focus, especially in developed

countries. Due to the shortage of clinical manpower, there has been a drive toward

using ICT (information and communication technology), called mobile healthcare

or mHealth.
6

With the advanced technologies including machine learning and high-

performance computing, personalized healthcare services will be provided remotely,

and diagnoses, medications and treatments will be fine-tuned for individuals on the

basis of spatio-temporal and/or psycho-physiological conditions.

Human activity recognition (HAR) is one of the key technologies for mHealth.

HAR research is mainly classified into two groups in terms of approaches, namely the

video-based and the wearable device-based. The video-based approach continuously

tracks human activities through cameras deployed in rooms; however, it raises pri-

vacy issues and requires the targeted person to remain within the vicinity of the cam-

era [56]. Moreover, the feature extraction from the captured video/images requires

complex computation for further analytics [28]. Because of these limitations, there

has been a shift towards the use of wearable sensors requiring less data processing.

Nowadays, the activity recognition is implemented on smart devices for online

processing [13, 99, 104] while it is done offline using machine learning tools in

backend machines or servers. It has enabled smart healthcare applications such as

fitness assessment [64], life logging,
7

and rehabilitation [74] where the user activities

can be tracked anytime and anywhere.

From the data analytics perspective, [33] discusses the feature extraction algo-

rithm for HAR using only a single tri-axial accelerometer. Relevant and robust fea-

tures are successfully selected and the data size is reduced; thereby, the processing

speed increases without degrading accuracy.

Retrieved features corresponding to activities specify patterns, and the patterns

are used for classification or modelling. Sliding window methods are typically used

for static or periodic activities while sporadic activities can be recognized using

template matching approaches [71] or Hidden Markov Modelling (HMM) [12, 84].

In [83], a deep learning model is designed using convolutional neural networks and

LSTM recurrent neural networks, which captures spatio-temporal patterns of signals

from wearable accelerometers and gyroscopes.

4.2.2 Environment Monitoring

Another interesting healthcare application integrates chemical sensors [6, 66, 70]

for detecting the presence of specific molecules in the environment. For example,

we can collect Pollutant Standards Index (PSI) data that reflects six pollutants (i.e.,

6
http://www.mobilehealthsummit.ca.

7
http://www.sonymobile.com/global-en/apps-services/lifelog.

http://www.mobilehealthsummit.ca
http://www.sonymobile.com/global-en/apps-services/lifelog
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sulfur dioxide (SO2), particulate matter (PM10) and fine particulate matter (PM2.5),

nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3)), from individual

users and construct a fine-grained pollution map together with images and location

information. The environmental monitoring for haze, sewage water and smog emis-

sion etc. has become a significant worldwide problem. Combined with the cloud

computing technology, a large number of smart mobile devices make a distributed

data collection infrastructure possible, and the recent scalable, parallel, resource effi-

cient, real-time data mining technologies have enabled smart device-based data ana-

lytics [65, 120].

[77] proposes the Personal Environmental Impact Report (PEIR) system that uses

location information sampled from smartphones and calculates personalized esti-

mates of environmental impact and exposure. The running PEIR system, which runs

GPS data collection at mobile devices and the HMM-based activity classification at

servers before computing the PEI values, is evaluated. A major contribution of their

work is that this platform can be used for various targets such as traffic condition

measuring, environmental pollution monitoring, and vehicle emission estimating.

4.2.3 Disease Detection

Biochemical-sensors deployed in/on the body can detect particular volatile organic

compounds (VOCs). Many studies [11, 23, 92] have unveiled the relationships

between VOCs and particular diseases corresponding to VOCs, as summarized in

Table 1. The big potential of such sensor devices and the big data analytics of VOCs

will revolutionize healthcare both at home and in hospital.

Developments of nano-sensor arrays and micro electro mechanical systems have

enabled artificial olfactory sensors, called electronic noses [30, 66], as tiny, energy

efficient, portable devices. [30] discusses the essential cause of obesity from over-

eating and an intake of high-calorie food, and presents the way to compute energy

expenditure from exhaled breath.

In [51], nano-enabling electrochemical sensing technology is introduced, which

rapidly detects beta-amyloid peptides, potential bio-markers to diagnose Alzheimer’s

disease, and a tool is developed to facilitate fast personalized healthcare for AD mon-

itoring.

Table 1 List of volatile

organic compounds related to

particular diseases

Volatile organic compound Relevant disease

Acetoin, 1-butanol Lung cancer

Aceton Diabetes

Etan, pentan Asthma

Ammonia Hepatic encephalopathy

Hydrogen, metan Maldigestion syndrome

Toluen Thinner addiction

Trimethylamine Renal failure
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4.3 Healthcare Systems

Instead of solving individual problems, a number of healthcare systems have been

designed and built to serve as platforms for solving the problems described above.

Now we shall discuss several representative healthcare systems.

HARVEST [38] is a summarizer for doctors to view patients’ longitudinal EMR

data at the point of care. It is composed of two key parts: a front-end for better

visualization; a distributed back-end which can process patients’ various types of

EMR data and extract informative problem concepts from patients’ free text data

measuring each concept via “salience weights”.

miniTUBA [113] is designed to assist clinical researchers to employ dynamic

Bayesian networks (DBN) for data analytics in temporal datasets. The pipeline of

miniTUBA includes logging in the website, inputting data as well as managing

project, constructing DBN models, analyzing results and doing prediction in the

end. Users can use miniTUBA to discover informative causal relationships for better

inference or prediction.

In [43], a system which focuses on data-driven analytics for personalized health-

care is proposed. The applications supported in this system include analyzing patient

similarity, constructing predictive models, stratifying patients, analyzing cohorts and

modelling diseases. The target is to achieve personalized healthcare resource utiliza-

tion and deliver care services at low costs.

To provide better support for Big Healthcare Analytics, we have been implement-

ing various software systems that form an end-to-end pipeline from data acquisition

and cleansing to visualization. We call the system GEMINI [61], whose software

stack is depicted in Fig. 7. We are addressing various healthcare analytics problems,

such as phenotyping, disease progression modelling, treatment recommendation etc.

We shall introduce each component of our software stack via the example process

of doing EMR data analytics in the following.

We work on the longitudinal EMR dataset from the National University Hospi-

tal. We encounter the various challenges as discussed in Sect. 2; hence, we need to

process the data, through data cleansing and data integration, before we can conduct

any data analytics. Even though we want to automate the processing and relieve the

burden on doctors, EMR data cannot be cleaned and integrated effectively without

doctors’ assistance. Hence, we leverage automatic methods and doctors’ participa-

tion with their expertise domain knowledge. DICE is our general data cleansing and

integration platform that exploits both doctors’ expertise and knowledge base. Addi-

tionally, to assist in the data cleansing and integration, CDAS [63] which is a crowd-

sourcing system, selects meaningful representative tasks for the clinicians to resolve

so as to reduce the overall efforts and costs. Ultimately, we tap onto the clinicians

who are the subject matter experts for their knowledge, without over imposing on

their time, to improve the quality of the data and the analytics process [61, 81].
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Fig. 7 GEMINI healthcare software stack

Due to the value of the data and the need to maintain it for a long period of time,

we have designed and implemented UStore, which is a universal immutable storage

system, to store the data. We process the data in epiC [47], which is a distributed and

scalable data processing system based on Actor-like concurrent programming model.

By separating computation and communication, this system can process different

kinds of data (structured data, unstructured data and graph data) effectively, and

also supports different computation models. However, epiC provides only database-

centric processing and analytics such as aggregation and summarization. In order to

provide deep analytics, we have implemented a generic distributed machine learn-

ing/deep learning platform, called Apache SINGA [82, 109]. We are implementing

our deep learning models on top of Apache SINGA for analytics on various diseases.

For behavioural analysis of patients, we employ “cohort analysis” which was orig-

inally introduced in social science [31]. Cohort analysis has a wide range of health-

care applications, such as testing the hypothesis of a new treatment, seeing how

similar patients in a hospital database are doing compared with the specific indexed

patient, etc. For our applications, we have built CohAna [46], a column-based cohort

analysis engine with an extended relation for modelling user activity data and a few

new operators to support efficient cohort query processing.

To enable the clinicians to visualize the data and analytics results, we have devel-

oped iDAT, an exploratory front-end tool that allows interactive drill-down and

exploration.
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5 Summary and Discussions

In this chapter, we summarize the challenges of Big Healthcare Analytics and their

solutions to relevant applications from both EMR data and sensor data. The chal-

lenges mainly consist of high-dimensionality, irregularity, missing data, sparsity,

noise and bias. Besides the basic model construction for analytics, we discuss four

necessary steps for data processing, namely data annotation, data cleansing, data

integration and data analytics/modelling. Based on an examination of various types

of healthcare analytics on both EMR data and sensor data, the data analytics pipeline

is still the foundation for most healthcare applications. However, specific algorithms

which are adopted must be adjusted by modelling the unique characteristics of med-

ical features. With recent advancement in hardware and other technologies, smart

healthcare analytics is gaining traction, and like other application domains, we are

likely to experience a sharp leap in healthcare technologies and systems in the near

future.

Next-generation healthcare systems are expected to integrate various types of

EHR data and provide a holistic data-driven approach to predict and pre-empt ill-

nesses, improve patient care and treatment, and ease the burden of clinicians by pro-

viding timely and assistive recommendations. Below, we discuss several applications

that are likely to attract attention and interest in the near future.

Treatment recommendation system for doctors: Through various levels of

automation in diagnosis model and prognosis prediction, the system may improve

the medical treatment process in different degrees from helping doctors to make

decisions (e.g. visualize cohort information) to outperforming doctors in treatment

planning and recommendation.

Treatment explanation system for patients: Doctors may not have sufficient time

to explain treatment plans to the patients in detail or may not be able to express

clearly to the patients. An automatic treatment explanation system may be able to

improve patient treatment compliance as well as the transparency of healthcare. Fur-

ther, patients can review the plans anytime, anywhere.

Real-time surgical operation suggestion: Lots of emergency situations may happen

during surgical operations. Armed with real-time sensors and reinforcement learning

models, the machine may be able to deliver a better contingency plan in a much

shorter time and with more accurate decision making.

Data-driven drug combination study: Drug combination discovery used to be con-

sidered as a hard problem due to the insufficiency of clinical data. An integrated

system with better EHR data analytics may be able to quantify the effect of drug

combinations and also discover more valuable drug combination patterns. This study

can be very useful for personalized medicine recommendations, which can further

help to provide a more effective healthcare.
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We are looking forward to more clinical advances and healthcare products being

brought to the table by both the data science and medical communities. After all,

with more data and higher computational capacity, deep analytics can lead to deeper

insights and hence better decisions.
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Process Streaming Healthcare Data
with Adaptive MapReduce Framework

Fan Zhang, Junwei Cao, Samee U. Khan, Keqin Li and Kai Hwang

Abstract As one of the most widely used healthcare scientific applications, body
area network with hundreds of interconnected sensors need to be used to monitor
the health status of a physical body. It is very challenging to process, analyze and
monitor the streaming data in real time. Therefore, an efficient cloud platform with
very elastic scaling capacity is needed to support such kind of real-time streaming
data applications. The state-of-art cloud platform either lacks of such capability to
process highly concurrent streaming data, or scales in regards to coarse-grained
compute nodes. In this chapter, we propose a task-level adaptive MapReduce
framework. This framework extends the generic MapReduce architecture by
designing each Map and Reduce task as a scalable daemon process. The beauty of
this new framework is the scaling capability being designed at the Map and Reduce
task level, rather than being scaled at the compute-node level, as traditional
MapReduce does. This design is capable of not only scaling up and down in real
time, but also leading to effective use of compute resources in cloud data center. As
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a first step towards implementing this framework in real cloud, we have developed
a simulator that captures workload strength, and provisions the just-in-need amount
of Map and Reduce tasks in realtime. To further enhance the framework, we applied
two streaming data workload prediction methods, smoothing and Kalman filter, to
estimate the workload characteristics. We see 63.1% performance improvement by
using the Kalman filter method to predict the workload. We also use real streaming
data workload trace to test the framework. Experimental results show that this
framework schedules the Map and Reduce tasks very efficiently, as the streaming
data changes its arrival rate.

Keywords Adaptive Mapreduce ⋅ Big data ⋅ Healthcare scientific
applications ⋅ Kalman filter ⋅ Parallel processing

1 Introduction

Big-data technology has been a driving force for the state-of-art healthcare science.
Most of the healthcare applications are composed of processes that need to manage
Gigabytes of real-time and streaming data. For example, the Body Area Network
[1] that is widely recognized as a medium to access, monitor, and evaluate the
real-time health status of a person, has long been notorious for its computing
intensiveness to process Gigabytes of data [2, 3] in real-time. Such data are col-
lected from well-configured sensors to sample the real-time signals of body tem-
perature, blood pressure, respiratory and heart rate, chest sound, and cardiovascular
status, to name a few among others.

To process stream big-data in real-time, traditional parallelized processing
frameworks, such as Hadoop MapReduce [4], Pregel [5], and Graphlab [6, 7], are
structurally constrained and functionally limited. The major difficulty lies in their
designs, which are primarily contrived to access and process the static input data.
No built-in iterative module can be used when the input data arrives in a stream
flow. Moreover, the existing frameworks are unable to handle the scenarios when
the streaming input datasets are from various sources and have different arrival
rates. Streaming data sample rates are consistently changed while the healthcare
scientific applications are running. For example, the data collected when a person is
sleeping is usually far less than the data collected when the person is running or
swimming.

Cloud computing, with most of its few open-source tools and programming
models, have provided a great opportunity to process such time-varied streaming
data healthcare applications. Amazon Elastic MapReduce (EMR) framework [8], as
an example, is typically represented by its compute instances being automatically
scaled up or down and scaled in or out when workload changes. However, the
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granularity of the scaling is too coarse for most of the healthcare applications,
meaning we need more fined-grained scaling objects, such as CPU core, memory
size or active processing tasks, to be used in order to be able to scale in real time. In
our early research paper [9], we have discovered and identified an issue when
scaling large number of compute instance, named the large-scale limitation issue.
This issue demonstrates the most MapReduce applications fail to promise its
scaling capability when the number of the compute instances exceeds the actual
need. Therefore, the scalability would find itself more tractable when one the
MapReduce application scales at a task level—increasing or reducing the Map and
Reduce task number when a variation of the workload is predicted.

Tools with such fined-grained scaling capability are really rare to find. For
example, the number of the Map tasks and Reduce tasks in a launched MapReduce
job is fixed and can never be changed over time. However, such a fined-grained
processing is widely needed. It is also very possible to do so since the number of the
Map tasks are usually related the number of chunks of the input dataset sizes, and
the number of the Reduce tasks is related to the hashing algorithm used for the
intermediate keys. There is no strong constraint between the number of the Map
Tasks and Reduce Tasks. All these make the scaling of the Map and Reduce tasks
possible. In the next section, we will survey a few commercial tools that have been
widely used in business for similar purposes.

Towards that end, we propose a full-fledged MapReduce framework that is
tailored for processing streaming data in healthcare scientific applications. The
framework goes beyond the traditional Hadoop MapReduce design, while also
providing a much more generic framework in order to cover a wider group of
real-time applications. Traditional Hadoop MapReduce requires the Map and
Reduce number to be fixed, while this new MapReduce framework doesn’t require
so. Furthermore, Each Map and/or Reduce task is mandatory to reside on its own
JVM in traditional Hadoop MapReduce. In the new framework, one such a Map
and/or Reduce task can be specified much differently, whether it be in a JVM, a
local thread or process, or even an entire compute node, to name a few among
others. In other words, this framework absorbs the MapReduce design primitive,
that the Map tasks outputting data to all the Reduce tasks, but in a way that requires
much less constraint. It’s our expectation that this new framework is supposed to
streamline the streaming data processing, which has never been implemented in
traditional Hadoop MapReduce at all. The major contribution of this chapter is
summarized below.

(1) A unique task-level and adaptive MapReduce framework is proposed in order
to process rich and varied arrival rate streaming data in healthcare applica-
tions. This framework enriches the traditional Hadoop MapReduce design in a
way that specifically addresses the varied arrival rate of streaming data chunks.
The framework is mathematically grounded on quite a few theorems and
corollaries, in order to demonstrate its scaling capability. A full stack simulator
is also developed with extensive experiments to validate the effectiveness.
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(2) In order to better process streaming data and better use compute resources in a
scaling process, a workload arrival rate prediction mechanism is therefore
needed. This chapter covers two innovative workload prediction algorithms.
Real-life healthcare experiments are used to compare the performance of them.

(3) Finally, we demonstrate more experiment results by showing the close rela-
tionship between the active numbers of the Map/Reduce tasks with the number
of the streamed workload tasks. This reveals the adaptively of framework, as
well as the correctness of the mathematical foundation.

This chapter is organized as follows. The first section introduces a real model of
healthcare scientific applications, and necessitates the requirement of processing
stream-style big-data. In the second section, we report the related work, and also
introduce our unique approach. A real-life healthcare application study is followed
in section three. After that, we reveal the methodology of the proposed task-level
adaptive MapReduce framework. Two innovative methods for predicting the
streaming data workload are proposed in the next section. Experiment settings and
the results are introduced in the fifth section. Finally, we conclude the work and
summarize a few aspects of directions to continue the work.

2 Related Work and Our Unique Approach

There is an escalating interest on leveraging the state-of-art big-data platform to
process stream data in real-time. In this section, we investigate previous publica-
tions in this area. Thereafter, we briefly describe our unique approach to show the
advantage among other solutions.

2.1 Related Work

Health Information System [10] was originated and further extended from the
hospital information system [11] that addresses what is called the health informatics
issues. The major challenge involves the shift from paper-based to computer-based,
and further to the Internet-based data storage processing. Patients, healthcare
consumers, and professionals are more involved into a collaboration phase from a
traditional in- or out-patient medication, to a widely acceptable online on-demand
treatment. Such a shift requires a significantly powerful interconnection compute
network and highly scalable compute nodes for both computing and big-data
processing.
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MapReduce is a simple programming model for developing distributed data
intensive application in cloud platforms. Ever since Google initially proposed it on
a cluster of commodity machines, there have been many follow-up projects. For
instance, Hadoop [12] is a Mapreduce framework developed by Apache, and
Phoenix [13] is another framework designed for shared memory architecture by
Stanford University. Pregel [5] is a message-based programming model to work on
real-life applications that can be distributed as an interdependent graph. It uses
vertex, messages, and multiple iterations to provide a completely new programming
mechanism. GraphLab [6, 7] is proposed to deal with scalable algorithms in data
mining and machine learning that run on multicore clusters.

The above-mentioned tools have a wide impact on the big-data community and
have been extensively used in real-life applications. Along those lines, other
research efforts addressing streaming data have been proposed. Nova [14], due to its
support for stateful incremental processing leveraging Pig Latin [15], deals with
continuous arrival of streaming data. Incoop [16] is proposed as an incremental
computation to improve the performance of the MR framework. Simple Scalable
Streaming System (S4) [17], introduced by Yahoo!, is universally used, distributed,
and scalable streaming data processing system. As one of its major competitor,
Twitter is using Storm [18] that has also gained momentum in real-time data
analytics, online machine learning, distributed remote procedure call, ETL (Extract,
Transform and Load) processing, etc. Other companies, such as Facebook, Lin-
kedin and Cloudrera, are also developing tools for real-time data processing, such
as Scribe [19], Kafka [20], and Flume [21]. Even though the programming lan-
guages are different, they all provide highly efficient and scalable structure to collect
and analyze real-time log files. Complex Event Processing systems (CEP) are also
gaining interest recently. Popular CEP systems include StreamBase [22],
HStreaming [23], and Esper&NEsper [24]. Essentially the CEP systems are primary
used in processing inter-arrival messages and events.

Different from these research and commercial products, our work goes beyond a
programming model framework, but also serves as a simulator to help users identify
how their compute resources can be effectively used. Secondly, the framework is
still based on a generic MapReduce, but not entirely a Hadoop MapReduce
framework. We do not intend to design a completely new framework, but we aim to
extend a widely acceptable model to allow it to seamlessly process streaming data.
Our work may aid the programmers to manipulate the streaming data applications
to process such kinds of flow data in a more scalable fashion.

2.2 Our Unique Approach

In a nutshell, our approach implements each Map and Reduce task as a running
daemon. Instead of processing local data in Hadoop Distributed File System
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(HDFS) as what traditional Hadoop usually does, the new Map tasks repeatedly pull
the cached stream data in the HDFS, generate the Map-stage intermediate key-value
pairs and push them to the corresponding Reduce tasks. These Reduce tasks, quite
similar to what the Map tasks, are also implemented in such a way. These Reduce
tasks repeatedly pull the corresponding data partitions from the entire Map task
output, generate the Reduce-stage intermediate key-value pairs and push them to
the local disk cache. In this way, each Reduce task has to cache the intermediate
status of all the output key-value pairs when the application is on going.

Take a simple example to illustrate the scenario. Multiple users are collaborating
by adding/removing/updating words, sentences and files to HDFS as data streams.
An enhanced WordCount application requires obtain the real-time count of each
word when the texts are consistently updated. Map tasks are implemented in a
stateless manner, meaning that they just simply process the corresponding input
data and produce output without having to worry about previous data that they have
processed. However, the Reduce tasks must be implemented in a stateful way. This
means that each of the Reduce task has to save the real-time count of each word and
adaptively add or reduce the count whenever there is a change in the HDFS.

The essence of our approach, as we can see from the analysis, lies in the
seamless connection to the MapReduce implementation. Users write data streaming
applications as they did in writing traditional MapReduce applications. The only
difference, however, is that they need to write such a Map and Reduce daemon
function. Secondly, our approach can be implemented to scale the Map and Reduce
task number separately. Traditional MapReduce framework which scales compute
nodes usually leads to low compute resource usage when the active running tasks
cannot utilize these compute nodes effectively.

An example is used here to illustrate the adaptive MapReduce application that
calculates the real-time occurrence of each word in a set of documents. Multiple
people consistently update these documents, and therefore the statistics of each
word count differ from time to time.

The Map tasks below are continuously fed by input data stream, and enter into a
loop that would not stop until the data stream update ends. For each of the loop, all
the words are extracted and emitted key value pairs as tradition WordCount does.
The Reduce tasks, also being launched in a loop, are fed continuously by the
intermediate data produced by all of the Map tasks. The only difference here is the
result, which needs to be fetched from HDFS. Because for each result that has been
calculated, it needs repeatedly updating. Therefore, Reduce tasks should be able to
not only write data back to the HDFS, but also retrieve data back from HDFS for
updating.
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Map Function: map(String k, String v): 

// k: doc name in a streaming data 

// v: doc contents 

While(HasMoreData) 

 value = GetStreamDataContent(); 

for each word w in value: 

EmitIntermediate(w, "1"); 

Reduce Function: reduce(String k, Iterator vs): 

// k: a word 

// vs: a list of counts 

While(HasMoreIntermediateData) 

int result = getResultFromHDFS; 

for each v in vs: 

result += ParseInt(v); 

Emit(AsString(result)); 

3 Problem Formulation of a Real-Life Healthcare
Application

In Fig. 1, we illustrate a case study of the body area network as a real-life healthcare
application. Health status regarding the respiration, breath, cardiovascular, insulin,
blood, glucose and body temperature, which are consistently collected by sensors
deployed all over the human body. This is wearable computing, which sends data
periodically to a mobile phone via local network. The sample frequency is deter-
mined by the capacity of the sensors as well as the processing rate of the mobile
device.

Because most of the mobile devices nowadays are equipped with advanced
processing unit and large memory space, data can be continuously transferred to a
mobile device and even processed within the mobile device. Therefore, the various
sources of input data can be even locally analyzed before moving to the remote data
center. The data center has information on various disease symptoms and the
corresponding value threshold in regards to the insulin pump and glucose level, etc.
The purpose of the follow-up data transferring is to compare the collected data with
those in the database, and quickly alert the user the potential symptom he/she is
supposed to see, and provide a smart medical suggestion in real-time.
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Data sampled within a wearable computing can usually go up to GB per minutes.
With a high sample rate, more accurate data can therefore be used, and the diag-
nosis can be more in real time, and the alert can be better in use. Therefore, it is
strongly needed that the data center can support thousands of users’ real-time data
access, as well as computing across multiple dimensions of syndromes and features
to be collected.

4 Task-Level Adaptive MapReduce Framework

In this section, we brief an overview of the Hadoop MapReduce framework as a
start. Thereafter, the task-level provisioning framework is introduced in the sub-
sequent text.

4.1 Preliminary of Hadoop MapReduce Framework

The standard Hadoop MapReduce framework is depicted in Fig. 2. There are 4
parallel Map tasks and 3 parallel Reduce tasks, respectively. Because the total

Fig. 1 As a case study of the
body area network, data
streams collected from
various sensors are pushed to
a mobile device and backend
data center for real-time
medical treatment
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number of the Map tasks normally equals to the number of the input data splits,
there are four data splits as well. Each Map task performs a user-defined Map
function on the input data that resides in the HDFS and generates the intermediate
key-value pair data. These intermediate data are organized on the partition basis.
Each of the partition consists of certain key-value data pairs, whose keys can be
classified into one group. The simplest classification method is a hash function.
Within such a hash capability, data partition belonging to the same group are
shuffled across all the compute nodes and merged together locally. There are three
data partitions shown in the figure. These merged data partitions, as indicated by
three different framed rectangular boxes, are consumed by three Reduce tasks
separately. The output data generated by all the Reduce tasks are written back to the
HDFS.

Each Map task resides in a Map slot of a compute node. Usually Two Map slots
reside in one compute node. The slot number per node can be adjusted in the
configuration file. The total number of the Map slots determines the degree of
parallelism that indicates the total number of Map tasks that can be concurrently
launched. The rational for the Reduce task and Reduce slot is the same. The whole
Hadoop MapReduce workflow is controlled in a JobTracker located in the main
computer node, or what is called the NameNode. The Map and Reduce tasks are
launched at the TaskNodes, with each task corresponding to one TaskTracker to
communicate with the JobTracker. The communication includes heart-beat message
to report the progress and status of the current task. If detecting a task failure or task
straggler, the JobTracker will reschedule the TaskTracker on another Task slot.

As we can see from Fig. 2 above, the Hadoop MapReduce is essentially a
scheduling framework that processes data that can be sliced into different splits.
Each Map task is isolated to process its input data split and no inter-Map com-
munication is needed. The Hadoop MapReduce framework can only be applied to
process input data that already exist. However, real-life big-data applications typ-
ically require the input data be provisioned in streaming and be processed in

Fig. 2 A MapReduce framework splits the input file into 4 segments, and each segment
corresponds to one Map task. Map Tasks output data partitions, which are further shuffled to the
corresponding Reduce tasks. There are 3 reduce tasks which generate 3 separate outputs
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real-time. Therefore, an enhanced MapReduce framework is required to cater for
such a need. That is the motivation behind out design of the task-level adaptive
MapReduce framework.

4.2 Task-Level Adaptive MapReduce Framework

An adaptive MapReduce framework is proposed to process the streaming data in
real-time. One of the most significant challenges here is how to process the
streaming data with varied arrival rate. Real-life applications entail workloads of a
variety of many patterns. Some of the workloads show a typical pattern of peri-
odical and unpredictable spikes, while others are more stable and predictable. There
are four technical issues that we should consider when designing the adaptive
framework.

First, the framework should be both horizontally and vertically scalable to
process a mixture of such varied workloads. In other words, the scheduling system
should either be able to manage compute node count, but also types. For some
Hadoop MapReduce applications, merely managing the number of compute nodes
is not necessarily sufficient. Certain kinds of workloads require large CPU-core
instances while others need large-memory instances. In a nutshell, scaling in a
heterogonous system is one of the primary principles.

Second, the number of the active Map and Reduce tasks should be in accordance
with the cluster size. Even though the Map and Reduce count determines the overall
performance of the whole system, it still doesn’t perform that desirable if the cluster
is either over provisioned or under provisioned.

Third, scaling the Reduce tasks is very tedious. This is determined by the design
of the Reduce phase. If the number of the Reduce task increases, the hash function
that maps a particular Map output partition data to a Reduce function will change.
Take modular operation as a hash function as an example. Increasing the Reduce
count from r to r’ leads to key mod r to key mod r’ as the corresponding new hash
function. A reorganization of the Reduce output will be added to the Reduce phase
when the number of the Reduce task has changed.

Fourth, we also need to consider the heterogeneity of the processing capabilities
of different Map tasks. Some of the Map tasks may be scheduled on a slow node
while others are on much faster nodes. An appropriate load balancing mechanism
can further improve the rescheduling philosophy implemented in the traditional
Hadoop MapReduce. The purpose is to coordinate the progress of the entire task
without leading to skew task execution time.

Fifth, the optimal runtime of Map and Reduce task count should be specified.
Traditionally, the initial Map task number depends on the input dataset size and the
HDFS block size. The Reduce task count is determined by the hash function. The
new framework requires a redesign of the Map and Reduce Task scheduling policy
by considering the input data arrival rate instead of their sizes instead.
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To satisfy all the purposes above, we demonstrate a task-level adaptive
MapReduce framework in Fig. 3. Two Map tasks are used as representatives of the
Map stage. Each Map task, different from the Map task of the traditional Hadoop
MapReduce, defines a loop function as shown in the loop-back arrow. The two Map
tasks are launched as special runtime daemons to repeatedly process the streaming
data. Each of the Map task produces two continual batches of output data partitions.
Similarly, the Reduce tasks are also scheduled in such a loop-like daemon that
continuously processes their corresponding intermediate data produced by all the
Map tasks.

In this new task-level adaptive MapReduce framework, the JobTrackers need to
be redesigned to maintain a pool of TaskTrackers, and the TaskTracker count may
change as the workload changes.

There are two ways to feed data streams into the Map tasks. A proactive strategy
caches streaming data locally first and pushes them every fixing period of time, say
1 min. As an alternative option, data splits can also be pushed in a reactive way. In
other words, a cache size is defined in HDFS before the input data starts to move in,
whenever the cache usage hits a ratio, say 85%, the data splits begin to be pushed to
the Map tasks.

4.3 Adaptive Input Data Split Feeding

The adaptive MapReduce framework starts from a novel runtime scheduler that
feeds different Map tasks with different number of data splits. In Fig. 4a, we show a
study case of the adaptive input data split feeding. As a start, six splits of input data
arrive. The scheduler, without knowing the processing capability of each Map task,
distributes the data splits evenly to the two Map tasks, which results to each Map
task having three data splits. Suppose the first Map task is executed on a faster

Fig. 3 A demonstration of task-level adaptive MapReduce framework which processes streaming
data. Each Map and Reduce task has a non-stop running daemon function which continuously
processes the input data
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compute node and has processed two splits of the input data while the second Map
task has processed only one. Being aware of such a skewed processing capability,
the scheduler sends the newly arrival three data splits adaptively to balance the
workload in Fig. 4b. This leads to Map task one has four data splits while Map task
two has two, and the total execution time of the Map stage is minimized.

In this case, processing the three newly arrival data splits doesn’t result in an
increase of Map task count, but trigger the scheduler to dispatch them fairly to all
the Map tasks. Scheduler caches the input data locally in HDFS and regularly sends
them to different Map tasks. The time interval is also adaptively determined by the
arrival rate of the data splits.

To refresh readers’ memory and ease difficulty in understanding all the mathe-
matics below, we plot table one below, which summarizes all the symbols and
explain their meanings (Table 1).

Suppose there are m Map tasks and the task queue length of each Map task be
Q. In the Fig. 4, we set m equal to 2 while Q equal to 4. Suppose as a start the input
data has n0 data splits. As long as n0 be less than m * Q, each Map task gets
approximately n0/m data splits (Fig. 5).

Fig. 4 A demonstration of the adaptive input data split feeding. a Initially six data splits arrive.
Without knowing the compute capacity of each Map task, scheduler divides the workload evenly
between the two queues, each one having three data splits. b After being aware of the processing
capacity of each Map task, the scheduler sends three data splits to Map task one which shows twice
the processing capacity at the consecutive scheduling period
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The scheduling period, namely the time interval between two data feeding
periods is t. In other words, every t units (seconds or minutes) of time, scheduler
feeds one batch of the cached data into the Map queues. Suppose at time ti, the data
splits count of each Map task queue equals to [dMapTaskN(0), dMapTaskN(1), …,
dMapTaskN(m − 1)] after the newly arrived data splits have been pushed into the
queues. After time t at ti+1, the remaining task count becomes [dMapTaskN’(0),
dMapTaskN’(1), …, dMapTaskN’(m − 1)]. The estimated processing capacity of
each Map task is estimated as [(dMapTaskN’(0) − dMapTaskN(0))/t, (dMap-
TaskN’(1) – dMapTaskN(1))/t,…, (dMapTaskN’(m − 1) – dMapTaskN(m − 1))/t].

Table 1 Symbols, notations and abbreviations with brief introduction

Notation Brief definitions with representative units or probabilities

m The total number of available Map tasks
Q The total number of data splits that can be accommodated in each Map task
n0 The total number of data splits arrives at the start time
t The scheduling period, denoting the data feeding frequency from the

scheduler to all Map tasks
dMapTaskN(j) The number of data splits that remained in the queue of Map task j at time ti
dMapTaskN’(j) The number of data splits that remained in the queue of Map task j at time ti+1
eMapTaskC(j) The estimated data processing capacity for Map task j

addedDataSplit
(j)

The number of data splits that needs to be added to Map task j after new
stream data arrives

TT Estimated finish time of all the Map tasks
α Upper bound percentage threshold used when Map task number above α * Q

in a queue, Map tasks are over provisioned
β Lower bound percentage threshold used when Map task number below β * Q

in a queue, Map tasks are under provisioned

Fig. 5 Demonstrates of adding an adaptive Map task. Continued from the previous example, if
the input data split count is six, the scheduler adaptively launches one Map task instead of feeding
all the data splits to the queues. The other three data splits are moved to the newly added Map task
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Suppose ni+1 data splits arrive at time ti+1. We consider a scheduling algorithm
that effectively distributes all these data splits to all the Map tasks in Theorem 1.
Second, we consider in Corollary 1 that whether the Map task number should
remain the same or need to change. Third, if the Map task number needs to change,
we calculate the variation of the Map tasks in Theorem 2. We separate the analysis
into two different sections. In this section we discuss a scenario that workload
doesn’t have to trigger the change of the Map tasks. In the following section, we
continue to discuss scenarios that Map task number needs to change.

Theorem 1 Condition: Suppose there are mi Map tasks being actively used at time
t + 1. As a new stage, Ni+1 new data splits arrive. For any Map task j, dMapTaskN
(j) data splits are in its queue. Its estimated data processing capacity is eMapTaskC
(j).

Conclusion: The new data split count to be added to its queue is represented by:

addedDataSplitðjÞ= eMapTaskCðjÞ
* Ni+1 + SUM dMapTaskNð: Þð Þð Þ
̸ SUM eMapTaskCð: Þð Þ
− dMapTaskNðjÞ

ð1Þ

SUM(dMapTaskN(:)) denotes the total number of data splits across all the
queues. SUM(eMapTaskC(:)) denotes the aggregated processing capacity of all the
Map tasks.

Proof The scheduling target is to make sure all the tasks of the Map queues be
finished almost at the same time, and let that task time be an unknown value TT. For
any Map task j, TT = (dMapTaskN(j) + addedDataSplit(j))/eMapTaskC(j), j ∈ [0,
mi − 1]. Note that Σ dMapTaskN(j) = Ni+1. Solving a total of mi − 1 equations
leads to the proof of theorem 1. Q.E.D

Corollary 1 Let Q be the queue length of each Map task, namely the total number
of data splits that can be accommodated in one Map task queue. Other conditions
are the same as in the Theorem 1. Then new Map tasks need to be added if ∃ j ∈
[0, mi − 1], dMapTaskN(j)) + addedDataSplit(j) > α * Q. Similarly, Map task
number needs to be reduced if ∀ j ∈ [0, mi − 1], dMapTaskN(:) + addedDataSplit
(j) < β * Q. Symbol α ∈ [0, 1] is a preset threshold to determine how full the Map
task queues are allowed. Similarly, β ∈ [0, 1] is preset to determine how empty the
Map task queues are allowed.

Proof If ∃ j ∈ [0, mi−1], dMapTaskN(j)) + addedDataSplit(j) > α * Q, this
means the Map task number of one Map task queue will be above threshold if the
new data splits were added. It automatically triggers a Map task increase request to
the scheduler. Similarly, if ∀ j ∈ [0, mi−1], dMapTaskN(j) + addedDataSplit
(j) < β * Q holds, this indicates the Map task count of each Map queue is less than
a preset value, which means sufficient resources have been provided. A request is
therefore sent out to reduce the Map task count. Q.E.D
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In a nutshell, the purpose of designing such an adaptive scheduler is to leverage
the processing capability of all the Map tasks and balance the start time of all the
Reduce tasks.

4.4 Adaptive Map Task Provisioning

In the previous section, we focus on discussing the Map task provisioning mech-
anism that determines the time Map task needs to be updated. A natural extension
along that line requires answer a provisioning mechanism—how many Map tasks
need to be added or reduced in order to efficiently process the new stream data
splits. If adding Map task is required, how to distribute the stream data splits across
all the Map tasks, including the new ones. On the contrary, if reducing Map task is
required, how to distribute the stream data splits, as well as the data splits in the
queues that are supposed to remove, to all the remaining Map task queues.

Theorem 2 Given the condition in Theorem 1 and ∃ j ∈ [0, mi − 1], dMapTaskN
(j)) + addedDataSplit(j) > α * Q, the number of the new Map tasks that is needed
is given below:

⌊ðNi+1 − aQ SUMðeMapTaskCð: ÞÞ ̸ eMapTaskCðj*Þ
+ SUMðdMapTaskNðjÞÞÞ
* eMapTaskCðj*Þ ̸ aQ⌋+1

ð2Þ

For the Map task j, the new data splits count added to its queue equals to the
formula below when j ∈ [0, mi − 1].

aQ eMapTaskCðjÞ ̸ eMapTaskCðj*Þ− dMapTaskNðjÞÞ ð3Þ

Suppose the default estimated computing capacity of each new Map task is
eMapTaskC. For the new added Map task, each is allocated an initial number of
data splits in their queues. The data split number is given below:

aQ eMapTaskC ̸ eMapTaskC j*
� � ð4Þ

Proof Suppose Map task j* has the maximum computing capacity across all the
Map tasks: eMapTaskC(j*) > eMapTaskC(j) for all j ∈ [0, mi − 1]. Then the
maximum data splits count allowed to be added to its queue equals to αQ −
dMapTaskN(j*)). Proportionally compared, the maximum data split count of the jth
Map task queue equals to αQ eMapTaskC(j)/eMapTaskC(j*) − dMapTaskN(j)) and
Eq. (3) is proven. Therefore, aggregating all the data splits that are allocated to Map
task j equals to αQ SUM(eMapTaskC(:))/eMapTaskC(j*) – SUM(dMapTaskN(:)).
Since we assume that all the Map tasks can be finished within αQ/eMapTaskC(j*),
then given the default processing capacity of all the new Map tasks for the
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remaining data splits, the needed Map tasks count is calculated by dividing the
remaining data split count over the expected Map task finish time and Eq. (2) is
therefore proven. Equation (4) is calculated by multiplying the predicted Map task
execution time with the default processing capacity of each Map task. Q.E.D

Theorem 3 Given the condition in Theorem 1 and ∀ j ∈ [0, mi − 1], dMapTaskN
(j) + addedDataSplit(j) < β * Q and Suppose dMapTaskN(0) > dMapTaskN
(1) > … > dMapTaskN(mi − 1), the Map Task set {MapTask_0, MapTask_1, …,
MapTask_k} needs to be removed if: ∀ j ∈ [k, mi − 1], dMapTaskN
(j) + addedDataSplit(j, k) < β * Q and ∃ j ∈ [k + 1, mi − 1], dMapTaskN
(j)) + addedDataSplit(j, k + 1) > α * Q. After removing the Map tasks, the
remaining Map task j (j ∈ [k + 1, mi − 1]) adds data split count: addedDataSplit
(j, k + 1) A more general term is defined as follows.

addedDataSplitðj, pÞ= eMapTaskCðjÞ
* Ni+1 + SUM dMapTaskNð: Þð Þð Þ
̸ SUM eMapTaskC p:mi − 1ð Þð Þ
− dMapTaskNðjÞ

ð5Þ

Proof A descending order of the remaining data splits leads to removing the Map
task starting from the slowest one. The slower one Map task is, the slower that Map
queue tasks to finish. We start to remove MapTask_0 and add its queued data splits
to Ni+1. Reallocating the total Ni+1 + dMapTaskN(0) data splits to the remaining
mi − 1 Map tasks. If the data split count of each these remaining Map task still
lower than β * Q, the procedure moves on. This procedure stops until when at least
there is one Map task has its queued data split count larger than α * Q. Q.E.D

4.5 Adaptive Reduce Task Provisioning

Adaptive provisioning of the Reduce tasks is far less straightforward than provi-
sioning the Map tasks. Since Hadoop MapReduce is a framework primarily
designed to scale the Map stage by involving embarrassingly parallel Map tasks, the
Reduce tasks require network resource and an m to r data shuffling stage. In Fig. 6,
we identify a scaling scenario of adding a new Reduce task to the original three
tasks. The new added Reduce task should have no impact on saving the network
usage since all the intermediate data still have to be moved among all the compute
nodes. The only difference is the degree of parallelism in the Reduce stage, that
each Reduce task can process less data partitions as well as move less output data
back to HDFS.

As aforementioned, the Map tasks can be added incrementally one by one.
However, this doesn’t necessarily guarantee the best scheduling performance if
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Reduce tasks were to be added in the same way. This is because there is no strict
demand that one input data split should go to a particular Map task. The Reduce
tasks, however, only accepts their partition data in need. Adding one Reduce task
would inevitable change the hash function, which accordingly leads to the data
partition changed, and mess the shuffling process.

Take an example here. Suppose the key set of the dataset is an nine-number set
[0, 1, 2,…, 8]. There are three Reduce tasks R1, R2 and R3 as shown in Fig. 6. The
hash function is a simple modular operation, e.g. key mod 3. Therefore, R1 gets
partition data whose keys are [0, 3, 6]; R2 gets partition data whose keys are [1, 4,
7]; R3 gets partition data whose keys are [2, 5, 8]. Adding one Reduce task leads to
the partition be [0, 4, 8] for R1, [1, 5] for R2, [2, 6] for R3 and [3, 7] for R4. In all,
there are six keys that are either moved to R4 or being exchanged among inside R1,
R2, and R3. Similar conclusion applies to the case that five Reduce tasks are used.
However, if the Reduce task number doubled to 6, then [0, 6] will be for R1; [1, 7],
[2, 8], [3], [4], [5] are keys for R2 to R6 respectively. Then there are data associated
with only three keys, [3, 4] and [5], that needs to moved.

In such a case, a workaround would be replacing the hash function with an
enumerated list of the keys as a lookup table. For each intermediate key-value pair
needs to be shuffled, the corresponding Reduce task number is searched through the
list. For example, the list can be like this [R1, 0, 1, 2], [R2, 3, 4, 5], [R3, 6, 7, 8]. If a
new Reduce task R4 is added, we can simply create a new entry as [R4, 2, 8], and
remove the keys [2] and [8] from their corresponding list.

The downside of the workaround approach can be easily identified. The search
operation might involve I/O data accessing, which is far less efficient than calcu-
lating the hash function. We can put the mapping list in memory instead if the total
number of the keys is not very large.

Fig. 6 A graphical
illustration shows one parallel
Reduce task being added.
This added Reduce task
brings no benefit in the data
shuffling stage but results to a
reduced data volume to be
processed/outputted for each
Reduce task
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5 Experimental Studies

In this section, we first propose two methods for stream data workload prediction.
After that, we show our experimental results of the prediction performance of the
methods and the makespan of using these methods. Last, we report our task-level
adaptive experimental results in terms of the Map and Reduce count in runtime
when workload changes.

5.1 Workload Prediction Methods

For stream data applications, adaptive MapReduce task provisioning strategy
should align with the workload variation. However, workloads are normally
unknown in advance. In this section, we investigate two widely used prediction
methods first and compare them prediction performance using real workload in the
next section.

Stochastic control, or learning-based control method, is a dynamic control
strategy to predict workload characteristics. There are numerous filters that can be
applied. For example, smooth filter, or what we normally call as smoothing tech-
nique, predicts real-time workload by averaging the workload of a previous time
span. The basic assumption here is that workload behaves reactively and not subject
to significant variation in a short period of time. The average of the past one period
would best represents the future workload.

There are many further improvements on the smoothing technique. For example,
weighted smoothing gives higher weights to more recent workload than those that
are old. The assumption here is that more recent workload would show higher
impact on the real-time workload than older ones. Other prediction methods include
AR method, which applies polynomial functions to approximate the workload.
Among others, we want to bring forward the Kalman filter [25], also named as
linear quadratic estimation, which is also widely used in workload prediction.
Kalman filter works on a series of historical data stream of noise, updates and
predicts future trend with statistically optimal estimations.

5.2 Experimental Settings

We use SimEvent [26] to simulate the experiments. This is a toolkit component
included in Matlab. Each map/reduce task is simulated as a queue. During the
runtime, the Map and Reduce tasks serve workload at different capacity, therefore
the proposed task-level scheduling framework fits into such a need.
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Both the Kalman Filter and the Smooth Filter are used to predict the workload.
Two metrics, workload prediction accuracy and makespan, are both used for the
three methods. The workloads we use were primary produced from real body area
network data trace [27, 28]. The workload fluctuation amplitude, on the other hand,
applies the web data trace from the 1998 Soccer World Cup site [29]. This
workload trace has the average arrival rate data on each single minute over a 60-min
duration as shown in Fig. 7a, d and g. We carefully choose three typical and varied
stream data workload types: small, intermediate and strong, for the purpose of
simulation. Small workload typically generates 20–60 data splits per minute.
Intermediate workload generates 30–150 data splits per minute while strong
workload generates 160–1180 data splits per minute.

5.3 Experimental Results

In Fig. 7b, e and h, the Kalman filter shows no more than to 19.97% prediction error
compared to 50% of that when using the Smooth filter method in the light workload
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Fig. 7 Comparison under three types of workloads. Figure a, d and g are light, moderate and
heavy workload respectively; Figure b, e and h demonstrate the workload prediction accuracy of
the two method: Smooth filter and Kalman filter; Figure c, f and i report the makespan of using the
two prediction methods. Kalman filter based workload prediction performs better than the Smooth
filter based prediction method
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Fig. 8 Demonstration of the Map task queue, Map task number and Reduce task number in each
minute of the light workload case. The Map and Reduce count adaptively follow the workload
trend firmly
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case. Under the intermediate workload, the prediction errors of these two filters are
constrained to 14.1% and 35% respectively. For the strong workload scenario, these
values turned to 27.2% and 90.3% for the two methods. Comparing the prediction
error of the two methods across all the workload cases, the maximum margin is the
strong workload case, which is typically 63.1% less by using the Kalman filter
method.

From Figure 7c, f and i, we can see that under the three types of workloads, the
Kalman based workload prediction based method outperforms the smooth filter
based method over up to 28, 34 and 85%. All these results indicate that a good
prediction method only gives a satisfactory estimation of the workload trend, but
also improves the scheduling performance.

In Fig. 8, we demonstrate the scheduling effect of the proposed framework.
Figure 8a illustrates the data split count of each Map task queue every minute.
Figure 8b demonstrates the Map task count that are actively running. Theorems 2
and 3 calculate these Map task count. The count of each Reduced task every minute
is reported in Fig. 8c. The Reduce task counts are calculated by the total data
partition for all the Reduce tasks over the processing capacity.

We can see that as the workload increases, the Map task count also increases
accordingly. As a result, each Map task has more data splits waiting in its queue,
and so do the Reduce tasks. In Fig. 8a, the rising trend becomes less significant
when hitting the 61th minute since no more follow-up stream data splits arrived.
However, it is not until the 71th minute when the Map task number starts to
noticeably reduce as reported in Fig. 8b. The reason is that the data splits in each
Map task is accumulating in the previous 61 min. Until the 71th minute the data
splits of each Map task queue are sufficiently short and the Theorem 3 starts to
reduce the total Map tasks.

6 Conclusions and Future Work

We proposed a task-level adaptive MapReduce framework in this chapter. We
conclude three major aspects of contribution, and then illustrate the future work that
should extend the work.

6.1 Conclusions

A significant amount of scientific applications require effective processing of
streaming data. However, there’s a gap between the state-of-art big data processing
frameworks Hadoop MapReduce for such a need. Since Hadoop MapReduce has
gained its dominance in big-data processing domain for years, even though we have
seen many existing streaming data processing toolkits, such as Storm, Spark
Streaming, we still believe that, it would benefit the whole MapReduce community
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if the framework could be adapted for the need of processing the streaming data,
without having to move to a new framework. Therefore we propose such an
adaptive Hadoop MapReduce framework, which is built on top of MapReduce, but
could also be easily implemented in a virtualized cloud platform. We conclude the
contribution of this work in the following three aspects.

(1) Proposed a task-level adaptive MapReduce framework. Traditional
Hadoop MapReduce fixes the number of the Map and Reduce tasks. In this
new framework, we suggest a framework that removes such a constraint,
which allows the Map and Reduce task number to be adaptive given the
runtime workload. Users don’t have to change their programming habit in
traditional MapReduce, and this framework allows such a transition from
processing fixed dataset to streaming data seamlessly.

(2) Runtime Map and Reduce task estimation. The workload, as well as the
queuing length of each task determines the runtime Map/Reduce task count.
We have created a full-fledged mathematical model to estimate the real time
task number, in order to optimize the streaming data processing rate, as well as
keeping the cost of using compute resource at an acceptable level.

(3) Adaptive task simulator: With a simulator being used not only as a workload
prediction toolkit, but also mathematically calculates the active number of
Map/Reduce tasks in real time as the workload changes. This simulator
implements the mathematically model we propose in this chapter, and esti-
mates the workload in a way we proposed in the subsequent sections.

6.2 Future Work

We suggest extending this work in the following two directions:

(1) Coherent scaling of Map/Reduce tasks and compute resources. Scaling
Map or Reduce task only is mainly investigated in this chapter. However, the
scaling needs to be multi-tier, meaning the number of compute nodes also
needs to align with the existing number of Map or Reduce tasks. It would be
significantly useful if the framework supports the coherent scaling of compute
resources, as well as the Map and Reduce tasks, from both theoretical aspect
and implementation.

(2) Continue the framework in large-scale heterogeneous cloud systems. In a
large cloud platform, the framework can be way complicated than our
experimental scale. Lots of runtime issues, such as resource contention, virtual
resource scaling cost etc., would happen during the course of scaling. This will
bring other concerning issues that go beyond the description of the mathe-
matical framework we propose above.

(3) Release the simulation toolkit. The simulation toolkit should be packaged
into a software library in Hadoop MapReduce online in order to make sure the
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service be available for such adaptive MapReduce applications online. For
larger-size virtualized cloud platform, it can be deployed online and expose its
API for public use. Furthermore, we plan to implement the adaptive scaling
framework in Spark, in order to see the effectiveness within in-memory
computing.
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High-Performance Monte Carlo
Simulations for Photon Migration
and Applications in Optical Brain
Functional Imaging

Fanny Nina-Paravecino, Leiming Yu, Qianqian Fang and David Kaeli

The human brain is unarguably one of the most complex biological organs known
to-date. After decades of study, our knowledge on how our brains work remains
very limited. Non-invasive optical brain imaging using non-ionizing near-infrared
light has attracted worldwide research attention over the past decades, and has
shown increasing utility in exploring brain functions and diagnosing brain diseases.
However, due to the complex nature of the human brain anatomy, especially the
presence of low-scattering cerebrospinal fluid (CSF), quantitative analysis of optical
brain imaging data has been challenging due to the extensive computation needed
to solve the generalized models. Drastic simplifications of complex brain anatomy
using layered slabs or spheres have been widely used by the research community.
However, these simplified models are believed to lead to inaccurate quantification
of brain physiology. Here we discuss a computationally efficient and numerically
accurate Monte Carlo photon simulation package—Monte Carlo eXtreme (MCX)
—by incorporating GPU-based parallel computing. MCX allows researchers to use
3D anatomical scans from MRI or CT to perform accurate photon transport sim-
ulations. Compared to conventional Monte Carlo (MC) methods, MCX provides
a dramatic speed improvement of two to three orders of magnitude, thanks
largely to the massively parallel threads enabled by modern GPU architectures.
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In this chapter, we provide a brief introduction to optical brain imaging techniques,
their challenges, and our parallel MC simulation framework. We focus on a number
of optimization techniques we have explored to improve computational efficiency,
leveraging knowledge of new features offered in new generations of GPU archi-
tectures. The current and potential applications of this technique in biomedical
imaging are discussed.

1 Introduction

Human brain functions have been conventionally studied using functional MRI
(fMRI), electroencephalogram (EEG), or magnetoencephalography (MEG), among
others [5]. In recent years, a new method that uses non-ionizing near-infrared light,
functional near-infrared spectroscopy (fNIRS) [14, 27], has attracted significant
attention from the global engineering and clinical communities. By shining only
low-power near-infrared light and measuring the absorbed and scattered light in
brain tissue, scientists are able to recover the transient dynamics of oxy-/
deoxy-hemoglobins and blood oxygen level. Such measurements were found cor-
related with various neurological disorders (Alzheimer’s disease, Parkinson’s dis-
ease, epilepsy, stroke, etc.).

Compared to fMRI, the fNIRS technique has become a more accessible neu-
roimaging modality that offers non-invasive, safe, and relatively low-cost means for
indirect and direct monitoring of brain activities. fNIRS also offers insights into the
etiology and treatment of various brain disorders, and is well positioned to com-
plement fMRI, EEG and MEG. However, as an emerging technology, fNIRS is still
limited in several ways. These limitations include low spatial resolution in optical
images, diminished sensitivity to deep brain structures, and challenges in removing
the physiological noise coupled from the extra-cerebral tissue layers.

Furthermore, fNIRS is a model-based imaging modality. That means the output
in fNIRS requires quantitatively solving a mathematical model that governs the
photon-tissue interactions in the brain. Unlike most other parts of the human body
where scattering effects are significantly greater than the absorption; human brains
are surrounded by a layer of low-scattering liquid called the cerebrospinal fluid
(CSF). Photons traveling inside the CSF experience much lower scattering than in
other layers of the brain—scalp, skull, gray and white matter tissues. Because of the
presence of CSF, modeling photon transport inside human brains requires solving
the radiative transport equation, or RTE—an integro-differential equation that is
defined in a 6-dimensional space (x/y/z in space, two angular dimensions and one
temporal dimension). The widely used diffusion approximation (DA) to the RTE is
unfortunately unsuitable in the CSF and was shown to generate erroneous solutions
when modeling the brain.

Several approaches have been studied to solve the RTE more efficiently in order
to handle general media such as the CSF in the brain. Deterministic algorithms
based on the variational principal, such as the finite volume (FV) method, were
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proposed. However, the requirement of discretizing a high dimensional space
results in high memory demands and low computational speed. A multi-grid
approach was proposed [10] to accelerate the solution process. However, the high
dimensionality of the data prevents it from performing time-resolved MC
simulations.

On the other hand, one can use the Monte Carlo (MC) method—a stochastic
approach by random sampling—to solve the RTE. In an MC-based photon trans-
port simulation, a large number of “photon packets” are simulated by treating each
photon packet as a “particle” and traversing it through the media using a random
walk. As the photon packet travels through the tissue structures, photon energy
losses are recorded along its trajectory, the summation of which eventually forms a
photon fluence distribution map. Because the MC approach directly solves the
RTE, it has been widely accepted as the gold standard for modeling light transport
inside arbitrarily complex media because of its accuracy and generality. However,
similar to the variational RTE solvers, MC photon transport simulation suffers from
low computational efficiency; a traditional MC light transport simulator takes hours
or even days to solve a moderate-sized problem [2]. Nonetheless, MC has gained
great popularity in the biophotonics community, primarily because of the simplicity
of the method and straightforward implementation.

A major advantage of the MC RTE solver, as compared to a variational RTE
solver, is the ease of parallel programming. This is because the simulation of each
photon packet is nearly independent of the simulation of any other packet. In other
words, the MC photon transport simulation can be categorized as an “embarrass-
ingly parallel” problem. Over the past decade, there have been a number of efforts
devoted to developing efficient parallel MC RTE solvers.

Shortly after a proof-of-concept study published by Alerstam et al. in 2008 [1],
Fang and Boas reported the first GPU accelerated general-purpose MC photon
transport simulation algorithm and the associated software package in 2009 [9].
They achieved a more than 300-fold speedup using an early generation GPU
processor (NVIDIA 8800GT). An open source cross-platform software package
based on this research—Monte Carlo eXtreme (MCX)—has been developed and
disseminated to the research community. MCX is capable of simulating arbitrarily
complex 3D tissue structures by using a rasterized 3D domain. The user can ini-
tialize a simulation using an anatomical image derived from an MRI or CT scan.

Over the past 7 years, this work has generated over 320 citations, and more than
9,000 downloads across the world. The diverse applications of MCX range from the
investigation of multi-modal neuroimaging to pre-clinical studies using small ani-
mal models, from breast imaging to fundamental particle physics research, from
developing innovative photoacoustic instrumentation to prototyping portable
devices for blood glucose monitoring. A large number of the published papers using
MCX focus on optical brain functional imaging applications, due primarily to the
suitability and accuracy of this approach. MCX not only benefits researchers in the
biophotonics community, but also provides valuable insights when designing
modern general-purpose GPU architectures [7, 32].
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The accelerated development of new GPU architectures presents both opportu-
nities and challenges to the further development of the MCX simulation platform.
On one hand, the computational throughput of new generations of GPUs has been
improved at a consistently faster pace than the CPU hardware. This means that,
even we do not modify our GPU simulation code, MCX will execute faster on the
newer GPU hardware. On the other hand, new GPU architectures are packaged with
new and more complex hardware features—additional compute units, larger
high-speed memory, and new thread/block scheduling mechanisms. In order to
fully utilize the new features available in the latest GPU hardware, we need to
continually adapt of our MCX implementation. These improvements will enable
researchers to better understand brain functions and diagnose diseases by providing
more accurate and high-resolution optical images.

In this chapter, we provide an introduction to our GPU-accelerated Monte Carlo
photon transport simulation platform, summarizing the range of optimization
techniques we have explored. By leveraging new features introduced in each
generation of GPU architecture, we can further improve the throughput of our
photon-modeling framework. MCX is able to model photon transport, working at a
reasonable resolution, in just a few seconds. This suggests that MC basedphoton
migration can be used for other applications beyond forward modeling, such as
tomographic imaging data analysis and fNIRS image reconstruction, where tens to
hundreds of optical sources and detectors are used.

The remainder of this chapter is organized as follows. Section 2 presents
background on GPU architecture. In Sect. 3, we describe our MCX simulation
framework for 3D turbid media, and related techniques that we have developed to
better leverage the computing resources present on the modern parallel architectures
(e.g., NVIDIA and AMD GPUs). Section 4 focuses on specific applications,
including sensitivity of the cerebral cortex, validation of the anatomical brain atlas,
and brain cancer. Section 5 covers final evaluation and discusses future directions.

2 Background

As we enter the era of GPU computing, demanding applications with substantial
parallelism can leverage the massive parallelism of GPUs to achieve superior
performance and efficiency. Today, GPU computing has enabled applications that
were previously thought to be infeasible because of long execution times. There are
two well-known frameworks that allow general purpose programming in GPUs:
Compute Unified Device Architecture (CUDA), and Open Compute Language
(OpenCL).

The CUDA framework was introduced by NVIDIA [24], with the intention of
following Single Instruction Multiple Thread (SIMT) execution model. In that
sense, a kernel executes a program in a group of parallel threads; each thread-block
is formed by group of threads, and a grid if formed by a group of thread-blocks.
Following the SIMT execution model, all threads execute the same instructions
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independently. Each thread has its registers and private local memory. Each
thread-block allows communication among its threads through shared memory.
Thread-blocks communicate between themselves using global memory

OpenCL was introduced in 2009 by the Khronos group to execute parallel
software across vendor-independent heterogeneous platforms (CPU, GPU, DSP,
and FPGA) [11, 15, 18]. OpenCL provides a standard interface to run task parallel
and data parallel codes. The OpenCL framework follows a similar scheme as the
CUDA framework: “work-items” represent threads, “work-groups” represent
thread-blocks (or blocks), and “ND-ranges” represent grid configurations.

GPUs have been rapidly evolving over the past few years. In the following
section, we describe in detail some of the new features delivered on recent GPU
generations from two major GPU manufacturers—NVIDIA and Advanced Micro
Devices (AMD).

2.1 NVIDIA GPUs

A Stream Multiprocessor (SM) is the architectural centerpiece of an NVIDIA GPU.
It can execute more than one thread-block at the same time, and is comprised of
hundreds of CUDA cores. A number of resources are shared at different levels of
concurrency. For instance, registers and shared memory have the highest access
speed but are also scarce resources in the SM, while global memory represents the
slowest memory access but provides enough space for storing large data sets. Over
the past few years, we have seen a steady increase in the number of SMs and
CUDA cores, supporting the evolution of the NVIDIA GPUs with the goal of
providing better performance with each generation.

NVIDIA typically names each new generation of GPU microarchitecture by a
code name (Fermi, Kepler, Pascal, etc.). For each architecture generation, NVIDIA
also gives a code name for each specific GPU chip design, typically in the format of
“G?” followed by 3 digits, where “?” denotes the first letter of the corresponding
architecture’s code name (for example, “F” for Fermi).

The NVIDIA Fermi (the first chip was GF110) GPU was released in 2009.
Compared to its predecessors, Fermi has a larger number of CUDA cores per SM,
more space for shared memory, configurable-shared memory, and Error Correcting
Codes (ECC) to protect main memory and caches from bit flips. Each SM in a
Fermi processor contains 32 CUDA cores, 16 load/store units, and four special
function units (SFUs) [25]. The Fermi family has been used in a number of
applications, promising peak single-precision floating performance of up to 1.5
TFLOPS.

In the last 4 years, three new NVIDIA GPU architectures have been released:
Kepler, Maxwell and Pascal. A number of new features were introduced in each
GPU generation. For instance, the Kepler GK110 processor comprises up to 15
Kepler SM units. Each SMX has 192 single-precision CUDA cores, 64
double-precision units, 32 load/store units, and 32 special function units, which can
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execute a sine, cosine, reciprocal or square root operation in each thread per clock
[20]. A Kepler GK110 processor can provide up to 4.29 TFLOPS single-precision
and 1.43 TFLOPS double-precision floating-point performance.

NVIDIA’s Maxwell GPU architecture provides only a few enhancements to
previous GPU generations. It provides significant power efficiency [23]. The
Maxwell GM200 chip consists of 22 Maxwell SMs, where each SM includes 128
CUDA cores.

NVIDIA introduced the Pascal architecture in 2016. For example, the GP104
chip comprises 7.2 billion transistors and 2,560 single-precision CUDA cores. The
GP104 chip introduced the use of GDDR5x GPU memory [23], with a 256-bit
memory interface, which provides 43% more memory bandwidth than NVIDIA’s
prior GeForce GTX 980 GPUs. The GP104 GPU consists of four Graphic Pro-
cessing Clusters (GPC), 20 Pa SMs, and each SM contains 128 CUDA cores [22]
(Table 1).

2.2 AMD GPUs

AMD, the second leading GPU manufacturer in the world, presents a different
design for its GPUs. AMD integrates a scalar unit into its Graphics Core Next
(GCN) compute unit architecture [16]. The heart of the GCN is the Compute Unit
(CU) design that is used in the shader array. The GPU consists of many CUs, where
each CU includes 4 separate Single Instruction Multiple Data (SIMD) units for
vector processing.

In the AMD SIMD execution model, each unit executes single operations across
16 work-items (equivalent to threads in NVIDIA architectures), but each can be
working on a separate wavefront (equivalent to the concept of a “warp”, or “thread

Table 1 A comparative feature analysis between four generations of NVIDIA GPUs

GPU GTX 590 GTX Titan GTX 980 Ti GTX 1080

Family Fermi Kepler Maxwell Pascal
Chip GF110 GK110 GM200 GP104
Compute capability 2.0 3.5 5.2 6.1
SM 16 14 22 20
CUDA cores 32 192 128 128
Total cores 512 2688 2816 2560
Global Mem. (MB) 1474 6083 6083 8113
Shared Mem. (KB) 48 48 48 48
Threads/SM 1536 2048 2048 2048
Threads/block 1024 1024 1024 1024
Clock rate (GHz) 1.26 0.88 1.29 1.84
TFLOPS 1.50 4.29 6.50 9.00
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group in lock-steps”, on NVIDIA architectures). The SIMD units in each GCN
compute unit have a combination of private and shared resources. The instruction
buffering, registers and vector Arithmetic Logic Units (ALUs) are private for each
of the 4 SIMD units to sustain high performance and utilization (Table 2).

3 GPU-Accelerated Monte Carlo Photon Transport
Simulator for 3D Turbid Media

We have developed two parallel implementations of Monte Carlo simulation for
photon migration in 3D turbid media: (1) Monte Carlo eXtreme for CUDA
(MCX) and (2) Monte Carlo eXtreme for OpenCL (MCXCL).

Our GPU-accelerated Monte Carlo photon simulator was initially published in
2009 [9]. In this original paper, we reported an over 300 × speedup when running
on a first-generation CUDA GPU (G92) comparing to a single-threaded CPU code
[2] running on an Intel Xeon 5120 CPU. In the remainder of this section, we will
discuss our implementation of MCX targeting different GPUs, and then discuss our
recent efforts on improving the computational efficiency of this code using
knowledge of the underlying GPU architecture.

3.1 Optimization of GPU-Accelerated Monte Carlo
Simulations for NVIDIA GPUs

Based on the evolution of GPU architectures, we have extended and improved
MCX to take advantage of the new features and resources added in each GPU
generation. As a result, we have significantly improved the simulation speed and
accuracy of our MCX software. Improvements include development of highly
efficient ray-tracing algorithms, more efficient random number generation, and more
effective thread/block configurations, among others.

Figure 1 illustrates the thread execution flow in MCX. Each thread simulates the
lifetime of a photon, and repeats the process until there are no more photons to
simulate.

Table 2 Radeon HD 7970
specification

GPU Radeon HD 7970

Codename Tahiti XT
Cores 2048
Global Mem. 3072 MB
Clock rate 0.9 GHz
TFLOPS 3.7
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In each MCX GPU thread, we simulate a specified number of photon packets,
determined by the total number of photons to be simulated and the total number of
threads. As each photon packet traverses through the domain, we accumulate
photon energy-loss to the volume. The final output of the simulation is a 3D fluence
distribution accumulated by all GPU threads. The simulation algorithm can be
divided into nine key steps, as illustrated in Fig. 1. In Step ①, we launch photons
from a source (the user can specific a pencil beam, Gaussian beam, pattern source,
etc.). Step ② simulates a scattering event, including determination of a random
scattering length, a random azimuthal angle and a zenith angle using the scattering
coefficient of the current voxel. Step ③ is the core of our implementation. It
performs a ray-voxel ray-tracing calculation, and propagates the photon packet to
the end of the current scattering path (if the end-point is within the current voxel), or

Compute scattering 
length 

Initial ray tracing? Compute next 
scattering direction 

No

Yes 

Launch photon 1

2 

Propagate photon until cross voxel boundary 

Attenuate packet weight using 
the Beer-lambert law 

3

4 Retrieve media index 
enclosed

5

Accumulate photon energy 
loss to the volume 

Does photon move 
outside or exceed 

time limit? 

Yes 

No

6

7

Terminate current photon 
Are there more 

photons to 
simulate? 

Terminate 
thread 

Yes

No 8

9

Fig. 1 MCX thread flow execution
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to the entry point of the next voxel (if the scattering path goes beyond the current
voxel); the two branches in this step may generate a divergence in the program
flow. Step ④ computes the photon energy loss based on the Beer-Lambert law.
Step ⑤ retrieves the next voxel’s optical properties by reading from global
memory. Step ⑥ accumulates the photon energy loss calculated in Step ④ to the
volume. Step⑦ verifies if a photon exits the boundary or if the maximum time gate
has been reached; if the conditions are not satisfied, it continues to propagate the
photon by repeating Step ②, otherwise it continues to Step ⑧. Step ⑧ terminates
the current photon. Step ⑨ determines whether the desired photons have been
simulated; if not, the framework begins again from Step ①; otherwise the GPU
thread terminates.

Over the past year, we have extensively optimized MCX, guided by insights
about GPU architectural characteristics. A number of enhancements have been
added to MCX in order to improve performance. We have implemented an auto-
matic thread/block/grid configuration strategy that increases simulation speed of
MCX across all existing generations of GPUs. We also optimize the utility of the
registers and shared-memory; this allows us to launch more blocks per SM on
NVIDIA hardware, leading to reduced simulation times. Furthermore, we have
implemented a custom math intrinsic function—nextafter [19], which was identified
as a performance bottleneck by a profiling analysis. In addition, we have also
implemented a more efficient GPU random generator using the xorshift128+
algorithm [17]. Combining all the above optimization strategies, we were able to
improve MCX’s simulation speed by a factor from 1.6 × to 2.8 × , depending on the
GPU architecture targeted.

The improved MCX has been carefully benchmarked across the four latest
generations of NVIDIA GPUs: Fermi, Kepler, Maxwell and Pascal. In the fol-
lowing sections, we discuss performance of our implementation. All results pre-
sented use CUDA 7.5, the NVIDIA driver version 367.44, and are run on Ubuntu
14.04.

To demonstrate the performance benefits of each optimization technique con-
sidered, we first characterize the “baseline” performance by running MCX with all
of the above enhancements enabled. The baseline was characterized by running a
standard benchmark problem [9], where 108 photon packets are simulated over a
uniform 60 × 60 × 60 mm3 domain filled with homogeneous media (absorption
coefficient µa = 0.005 (mm−1), scattering coefficient µs = 1 (mm−1), anisotropy
g = 0.01 and reflective index n = 1). A “pencil” beam source is used to launch
photons at the center of the bottom face of the cubic domain, with a photon initial
direction pointing to the +z-axis. The baseline performance of MCX across our 4
NVIDIA architectures is shown in Fig. 2. Here, the MCX performance is quantified
by reporting the simulation speed in terms of photon/ms. The specific graphics
cards used in these benchmarks are noted on the y-axis.

In Fig. 3, we plot the speedup ratios comparing the fully optimized MCX versus
running with all optimizations disabled. From this plot, we see an impressive
2.8-fold acceleration was observed for the Kepler architecture; for Fermi, Maxwell
and Pascal, a 60–80% speedup was achieved. We believe that the higher speedup
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ratio observed on the Kepler GPU was due to a higher number of CUDA cores per
SM comparing to the other GPU generations.

To assess the scalability of our algorithm and implementation, we compare the
theoretical throughput (measured in tera-floating-point operations per second, or
TFLOPS) differences between different GPUs with the speed ratios of MCX
achieved on the respective GPUs. In Fig. 4, we particularly characterized the
scalability of MCX for two GPU families: Kepler and Maxwell. The normalized
throughput (GT 730 and GTX 980 are used as the references for Kepler and
Maxwell, respectively) are plotted against the normalized MCX simulation speed.

For the Kepler family, four GPUs are analyzed: (i) GT 730, (ii) Tesla K20c,
(iii) Tesla K40c, and (iv) GTX Titan. The GT 730 is used as a baseline for all
Kepler GPUs. The normalized MCX speed shows a strong correlation to the nor-
malized theoretic throughput in all tested devices.

For the Maxwell family, three GPUs are analyzed: (i) GTX 980, (ii) GTX 980
Ti, and (iii) GTX Titan X. The GTX 980 is used as the baseline in this case.
Similarly, we can observe a strong correlation between the speed improvements of

Fig. 2 MCX performance (measured in photon/ms) across Fermi, Kepler, Maxwell, and Pascal
GPUs characterized by simulating 108 photons in a homogeneous cubic domain

Fig. 3 Speedup factors for Fermi, Kepler, Maxwell and Pascal GPUs
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MCX and the theoretical throughput of the GPU. Based on these plots, we can
conclude that MCX’s performance scales nicely across a variety of GPUs.

In the rest of this section, we characterize the speed enhancement resulted from
each individual optimization technique. Here, four optimization techniques are
considered: (i) optimization of threads and block configurations, (ii) reduction of
shared memory usage, (iii) customized NVIDIA math library function and
pre-compute reciprocal vector, and (iv) an improved random generation algorithm
(xorshift128+). Although these improvements were incorporated into MCX in a
chronological order, to simplify this analysis, we use a “take-one-out” approach to
identify the impact of each individual optimization strategy. The baseline here is the
latest software (checked out on Sept. 22, 2016) with all enhancements enabled.
Then, as we remove one enhancement at a time, we report to the drop in perfor-
mance; this is equivalent to the speedup when a feature is enabled. This approach
ensures that the software has applied all the updates accumulated during over the
multiple years of development.

As indicated in Fig. 3, the performance change due to each software enhance-
ment is GPU architecture dependent. For this reason, we benchmarked MCX and
obtained simulation speed (measured in the unit of photon/ms) on a variety of
NVIDIA GPU cards, spanning between 4 different generations.

3.1.1 Optimization of Thread and Block Configurations

The number of threads per block (B) and total thread number (T) are important
parameters when running a CUDA kernel on the GPU. On one hand, we need to
launch a sufficient number of threads, i.e. large T, in order to maximize the utility of
GPU resources; on the other hand, the block size (B) determines how many blocks
can be simultaneously executed in an SM because an SM has limited resources.
Both parameters are directly related to the SM and the core count on a particular
GPU.

Fig. 4 Speedup comparison between theoretical throughput and MCX performance speed across
different Kepler and Maxwell GPUs
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By taking advantage of the “persistent” nature of the MCX kernel, i.e. a per-
sistent thread (PT), we can dynamically compute the best B and T values according
to the resources presented in different architectures. We consider the maximum
number of blocks supported per SM, and the maximum number of threads per SM,
to determine B. We try to launch as many threads as possible to each block, without
generating inactive threads. We consider the number of SMs in the GPU (B) and
then use this value to determine the best value of T. By doing this, we launch as
many blocks on an SM without increasing the queue of blocks waiting to be
executed.

Figure 5 shows the improvement in performance for the best values of B and T.
A speedup of over 27% was observed on the Kepler architecture; an over 10%
improvement on Maxwell, and a 2% improvement on Pascal. On Fermi we
observed a 2% performance decrease when using this feature; we believe this is
related to the limited resources on Fermi GPUs and will perform further analysis.

3.1.2 Optimizing Register and Shared-Memory Utility

The MCX kernel requires a large number of registers (over 60). This restricts the
number of simultaneous blocks that can be executed in an SM. In the meantime,
MCX utilizes shared memory to allow each thread to store the partial-path-length
data before a photon is terminated. We also use the shared memory to store
thread-specific variables to reduce register pressure. However, we recognize that
there is an “optimal” size of the requested shared memory in the MCX simulation.
Requesting a large-sized shared memory can restrict the number of blocks that can
be simultaneously executed in an SM, thus decreasing performance. Apparently, the
optimal shared memory size is related to the total available shared memory space,
which is GPU architecture dependent. We have experimented different strategies to
transfer variables between the register and shared memory space and identified a
“sweet-spot” for the performance.

Our automatic configuration also cuts shared memory demand by half as com-
pared to previous versions of MCX. Figure 6 shows the performance improvement
achieved with and without this enhancement. The speed of MCX improves by 51%
on the Kepler, 30% on the Maxwell, and 2% on the Pascal. Performance on the
Fermi is not impacted by this technique.

3.1.3 Customized NVIDIA Math Library Function and Reduction
of Division Operations

Continuing our analysis of the MCX kernel, we identify as bottleneck the executing
of the NVIDIA math intrinsic nextafter. Specifically, in Step ③ when a photon
reaches the voxel boundary and the hitgrid function is executed. We implemented a
specialized math function to replace an intrinsic math function nextafter in the
CUDA library, and reduced the number of division operations—one of the most

78 F. Nina-Paravecino et al.



expensive math operations in the GPU [19]—by storing the computed division
output and reuse as much as possible. In MCX, since photons traverse a
grid-structure with finite dimensions, we simplified the nextafter implementation by
removing the branches related to handling extreme cases (e.g., encountering NaN or
infinity).

With these changes, we observed a speed improvement of 2% for Fermi, 17% for
Kepler, 29% for Maxwell, and 18% for Pascal. Figure 7 shows the performance
improvements provided by enabling this feature on the four NVIDIA GPUs.

3.1.4 More Efficient Random Number Generation

In our original implementation of MCX, we implemented a GPU-friendly
Logistic-lattice-based random number generator [9] (RNG). By utilizing perfor-
mance profiling, we identified that the RNG is producing another hotspot of the
code. To accelerate the RNG computation, we implemented a new random number
generator based on the xorshift128+ algorithm [17]. The new RNG involves only

Fig. 5 Performance impact by optimization of threads and block configuration

Fig. 6 Performance impact by optimizing shared-memory and register utility
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integer operations and a 64-bit state. In comparison, the Logistic-lattice RNG
involves floating-point operations and a 128-bit state.

Figure 8 shows the performance impact of using this new random generation
algorithm for each of the NVIDIA GPU architectures. We observed a speedup
enhancement of 3% for Fermi, over 14% for Kepler, over 31% for Maxwell and
over 21% for Pascal.

3.2 MCXCL

In order to provide a portable, scalable and hardware-independent Monte Carlo
simulation for photon migration in a 3D turbid media targeting heterogeneous
computing, we developed MCXCL—our OpenCL implementation of the MCX
algorithm. OpenCL provides two methods of compilation: (i) off-line compilation,
and (ii) online compilation. We focus on the second method. OpenCL for online
compilation uses a just-in-time compilation (JIT) method, with the main advantage
that it provides adaptive compilation of the kernel. To support JIT compilation, the
kernel is built from source during runtime using the OpenCL runtime library.

MCXCL shares a similar algorithm workflow as MCX, as illustrated in Fig. 1,
with compilation enhancements such as fast-math and macros. Furthermore,
MCXCL adaptively adjusts its thread/block/grid configurations for different com-
puting devices, such as NVIDIA GPUs, AMD GPUs, and Intel CPUs. Figure 9
shows the simulation speed of MCXCL across various computing processors from
different hardware vendors.

Fig. 7 Performance impact of customized nextafter function and reduction of division operations
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4 Applications

Monte Carlo simulation of photon migration in turbid media—and specifically
MCX—has been widely used in the study of sensitivity of cerebral cortex [12, 13,
26, 27], anatomical brain atlases [3, 4, 30], and brain cancer [28, 29].

4.1 Quantification of Sensitivity of Cerebral Cortex

Gorshkov et al. [12] proposed a CPU-based Monte Carlo simulation for photon
migration in brain tissue. Their approach did not utilize GPUs because of the lack of
advanced global memory in earlier GPU generations. Despite that, they have
demonstrated that a Monte Carlo simulation for photon migration in 3D media is a
valuable source for non-invasive brain analysis. Their main analysis is on the planar
and spherical source light injections.

Fig. 8 Performance improvements from a new random number

Fig. 9 Simulation speed of MCXCL benchmarked across various NVIDIA GPUs, AMD GPUs,
and Intel CPUs
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Perdue et al. [26] quantified the variability in diffuse optical tomography (DOT)
—a multichannel NIRS—and the effect of cerebral vasculature on the forward
model in young adult subjects. They used a mesh-based Monte Carlo
(MMC) method [8] to create the forward models for a set of eight MRI-derived
head geometries. Their study demonstrated the variability in terms of DOT sensi-
tivity over the cortex due to anatomical variations.

Guo et al. [13] described a four-layered model of NIR light propagation in a
human head using Monte Carlo simulation. Following the same scheme as MCX,
they have addressed the impact of both a source and a detector through the
experiments with source-detector spacing at wavelengths of 690, 800, and
1300 nm. They demonstrated that 1300 nm is more appropriate to measure brain
activity, achieving better sensitivity and spatial resolution.

Perlman et al. [27] have studied brain activity in younger subjects using optical
techniques. Their study focused on the development of prefrontal cortex function
for children (i.e., patients 3–7 years old). They used MCX to simulate the optical
forward model in order to describe the sensitivity of the underlying brain. Their
study successfully captured both typical and atypical brain executive function
during childhood.

4.2 Atlas-Based Brain Functional Imaging

Caffini et al. [3] validated the use of a brain atlas for analyzing NIRS data obtained
from brain activation when the subject-specific head anatomy is not available. They
used MCX to solve the forward problem and designed a probe to measure the image
error introduced by using a brain atlas instead of the human-subject head anatomy.
With the help of MCX simulations, they have identified an error of 2 ± 2 cm in
activation localization. Such findings quantified limitations in the current
atlas-based brain analysis and suggested spatial variations of localization errors
among different brain regions.

Cooper et al. [4] validated the atlas-guided DOT methods described by Custo
et al. [6] and quantified the corresponding error in the localization of the cortical
activation. They used 32 subjects and simulated DOT measurements on brain
activation using MCX in the subject space and then reconstruct them in both
environments: the atlas registered to the subject and the subject’s true anatomy.

Selb et al. [30] implemented a flexible fitting routine on time-domain NIRS data
using MCX to address the NIRS estimations of the adult brain considering the
contamination of extra-cerebral layers. They compared the results for two different
geometries: a two-layer slab with variable thickness of the first layer, and a template
atlas head registered to the subject’s head surface. They demonstrated that both
geometries provided better results than the commonly used homogeneous model,
which does not consider the contamination of the extra-cerebral layers.
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4.3 Brain Cancer Imaging

Prabu Verleker et al. [28, 29] have been working on the study of cancer and
metastasis treatment through the activation of NIR-induced drug release. In 2014,
they developed an optically targeted therapeutic treatment for metastatic breast
cancer in the brain by optical simulating—using MCX—the photon distribution and
subsequent drug activation in the brain.

In 2015, Prabu Verleker et al. [28] introduced a key study to treat cancer and
metastasis by delivering lapatinib-drug-nanocomplexes and activating NIR-induced
drug release. They presented an alternate empirical approach to estimate NIR
photon propagation in brain tissues and tested against MCX. They were able to
achieve a 700× speedup compared to the CPU based models.

5 Conclusions and Future Works

MCX has been used to explore a wide range of biological tissue studies, including
the cerebral cortex analysis, brain analysis and brain cancer. MCX has been tested
in different scenarios, and validated with real experiments. We plan to continue to
improve the simulation speed, portability, stability and robustness of MCX, espe-
cially since our work will continue to impact the growing user community. Our
work is presently impact a broad range of applications. By specifically addressing
compute bottlenecks in MCX, we can significantly improve the simulation speed
when run on current and future GPU architectures. These enhancements are critical
for enabling new classes of performant imaging applications, such as real-time data
analysis and instrument optimization.

We have implemented MCX targeting two parallel processing frameworks:
CUDA and OpenCL. We optimized our MCX implementation targeting a number
of enhancement areas: (i) the thread and block configuration, (ii) usage of shared
memory, (iii) customized nextafter and pre-compute reciprocal vector, and (iv) in-
troducing new algorithms (e.g., a random generation algorithm). We can achieve
more than a nearly 3 × speedup for Kepler GPUs, and more than a 1.6 × for Fermi,
Maxwell and Pascal. Our best performing GPU platform can achieve simulation
throughput of over 48,000 photons/ms.

MCXCL is our OpenCL implementation of the MCX algorithm. The code is
highly portable across a wide range of devices (including both CPUs and GPUs).
Running MCXCL, we had achieved run-time code optimization by dynamically
defining just-in-time compilation flags based on user’s input. This resulted in 40%
increase in simulation speed.

The current implementation of our MCX modeling framework provides solid
performance when run on a single GPU. However, it is very common these days to
have access to multiple GPUs simultaneously. One main path for the future of
MCX is to explore CUDA Multi Process Service (CUDA-MPS), where we can
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leverage many GPUs simultaneously. We have already proposed a partitioning
mechanism to achieve better workload balance when running MCX across multiple
GPUs simultaneously, and we are planning to extend this work with CUDA-MPS
[21]. We are also considering to utilize GPU virtualization in future work [31].

Furthermore, we have been working on the implementation of C++ templates
for code specialization and constant propagation. Code specialization is an efficient
mechanism to reduce code branching in a complex GPU kernel such as MCX,
while constant propagation avoids dynamic code generation. We anticipate that
additional acceleration can be obtained once we complete this implementation.
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Building Automation and Control Systems
for Healthcare in Smart Homes

M. Frenken, J. Flessner and J. Hurka

Abstract The chapter presents an overview of building control systems addressing
healthcare issues in home environments. Main goal of a building control installation
is to ensure energy efficiency and comfort in home or functional buildings. Nev-
ertheless, recent scientific work on the design of building control systems focuses
on the inhabitants’ state of health. The chapter starts with a definition and dis-
tinction of several synonymously used terms in the field of building automation and
control systems (BACS) and a general architectural design. Section 2 introduces a
classification of health related applications using BACS while Sect. 3 gives selected
examples for each class to give an overview about possibilities, limits and efforts on
the creation of building environments with positive health effects using building
control systems. Those example applications will range from adaptive lighting
control for health treatment (e.g. in dementia, or depression) to smart home
automation networks for activity recognition. Each mentioned system is aiming to
create an improved environment, support healthy living, or to detect emergencies
and to react adequately. Finally, the achievements of recent scientific works are
summarized and recommendations for the development of even more adaptive and
healthier building environments through distributed building system technologies
are discussed.
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1 Introduction

Traditionally, building services and technical building management have been
established to guarantee optimal comfort criteria (temperature, humidity, and air
movement) inside of buildings. Nevertheless, building automation and control
systems (BACS) have been discussed mainly under the aspects of energy efficiency,
security, comfort, and multimedia for the last years. Only recently, the influence of
BACS on well-being and health came back into focus. Huisman et al. show and
analyze in [38] a growing body of literature that examines the effect of the physical
environment on the healing process and the well-being.

The physical environment may contain a BACS with a specific set of functions.
Regarding to Huisman et al. [38], an intelligent implementation of these functions
can contribute to the optimization of the physical environment toward particular
users need, health, and well-being. The intelligence of this implementation is the
key factor for a successful final system. Therefore, a closer inspection of the BACSs
components and functions is crucial.

The chapter is organized as follows. The introduction goes on with a definition
and distinction of several, synonymously used terms in the field of BACS and a
general architectural design. Section two introduces the classification of health
related applications using BACS while section three uses this classification to give
selected examples for each class. Section four will sum up the opportunities and
limitations. The chapter will close with conclusive recommendations.

1.1 Large-Scale Distributed Computing and Building
Control Systems

Building automation and control systems, smart home systems, home automation,
and even building services and technical building management are terms among
others which are often used synonymously to describe an intelligent building
environment. To prevent confusion, the chapter will introduce and use such terms
as defined in the international standard DIN EN ISO 16484-2:2016-08 [16] and the
VDI guideline 3814:2009-11 [77] that are closely linked to each other.

Building services (BS) comprise all utilities and installations supplied and dis-
tributed within a building. Such installations are not only regarding electricity but
rather include gas, heating, water, and communications [16]. For smooth operation
of these installations, management is needed. On a very high level building man-
agement (BM) combines all services related to the operation and management of a
building. This is including structural and technical properties based on integral
strategies [16]. BM can be subdivided. The subdivision of technical building
management (TBM) clusters all services related to operation, documentation,
energy management and optimization, information management, and monitoring
technical warranties. This includes structural and technical properties as well [16].
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Within TBM specific tools are applied. To achieve an energy-efficient, economical,
and safe operation of all building services, systems are implemented which are
summarized under the term building automation and control system (BACS). They
cover both the products and engineering services for automatic controls, monitor-
ing, operation and optimization, management, and all human interventions to the
building services [16]. BACS are essential tools for TBM.

Referring to [50] BACS is a rather generic term and can be distinguished in
building automation and building control systems. While building automation
covers the whole measurement, control and management of building services on a
higher level [77], building control is a specialized sub-group of BACS not requiring
a central control unit. The individual components have their own, independent
intelligence and exchange information directly with each other in a system-specific
network [50]. Building control refers to the use of an installation bus. The bus
connects the single system components and external devices to the system and
allows communication. Such systems are mostly designed for a specific electrical
installation that controls and connects all the functions and processes in a building
[88]. Building control can be therefore considered as a specialization of autonomic
computing systems, which comprise large numbers of interacting, independent
components [40]. The components adapt and reconfigure themselves through a
specialized feedback loop [34]. The topology of such a system is a network of
autonomic elements building a distributed, service-oriented infrastructure where all
components manage their internal behavior and their relationships with other
autonomic elements [40].

BACS or rather building control systems are specialized for individual
room/zone control which means the control of a physical environment in an area of
a building (e.g. a specific zone or an individual room). A zone is thereby a defined
area in a building, where a form of control can be executed. Room control or
integrated room automation covers all application-specific devices and functions
for single zone or individual room control. This includes a wide range of intelli-
gence like integrated monitoring, interlocks, open and closed-loop control, and
optimization of combined building services. Such building services always refer to
a room/zone like heating, ventilating, air-conditioning and refrigeration
(HVAC&R), lighting, window blinds/shades control, electrical power distribution,
and other trades, by communication functions [16]. As a result, a BACS can
contribute to the optimization of the physical environment toward individual user’s
needs, health, and well-being.

The terms smart home system, home automation, and others are neither
explicitly defined in the standard documentation of the DIN EN ISO
16484-2:2016-08 nor in the VDI guideline 3814:2009-11. They are mostly used
synonymously to one of the defined terms as BACS, building automation, building
control, or room automation. Which system is meant in a particular situation has to
be deduced from the context. To describe and control an intelligent building
environment the chapter will always refer to BACS or rather to building control
only.
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In short, a building control system can be considered as a large-scale network of
distributed, interacting, autonomous components where the size (scale) of the
network is depending on the number of components. If the functions of the building
control systems are used to optimize the physical environment toward a user’s
health the overall system uses a paradigm of large-scale distributed computing for
healthcare.

1.2 Architecture of Building Control Systems

In principle, there is a difference between the topology and the architecture of a
system. While a topology is mostly about the arrangement of the elements of a
network in space (thus a map) [14], a system architecture is a conceptual model and
therefore a representation of a system [35]. Topologies can be distinguished in two
categories: physical and logical topologies. The physical topology of a network
describes the components, the media, and the way the media connects the com-
ponents. The logical topology is the way in which the signals act on the networks
media without regard to the physical interconnection of the components [14].
A network’s logical topology is not implicitly the same as its physical topology.
A logical bus topology of BACS for example might have a physical star topology
layout. Possible network topology forms for BACS are line, ring, star, tree, and
mesh [16]. When reading the example applications of health related building
control systems, it is important to keep in mind that the term bus can refer to a
physical as well as a logical topology and must be therefore carefully distinguished
in each example. A system architecture or system model defines the structure and
the behavior of a system. Jaakkola and Thalheim distinguish five different views in
a system architecture: 1. information or data view answering the “what information
is being processed” question, 2. domain view answering the “what business
activities must be supported” question, 3. integration view answering the “which
business activities require the information” question, 4. deployment or technology
view answering the “where is the information located” question, and 5. infras-
tructure or embedment view concentrating on the embedding of the system into
other systems [35]. In the standard 16484-2 three different views for network
architecture are introduced: i. the point-of-view of its functions (e.g. client-server
architecture, allocated and distributed), ii. the point-of-view of its dimensions (e.g.
LAN, MAN, or WAN), and iii. the point-of-view of the arrangement of its com-
ponents (e.g. shape of a star, ring, line/bus, hierarchical, matrix, and free topology)
[16]. Referring to Groth and Skandier the last one seems to be more conform to the
definition of topology than architecture [14]. Because a topology is more or less
fundamental knowledge about networks, the chapter will rather focus on possible
architecture of BACS in the particular example applications. With respect to the
standard 16484-2 the authors have chosen the perspective of its functions.

The conceptual architecture of BACS follows in general the scheme shown in
Fig. 1. The architecture bases on the work of [21, 41, 49, 51, 68, 79]. Thereby, the
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integration layer represents the lowest level of the architecture. Its objective is to
integrate various devices of different manufacturers, which possibly use different
communication standards. Furthermore, the addition of further devices should be
possible through the integration of the most common communication standards.
The integration layer moreover builds the bridge to the service layer by providing
the communication with the integrated devices.

The objective of the service layer is the handling of occurring events, which are
captured by the used devices. These events can be of importance for multiple
applications at the same time. Therefore, the service layer transmits the information
to all appropriate applications. Moreover, the service layer provides a rule base
framework to react adequately on specific events.

The development and implementation of the desired applications is made within
the application layer. This layer contains every requirement needed to process the
acquired data and to implement control functions. Furthermore, visualizations and
services for mobile applications are content of the application layer. This layer is at
the highest level and requires the integration and service layer. The advantage of the
implementation of a building automation network based on an architecture like this
is the clear overview of the particular network components. Specifically for
healthcare applications with building automation networks, which combine multi-
ple sub-applications like patient identification and monitoring, a modular imple-
mentation is of importance.

In addition, the computation and communication becomes even more complex
with increasing network size. Regarding healthcare applications for people in
hospitals or nursing homes, a huge amount of sensors and actuators have to be
integrated. Hence, health related building automation applications have increased
requirements on computation and communication issues.

Fig. 1 General architecture
of building automation
networks
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1.3 Computation and Communication Methods

Raynal said that “distributed computing is about mastering uncertainty” [58].
Building control systems are normally composed of distributed and mostly
dynamical components such as lights, shades, etc. Those components have several
execution modes like on, off, open, closed, and many other. The state of each
component can be monitored within the network. The execution of the components
can occur independently and simultaneously. Trigger for the execution can be the
reception of internal (e.g. state change of one component) or external events (e.g.
human system interaction). The distributed components of building control systems
should contribute to the optimization of the physical environment toward the user’s
health and well-being in ensemble acting but each entity has only a partial
knowledge of the involved parameters and execution modes of the other compo-
nents [58]. The complexity results from the need of a proper and safe running
system towards this overarching goal for each accessible combination of execution
modes [34]. Uncertainty is usually given by not plannable or even not reliable
human system interaction.

Hence, it is easy to see why large scale BACS are diverse. It is hard for system
architects to anticipate and design all possible interactions among components or
with external entities (like other systems or humans). BACS need to be computing
systems that can manage themselves given only high-level objectives from the
particular application (which means to perform autonomic computing [40]). That
means that the system has to be capable of dealing with many issues at runtime. The
design of and the (autonomic) computation within building control systems may be
therefore critical in terms of correctness, reliability, safety, and security, especially
when they are designed for healthcare. Modeling approaches used to consider such
conditions already during the design process vary from ontology and state charts
[75] through formal methods [13, 34] to evolutionary algorithms [30] or multi agent
systems [61]. Corno and Sanaullah give a broad overview of modeling and veri-
fication techniques putting them into the perspective of ambient intelligence [12].
Summed up, it is not possible to give the one approach to design the perfect
matching BACS, and it is even not possible to describe the one and only computing
strategy for BACS in healthcare. Distributed computing may be about mastering
uncertainty, but modelling a BACS for healthcare is about mastering a broad variety
of multi-disciplinary approaches and choosing the one best matching to the
application requirements. Thus, it is not possible to describe computation or
communication strategies independent from the application.

However, one does not necessarily need to dive into BACS specific literature
first to get an idea on how to solve such issues. Literature about autonomic com-
puting will give a very good point of entry. Kephart and Chess for example
summarize the Self-Challenges (Self-Management, Self-Configuration,
Self-Optimization, Self-Healing, and Self-Protection) of autonomic computing [40],
each of them easily applicable to BACS. They also give considerations regarding
architecture, engineering and science theory.
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Existing architectures, communication methods and computation approaches are
essential for the design process of building applications. In the following, the
classification of healthcare related building automation applications is described.

2 Classification of Health Related Applications Using
Building Automation Networks

The building automation networks address a large field of different health related
applications, even though the main scientific effort is focused on energy efficiency.
The design of building automation networks with the aim to improve the energy
efficiency often leaves the requirements of the inhabitant out and has potentially a
negative effect on the inhabitant’s state of health [48, 81]. Therefore, the interest in
approaches to improve the healthcare via building automation applications awak-
ened in recent years.

Healthcare applications using building automation involve heating networks,
ventilation networks, lighting networks, activity recognition and inhabitant moni-
toring systems, and safety applications. The heating, ventilation and lighting sys-
tems are supposed to effect the inhabitant’s state of health positively through the
adequate regulation of environmental factors, like temperature, indoor air quality
and illumination. Apart from the usual usage of light, it effects the inhabitant’s
mood and is able to support the therapy of mental diseases. Another application
topic is the recognition of activities and the monitoring of the inhabitant via
building automation networks. The goals of activity recognition and patient mon-
itoring are the detection of anomalies. Safety applications are supposed to protect
the inhabitant from accidents and to initiate adequate reactions.

To further classify these applications, they will be grouped into passive and
active support applications. In addition, a hybrid form of passive and active support
is defined as adaptive support. An overview of the classification is shown in Fig. 2.
Passive healthcare applications include building automation networks with the

Fig. 2 Overview of the
classification of health related
applications for building
automation
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focus on the estimation of the inhabitant’s condition and the detection of critical
situations. These applications do not influence the inhabitant directly. They are
supposed to determine the inhabitant’s condition via the interpretation of received
sensor data. The determined condition of the inhabitant is afterwards used to make
emergency calls if needed or to propose the consultation of a medic.

On the other hand, active applications influence the inhabitant directly via the
operation of adequate actuators within the building automation network. The pur-
pose of these active applications is the improvement of the environment concerning
the inhabitant’s health. The current condition of the inhabitant is not involved in the
regulation of the environment. Hence, these systems regulate the environment
based on recent studies on adequate environmental factors, but do not dynamically
react on the inhabitant’s condition. Applications merging the passive determination
of the inhabitant’s condition and the active regulation of the environment are
described as adaptive applications. They regulate the environment via different
actuators after the determination of the inhabitant’s condition. In this way the
adaptive applications are able to react to suddenly occurring changes.

In the following, the classes of building automation applications will be
described in detail with the focus on health and comfort issues.

2.1 Passive Healthcare Applications

The objective of passive healthcare applications is the interpretation of sensor data
in order to determine the inhabitant’s condition. A central aspect is hence the
recognition of activities and thereby the monitoring of the inhabitant. Another field
of applications concerns safety issues and the ability to react adequately on
emergencies and the deteriorating of the inhabitant’s state of health.

2.1.1 Activity Recognition and Inhabitant Monitoring

Activity recognition and inhabitant monitoring in conjunction with building
automation networks are highly regarded topics of current scientific efforts. Such
networks aim to recognize Activities of Daily Living (ADL) in order to enable the
assessment of the inhabitant’s condition. The ability to master ADLs like eating,
cooking and drinking decreases with advancing age and after occurring impair-
ments. Therefore, the recognition of ADLs is a first step to estimate the inhabitant’s
state of health and his ability to live independently.

Accordingly, a main objective of the topic is the design of unobtrusive building
automation networks to recognize the executed activities and monitor the condition
of the inhabitant. A possibility to implement the activity recognition is the inte-
gration of usual domestic appliances in the building automation network to analyze
their particular use. To estimate the particular use of a domestic appliance the
measurement of the energy consumption is a common method.
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Another way to implement the activity recognition is the interpretation of data
from additional sensors like contact sensors or motion detectors. Force sensors, for
example, are useful to determine whether and how long the inhabitant used a
particular seat. The sensor information is necessary for the estimation of the
inhabitant’s state of health and for predicting the following activities. Moreover,
intelligent algorithms are implemented to identify daily routine patterns. The
analysis of these patterns and of anomalies within the routine are useful for the
monitoring of the inhabitant.

The monitoring of the inhabitant’s activity level is helpful to draw conclusions
about the inhabitant’s condition. In the case of a decreasing activity level exami-
nations can be made to assess changes in the inhabitant’s state of health. This
approach aims to identify an impairment in an early stage in order to intervene
immediately and to prevent the worsening of the impairment.

In general, a single computation unit is used to gather all information acquired
from the sensors. This architecture easily provides the possibility to use the com-
plete information of all sensors for the detection of activity patterns. Therefore, a
major challenge for the creation of these large-scale distributed sensors networks is
to implement a fast and robust communication method to avoid the loss of infor-
mation. A working communication is a requirement to establish an activity
recognition and patient monitoring network for real-life applications.

2.1.2 Safety

Healthcare applications which deal with the recognition of critical situations and
trigger any kind of reaction belong to the safety topic. Passive safety applications
within the building automation network are thereby defined as applications without
direct support ability. In fact, these applications are focused on the detection of
emergencies and the preparation of an interface to the outer world in order to
request appropriate aid.

Consequently, the ability to recognize anomalies in the behavior has to be
implemented. This is achievable with building automation sensors itself or for
instance with wearable devices. Therefore, in the case of an appearing anomaly, like
the detection of a fall or an abrupt interruption of the daily routine, a check of the
inhabitant’s condition via telephone call or another application can be executed. In
the event that the inhabitant is not contactable, the neighbor gets informed or an
emergency call is made. The building automation network in conjunction with a
gateway to the mobile communications network and internet provides an ideal
architecture to establish automatic emergency notifications. In order to decrease the
time between the emergency call and the arrival of helpers a large network con-
necting the neighborhood is supposable.

Specifically the building automation systems within hospitals can be a benefit
during emergency situations. In the case of an occurring emergency, an imple-
mented localization ability within the building automation network could accelerate
the notification of the nearest expert [28]. Such a system would minimize the arrival
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time of emergency aid. In addition, the localization of patients with building
automation technology can support the hospital nurses during the search for missing
patients. To create a building automation system with patient monitoring within
hospitals, a large area and multiple patients, nurses, and doctors have to be covered.
Hence, several sensors are needed to record the people’s location and measure the
patient’s physical parameter, which results in a major challenge for the network
design concerning the analysis and communication. In order to reduce the com-
munication load within the building network, splitting the whole network into
sub-networks with multiple distributed computation units can be a solution.

2.2 Active Healthcare Applications

In contrast to passive healthcare applications, active applications influence the
inhabitant directly. The building automation networks use their actuators to regulate
the environmental factors in order to create a healthy environment. The control
methods for the regulation of the environment are not influenced by short-time or
daily variations of the inhabitant’s condition. Hence, sensors for the monitoring of
the inhabitant have minor priority within active healthcare applications. The
applications are in fact focused on the monitoring of the environmental factors,
which is used to improve the environmental control.

The particular applications are thereby organized in subsections like ventilation
control, heating control and lighting.

2.2.1 Active Ventilation Control

Within building environments the inhabitants are exposed to various air pollutants.
The concentrations of these air pollutants define the indoor air quality. One aim of
the ventilation control is to substitute the polluted with fresh or filtered air. The
amount of exchanged air within a certain time interval is described by the parameter
air change rate.

There exist concentration limits for air pollutants in the indoor air in current
standards as well. The objective of these standards is to suggest air change rates in
order to keep air pollutant concentrations below a certain level. Intelligent venti-
lation systems use sensors to measure particular pollutant concentrations to adapt
the air change rate according to the current concentrations. A common way to
design an intelligent ventilation control is to use the CO2 concentration as an
indicator for the indoor air quality. Less adaptive systems are based on room size
and mean occupancy, following the instructions of current national or international
standards, like the WHO guidelines [83] and the DIN ISO EN 13779 [15].

One approach to estimate an adequate and healthy air change rate is to involve
the perceived indoor air quality. Fanger [24] conducted studies about the perception
of the indoor air quality and interpreted the results to determine a model to calculate
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an adequate air change rate based on the desired quality and existing pollution
sources. This approach does not differentiate between particular conditions of the
inhabitant. Parts of this approach influenced the instructed air change rates in
current regulation standards. A further study by Fang et al. [23] proved that the
perception of the indoor air quality is not solely dependent on air pollutants. The
perception is as well influenced by other environmental factors like temperature and
humidity.

Except for the perception in order to identify comfortable air change rates, the
human and his condition is not involved within the common ventilation control
process. In conclusion, active ventilation control applications disregard the inhab-
itant’s state of health and adapt their performance based solely on environmental
factors and building information. Thereby, the complex relations between the
environmental factors have to be regarded during the design of health supportive
ventilation systems.

2.2.2 Active Heating Control

The objective of heating control is to satisfy the inhabitant’s thermal sensation and
to avoid negative health effects through inadequate indoor temperatures [31]. The
thermal sensation is amongst others described in international and national stan-
dards [17]. The determination of the predicted mean vote (PMV) is an indicator for
the probable thermal sensation. The thermal sensation depends on the relation
between body temperature and indoor temperature. According to this, the analysis
of the environmental parameters can lead to the estimation of the probable thermal
sensation, which is useful for the temperature regulation. Therefore, the monitoring
of adequate environmental factors is a major challenge for active heating control via
building automation networks.

The heating system measures the temperature in every regulated room and reacts
to occurring differences between the current temperature and the target value. The
time needed to compensate these differences is a quality characteristic of heating
systems. The target value is set directly by the inhabitant.

Usually, systems for temperature control measure solely local environmental
factors. The measurement of the environmental condition in just one spot is not
sufficient to make a precise assumption for the whole building environment.
Because of this, recent scientific works develop distributed building automation
systems in order to reach a more detailed representation of the environmental
factors. The awareness of the health effects of temperature led to the introduction of
specifications for temperature and humidity limits [17]. The temperatures must not
exceed or fall below a certain interval to avoid mold formation and an unhealthy
environment. Therefore, the design of the heating systems has to respect the health
related findings about the indoor temperature.
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Nevertheless, active temperature control systems leave out the activities and
condition of the inhabitant. Differences relating to the mobility or activity of dif-
ferent inhabitants are not considered automatically. In the event of discomfort
concerning the indoor temperature, the inhabitant has to adjust the target value
himself.

2.2.3 Active Lighting Control

Active lighting applications aim to support the inhabitant amongst others by
highlighting possible barriers to prevent falls or escape routes in critical situations.

Moreover, another approach for active lighting control focuses on the direct
effects of light on the inhabitant’s health. Several studies proved that light has a
significant effect on the inhabitant’s state of health, in particular on mental issues
[60, 62]. As a result, these studies suggest a positive health effect of the simulation
of the circadian rhythm via light illuminance and color. To achieve a positive effect
on the melatonin production, 6 h of bright light in the morning followed by 10 h of
normal lighting is recommended by Barroso and Den Brinker [6].

Furthermore, light represents an ambient output possibility for memory appli-
cations or other notification systems.

2.3 Adaptive Healthcare Applications

Applications which regulate environmental factors based on information from
inhabitant monitoring and activity recognition are classified as adaptive ones. The
diverse recognizable activities and conditions of the inhabitant are related to dif-
ferent physical and mental loads. These different loads result in differing require-
ments regarding the environmental factors. This knowledge enables the building
automation applications to influence the inhabitant positively with respect on his
requirements.

Moreover, wearable devices for the inhabitant monitoring can be integrated in
the building automation network. A possible concept to include the patient moni-
toring via wearable devices within a building automation system is shown in Fig. 3.
The wearable device measures parameters like heart rate, skin conductance and
body temperature for the estimation of the inhabitant’s condition and activity level.
Afterwards, these information are analyzed by a centralized computation unit. As
result, the requirements of the inhabitant will be used to regulate the components of
the building automation network. A possible scenario is the increase of the air
change rate to an adequate level, if a high activity level was measured. A high
activity level is associated with an increased breathing frequency, which results in
an increased demand on the amount of fresh air.
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2.3.1 Adaptive Ventilation Control

The objective of an adaptive ventilation system is to provide the adequate amount
of unpolluted air dependent on the inhabitant’s requirements. Adaptive ventilation
systems adjust the air change rate with respect to the inhabitant’s condition. Recent
scientific research suggests that the common air change rates, which are instructed
by current international standards, are not high enough to establish a healthy
environment. One reason for these insufficient recommendations could be the high
priority on energy efficiency. Specifically, the effect of the air quality on various
diseases is proved by several studies [7, 9, 36, 81]. These studies suggest that the
regulation of environmental factors based on the particular state of health of the
inhabitant is beneficial. Therefore, new approaches have to be implemented to
include all required information within the ventilation control system.

These facts suggest the assumption that a human-centered design of the venti-
lation control, apart from energy efficiency issues, is a promising approach for the
development of health related ventilation applications. The involvement of the
current requirements of the inhabitant towards the indoor air quality is a crucial
aspect for the design process.

Fig. 3 Components and connections of a possible adaptive patient monitoring system within a
building automation network
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2.3.2 Adaptive Heating Control

Dependent on the inhabitant’s condition and activity level the requirement on the
indoor temperature differs. One possibility to take advantage of the activity
recognition is to adapt the indoor temperature concerning the current physical load
of the inhabitant. High physical activity results in increasing body heat. The
adaptive building automation network is able to detect this condition and reacts by
lowering the indoor temperature to compensate the increased body heat. Such a
feature secures the thermal sensation and reduces the needed effort to keep the body
heat in balance, which results in an avoidance of physical overstraining. The
adjustment of the temperature in relation to the physical load of the inhabitant is an
example of an adaptive heating control.

Moreover, several studies proved that there exists a relation between thermal
sensation and physiological values, like the heart rate variability [29, 45, 85]. An
increased heart rate variability is thereby associated with thermal discomfort if the
inhabitant is at rest. Hence, the involvement of a real-time heart rate variability
monitoring within an adaptive heating system is a promising approach for adaptive
heating control. In addition, Lloyd et al. [46] found a significant effect of adequate
thermal condition on the inhabitant’s state of health and blood pressure. These
findings underline the relation between heating, health and comfort.

In conclusion, temperature has an effect on the inhabitant’s state of health.
Therefore, adaptive heating systems have to be designed in order to provide an
adequate and healthy environment for the particular inhabitant. To achieve this, the
system needs to acquire the relevant and necessary information about the inhabitant.
As described before, adaptive building applications are based on activity recogni-
tion or inhabitant monitoring. This applies for adaptive heating systems too.

2.3.3 Adaptive Lighting Control

Adaptive lighting deals with the control of light sources to support the inhabitant
adequately. An important information for light control is the current activity exe-
cuted by the inhabitant. With this information, for example, a nightly visit to the
bathroom is supported by the adequate illumination of the path.

It was shown that light is able to impact the therapy of mental diseases [62, 78].
Consequently, the adjustment of the light intensity and the luminous color based on
the current mood of the inhabitant is another possibility to influence the inhabitant
positively. Adaptive light therapy applications have thereby the ability to react on
daily changes and occurring relapses.
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3 Examples of Healthcare Applications Based on Building
Automation Networks

The intention of the following chapter is to outline recent scientific efforts con-
cerning building automation networks with health related applications. These
examples cover passive, active and adaptive healthcare applications. Only imple-
mented systems composed of unobtrusive environmental or wearable sensors are
regarded. Hence, cameras and other approaches, which require the analysis of video
data are neglected.

3.1 Passive Healthcare Applications

In the following, implemented healthcare applications without direct influence on
the inhabitant are described. Therefore, approaches for activity recognition and
safety issues are presented.

3.1.1 Systems for Activity Recognition and Inhabitant Monitoring

Suryadevara and Mukhopadhyay [69] equipped an experimental environment with
electrical monitoring sensors, force sensors, water flow sensor, and additional panic
buttons to create an activity recognition system (Fig. 4). To secure a trouble-free
communication the ZigBee protocol was used by the scientists. Storage problems
resulting from continuous sensor data streams can be avoided through the filtering
of the data for changes of the particular sensor status. The adequately positioned
sensors enable the system to record the time spent on different activities. These
periods are analyzed to determine an indication of the inhabitant’s state of health.
Particularly, the time of inactivity between the uses of appliances is observed and
used to calculate a wellness indication. As second wellness parameter, the current
usage duration is compared with the estimated common usage duration. This
approach solely contains activities which are simple to recognize via a single
sensor.

More complex activities, containing several different operations, are not con-
sidered. A complex activity consists thereby of a specific sequence of sensor events.
The determination of these activities, even with varying time intervals between the
particular sensor events, is a major task for computation. In particular the pro-
cessing of the multidimensional data from the various sensors is a main challenge
for complex activity recognition.

Thereby, the first computation step contains the segmentation of sensor events.
The segmentation method defines which sensor events of a recorded sequence are
used for the recognition process [43]. A common method is the analysis of the
sensor events within a defined time interval. This approach results in a varying
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number of analyzed sensors events. In addition to this, another approach uses the
number of sensor events to segment the sensor information, which leads to seg-
ments with varying time intervals. These approaches are not sufficient for real
environments because of the diversity of the duration and number of sensor events
within the various activities [86]. To solve this problem the consideration of further
information about the regarded activities is beneficial. For this purpose information
like time, duration, location, needed resources and previous activities are consulted
to gain a detailed overview about the activities [80]. The increase of required data
results in an increase of communication and computation complexity.

Furthermore, Cook et al. [11] dealt with the appearance of unknown patterns
during the online activity recognition. Unknown patterns are sequences of sensor
events which were not learned before the start of the system. The scientists
developed a method to learn and recognize these patterns during runtime and use
them to increase the recognition rate of the learned activities. In order to learn the
unknown patterns, a support vector machine was implemented. Support vector
machines are machine learning models which are able to process multidimensional
data. Specifically, building automation networks provide multidimensional data
acquired from different sensor types. Therefore, support vector machines are an
appropriate solution for particular computation challenges.

This approach was subsequently used for experiments to determine health events
via changes in the daily routine of the inhabitant [65]. The results of the long-term
study with two elderly inhabitants indicate a notable relation between occurring
health events and the detection of changes within the daily routine patterns.

Fig. 4 Spatial arrangement of different sensors in an experimental environment [69]
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The distributed building automation networks for health monitoring are mostly
designed to observe just a single inhabitant. Tunca et al. [73] created a building
automation network for activity recognition and health monitoring in order to
recognize the activities of two inhabitants. For this purpose, two apartments were
equipped with multiple sensors for the recognition of 27 different activities. The
communication between the sensors and a central computation unit is based on the
ZigBee protocol. An experiment within the two apartments was done and multiple
machine learning algorithms for the activity recognition were tested. As a result, an
artificial neural network achieved the best overall performance. In conclusion, the
authors described a system which is able to recognize the activities of two inhab-
itants living in the same apartment. Moreover, they pointed out that the analysis of
the time, duration and frequency of specific activities is a sufficient indication for
the estimation of the inhabitant’s health.

In particular activity recognition applications have to process a huge amount of
multidimensional data received from the large-scale building automation networks.
A promising approach for data processing within building automation networks are
thereby machine learning algorithms which satisfy the computation requirements.

3.1.2 Safety Applications

There exist various approaches and gateways for the connection of large-scale
building automation networks with the outer world [56, 71, 74]. Safety applications
require an architecture which includes such gateways to provide the ability to call
for adequate aid.

A possible reason for the activation of an emergency alarm is the measurement
of unusual environmental factors. Ransing and Rajput [57] developed a building
automation network based on the ZigBee protocol for temperature monitoring. The
network is designed to detect fires and gas leakages and is connected with the
mobile communication network in order to notify the inhabitant via mobile phone.

Moreover, safety applications concerning the inhabitant’s state of health are
focused by recent scientific research. According to this, the approach from Skubic
et al. [63] contains a building automation network which is connected with clinical
caregivers via a web portal. The data from the building automation network, pro-
viding door, motion, and bed sensors, is analyzed within a central computation unit.
In the case of the detection of an anomaly in the inhabitant’s behavior, an e-mail is
sent to clinical experts to assess the provided data and to react adequately.

A direct way to monitor the inhabitant is followed by Aguirre et al. [2] within the
NASISTIC system. The presented system contains, in addition to environmental
sensors, a selection of medical sensors, including devices for the measurement of
blood pressure, weight, medicine taking, and electrocardiogram. Combined with the
information of water sensors, light sensors, presence sensors, and gas sensors the
medical information are transmitted to gateways via Bluetooth. These gateways
represent a possibility to inform medics or family members about the inhabitant’s
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state of health and behavior via an internet server. Therefore, the medics and family
members are enabled to react if abnormalities occur.

Not every detected anomaly necessarily requires the notification of experts.
Therefore, Arcelus et al. [5] introduced the classification of anomalies in four
different categories with increasing importance: mild abnormality, caution, high
alert, emergency. While a phone call is sufficient for occurring mild abnormality or
caution alerts, a high alert or emergency should have a visit of a caregiver or medic
as consequence. These examples show that safety applications benefit from the
proceedings in the Internet of Things and appropriate system architecture design.

3.2 Active Healthcare Applications

In the following, active healthcare applications concerning the ventilation, heating
and lighting control will be presented.

3.2.1 Active Ventilation Systems

As an essential part of many buildings, the ventilation control is a highly regarded
scientific topic. The possible negative effects of insufficient air quality are well
reviewed [7, 8, 36, 67, 81, 83].

Accordingly, several applications were developed to detect harmful pollutants
within the indoor air and to react adequately. These pollutants are emitted by the
different building materials and inhabitants. Several different national and inter-
national guidelines recommend concentration limits for the various pollutants.

In this context, Kumar and Hancke [44] developed a wireless sensor network to
monitor the CO2 and CO concentration within the air at different locations. These
information are afterwards used to determine the probable comfort level, which
enables the adjustment of the air change rate according to the current condition.

Specifically, healthcare environments which nurse impaired and weakened
patients have an increased demand on the indoor air quality. Therefore, Yang et al.
[84] designed a wireless ventilation control system to monitor various air pollutants
beside the CO2 concentration in 13 different rooms. All in all, five air components
are measured (CO2, total volatile organic compound (VOC), particulate matter, total
bacteria, total fungi). The analysis of the concentrations of the observed compo-
nents suggests that the CO2 concentration is an adequate indicator for the overall
indoor air quality. Consequently, a wireless network containing CO2 sensors was
created. The multiple sensors are connected to ZigBee communication modules,
which transmit the data to a centralized computation unit. The computation unit
analyses the current concentrations and regulates the ventilation.

Another approach of recent scientific works is the monitoring of VOC con-
centrations with small distributed sensors. Peng et al. [54] presented a system to
monitor the VOC concentration of multiple buildings within a campus. They used a
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server-client architecture to provide the possibility to monitor and control the indoor
air quality from a centralized computation unit. The developed architecture is
shown in Fig. 5.

In summary, most scientific works about distributed sensor networks for active
ventilation control are focused on the measurement of the CO2 concentration. An
advantage of this approach are the cost-efficient and well-engineered sensors.
Hence, the development of a large scale ventilation system based on CO2 mea-
surement is affordable and sufficiently tested.

In order to control the ventilation system of a whole building a large-scale
building automation network may be an adequate approach to observe and control
the environment concerning the air quality. The pollution concentration of every
particular room can be used to adapt the indoor air quality towards the
requirements.

3.2.2 Active Heating Systems

Common heating control applications for thermal comfort are based on the analysis
of the indoor temperature and humidity. In order to monitor the thermal comfort
with increased accuracy, Torresani et al. [72] designed a distributed wireless sensor
network which measures the air flow speed and radiant temperature in addition to
temperature and humidity. First results suggest that the system is able to determine
the thermal comfort more accurately.

Furthermore, the ability to predict the temperature and the thermal comfort to the
purpose of anticipatory control is another issue of recent scientific work. Robol

Fig. 5 Architecture of a large scale distributed sensor network for ventilation control [54]
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et al. [59] combine the weather forecast, the predicted mean vote (PMV), and the
heating system itself. The system contains 19 wireless sensors, which communicate
via ZigBee protocol, a weather station to forecast the thermal influence of the
outdoor environment and several radiators. An overview of the system’s architec-
ture is shown in Fig. 6. The computation of the multidimensional data is done with
a support vector regression algorithm to identify relations between input and output
parameter.

Apart from the control of the general temperature, the compensation of tem-
perature differences within the building environment is another issue for heating
systems [90]. Differing temperatures inside a building environment can lead to
areas with undesired temperature, which have a negative effect on the thermal
sensation. An intelligent heating network can measure the temperature at various
locations within the building environment to avoid these differences. With the
information about occurring differences an intelligent heating system is able to
regulate the distributed heating spots to compensate differing temperature areas.
Therefore, a computational fluid dynamics model was created to determine the
influence of the particular radiators towards the different zones. Such a system
requires a heating network with a huge amount of network nodes to cover large
areas.

Moreover, Guillemin and Morel [33] combined the control of radiators with an
automatic shading system. The shading has a significant effect on the thermal
sensation and influences the thermal condition. Hence, these approaches show the
requirement of large-scale distributed networks to control every factor which
influences the thermal sensation and inhabitant’s state of health.

Fig. 6 Architecture of a predictive wireless sensor network for heating control [59]
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3.2.3 Active Lighting Systems

Active lighting control aims to provide enough light to satisfy the inhabitant’s
preferences. The fulfillment of lighting preferences directly affects the mood of the
inhabitant, which in turn affects well-being and health [78]. The inhabitant’s
preferences are set prior to the activation of the system. To be aware of uncertainties
and to observe the light distribution, distributed photosensitive sensors are used.
Wen and Agogino [82] followed this approach and developed a wireless network.
The system consists of wireless light sources and wireless sensors to measure the
illuminance at different locations. In summary, this approach is able to secure the
preferred illuminance within the whole environment even if disruptive outside
influences occur.

Based on these findings novel control algorithms were developed to influence
the inhabitant’s health with adequate lighting. In this context, a lighting network
with dynamic light sources was constructed in healthcare facilities to test the effect
of the adjusted lighting [1]. The results of the tests showed a general appreciation
for the dynamic lighting system. Positive health effects were not observed because
of too low illuminance levels during the test phase. This and previous studies
proved that the illuminance level is a major factor for lighting control in order to
achieve environments with positive health effect [39, 64, 76].

3.3 Adaptive Healthcare Applications

The following examples represent the proceedings in the development of adaptive
healthcare applications separated in ventilation systems, heating systems and
lighting systems.

3.3.1 Adaptive Ventilation Systems

The ventilation control is able to influence the inhabitant significantly. Hodgson and
Murphy [37] summarize several studies, which suggest the effect of different
ventilation configurations specifically on patients with respiratory impairments.

A ventilation system which specifically involves inhabitants with respiratory
diseases is presented by Fong and Fong [27]. Their system combines a body area
network for health monitoring with a building automation network for the mea-
surement of indoor air quality. Moreover, the system is connected with a server for
medical observation for abnormality detection. In detail, heart and respiratory rates
are used to estimate the inhabitant’s state of health and the VOC concentration is
monitored to determine the indoor air quality.

Melikov [48] pointed out that a decentralized ventilation system could be an
energy efficient solution to supply the inhabitant with an individualized amount of
fresh air. The idea behind this approach is that the ventilation is controlled based on

Building Automation and Control Systems … 107



the inhabitant’s location. Therefore, locations where the inhabitant spends the most
time, like work places or seats, have to be equipped with unobtrusive fans and
exhausts. In conjunction with an identification system, the directed ventilation is
able to adapt the local air change rate individually for every inhabitant. Directed
ventilation systems may therefore consist of large networks of fans and exhausts,
localization sensors, and identification sensors. Specifically for the implementation
of a directed ventilation system in use-cases like office blocks or hospitals, the
amount of connected devices is huge, which comes with an increase in computation
and communication complexity.

Similarly, Taheri et al. [70] developed a directed ventilation system. Beside these
directed fans, the network consists of sensors for the measurement of air temper-
ature, humidity and CO2 concentration. The results of a short-term study con-
cerning the perceived indoor air quality of the system show minor improvements.

3.3.2 Adaptive Heating Systems

An example for an adaptive heating system is designed by Dovjak et al. [20]. The
system’s objective is to establish differing heating zones within a hospital room to
satisfy the thermal requirements of different patients. In particular burn patients are
addressed by the presented system because of their special requirements towards the
thermal conditions. Therefore, the scientists created special heating panels to
individually regulate the area beyond the panels. To compare the configuration for
burn patients and nurses or visitors the particular PMV values are calculated. The
thermal condition, which effects the burn patient positively, is rated with a poor
PMV value. Hence, environmental conditions with positive health effect are not
linked to the thermal sensation in special situations.

Moreover, Feldmeier and Paradiso [25] used a wearable device within a wireless
sensor and actuator network to adapt the temperature based on the inhabitant’s
activity and presence. The wearable device is furthermore an input possibility to
rate the thermal condition as hot, neutral and cold. A study with 20 subjects was
performed and the comfort achieved by the new control method was rated as
enhanced in comparison with the usual system.

One recent field of research is the prediction of the inhabitant’s thermal sensa-
tion. The inhabitant’s perception of the indoor temperature indicates the effect of the
current temperature on comfort and health of the inhabitant. Hence, the estimation
of the thermal sensation can be used to regulate the temperature according to the
inhabitant’s requirements. To predict the thermal sensation, various input param-
eters, like solar radiation and temperature, are analyzed [26]. Multiple complex
algorithms, like neural networks or fuzzy controller, are usable in order to execute
the analysis [3]. Heating control and air conditioning applications use the predicted
thermal sensation to quickly react on environmental changes with the purpose to
secure the inhabitant’s comfort and health.

Ferreira et al. [26] arranged a large-scale wireless building automation network
within a university campus to implement a predictive control algorithm for thermal
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comfort. Four rooms were equipped with wireless sensors for temperature, air
humidity, the state of windows and doors and activity via a passive infra-red sensor.
These sensors transmit the acquired data to a centralized computation unit. This
central node is connected with the sensor devices via TCP/IP network. Moreover,
each room contains its own ventilation and heating unit. Hence, the environmental
factors are regulated separately for each room. A PC station manages these separate
units and communicates via a LonWorks communication bus. The whole archi-
tecture is shown in Fig. 7.

This architecture is used to predict the thermal sensation by the application of an
artificial neural network. An advantage of artificial neural networks is that complex
non-obvious relations can be identified by the algorithm. But the fact that the
algorithm works like a “black-box” and the results cannot be reconstructed is a
disadvantage. Furthermore, a major challenge during the design of artificial neural
networks for the prediction of thermal sensation is to find the balance between
accuracy and execution time. It is of importance to have short execution times to
establish a system which is applicable in practice.

3.3.3 Adaptive Lighting Systems

Pan et al. [52] developed a wireless sensor network for adaptive lighting control.
The scientists combined photosensitive sensors with wearable devices and two
kinds of light sources. The photosensitive sensors’ purpose is the measurement of
the current light intensity. The wearable device is used for the activity detection and
localization of the inhabitant. The information about the inhabitant’s location, his
set preferences and the current lighting intensity are the base for the regulation of
the particular lighting sources.

Fig. 7 Architecture of a system for predictive heating control [26]
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In a following step, the building automation network for adaptive lighting
control was extended by an intelligent lamp which adjusts its position based on the
inhabitant’s requirements [87]. In order to observe and control the lighting of a
whole building, multiple photosensitive sensors and sensors for inhabitant local-
ization are necessary. Hence, for far-reaching adaptive lighting systems adequate
architectures and communication methods have to be applied.

The objective of adaptive lighting systems is the adaption of the light based on
the requirements of the inhabitant. Therefore, Grigore et al. [32] developed a
system, which uses psycho-physical information for lighting control. They used the
electro-dermal activity and the electrocardiogram. Hence, the heart rate and the skin
conductance are the chosen features to adapt the lighting control. During the tests
with two elderly subjects the scientists adapted the light intensity and color tem-
perature to research the effect on the psycho-physical information. Their results
show that it is possible to detect the state of relaxation or activation via the mea-
surement of skin conductance and heart rate. The scientists identified the skin
conductance response as the most useful parameter for activity estimation. This
approach suggests the possibilities of adaptive lighting systems to influence the
inhabitant based on the current condition.

4 Opportunities and Limitations

The presented scientific works give a meaningful overview of recent efforts spent
on health related building automation networks and control. Although the inhabi-
tant and his preferences are included in the majority of cases, the potential of
building automation networks towards healthcare is not yet fully utilized.

The combination of activity recognition and control algorithms for adaptive
building automation networks is not widespread. Moreover, varying physical and
mental health conditions and thereby different requirements regarding the indoor
environment are not in the focus of recent scientific work.

However, the inhabitant’s preferences are an important part of several approa-
ches for environmental control. Fanger [24] used findings from psychophysical
measurements to develop a method for air supply control years ago. Moreover, the
perception of thermal comfort is included in international guidelines, in terms of the
PMV [17]. The calculation of the PMV results in an estimation of the amount of
persons probably dissatisfied by the current environmental factors. These
human-centered approaches are used by several building automation networks for
the regulation of the environmental factors [26, 42, 44, 70].

Nevertheless, the approaches are limited because special requirements are not
concerned. It has been shown that the perception of life quality is directly influ-
enced by diseases like chronic obstructive pulmonary disease (COPD) [66]. Fur-
thermore, it is suggested that the self-reported health status from COPD patients is
related to the perceived indoor air quality, rather than to the measured pollutant
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concentrations [55]. However, current building automation networks for ventilation
control do not involve those circumstances.

Similar to the indoor air quality, the perception of the thermal environment
differs for example between healthy people and people with physical paralysis [53].
Accordingly, also building automation networks for heating applications mostly do
not involve special requirements of the inhabitant.

Hence, there are various opportunities to develop approaches for the design of
more adaptive and individual building automation networks. Beside medical effects
of environmental factors, the perception and its influence on the well-being and
health of the inhabitant should be considered. Therefore, psychophysical experi-
ments are useful to fill the knowledge gap concerning the special requirements on
environmental factors from people with impairments. The resulting design concept
for adaptive health related building automation networks is shown in Fig. 8. Initial
point of the design concept is the inhabitant and the research on the influence of
occurring physical or mental impairments on the perception and medical sensitivity
towards the environmental factors. The results from this research are afterwards
used to provide the building automation network with the inhabitant’s requirements.
These requirements are integrated into the control process of the building envi-
ronment. The control process analyses the current condition of the environmental
factors through the data retrieved from an adequate distributed sensor network.

Consequently, the differences between the requirements of the inhabitant’s
perception and medical condition and the current building environment are com-
pensated through actuator networks. This process leads to an adapted building
environment with adequate environmental factors based on the current condition of
the inhabitant. Finally, the adjusted environmental factors influence the well-being
and health of the inhabitant positively and potentially avoid the worsening of

Fig. 8 Concept for the
design of more adaptive and
health related building
automation networks

Building Automation and Control Systems … 111



present diseases. In summary, building automation networks potentially provide the
opportunity to establish far-reaching and all-encompassing healthcare applications.

Furthermore, the proceedings in communication and computation technologies
established an ideal basis for the monitoring of all relevant environmental factors
within a large-scale building automation network [3, 4, 10]. There exist multiple
examples for the design of large-scale sensor networks and big data handling. In
this context, machine learning models and computational intelligence are promising
methods.

Moreover, several approaches were developed to design a gateway connecting
the building automation system with medical support and relatives. Building
automation networks profit from the use of well tested communication standards,
which provide the possibility to involve multiple devices without complications.
These improvements open up new possibilities to more holistic applications for
healthcare in the building environment.

In this context, creating a connection between the home environments of the
neighborhood is an opportunity to build up a widespread network for healthcare.
The approach to connect the neighborhood buildings within a network is recently
followed by several scientific works addressing the energy efficiency [22, 47, 89].
The achieved proceedings and developed technologies can be adjusted to create a
network which fulfills all requirements of a networked healthcare neighborhood.
The advantage of a smart and connected neighborhood is that possibly needed aid is
always nearby. Moreover, in particular elderly inhabitants often suffer from
decreasing social activities. A connected neighborhood has the ability to build a
bridge to nearby neighbors and therefore to support social activities.

In addition, the connection of further systems, like medical devices or wearables,
with building automation networks is an opportunity to design enhanced healthcare
applications. Consequently, interfaces using robust and fast communication meth-
ods have to be used to establish a connection. In particular, clothes and watches,
which are proposed for fitness activities, are recently upgraded with sensors for the
monitoring of heart rate or skin conductance. Additionally, these devices often
contain gyroscopes for activity detection. Because of the design and the underlying
objective as sportswear and fitness watches, these products are not characterized as
medical product. Thus, the acceptance of healthcare applications containing smart
clothes or watches is potentially great. Beside the inconspicuousness, no help of
experts is required for positioning issues or similar problems. The wearable devices
are an opportunity to develop novel approaches in building automation control. The
sensor data is useful to react on physical activity or to monitor the inhabitant’s
health. In this context, Dittmar et al. [18] developed smart clothes and a glove to
monitor various physiological parameters. The devices are used for the research
into the physical reaction during different situations. Amongst others, the effect of
varying environmental factors towards the physical parameters is a current research
topic of the scientists.

In summary, there is a large potential to create more adaptive building
automation networks based on the recent proceedings in communication and
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computation methods. Specifically, an individualization of the regulation of the
environmental factors will lead to positive health effects.

5 Recommendations

During the design of building automation networks the compliance with commu-
nication standards is an important aspect. The building automation networks are
significantly easier to extend if they use open and established communication
protocols. Hence, in the case that additional nodes within the network are required,
sensors or actuators can be easily integrated. The practice to apply established
communication protocols simplifies the integration of other systems like wearables,
medical devices and car systems. The networking between the building automation
system and additional systems may lead to more complex and all-encompassing
applications addressing health related issues. An overview about the different
wireless machine-to-machine communication standards is given by Zhang et al.
[89]. The different standards are ordered in subnetworks with varying application
purposes. The ZigBee protocol is thereby dedicated to the building automation
networks, which is consistent with the examples described above.

Another challenge for large-scale building automation networks is the handling
of the huge amount of data, which are received from the multiple nodes. The
interpretation of the data requires intelligent algorithms to control the building
automation network based on the sensor data. Different already applied algorithms
are described by Dounis and Caraiscos [19]. In order to create an efficient building
automation network a computation method has to be chosen which is adequate
concerning the particular network components, the environment and the desired
application.

A complex challenge for the designers of building automation systems is to be
aware of all environmental factors and their dependencies. As mentioned before, the
perception of the environmental condition is influenced by several different factors
at the same time. In order to fulfill the requirements of the inhabitant as many as
possible factors should be considered in the control process.

Another aspect with relevance for the design of building automation networks is
the fact that scientific research reveals more and more knowledge about the effect of
environmental factors towards the inhabitant’s perception and health. Conse-
quently, there should be a novel tendency towards the development of more
adaptive building automation networks. In this context, the proceedings in the field
of psychophysics and medical research should be included during the design of
future building automation applications. Such applications presuppose the moni-
toring of the mental and physical health and current activity of the inhabitant.
Furthermore, existing standards concerning environmental conditions have to be
respected but should be enhanced with the gained knowledge from research.
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The regulation of the environmental factors via building automation networks to
create an adapted environment with positive health effects is potentially able to
reduce health related costs for the society.

These environments make a contribution to the decrease of occurring disease
symptoms and effect the avoidance of disease worsening positively. Positive
long-term health improvements may lead to a shortening of absence periods caused
by illness, which results in a relief of costs for health insurance funds.

The development of building automation applications with the focus on health
and comfort does not contradict energy issues automatically. In particular
presence-based systems are in many cases used for healthcare issues and have the
potential to consider the energy efficiency, because the systems conserve energy
within unoccupied areas. Accordingly, the top priority should not be assigned to
energy efficiency but rather to health related effects.

References

1. Aarts, M.P., Aries, M.B., Straathof, J., van Hoof, J.: Dynamic lighting systems in
psychogeriatric care facilities in the netherlands: a quantitative and qualitative analysis of
stakeholders responses and applied technology. Indoor and Built Environment
p. 1420326X14532387 (2014)

2. Aguirre, E., Led, S., Lopez-Iturri, P., Azpilicueta, L., Serrano, L., Falcone, F.: Implementation
of context aware e-health environments based on social sensor networks. Sensors 16(3), 310
(2016)

3. Ahmad, M.W., Mourshed, M., Yuce, B., Rezgui, Y.: Computational intelligence techniques
for hvac systems: A review. In: Building Simulation, vol. 9, pp. 359–398. Springer (2016)

4. Alemdar, H., Ersoy, C.: Wireless sensor networks for healthcare: A survey. Computer
Networks 54(15), 2688–2710 (2010)

5. Arcelus, A., Jones, M.H., Goubran, R., Knoefel, F.: Integration of smart home technologies in
a health monitoring system for the elderly. In: Advanced Information Networking and
Applications Workshops, 2007, AINAW’07. 21st International Conference on, vol. 2,
pp. 820–825. IEEE (2007)

6. Barroso, A., Den Brinker, B.: Boosting circadian rhythms with lighting: A model driven
approach. Lighting Research and Technology p. 1477153512453667 (2012)

7. Bentayeb, M., Norback, D., Bednarek, M., Bernard, A., Cai, G., Cerrai, S., Eleftheriou, K.K.,
Gratziou, C., Holst, G.J., Lavaud, F., et al.: Indoor air quality, ventilation and respiratory
health in elderly residents living in nursing homes in europe. European Respiratory Journal
pp. ERJ–00,824 (2015)

8. Berglund, B., Brunekreef, B., Knöppe, H., Lindvall, T., Maroni, M., Mølhave, L., Skov, P.:
Effects of indoor air pollution on human health. Indoor Air 2(1), 2–25 (1992)

9. Bose, S., Hansel, N., Tonorezos, E., Williams, D., Bilderback, A., Breysse, P., Diette, G.,
McCormack, M.C.: Indoor particulate matter associated with systemic inflammation in copd.
Journal of Environmental Protection 6(5), 566 (2015)

10. Chen, M., Wan, J., González, S., Liao, X., Leung, V.C.: A survey of recent developments in
home m2m networks. IEEE Communications Surveys & Tutorials 16(1), 98–114 (2014)

11. Cook, D.J., Krishnan, N.C., Rashidi, P.: Activity discovery and activity recognition: A new
partnership. IEEE transactions on cybernetics 43(3), 820–828 (2013)

114 M. Frenken et al.



12. Corno, F., Sanaullah, M.: Design-time formal verification for smart environments: An
exploratory perspective. In: Journal of Ambient Intelligence and Humanized Computing, vol.
5, pp. 581–599. Springer (2014). DOI 10.1007/s12652-013-0209-4

13. Corno, F., Sanaullah, M.: Modeling and formal verification of smart environments. Security
and Communication Networks 7(10), 1582–1598 (2014). DOI 10.1002/sec.794. URL http://
dx.doi.org/10.1002/sec.794

14. D. Groth, T. Skandier: Network + Study Guide: Exam N10-003: Fourth Edition. Sybex Inc.,
Alameda, CA (2006)

15. DIN EN 13779: Lüftung von Nichtwohngebäuden–allgemeine Grundlagen und Anforderun-
gen an Lüftungs-und Klimaanlagen. Berlin: Beuth (2005)

16. DIN EN ISO 16484-2:2016-08: Building automation and control systems (bacs) – part 2:
Hardware (iso/dis 16484-2:2016)

17. DIN ISO EN 7730: Ergonomie der thermischen Umgebungsanalyse, Bestimmung und
Interpretation der thermischen Behaglichkeit durch Berechnung des PMV-und des
PPD-Indexes und Kriterien der lokalen thermischen Behaglichkeit. German version of
EN ISO 7730: 2006-05 7730 (2005)

18. Dittmar, A., Meffre, R., De Oliveira, F., Gehin, C., Delhomme, G.: Wearable medical devices
using textile and flexible technologies for ambulatory monitoring. In: 2005 IEEE Engineering
in Medicine and Biology 27th Annual Conference, pp. 7161–7164. IEEE (2005)

19. Dounis, A.I., Caraiscos, C.: Advanced control systems engineering for energy and comfort
management in a building environmental review. Renewable and Sustainable Energy Reviews
13(6), 1246–1261 (2009)

20. Dovjak, M., Shukuya, M., Krainer, A.: Individualisation of personal space in hospital
environment. International Journal of Exergy 14(2), 125–155 (2014)

21. Eisenhauer, M., Rosengren, P., Antolin, P.: Hydra: A development platform for integrating
wireless devices and sensors into ambient intelligence systems. In: The Internet of Things,
pp. 367–373. Springer (2010)

22. Fadlullah, Z.M., Fouda, M.M., Kato, N., Takeuchi, A., Iwasaki, N., Nozaki, Y.: Toward
intelligent machine-to-machine communications in smart grid. IEEE Communications
Magazine 49(4), 60–65 (2011)

23. Fang, L., Wyon, D., Clausen, G., Fanger, P.O.: Impact of indoor air temperature and humidity
in an office on perceived air quality, sbs symptoms and performance. Indoor Air 14(s7), 74–
81 (2004)

24. Fanger, P.O.: Introduction of the olf and the decipol units to quantify air pollution perceived
by humans indoors and outdoors. Energy and buildings 12(1), 1–6 (1988)

25. Feldmeier, M., Paradiso, J.A.: Personalized hvac control system. In: Internet of Things (IOT),
2010, pp. 1–8. IEEE (2010)

26. Ferreira, P., Ruano, A., Silva, S., Conceicao, E.: Neural networks based predictive control for
thermal comfort and energy savings in public buildings. Energy and Buildings 55, 238–251
(2012)

27. Fong, A., Fong, B.: Home telemedicine system for chronic respiratory disease surveillance an
automated solution for disease control and management to combat the health impact of indoor
air pollution. In: Industrial Electronics and Applications (ICIEA), 2012 7th IEEE Conference
on, pp. 472–476. IEEE (2012)

28. Gadzheva, M.: Legal issues in wireless building automation: an eu perspective. International
Journal of Law and Information Technology 16(2), 159–175 (2008)

29. Gagge, A., Stolwijk, J., Saltin, B.: Comfort and thermal sensations and associated
physiological responses during exercise at various ambient temperatures. Environmental
Research 2(3), 209–229 (1969)

30. Gao, S., Hoogendoorn, M.: Using Evolutionary Algorithms to Personalize Controllers in
Ambient Intelligence, pp. 1–11. Springer International Publishing, Cham (2015)

Building Automation and Control Systems … 115

http://dx.doi.org/10.1007/s12652-013-0209-4
http://dx.doi.org/10.1002/sec.794
http://dx.doi.org/10.1002/sec.794
http://dx.doi.org/10.1002/sec.794


31. Gasparrini, A., Armstrong, B.: Time series analysis on the health effects of temperature:
advancements and limitations. Environmental research 110(6), 633–638 (2010)

32. Grigore, O., Gavat, I., Cotescu, M., Grigore, C.: Stochastic algorithms for adaptive lighting
control using psychophysiological features. International Journal of Biology and Biomedical
Engineering 2, 9–18 (2008)

33. Guillemin, A., Morel, N.: An innovative lighting controller integrated in a self-adaptive
building control system. Energy and buildings 33(5), 477–487 (2001)

34. Guillet, S., Bouchard, B., Bouzouane, A.: Safe and automatic addition of fault tolerance for
smart homes dedicated to people with disabilities. In: Ravulakollu, Khan, Abraham (ed.)
Trends in Ambient Intelligent Systems, Studies in Computational Intelligence, vol. 633,
pp. 87–116. Springer, Berlin, Heidelberg (2016). DOI 10.1007/978-3-319-30184-6_4

35. Jaakkola, H., Thalheim, B.: Architecture-driven modelling methodologies. Frontiers in
Artificial Intelligence and Applications (225), 97–116 (2010). DOI 10.3233/978-1-60750-
689-8-97

36. Hansel, N.N., McCormack, M.C., Belli, A.J., Matsui, E.C., Peng, R.D., Aloe, C., Paulin, L.,
Williams, D.L., Diette, G.B., Breysse, P.N.: In-home air pollution is linked to respiratory
morbidity in former smokers with chronic obstructive pulmonary disease. American journal of
respiratory and critical care medicine 187(10), 1085–1090 (2013)

37. Hodgson, L.E., Murphy, P.B.: Update on clinical trials in home mechanical ventilation.
Journal of thoracic disease 8(2), 255 (2016)

38. Huisman, E., Morales, E., van Hoof, J., Kort, H.: Healing environment: A review of the
impact of physical environmental factors on users. Building and environment 58, 70–80
(2012). DOI 10.1016/j.buildenv.2012.06.016

39. Ichimori, A., Tsukasaki, K., Koyama, E.: Measuring illuminance and investigating methods
for its quantification among elderly people living at home in japan to study the relationship
between illuminance and physical and mental health. Geriatrics & gerontology international
13(3), 798–806 (2013)

40. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003). DOI 10.1109/MC.2003.1160055

41. Khajenasiri, I., Virgone, J., Gielen, G.: A presence-based control strategy solution for hvac
systems. In: Consumer Electronics (ICCE), 2015 IEEE International Conference on, pp. 620–
622. IEEE (2015)

42. Kolokotsa, D., Tsiavos, D., Stavrakakis, G., Kalaitzakis, K., Antonidakis, E.: Advanced fuzzy
logic controllers design and evaluation for buildings occupants thermal–visual comfort and
indoor air quality satisfaction. Energy and buildings 33(6), 531–543 (2001)

43. Krishnan, N.C., Cook, D.J.: Activity recognition on streaming sensor data. Pervasive and
mobile computing 10, 138–154 (2014)

44. Kumar, A., Hancke, G.P.: An energy-efficient smart comfort sensing system based on the ieee
1451 standard for green buildings. IEEE Sensors Journal 14(12), 4245–4252 (2014)

45. Liu, W., Lian, Z., Liu, Y.: Heart rate variability at different thermal comfort levels. European
journal of applied physiology 103(3), 361–366 (2008)

46. Lloyd, E., McCormack, C., McKeever, M., Syme, M.: The effect of improving the thermal
quality of cold housing on blood pressure and general health: a research note. Journal of
epidemiology and community health 62(9), 793–797 (2008)

47. López, G., Moura, P., Moreno, J.I., De Almeida, A.: Enersip: M2M-based platform to enable
energy efficiency within energy-positive neighbourhoods. In: Computer Communications
Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on, pp. 217–222. IEEE (2011)

48. Melikov, A.K.: Advanced air distribution: improving health and comfort while reducing
energy use. Indoor air 26(1), 112–124 (2016)

49. Mendes, T.D., Godina, R., Rodrigues, E.M., Matias, J.C., Catalao, J.P.: Smart home
communication technologies and applications: Wireless protocol assessment for home area
network resources. Energies 8(7), 7279–7311 (2015)

116 M. Frenken et al.

http://dx.doi.org/10.1007/978-3-319-30184-6_4
http://dx.doi.org/10.3233/978-1-60750-689-8-97
http://dx.doi.org/10.3233/978-1-60750-689-8-97
http://dx.doi.org/10.1016/j.buildenv.2012.06.016
http://dx.doi.org/10.1109/MC.2003.1160055


50. Merz, Hansemann, Hübner: Building Automation: Communication systems with EIB/KNX,
LON und BACnet. Signals and Communication Technology. Springer, Berlin, Heidelberg
(2009). DOI 10.1007/978-3-540-88829-1

51. Moreno, M., Santa, J., Zamora, M.A., Skarmeta, A.F.: A holistic iot-based management
platform for smart environments. In: Communications (ICC), 2014 IEEE International
Conference on, pp. 3823–3828. IEEE (2014)

52. Pan, M.S., Yeh, L.W., Chen, Y.A., Lin, Y.H., Tseng, Y.C.: A wsn-based intelligent light
control system considering user activities and profiles. IEEE Sensors Journal 8(10), 1710–
1721 (2008)

53. Parsons, K.C.: The effects of gender, acclimation state, the opportunity to adjust clothing and
physical disability on requirements for thermal comfort. Energy and Buildings 34(6), 593–
599 (2002)

54. Peng, C., Qian, K., Wang, C.: Design and application of a voc-monitoring system based on a
zigbee wireless sensor network. IEEE Sensors Journal 15(4), 2255–2268 (2015)

55. Piro, F.N., Madsen, C., Næss, Ø., Nafstad, P., Claussen, B.: A comparison of self reported air
pollution problems and gis-modeled levels of air pollution in people with and without chronic
diseases. Environmental Health 7(1), 1 (2008)

56. Rahmani, A.M., Thanigaivelan, N.K., Gia, T.N., Granados, J., Negash, B., Liljeberg, P.,
Tenhunen, H.: Smart e-health gateway: Bringing intelligence to internet-of-things based
ubiquitous healthcare systems. In: Consumer Communications and Networking Conference
(CCNC), 2015 12th Annual IEEE, pp. 826–834. IEEE (2015)

57. Ransing, R.S., Rajput, M.: Smart home for elderly care, based on wireless sensor network. In:
Nascent Technologies in the Engineering Field (ICNTE), 2015 International Conference on,
pp. 1–5. IEEE (2015)

58. Raynal, M.: A look at basics of distributed computing. In: 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS), pp. 1–11 (2016). DOI 10.1109/
ICDCS.2016.109

59. Robol, F., Viani, F., Giarola, E., Massa, A.: Wireless sensors for distributed monitoring of
energy-efficient smart buildings. In: Microwave Symposium (MMS), 2015 IEEE 15th
Mediterranean, pp. 1–4. IEEE (2015)

60. Rosenthal, N.E., Sack, D.A., Carpenter, C.J., Parry, B.L., Mendelson, W.B., Wehr, T.A.:
Antidepressant effects of light in seasonal affective disorder. Am J Psychiatry 142(2), 163–
170 (1985)

61. Sánchez-Pi, N., Mangina, E., Carbó, J., Molina, J.M.: Multi-agent System (MAS) Applications
in Ambient Intelligence (AmI) Environments, pp. 493–500. Springer, Berlin, Heidelberg
(2010)

62. Shikder, S., Mourshed, M., Price, A.: Therapeutic lighting design for the elderly: a review.
Perspectives in public health 132(6), 282–291 (2012)

63. Skubic, M., Guevara, R.D., Rantz, M.: Automated health alerts using in-home sensor data for
embedded health assessment. IEEE journal of translational engineering in health and medicine
3, 1–11 (2015)

64. Smolders, K.C., De Kort, Y.A., Cluitmans, P.: A higher illuminance induces alertness even
during office hours: Findings on subjective measures, task performance and heart rate
measures. Physiology & Behavior 107(1), 7–16 (2012)

65. Sprint, G., Cook, D., Fritz, R., Schmitter-Edgecombe, M.: Detecting health and behavior
change by analyzing smart home sensor data. In: 2016 IEEE International Conference on
Smart Computing (SMARTCOMP), pp. 1–3. IEEE (2016)

66. Stahl, E., Lindberg, A., Jansson, S.A., Rönmark, E., Svensson, K., Andersson, F., Löfdahl, C.
G., Lundbäck, B.: Health-related quality of life is related to copd disease severity. Health and
quality of life outcomes 3(1), 1 (2005)

67. Sundell, J., Levin, H., Nazaroff, W.W., Cain, W.S., Fisk, W.J., Grimsrud, D.T., Gyntelberg,
F., Li, Y., Persily, A., Pickering, A., et al.: Ventilation rates and health: multidisciplinary
review of the scientific literature. Indoor air 21(3), 191–204 (2011)

Building Automation and Control Systems … 117

http://dx.doi.org/10.1007/978-3-540-88829-1
http://dx.doi.org/10.1109/ICDCS.2016.109
http://dx.doi.org/10.1109/ICDCS.2016.109


68. Surie, D., Laguionie, O., Pederson, T.: Wireless sensor networking of everyday objects in a
smart home environment. In: Intelligent Sensors, Sensor Networks and Information
Processing, 2008. ISSNIP 2008. International Conference on, pp. 189–194. IEEE (2008)

69. Suryadevara, N.K., Mukhopadhyay, S.C.: Wireless sensor network based home monitoring
system for wellness determination of elderly. Sensors Journal, IEEE 12(6), 1965–1972 (2012)

70. Taheri, M., Schuss, M., Fail, A., Mahdavi, A.: A performance assessment of an office space
with displacement, personal, and natural ventilation systems. In: Building Simulation, vol. 9,
pp. 89–100. Springer (2016)

71. Tapia, D.I., Alonso, R.S., García, Ó., Corchado, J.M., Bajo, J.: Wireless sensor networks,
real-time locating systems and multi-agent systems: The perfect team. In: FUSION, vol. 2013,
pp. 2177–2184 (2013)

72. Torresani, W., Battisti, N., Maglione, A., Brunelli, D., Macii, D.: A multi-sensor wireless
solution for indoor thermal comfort monitoring. In: Environmental Energy and Structural
Monitoring Systems (EESMS), 2013 IEEE Workshop on, pp. 1–6. IEEE (2013)

73. Tunca, C., Alemdar, H., Ertan, H., Incel, O.D., Ersoy, C.: Multimodal wireless sensor
network-based ambient assisted living in real homes with multiple residents. Sensors 14(6),
9692–9719 (2014)

74. Valera, A.C., Tan, H.P., Bai, L.: Improving the sensitivity of unobtrusive inactivity detection
in sensor-enabled homes for the elderly. In: 2016 IEEE International Conference on Pervasive
Computing and Communication Workshops (PerCom Workshops), pp. 1–6. IEEE (2016)

75. Valiente-Rocha, P.A., Lozano-Tello, A.: Ontology and SWRL-Based Learning Model for
Home Automation Controlling, pp. 79–86. Springer, Berlin, Heidelberg (2010)

76. Van Hoof, J., Schoutens, A., Aarts, M.: High colour temperature lighting for institutionalised
older people with dementia. Building and Environment 44(9), 1959–1969 (2009)

77. VDI 3814:2009-11: Building automation and control systems (bacs)
78. Veitch, J., Newsham, G., Boyce, P., Jones, C.: Lighting appraisal, well-being and

performance in open-plan offices: A linked mechanisms approach. Lighting Research and
Technology 40(2), 133–151 (2008)

79. Wan, J., Li, D., Zou, C., Zhou, K.: M2M communications for smart city: an event-based
architecture. In: Computer and Information Technology (CIT), 2012 IEEE 12th International
Conference on, pp. 895–900. IEEE (2012)

80. Wan, J., OGrady, M.J., OHare, G.M.: Dynamic sensor event segmentation for real-time
activity recognition in a smart home context. Personal and Ubiquitous Computing 19(2), 287–
301 (2015)

81. Wargocki, P., Sundell, J., Bischof, W., Brundrett, G., Fanger, P.O., Gyntelberg, F., Hanssen,
S., Harrison, P., Pickering, A., Seppänen, O., et al.: Ventilation and health in non-industrial
indoor environments: report from a European multidisciplinary scientific consensus meeting
(euroven). Indoor Air 12(2), 113–128 (2002)

82. Wen, Y.J., Agogino, A.M.: Wireless networked lighting systems for optimizing energy
savings and user satisfaction. In: Wireless Hive Networks Conference, 2008. WHNC 2008.
IEEE, pp. 1–7. IEEE (2008)

83. World Health Organization and others: WHO guidelines for indoor air quality: selected
pollutants. WHO (2010)

84. Yang, C.T., Liao, C.J., Liu, J.C., Den, W., Chou, Y.C., Tsai, J.J.: Construction and application
of an intelligent air quality monitoring system for healthcare environment. Journal of medical
systems 38(2), 1–10 (2014)

85. Yao, Y., Lian, Z., Liu, W., Jiang, C., Liu, Y., Lu, H.: Heart rate variation and
electroencephalograph–the potential physiological factors for thermal comfort study. Indoor
air 19(2), 93–101 (2009)

86. Ye, J., Stevenson, G., Dobson, S.: Kcar: A knowledge-driven approach for concurrent activity
recognition. Pervasive and Mobile Computing 19, 47–70 (2015)

87. Yeh, L.W., Lu, C.Y., Kou, C.W., Tseng, Y.C., Yi, C.W.: Autonomous light control by
wireless sensor and actuator networks. IEEE Sensors Journal 10(6), 1029–1041 (2010)

118 M. Frenken et al.



88. Zentralverband Elektrotechnik- und Elektronikindustrie e.V.: Handbuch Geb¨audesys-
temtechnik: Grundlagen, 4 edn. Europäischer Installations Bus. ZVEI (1997)

89. Zhang, Y., Yu, R., Xie, S., Yao, W., Xiao, Y., Guizani, M.: Home m2m networks:
architectures, standards, and qos improvement. IEEE Communications Magazine 49(4), 44–
52 (2011)

90. Zhou, P., Huang, G., Zhang, L., Tsang, K.F.: Wireless sensor network based monitoring
system for a large-scale indoor space: data process and supply air allocation optimization.
Energy and Buildings 103, 365–374 (2015)

Building Automation and Control Systems … 119



Part II
Data Quality and Large-Scale Machine
Learning Models for Smart Healthcare



Electronic Health Records: Benefits
and Challenges for Data Quality

Abdul Kader Saiod, Darelle van Greunen and Alida Veldsman

Abstract Data quality (DQ) issues in Electronic Health Records (EHRs) are a
noticeable trend to improve the introduction of an adaptive framework for inter-
operability and standards to large-scale health Database Management Systems
(DBMS). In addition, EHR technology provides portfolio management systems that
allow Health Care Organisations (HCOs) to deliver higher quality of care to their
patients than possible with paper-based records. The EHRs are in high demand for
HCOs to run their daily services as increasing numbers of huge datasets occur every
day. An efficient EHRs system reduces data redundancy as well as system appli-
cation failures and increases the possibility to draw all necessary reports. Improv-
ing DQ to achieve benefits through EHRs is neither low-cost nor easy. However,
different HCOs have several standards and different major systems, which have
emerged as critical issues and practical challenges. One of the main challenges in
EHRs is the inherent difficulty to coherently manage incompatible and sometimes
inconsistent data structures from diverse heterogeneous sources. As a result, the
interventions to overcome these barriers and challenges, including the provision of
EHRs as it pertains to DQ will combine features to search, extract, filter, clean and
integrate data to ensure that users can coherently create new consistent data sets.
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1 Introduction

Electronic Health Records (EHRs) refer to implemented structured digital mani-
festations of real-time, patient-centred health records [1]. EHRs are considered as
one of health care’s innovation heuristic items and are widely adopted over HCOs
and are becoming an important mechanism to perform their daily services [32, 40].
The secure EHR systems provide information available instantly and accurately to
the authorized users, so user can coherently create new consistence of data sets [28,
61]. In general, the EHRs is the problem of combining health data that reside at
different sources and providing accurate, comprehensive up-to-date patient history
[26, 58]. Improvements in the data quality have brought about efficiency, scalability
and safety in the implementation of a large scale healthcare DBMS [30]. Health
data can therefore be composed, managed by authorised user and consulted by
authorised providers from across multiple HCOs nation or global wide and can be
shared across them. The EHRs include an enormous range of patient data set,
including patient details, history, references, medication, immunisation, allergies,
radiology report including images, laboratory data and test reports, admission and
discharge details, personal statistics like Body Mass Index (BMI), blood pressure,
sugar level etc. These datasets are electronically stored in database as narrative (free
text) or encrypted data. The EHR databases are structured to store accurately and
securely health information over the time. It can reduce data replication risk as all
access points are retrieving data from the main data server and as well as reduces
lots of paper work. The principle of data replication is to share information between
multiple resources. The replication reduces fault tolerance, increase high accessi-
bility and reliability. Many distributed database systems are using replication to
avoid single access point failure and high traffic. It can be possible to dynamically
improve load-spreading and load-balancing performance by providing replication
[63]. Replication supports restoring replicated databases to the same server and
database from which the backup was created [4]. Backup is one of the important
processes of database server routine maintenance plans that, to copying and
archiving data to an external device. So, backup data can be used to restore the
original information after any data loss event. Now a day, electronic data is
searchable even from heterogeneous sources and possible to combine them into a
single data set. EHRs are even more effective when analysing long term patient
medical history [22]. Due to EHRs data being tractable and easy to identify patient
preventive visits or screening information, monitor the overall progress, effectively
than the paper-based record in HCOs. EHRs improve patient care, increase patient
participation, improve care coordination, improve diagnostics and patient out-
comes, practice efficiencies for cost savings and allow more case studies for
research purposes. Despite the many advantages and functionalities of EHR sys-
tems, there are still a considerable number of disadvantages associated with this
technology [7]. One of the key concerns is the quality of the data, which includes
inconsistency, privacy protection, record synchronisation, lack of standardised
terminology, system architecture indexing, deficient standardised terminologies.
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The productivity may drop temporally with associated EHRs adaptation as work-
flows have changed. Several long-standing consequences are emerging from the
critical issue of EHRs adaptation [3]. Therefore, it is of utmost importance to advise
healthcare organisations to choose the right EHR systems and provide proper setup
to establish the complete system to become successful users of EHR systems [42].
Healthcare organizations that are using tangible, augmented EHR systems in their
facilities can make better decisions based on the comprehensive information
available to them. Improving in healthcare distribution systems are becoming the
most consequential technology for medical innovation of all the times. EHR sys-
tems exhibit promising potential, which will play the crucial role in HCOs to ensure
providing in excellent patient care service, quality management, accurate infor-
mation, perfect diagnosis, patient information safety, disease management and
investigation as advance innovation deftness [56]. In particular, the chapter focuses
on large scale DBMS, the data quality introduction of smart interfaces and perfect
data mapping in traditional EHR systems as well as mobile and cloud computing.
This implies that integrated adoptive EHRs can show inconsistencies, because the
data structure and standard from different HCOs are different.

2 Electronic Health Records Background

In our daily lives, data inconsistency may cause with uncertain incidents, if
unstructured data composed in the data collection process [35]. An example a web
healthcare domain page based on largely composed with free text data. Another
example, medical data collections process methods are paper-based and/or archive
information.

Information may collect by the data retrieval system and index them by non-text
data, so that user can access and find data using special keywords to obtain accurate
data sets [41].

Using the non-text data to indexing large text, may lead the data structure design
in EHR systems of the other efficient way for accessing and searching information
as there are a vast amount of non-text data available [60].

The four latest methods to detect and reduce data inconsistency are:

1. Rough set theory [20];
2. Logic analysis of inconsistent data method [13];
3. Corresponding relational variables of functional dependencies [8];
4. Fuzzy multi-attribute theory [2].

Fuzzy multi-attribute method has ideal performance of the inconsistence data
and it can obtain the highest average level of correct information than other solu-
tions [19]. A method for reducing data inconsistency has to be combined with a
method for data integration to coherently solve the data inconsistency and the data
integration problems simultaneously. The domain ontology may effectively
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combine data from diverse heterogeneous sources for data integration. The existing
ontology data integration methods are, however, not sufficient to implement
fuzzy-ontology [24]. The EHRs information exchange systems architecture is
shown in Fig. 1.

The benefits of EHRs are numerous when compared to the physician’s time and
finances, the health benefits for patients and the impact on the environment. The
sparse health data may have multi dimensions and it is practically challenging to
investigate and analyse for a different reasons such as the heterogeneous features of
the system, encompassing quantitative data as well as the categorical information.
By the result the random systematic error effect badly and reduces the data quality.
Most data integration methods are sufficiently robust to random systematic error for
large data sets of input and process. This is commonly identical to bring them on a
same scale when using pre-processing principal component analysis and data
simplification algorithm [47]. The EHRs systems framework is shown in Fig. 2.

Data quality issues might include patient incorrect unique identification number.
Other examples, misplace name, incorrect gender, incorrect date of birth, numeric
diagnosis code written in text or saved wrong radiology image, incorrect inserting
standard code, such as the National Drug Catalog (NDC) for drugs and derailing
bulk analysis (e.g. ICD10 code: International Classification of Diseases Tenth
Revision or CPT code: Current Procedural Terminology). Data quality refers to the
concepts with immensely large-scale multi dimensional in DBMS, which include
not only data search, validation, extract and verification, but also the appropriate-
ness of use to take us even further beyond the traditional concerns with the accuracy
of data. The EHR systems design, data structure, aggregation algorithm, simplifi-
cation methodology and reporting mechanisms highly reflect on data quality.

Fig. 1 EHRs information exchange systems architecture
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3 Different Network Architecture and Cloud Computing

In co-operating distributed health information systems and networks, the EHR
Systems provided as a lifelong patient record advance towards core applications [6].
Several researchers have shown that only the arbitrary access to patient health
information are proximal motive of accurate decision in health care during
decision-making and the effective communication between patient care team
members [14]. The number of hospitals and clinics are increasing every day, as well
as increasing the health information. Health information has digitalised and
archived their health record with the universal use of computer and information
technology network. There are vast types of wired and wireless network layout,
consisting of the type of device including hardware, software, connectivity proto-
cols and communication mode of transmission. It also includes knowledge about
the types of networks grouped according to types such as LAN, MAN and WAN.
Such as cloud computing, that refers as fast computation and its capability to store
large storage space. Now a day cloud computing is a convenient, on-demand
network. It is also configurable computing resources to a share group network such
as, application, service, server and archive. With the minimal managerial effort
cloud computing can be rapidly provided and released the higher productivity.
The EHR system can be integrated into cloud computing. Basically, smaller hos-
pital and clinic has limited resources. Cloud computing is to facilitate for those
smaller HCO with adequate electronic medical record storage space to provide the
exchange and sharing of electronic medical records [12]. Cloud computing has high
impact on parallel distributed grid computing systems. The flexibility for the further
development of these techniques is recommendable. It is very effective location

Fig. 2 EHRs systems framework
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independent technology as well as to enhance the user experiences over the
Internet. Now a day, it can provide services for various application scenarios. More
and more applications are migrated onto the cloud platform [25].

Mobile Pervasive Healthcare (MPH) service is another innovative technology in
EHR system that can provide a wide range of location independent service.

Fig. 3 Large-scale cross platform EHRs system architecture overview
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Providing great benefits to both patients and medical personnel of MPH service
includes monitoring, telemedicine, location independent medical services, emer-
gency management and response, and pervasive access to healthcare information
[39]. There are three specific goals in mobile healthcare systems:

1. The availability location independent of EHRs applications;
2. The location independent health information;
3. The anytime and the invisibility of computing.

There are two categories of EHRs systems: (i) Cloud based technology;
(ii) Client server based technology;

Computer with internet connection in order to access via the web, the online data
can be stored externally. The cloud computing application allows users on-demand
access and provide by third party organisation using the internet. Large-scale
cross-platform EHRs system architecture overview is shown in Fig. 3.

There are six benefits of cloud-based systems namely: security, privacy, cost
effectiveness, accessibility, reduced IT requirements and it grows with you [29].
The significant risks of each HCO will face when transitioning to cloud-based
hosting. The main disadvantage of cloud computing is all data, security, avail-
ability, maintenance and control sits to a third party so HCOs have absolutely no
control of it. Trusting to the third party service provider is one of the important
factors for cloud computing and it takes on a whole different meaning [51]. Despite
all the barriers, it’s important to remember that cloud health computing paradigms
are still under development, but with a lot of chances of being a revolution in a lot
of fields. In the near future there will be more services on offer and the development
will be greater.

4 The Barriers and Threats of Electronic Health Records

The overarching barriers to EHRs framework are to tackle the indigent quality of
data to provide a single, centralised and homogeneous interface for users to effi-
ciently integrate data from diverse heterogeneous sources. Data quality issues may
arise when capturing raw data into EHR systems. The data flow process has several
factors that influence the quality of information obtained from such datasets at a
later stage. The purpose of the data collection processes are data quality manage-
ment functions include the data flow process application as well as data accumulate,
warehousing process systems used to archive data and analyse the process of
translating data into meaningful information. The data quality may seriously affect
of patient care and even could lead to the death of the patient. This is the key
challenges of eradicating treatment errors in the health service process. As patient
safety is the key issue in health care service, using effective EHR systems inte-
gration and implementation can improve the data quality to reduce medical error.
The main consideration for health data includes data accuracy and accessibility, as
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well as data comprehensiveness, currency, consistency, granularity, precision, rel-
evancy definition, and timeliness. Data quality will empower the tendency of EHRs
systems, this emphasises the magnificence of implementing a design-oriented
definition. The dimensions of the existing EHRs framework are basically based on
historical reviews, understanding intuitive and comparative experiment.

The EHRs structures of an orientation usually vary from framework to frame-
work. For example, the actual use of the data depends on the definition of data
quality. It therefore data quality also depends on the application type and what may
be deliberated in one application as good quality, but may not good for another.
Data quality has emerged as a crucial issue in many application domains. The
objective of data quality becomes even more important in the case of patients who
need to be identified and notified about important changes in drug therapy or in the
case of merging systems of different and similar organisations. The consolidation of
information from diverse sources to provide a unified view of an organisation’s data
assets is technically challenging. The difficulty involves how to practically combine
data from disparate, incompatible, inconsistent and typically heterogeneous sour-
ces. The other difficult objective in EHRs systems is that data has a structure, which
is usually complex and cannot be treated as a simple string of bytes. Often data
inconsistency occurs because the data structures may depend on other structures,
therefore on a distributed system such data management is very difficult. Another
significant aspect of a health data integration system is data mapping. The system
must able to materialise data that are mapped from diverse source. Optimally using
routinely collected data increases poor quality data, which automatic mechanism
would raise the need of the semantic interoperability as well as quality data mea-
surement [34]. Quality improvement and error reduction are two of the justifications
for healthcare information technologies. Despite their concerns, HCOs are generally
very interested in adopting and implementing EHR systems. A major concern
of success of implementing is the large gap between planning for the introduction of
EHR systems and medical maintenance system in hospitals. The primary purpose of
the successful EHR systems implementation depends on these application systems
and maintains the application significantly to achieve the benefit desired and
expected. The real barriers causing this gap may not be the availability of tech-
nology to the HCOs, as information systems are actually becoming available almost
everywhere, but the deficiency in providing proper support before, during and after
implementation of the EHR system. The financial constrains are another important
matter of the migration from the paper-based health record to an EHR system.
Generally there are two principle barriers and challenges in the method of pros-
perous EHR system integration, namely:

1. Human barriers (e.g. professional and beliefs);
2. Financial barriers (e.g. available money or funding opportunities).

The human factors become even more important as the benefits are only
anticipated after the successful integration and implementation of the EHRs sys-
tems. The information security is the most important for the quality health care
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service. It improves the potential of EHRs as well as accuracy, accessibility, pro-
ductivity, efficiency and to reducing the costs of healthcare and medical errors.
Most HCO administrators are aware that it is time consuming to migrate from paper
base record system to an EHR system. It is also important to change the provider
behaviors and health care practitioner with regard to electronic healthcare systems,
but time is also needed. Few things also need to be addressed regarding to suc-
cessful implementation of an EHR system, such as attitudes, impressions and
beliefs. The most important factor is essential to understand the reasons for and the
purpose of the implementation of EHR systems in the whole subject [46]. Research
and statistics showed EHRs estimated potential savings as well as the costs of the
widespread adoption of EHRs systems. Important health and safety benefits were
modelled and concluded that effective EHR system implementation and network-
ing, could improve healthcare efficiency and safety. It also showed that Health
Information Technology (HIT) could enhance the prevention and management of
chronic diseases, which could eventually double the savings, while increasing
health and other social benefits. The feasibility of introducing an EHR system to
improve data quality is the meaningful association between the heterogeneous data
source and the integration into HCOs to improve healthcare service. The integrity
constraints are specified in the global scheme of data mapping, which can be used to
promote EHRs data quality as well. The uncertainties are the other important
integration aspect in EHRs that should be minimised to improve data quality. The
most important barriers and constraints to high quality datasets in order to promote
must solved the integration of EHR systems and electronic health record, to achieve
maximum benefit of the healthcare services. Finally, it is noted that the query
answer in the context of data exchange, contributes to data quality.

5 Literature Review

Existing literature shows that several techniques and major EHRs systems currently
exist to deal with data quality issues, which historically have faced DBMS. After a
profoundly analysis of various cutting-edge commercial accomplishment existing
on the software market and an intensive review of literature, it appears there are still
some limitations to practical tools for EHRs systems. Physically access of diverse
information sources of robust support is provided, but only if these are standard
database structure tables. At the moment, there are no automatic mechanisms to
solve existing integration problem [43]. Peer-to-Peer (P2P) topology is used when
system-individual participants contact a localised server to search other data and to
contact other participants directly, to exchange information or share resources.
However, Gribble et al. [23] stated that generic P2P systems often do not take care
of the semantics of the data exchanged. This is a serious drawback, especially
considering that when the network grows, it becomes hard to predict the location
and the quality of the data provided by the system. Tania et al. [57] propose a
mediated query service, which is a system that is used for configuring mediation
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systems for building and maintaining multi-dimensional multimedia data ware-
houses. Considerable disadvantages are, however, involved in moving data from
multiple, often highly disparate data sources, into a single data warehouse. This
translates into long implementation time, high cost, lack of flexibility, outdated
information and limited capabilities.

A subsequent representation by Gilson et al. [21] for data integration was pro-
posed using middleware architecture. The middleware can encompass dynamic
scheduling, performance management and transport services for distributing sci-
entific visualisation tasks in a grid environment. Middleware, however, has a high
development cost, the implementation thereof is time and resource consuming, few
satisfying standards exist, its tools are not good enough and often threatens
real-time performance of a system and middleware products are not very mature.
Load-balancing issues, limited scalability, low levels of fault tolerance and limited
programmer access area, for example, are some of the main disadvantages of
middleware.

Combining Aggregation Operators (AO) and fuzzy Description Logics (DL),
Vojtáš [59] presents a fuzzy DL with general AOs. The expressiveness of the logic
is, however, very limited. An additional evaluation of this strategy was also done
for data and multimedia sources using an ontology-based data integration system.
A Mediator Environment for Multiple Information Sources (MOMIS) data inte-
gration system was proposed using a single ontology approach to overcome this
limitation. The system combines the MOMIS framework with the STASIS
framework. MAFRA [38] is an ontology mapping framework for distributed
ontology, which supports an interactive, incremental and dynamic ontology map-
ping process in the semantic web context. Using ontology integration, the conflicts
in the result can be solved by satisfying the consistence criterion. An approximation
technique has been identified as a potential way to reduce the complexity of rea-
soning over ontology’s in expressive languages such as OWL 1 DL and OWL 2 DL
[49]. A vast amount of research concerning EHR mechanisms has been carried out
over the last few years. Fuzzy-ontology is moving forward to express fuzzy
properties, membership functions and linguistic hedges [11]. The fuzzy-ontology
definitions that are found in the literature are quite naturally influenced by fuzzy set
theory, fuzzy logic and existing ontology languages. Shaker et al. [55] performed an
exercise using fuzzy-ontology integration to solve the problem of equivalently
matching concepts to avoid pairs of mismatching concepts and conflicts regarding
multiple entities to reduce data inconsistency. Another related work was performed
by Sanchez et al. [52], which considers fuzzy-ontology with general quantifiers that
could be used for some type of quantifier-guided aggregation.

Cristiane et al. [15] used a DISFOQuE system to analyse the fuzzy-ontology to
perform semantic query expansions. This is an ontology-based data integration
system for data and multimedia sources, which is essentially performed manually
by the integration designer. A few studies handle fuzziness and give support for
uncertainty in their conceptual models for multimedia materials. The studies by
Aygün et al. [5] and Özgür [45] try to handle this uncertainty by supporting fuzzy
attributes. Different types of databases exist, but the type most commonly used in
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healthcare is the Online Transaction Processing (OTP) database. For the most part,
healthcare databases are used as the foundation for running the many transactional
system databases, which structures accommodate the creation of a wide range of
transactional applications such as EHRs lab systems, financial systems, patient
satisfaction systems, patient identification, data tracking, administration, billing and
payment processing and research. The EHRs database servers are to replace the old
paper-base documents, files, folders and filing cabinets. Data is therefore now more
convenient and current. It’s obvious that the benefits of EHRs are equal to the
benefits of the applications that run on them. Significant advances in automation
and standardisation of business and clinical processes can be attributed to these
applications and databases. With EHR databases, data can also be stored externally
and backed up in a secure place to prevent data loss. Because front-end software
can provide tip text and enforce data integrity, the back-end data can therefore
become more standardised and accurate. Lastly, because the data is electronic, it
allows for quicker processing of typical transactions such as lab results and pay-
ment claims. One of the biggest benefits of all these databases is the amount of data
healthcare organisations have been able to capture. They now have huge data stores
that can be used to inform better and more cost-effective care. EHRs focus on
strategies for combining data residing at different heterogeneous sources and pro-
viding the users with a unified view of the data. A vast amount of work has been
developed in the EHRs area and some interesting results have shown the effec-
tiveness of this approach. It has, however, not been extensively evaluated with
regard to ease of data access to dynamic her systems and their widely implemen-
tation over HCOs. The aim is to avoid the theoretic pitfalls of monolithic ontolo-
gies, facilitate interoperability between different and independent ontologies and
provide flexible EHRs capabilities. In addition, not all the existing EHRs integra-
tion techniques are sufficient, as many healthcare organizations are still capturing
their data in spreadsheets and often mismatch information and formats, which cause
incorrect report generation and reduce the quality of the data. There is thus a need to
develop or use an efficient EHRs system, using a template screen, which is effi-
ciently mapped to the online transaction-processing database. An important
objective of EHRs systems is the way it needs to be adapted to address the data
quality issue to achieve all possible benefits and address, all problems described
above.

6 Electronic Health Records Data Structure

Most HCOs data are highly structured and heavily depend on claims data, but
absence the prosperous scope provided by health data. Furthermore, leverage health
data basically depend on vendor-delivered implementation, communication, such as
a Continuity of Care Documents (CCDs) is the few analytics applications. They
also stick limitations via both design and integration that make them insufficient for
populating health and productivity analytics, until CCDs offer a consolidated and
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expedient way to implement electronic health data. Methods for data capturing in
EHR systems include direct capturing, capturing on the screen template, scanning
hand written documents or importing transcribed data from other information
systems in different data exchange formats, such as JSON, XML, CSV, TXT,
REBOL, Gellish, RDF, Atom, YAML and other data exchange technologies. Each
one of these methods has strengths and weaknesses that may have an impact on data
quality. Only the quality of the data can ensure that healthcare providers have
confidence in EHRs systems to deliver the best service possible. To capture, store as
well as develop and implement structured health data to avoid data quality gap must
use the integrated analysis program. In order to effectively solve the challenge of
data quality gaps, there is a need to discuss further relevant points. Valid data
capturing techniques require that when a clinical encounter takes place and provider
and/or automated systems insert information into an EHR system, it is for example,
captured accurately into the EHR of a patient. Valid data structures need to be used
both in the way in which data is captured as well as storage of the data in an
appropriate format and location. If an integer is captured in a VARCHAR field, its
feasibility for reporting, analysis and quality will be reduced, even if it is captured
in a structured field. If the template or screen structure is not properly mapped or
configured in the database, the value may still be stored in an incongruous location.
The analysis or reporting purposes for this information is extracted from the server
and made instant and available to authorised user. There is no needing include
extracting all pertinent information when it is back end database connection. How
data will extract or how data will select from the query table, are the key factors in
how the exchange of create the data set in how the exchange tackle impacts on the
application quality of the outgoing data quality. It is of importance to identify the
point at which data quality gaps are introduced. This will in turn lead to focused
initiatives to eliminate such gaps.

Data security is a key concern in healthcare interoperability whether paper-based
or electronic health records. According to the human rights, every individual can
keep personal data confidential and not being disclosed for surveillance or inter-
ference from another organisation or even to the government. All confidential
information should be protected and encrypted while data that is shared as a result
of the clinical relationship [50]. Patient data can only be released when the patient
gave his/her consent or when stipulated by law. Information may disclose infor-
mation sharing only if the patient is unable to do so because of age or mental
incapacity, data sharing decision should be made by the legal representative or legal
guardian of the patient. The information is considered confidential and must be
protected when a result the query result of clinical cooperation. The identity of the
patient cannot be ascertained when information is populated, for instance, the
number of patients with HIV in a government hospital, does not fall in this
denomination [50].
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7 Electronic Health Records Data Synchronisation

The gradual harmonisation of the data overtime, so called data synchronisation is
the procedure of establishing consistency between information from a diverse
source to the destination data server and vice versa. Considering large-scale com-
puting, dataflow between multi-user clinicians and one central server, definitely
entails a multi-way synchronisation model. Since, the server must send a client the
data previously created by other clients. The patient is not conscious of the entire
data structure as it is the server data structure algorithm to figure out the modifi-
cations so called he rights management rules. In many cases, data should be
available in more than one directory server using three different techniques for
achieving this. This includes a directory replication protocol, direct synchronisation
between a pair of directory servers and indirect synchronisation between two or
more servers. Replication has the best operational characteristics but the lowest
functionality, which can differ between the various techniques. The majority of
replication techniques entail indirect synchronisation, which has the highest func-
tionality and the poorest operational characteristics, while direct synchronisation is
intermediate. There are numerous reasons why data in one directory server needs to
be made available in another directory server. These include availability, load
sharing, locality, reaching data on other servers, data access restrictions as well as
data mapping. Figure 4 depicts the two-way data synchronisation workflow model:

Generally synchronisation between a client and a server follows five steps:

1. The data administrator rules prepares the data for a “go/no-go” response when
the authorised user initialises the request;

Fig. 4 Two way data synchronisation workflow
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2. The server algorithm rules checks the user authentication to accomplish whether
synchronisation is required and finally checks for all possible conflicts;

3. The authorised user submit the data trees;
4. Before to nodes and stores data the server assigns new IDs to trees;
5. The server uniquely identify the data in the network to these collective IDs and

the collective database.

It should be noted that only the authorised user allows viewing the sent to the
client according to the accurate management rules. Finally, before replacing the
local IDs with collective ones and storing the new trees to the server, the authorised
user updates it’s to local database [17]. The overall practice shows that EHRs and
the ability to exchange health information electronically can help HCOs to provide
higher quality and safer care for patients, while creating tangible enhancements for
healthcare. EHR systems thus enable healthcare providers to not only improve the
care management plan for their patients, but to also provide improved healthcare
through accurate, up-to-date and complete information sets about patients. This
enables quick access to patient records for an improved and coordinated care plan.
This is achieved by securely sharing electronic information with patients and other
clinicians that in turn helps providers to diagnose more effectively and thus reduce
the medical errors. It contributes to the provision of safer care, improved patient and
provider interaction and communication. Add to this healthcare convenience, more
reliable prescribing, promotion of legible and complete documentation supported
by accurate, streamlined coding and billing. Other improvements include enhancing
privacy and security of patient data, helping providers improve productivity and
work-life balance, enabling providers to improve efficiency and meet their business
goals, reducing costs through decreased paperwork, improved safety, reduced
duplication of testing and improved healthcare services. Figure 5 depicts a typical
model of the data synchronisation architecture of a healthcare risk manager’s
organisation:

It therefore became necessary, to implement adaptive, interoperable EHR sys-
tems to improve the quality of data, which addresses the current EHRs challenges.
As a result, the proposed solution will focus on a novel approach based on different
methods and existing systems, to reduce the challenges of EHRs and data quality.
EHRs technology will be applied to not only perform the function of receiving and
displaying information, but to automatically and accurately extract information
from diverse heterogeneous data sources that use makes use of healthcare services.
For data to equivalently match two concepts across different data sources and
automatically resolve any inconsistency arising from multiple data entities is the
challenge of EHRs. The important expected contribution of this study will be to
realise a method to improve on EHRs data quality from heterogeneous and
inconsistent data sources. The key outcome of EHRs will be to discover a new
merged concept by finding consensus among conflicting data entries.
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8 Electronic Health Records Data Collection

Data collection is defined as the on-going, systematic assembling and measuring of
information, analysis and illustration of health data necessary for integration,
implementing, designing, and evaluating public health prevention programmes,
which then enables one to answer relevant questions and evaluate outcomes [62].
The HCOs collect data to observe health to handle subsidies and services as well as
inform bankroll and resource allocation, identify and appraise healthcare services,
inform the development of health policies and interventions, assist clinical deci-
sions about patient care and meet legislative requirements. Surveillance is under-
taken to inform disease prevention and control measures, identify health
emergencies as an early warning system, guide health policies and strategies and
measure the impact of specified health interventions. Few people are, for example,
dying from infectious diseases, but for instance, due to changing patterns of
physical activity and expenditure of drug, tobacco, alcohol and food more people
are suffering from chronic diseases. The survey process is conducted to maximise
accuracy and participation to generate statistics. Using a different data collection
algorithm, these statistics are generated from diverse sources, including household
surveys, routine reporting by health services, public registration and censuses and
disease observation systems. HCOs involve a different civil data set and private data
collection systems, including clinical surveys, administrative enrolments, billing

Fig. 5 A healthcare risk manager’s organisation data synchronisation architecture
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records and medical records used by various entities, including hospitals, physi-
cians and healthcare plans. The possibility of each to facilitate data on patients or
enrolees data on race, ethnicity and language are also collected to some extent by all
of these entities suggesting [16]. Data breaches in healthcare come in a variety of
forms such as different healthcare capturing and storing methods as well as tech-
nology used such as excel, access, SQL and Oracle. Manual data collection from
ward-based sources captured only 376 (69%) of the 542 in-patient episodes, cap-
tured by the hospital’s administrative electronic patient management programme.
Administrative data from the electronic patient management programme had the
highest levels of agreement with in-patient medical record reviews for both length
of stay (93.4%) data and discharge destination (91%) data [53]. Currently, frag-
mentation of dataflow occurs because of silos of data collection. In HCOs data are
often collected by clinical assistants, clinical nurses, clinicians and practice staff.

Compare the completeness of data capturing and level of agreement between
three data collection methods is prospective observational studies:

1. Manual data collection from ward-based sources or paper based: Paper &
Pencil, Surveys, Chart abstraction and Weekly return card;

2. Administrative data from an electronic patient management program: Dedicated
electronic data collection systems, EHRs-based, Images and Audio and video
recording (qualitative research);

3. Inpatient medical record review for hospital length of stay and discharge
destination.

With specific diseases in clinical and genomic research, the objective of EHRs is
to generate large cohorts of patients. The electronic phenotype selection algorithms
are to find such cohorts a rate-limiting step is the development.

This study evaluated the portability of a published phenotype algorithm to
identify Rheumatoid Arthritis (RA) patients from electronic health records at three
different institutions, using three different EHR systems. EHR systems are seen by
many as an ideal mechanism for measuring the quality of healthcare and monitoring
ongoing provider performance. It is anticipated that the availability of
EHRs-extracted data will allow quality assessment without the expensive and
time-consuming process of medical record abstraction. A review of the data
requirements for the indicators in the Quality Assessment Tools (QAT) system,
suggests that only a third of the indicators would be readily accessible from EHRs
data. Other factors such as the complexity of the required data elements, provider
documentation habits and the EHRs variability make the task of quality assurance
more difficult than expected. Accurately identifying eligible cases for quality
assessment and validly scoring, those cases with EHRs extracted data will pose
significant challenges, but could potentially lower costs and therefore expand the
use of quality assessment. Improving the data collection process across the
healthcare system is one of the key challenges to improve data quality.
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9 Improving Data Collection Processes

Overreaching opportunities abound for increased quantities of EHRs, for improved
quality of data and for new data elements that were once considered too burden-
some or expensive to capture. This wealth of EHRs can be used to validate or
calibrate health demand models, for inpatient care information systems analysis and
for modelling mobile source emissions across a healthcare network. These data
collection and processing advancements are however, costly and should be
implemented with caution. The focus of healthcare is on data accuracy issues
pertaining to the mechanism chosen for data collection and data processing, using
EHRs technology. Vast amounts of technology spreads exist throughout the
transportation field, which are automating numerous manual data collection pro-
cesses. These advances generally reduce labour costs and manual capturing errors.
Automation of survey data collection allows EHR systems to collect new data
streams without increasing respondent burdens. When data are combined from
diverse heterogeneous sources, the data that are syntactically identical (same for-
mat, same units) can show important inconsistencies, as data elements that sup-
posedly represent the same concept, actually represent different concepts at each
site. The term semantic variability expresses the data variability caused by differ-
ences in the meaning of data elements. Differences in data collection, abstraction
and extraction methods, or measurement protocols can result in semantic vari-
ability. Figure 6 depicts the dataflow control system in large-scale DBMS.

Fig. 6 The data flow control system in large scale DBMS
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Failure to distinguish between fasting and random blood glucose, finger-stick or
venipuncture sampling or serum or plasma measurements would, for example,
result in glucose values that do not represent the same concept. Semantic variability
is difficult to detect using single-site data alone, because data semantics tend to be
consistent within an institution. Only when the data are combined from multiple
heterogeneous sources can such semantic differences be detected. The above dis-
cussion regarding the challenges faced by various healthcare professionals and
healthcare institutions, highlights the importance of accurate data capturing and data
quality in order to overcome HIT constraints and minimise respondent and
organisational resistance. Integration of data systems has the potential to streamline
collection processes, so that data can be reported on easily and that an individual
would not need to self-identify race, ethnicity, and language requirements during
every health encounter. Integrating the various data systems, enhancing legacy HIT
systems, implementing staff training, and educating patients and communities about
the reasons for, and importance of collecting these data, can help improve data
collection processes. Not all data systems capture the method through which the
data were collected, and some systems do not allow for data overrides. The inter-
operability of data systems may, for example, prohibit a provider from updating a
patient’s data, which were provided by the patient’s healthcare plan. Self-reported
data should therefore trump indirect, estimated data or data from an unknown
source. Ways of facilitating this process logistically warrant further investigation.
Data overriding should be used with caution, as overriding high-quality data with
poor-quality data reduces the value for analytic processes.

Currently, one specific data collection effort under evaluation for automation is
the patient update survey, which traditionally has been administered to obtain a
comprehensive up-to-date patient history. The fundamental concern associated with
the need to change medical practice tendencies and the way of interacting with
patients, created barriers to EHRs implementation and use. The adaptation to EHR
systems were also considered a major threat to practitioner professionalism, because
of the corresponding requirements for providers to adhere to the requirements of the
EHRs, including electronic documentation and compliance with standardisation
guidelines. Even though current data collection methods are subject to numerous
errors, the survey data collected are used to forecast regional health data such as
demographics, hospital admissions and discharge notes, medical history of patients,
improvement notes, outpatient clinical health notes, medication prescription
records, medication and allergies, immunisation statuses, radiology reports and
images, laboratory data and test reports, essential symptom, personal statistics like
BMI, blood pressure, age and weight information etc. In addition, the availability of
EHRs databases makes the automated processing of such data feasible. With the
application of these technologies, however, care and caution should be applied
when using and interpreting the datasets obtained from the data collection method
used.
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10 Data Quality Issues in Electronic Health Records

Quality data, appropriate for use, comprise of characteristics that include com-
pleteness, uniqueness, consistency, accuracy, validity, correctness and accurate
timelines. The quality of data can be analysed from multiple dimensions. One such
dimension is a measurable data quality property that represents some aspect of the
data accuracy and consistency that can be used to guide the process of under-
standing quality [44]. Though EHRs data quality is often only considered within the
narrow scope of data verification and validation, it should also concern equally
critical aspects of assuring that EHRs data is appropriate for a specific use. Alter-
natively, the quality of data is comprehended as in high demand, according from
this denomination, as the volume of data increases and the question of internal
consensus within data become significant, regardless of its appropriateness for use
for any particular external purpose. Even when discussing the similar set of data
used for the same intention, confluence’s prospect on data quality can often be in
uniqueness. Some information quality problems may arise from when the raw data
is collected until it becomes useful information. The majority of EHRs data is
captured by a large number of individuals from heterogeneous sources and data
exchange accessed these days to index text object use data rescue systems devised.
Due to unit measurement without different definitions and may be captured in the
EHR system. It will absolutely impossible or may not comparatively and assess-
ment to interpret what is being reported by other clinician when validated psy-
chometric scales to assess patient status are not used. The objective deficiency that
these problems, classify idiosyncratic data quality features.

The data inconsistencies can be identified directly, which can lead to inaccu-
racies and bias, as the data is collected geographically and over time and might be
adjusted differences over to account for unequal measures over time [9]. The main
concern of EHRs is the feasibility of introducing EHR systems in HCOs to improve
the data quality in order to achieve all possible benefits pertaining to healthcare
services. To effectively address this concern, the following issues need to be taken
in account:

1. What are the most meaningful associations among heterogeneous health data
sources that can be explored to improve EHRs data quality?

2. What kinds of integrity constraints are specified in the global scheme of data
mapping that can be explored to improve EHRs data quality?

3. What are the uncertainties in data integration that when minimised, results in an
improved EHRs data quality?

Schaal et al. [54] motivate the adoption of accessible data based on its definition
of data that comprises of clarity and consistency. The intimidation posed during
data storage and transmission, EHRs are seen as a hopeful accomplishment to
problems in EHR managements and despite them. One of the key barriers is to
optimally use routinely collected data, as the increasingly poor quality remains in
the data. This raises the need for automating the mechanisms used to measure data
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quality and semantic interoperability. This framework is a result of filtering the
existing data quality dimensions in many research sources and checking its suit-
ability to the nature of e-health systems. In many research sources and verifying its
praiseworthiness to the behaviour of e-health systems, this skeleton is a outcome of
percolation the subsist data quality dimensions.

11 Methodology

The main contribution of EHR systems consists of mathematical modelling of a
heuristic methodology based on a combination of the perfect matching and simi-
larity measurement for distributed concepts unanimity techniques for inconsistency
and conflict resolution performance to improve data quality. Creating a consensus
between perfect matching and similarity measurement can be resolved unite of data
inconsistency, mismatches and conflict ontology entity regarding diverse data
sources. Data quality, consistency, reliability, validity, accuracy, completeness and
timeliness are the eventual significant list of EHR systems. Matching is a process of
finding alignment between sets of correspondences with a semantic verification
output of the matching process. This merging is a process of creating a new set of
possibly overlapping data. However, the aim of the main task is to determine best
illustrate object to find semantically fundamental equivalent motive in EHR sys-
tems. This provides a strong theoretical and practical framework to work with
heterogeneous, complex, conflicting and automatic consensus methods for EHRs.
A concept detection method could be semantically more meaningful, if multimedia
data integration process is a subset of the annotation process for trustable automatic
data mapping, such as image, sound or video indexing by special code. This means
that each and every EHRs amalgamated data associate to a distinguishable adum-
bration characteristic. So, conflict may happen on EHRs data integration, if a
diverse amalgamated data associate to the same apprehension in the diverse EHR
system. Discovering the interrelation in EHR systems is a significant phenomenon
among entities manifested in diverse EHRs values. The similarity measurement
often discovered that those conflicting entities are approximately identical among
EHRs entities. Specially, with a chronic health circumstance, the EHRs statistic
predicts individual development and effectuation, since EHRs adoption better meets
the needs of the growing modern community. Currently, there are five principles
that contribute to data quality. These principles are listed as:

1. Formal Concept Analysis;
2. Conceptual Clustering;
3. Generation;
4. The Grid-File for Multi-attribute Search;
5. Semantic Representation Conversion.

142 A.K. Saiod et al.



This will be done to ease data access, extract information, search mechanisms,
synchronises and establish semantic connections, filter data and provide different
levels of security, provide data inconsistency solutions, resolve equivalently
matching or conflicting information in multiple entities, resolve queries and achieve
data compression and automatic EHRs integration simultaneously. Conflicts based
on the occurrence of the same names or the same structures for different concepts,
were solved by using the concept of Potentially Common Parts (PCP) propagation.
Other aforementioned conflicts such as associated value conflicts and conflicts on a
concept level, were also resolved using consensus methods. Specific criteria can be
attributed to the representation. The criteria comprise of:

Comparability consists and specify designate of the analytical data quality, in
observing the variation in performance critical measures to the Triad as the Triad
emphasises collaborative data sets. Various analytical methods show that there are
three different types of divers can be identified in collaborative data sets. These
variations are individual-level variations (for example age, sex, co-morbidities),
provider level variations and random/residual variations. It is obvious that chal-
lenges in data availability and comparability issues are numerous national and
international comparisons.

Completeness is defined as the extent to which all data elements are integrated.
One of the most important aspect for integration result that the completeness is the
guarantee of appearance of all ingredients when integrating. Each data element
should be captured in an EHR system, so that a provider could create a data set for a
patient’s characteristics. Either, it will not possible for a provider to create an
accurate diagnosis for a patient characteristic. Incomplete data can’t provide
accurate diagnosis even when the corresponding information supplied by EHR
systems. The data will remain incomplete, until providers are not completed with
the approximate group value associating to semantic categories. Finally, the
inconsistencies of the patient diagnosis with appropriate values, with the incon-
sistency of any value in these appropriate values are the intention acceptability of
total designation for the EHRs completeness.

Consistency is defined as the absence of any inconsistencies in the EHRs result
and been solved all appearing conflicts among elements when integrated. When
stream data appended dependent interpretative variables from diverse heteroge-
neous sources, often integrate data refers to the similar subject, but apprehend
different inconsistence information. The time (T) dimensional observation data
could be large and are asymptotically valid for certain time. The data could be
repeat approximately same value over the time such a situation is called a conflict.

Identification is defined as structure similarity among entity source and the
EHRs result. The EHRs domain apprehensions often contain entities that have
interrelated among the property value. This defines that each EHRs entity accom-
panied to certain concepts. If identical characteristic associating to the identical
apprehension in various ontologies, the conflict in the EHRs are also associated
with different associated EHRs value, it also manifested as conflict.

Timeliness is defined as associate between the registration and diagnosis entity
and the determination time to the observation diagnosis of the occurrence statistical
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report. The EHRs statistics reports improve provider observation of patient outcome.
Overall statistic indicated that the use of EHR systems could sustain improves pro-
ductivity of health care service, such as timeliness statistic report or invoices etc.

12 The Similarity Measurement

The importance of EHRs data integration is to find the correlation among entities
manifested in diverse EHRs. The similarity measure technology may discover those
conflicting entities are approximately identical among EHRs entities. With the
tremendous growth in the adoption of EHRs, heterogeneous sources of patient
health information are becoming available. It is practically challenging to discover
significant similarity entity and how to measure and leverage providers inputs. It is
a very important aspect to identify accurate subsidiary uses of EHRs data to achieve
the goal [31]. Figure 7 shows the workflow and architecture of the similarity
detection service as follows:

Fig. 7 Workflow and architecture of the similarity detection service
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The objective of similarity becomes even more important, when measuring the
similarity among equivalent patient entity based on their EHRs data. There are three
effective similarity measurement types are appropriate in many applications, such
as:

1. Case-based retrieval of similar;
2. Treat similarity between the batch similarity;
3. Cohort comparison and comparative effectiveness.

According to the aforementioned EHRs integration, the similarity measurement
technology assorted in four different groups:

Instance-Based Similarity: The similarity between concepts is determined by
common instances, as well as comparing new problem instances with instances and
stores in memory, instead of performing explicit generalisation. Instance-based
ontology mapping is a promising solution to a class of ontology alignment prob-
lems. The similarities between concepts define as ordinary instance and matching
new entity issues and store them, but not executing the exact generation. The
common entity is the key value of similarity among two concepts. The promising
solution is instance-based ontology mapping for a class of ontology classification.
Measuring among similarity and annotated entity sets crucially depends on it. A set
of abstractions evolved from significant entities do not maintain by Instance-based
algorithms. If it has the large storage capability, then this approach reaches the
nearest neighbour algorithm. The classification accuracy significantly reduced the
large storage requirements, but its performance degrades rapidly.

The instance-based similarity equation is:

Similarity x, yð Þ= −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
a=1, n

ðxa − yaÞ2
r

ð1Þ

where, x and y are instances in an n-dimensional instance space [18].

1. Lexical-Based Similarity: The similarity between two concepts is based on the
analysis of the linguistic interpretation of associated names. An example, let’s
find a most similar words for word W , to combine an estimate. Weight the
evidence provided by word W

0
by a function of its similarity to W . Combining

information among similar words is a similarity measuring function between
words. Which word pairs require a similarity-based measurement is determined
by a scheme method. If word W

0
1 is “alike” to word W1, then W

0
1 can partici-

pating entity about the probability of invisible word pairs involving W1 [27].
The Lexical-Based Similarity methods for language modelling of combining
evidence evaluated as:

Psim W2jW1ð Þ= ∑
w0
1 ∈ Sðw1Þ

W w1,w
0
1

� �

N w1ð Þ P w2jw0
1

� �

ð2Þ
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Nðw1Þ= ∑
w0
1 ∈ Sðw1Þ

Wðw1,w
0
1Þ ð3Þ

S(W1)—The set of words most similar to W1;
W(W1, W1′)—Similar function.

2. Scheme-Based Similarity: The similarity among amalgamated characteristic is
the analysis of similarity among two intentions. There are two types of structure
based similarity:

1. The internal structure-based similarity;
2. The external structure-based similarity.

It can be the alteration of Psim W2jW1ð Þ in the back of Eq. (2), such as interpo-
lating with the unigram probability Pðw2Þ:

Pr w2jw1ð Þ= γP w2ð Þ+ ð1− γÞPSIMðw2jw1Þ ð4Þ

The linear combination illustrate in yielding between the similarity estimate and
the back-off estimate:

if γ = 1, Then possibly to make γ depended on w1.

So, the similarity allotment for achievement could vary between words [33].

3. Taxonomy-Based Similarity: The structural relationship breakdown is the base
of similarity among two concepts in Taxonomy-Based Similarity. It considers
the relations as links connecting concepts. If two concepts are already matched,
their neighbours (concepts are collected along with the links from the already
matched concepts) may also be somehow similar.

Let’s consider two gene products W1 and W2, and being represented by col-
lections of terms W1 = T11, . . . , T1i, . . . ,T1n and W2 = T21, . . . , T2i, . . . ,T2n.

Based on the two sets, the goal is to define a natural similarity between
The main goal is to determine a natural similarity, based on two sets among W1

and W2, denoted as S(W1, W2) [48]. Considerable two principle approaches are:

1. First approach: The similarity is computed pair-wise, say Sij(T1i, T2j) and then
the aggregation is performed using, for example, the average as:

Sa W1,W2ð Þ= ∑n
i=1 ∑

m
j=1 Sij

mn
ð5Þ

It is an interesting factor, when the objects T1i, T2j, belong to a given ontology.
Here, the pair wise similarity can be determined as in [37] using shortest paths

and information theoretic constructs. The problem rise, only if the average is used
with this approach.

Even when the two sets are very similar, Sa(W1, W2) may not be 1.
When W1 and W2 have only one common entity, then the similarity is 1 and it

will ignore the other. Then real trouble is to choose the maximum.
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13 The Perfect Matching

Every apex of the nodes is incident and to exactly one edge of the matching is an
assignment of nodes, called perfect matching. The concept of perfect matching is
n/2 edge, it means that perfect matching only possible on nodes with the even
vertices number only. Complete matching or 1-factor is the other name of perfect
matching. Here, the dynamic Hungarian algorithm is presented, appropriate to
optimally solve the assignment task in condition with changing edge costs, time and
as well as improving the healthcare service. The combinatorial optimisation algo-
rithm of Hungarian method is to solve the assignment issues in polynomial time and
which expected later primal-dual methods. The assignment problem is
widely-studied and exists in many application domains, known as the maximum
weighted bipartite matching problem [10]. The Hungarian algorithm undertakes the
existence of a bipartite graph, G = (H, P; E) that have illustrated in Fig. 8, where E
is the set of edges and H and P are the sets of nodes in each baffler of the diagram.

Let us call a function y: H ∪ Pð Þ→R a potential if , y ið Þ+ y jð Þ ≤ c i, jð Þfor
each i ∈ H, j ∈ P. The potential value of y is ∑n

v∈H ∪P yðvÞ.
The time of each perfect matching is the latest value of each potential.
The perfect matching of tight edges discover by the Hungarian method: an edge

ij is called tight for a potential y, if y ið Þ+ y jð Þ= c i, jð Þ. Let us denote the subgraph
of the tight edges by Gy. The time of a perfect matching in Gy (if there is one)
equals the value of y.

Suppose, there are four hospitals (same group hospital) in a big city to which a
model is assigned tasks on a one-to-one basis. The time of assigning a given
resource to a given task is also known. Figure 8 shows a bipartite graph of Hun-
garian algorithm as follows:

Fig. 8 Bipartite graph of the
Hungarian algorithm
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An optimal assignment needs to be found, which minimises the total time to
better service. The central hospital call centre receives emergency phone calls and
decides from which hospital to send the ambulance and to which hospital the
minimum distance is between the hospitals (H) and the patient call location (P).
A decision-making model is designed using the Hungarian algorithm to calculate
how the ambulance should respond to the patient for emergency services to min-
imise the total time, as time is the biggest factor which can save the life of patients.
The distance in kilometres (km) between the hospital H (ambulance location) and
the patient call location P are given below:

Step 1: Subtract row minima: This step is to determine the lowest element. Then in
that row, subtract it from each element. In row 1 subtract 95, in row 2 subtract 55, in
row 3 subtract 110, and in row 4 subtract 65 as the lowest element.

Step 2: Subtract column minima: In this step similarly as step 1 for each column
let’s determine the lowest element then, subtract it from each element in that same
column. In column 1 subtract 0, in column 2 subtract 0, in column 3 subtract 0 and
in column 4 subtract 10.
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Step 3: Cover all zeros with a minimum number of lines: This step is to cover all
zeros in the resulting matrix. Minimum number of horizontal and vertical lines
should be use to cover all zeros. An optimal assignment exists between the zeros, if
n lines are required. The algorithm stops.

The step 4 will continue, as it required less than nth lines.
Step 4: Create additional zeros: This step is to determine the smallest element (call
it k) in step 3. This smallest element didn’t cover by a line. All uncovered elements
must subtract by k, here is the smallest element. Then if the element covered twice
then add k to all elements. We have to proceed to Step 5, as we have the minimal
number of lines is less than 4.
Step 5: This step is to determine the smallest entry (5) that is not covered by any
line. So, in each uncovered row subtract 5.
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Now add 5 to each covered column.

And now let’s, return to the Step 3.

Step 3: Again cover all the zeros in the resulting matrix. Minimum number of
horisontal and vertical lines should be use to cover all zeros.

Step 4: Since the minimal number of lines is less than 4, return to Step 5.
Step 5: Note that 20 is the smallest entry not covered by a line. Subtract 20 from
each uncovered row.

Then add 20 to each covered column.
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Now return to Step 3.

Step 3: Cover all the zeros in the matrix with the minimum number of horizontal or
vertical lines.

Step 4: Again determine the smallest element of lines is 4. This smallest element
didn’t cover by a line. The calculation is finished as an optimal assignment of zeros
is possible.

We have found the zero as the total cost for this assignment. So, it must be an
optimal assignment.

Now, let’s return to the original time matrix of the same assignment.
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So the hospital should send ambulance H4 to Site P1, ambulance H3 to Site P2,
ambulance H2 to Site P3, and ambulance H1 to Site P4.

14 Analysis of Results

Information and Communication Technologies (ICT) in healthcare organisations
can be used in a beneficial way to address the key benefits and challenges faced by
EHR systems, and policy makers increasingly recognise this potential. ICT enabled
solutions support the provision of effective, efficient and good quality services,
when implemented on a larger scale DBMS.

Healthcare policy makers and strategists inevitably will have to find some way in
which to deliver more and more complex services to meet the increasing demand
and expectations for promotion and maintenance of health, treatment and care. It is
a significantly essential component to confirm that expected benefits must actualize
by healthcare professionals to ensure EHRs adoption. There is associating the
specific impact of isolating and organisational factors in designating EHRs adoption
called a knowledge base gap. Therefore need to be assessed on the adoption of
EHRs in healthcare settings, the unique contributions of isolating and organisational
factors, as well as the possible interrelations between these factors.

All experimental measured units such as time, distance and motion are a con-
tinuous variable and calculated in standard deviations and units in standard time
formats. Time is estimated using a count of the incidences of an activity within a
certain time period and reported as proportions. To facilitate comparisons across
studies, taking in account the different sampling units, such as ambulance encounter
versus ambulance total emergency service time, a relative time difference was
calculated. The relative time difference was determined for each, considering the
time it took to document using a computer, minus the time it took to document on
paper, divided by the time it took to document on paper, producing a negative value
if the EHRs was time efficient. 95% Confidence intervals were calculated for dif-
ferences in means and proportions to assess the significance of reported differences,
when there was insufficient information to compute 95% confidence intervals. The
weighted averages were calculated for both types of sampling unit ambulance
encounter and emergency service time, to accumulate for the changeability across
our test studies. The following formulas have used to calculate the weighted
averages [36]:

WA=
∑n

i=1½SW ið Þ*RTD ið Þ�
∑n

i=1 SWðiÞ ð6Þ

In which,
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SWð Þ= ngroup1 + ngroup2
� � ð7Þ

RTDð Þ= ðdocumentation timegroup2 − documentation timegroup1Þ
documentation timegroup1

ð8Þ

where WA—Weighted Average, SW—Sampling Weight, RTD—Relative Time
Difference.

The overall research identified that to achieve the benefits, depends on successful
EHRs system implementation and use. Only data quality can provide confidence
about the EHRs data to providers so that the benefits of using EHRs, such as best
service, data accessibility, quality and safety measurement, improvement and
reporting can be seen.

15 Conclusions

The main contribution of this chapter is the improvement of a novel framework for
an effective method for electronic health records to achieve its maximum benefits
and reduce data quality challenges in healthcare organisations to the minimum.
A consensus method was also applied to solve the matching conflicts in EHRs
integration. In practice, a dynamic Hungarian algorithm-matching tool was
implemented by combining PCP and consensus techniques. The EHRs consist of
the following essential steps to achieve the goal: the formal concept analysis the
conceptual clustering, the ontology generation, the Grid-File for multi-attribute
search and the semantic representation conversion. EHR technology became even
more essential for modern healthcare services as increasing the communication
network (Internet) and ICT technologies. The aim of EHR systems are not only to
improve the healthcare service and wellbeing, it is indispensable demand to design
a novel framework for EHRs services to reach beyond independent towards sus-
tainability of our modern society and adaptation. Introducing EHRs systems in
healthcare service can, however, offer vast benefits to HCOs and society. The social
and ethical acceptance is an important factor for the EHR systems adoption, such as
services relies to trust between patients and providers have towards. In this chapter,
we discussed the possible benefits and challenges of data quality by introducing
efficient EHRs systems in HCOs.

The dynamic Hungarian algorithm shows how a decision-making system for the
assignment problems with emergency services saves time and reduces service costs
and the results showed that both accuracy and completeness have a large impact on
the approach effectiveness. In real-time scenarios, the goal of the method algorithm
is to efficiently integrate health data and repair inconsistence data instantly and
accurately, when changes in the edge time and costs appear. The overall scenario
and challenges discussed above shows data quality in EHRs systems, which
demonstrate the method to be effective with regard to accurate performance of the
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provider’s service. This method presents the result of the principle theoretical
characteristics that are considered to tackle any thereafter theoretical and practical
problems for both qualitative and quantitative methodologies of implementing
EHRs. The EHRs system will not have any limits and the system can be modified
efficiently to benefit scalability.
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Large Scale Medical Data Mining
for Accurate Diagnosis: A Blueprint

Md. Sarwar Kamal, Nilanjan Dey and Amira S. Ashour

Abstract Medical care and machine learning are associated together in the current
era. For example, machine learning (ML) techniques support the medical diagnosis
process/decision making on large scale of diseases. Advanced data mining tech-
niques in diseases information processing context become essential. The present
study covered several aspects of large scale knowledge mining for medical and
diseases investigation. A genome-wide association study was reported including the
interactions and relationships for the Alzheimer disease (AD). In addition, bioin-
formatics pipeline techniques were implied for matching genetic variations.
Moreover, a novel ML approaches to construct a framework for large scale
gene-gene interactions were addressed. Particle swam optimization (PSO) based
cancer cytology is another discussed pivotal field. An assembly ML Random forest
algorithm was mentioned as it was carried out to classify the features that are
responsible for Bacterial vaginosis (BV) in vagina microbiome. Karhunen-Loeve
transformation assures features finding from various level of ChIP-seq genome
dataset. In the current work, some significant comparisons were conducted based on
several ML techniques used for diagnosis medical datasets.

Keywords Medical data mining ⋅ Machine learning ⋅ Particle swarm
optimization ⋅ Alzheimer disease ⋅ Cancer ⋅ Bacterial vaginosis ⋅
Karhunen-Loeve transformation ⋅ Random–forest algorithm

Md.Sarwar Kamal
Computer Science and Engineering, East West University Bangladesh, Dhaka, Bangladesh
e-mail: sarwar.saubdcoxbazar@gmail.com

N. Dey (✉)
Department of Information Technology, Techno India College of Technology, Kolkata, India
e-mail: neelanjan.dey@gmail.com

A.S. Ashour
Faculty of Engineering, Department of Electronics and Electrical Communications
Engineering, Tanta University, Tanta, Egypt
e-mail: amirasashour@yahoo.com

© Springer International Publishing AG 2017
S.U. Khan et al. (eds.), Handbook of Large-Scale Distributed Computing
in Smart Healthcare, Scalable Computing and Communications,
DOI 10.1007/978-3-319-58280-1_7

157



1 Introduction

Biological processing is considered the imperative part of the world computing.
Thus, biological research has a great impact in data arrangement, analysis and
measurement due to its robust mechanical and automated techniques. Mining
techniques are significant for retrieving meaningful information from the biological
data. It is a dynamic and systematic demonstration. However, more powerful
methods, algorithms, software and integrated tools are required for the biological
processing. Machine learning is one of the key methods for handling biological
datasets and very large DNA (Deoxyribonucleic acid) sequences [1–4]. Computers
and other digital systems assist large biological data processing, thus the discovery
and development of new systems is essential with the rapid growth of large bio-
logical dataset. New research and computations are generating huge volume of
datasets in each and every moment. Moreover traditional approaches are unable to
manage very large biological data with accurate and fast computations. Conse-
quently, biological mining techniques which are hybrid mechanisms with computer
science, physics, chemistry, biology, mathematics, statistics, genetic engineering,
molecular biology and biochemistry; become indispensable. Furthermore, sets of
evolutionary computing algorithms can govern the large biological dataset pro-
cessing [5–10]. These techniques achieve faster biological data processing with
accuracy and perfections. Moreover, cloud computing, data sciences and bioin-
formatics are examples for popular new fields for assisting biological data pro-
cessing. Furthermore, due to the massive amount of the biological information, big
data in biological processing become a common phenomenon in current industry
and laboratories. Organizing and arranging information from these big dataset is a
challenging issue as well as a key factor in knowledge mining. Statistical and
mathematical illustrations are supportive for retrieving meaningful and hidden
information. Data mining techniques are equally important for information exaction
[11–15].

In the age of wireless communications and faster digitization, very large bio
centric information have been growing in exponential manner due to the rising of
faster processing on microarray datasets. Moreover, DNA sequencing, RNA
(Ribonucleic acid) synthesis, protein-protein interactions are also some prime fac-
tors that increase the datasets volume. Big data analysis techniques support these
datasets to obtain meaningful information from the human and animal dataset. The
growth of the data volume in the recent era is significantly huge compared to few
years back. Recent growth is so rapid, which is almost twenty times more than three
years back collections as reported in Fig. 1. The primary assessments are done for
12 years as 2000–2015.

In Fig. 1, the X-axis and Y-axis illustrated the years, and the datasets outcome
for each year; respectively. All the four lines are merged due to the similarities
among the datasets collections. There are very less changes from 2009 to 2015,
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but there are sudden changes from 2011 to 2015. Currently, these changes are
automated and reached the apex points without return [17–29]. One of the pivotal
reasons behind the large biological datasets is the diversity of human, animal and
plant life. Despite the variations, the biological details interrelated with the uni-
versal sets of living organs.

The main contribution of the current work is to highlight the machine learning
role in the large scale medical data mining. Innovative data mining techniques in
diseases information processing was addressed due to the excessive data generation
in the medical experiments and very big scopes in human centric diseases. In
addition, consecutive tissue networks have been discussed to identify the AD
existence in the tissue. The PSO role to assess the infected parts of cells was
addressed. The current work included also extensive discussion related to the sta-
tistical epitasis networks for checking gene-gene interactions for obesity. Further-
more, the concept and applications of big data in health informatics was included.

The chapter is organized as follows. Background study is demonstrated at
Sect. 2 with delineating the AD related associations including the gray matter
functionalities of this disease as well as introducing cancer based computational
analysis. Big data and its impacts on health informatics are narrated in Sect. 3. In
Sect. 4, the machine learning techniques based supervised learning analysis is
addressed. Web semantics is demonstrated in Sect. 5, while the HIV-1 computa-
tional classifications, as well as the findings of obesity under gene-gene interaction,
Microbial communities, and Bacterial Vaginosis, are addressed in Sect. 6. Finally,
the conclusion is given in Sect. 7.

Fig. 1 Various datasets growth from 2000 to 2012 [16]
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2 Background

General mining can be groped in several ways; however most popular mining
processes can be categorized as predictive -or descriptive-data mining as reported in
Table 1. Image processing, signal processing, business data processing, DNA
sequencing or protein interactions are easily manageable using one of these tech-
niques. Predictive data mining techniques are used frequently to get faster and
accurate data. Most of the predictive techniques are based on statistical processing
as well as mathematical analysis. There are lots of mathematical models and
techniques that are under predictive models. Irrespective of areas and subjects,
predictive data mining approaches are imperative to obtain exact information from
lots of datasets. Moreover, simulations and other computing are also easily
adjustable by predictive mining. It enables ML approaches to learn and train
datasets based on the historical data demonstrations and computing. These analysis
and synthesis bridge biological mining from present to upcoming future.

There are set of predictive approaches which are frequently used in the digital
era, such as the neural networks, principal component analysis, independent
component analysis, particle swarm intelligence, self-organization map, regres-
sions, support vector machine (SVM), classification and regression tree (CART),
decision tree (DT), deep neural networks (DNN), discriminate analysis (DA),
Bayesian Network (BN), Boosting (BT) and Random Forest (RF). In addition,
several experiments have been crowned using various methods of bioinformatics
related to identification of gene factors behind enormous devastating diseases.
Nonetheless, all the previous works transpire only a low segment of gene-gene

Table 1 Sources of data mining

Predictive biological analysis Descriptive biological analysis

The primary goal is to separate the large
dataset into small groups

This process generates set of rules for
controlling whole dataset

Set of statistical analysis support to get the
exact meaning of the desired items

There are set of descriptive analysis that
indirectly used the predictive mining
algorithms. As for example Smith waterman
and Needleman Wanch algorithms were
applied to find the sequences under predictive
environments

All features associated in the training datasets
are equally important for all data levels

Group of training data clustering is used to
handle the large volume of biological
datasets. Popular clustering processes are
frequently using to get the meaningful ideas

Training and testing features determine the
overall outcomes of the experiments

Features are collected in a group rather being
individual

In each experiment, there must get some
outcomes. If outcomes have probabilities
greater than 70% it is said to be acceptable

Experimental outcomes are determined by
group results. Sometimes single results are
not measured due to the excessive volumes of
datasets exist in a group
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interaction or difference due to DNA sequence switch, which is liable for rapidly
increasing rate of demolishing disease like Alzheimer’s. The AD is one kind of
neurological disturbance, which occurs due to damages of brain cells. Though
Alzheimer’s diseases start lightly, it widens rapidly causing short time memory loss
and cognitional degeneration. Long term process of this disease leads to dementia,
which is responsible for enormous damage of human brain’s usual activities [30].
Various algorithms belong to bioinformatics can be applied to identify the principal
genetic codes behind some crucial diseases like Alzheimer. Various studies
regarding AD have been illustrated that almost 70% damage is associated with
genetics for this diseases [31–33]. Even one of the significant gene APOE (Apo
lipoprotein E), which is the principal cholesterol server to human brain is engaged
with the genes accused of spreading AD.

Basically, developed NetWAS which is one of the ML based algorithms is
considered to recognize the symphony among the associated genes. Furthermore,
the Network Interface Miner for Mutagenic Interactions (NIMMI) combines
protein-protein interaction data and GWAS data for better and reliable performance
[34]. So, a new ML approach for tissue-specific internal reaction to override the
previous findings from the method GWAS was implemented. Specific tissue fea-
tures that may play prime role for determining the root cause for every devastating
disease, such as the AD and can overcome various critical challenges were reported
in [35]. Thus, the source code and overall findings of this work can simplify the
way to develop approaches of various methods for best outcome and better
efficiency.

Several studies were conducted related to the genetics computing for grey matter
density in Alzheimer’s disease, where the AD has no exact known cure [36–38]. In
[37], a full concentration on bioinformatics approach to the genetic analysis of grey
matter density to result in deceased outset of the AD was provided. Various kinds of
ML were carried out by assembling them together for better execution than pre-
vious works. Full concentration on gene factors movement and internal reaction
behind them along with functional genomics data for entrancing biological rela-
tionship was specified. Considering all the undiscovered facts, this study is based
on genome wide association study (GWAS) and applied on the datasets which
belong to the AD Neuroimaging Initiative (ADNI) using grey matter density
methods implemented process. A new method was implemented to cope with
polymorphisms and their regression to make an obstacle for rapidly growing AD.
Functional magnetic resonance imaging (fMRI) methods on approximately 818
peoples as well as 733 genetic data categories for experiment were applied. After
that both fMRI and GWAS has been embedded successfully to enhance the pos-
sibility of bringing to pass voxel-wise genome-wide association studies (vGWAS)
for managing better opportunity to generate various mapping based problems. In
the first stage, the Quantitative Multifactor Dimensionality Reduction (QMDR)
process was engaged to classify the total number of genes along with SNPs, which
can overcome the requirement of the first stage till execution. Basically, the QMDR
helps to detect non-linear SNP–SNP interactions [39]. In the second phase,
bioinformatics approach was applied on genes enrolled in the first phase to diminish
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the number of genes factors as in [40]. Furthermore, gene factor evolution using
microarray proves the complication of breast cancer disease. A lot of methods have
been proposed by various researchers and scientists to identify the main culprit
factors behind this devastating disease.

The most liable genes for this heinous disease are BRCA1 and BRCA2 [41].
Various recent studies represent several microarray resolution to get a better way to
identify the sub graphs for the cure of breast cancer [42]. From the perspective of
clinical science, one of the heterogeneous diseases is breast cancers which obstacle
for improving the diagnosis of tumors classifications clinically [43]. Currently,
multi-gene lists and single sample predictor models provide better performance to
reduce the multidimensional complexity level of this disease. The incapability of
some established model to deal with high dimensional data limits the opportunity of
gaining desired result, however various new studies contributing a great role
to compete with this mysterious disease. A new iterative powerful strategy for
computably biased subtypes and enhancing class prediction while using
METABRIC dataset were performed.

Typically, the traditional methods help largely for clinical decision making
creating various discoveries. The PAM50 methods are used for assigning the
molecular subtypes based on various gene expressions. Other various methods are
also correlated to clinical diagnosis [44, 45]. All the methods work on low
dimensional datasets as well as individual sets of data.

From bioinformatics, the ensemble learning with various algorithms results in a
great extent. Actually the main advantage of ensemble learning is it can easily
comprehend decreased over fitting as well as improvise performance of classifi-
cation. There’s a lots of ensemble approaches among which select-bagging and
select-boosting are the main approaches to work efficiently and in a faster way.
Although, the iterative approach was used alone or along with CM1 score then the
outcome was quite disappointed, whereas the iterative approach with combination
of an ensemble learning mechanism provides faster and efficient performance than
others [46]. Besides, practically this work’s improvised methods titled iterative
method with CM1 score and ensemble learning approach represents a great effec-
tively for foretelling more accurate and exact sample subtypes in the METABRIC
breast cancer dataset.

Generally, several cancer diseases are identified by the human cell which is
primarily affected [47–49]. Meanwhile, next-generation sequencing and microar-
rays already have disclosed enormous number of genomic features like DNA copy
number alterations (CNA), mRNA expression (EXPR), microRNA expression
(MIRNA), and DNA somatic mutations (MUT). Therefore, lots of exploration for a
particular type of this genomic data produces various types of prediction
biomarkers in cancer. Various predictive biomarkers have mentioned for research
basis on various number of biological components simply, such as genomic, pro-
teomic, metabolomics, pathological, imaging and psychological features. Thus, the
genomic biological features have been used in a great extent although here National
Cancer Institute and the National Human Genome Research Institute plays the main
role [49].
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In [49], a Cox proportional hazard model was proposed for feature selection
algorithm. In addition, the constraint PSO process was also interpreted based on
biological behavior. Completing various iterations using bootstrap beta coefficients
have been detected going through the log-likelihood (NFS and CPSO) or a
penalized maximum likelihood function. The used CPSO was basically associated
with biological behavior of flock. Therefore, these particles belong to the swarm of
particles representing the positions and velocity. This CPSO randomly set the
positions vectors and velocity together. The velocities and positions are updated
automatically updated analyzing their performance and types of elements. The
authors have used 4 types of datasets which are online based associated with almost
100 types of elements including EXPR, MIRNA, CNA, and MUT in the TCGA
assortment while accession. The CPSO was used to evaluate basis components of
the sophisticated dataset using its ability to produce various user defined elements
that is used as the basic survival model.

The network feature selection model is also used to detect protein-protein
interaction network for evaluation of feature selection. Therefore, it is also used for
producing poly-cancer biomarkers. This NFS established best performance, while
the datasets were more complicated and sophisticated to deal with. It evaluated any
kinds of data and represented the desired result [50] and also successfully explored
the complicated data with noticeable success rate. This algorithm performed the
best efficient process of finding the basic features for detecting cancer disease.
Using similar algorithms all the models were evaluated and were compared using
the concordance index (c-index) for obtaining the better performance.

This work differentiated the predictive level of various features genomic for
characterize genomic related data. The integration process of enormous genomic
datasets produced higher class models of datasets which are more powerful than
that from single survival data simply like mRNA. From the source of genomic data,
the mRNA gene reproduced stronger highly preserved models for integration of
cancer genes data sets.

From the preceding studies, it is clear that the collected data from various
scientific experiments or movements are massive which require efficient data
management, analyze, providing, manipulating to reach in a goal [51]. Thus, big
data analytics become essential to handle such huge data amount.

3 Big Data Computing

Big data computing is an overgrowing technique for mining multidimensional data
from scientific discovery along with various large-scale structures [52]. Big data
analysis system is designed in such a way that it can identify any meaningful data
from a vast crowd of data. Big data technologies are currently gaining the oppor-
tunities in medical science, bioinformatics, health informatics, computer science,
management system and lots of fields. Various recent articles have been reported
statistical information for the big data computing benefits in several applications
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such as mobile devices, tablet computers, internet of things, and cloud computing
[53, 54]. The most significant fields are scientific exploration, health care, gover-
nance, financial and business management analysis, web analytics, internet of
things along with mobile health informatics, and bioinformatics. Compared to big
data computing, service-oriented technologies, such as cloud computing is also
capable of storing data, analyzing and manipulating large size of data but some-
times it becomes challenging working with cloud computing, that time big data
computing is must. The overall architecture of big data was demonstrated in Fig. 2.

Figure 2 illustrated the big data computing along with closer innovation or
discussion on architecture, technologies, tools, mobile technologies, health tech-
nologies and many more paradigms working behind big data computing. Typically,
big data technologies have been used widely medical science and health-care
informatics research. A huge numbers of data sets have been gathered and gener-
ated using various bioinformatics approach for the sake of research in the fields of
medical science [56, 57]. In order to compete with this increasing amount of
dataset, algorithms of informatics science to explore the hidden discoveries from
them were performed. In spite of all this there’s a lots of obstacle with big data
among which store, search, analysis, processing, sharing, viewing, discovering
knowledge from those data though exploring knowledge from these type of big data
has become burning question for the scientists and researchers of last decades [58].

Traditionally, there are various types of sources for genomics and proteomics
information. Each and every source has its own styles, mythology though most of
source use ontology like genome ontology. Precision medicine asserts the entire
requirement needed to acquire the best clinical outcome. Therefore, precision of
medical data refers to analyze, to interpret and to integrate the increasing number of
unequal sources [59]. The benefits of machine learning, supervised learning, and
data mining were used to replace the current traditional use of various algorithms.
Informatics approaches for analyzing, integrating, and detaching the medicine
legibility for better performance of current medical science were introduced in [59].

Fig. 2 Overview architecture of big data computing [55]
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The authors differentiated between the traditional strategies and next generation
informatics approaches to evaluate data of medical science for making a pathway to
cope with any kind of diseases and explore new drugs analyzing the output pro-
duced using various modern informatics approaches.

Consequently, for going towards the goal of precise, medicine and healthcare in
the current systems require bioinformatics approaches along with developed
accurate storing capability for information regarding genomic data. Additionally,
more emphasizes are compulsory to characterize genetic factors for accurate
assessment for developing the health outcomes [60]. Health informatics is associ-
ated with health care technologies to develop more reliable health care system. Its
basic elements are basically engaged with information science, computer science,
social science, behavioral science, management science, and others [61]. Actually,
health informatics is involved with the resources, devices, storages, backups with
other computers, clinical guidelines, and information/communication system [62,
63]. For gaining knowledge from this vast amount of data, health informatics will
require a potential limitless process to cope with this kind of data. The most
challenging consequence working with vast data is investigating this data in a
reliable manner. The main use of health informatics is to develop various bioin-
formatics process to illustrate vast medical data in an easy way. In addition, the
health informatics cooperates with the population data which is executed in a
particular subfield [64]. A big velocity for big data is happen when new update of
current population’s health care system is providing to data center in a great speed
by means of health sensor or mobile devices [65].

The basis goal of health informatics is to provide answer of any patient’s fre-
quently asked question regarding health issue in a constant possible time via mobile
devices, internet services, and tablet computers. Furthermore, mobile health mon-
itors refers the use of improved modern technologies like mobile device, computers
for monitoring health issue and providing alarm for risky situations [66]. Presently,
the mobile health has risen as sub-segment of eHealth, use of information tech-
nologies like mobile phones, tablets, communications technologies, and patients
monitoring [67]. It monitors the symptoms, signs of various diseases via mobile
phone technologies [68, 69]. Sometimes this issue becomes challenging to tackle
the big data problems. The spreading of mobile health technologies spectrum is
shown in Fig. 3 [70].

Fig. 3 The overall mobile
health technologies
process [70]
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Such biomedical big data is considered the most challenging task for the active
researchers and it indicates investigating, analyzing, storing data, visualizing in
lower dimension of higher data. It generally extracts desired value from data [71,
72]. Therefore, big data requires a set of new techniques with new forms of inte-
gration to form better performance [73]. Recently, parallel computing which was
proposed by Google has created a wide vision of working with big data. Cloud
computing is also an approach of dealing with biological big data because of its
ability to develop system ability, and to speed up the system. Cloud computing also
diminishes system requirements. Biomedical research indicates analyzing the bio-
logical data in molecular or macromolecular stages. Next generation sequencing
technologies and big data techniques in bioinformatics assist to access into
biomedical research data sets. The Hadoop and MapReduce technologies are
playing a great role recent years for dealing with the vast amount of data. Big data
has great significant efforts in clinical informatics. Clinical informatics refers to
health care technologies in medical science along with all kinds of health related
issues. Overall there’s a lot of use of big data in various fields like clinical science,
biomedical research, and imaging informatics. By the sake of various ML algo-
rithms, all the liable gene factors or symptoms as well as risk factors can be
determined. Clinical and practically observed data actually helps to accomplish
precautionary steps for type 2 diabetes [74–82].

4 A Supervised Learning Process to Validate Online
Disease Reports

All the bioinformatics algorithms that determine the main risk gene factors or gene
variations behind each and every disease of medical science must require a large
number of data to manipulate. For this situation, the pathogen distribution model is
widely used for its high predictive ability of any factors. It also demonstrates largely
to create diseases maps depending on each disease’s variation and liable gene
factors. Production of data for these methods comes from online health based data
system such as Genbank. One of the major problem of online data base is all the
data may not be valid and there is no such method for validation of dynamically
providing online based data. Depending on environmental and socio-economic
condition the occurrence possibility of each disease in a particular position is
defined by the location of disease occurrence.

4.1 Targeted Learning in Healthcare Research

From the beginning of availability of big data electronic health care technologies
and claims data sets are arising in a great extent for answering the drug safety
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measures all over the world. The ever-growing rate of these current technologies
towards investigational data sets such as genomic information, laboratory results,
and radiologic images [83]. These big data sets in health care technologies are
increasing day by day and the questions are widening. Compared to this trend the
new approaches are not improved enough to get rid of this trend. The old parametric
modeling approaches are inadequate for analyzing the coefficients of the big data
source. Therefore, the illustration of these coefficients is largely depends on various
covariant. All the traditional approaches feel obstacle for the higher dimensionality
of big data. They can’t convert this higher dimension to its lower one [84]. Real-
izing this context, big data problems can be solved using a new approach namely
targeted learning (TL).

Targeted learning (TL) is a current approach for dealing with big data problems
which is implemented using semi parametric approach along with supervised
machine learning mechanisms. This approach targets on higher dimensional data
and helps previewing lower dimension of higher dimensional data. The specific
focus of targeted learning algorithms is to minimize the bias of any targeted
parameter and make it simple to reach in a discovery point. Basically the targeted
learning (TL) algorithm is the combination of two bioinformatics approaches which
are Super learning (SL) and targeted minimum loss- based estimation (TMLE).
Actually, the TMLE is applied on data which is analyzed by Super learning
(SL) before. First, the big clinical data is manufactured by SL, after that TMLE is
used. Because of this combination the targeted learning (TL) approach outputs
sound findings analyzing big health data. Nowadays, the TL is basically applied in a
wide range of spheres like genomics, precision medicine, health policy, and drug
safety. Therefore, this paper illustrated the significant contribution because of the
combination of two bioinformatics approach named Super learning (SL) and tar-
geted minimum loss- based estimation (TMLE).

4.2 Lumping Versus Splitting for Mining
in Precision Medicine

In recent years, the rise of data severe biology, advancement in molecular biology
and technological biology along with the way the health care is delivered to the
patient of current world paves the biologists working on these new diseases to find a
particular cure using precision medicine models [85]. Medical science is utilizing
the advantage of modern improvised data mining methodologies in various aspects
of detection of liable DNA codes or gene factors for better outcome of devastating
diseases which are invented recently. It is one of the most challenges for medical
science finding prevention or cure from such kinds of recent invented diseases.
Consequently, thousands of people die because of not finding the exact gene factors
or DNA codes working behind the disease. With the renovation of bioinformatics, a
new movement has been seen in medical science because of getting the related
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genes factor corresponding to each and every disease [86]. Therefore, nowhere the
data mining is needed for precision medicine. The capability of representing each
and every disease’s risk for treatment purpose is one of the correlating factors for
precision medicine. This achieved a great measure from the last era for ongoing
technology improvement. A lot of current powerful approaches rely on unilabiate
and linear evaluations that can be easily avoid the structure of complicated criterion
[87, 88]. One of the successful example for the precision medicine model is to drug
development involving the drug Crizotinib, a vanquisher for the MET and ALK
kinases which started the practical improvement with a widen number of population
in a great extent.

Several studies tried to prove that using accurate types of data mining and
making working portion for each disease will be fruitful for the scientists and
researchers determining subtype graphs in low cost along with less time con-
sumption. With the determination of subtypes for various diseases, a great oppor-
tunity can be found to keep compete with the increasing rate and approaches of
development of diseases along with accurate liable factors of that particular disease
and also if this happens then it will be start of a new era from the perspective of
medical science. Using enough specific small groups and perfect small types of data
can improve the precision medicine models. Thus, the biological data mining
process has a great effect in biological large data to play a sensitive role in finding
responsible culprit accurately. It also can be used for many clinical and practical
contexts to ensure better treatment for the patients and also for exploring reason
behind recent invented diseases along with devastating diseases like diabetes or
cancer.

5 Mining Drug-Drug Interactions on Semantic
Web Technology

Drug-drug attraction has the most priority for showing its tremendous effect on
patients [89–93]. A sufficient knowledge should be mandatory for prescribing or
taking the medicine for both the clinical association and patients. The new
improved process regarding investigation of various diseases risk factor for patients
should be broadening to decline the death rate for such diseases. In order to improve
genetic tests for finding the suspicion of various diseases, DDI-induced ADEs is
required to diminish the risk of prescribing harmful medication [93]. Providing
information investigating the DDIs data is full of challenge for medical science.
However, using improved informatics approach can easily easy to beat the
challenge.

A vast number of new drugs have been invented using various bioinformatics
still processing. One of the main significant discoveries is taxon related drugs.
Paclitaxel and docetaxel are considered the best performance giving anticancer
taxon related drugs though they have lots of bad side effects [94]. In clinical
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statistics, singular machinery to protest cancer gene for diminishing growth rate
makes the Texans related drugs differ from the other related drugs. Besides it is
considered most hopeful treatment of cancer disease over worldwide [95, 96].

6 Machine Learning Based Health
Problems Manipulation

The HIV (human immunodeficiency virus) is one of the deadly disease from the last
three or four decades. The prevention process for the HIV can be improved either
scanning the responsible mutants or scanning the resistive capabilities of resistive
drugs [97]. Several expert groups have been working on both genotypic and phe-
notypic consequence of genes for HIV although genotypic is faster and cheaper
than phenotypic. In [98], protease and reverse transcriptase cross-resistance infor-
mation for improved drug resistance prediction by means of multi-label classifi-
cation were introduced. Therefore, 2 protease sequence and 715 reverse
transcriptase sequences along with specific genotypic and phenotypic data have
been manipulated using various ML techniques including binary relevance classi-
fiers, classifier chains, and ensembles of classifier chains. Multi-level classification
models along with cross-counteraction intelligence were applied to portend the two
of the best resistive drug classes used for antiretroviral therapy for the disease
HIV-1. The two basic drugs are named as protease inhibitors (PIs) and
non-nucleoside reverse transcriptase inhibitors (NNRTIs). Completing overall
process the authors have successfully achieve a stage that is quite predicted to be
accurate compared to other investigation till today.

Another health problem that obstacle the individuals is the obesity. Recently,
obesity becomes a common problem for almost everyone both in developed and
developing countries as well [99, 100]. Recent studies have proven the necessity of
epistasis or gene-gene interactions for explaining the harmful factor of overweight
and obesity. Various network-based models play a great role to explain the basis
reason. It is also challenging for the researchers to analyze the data pairwise. The
network based algorithms play a great tribute as it has the ability continuing
pairwise operation. A network based approach was implemented in [100] which is
called statistical epistasis network (SEN) to classify the SNP-SNP interaction in
every gene associated with obesity or overweight. The interactions which exceed a
specific terminate point build the SEN network. This study represented a traditional
properties for identification of genetic interaction from genome based arrays and
also invention of various nodes of biological substances to diminish the obesity
problem specifying the accurate gene responsible for overweight or obesity
problems.

Bacterial vaginosis which is known as vagina microbiomes consists of various
types of biological bacteria although all of them a few are quite dangerous for
human body [101]. In [102], a relationship between bacterial viagnosis and a

Large Scale Medical Data Mining for Accurate Diagnosis … 169



microbial community was extracted. For microbial community, the subsets of every
community are justified with various bioinformatics algorithms. For classification
and identification of relationship between bacterial vaginosis and microbial com-
munities the logistic regression (LR) and random forests (RF) have been used. The
authors successfully represented the relationships between BV and MC by adding
some features to machine learning methods of bioinformatics. The ML achieved
great accuracy to determine similar patterns; therefore it can be used to detect the
similar patterns of bacterial vaginosis and microbial community.

From the preceding survey, it is established that big data mining has a significant
role in clinical medicine for prediction of disease development, guidance of rational
use of drugs, medical management, and evidence-based medicine as well as disease
risk assessment, and clinical decision support. Big data is generated everywhere
during monitoring, and medical healthcare and imaging processes as well as from
social media applications [102–114]. Machine learning proved its efficiency in
predicting and classifying several disease, however big data mining techniques
including Dempster–Shafer theory, rough set theory [115], fuzzy theory, artificial
neural network [116], cloud theory, inductive learning theory, genetic algorithm,
decision tree, Bayesian network, pattern recognition, statistical analysis, and
high-performance computing can be studied in future work.

7 Conclusion

Health informatics ensures faster and accurate medical data and symptoms pro-
cessing. There are several analysis that support information mining from large
volume of raw data. Drug design, big data analyses, diabetes factors predictions,
cancer gene analyses, machine learning based scoring system, semantic web syn-
thesis, Epigenetic internal functionalities, type-1 HIV intersections, computational
obesity simulations and Microbial Communities and Bacterial picture are some
areas that are sketched. Each and every area is the key filed that control the better
life of human being. Adverse Event Report System (AERS) can be applied to assess
the drugs-drugs interactions that help for perfect drug design simulation. For recent
adverse disease, the HIV (human immunodeficiency virus) datasets are also verified
by binary relevance classier, which dynamically categorized the infected data.

Computational mining and simulations help to get new dimensions in these
sectors. Accurate measurements are vital for better health. Now-a-days, robots are
frequently used to complete the critical operations of the human body. Moreover,
lots of devices are employed to control the exact amount of chemicals during drug
design, disease identifications, pathological interactions for HIV monitoring and
organic chemical reactions. Subsequently, large data mining approaches for sci-
entific measurement are essential for ever.
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Machine Learning Models
for Multidimensional Clinical Data

Christina Orphanidou and David Wong

Abstract Healthcare monitoring systems in the hospital and at home generate large
quantities of rich-phenotype data from a wide array of sources. Typical sources
include clinical observations, continuous waveforms, lab results, medical images
and text notes. The key clinical challenge is to interpret these in a way that helps to
improve the standard of patient care. However, the size and complexity of the data
sets, which are often multidimensional and dynamically changing, means that
interpretation is extremely difficult, even for expert clinicians. One important set of
approaches to this challenge is Machine Learning Systems. These are systems that
analyse and interpret data in a way that automatically recognizes underlying pat-
terns and trends. These patterns are useful for predicting future clinical events such
as hospital re-admission, and for determining rules within clinical decision support
tools. In this chapter we will provide a review of machine learning models currently
used for event prediction and decision support in healthcare monitoring. In par-
ticular, we highlight how these approaches deal with multi-dimensional data. We
then discuss some of the practical problems in implementing Machine Learning
Systems. These include: missing or corrupted data, incorporation of heterogeneous
and multimodal data, and generalization across patient populations and clinical
settings. Finally, we discuss promising future research directions, including the
most recent developments in Deep Learning.
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1 Introduction

Advances in the development of smart sensors and intelligent communication
systems combined with the proliferation of smart devices and access to cheaper and
more effective power and storage mechanisms have led to an explosion in
healthcare data in the past few years. In 2012 healthcare data worldwide amounted
to approximately 500 petabytes and by 2020 the amount is projected to be 25,000
petabytes [1]. The large quantities of data, generated in hospital and at home,
present the opportunity to develop data-driven approaches for delivering best
practice and improving patient outcomes. The key clinical challenge is to interpret
the available data in order to provide better and faster decision-making and thus
improve the standard of patient care and, consequently, patient health outcomes.
Data-driven systems being developed aim to provide disease diagnosis, offer online
patient tracking, identify physiological deterioration, provide risk assessments, as
well as predict the occurrence of severe abnormalities such that suitable interven-
tions can be put in place in a timely manner.

One important set of approaches to this challenge is Machine Learning Systems.
These are computer algorithms that analyse and interpret data in a way that auto-
matically recognizes underlying patterns and trends. Compared to more traditional
statistics-based approaches where prior information about the process to be mod-
elled is required, machine learning favours a black box approach: the relationship
between different variables does not need to be fully understood. For instance in
disease diagnosis systems, the underlying labelling processes are not particularly
important; the system just needs to learn how to replicate them. While this
black-box approach does not provide any knowledge into the way the different
parameters are associated with outcomes, it is particularly suitable for healthcare
monitoring applications where the available information to be processed is very
complex. Variables to be combined are often present in a plethora of different
formats, such as lab-results, clinical observations, imaging scans, continuous
waveforms and more, and the associations between the different variables are not
always clearly understood. The human expert, the gold standard of clinical
decision-making gains clinical acumen in large part through experience. The basic
principle of Machine Learning is not far-off: for a computer to be taught how to
perform a task we need to provide it with enough examples of how it should be
done. As more information is added to the system, the “experience” grows and the
decision-making is improved.

The potential of machine learning clinical applications is enormous. In complex
medical cases, the inclusion of aggregate data may reveal new information that is
not seen by the individual. Machine learning systems additionally offer the possi-
bility of dynamic, online monitoring at home and the hospital and are particularly
useful in situations where real-world constraints may restrict the number of clinical
staff attending to the patients. Moreover, the ability of machine learning models to
analyse massive amounts of constantly refreshed, diverse information in real-time,
via Big Data/Deep Learning approaches, offers the potential of quick and effective
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decision-making at a decreased cost. Additionally, machine learning can provide
input which is similar to that of a truly independent expert since it circumvents the
confirmation bias of the clinical expert [2]. However, the size and complexity of the
data sets, which are often multidimensional and dynamically changing, means that
interpretation is extremely difficult, even for expert clinicians. Prediction accuracy
depends on the amount of data available to build the system’s “experience”.
Additionally, because the researcher is searching for patterns without knowing what
may emerge, findings need to be validated using stringent methods, in order to
ensure that they are not occurring by chance.

In this chapter we will introduce the principles of machine learning and review
models currently used for event prediction and decision support in healthcare
monitoring. In particular, we highlight how these approaches deal with
multi-dimensional and heterogeneous data. We then discuss some of the practical
problems in implementing Machine Learning Systems. These include: how to
process missing or corrupted data and how to process heterogeneous and multi-
modal data. Finally, we discuss promising future research directions, including the
most recent developments in Deep Learning.

2 Machine Learning Models

Machine learning models are computer programs that can “learn” important fea-
tures of a data set (the training set) such that the user can make predictions about
other data which were not part of the training set (the test set). Applications arising
from these models include classifiers which can separate datasets into two or more
classes based on characteristics measured in each data set [3] or regression models
which can estimate continuous variables. In the context of clinical applications,
classifiers have been proposed for disease diagnosis (computer-aided
diagnosis-CAD), event prediction, forecasting of patient outcomes, even to pre-
dict hospital mortality. Regression models, on the other hand, have been proposed
for estimating risk scores and for estimating disease stage and predicting clinical
progression.

A machine learning model considers a large set of N D-dimensional feature
vectors fX1, . . . ,XNg, X ∈ RD, called the training set which is used in order to
tune the parameters of an adaptive model. In order to build a machine learning
model, for each one of the feature vectors, we need to have a corresponding target
value Y1, . . . ,YNf g,Y ∈ RK . When building a binary classifier, Y ∈ 0, 1f g (the
label), while in the case of building a regression model, Y takes a continuous value
from a usually predefined range. The goal of building a machine learning model is
to build a rule which can predict Y given X, using only the data at hand. Such a rule
is a function h:X → Y which is essentially the machine. The exact form of the
function hðXÞ is determined during the training phase (sometimes also referred to
as the learning phase), using the training data: this type of learning is called
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supervised. Once the model is trained, it can then be used to determine Y for new
values of X, not used in the training set, i.e., the test set. The ability to predict Y
correctly from new values of X is known as generalization and it is a central goal in
machine learning and pattern recognition [4].

It is also possible to build a machine learning model based only on the input
vectors X, without any corresponding target values. These type of unsupervised
learning approaches aim to discover groups of similar attributes within the dataset
(clustering), to determine the distribution of data within the input space (density
estimation) or to reduce the dimensionality of the input space for the purpose of
visualization [4].

The steps involved in building a machine learning algorithm are:

• Choosing the analysis model
• Choosing the attributes of the data set that will comprise the features of the

system
• Training the model
• Validating the model on the test data

In the following sections we will review current approaches for addressing every
step of the process and discuss considerations related to clinical applications.

2.1 Model Selection

The first applications of machine learning in biomedicine were based on Artificial
Neural Networks (ANN) and the promise of building systems modelled after the
structure and functioning of the brain [5]. The systems showed a lot of promise and
led to many applications in biomedical image and signal analysis. However, the
complexity and lack of understanding about how the different components of the
systems are connected made it difficult to interpret the outputs in a clinical context.
Further effort was then made to create linear models for pattern recognition in
biomedicine, which have the advantage of being easier to analyse and interpret in a
meaningful way and are also computationally efficient. An example of a linear
model, which has been used extensively in biomedical applications, is Support
Vector Machines (SVM). An attractive property of this approach is the fact that
while it uses a linear process for separating high-dimensional feature data, it allows
the input data to be modelled non-linearly in order to obtain the high-dimensional
feature space [6]. It is often the case, however, that clinical data contain high
amounts of noise (for example physiological signals obtained via wearable sensors).
To address this uncertainty in the data and at the same time to incorporate prior
knowledge into the decision-making process, methods based on Bayesian inference
have been introduced and have made significant impact in the detection and
assessment of disease in biomedicine [5]. In the next sections we will describe the
methodologies employed in ANNs, SVMs and Bayesian Networks and discuss the
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respective advantages and disadvantages of each technique when applied to the
analysis of multidimensional clinical data.

2.1.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are mathematical models which attempt to
simulate the structure and functionality of the brain. The building blocks of such
networks are mathematical functions which are interconnected using some basic
rules. The parameters of each building block are learnt during the process of
training. ANNs have shown great potential in approximating arbitrary functions,
however, in some practical applications it was found that the brain-like structure
could sometimes impose entirely unnecessary constraints [4]. Feed-forward neural
networks, e.g., the multilayer perceptron, have shown to be of greatest practical
value and have been widely applied to biomedical clinical data analysis. Figure 1
shows a general structure of a feed-forward neural network. In a feed-forward
neural network the route from the multidimensional input space to the multidi-
mensional output space involves a series of functional transformations via the
so-called hidden layers. The first step is to construct M linear combinations of the
input variables x1, x2, . . . , xD in the form

Fig. 1 Feed-forward neural
network (adapted from [4])
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aj = ∑
D

i=1
wð1Þ
ij xi +wð1Þ

j0 ð1Þ

where j=1, . . . ,M and M is the number of hidden units and the superscript

(1) indicates which layer the parameters wð1Þ
ij (the weights) and wð1Þ

j0 (the biases-
nodes allowing for any fixed offset on the data) originate from [4]. The outputs aj,
known as activations are then transformed using nonlinear activation functions hð ⋅ Þ
to give

zj = hðajÞ ð2Þ

which are the hidden units of the network. The same procedure is then repeated in
order to produce the output unit activations:

ak = ∑
D

j=1
wð2Þ
kj zj +wð2Þ

k0 ð3Þ

where k=1, . . . ,K and K is the number of outputs. The output unit activations are
then transformed using another activation function to give the outputs, yk.

yk = lðakÞ ð4Þ

The choice of activation functions in all layers of the network is usually
determined by the type of application and data characteristics. Sigmoidal functions
are often used (logistic sigmoid or the tanh function), especially for binary clas-
sification problems [4].

2.1.2 Support Vector Machines

In its most common formulation, the Support Vector Machines approach considers
N-dimensional input patterns xi and output labels yi. The input and output data are
trained in order to estimate a function f :RN → f±1g such that f ðxÞ= y for new
input/output examples ðx, yÞ. Both training and new data are assumed to have been
generated from the same underlying probability distribution Pðx, yÞ [6]. The SVM
classifier is based on the class of hyperplanes

w ⋅ xð Þ+ b=0,w ∈ RN , b ∈ R, ð5Þ

where the decision function is given by

f ðxÞ= signððw ⋅ xÞ+ bÞ ð6Þ
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The optimal hyper-plane can be uniquely determined by solving a constrained
optimization problem whose solution w has an expansion w= ∑i vixi in terms of
data of the training set which lie on maximal margin of separation between the two
classes (the support vectors). Since Eqs. (4) and (5) depend only on dot products
between patterns, the training data can be mapped nonlinearly to a
higher-dimensional feature space F, via a map Φ such that the optimal separating
hyper-plane can now be constructed in F. This is achieved by substituting ΦðxiÞ for
each xi and applying simple kernels k, such that

kðx, xiÞ: = ððΦðxÞ ⋅ΦðxiÞÞ ð7Þ

The decision boundary then becomes

f xð Þ= sign ∑
l

i=1
vi ⋅ k x, xið Þ+ b

� �
, ð8Þ

where the parameters vi are computed as the solution of a quadratic programming
problem.

In essence, in input space the separating hyper-plane corresponds to a nonlinear
decision function whose form depends on the type of kernel used [6] (see Fig. 2).
Depending on the application at hand, different kernels may be used. Commonly
used kernels include the radial basis function (RBF) given by

k x, yð Þ= expð− x− yk k2Þ ̸2σ2, ð9Þ

where σ is a scaling factor [6] and the polynomial given by

k x, yð Þ= ðx ⋅ yÞd, ð10Þ

where d is the order of the polynomial.

Fig. 2 The kernel trick in Support Vector Machines formulation (adapted from [6])
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2.1.3 Bayesian Networks

Clinical datasets are often noisy and incomplete, making the building of machine
learning models challenge. A way of dealing with noisy observations is to consider
measured variables as latent states from which noisy observations are made [7].
Because many patient aspects are not directly measurable, state-space approaches
have been extensively considered for obtaining reliable estimates of physiological
states under uncertain conditions. Kalman Filters (KFs), are a good choice for
dealing with noisy data since they treat measurements as noisy observations of an
underlying state and update the state only if high confidence in the current state is
high, conditioned on the previous observation [7]. Noisy observations are then
naturally rejected and not taken into account in the calculation of the state. Bayesian
approaches are also able to meet these challenges by incorporating uncertainty into
the decision-making process. In the recent years, Bayesian methods have experi-
enced a huge popularity for the development of biomedical applications and have
shown promising performance in modelling a range of problems relevant to bio-
logical learning [5]. In classification problems, for instance, Bayesian approaches
consider class conditional distributions, PðD ̸CÞ, (where D is the data and C is the
class) which can be trained for each different class. The conditional probability of
each class given data D can then be calculated using Baye’s rule to obtain

P C ̸Dð Þ= P D ̸Cð ÞPðCÞ
PðDÞ ð11Þ

Classification of novel examples can then be performed by computing the
likelihood over each model.

Bayesian networks are graphical models where each node represents a random
variable and each link represents the dependencies between the linked variables.
Along with the graphical structure of the network, a joint probability distribution Pr
is learnt using the training data; for each random variable Vi represented by a node,
a set of conditional probability distributions is determined connecting it to all the
nodes it follows (sometimes referred to as the parent nodes and symbolized by
πð ⋅ Þ), PrðVi ̸πðViÞÞ. The conditional probability distributions between each vari-
able and node then define a unique joint probability distribution over the graph’s
structure as [8]:

PrðV1, . . . ,VnÞ= ∏
n

i=1
PrðVi ̸πðViÞÞ ð12Þ

A restriction in the graphical models defined is that there can be no directed
cycles, i.e., that the structure of the graph does not permit for a path which starts and
ends at the same node, for this reason such graphs are also called acyclic graphs [4].
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An advantage of Bayesian Networks compared to other approaches such as
SVMs and ANNs is that they allow for interpretation of the interactions between
different variables which makes them easier to combine with findings from
clinicians.

2.2 Feature Extraction and Selection

The number and choice of features is critical to the success of a machine learning
model. Using too many features relative to the “true” dimensionality of the process
to be modelled may result in overfitting, a result of the classifier learning the
training data instead of the intrinsic trends of the data [3]. Using a large number of
features also requires a large training dataset in order to reliably estimate the
relationships between the multidimensional variables, a phenomenon known as the
curse of dimensionality. While there is no widely accepted rule for the ratio of
features to “events”, as a rule of thumb, at least ten events are needed per feature to
achieve a reasonable predictive performance [9]. The choice of features is another
crucial issue. Depending on the application of the machine learning model, the
features selected are usually picked such that they have some bearing on the
associated physiological process. These features would be the ones a clinician
would review in order to assess the physical state of the patient. For example when
building a system which may predict exacerbations in patients with Traumatic
Brain Injury (TBI), intracranial pressure (ICP) should be included since it is the
most important identifier of an exacerbation. For people with chronic cardiorespi-
ratory problems elevations in heart rate (HR) and respiration rate (RR) and a drop in
oxygen saturation (% SpO2) are the most important precursors of an exacerbation.
As a result HR, RR and % SpO2 are obvious choices for features to be used in a
predictive model for such exacerbations. It is often the case, however, that more
abstract characteristics are used as features for a machine learning model. Examples
are frequency characteristics of the ECG signal, such as the amount of entropy in
different frequency bands, used for the diagnosis of Atrial Fibrillation (AF) [10] or
statistical texture features extracted from medical images in order to identify
malignant tumours [11]. While these abstract characteristics cannot be directly
linked with assessments a clinician would make for making a decision, they often
reveal strong links with medically relevant information.

2.3 Training, Testing and Evaluation Metrics

The data required for training and testing machine learning models are most often
collected via clinical trials. The protocols of these clinical trials need to reflect the
requirements of the algorithm to be designed. Collected data naturally need to
correspond to the variables defined in the model. Enough data need to be collected,
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guided by the dimension of the feature space, so that the relationships between the
different variables can be reliably derived. Target values need to be carefully
defined. For example, when designing systems to identify “events”, such as
physiological exacerbations, the training data need to be chosen as to contain
enough clearly marked occurrences of such events. This is often a challenge when
building systems for diagnosing rare events and diseases.

In classification problems, human labelling, the “gold standard” of clinical
diagnosis, is usually done by clinicians. Human labelling, however, suffers from
inconsistencies, known as intra- and inter-rater variability. To alleviate this, often,
multiple raters are used and only data with consistent labels across raters are used
for building the classifiers.

Performance evaluation of machine learning algorithms is usually assessed
based on predictive accuracy compared to the “gold standard”. Sensitivity, Speci-
ficity, and Accuracy are the metrics most often used and in many cases a trade-off
between true positive and true negative rate needs to be defined since the “cost” of
each different type of error varies depending on the application. Sensitivity, given
by TP/(TP + FN) where TP are true positives and FN are false negatives, measures
the proportion of “positives” that have been correctly identified as such. Specificity,
given by TN/(TN + FP) where TN are true negatives and FP are false positives,
measures the proportion of “negatives” that have been correctly identified as such.
Accuracy corresponds to overall proportion of correct classifications. Receiver
Operating Characteristic (ROC) curves serve as a graphical representation of the
trade-offs between the Sensitivities and Specificities of each model specification.
While accuracy could be used as a metric for evaluating the performance of the
system, the “cost” of a false positive (i.e., a signal identified as acceptable which is
actually unacceptable) may be higher in practice than that of a false negative (i.e.,
an acceptable signal identified as unacceptable). The former would result in a false
measurement whereas the latter would result in the rejection of signal which could
actually have been used. In such situations, decision functions may be defined
where the relative cost of each error is weighted or thresholds may be set in the
minimum acceptable value of each metric, such that the best model for every
application may be chosen.

Cross-Validation
Cross-validation is a method often used in order to evaluate machine learning
models which allows all data points to be used in both the training and testing
phases of the model evaluation procedure. In K-fold cross-validation all available
data are firstly divided randomly into K different equally sized groups. At each
iteration, one group is treated as the test set and the remaining K − 1 groups are
used as the training set. A model is then trained K times, each time using one of the
training sets and the associated test set and the overall accuracy is measured as the
average of the accuracy measures of over the K iterations [4] (Fig. 3).
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3 Challenges Related to Clinical Applications

For real-life clinical problems, analysis of data is not straightforward, and cannot
simply be reduced to the application of standard machine learning algorithms.
Whilst data quality and analysis issues are not unique to healthcare, the acquisition
of data from human patients brings additional challenges that do not occur in other
fields. Two prominent challenges are the analysis of datasets with missing or
corrupted data, and the analysis of heterogeneous and high-dimensional data.

3.1 Corrupted and Missing Data

Corrupted data occurs when a recorded measurement does not accurately reflect the
true state of the object or person being measured. Missing data occurs when there is
no recorded measurement at a given point in time. If left unrecognised, analysis that
does not take into account missing or corrupted data may to lead to inaccurate
decision-making. In the worst cases, this could mean patients being assigned the

Fig. 3 Example ROC curve indicating operating point selection based on different criteria
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wrong course of treatment. In the UK healthcare system alone, data of poor quality
has previously been linked to unnecessarily cancelled operations, and undetected
outbreaks in C. difficile infections [12].

To understand why health data are often of poor quality, it is helpful to first
consider the steps typically involved during data collection. In general, the clinical
data from patients involves multiple stages (Fig. 4), each allowing possibility of
data corruption. Two of these stages are now discussed in greater detail.

Patient-Medical Device: In many common scenarios, the first opportunity for
data corruption occurs when patient measurements are recorded using medical
equipment. Incorrect use of medical equipment has been associated with erroneous
measurements in a wide variety of clinical situations. For instance, Boba et al. [13]
found that many breast core needle biopsies produced false-negative results due to
sampling from an inappropriate site.

Vital sign monitoring is particularly prone to error caused by patient-device
interaction. In the case of pulse oximeters, that measure the level of oxygen in the
blood (SpO2), corrupted data are often due to poor attachment of the device to the
finger [14]. The relative motion between finger and device leads to physiologically
implausible measurements known as motion artefact. Motion artefacts are a com-
mon problem for other physiological measurements including heart rate (via ECG)
and activity detection (via accelerometers) [15, 16].

The problem of poor device attachment is becoming increasingly important as
attempts are made at medium and long-term ambulatory monitoring outside of the
hospital environment to reduce pressure on emergency services [17]. In these cases,
the state-of-the-art is to apply an adhesive patch to the patient’s sternum. Each patch
contains a set of integrated sensors that can monitor multiple vital signs concur-
rently [18, 19]. The patients monitored tend to be more physically active than those

Fig. 4 Data flow during the collection of health data from patients. Multiple stages of data
transfer are usually necessary before the final data items are stored securely within a data
warehouse
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monitored in-hospital which leads to greater levels of motion artefact. These arte-
facts are compounded by the practical problem of deterioration of patch adhesion
over time.

Even if reliable device attachment can be guaranteed, the accuracy of the
medical devices themselves may vary. In many cases, medical instrumentation is
subject to regulations that guarantee tolerance (that is, variation from the true
value). For instance, the US Food and Drug Administration mandates that all pulse
oximeters for medical use have a maximum root mean squared error of <3% over
the normal operating range [20]. However, multiple reviews of pulse oximeters
have shown much greater variability when tested on healthy individuals [21].

Finally, we note that in some instances, there are multiple clinically-accepted
methods for measuring the same data item. This can lead to instances in which
variability is due to the measurement method, rather than the patient’s true state.
Core body temperature may be measure using either oral mercury, oral electronic,
or tympanic electronic thermometers [22]. Blood pressure is traditionally measured
using a mercury sphygmamometer. During measurement, an inflatable cuff tem-
porarily cuts off blood flow to the arm. As the cuff is deflated, characteristic
‘Korotkoff’ sounds are used to identify the peak (systolic) and trough (diastolic) of
the blood pressure waveform [23]. Modern semi-automatic blood pressure monitors
take a different approach. The monitors measure the amplitudes of oscillations in
the blood pressure cuff caused by the expansion of the arteries as blood is being
forced through. These measurements are then converted into systolic and diastolic
blood pressures derived empirically [24]. Pavlik et al. tested semi-automatic against
manual methods, showing that the semi-automatic method produced consistently
higher blood pressure readings [25]. Similar studies showing discrepancies between
the two methods have since been reported for hypertensive patients and
home-monitoring devices [26, 27].

Clinical Expert—Paper/Electronic Record: Having successfully taken a
patient’s measurements, the next step is for the clinician to interpret and validate the
measurement. Error in clinical interpretation can occur through misreading infor-
mation. For example, the oversight of a decimal point has led to high profile
medication errors [28]. In response, national agencies have specific recommenda-
tions for numbers, including the avoidance of trailing zeros (to differentiate 1.0 and
10, for example) [29]. Clinical interpretation may also involve combining raw
information into aggregate scores. For instance, the overall level of patient severity
may be assessed through the use of Early Warning Scores (EWS). These scores
assign an integer value to vital sign measurements; the sum of these values forms an
EWS that is used to inform level of in-hospital care. These relatively simple cal-
culations have repeatedly been shown to be erroneous approximately 20% of the
time [30, 31].

The final clinically-validated data are transcribed to an official clinical record,
which may be paper-based or electronic. The process of data transcription is prone
to further error. For instance, Callen et al. [32] describe, for an Australian
metropolitan hospital, how both handwritten and electronic systems contained
clinically significant medication transcription errors in discharge summaries
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(handwritten: 12.1% and electronic: 13.3% for 13,000+ medications). The authors
suggest numerous potential factors that may contribute to the level of error,
including heavy workload and distractions from the current task. Further causes of
transcription error include unintuitive design and lack of training [33, 34].

3.1.1 Reducing Corrupt Data

The previous section showed the multiple steps required to collect health data, and
how each step is prone to data corruption. In instances when data collection is
on-going, it is highly desirable to optimise these steps to maximise the reliability of
the data for retrospective analysis.

One way to reduce patient-medical device errors is to improve the sensors within
the device. Whilst integrated adhesive patches represent the current clinically viable
method for recording vital signs, novel techniques are being developed that may
reduce the problem of motion artefact. Batchelor et al. tackle motion artefact by
using alternative methods of affixation [35]. Their prototype transfer tattoo elec-
trodes provide a strong attachment to the skin and higher durability than traditional
electrodes whilst producing similar data reliability (as evidenced through
signal-to-noise ratios). Tarassenko et al. [36], as well as multiple others [37, 38],
take another approach. Rather than ensuring the best possible contact, they attempt
to measure vital signs with no patient contact, using video images. Results using the
contactless techniques are comparable to traditional monitoring methods for
patients at rest, with a mean absolute difference of approximately 3 beats/min for
heart rate measurements.

Another way to reduce data corruption is to eliminate the amount of interpre-
tation and transcription of clinical measurements. For vital sign data, incorrect
calculations of EWS has been virtually eliminated with the help of electronic data
entry at the bedside [39]. These so-called e-Obs systems allow users to type data;
the system then automatically calculates the EWS and may provide care recom-
mendations [40, 41]. This idea has been extended by medical device manufacturers,
who have created integrated vital signs monitors that automatically send the EWS
score and vital signs directly to the hospital’s Electronic Patient Record [42].

Automated systems that reduce transcription have become increasingly com-
monplace in modern healthcare. The rise of Computer Physician Order Entry
(CPOE) systems to standardise and automate the ordering of medication has been
associated with reductions in nursing transcription errors [43]. Another electronic
systems designed to reduce transcription error is the Bloodtrack system for blood
transfusions [44]. Bloodtrack electronically allocates compatible red blood cell
units by using barcode scanners to identify both the patient and blood packet. The
introduction of the system has been associated with improvements in safety checks
during blood sample collection, in addition to reduction in time to deliver blood
[45, 46].
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A final way to increase data quality is to identify corrupt data in real-time and
encourage human intervention. In the simplest cases, this means preventing a user
from entering implausible data. For instance, in the case of CPOE systems,
drug-drug interactions data can be used to prevent prescription of potentially
dangerous drug combinations [47].

A more sophisticated example is the Phillips Intellivue vital sign monitor. These
devices measure multiple types of vital signs continuously and are used to monitor
patients at risk of rapid deterioration. These devices generate audible alarms that
indicate when the monitor data are unreliable and the vital signs sensors need to be
reattached. The technical details for determining periods of unreliable data (typi-
cally via Signal Quality Indices) are explained in Sect. 3.1.2.

Whilst the adoption of processes that reduce corrupt and missing data is helpful
for a wide range of healthcare related tasks, such as medical research and hospital
management, there are multiple other competing aims within real clinical practice.
Most importantly, standards of patient care should not be compromised. Bonnici
et al. [48] highlight this in the context of wireless sensors, implying that patient
choice and comfort is of paramount importance for successful implementation of
remote monitoring systems.

Financial cost also needs to be considered. There is a trade-off between using the
best (and most costly) equipment, and the level of improvement in staff efficiency
and data quality that can be achieved [49]. For some in-hospital electronic solu-
tions, improvements in data quality have been offset by significant increases in time
to complete clinical tasks [50].

3.1.2 Identifying Corrupt Data

In reality, data corruption cannot be eliminated completely during the measurement
and documentation process. Methods are therefore required to process and analyse
low quality data. The first step of this process is to correctly identify the corrupt
portions of the data set. In particular, it is important to accurately distinguish
between an unusual, but true, measurement that may have clinical significance and
abnormal data due to artefact. One common way to identify artefactual data is
through Signal Quality Indices (SQIs). A SQI is a measure of confidence in the
reliability of a data point. Typically, the development of an SQI begins by selecting
relevant attributes, or features, that should be present in high quality data. Three
popular types of features are:

Range Checking compares the data to physiologically plausible ranges. Any
measurement outside the range is considered to be low quality. Tat et al. [51]
implement range checking to evaluate the quality of an ECG signal. Part of their
SQI involves converting the raw signal to a heart rate. Heart rates outside of the
range 30–210 are considered bad quality.

Inference based on simultaneously recorded data—relies on the fact that mea-
surements are often not independent. For instance, there is strong correlation
between continuous blood pressure signal and ECG. Johnson et al. [52] make use of
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this by developing a SQI for heart rate, in which a high data reliability is estimated
when the two signals peak at similar times.

Comparison to previous values compares the current data to previously mea-
sured values. If the difference between the current and previous values is deemed to
be improbable, the measurement is considered to be invalid. Clifton et al. showed
one implementation of this approach for tympanic thermometers. By using Baye-
sian changepoint detection, natural variation in temperature was distinguished from
an unexpected step-change in temperature due to calibration error [53].

If the original waveform data are available, more complex features may be used.
These may include morphological features (that is, recognition of typical shapes of
data), and frequency features generated after the raw signal has been converted into
its frequency components using a Fourier transform. For instance, Orphanidou et al.
show, for ECG signals, how differences in morphology may be measured using an
average cross-correlation between a template and unknown data [54]. A review
from [55] indicated that this approach was particularly specific for ECG signal
quality in comparison to alternative features.

SQI may be derived from one or more of these features. If multiple features are
used, they must be combined in some way to produce a single result. The synthesis
of multiple features is often completed using machine learning methods, like the
example covered in case study 2 [56].

Setting the threshold between good and bad data quality is itself a challenging
problem. In the previous example, the threshold was determined via clinical experts
who were asked to label the training data. In many cases however, acceptable signal
quality is often task dependent. For instance, in the case of PPG, respiratory rate is
often detected using the small amplitude, low-frequency part of the signal—a high
threshold on data quality is required. In contrast, heart rate can be computed from
portions of the signal that typically have greater amplitude and less prone to random
noise. Practically, this means that signal quality indices are highly specific to the
clinical setting, a finding supported by Nizami’s review of 80 artefact detection
methods used in critical care medicine [57].

3.1.3 Processing Corrupt and Missing Data

After the identification of corrupt data, there are, broadly, two possible options: to
use the corrupted data, or to discard the data.

Using corrupt data
Correction of corrupted data is possible when the mechanism by which the data
were corrupted is known. For instance, in the case of an ECG signal, the observed
signal is often subject to baseline wander caused by respiration, motion, or gradual
changes in the ECG electrodes (Fig. 5). The baseline wander artefact is known to
primarily affect low frequencies, so a high pass filter can be used to eliminate the
spurious part of the signal [58].
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In the majority of cases, it is not possible to correct artefacts. However, even
then, artefact may be non-random and can be used to infer additional useful
information. For instance, in the case of EEG signals that measure brain activity,
artefactual changes in the signal may be caused by muscle movement as the eyes
blink. In many applications, the blink artefact is a nuisance, and there have been
many attempts to identify and remove eye-blink artefacts [60, 61]. However, for
certain applications, knowledge about blinking may be useful. For instance, the
clinical standard for determining level of consciousness is partly determined by
whether a patient’s eyes are open [62]. If one were to attempt to ascertain con-
sciousness level using EEG (as has been attempted by [63, 64]), the eye-blink
artefact may contain useful information.

Even if artefactual data does not present useful information for the task at hand, a
curated and annotated set of known artefacts can be used as exemplars to improve
future artefact detection. Lawhern et al. use this approach for EEG signal classi-
fication to identify jaw and eye motion artefacts. Sections of EEG signal were first
parameterised in an autoregressive model. The model parameters were then were
successfully classified using Support Vector Machines, such that real signal was
distinguished from multiple types of EEG artefact [65].

When data cannot be reasonably corrected, they are often removed from anal-
ysis. The way that missing data are handled is of paramount importance; it is easy to
inadvertently introduce bias that leads to spurious results. One example of this is an
early version of the cardiovascular risk score, QRISK [66]. QRISK (and its suc-
cessor, QRISK2 [67]) outputs, for a patient, a percentage risk of cardiovascular
disease within the next ten years. The output is based on an extensive range of

Fig. 5 Baseline wander in an ECG signal. The original signal (in blue) has a low frequency
variation associated with respiration rate. By applying a high-pass filter (in red) the baseline
wander can be removed to allow easier signal processing [59]
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variables including family history, smoking status and age. When data are missing,
it attempts to estimate the missing values. However, the effect of this has led to
unexpected outcomes, including an implausible null association between choles-
terol level and cardiovascular risk [68]. Problems with imputation in QRISK have
since been corrected and the algorithm revalidated [69].

Missing data can be categorised in three ways. Data Missing Completely At
Random (MCAR) means that data points are missing at random, AND the missing
value is independent of any other values in the data set. Data Missing At Random
(MAR) means that data points are missing at random, but that the missing data can be
partially explained by other variables in the data set. Data Missing Not At Random
(MNAR) means that data points are not missing at random, such that the probability
of the data being missing is associated with its value. In practice, it is often difficult to
distinguish between these three categories, as the missing values are not known.
However, knowledge of these missing data mechanisms is useful for recognising
potential bias introduced by techniques for analysing incomplete data sets.

Listwise Deletion
The simplest technique for analysing incomplete data sets is to remove records with
missing data, known as listwise deletion. This process ensures that only completed
sets of data are used to construct models. Listwise deletion is typically appropriate
when only a small percentage of data are missing (e.g. 1%) [70]. Listwise deletion
has two significant drawbacks. First, the remaining data set will be biased, with
reduced variability in the missing variable, if data are not MCAR. Second, valid
information is unnecessarily discarded when there are multiple variables for each
data record.

Data Imputation
Rather than removing missing records, one can attempt to replace the missing data
elements with values estimated from the observed data, a process known as data
imputation. A simple method for imputation, mean imputation, is to replace the
missing data with the mean of the all other observations of that variable. This
approach has been adopted within clinical software for detection of physiological
deterioration from continuous vital signs [71]. In this case, the speed and simplicity
of mean imputation was a useful practical method that allowed assessments of
deterioration to be conducted in real-time. Mean imputation should be applied with
caution, as the variance of the complete data set after imputation will lower than the
true value. To avoid this problem, we may instead randomly sample from the
distribution rather than selecting the mean, a process known as stochastic impu-
tation. Unbiased sampling from an arbitrary distribution can be achieved using
Gibbs sampling, or other Monte Carlo Markov Chain approaches [72].

If data are MAR (not MCAR), the underlying relationship between the observed
and missing data can be used to provide a more precise imputation. One such
method is regression mean imputation. Under this scheme, complete data records
are used to regress (typically linear regression) the variable with missing data onto
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all other variables. The resulting equation is then used to impute the missing data
points. Like simple mean regression, this deterministic approach (the unknown
value is completely determined by the observed variables) artificially reduces data
variability.

The regression approach can be extended to non-continuous variables. For
example, logistic regression can be used for categorical variables [73]. In the case of
censored data where values outside of a given range are unknown (for instance, due
to limited time for study follow-up, or when the dynamic range of a sensor is too
small) the Tobit model for truncated regression provides a non-biased estimate [74].

Another simple method for imputation, used in particular for time series data, is
‘last value carried forward’ also known as ‘sample-and-hold’. Under this scheme,
missing data are replaced with the last known value. Compared to the mean
imputation approaches, sample-and-hold makes the additional assumption that
subsequent observations are likely to be more similar than observations taken at
random times.

The primary limitation of each of these methods is that the inherent uncertainty
of missing data are discarded. More complex approaches, including multiple
imputation, maximum-likelihood, and Gaussian process regression, circumvent this
by using probability distributions to model the missing data.

Multiple imputation uses stochastic imputation to create multiple possible ver-
sions of the missing data record. All versions of the data set are analysed separately,
and the outputs are averaged to get an overall result. Standard errors on the output
parameters are calculated using Rubin’s rules [75]. Rubin’s rules take into account
the variance of the missing data variable (determined as the variance within the
completed records) and the variance of the multiple imputations. The reliability of
multiple imputation estimates depends on the number of imputations used. Whilst
initial research suggested a small number (3–5) imputations, Graham et al. showed
that this was insufficient for estimating variance accurately [76]. Instead, they
suggest using at least 20 imputations, a number that may increase depending on the
overall percentage of missing data [77]. A more detailed tutorial on multiple
imputation can be found in [78].

One popular implementation of multiple imputation when more than one vari-
able has missing data is Multiple Implementation by Chained Equations [79].
Under this scheme, all missing data are initialised using mean imputation. Multiple
imputation is then used to provide a more accurate estimate for each variable in
turn. This process is repeated several times until convergence criteria are met.

An alternative approach is Maximum-Likelihood (ML) estimation. A full
description is provided in [80] and is summarised briefly here. ML methods model
all of the measured data as a joint probability distribution function, f. The distri-
bution function is parameterised by a set of free parameters, θ. For the simple case
in which each variable is normally distributed, the joint pdf is a multivariate
Gaussian that is fully defined by the mean and covariance.

If each data record, xi, is independent, then the probability of attaining a given
set of n observed data is provided by the likelihood function:
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L= ∏
n

i=1
f ðxijθÞ ð13Þ

In the case when some of the data records contain missing elements, the prob-
ability can be described by marginalising f over the missing variables so that the
likelihood of single data record, in which the set of M variables are missing, is:

∫
M
f ðxijθÞ ð14Þ

ML attempts to find the most likely model instance by maximising the likelihood
through adjustment of θ. In some instances, the maximum likelihood may be cal-
culated analytically. However, in practice, the likelihood function may be highly
non-linear and a closed form solution is not possible. In these cases, the likelihood
function is maximised iteratively using methods such as the Expectation-
Maximisation algorithm. Because the parameter set, θ, fully describes the vari-
ables and the correlations between them, the parameters can then be converted to
regression equation parameters if specific instances of imputation are required.

Gaussian process regression extends these principled approaches by taking into
consideration temporal relationships. In Gaussian process regression, n data points
from a time series are modelled as a single sample from an n-dimensional Gaussian
distribution (Fig. 6), defined by a covariance matrix. Any missing data are then
simply represented by the conditional distribution: P(missing data | observed data),
which is also Gaussian.

The elements of the covariance matrix are determined via a covariance function
that describes the expected change of the time series through time. In the simplest
cases, the covariance functions simply describe how local measurements are highly
correlated, and that correlation decreases as data samples become further apart in
time. Alternatively, the covariance function can be based on domain-specific
knowledge. For instance, Stegle et al. use a covariance function that takes into
account periodic circadian rhythm for inferring missing heart rate [81].

Roberts provides a more comprehensive introduction to Gaussian process
regression [82]. If multiple time series data are captured simultaneously, correla-
tions between variables can also be modelled. Two similar approaches that model
both temporal and inter-variable correlations using Gaussian processes are
multi-task GPs and dependent GPs [83, 84].

Wong et al. show how Gaussian process regression in conjunction with other
machine learning methods were used to generate alerts for abnormal vital sign data
[85]. Likely distributions of the missing data were first imputed. The distributions
were inputs to a model that generated alerts based on the vital sign abnormality, and
the level of certainty in the data.
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In summary, analysis of missing data remains a complex problem. The optimal
choice of data imputation technique depends on the specific problem, and should
consider practical problems such as speed of implementation in addition to accu-
racy of the imputed data. Simple imputation may be used for some cases, but care
should be taken to ensure that biases are identified. The fundamental limitation of
such approaches is that a single value is used to represent the missing data point—
thereby losing information about the uncertainty or ‘missingness’. By contrast,
stochastic approaches such as multiple imputation, maximum likelihood and
Gaussian process regression attempt to model missing data as distributions. Whilst
these are more principled methods, they require more complex and time-consuming
calculations.

3.2 Integrating Heterogeneous Data Sources

Typical care for a patient in a modern health service involves multiple types of data
collected from a disparate range of sources. Data analytics that combines multiple
sources of data, a process known as data fusion, is useful for two main reasons.

Fig. 6 Simple example of a Gaussian process for two time points. The left figure shows the joint
probabilities of all possible pairs of points as a bivariate Gaussian distribution. The right figure
shows the time series plots for the three points on the distribution highlighted in blue, black and
red
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First, the multiple data sources may provide complementary information that pro-
vides a more complete description of the problem. Secondly, the multiple sources
may measure the same event, providing redundant information. Whilst the data
itself may not provide any new information, the independent sources can be used to
corroborate a given measurement and may be useful for assessing data corruption
via Signal Quality Indices.

In practice, the process of integrating data sources is fraught with difficulty. We
now address three issues in data analysis with multiple sources and address how
they are commonly dealt with in practice.

3.2.1 Dimensionality and Feature Selection

Combining multiple data sources into a super-set used for analysis increases both
the volume and variety of data items. As the number of variables increases, the
amount of data required to derive meaningful results increases exponentially—a
phenomenon commonly referred to as the Curse of Dimensionality. Figure 7
demonstrates this phenomenon for categorical data. In the example, three data
points are represented by red squares. For two variables (a 2D data space), this
represents coverage of 3/9 possible states. The addition of a third variable (a 3D
data space) means that the same number of data points represents a much smaller
proportion of the possible states, 3/27.

One solution to the Curse of Dimensionality is to determine an optimal subset of
variables, a process known as feature selection. If done correctly, only unimportant
variables are discarded. Multiple methods for feature selection have been proposed
in the literature, and Saeys et al. provide a detailed discussion of a wide range of
feature selection techniques [86].

Fig. 7 An example of the Curse of Dimensionality. a Variables v1 and v2 can take three
possible values each. The three data points (in red) provide examples in 3/9 (33%) of possible
combinations. b The addition of a new variable, v3, reduces the coverage to 3/27(11%) of possible
combinations
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The most conceptually simple of feature selection techniques is Univariate
Feature Selection and is appropriate when the target variable is known (i.e.
supervised learning). In this method, each variable is taken in turn to see how it
correlates with the target variable. Variables that have poor correlation are dis-
carded. One drawback of this approach is that data redundancy is not considered.

Another intuitive way of selecting features is Backward feature elimination/
Forward feature construction. In backward feature elimination, all variables are
initially included in a model that tries to explain the target variable. After this, one
input is removed from the initial set of n, and the model is re-run. There are n
possible variables to remove, leading to n different model results. The model that
best describes the target variable is kept, and the associated input variable is dis-
carded. This process is repeated until a pre-determined criterion is met. Forward
feature construction uses the same iterative approach, but instead begins with only
one input variable, and adds the most useful variable at each iteration.

One model that lends itself well to feature elimination and construction methods
is random forests, an extension of the decision tree algorithm [87]. In the case of
feature elimination, a random forest model is first applied to all input variables. The
variable that is least informative is the first to be removed. The level of information
is determined through a scoring function. The function may include information
about how many times a feature appears in the individual decision trees, and the
classification accuracy of each tree. Specific examples of scoring function are
described in [88].

Unlike the univariate feature selection, both feature elimination and construction
naturally deal with redundant information. If once an input variable is included, a
similar input will only be incorporated if it provides significant additional infor-
mation. Both approaches are also ‘greedy’ algorithms. This means that they select
the best available choice on each iteration. Such approaches only guarantee an
optimal solution under specific conditions [89].

The methods described so far find a subset of the original input variables.
However, in some cases, input variables may themselves be based on some smaller
set of unmeasured, latent variables. The process of recasting the initial input
variables into the smaller set of latent variables is known as dimensionality
reduction. Each new variable will be a function of the initial inputs, and may have
no inherent meaning itself. Mathematically, dimensionality reduction can be con-
sidered a transformation of the initial data space into a feature space that can be
used to describe most of the variance within the data set. Because these techniques
solely rely on properties of the input data, they can be applied without reference to
an output target variable.

One common dimensionality reduction techniques is Principal Component
Analysis [90]. PCA transforms data sets described by N-input variables to a data set
described by M features. The M features are linear combinations of the input
variables. They are derived by projecting the dataset onto the eigenvectors corre-
sponding to the M largest eigenvalues. Figure 8 demonstrates PCA for a simple
case in which N = M = 2. The PCA output results in a linear rotation of the data so
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that the data align with the principal axes y1 and y2. The y2 axis has a smaller range
than the untransformed data, so may be disregarded (such that the data are described
only in terms of y1) with minimal loss of information.

Sammon maps [91] are another dimensionality reduction technique that attempts
to maintain the Euclidean distance between points in the initial feature space, and a
reduced-feature output space. In this case, the axes of the output space represent
non-linear combinations of the original features. The method considers all distances
between data points so that a data set with n records requires n! computations—
intractable for large values of n. For such data sets, approximations may be derived
using a sparse set of comparisons [92] or by explicitly learning the transform
function [93]. Due to its reliance on Euclidean distance, Sammon maps are not
easily applicable to data sets that contain categorical or binary features.

Fig. 8 Demonstration of principle component analysis with two features. Initially, the data are
fully described in terms of x1 and x2. PCA linearly transforms the data along the directions with
greatest variance. In this case [y1 y2] = [a b; c d] [x1 x2]. After the transformation, data are
primarily a function of y1, and y2 can be ignored with minimal loss of information
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3.2.2 Data Fusion of Heterogeneous Data

The combination of multiple sources and types of data to provide a single, more
informative, variable is known as data fusion. Many of the key data fusion concepts
were developed within robotics and have since been adapted to healthcare data.
A detailed discussion of data fusion can be found in [94]. Here, we describe two
specific data fusion approaches, their engineering application, and their subsequent
use for healthcare problems.

Kalman filters have found wide-spread application in many different data fusion
problems using clinical data [94]. The Kalman filter (KF) is a recursive linear
estimator which calculates estimates for a continuous valued state that evolves over
time on the basis of existing observations of the state [94]. The underlying
assumptions are Bayesian (explained in Sect. 2.1.3) where estimations of param-
eters are made based on conditional probabilities. In the case of the KF the con-
dition parameters are the probabilistic observations of the values of the variable in
time. The evolution of the parameter of interest xðtÞ is, thus, described using an
explicit statistical model. Another statistical model is also used to describe the way
that the observations, zðtÞ, are related to xðtÞ. The gains of the KF are then chosen
such that the resulting estimate of the parameter of interest x ̂ðtÞ minimises
mean-squared error and is thus the conditional mean, x ̂ tð Þ=E½xðtÞ ̸Zt�. This means
that the estimated value is calculated as an average and not as a most likely value as
in other probabilistic approaches. Because of the explicit description of process and
observations, and the consistent use of statistical measures of uncertainty, the
Kalman Filter framework makes it possible to incorporate different sensor models
into the basic form of the algorithm. Additionally, at each point in time, it is
possible to evaluate the role each sensor plays in the performance of the system,
making it an ideal approach for data fusion.

Example successful applications can be found in [95] and in [96]. In the former,
a KF framework was employed in order to fuse heart rate (HR) estimates extracted
from different signals based on individual Signal Quality metrics for each signal. In
the latter, an extension of the basic KF framework was used, the Factorial
Switching Kalman Filter (FSKF) which applies a third set of variables, in addition
to the observations and states of the classic KF framework, called the factors.
The FSKF in this case, was used in order to estimate the true values of vital signs in
the Neonatal Intensive Care (NICU) at times where the measurements were
obscured by artefact. The factors incorporated into the system in this case were
related to possible system failures causing artefact, such as probe dropouts, incu-
bator open, etc. These factors had a range of possible settings and at each given
point, the existing setting was taken into account in the estimation model.

One other approach to data fusion is novelty detection. Novelty detection
methods are used when we wish to classify normal and abnormal data records, but
only have very few abnormal training examples. In this case, the challenge is often
to accurately differentiate between extreme, but normal data, and truly abnormal
data. When a single source of information is used, differentiation is sometimes
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impossible. For instance, for heart rate data, a low value can either indicate good
health, or underlying problems with the heart’s electrical activity. In these cases,
integrating data from multiple different sensors allows for more accurate classifi-
cation. Multi-sensor data fusion is an approach that has been applied to traditional
engineering applications such as jet engine monitoring [97], and adapted for use
with healthcare data. One specific data fusion algorithm for vital sign monitoring is
described in greater detail in Sect. 4.1.

Whilst these multi-sensor data fusion approaches are useful in specific healthcare
settings, they do not address one of the unique aspects for healthcare data analysis:
the rich variety of data acquired. Health data sets often contain variables of multiple
data types—a property known as heterogeneity. A data type defines the set of
values that a data item may take; common data types include text, binary, cate-
gorical, ordinal and continuous (or floating point). Whilst some data fusion and
machine learning methods may be adapted (e.g. see [98]), most are unable to deal
with multiple data types simultaneously.

One promising approach for fusing heterogeneous data is Multiple Kernel
Learning (MKL). In traditional kernel learning methods, such as SVMs (see
Sect. 2.1.2), a kernel function outputs a measure of similarity, given a pair of data
inputs. The kernel function is typically chosen a priori, based on known properties
of the data. MKL methods differ by learning and using the optimum linear sum of a
family of kernel functions:

K = ∑
i
biki ð15Þ

Due to the property of kernel functions, K is also a kernel function, so standard
techniques can then be applied (for example, [99]). If each individual kernel is
tailored for use with particular data types, the kernel, K, provides a blend that
allows us to process fuse multiple data types optimally.

MKL has been successfully applied to heterogeneous data in the healthcare
setting. One example, from Ye et al. [100] showed how MRI image data could be
fused with patient demographics and genomic results to help diagnose Alzheimer’s
disease more effectively than by using any one data type.

3.2.3 Technical and Sociological Issues

The use of multiple data sources brings many practical obstacles that are exacer-
bated in the healthcare space. Currently, clinical data are collected by multiple
devices, belonging to multiple organisations. The data are stored in separate data-
bases, a phenomenon referred to as data compartmentalisation. The barriers to
successful data sharing are manifold.

First, the linkage of databases poses ethical and legal concerns. Many countries
have legislation that governs the use of personal health information [101]. In the
UK, this means that personal data can only be used under specific circumstances.
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Individual databases may be released more generally if the data set is anonymised
so that individuals cannot be identified. One prominent example of anonymised
health care data is MIMIC-II, which provides access to over 30,000 de-identified
hospital patient records. If data are not de-identified properly, there remains a risk
that individuals can be identified by piecing together information from comple-
mentary data sources. For instance, Gymrek et al. [102] showed how de-identified
genomic data could be traced to individuals by linkage with genealogy databases.

Secondly, there are non-trivial technical challenges in linking databases. Many
of these, including minimising levels of data redundancy, are addressed through the
academic discipline of data integration theory (See [103] for further information).
Practically, successful data integration requires well-defined standards to ensure
that database fields can be interpreted unambiguously, and that the field contents are
harmonious. One such standard, SNOMED-CT, provides a comprehensive col-
lection of codes for medical terms that could to help structure database items [104].
Unfortunately, the use of multiple competing standards has hindered data integra-
tion. Most notably, until recently, the majority of UK healthcare IT systems used an
alternative dictionary, Read codes [105].

Finally, database linkage may require cooperation between competitive system
manufacturers. In some cases, the data providers may simply disagree with the
intended use of the data [106]. More typically, there may be willingness to share
data sets, but details such as ownership of the data or the rights of any generated
intellectual property [107] means that data sharing agreements are often complex.

3.2.4 Large-Scale and Distributed Computing Methods

The large volume of clinical data available for processing, the variety of data types
and structures, as well as the velocity required in the production and processing of
clinical data have led to the development of novel and robust technologies for
extracting useful information and for enabling more broad-based healthcare solu-
tions [108]. Large-scale and distributed computing methods provide solutions for
the retrieval and reliable storage of clinical data, as well as data security, sharing,
and analysis. Distributed processing systems such as the Apache Hadoop [109]
have been proposed as solutions for the storage of electronic health records (EHRs)
[110] and the storage of physiological signals [111]. The enabling of reliable and
rapid computations in such infrastructures, provides the potential for building novel
machine learning algorithms. Similar systems, intended for the storing and querying
of large amounts of physiological data (e.g., EEG), as well as their visualization,
have also been proposed using Hadoop-based data processing modules, and have
shown reductions in computational time [112, 113]. Home-Diagnosis [114], a
cloud-based framework employing a Lucene-based distributed search cluster has
been proposed to deal with issues of privacy protection, to ensure highly concurrent
and scalable medical record retrieval and to facilitate data analysis in a self-caring
setting. The issue of privacy and data protection is a particularly important one with
respect to distributed computing systems since a data breach may occur when
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multiple nodes conspire. To address this issue secure computing methods have
recently been proposed ensuring confidentiality of the data used by each different
party even in that case that all of the other parties conspire to crack the data [115].
In terms of data analysis, a predictive modelling platform for healthcare analytic
research (PARAMO) has been proposed recently [116], which employs parallel
computing in a cluster environment supporting the pipeline of necessary tasks
(cohort construction, feature selection and construction, cross-validation and clas-
sification), such that predictive models can be built based on electronic health
records (EHRs). In addition to predictive accuracy, such systems hold promise for
use for the analysis of multidimensional and heterogeneous clinical data since they
facilitate the use of Big Data analytics for sorting out “messy” clinical data,
identifying causalities and associations amongst large amounts of data and
improving health care quality, in general.

4 Case Studies

4.1 Application of Machine Learning for the Prediction
of Patient Deterioration in an Emergency Department

Studies have shown that patients experiencing adverse events in hospitals (such as
cardiac arrest or admission to the ICU) present with abnormal vital signs before the
event, with many of those, presenting abnormalities up to 24 h in advance [117].
Because the current standard of recording vital sign observations is paper-based and
observations are taken intermittently outside of the ICU, these abnormalities are
often missed, especially in busy clinical environments. Additionally, current
alerting strategies rely on single parameters or in the calculation of Early Warning
Scores (EWS) based on a rule-based pre-set thresholds. The first case study we
review concerns the automation of the process of calculating the health status of the
patient via a data-driven, rather than rule-based, machine learning model. Firstly,
we will present the approach and then discuss its application in an emergency
department.

4.1.1 System Overview

The system, initially presented in [71], tracks patient health status in real time by
fusing the patient’s vital signs collected by monitors in a general hospital ward. The
parameters used are heart rate, respiration rate, blood pressure, arterial oxygen
saturation (SaO2) and skin temperature. Vital signs were measured every 5 s except
for blood pressure which was measured every 30 min using an inflatable cuff placed
over the medial artery. The proposed system does not extract any rules connecting
these five parameters to patient deterioration, it simply learns a model of normality
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directly from the available data. The system produces a single index of the patient’s
health status, Patient Status Index (PSI), by fusing the five vital signs. This PSI is
calculated via a probabilistic model of normality in five dimensions, which was
previously learnt from the data taken from a representative sample of high-risk
adult patients. The PSI is calculated continuously and whenever the vital signs fall
outside the learnt envelope of normality, an alert is generated [71]. The aim behind
the development of such a system is for generating alerts (early warning system) in
real-time, triggering the intervention of a Medical Emergency Team (MET). Such
systems can be integrated with existing patient monitors or a central station on the
relevant ward to such of a large number of patients can be monitored at the same
time, without increasing the burden of the clinical staff.

4.1.2 Training Data and Pre-processing

The training data set included 3500 h of vital sign data collected from 150
general-ward patients at the John Radcliffe Hospital, Oxford (average length of stay
of 24 h per patient), who were classified as “high-risk” based on a set of assess-
ments proposed by the attending clinicians. The feature vector was defined as
x= fx1, . . . , x5g, the vector of the five vital signs. Because the units and dynamic
ranges of each parameter are different (i.e. an increase of 0.5 °C in temperature is
more significant than an increase of 0.5 mmHg in blood pressure or 0.5 beats per
minute (bpm) in heart rate), the vital signs were normalized before forming the
feature vector x. Observation of the data revealed that all except for arterial oxygen
saturation (SaO2) followed a near-Gaussian distribution (SaO2 was one-sided as it
cannot exceed 100%) so pre-processing included a standard zero-mean, unit vari-
ance normalization. To deal with the noise in the data caused by patient movement,
data were short-term median filtered. Median filtering was also used in order to deal
with missing parameter streams that occurred. Additionally, if no valid measure-
ment of a parameter was acquired for 1 min, the value from a historic median
filtered was used, derived from the most recent 5 min of valid data (blood pressure
was excluded from this rule since it was only recorded every 30 min). If the gap in a
measurement persisted for 30 min (possibly because of a disconnected probe), then
the mean of the training set was used instead, thus replacing the missing values by
the ‘most normal’ value in the parameter vector x.

4.1.3 Model Overview

The model of normality was defined as the unconditional probability density
function, p ̂ðxÞ, and was estimated using the training data using a combination of
k-means clustering and Parzen windows. Initially, the k-means clustering algorithm
is used in order to select 500 cluster centers from the thousands of normalized
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feature vectors in the training set. Each center xj (also called a prototype pattern)
then forms a kernel in the Parzen windows estimator of the pdf given by:

p ̂ xð Þ= 1

Nð2πÞd ̸2σd
∑
N

j=1
exp

− x− xj
�� ��2
2σ2

 !
, ð16Þ

where each spherical kernel has the same global width σ and d is equal to 5. This
probability is then used in order to calculate the PSI such that it quantifies devia-
tions from “normality”. The aim is that alert will be generated when the PSI exceeds
a pre-determined threshold. The PSI is then calculated by:

PSI = loge
1

p ̂ðxÞ
� �

ð17Þ

A PSI of 3.0, corresponding to a probability value of 0.05 was chosen for the
alerting threshold and an alert was generated when the PSI was above this threshold
of 3.0 for 4 out of 5 min.

4.1.4 Testing of the PSI in the Emergency Department

The system described was validated on several different clinical trials. Here, we
present its validation on the emergency department (ED) of a medium-sized
teaching hospital [118]. In this particular study, the aim was to investigate whether
employment of the PSI, as calculated using the learnt model, would be able to
detect patient deterioration and generate an alert earlier than the standard practice of
manually recording vital sign and Track and Trigger (T&T) data (also known as
Early Warning Scores). Data were collected from adults entering the resuscitation
room, ‘majors’ and observation ward of the ED. For calculating the PSI, continuous
vital sign data (RR, heart rate, blood pressure and SpO2) were acquired from the
bedside monitors and saved to a server. Observation charts were also collected
retrospectively. The “gold standard” of patient deterioration was captured by
recording escalations of care. This was done by two clinicians who retrospectively
and independently reviewed the clinical notes to identify escalations. In the case of
disagreement, a third clinician reconciled the discrepancies.

4.1.5 Results

Out of the 400 patients for whom continuous vital signs were collected and PSI
scores were calculated, 35 had an escalation after arriving at the ED. 15 of them had
no PSI score at the time around the escalation either because of equipment failure,
unavailability for monitoring at the time of escalation, or because their escalation
was deemed to have been due to ongoing conditions rather than a new deterioration
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occurring at the ED. Of the remaining 20 patients who experienced deterioration
while in the ED, 15 were detected by the PSI. PSI greatly outperformed T&T and
there were many cases where the PSI would predict deterioration before the tra-
ditional paper-based T&T.

4.1.6 Conclusions

This study highlighted the potential of machine-learning data fusion approaches for
predicting events in patients. Because such scores can be calculated continuously
deterioration can be detected earlier compared to systems relying on documented
intermittent observations. Additionally, small deviations in one or more parameters
can be recognised promptly whereas in current practice an alert would be generated
when a parameter shows a big deviation from normality. This study also showcased
some of the problems in using automatic machine-learning based systems using
clinical data, in that data are very often incomplete or absent altogether due to
practical problems (power failure, server failure, movement of patients or monitors
or removal of leads from the patient). Machine learning approaches need to have the
flexibility to allow for this kind of failures if they are to be incorporated system-
atically into clinical practise.

4.2 Application of Machine Learning for Assessing
the Clinical Acceptability of Electrocardiograms

The explosion of m-health applications both in the developing and developed world
has the potential to deliver information and decision support to people that would
not otherwise have had access to medical treatment, it is important that stringent
quality controls are put into place such that the measurements that reach the
untrained recipient are reliable and that noisy measurements are not used. The
second case study we will review concerns the creation of a system which is
intended to provide real-time feedback on the diagnostic quality of the Electro-
cardiogram (ECG). The purpose of such a system is to be able to prompt an
inexperienced user for example, to adjust recording conditions (e.g. sensor place-
ment) until the quality is sufficient that a reliable medical diagnosis can be made,
primarily of arrhythmias [56]. The study was developed as part of the
PhysioNet/Computing in Cardiology challenge 2011, which further required that
the algorithm should be efficient enough such that it may run in near real-time on a
mobile phone device.
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4.2.1 Training Data and Annotating

Data to support development and evaluation of challenge entries were collected by
the Sana Project and provided freely via PhysioNet. The dataset includes 1500 10 s
recordings of standard 12-lead ECGs, which were sampled at 500 Hz for a mini-
mum of 10 s by nurses, technicians and volunteers with varying degrees of expe-
rience. 1000 recordings were available as training data and 500 recordings as test
data. Each ECG recording was annotated by a minimum of 3 and a maximum of 18
annotators who assigned a rating to the sample related to its quality. The final label
of each sample was determined by the average rating and some pre-set thresholds,
such that recordings were divided into three classes: acceptable (70%), unacceptable
(30%) and indeterminate (<1%). Because of the discrepancy in the number of
records from the acceptable and unacceptable classes, bootstrapping was employed
in order to increase the samples in the “unacceptable” class by using additive real
noise to clean data taken from other ECG databases. In the resulting database,
20,000 10s ECG samples were used for training and 10,000 for testing, both sets of
which were balanced for “acceptable” and “unacceptable” recordings [56].

4.2.2 Model Overview

Initially, each ECG channel was down-sampled to 125 Hz using an anti-aliasing
filter. QRS detection was then performed using two different open-source QRS
detectors. Next, seven quality indices were extracted for each one of the 12 leads,
resulting in 84 features per recording. Those 7 indices were the percentage of beats
detected on each channel which were detected in all channels, the percentage of
beats detected by both QRS detectors, the relative power in the QRS complex, the
third and fourth moments of the distribution, the percentage of the signal that was a
flat line and the relative power in the baseline of the signal. All features which were
not given by percentages were normalized by subtracting the median such that all
features were in the range of [0 1]. The features were then used to train a classifier
using two different models: a Support Vector Machine (SVM) and a standard
feed-forward Multi-Layer Perceptron Neural Network (MLPNN). Classifiers were
tested using all 12 leads simultaneously, i.e. using 84 features and using a single
lead only, i.e., using only 7 features. Additionally, different combinations of the
seven features were tested in order to find the best.

4.2.3 Results

For the single-lead case, the best overall results were obtained for the SVM with a
classification accuracy of 96.5% on the test data and corresponding Sensitivity and
Specificity of 97.2% and 95.8%, respectively, using only four out of the seven
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features. For the 12-lead case, the best results were given using five out of the seven
features, using the SVM with an accuracy of 95.9% and Sensitivity and Specificity
of 96.0% and 95.8%, respectively.

4.2.4 Conclusions

The proposed system achieved training accuracies of 98% and test set accuracies up
to 97% which indicate that extremely accurate classification of noisy ECGs is
possible. Important improvements were noted when the training sets were balanced
using artificial data. Lastly, by examining the incorrectly classified data, it was
found that in most cases the labels were ‘borderline’ and could be relabelled either
way, thus indicating that test accuracy could be considered to approach 100%.

5 Concluding Remarks and Future Directions

In this chapter, we provided an overview to the current processes and techniques
used to analyse heterogeneous and high dimensional healthcare data. We addressed
some of the technical challenges and highlighted the real-world issues that are
unique to healthcare.

As health data analysis continues to develop as a research field, one may expect
to see new analysis methods tailored towards big health data. Currently, we have
seen a trend towards the redevelopment of adaptation of traditional machine
learning approaches for use with large data sets. IBM Watson’s success in natural
language processing follows on from a wealth of previous research. Similarly,
Google’s Deepmind extends artificial neural network methods via the field of deep
learning. These new approaches have already shown great promise in other fields.
Most notably, in early 2016, the AlphaGo program used deep learning (in com-
bination with other methods) to defeat the world-class Lee Sedol at the game of Go
—a scenario thought improbable 10 years ago. Both IBM and Google have since
expressed interest in healthcare data. Whilst output from both parties has been
limited at the time of writing, there is precedent for using deep learning methods on
medical images [119, 120].

As machine learning methods are applied to increasingly large data sets, we
expect the associated challenges to also increase. In particular, the current trend is
towards using data collected within routine clinical care—potentially providing data
sets many orders of magnitude larger than from research studies. As these
routinely-collected datasets are not carefully curated, resulting data are very likely
to be of lower quality, such that corrupt and missing entries are more common. The
combination of larger datasets and poorer data quality means that automated
methods of reliably and accurately processing missing data will be increasingly
necessary.
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The use of routine data also offer new opportunities to link multiple sources of
data. Whilst we have touched on the benefits of data fusion, future research is likely
to bring together data from surprisingly disparate sources. For instance, recent
research is starting to link consumer research data from supermarket loyalty cards
with health data. The increasing number of data features means that robust methods
must be found to ensure that the underlying features are not lost amongst the
plethora of variables. The complexities and disparities need to be carefully con-
sidered by the research community, so that the potential of machine learning
applications in clinical data may be reached. Once many of these issues are
resolved, machine learning has the potential to deliver a step-change in the manner
in which the monitoring of patients and diagnosis of disease is performed for a
sustainable future of healthcare management.

References

1. Roski J, Bo-Linn GW, Andrews TA. Creating value in health care through big data:
opportunities and policy implications. Health Affairs. 2014 Jul 1;33(7):1115–22.

2. Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools
needed for a learning health system. Health Affairs. 2014 Jul 1;33(7):1163–70.

3. Foster KR, Koprowski R, Skufca JD. Machine learning, medical diagnosis, and biomedical
engineering research-commentary. Biomedical engineering online. 2014 Jul 5;13(1):1.

4. Bishop CM. Pattern recognition and Machine Learning. Springer-New York 2006.
5. Sajda P. Machine learning for detection and diagnosis of disease. Annu. Rev. Biomed. Eng.

2006 Aug 15;8:537–65.
6. Hearst MA, Dumais ST, Osman E, Platt J, Scholkopf B. Support vector machines. IEEE

Intelligent Systems and their Applications. 1998 Jul;13(4):18–28.
7. Johnson AE, Ghassemi MM, Nemati S, Niehaus KE, Clifton DA, Clifford GD. Machine

learning and decision support in critical care. Proceedings of the IEEE. 2016 Feb;104(2):
444–66.

8. Lucas PJ, van der Gaag LC, Abu-Hanna A. Bayesian networks in biomedicine and
health-care. Artificial intelligence in medicine. 2004 Mar 1;30(3):201–14.

9. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the
number of events per variable in logistic regression analysis. Journal of clinical
epidemiology. 1996 Dec 31;49(12):1373–9.

10. Asgari S, Mehrnia A, Moussavi M. Automatic detection of atrial fibrillation using stationary
wavelet transform and support vector machine. Computers in biology and medicine.
2015 May 1;60:132–42.

11. Oliver A, Freixenet J, Marti R, Pont J, Pérez E, Denton ER, Zwiggelaar R. A novel breast
tissue density classification methodology. IEEE Transactions on Information Technology in
Biomedicine. 2008 Jan;12(1):55–65.

12. Healthcare Commission. Report of the healthcare Commision’s visit to Maidstone and
Tunbridge Wells NHS Trust on 12 and 13 December 2007. Retrieved 20-Jul-2016 url: http://
webarchive.nationalarchives.gov.uk/20060502043818/http://healthcarecommission.org.uk/_
db/_documents/Maidstone_and_Tunbridge_Wells_follow_up_visit_report_-_Dec_07.pdf.

13. Boba M, Kołtun U, Bobek-Billewicz B, Chmielik E, Eksner B, Olejnik T. False-negative
results of breast core needle biopsies–retrospective analysis of 988 biopsies. Polish Journal
of Radiology. 2011 Jan;76(1):25.

210 C. Orphanidou and D. Wong

http://webarchive.nationalarchives.gov.uk/20060502043818/healthcarecommission.org.uk/_db/_documents/Maidstone_and_Tunbridge_Wells_follow_up_visit_report_-_Dec_07.pdf
http://webarchive.nationalarchives.gov.uk/20060502043818/healthcarecommission.org.uk/_db/_documents/Maidstone_and_Tunbridge_Wells_follow_up_visit_report_-_Dec_07.pdf
http://webarchive.nationalarchives.gov.uk/20060502043818/healthcarecommission.org.uk/_db/_documents/Maidstone_and_Tunbridge_Wells_follow_up_visit_report_-_Dec_07.pdf


14. Clarke GW, Chan AD, Adler A. Effects of motion artifact on the blood oxygen saturation
estimate in pulse oximetry. In Medical Measurements and Applications (MeMeA), 2014
IEEE International Symposium on 2014 Jun 11 (pp. 1–4). IEEE.

15. Hamilton PS, Curley MG, Aimi RM, Sae-Hau C. Comparison of methods for adaptive
removal of motion artifact. In Computers in Cardiology 2000 2000 (pp. 383–386). IEEE.

16. Yang CC, Hsu YL. A review of accelerometry-based wearable motion detectors for physical
activity monitoring. Sensors. 2010 Aug 20;10(8):7772–88.

17. Celler BG, Sparks RS. Home Telemonitoring of Vital Signs—Technical Challenges and
Future Directions. IEEE journal of biomedical and health informatics. 2015 Jan;19(1):82–91.

18. Hernandez-Silveira M, Ahmed K, Ang SS, Zandari F, Mehta T, Weir R, Burdett A,
Toumazou C, Brett SJ. Assessment of the feasibility of an ultra-low power, wireless digital
patch for the continuous ambulatory monitoring of vital signs. BMJ open. 2015 May 1;5(5):
e006606.

19. Steinhubl SR, Feye D, Levine AC, Conkright C, Wegerich SW, Conkright G. Validation of
a portable, deployable system for continuous vital sign monitoring using a multiparametric
wearable sensor and personalised analytics in an Ebola treatment centre. BMJ Global Health.
2016 Jul 1;1(1):e000070.

20. SO80601-2-61:2011: Medical electronical equipment — Particular requirements for basic
safety and essential performance of pulse oximeter equipment. International Organization for
Standardization, Geneva, Switzerland.

21. Milner QJ, Mathews GR. An assessment of the accuracy of pulse oximeters. Anaesthesia.
2012 Apr 1;67(4):396–401.

22. Modell JG, Katholi CR, Kumaramangalam SM, Hudson EC, Graham D. Unreliability of the
infrared tympanic thermometer in clinical practice: a comparative study with oral mercury
and oral electronic thermometers. Southern medical journal. 1998 Jul;91(7):649–54.

23. Beevers G, Lip GY, O’Brien E. Blood pressure measurement: Part II–conventional
sphygmomanometry: Technique of auscultatory blood pressure measurement. British
Medical Journal. 2001 Apr 28;322(7293):1043.

24. Baker PD, Westenskow DR, Kück K. Theoretical analysis of non-invasive oscillometric
maximum amplitude algorithm for estimating mean blood pressure. Medical and biological
engineering and computing. 1997 May 1;35(3):271–8.

25. Pavlik VN, Hyman DJ, Toronjo C. Comparison of Automated and Mercury Column Blood
Pressure Measurements in Health Care Settings. Journal of clinical hypertension (Green-
wich, Conn.). 2000 Mar;2(2):81–6.

26. Wong WC, Shiu IK, Hwong TM, Dickinson JA. Reliability of automated blood pressure
devices used by hypertensive patients. Journal of the Royal Society of Medicine. 2005 Mar
1;98(3):111–3.

27. Akpolat T, Dilek M, Aydogdu T, Adibelli Z, Erdem DG, Erdem E. Home sphygmo-
manometers: validation versus accuracy. Blood pressure monitoring. 2009 Feb 1;14(1):
26–31.

28. Thimbleby H. Improving safety in medical devices and systems. In Healthcare Informatics
(ICHI), 2013 IEEE International Conference on 2013 Sep 9 (pp. 1–13). IEEE.

29. Thimbleby H. Ignorance of interaction programming is killing people. interactions. 2008 Sep
1;15(5):52–7.

30. Wilson SJ, Wong D, Clifton D, Fleming S, Way R, Pullinger R, Tarassenko L. Track and
trigger in an emergency department: an observational evaluation study. Emergency Medicine
Journal. 2012 Mar 22:emermed-2011.

31. Prytherch DR, Smith GB, Schmidt P, Featherstone PI, Stewart K, Knight D, Higgins B.
Calculating early warning scores—a classroom comparison of pen and paper and hand-held
computer methods. Resuscitation. 2006 Aug 31;70(2):173–8.

32. Callen J, McIntosh J, Li J. Accuracy of medication documentation in hospital discharge
summaries: A retrospective analysis of medication transcription errors in manual and
electronic discharge summaries. International journal of medical informatics. 2010 Jan 31;
79(1):58–64.

Machine Learning Models for Multidimensional Clinical Data 211



33. Wallace DR, Kuhn DR. Failure modes in medical device software: an analysis of 15 years of
recall data. International Journal of Reliability, Quality and Safety Engineering. 2001 Dec;8
(04):351–71.

34. Obradovich JH, Woods DD. Special section: Users as designers: How people cope with poor
HCI design in computer-based medical devices. Human Factors: The Journal of the Human
Factors and Ergonomics Society. 1996 Dec 1;38(4):574–92.

35. Batchelor JC, Casson AJ. Inkjet printed ECG electrodes for long term biosignal monitoring
in personalized and ubiquitous healthcare. In 2015 37th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC) 2015 Aug 25 (pp. 4013–
4016). IEEE.

36. Tarassenko L, Villarroel M, Guazzi A, Jorge J, Clifton DA, Pugh C. Non-contact
video-based vital sign monitoring using ambient light and auto-regressive models.
Physiological measurement. 2014 Mar 28;35(5):807.

37. Takano C, Ohta Y. Heart rate measurement based on a time-lapse image. Medical
engineering & physics. 2007 Oct 31;29(8):853–7.

38. Verkruysse W, Svaasand LO, Nelson JS. Remote plethysmographic imaging using ambient
light. Optics express. 2008 Dec 22;16(26):21434–45.

39. Pullinger R, Wilson S, Way R, Santos M, Wong D, Clifton D, Birks J, Tarassenko L.
Implementing an electronic observation and early warning score chart in the emergency
department: a feasibility study. European journal of emergency medicine: official journal of
the European Society for Emergency Medicine. 2016 Feb 17.

40. Wong D, Bonnici T, Knight J, Morgan L, Coombes P, Watkinson P. SEND: a system for
electronic notification and documentation of vital sign observations. BMC medical
informatics and decision making. 2015 Aug 13;15(1):1.

41. Smith GB, Prytherch DR, Schmidt P, Featherstone PI, Knight D, Clements G,
Mohammed MA. Hospital-wide physiological surveillance–a new approach to the early
identification and management of the sick patient. Resuscitation. 2006 Oct 31;71(1):19–28.

42. Meccariello M, Perkins P, Quigley LG, Rock A, Qiu J. Vital Time Savings: Evaluating the
Use of an Automated Vital Signs Documentation System on a Medical/Surgical Unit.
J Healthc Inf Manag 2010 24(4):46–51.

43. Mekhjian HS, Kumar RR, Kuehn L, Bentley TD, Teater P, Thomas A, Payne B, Ahmad A.
Immediate benefits realized following implementation of physician order entry at an
academic medical center. Journal of the American Medical Informatics Association.
2002 Sep 1;9(5):529–39.

44. Murphy MF, Fraser E, Miles D, Noel S, Staves J, Cripps B, Kay J. How do we monitor
hospital transfusion practice using an end to end electronic transfusion management system?.
Transfusion. 2012 Dec 1;52(12):2502–12.

45. Davies A, Staves J, Kay J, Casbard A, Murphy MF. End‐to‐end electronic control of the
hospital transfusion process to increase the safety of blood transfusion: strengths and
weaknesses. Transfusion. 2006 Mar 1;46(3):352–64.

46. Staves J, Davies A, Kay J, Pearson O, Johnson T, Murphy MF. Electronic remote blood
issue: a combination of remote blood issue with a system for end‐to‐end electronic control of
transfusion to provide a “total solution” for a safe and timely hospital blood transfusion
service. Transfusion. 2008 Mar 1;48(3):415–24.

47. Resetar E, Reichley RM, Noirot LA, Dunagan WC, Bailey TC. Customizing a commercial
rule base for detecting drug-drug interactions. In AMIA 2005.

48. Bonnici T, Orphanidou C, Vallance D, Darrell A, Tarassenko L. Testing of wearable
monitors in a real-world hospital environment: What lessons can be learnt?. In 2012 Ninth
International Conference on Wearable and Implantable Body Sensor Networks 2012 May 9
(pp. 79–84). IEEE.

49. Wahlster P, Goetghebeur M, Kriza C, Niederländer C, Kolominsky-Rabas P. Balancing
costs and benefits at different stages of medical innovation: a systematic review of
Multi-criteria decision analysis (MCDA). BMC health services research. 2015 Jul 9;15(1):1.

212 C. Orphanidou and D. Wong



50. Yeung MS, Lapinsky SE, Granton JT, Doran DM, Cafazzo JA. Examining nursing vital
signs documentation workflow: barriers and opportunities in general internal medicine units.
Journal of clinical nursing. 2012 Apr 1;21(7–8):975–82.

51. Tat TH, Xiang C, Thiam LE. Physionet challenge 2011: improving the quality of
electrocardiography data collected using real time QRS-complex and T-wave detection.
In2011 Computing in Cardiology 2011 Sep 18 (pp. 441–444). IEEE.

52. Johnson AE, Behar J, Andreotti F, Clifford GD, Oster J. Multimodal heart beat detection
using signal quality indices. Physiological measurement. 2015 Jul 28;36(8):1665.

53. Clifton DA, Wong D, Clifton L, Wilson S, Way R, Pullinger R, Tarassenko L. A large-scale
clinical validation of an integrated monitoring system in the emergency department. IEEE
journal of biomedical and health informatics. 2013 Jul;17(4):835–42.

54. Orphanidou C., Bonnici T., Charlton P. Vallance D., Darrell A. and Tarassenko L., Signal
Quality Indices for the Electrocardiogram and Photoplethysmogram: Derivation and
Applications in Wireless Monitoring, in IEEE Journal of Biomedical and Health Informatics,
19(3), pp. 832–838, 2015.

55. Daluwatte C, Johannesen L, Galeotti L, Vicente J, Strauss DG, Scully CG. Assessing ECG
signal quality indices to discriminate ECGs with artefacts from pathologically different
arrhythmic ECGs. Physiological Measurement. 2016 Jul 25;37(8):1370.

56. Clifford GD, Behar J, Li Q, Rezek I. Signal quality indices and data fusion for determining
clinical acceptability of electrocardiograms. Physiological measurement. 2012 Aug 17;33(9):
1419.

57. Nizami S, Green JR, McGregor C. Implementation of artifact detection in critical care: A
methodological review. IEEE reviews in biomedical engineering. 2013;6:127–42.

58. Kaur M, Singh B. Comparison of different approaches for removal of baseline wander from
ecg signal. In Proceedings of the International Conference & Workshop on Emerging Trends
in Technology 2011 Feb 25 (pp. 1290–1294). ACM.

59. ECG baseline wander. Reproduced with permission from http://joachimbehar.comuv.com/
ECG_tuto_1.php.

60. Hoffmann S, Falkenstein M. The correction of eye blink artefacts in the EEG: a comparison
of two prominent methods. PLoS One. 2008 Aug 20;3(8):e3004.

61. Li Y, Ma Z, Lu W, Li Y. Automatic removal of the eye blink artifact from EEG using an
ICA-based template matching approach. Physiological measurement. 2006 Mar 14;27(4):
425.

62. Teasdale G, Jennett B. Assessment of coma and impaired consciousness: a practical scale.
The Lancet. 1974 Jul 13;304(7872):81–4.

63. Paul DB, Rao GU. Correlation of Bispectral Index with Glasgow Coma Score in mild and
moderate head injuries. Journal of clinical monitoring and computing. 2006 Dec 1;20(6):
399–404.

64. Beridze M, Khaburzania M, Shakarishvili R, Kazaishvili D. Dominated EEG patterns and
their prognostic value in coma caused by traumatic brain injury. Georgian Med News.
2010 Sep;186:28–33.

65. Lawhern V, Hairston WD, McDowell K, Westerfield M, Robbins K. Detection and
classification of subject-generated artifacts in EEG signals using autoregressive models.
Journal of neuroscience methods. 2012 Jul 15;208(2):181–9.

66. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and
validation of QRISK, a new cardiovascular disease risk score for the United Kingdom:
prospective open cohort study. Bmj. 2007 Jul 19;335(7611):136.

67. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Minhas R, Sheikh A,
Brindle P. Predicting cardiovascular risk in England and Wales: prospective derivation
and validation of QRISK2. Bmj. 2008 Jun 26;336(7659):1475–82.

68. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood AM,
Carpenter JR. Multiple imputation for missing data in epidemiological and clinical research:
potential and pitfalls. Bmj. 2009 Jun 29;338:b2393.

Machine Learning Models for Multidimensional Clinical Data 213

http://joachimbehar.comuv.com/ECG_tuto_1.php
http://joachimbehar.comuv.com/ECG_tuto_1.php


69. Collins GS, Altman DG. An independent and external validation of QRISK2 cardiovascular
disease risk score: a prospective open cohort study. Bmj. 2010 May 13;340:c2442.

70. Allison PD. Missing data: Quantitative applications in the social sciences. British Journal of
Mathematical and Statistical Psychology. 2002;55(1):193–6.

71. Tarassenko L, Hann A, Young D. Integrated monitoring and analysis for early warning of
patient deterioration. British journal of anaesthesia. 2006 Jul 1;97(1):64–8.

72. Gilks WR, Wild P. Adaptive rejection sampling for Gibbs sampling. Applied Statistics.
1992 Jan 1:337–48.

73. Kirkwood BR. Essentials of medical statistics. Blackwell Scientific Publications; 1988.
74. Tobin J. Estimation of relationships for limited dependent variables. Econometrica: journal

of the Econometric Society. 1958 Jan 1:24–36.
75. Rubin DB. Multiple imputation for nonresponse in surveys. John Wiley & Sons; 2004 Jun 9.
76. Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some

practical clarifications of multiple imputation theory. Prevention Science. 2007 Sep 1;8(3):
206–13.

77. Bodner TE. What improves with increased missing data imputations?. Structural Equation
Modeling. 2008 Oct 22;15(4):651–75.

78. Schafer JL. Multiple imputation: a primer. Statistical methods in medical research. 1999 Feb
1;8(1):3–15.

79. Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what
is it and how does it work?. International journal of methods in psychiatric research.
2011 Mar 1;20(1):40–9.

80. Allison PD. Handling missing data by maximum likelihood. In SAS global forum 2012 Apr
22 (Vol. 23).

81. Stegle O, Fallert SV, MacKay DJ, Brage S. Gaussian process robust regression for noisy
heart rate data. IEEE Transactions on Biomedical Engineering. 2008 Sep;55(9):2143–51.

82. Roberts S, Osborne M, Ebden M, Reece S, Gibson N, Aigrain S. Gaussian processes for
time-series modelling. Phil. Trans. R. Soc. A. 2013 Feb 13;371(1984):20110550.

83. Dürichen R, Pimentel MA, Clifton L, Schweikard A, Clifton DA. Multitask Gaussian
processes for multivariate physiological time-series analysis. IEEE Transactions on
Biomedical Engineering. 2015 Jan;62(1):314–22.

84. Boyle, P. and Frean, M., 2004. Dependent gaussian processes. In Advances in neural
information processing systems (pp. 217–224).

85. Wong D, Clifton DA, Tarassenko L. Probabilistic detection of vital sign abnormality with
Gaussian process regression. In Bioinformatics & Bioengineering (BIBE), 2012 IEEE 12th
International Conference on 2012 Nov 11 (pp. 187–192). IEEE.

86. Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics.
bioinformatics. 2007 Oct 1;23(19):2507–17.

87. Breiman L. Random forests. Machine learning. 2001 Oct 1;45(1):5–32.
88. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. CRC

press; 1984.
89. Edmonds J. Matroids and the greedy algorithm. Mathematical programming. 1971 Dec 1;

1(1):127–36.
90. Joliffe IT, Morgan BJ. Principal component analysis and exploratory factor analysis.

Statistical methods in medical research. 1992 Mar 1;1(1):69–95.
91. Sammon JW. A nonlinear mapping for data structure analysis. IEEE Transactions on

computers. 1969 May 1;18(5):401–9.
92. Wong D, Strachan I, Tarassenko L. Visualisation of high-dimensional data for very large

data sets. In Workshop Mach. Learn. Healthcare Appl., Helsinki, Finland 2008.
93. Lowe D, Tipping ME. Neuroscale: novel topographic feature extraction using RBF

networks. Advances in Neural Information Processing Systems. 1997:543–9.
94. Durrant-Whyte H, Henderson TC. Multisensor data fusion. In Springer Handbook of

Robotics 2008 (pp. 585–610). Springer Berlin Heidelberg.

214 C. Orphanidou and D. Wong



95. Li Q. and Clifford G. D., Signal quality and data fusion for false alarm reduction in the
intensive care unit, Journal of Electrocardiology, 45(6):596–603, Nov 2012.

96. Williams C, Quinn J, McIntosh N. Factorial switching Kalman filters for condition
monitoring in neonatal intensive care.

97. Clifton DA, Bannister PR, Tarassenko L. A framework for novelty detection in jet engine
vibration data. In Key engineering materials 2007 (Vol. 347, pp. 305–310). Trans Tech
Publications.

98. Ma M, Gonet R, Yu R, Anagnostopoulos GC. Metric representations of data via the
Kernel-based Sammon Mapping. In The 2010 International Joint Conference on Neural
Networks (IJCNN) 2010 Jul 18 (pp. 1–7). IEEE.

99. Hu M, Chen Y, Kwok JT. Building sparse multiple-kernel SVM classifiers. IEEE
Transactions on Neural Networks. 2009 May;20(5):827–39.

100. Ye J, Chen K, Wu T, Li J, Zhao Z, Patel R, Bae M, Janardan R, Liu H, Alexander G,
Reiman E. Heterogeneous data fusion for alzheimer’s disease study. In Proceedings of the
14th ACM SIGKDD international conference on Knowledge discovery and data mining
2008 Aug 24 (pp. 1025–1033). ACM.

101. Blumenthal D. Launching hitech. New England Journal of Medicine. 2010 Feb 4;362
(5):382–5.

102. Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. Identifying personal genomes by
surname inference. Science. 2013 Jan 18;339(6117):321–4.

103. Lenzerini M. Data integration: A theoretical perspective. InProceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems 2002 Jun
3 (pp. 233–246). ACM.

104. Donnelly K. SNOMED-CT: The advanced terminology and coding system for eHealth.
Studies in health technology and informatics. 2006 Jan;121:279.

105. O’Neil M, Payne C, Read J. Read Codes Version 3: a user led terminology. Methods of
information in medicine. 1995 Mar;34(1–2):187–92.

106. Lopez AD. Sharing data for public health: where is the vision?. Bulletin of the World Health
Organization. 2010 Jun;88(6):467.

107. van Panhuis WG, Paul P, Emerson C, Grefenstette J, Wilder R, Herbst AJ, Heymann D,
Burke DS. A systematic review of barriers to data sharing in public health. BMC Public
Health. 2014 Nov 5;14(1):1.

108. Luo, Jake et al. “Big Data Application in Biomedical Research and Health Care: A Literature
Review.” Biomedical Informatics Insights 8 (2016): 1–10. PMC. Web. 8 Nov. 2016.

109. White T. Hadoop: The Definite Guide. Sebastopol, CA:O’Reilly Media, Inc.;2012.
110. Jin Y, Deyu T, Yi Z. A distributed storage model for EHR based on HBase. In: 2011

International Conference on Information Management, Innovation Management and
Industrial Engineering (ICIII), Shenzhen, China; IEEE. 2011:369–72.

111. Dutta H, Kamil A, Pooleery M, et al. Distributed storage of large-scale multidimensional
electroencephalogram data using Hadoop and HBase. In: Fiore S, Aloisio G, eds. Grid and
Cloud Database Management. Berlin: Springer; 2011:331–47.

112. Sahoo SS, Jayapandian C, Garg G, et al. Heart beats in the cloud: distributed analysis of
electrophysiological ‘Big Data’ using cloud computing for epilepsy clinical research. J Am
Med Inform Assoc. 2014;21(2):263–71.

113. Jayapandian CP, Chen C-H, Bozorgi A, et al. Cloudwave: distributed processing of “Big
Data” from electrophysiological recordings for epilepsy clinical research using Hadoop. In:
AMIA Annual Symposium Proceedings, Washington, DC; AMIA. 2013:691.

114. Lin W, Dou W, Zhou Z, et al. A cloud-based framework for home-diagnosis service over big
medical data. J Syst Software. 2015;102:192–206.

115. Kimura E., Hamada K., Kikuchi R., Chida K., Okamoto K., Manabe S., Kuroda T.,
Matsumura Y., Takeda T. and Mihara N., Evaluation of Secure Computation in a Distributed
Healthcare Setting, in A. Hoerbst et al. (Eds.), Volume 228: Exploring Complexity in
Health: An Interdisciplinary Systems Approach, Studies in Health Technology and
Informatics, pp. 152–156, 2016.

Machine Learning Models for Multidimensional Clinical Data 215



116. Ng K, Ghoting A, Steinhubl SR, et al. PARAMO: a PARAllel predictive MOdeling platform
for healthcare analytic research using electronic health records. J Biomed Inform.
2014;48:160–70.

117. Goldhill DR, White SA, Sumner A. Physiological values and procedures in the 24 h before
ICU admission from the ward. Anaesthesia. 1999 Jun 1;54(6):529–34.

118. Wilson SJ, Wong D, Pullinger RM, Way R, Clifton DA, Tarassenko L. Analysis of a
data-fusion system for continuous vital sign monitoring in an emergency department.
European Journal of Emergency Medicine. 2016 Feb 1;23(1):28–32.

119. Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in breast cancer
histology images with deep neural networks. In International Conference on Medical Image
Computing and Computer-assisted Intervention 2013 Sep 22 (pp. 411–418). Springer Berlin
Heidelberg.

120. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM,
Larochelle H. Brain tumor segmentation with deep neural networks. Medical Image
Analysis. 2016 May 19.

216 C. Orphanidou and D. Wong



Data Quality in Mobile Sensing Datasets
for Pervasive Healthcare

Netzahualcóyotl Hernández, Luis A. Castro, Jesús Favela,
Layla Michán and Bert Arnrich

Abstract Mobile sensing is becoming a popular approach for inferring patterns of
activity and behavior to determine how they affect health and wellbeing. This
data-driven approach has the potential to become a major tool in the field of
epidemiology, aimed at determining the causes of disease in populations, as well as
motivating behavior change. These sensing technologies are generating large
datasets that demand significant processing and data management resources.
Studies in mobile sensing for healthcare have motivated the creation of large,
complex datasets with information opportunistically gathered from distributed
sensors in mobile devices. In this chapter, we discuss some of the architectural
challenges regarding data gathering in this distributed data-intensive environment
such as the healthcare industry, as well as issues regarding the organization and
sharing of the large amounts of data collected. Some of these issues include the
heterogeneity of the devices, diversity of sensors used, and the need for data
provenance when integrating datasets from diverse studies. We highlight that
assessing data quality is of paramount importance for conducting longitudinal
studies and building on historical knowledge as new data become available.
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Finally, we identify future research topics in the growing field of mobile sensing
and its application to healthcare and wellbeing. We discuss aspects of data curation,
data quality, and data provenance, and we provide suggestions on how these
challenges could be addressed in the near future.

Keywords Mobile sensing ⋅ Healthcare ⋅ Standards ⋅ Data curation ⋅ Data
harmonization

1 Introduction

Mobile and wearable technologies incorporate advanced computing, communica-
tion, and sensing capabilities that enable collecting data related to their users and
their surroundings. The augmented capabilities of these devices and their ubiquity,
have contributed to an emerging field known as mobile sensing. This area aims at
collecting and analyzing data from several devices scattered around a particular
geographical area worn or carried by users, particularly outside the clinic. This
emerging area is of particular interest for researchers in healthcare as it provides an
unusual lens for better understanding human behavior associated to disease out-
breaks, disease onsets, medical care, and health status, as it is often the case in
epidemiology. Clinical sensors, although clearly useful for pervasive healthcare, are
not the main focus of this chapter. We rather focus on emerging technologies such
as smartphones and wearable devices that are to be used in naturalistic conditions
by individuals, meaning that they are used in contexts upon which researchers have
no control, and they tend to be challenging for collecting data that can be useful.
Besides, the ubiquity of these devices makes it possible to collect massive amounts
of behavioral data from large populations.

This emerging area, known as mobile sensing uses a data-driven paradigm of
scientific discovery through data, since the body of knowledge generated deeply
associates to data captured by mobile devices. Preserving and sharing datasets are
paramount to the growth and maturity of the field. Thus, the amount of data
gathered through mobile sensing imposes important demands on the communica-
tion, storage, and processing infrastructure.

The involvement of a large number of volunteers in participatory sensing
campaigns1 is an important component of data-driven science. In other fields, this is
referred to as citizen science or crowd-sourced science, which is scientific research

1A sensing campaign is a data collection campaign following a research protocol. A sensing
campaign can involve tens or thousands of participants carrying one or more mobile devices,
which opportunistically collect data from the user or her surroundings, or ask the user to carry out
certain task (e.g., take a picture when feeling sad or answer a question).
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conducted, in whole or in part, by amateur or nonprofessional scientists. At times,
this turns out to be fundamental for science, as the amount of unstructured data to
be analyzed can be overwhelming for scientists and current infrastructure for
supporting analysis. Gathering data from a diverse population is particularly
important for healthcare applications, notably to uncover how behavior influences
healthcare.

In mobile sensing for pervasive healthcare, one of the main concerns is gener-
ating reliable datasets that can be used to push forward the boundaries of the area,
which necessarily involves providing structure to the data. While current efforts
have yielded promising results, our vision is that scientists could tap into a dis-
tributed repository of healthcare datasets. These datasets are to be curated and
integrated to facilitate conducting new research in healthcare such as generalizing
previous findings when comparing with new data from a different population and
creating longitudinal studies controlling for the conditions in which data were
gathered over long periods of time. These types of endeavors are paramount for
research in fields such as epidemiology. Efforts to create repositories of datasets are
not new in the computer science discipline. The machine learning community has
made available numerous repositories, including some in pervasive healthcare,
aimed at detecting daily life activities [1]. Examples of these repositories include
the UCI Machine Learning Repository [2] and Keel [3]. These datasets however are
not consolidated or homogenized. They are meant to be used independently to test
new learning algorithms or to be used by students as a learning tool.

Closer to our aim are efforts such as Registry of Research data Repositories
(re3data) [4], Dryad [5] with data from papers, DataOne [6], a repository on Earth
and environmental data, and a repository of datasets for ecological modeling and
forecasting [7]. Within the domain of healthcare, the Observational Health Data
Sciences and Informatics (OHDSI) is an open-source initiative hosted at the
Columbia University with the purpose of standardizing observational data and
analytics of healthcare data [8]. This is achieved through a common data model and
a series of tools. OHDSI however uses patient registries rather than data obtained
from mobile sensors.

The Open mHealth [9] initiative recognizes the importance of mobile sensing
data for healthcare research and is developing mechanisms to standardize data and
integrate data streams to encourage the development of new pervasive healthcare
apps. It also offers an Application Program Interface (API) to access data from a
repository and to conduct data analytics. While the effort to standardize data from
different sensors is encouraging, the platform is meant for applications for the end
user, rather than as a research platform. MD2K [10] is a Center for Excellence for
Mobile Sensor Data-to-Knowledge funded by the National Institutes of Health
(NIH) in the United States with the purpose of facilitating gathering, analyzing and
interpreting health data generated by mobile and wearable sensors. The current
effort is focused on two application domains with a long-term vision of acting as a
repository of mobile data using Open mHealth standards.
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Of particular interest here is the Precision Medicine Initiative, initiated in 2015
in the US,2 and aimed at creating a cohort of one million participants that will
contribute biological and genetic data, and of particular interest to this chapter,
behavioral and lifestyle information gathered from mobile sensors.

This chapter elaborates on some of the issues in large-scale studies involving
off-the-clinic mobile sensors, and challenges to carry out mobile phone sensing
campaigns for pervasive healthcare. As mentioned, we focus our discussion on
mobile/wearable sensors producing heterogeneous data from multiple contexts.
These varying contexts wherein data are collected come with unprecedented
challenges for pervasive healthcare such as quality assurance or architectural
aspects related to data processing demands imposed on the infrastructure. Lastly,
this chapter presents a mobile sensing platform and a multi-site sensing campaign,
which is a way to illustrate how the aforementioned challenges and issues could be
addressed.

2 Mobile Sensing Opportunities for Healthcare Research

Human activities are complex and dynamic. Activities at different levels of gran-
ularity can be performed concurrently and they might be interwoven. Hence, the
development of activity-aware applications requires appropriate representations of
computational activities that are relevant to the services provided by systems.

One of the trends that have promoted activity recognition research is the sig-
nificant increase in available data due to the incorporation of sensors such as GPS,
accelerometers and microphones, in mobile phones. The ubiquity of these devices
also makes them ideal platforms for the deployment of pervasive healthcare solu-
tions. Relevant examples to healthcare include the use of accelerometer data to
reliably determine if a person is standing, walking or running, and to estimate
energy expenditure. The automatic estimation of these activities is relevant for
wellness applications that measure periods of moderate or intense activity.

In this context, mobile devices can be used to infer and manage patient-related
information, perform medical diagnostics, and provide nutrition-related information
and wellness recommendations. For instance, unobtrusively monitoring gait speed
along a period of time over a route, could provide early evidence of fatigue; where
accelerometer and location data can be used to assess the perception of physical
fatigue (commonly associated to fragility) on elderly population [11]. Wearable
devices have also been used to infer periods of anxiety among caregivers of people
with dementia [12].

The capacity and ubiquity of smartphones have catalyzed the biosensing mobile
phone and wearable market. For instance, public and private initiatives participation
have started to growth vertically and horizontally in sectors aimed at sensing and

2https://www.nih.gov/research-training/allofus-research-program.
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inferring: movement [13], heart rate [14], sleep [15], temperature [16], respiration
[17], oxygen consumption [18], skin [19], attention [20], food ingestion [21], blood
levels [22], among others. The common vision consists on collecting data to test
pharmacogenomics, provide new pharmacology ideas for non-therapeutic treat-
ments, proactively identify disease risk on populations, and explore the feasibility
of case studies with patients for better understanding how mobile technology could
improve health outcomes, individually or collectively.

3 Architectures and Data Issues in Large-Scale
and Distributed Sensing Environments

Mobile sensing for healthcare faces a number of challenges related to data gathering
and sharing, some of which are similar to those found in other areas, while differing
in other aspects. First, healthcare research involving mobile devices, if they are to
have a profound impact on daily life, are to be carried out in a large scale, involving
a number of mobile devices distributed across large regions such as a country or
across borders. Several diseases studied by epidemiology are known to be caused
not only by genetic or biological factors but also by environmental and behavioral
ones. Thus the need to understand the interplay among the various factors that have
an effect on disease onset, development, and care affecting diverse populations.

3.1 Software Architecture Issues

Gathering and processing large amounts of mobile sensing data imposes important
demands on the hardware and software infrastructure. A mobile sensing platform is
generally composed of the following elements: sensors, computing devices, net-
works, and storage. Each node might combine these elements in different ways. For
instance, a smartphone has sensing capabilities, processing power, but somewhat
limited network and storage capabilities; while servers usually possess no sensing
capabilities, but rate very high in processing power, communication network, and
storage.

As show in Fig. 1, a common mobile sensing architecture follows a tree-like
structure, involving mobiles devices with sensing capabilities at the leaves. One of
the factors influencing latency is how distributed computing power is within the
layers of the architecture. For instance, most mobile sensing studies reported in the
literature typically perform little processing in the leaves. However, in some sce-
narios, and mainly due to privacy and latency, it is desirable to perform some
computing at the lower levels (leaves). However, depending on the configuration of
the architecture chosen, the latency derived from the amounts of data to be trans-
ferred over the network can vary significantly, as show in Table 1.
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3.2 Data Issues

In Table 2, we present some of the data issues currently faced by the research
community in mobile sensing in order to achieve the goal of having a data
infrastructure from which to continuously construct new knowledge and validate
previous findings. This is particularly important in healthcare research involving
mobile or wearable devices in large-scale and distributed environments, as the
issues are to be increasingly present.

3.2.1 Heterogeneity in Data Gathering

While mobile phones have become the most popular means for gathering mobile
data, there are important differences in the manner in which information is col-
lected. The sensors available in each device might have different accuracies or the
data might be sampled at different frequencies due to the restrictions of each sensing
campaign. For instance, to avoid battery depletion, it might be decided to record
location information once every 5 min, or due to privacy, to record it only Monday
to Friday from 09 to 14 h. As mobile devices evolve and new and more powerful

Higher 
Processing 
Power, network 
speed and 
Storage

Cloud

Fog

Mobile
Devices

Higher 
Sensing 
Capabilities

...
Wireless protocols

High-speed wired protocols

...

Fig. 1 Hierarchical view of a mobile sensing architecture

Table 1 Cost-benefit relationship for the three levels from the cloud computing perspective

Scenario Amount of data Latency Cost Complexity

Full cloud-based computing Large High Low Low
Fog computing Middle Middle Middle Mid
Fully distributed computing Small Low High High
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sensing and storage capacity becomes available, we might face the issue of how to
compare recordings from the same individual who over the years has used different
recording devices (i.e., from fitness trackers, to a smartphone, a smart-watch or
intelligent clothing). One relatively straightforward alternative is to turn to the
lowest common denominator but this has the inconvenience of losing the advantage
provided by richer data. Another option is to interpolate data in datasets with
sparser information and consider the uncertainty raised by using this approach
during data analysis.

A dataset for a longitudinal analysis might include individuals who join the
study at different times and with different devices. Consider a span of the study that
involves a change in technology, for instance, the incorporation of an altimeter in a
mobile device. The new sensor can be used to estimate the number of stairs a person
walks each day. Furthermore, sometime after the new sensor is available, a new
algorithm is proposed that uses the accelerometer and altimeter to better estimate
the number of calories burned each day. As illustrated in Fig. 2, participant A joins
the study from the beginning and leaves the study before the device with the new

Table 2 Data management and collection issues for mobile sensing at large

Category Issue Responsible

Research Heterogeneity in data gathering Researchers
Data annotation Researchers
Data pre-processing Researchers
Limited data sharing Researchers

Legal Privacy Participants/researchers
Ethics Researchers

Engineering Heterogeneity in sensor data Hardware vendors
Dispersion Researchers/stakeholders

Fig. 2 Example of data retrieved at different periods and under different conditions (mobile
sensing device and/or algorithm). The change in color in each horizontal bar represents when the
user adopted a new sensing device. The blue dashed lines represent that a significant event during
the study, such as the introduction of a new device or inference algorithm (color figure online)
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sensor is available. Participant B is still in the study when the new device is
introduced, but it never adopts it. The new algorithm for calculating calories burned
cannot be used with the data from these two participants. In contrast, participant C
adopts the new device as it is introduced. Metadata needs to be used to indicate that
the data collected from this person differs given the device used. In addition, when
the new algorithm is made available, caloric expenditure during the period the
person had the new device can be re-calculated, but cannot be directly compared to
the initial phase when an older device was used. Participant E enters the study with
the new device and, as the new algorithm is introduced, her calories expended can
be estimated more accurately, and the ones previously recorded re-calculated.
Finally, participant F joins the study with the new device and after the new algo-
rithm was introduced, and thus the estimation of the calories the participant burned
are estimated using the same device/algorithm. This example highlights the need for
metadata to better understand the conditions in which the data were gathered and
calculated; what is generally referred as data provenance. The researcher might for
instance decide to use calories estimated with the original algorithm, since it can be
used with all the data in the dataset.

Data harmonization between heterogeneous studies involves defining common
data and agreeing on a data scheme to which different datasets can be transformed.

3.2.2 Data Annotation

Due to the naturalistic conditions in which mobile sensing studies are conducted,
annotating data and establishing ground truth can require significant effort. Mobile
sensing studies often rely on user participation to annotate the data, which might
compromise their reliability. In addition, the annotation might be incomplete if the
user is not always able or willing to provide the data.

3.2.3 Data Pre-processing

Some sensors such as microphones, accelerometers, or cameras have the potential
to generate considerable amounts of data. For instance, one minute of uncom-
pressed audio at 44 kHz requires approximately 5 MB of storage capacity. If
continuous audio is recorded from several subjects for days or weeks it quickly
becomes impractical to store all this information. Besides, specific studies might be
interested in detecting only some events, for instance, when the individual is
involved in a conversation, or detecting that he/she is outdoors. In addition, location
or audio data might be processed to preserve the anonymity of the subject. The
consent agreement might specify, for instance, that the audio recorded will be
processed so that the content of the conversation or the identity of the interlocutors
could not be inferred. Thus, it is a common practice to process the data gathered in a
manner that some information is lost. If years later, a new study wants to use these
findings, it needs to be aware of how the data were processed. As an example,
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speaker identification in a legacy study might have 93% accuracy, compared to 97%
for a new study, with which we want to conduct an integrated analysis. Since the
original data from the legacy study are not available, the new algorithms cannot be
run on that dataset. The researcher needs to be made aware of these differences, and,
if possible, be provided with tools to take them into account during the analysis.

3.2.4 Limited Data Sharing

While several research teams in mobile sensing have made their datasets available
to other researches, this is not the norm, and different groups might use different
formats and metadata. To a large degree it reflects the novelty of the field, but also
the fact that the effort to make the data available (e.g., adding metadata, put in
adequate format, anonymize), might not be compensated.

3.2.5 Privacy

Due to their nature, many personal data are considered sensitive. Examples include
location, behavior, or personal health records. Other data, on the other hand, can be
disclosed without much concern. In the case of personal data, some people may be
willing to share them only if authorized individuals can access them or the data is
anonymized for analysis. For instance, individuals can be willing to share health
records with authorized healthcare professionals, but not with certain government
agencies. For this, mechanisms such as proper anonymously data anonymization
are paramount, releasing data with certain restrictions (data license for commercial
or research use), or providing some sort of private/public keys to access data.

3.2.6 Ethics

Making sure that participants understand the prolonged validity of the data they are
contributing is important, as the data could be used in future studies. Consent forms
should be handled in such a way that participants are fully aware of the reach of the
study in which they participate. A recent example of how remote informed consents
are handled is through Apple’s Research Kit [23] in which participants sign in
through the mobile phone. However, there are certain issues that may arise, such as
deriving new behavior information from previously recorded data without the
participants’ knowledge or consent. For instance, if new research finds that visiting
certain places increases the risk of developing certain disease, there may be ethics
and privacy issues that, because knowledge was not available at the time of the
sensing campaign, bring about the question of whether those data can be used, even
if they may benefit the participants.
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3.2.7 Heterogeneity in Sensor Data

Due to the great diversity in the market of mobile phones and chipset vendors,
sensor data generated by mobile devices can vary greatly. For instance, the wireless
Received Signal Strength Indicator (RSSI), which is a measurement of the power
presented in a received radio signal, is commonly used to infer indoor location.
Depending on the chipset vendor, the RSSI may vary as they use different
RSSI_Max value; which might lead to different measures or samples even in the
same network. Heterogeneity remains an issue since there are many actors
involved, but for the purposes of this area, the peculiarities of the hardware used for
creating/collecting the data should be made public.

3.2.8 Dispersion

In some large-scale and distributed computing scenarios, one of the main issues can
be dispersion. Having low dispersion is desirable in distributed systems, but can
have high costs. In the case of mobile sensing, dispersion can be derived from
having multiple sites generating, processing, and curating data. Depending on the
circumstances, this can be an issue if there are multiple healthcare organizations
either public or private helping to collect, annotate, curate, and store data that plan
to be aggregated into a single cloud-based, consolidated dataset. For instance, take
the example of Mexico in which there are three main national public healthcare
systems insuring 58, 55, and 13 million Mexicans nationwide. Those three systems
are often managed through local administrations, which can have access to different
types of infrastructures. Under this scenario, aggregating data from those three
systems with different infrastructures in terms of storage, processing power, and
communication service can be challenging. Leaving aside all private institutions
and physicians providing care, as the number of actors involved in collecting,
annotating, curating, and storing data increases in number, and presumably criteria,
this can become a growing issue of great implications for research in healthcare.

4 The mk-sense Mobile Sensing Platform

In this section we present the mk-sense platform; a cloud-based computing archi-
tecture which uses mobile phones as sensing elements (leaves). The configuration
of the platform illustrates some of practical compromises made in the design of
multi-site sensing campaigns.

mk-sense is an extension of the open source framework Funf [24], developed to
collect data through mobile devices. It consists of a bimodal implementation: (1) a
client-side application, and (2) a server-side to dynamically create surveys and
monitor data completeness. mk-sense aims to support multiple sensing campaigns
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with minimal configuration effort. Thus, researchers avoid investing resources in
developing dedicated software.

mk-sense has been designed to require minimal technical knowledge from users
to effectively operate the platform, it is based on a concept of packing in which
researches are allowed to address multiple studies in parallel. mk-sense is imple-
mented on a three-layer architecture. The presentation-layer provides a graphical
environment to create study-packages and monitor data completeness. The
data-layer stores data into a relational database. Finally, the business-layer manages
resources on the client-side (e.g., questionnaires) before and after they are sent to
the server-side, as illustrated in Fig. 3.

Data collection involves two main stages:

1. Collection of data. Once the client-side application is installed on a mobile
phone and a study package has been selected, mk-sense retrieves a configuration
manifest as a first approximation for auto-setup of the sensing mechanism in the
mobile device. The manifest is fetched from the server to automatically setup the
device as illustrated in Fig. 3a.

a. If the manifest specifies that a sequence of surveys should be replied, then
they will be scheduled accordingly to be launched on the mobile phone.

b. Otherwise, the application will start collecting sensor data; based on
pre-defined characteristics (e.g., intervals, frequency) specified at themanifest.

2. Messenger service. Both sensor and surveys data are temporarily sheltered in
the mobile phone. In order to send data to the server-side, mk-sense enables a
messenger service to opportunistically transfer batches of data. The service is
performed using a wireless connection as presented on Fig. 1b–d.

A more detailed description of mk-sense is presented in [25].

Fig. 3 Data collection architecture in mk-sense

Data Quality in Mobile Sensing Datasets for Pervasive Healthcare 227



4.1 Walkability: A 21-Day Sensing Campaign

Walking is one of the many activities of daily life that have a positive impact on
health and wellbeing, environmental pollution, and economic benefits. In addition,
studies in Ambien Assisted Living (AAL) have focused on developing intelligent
environments that might be suitable for elderly population and people with dis-
abilities to remain active and independent despite their physical limitations [26]. In
this context, walking is an activity commonly recommended by physicians to
improve wellbeing. This is mainly due to its effectiveness and simplicity, since it
does not require specialized equipment or controlled conditions.

Trying to provide a better understanding of walkable areas, several initiatives
have advanced mechanisms to define and compute a walkability score [27, 28].
Evaluations might be based on several sources of information. For instance, on
user’s feedback provided voluntarily, or by retrieving social medial information
from sites such as Flickr and Foursquare to automatically identify safe and walkable
streets [29].

The 21-day sensing walkability sensing campaign is a study designed to explore
a mechanism based on mobile phones’ sensors to further analyze how friendly a
road/path is for walking. Walkability is in an important concept in urban design that
includes aspects such as infrastructure (e.g., sidewalks, street layout), places of
interest (e.g., markets, schools, retails, home), among others. In addition, walkable
areas might be an incentive to promote activities to benefit health like going out and
perform physical activities such as walk, socialize with neighbors and relatives, and
so on. Several walkability scores exist as of today, which are mainly based on
several aspects such as counting people in a certain area or region (e.g., street).

The study presented in this work was addressed with the voluntary participation
of subjects who work or study at universities campuses. Hence, the walkability
evaluation focuses on a common area shared by several participants. The sensing
campaign was conducted in Mexico, Turkey, and Spain with an overall participa-
tion of 65 people, as presented on Table 3.

Table 3 Population characteristics

Group A Group B Group C

No. of participants 29 21 15
City, Country Ensenada,

Mexico
Istanbul,
Turkey

Toledo and Castille-La Mancha,
Spain

Size of the city Medium (500k) Large (14M) Small (84k) and Large (2M)
Density of
population

9/km2 2600/km2 362/km2 and 27/km2

Gender 15 male; 14
female

17 male; 4
female

4 male; 9 female

Average age (S.D.) 28.48 (5.79) 23.24 (3.62) 28.42 (9.08)
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The study’s protocol was replicated under strict supervision; same directions and
training procedure were provided. As part of the methodology, each participant
received a survey under two conditions: automatically triggered by detecting a
continued walking interval of 5 min or on-demand requested by the participant.

There were up to two software updates during the study due to technical issues
reported by the participants, and software improvements. Participants completed a
simple survey at different moments during the study. Based on preliminary data, the
Walkability survey was voluntarily completed 3 times per day; approximately. Data
were collected throughout a 21-day period with an optional extension of 7 days.

5 Data Management Issues in the Walkability Study

In this section, we aim at illustrating previously discussed issues rather than
proposing definitive answers to them. Thus, along this section we discuss how the
data management issues raised in Sect. 3 were addressed in the Walkability Study.

5.1 Data Curation Lifecycle Models

As part of the planning of the project, we defined a data lifecycle model to address
the Walkability study. The data collection models are ad hoc reference protocols for
the design, management, and implementation of data collections. It can be used to
help identify additional steps that may be required—or actions not required by
certain situations or disciplines—and to ensure that processes and policies are
adequately documented, their main objectives are: (1) to provide a graphical,
high-level overview of the stages required for the successful curation and preser-
vation of data from initial conceptualization or receipt through the iterative curation
cycle, (2) to plan activities within a group, organization, consortium or institution to
ensure that all of the necessary steps in the curation lifecycle are covered, there are
cycles it may enter at any stage of the process depending on their current needs by
forward or, (3) to provide a granular function to be mapped against it to define roles
and responsibilities and build a framework of standards and technologies to
implement.

There are several data lifecycle models have been proposed, including:

• DataONE data life cycle for of Earth and environmental data [6].
• Data life cycle UCSD [30].
• Digital Life Cycle [31].
• DCC Curation Lifecycle Model [32].
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5.2 Data Management Plan for the Walkability Study

A Data Management Plan (DMP) is a document that outlines a process from the
bid-preparation stage through and after the project is completed. The purpose of
DMPs is to keep record of the many aspects of data management (e.g., digital assets
management, archiving, digital preservation, content and record diligence) to
achieve a data-preservation in the future.

To illustrate our DMT, we adopted a DCC Curation Lifecycle Model; previously
mentioned. Hence, we used DMPonline3 from the Digital Curation Centre to create
a Data Management Plan for the Walkability Study. The project planning included
the following aspects:

• Administration details. The project is presented through a brief description of
the study and expected results in the production of scientific data. In addition,
detailed information like: grant funder, project name, and research leader, is
provided for further contact reference.

• Data types. It is elaborated regarding the variety of data-types that are expected
to result from the project, including the raw data arising directly from the
research, the reduced data derived from it, and published data.

• Data preservation. It describes which data will be preserved and how this will
be achieved. Software and metadata that will be retained to enable the data to be
read and interpreted were described as well as the period of time the data might
be shielded.

• Data sharing. It specifies and justifies which data might have value to others
and should be shared. It takes into account the cost of curation, the potential
long-term demand for the data and the feasibility for the data to be reused by
others.

• Resources. It defines the amount of resources required to preserve the dataset
that will result from the Walkability study, as well as the implicit cost and for
sharing respective data.

5.3 Structural, Descriptive, and Administrative Metadata

Metadata is structured information that describes, explains, locates, or otherwise
makes it easier to retrieve, use, or manage an information resource. Metadata is
often called data about data or information about information [33]. There are three
main categories of metadata: descriptive, structural, and administrative metadata.
To illustrate them, we present a set of categories based on the Walkability dataset
(e.g., demographic, privacy, questions, sensors, surveys), classified according to the
metadata associated to these data as presented in Table 4.

3https://dmponline.dcc.ac.uk/.
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Table 4 Example of metadata classification for walkability study dataset

Metadata type Data-section Metadata

Descriptive; provide
information to reach other data

Demographic participant_id: Unique participant Id
device_id: Unique participant’s device Id

Questions question_id: Question unique id
Structural; facilitate navigation
to resources

Surveys question_(38 and 40): Answers for
question number 38. This element
content includes the physical location and
format specifications

Experimental event: Unique code for events which
require a reply from both the researcher
and the participant

Administrative; provide
technical data to facilitate
further data-processing

Privacy timestamp_db: Time recorded from
database manager when temporarily
recording data into participant’s device
(client-side)

Questions question_type: Question type (reference
to bellow description section for more
details)

Sensors timestamp_db: Date recorded from
database manager when recording data
into participant’s device (client-side)

accuracy: Accuracy of the event
type: Accelerometer data type
mAccuracy: Get the estimated accuracy
of this location, in meters
mAltitude: Get the altitude if available
mBearing: Get the bearing, in degrees
mProvider: Returns the name of the
provider that generated this fix. Null if it
has not been set
mSpeed: Get the speed if it is available,
in meters/second over ground. If this
location does not have a speed then 0.0 is
returned

Surveys timestamp_db: Time recorded from
database manager when temporary
recording data into participant’s device
(client-side)
survey_name: Survey name

Experimental timestamp_db: Date when the event
happened
type: Purpose of the message: {message,
service, question, answer}
description: Type of the message:
{welcome, code, technical, privacy,

(continued)
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5.4 Standards and Protocols

Defining the data types to be used in the study should include establishing the
standards to be used for each data type when available. There are some international
standards and protocols for scientific and technical data that were adopted for the
Walkability study, to describe data such as gender (ISO/IEC 5218), dates (ISO
8601), countries (ISO 3166-1) and cities (ISO 3166-2), and languages (ISO
639-3:2007).

5.5 Privacy

The information collected in the Walkability study was segmented into 5 categories
(i.e., level of activity, sites visited, battery consumption, shared photographs, and
completed questionnaires). Then users assigned a level of privacy to each item
based on the six ordered Blue to Crimson sample data-tags [34], as shown in
Table 5.

To address this issue, in the Walkability study we directly requested our par-
ticipants to answer a set of questions, as illustrated on Table 6.
Data description:

A. What level of privacy would you set to your ACTIVITY LEVEL (obtained
from the accelerometer sensor of your phone)?

B. What level of privacy would you set to your VISITED PLACES along the
study (obtained from the GPS sensor of your phone)?

C. What level of privacy would you set to you BATTERY LEVEL collected from
you phone?

D. What level of privacy would you set to PHOTOGRAPHS shared through
questionnaires?

E. What level of privacy would you set to shared QUESTIONNAIRES
RESPONSES?

Table 4 (continued)

Metadata type Data-section Metadata

study, complaint, drop, experience,
access2data}
direction: Flow of interaction event:
{researcher => participant,
participant => researcher}
media: Mechanism of how the interaction
event happened: {face2face, email, app,
phonecall, other [facebook, whatsup,
phonetextmessage]}
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5.6 Data Quality and Quantity

To accurately assess data quality, we took into account both researchers and par-
ticipants’ perspectives. Hence, we requested each participant to score their partic-
ipation commitment using a Likert scale of 7 levels. In addition, we asked the
researcher responsible for each site to use a similar rating to indicate his assessment
of the commitment of the participant to the study.

Another aspect we took into account was missing data. To do so, we used a data
monitoring service available at the server-side of mk-sense platform. In this context,
the server collects data and allows researchers to have a glance of the amount of

Table 5 Sharing sensitive data with confidence: the data-tags system

BLUE The information could be made public revealing my identity.

GREEN The information could be made public while respecting my anonymity.

YELLOW
I believe that this information is sensitive and personal. From what I could authorize it to be shared 
only in certain cases.

ORANGE
I believe that this information is personal and could put at risk my identity. From what I could authorize 
to share it under my supervision.

RED Very sensible. I could allow sharing it in a few exceptions.

CRIMSON Extremely sensitive. I could allow sharing it under limited occasions.

PARTICIPANT A B C D E

51 GREEN GREEN GREEN GREEN GREEN

57 GREEN GREEN GREEN GREEN GREEN

59 GREEN YELLOW GREEN GREEN GREEN

60 YELLOW RED GREEN RED GREEN 

61 GREEN YELLOW GREEN GREEN GREEN 

62 GREEN ORANGE GREEN GREEN GREEN 

67 GREEN GREEN GREEN YELLOW RED

69 RED RED GREEN CRIMSON GREEN 

70 GREEN GREEN BLUE BLUE BLUE

82 GREEN GREEN GREEN GREEN GREEN

Table 6 Privacy level from a sample of participants of Mexico, from the walkability study
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data that has been collected to a certain period of time. A graphical interface (a.k.a.
a dashboard) is activated once the server begins to receive mobile phone data;
Fig. 3e and f, it enables a service to directly communicate with participants by text
messages, among others. For instance, Fig. 4 shows a sample of the list of features
available on mk-sense; where a lighter color represents a small amount of data, and
a darker one represents a higher amount of data collected. This visualization allows
researchers to have a quick glance of the amount of data, effortlessly and oppor-
tunistically. For instance, a researcher might have recognized that Participant #87
was lacking location data on April 23rd, 2016. Hence, the researcher might get in
touch with the participant to provide respective support.

In addition, we asked participants their thoughts and/or decision to
enable/disable the location sensor during the study, as presented on Table 7. We
believe this information might further clarify misleading assumptions regarding
participants’ commitment.
Data description:

A. What do you think the lack of data is due? Be as descriptive as possible
B. Along the study: Did you considered to disable the application (mk-sense) or

GPS location service, so your data were not shared? [Yes, No]

Fig. 4 Data completeness visualization from a study in which only location and acceleration data
were collected. Each row corresponds to one feature and each square corresponds to one day of
data collected. Color-coding indicates the amount of data collected: light color indicates little to no
data; dark color stands for higher amounts of data
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5.7 Data Quality Control

To keep a record of how our dataset was prepared (pre-sharing) and their level of
quality, once the study finished, we clustered and evaluated them based on a quality
flag schema proposed in the literature [35]. As illustrated in Table 8, we identified
two levels of interest: data treatment; in which we tag our data based on a pre-parse
perspective, and evaluation; in which we score a post-parse dataset product of any
potential data-treatment. To do so, we conducted an inspection in two phases:
pre-parse; in which we defined a timestamp value due to inconsistencies found on a
number of devices (as discussed in Sect. 2.1 Software architecture issues) and
post-parse; as a final step to score out dataset, as showed on Table 9.

Table 7 Sample of data quality’s tags based on participants’ perception

Participant A B B (Justification)

51 Technical issues Yes Traveling issues
57 Traveling Yes Ran out of battery, traveling issues
59 Unclear directions, motivation Yes Ran out of battery
60 Availability Yes Ran out of battery, traveling issues
61 Traveling No Commitment
67 Technical issues No No reason provided
62 Technical issues No No reason provided
69 Availability Yes Ran out of battery
70 Unknown No Privacy reasons
82 Traveling Yes Traveling issues

Table 8 Adapted quality flag schema

Quality control (QC)
Data treatment Evaluation

No QC performed No QC performed
No problem noted QC performed; good data
Data is uncertain QC performed; probably good data
Data were changed as a result of the QC QC performed; acceptable data
Data were interpolated as a result of the QC QC performed; probably bad dada
Data suspicious, check manually before use QC performed; bad data

Table 9 Report of quality control based on the walkability dataset

Collected data Pre-parse Post-parse (final dataset)

Sensor-accelerometer Data were changed as a result of the
QC

QC performed; acceptable
data

Sensor-location No problem noted QC performed; good data
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As noted, this report of quality control (Table 9) enabled certain strategies linked
to data management issues raised in Sect. 3. The Walkability Study presented in
this section illustrated how these issues were present at different levels.

6 Conclusions

Mobile sensing is becoming an important component in advancing research by
disclosing ubiquitous data, for instance mobile devices are able to collect daily-life
data, which could be used to conduct healthcare research in both naturalistic and
controlled conditions. There are many challenges to be considered when conducting
large study campaigns, such as the heterogeneity of the sensing technology, which
implies that devices might use different sets of specifications or a data model to
expand the sensing campaign through third parties. The importance lies in the
potential enrichment of information that could result from different data analyzes
like: longitudinal studies, comparison among different studies, or retrospective
legacy-analysis that might have an impact in areas like epidemiology.

The problem with current efforts for standardizing datasets can be summarized in
two main issues: on the one hand, current alternatives seem not to be interoperable
with others, which restricts the opportunity to intersect datasets. On the other hand,
their methodology suggests that data will be standardized from the time of adopting
respective schemas; meaning that legacy data collected in the past could be ignored.

In this chapter, we illustrated how the aforementioned issues will be present in
sensing campaigns, as many of these issues have not any foreseeable answer in the
near future. However, researchers need to be aware of these, and design appropriate
data management strategies. Although these issues were observed and discussed
using a relatively small, and arguably controlled, sensing campaign, they can be
easily exacerbated in large-scale distributed scenarios such as the ones mentioned
earlier in this chapter. Clearly, some of the issues and types of studies discussed in
this chapter require the aggregated effort of the research community, government,
and the industry. Future work of the research community should aim at creating a
unified schema of data types and associated metadata for datasets of this kind, if
emergent areas such as mobile sensing are to have a profound impact on research
and daily life.
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Part III
Internet-of-Things, Fog Computing,

and m-Health



Internet of Things Based E-health
Systems: Ideas, Expectations
and Concerns

Mirjana Maksimović and Vladimir Vujović

Abstract Even the interaction between technology and healthcare has a long
history, the embracing of e-health is slow because of limited infrastructural
arrangements, capacity and political willingness. Internet of Things (IoT) is
expected to usher in the biggest and fastest spread of technology in history,
therefore together with e-health will completely modify person-to-person, human-
to-machine and machine-to-machine (M2M) communications for the benefit of
society in general. It is anticipated that the IoT-based e-health solutions will rev-
olutionize the healthcare industry like nothing else before it. The rapid growth of
IoT, Cloud computing and Big data, as well as the proliferation and widespread
adoption of new technologies and miniature sensing device, have brought forth new
opportunities to change the way patients and their healthcare providers manage
health conditions, thus improving human health and well-being. The integration of
IoT into the healthcare system brings numerous advantages, such as the availability
and accessibility, the ability to provide a more “personalized” system, and high-
quality cost-effective healthcare delivery. Still, the success of the IoT-based e-health
systems will depend on barriers needed to overcome in order to achieve large-scale
adoption of e-health applications. A large number of significant technological
improvements in both hardware and software components are required to develop
consistent, safe, effective, timely, flexible, patient-centered, power-efficient and
ubiquitous healthcare systems. However, trust, privacy and security concerns, as
well as regulation issues, identification, and semantic interoperability are pivotal in
the widespread adoption of IoT and e-health together. Therefore, developing a
climate of trust is one of the most important tasks that must be accomplished for
successful e-health implementations. This chapter analyzes the ideas and impacts of
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IoT on the design of new e-health solutions and identifies the majority of challenges
that determine successful IoT-based e-health system adoption.

Keywords Internet of Things ⋅ E-health ⋅ Expectations ⋅ Concerns

1 Introduction

Healthcare, as an essential human right, is in the interest of every human being and
can be considered as fundamental for a functioning society. The research of
healthcare systems’ role and the importance in the quality of life and social welfare
in modern society nowadays is broadly performed in order to help produce better
decisions on policy design and implementation of healthcare systems at global,
national and sub-national scales [6, 116]. Longer and healthier human’s life makes
the population more productive what implies the important contribution of health to
economic well-being.

Healthcare systems and services in a new era in medicine and technology are
essential for accomplishing the healthcare needs of individuals and populations.
Thus, effective public health systems are designed to take care of the health of target
populations which constant growth requires new, more advanced and efficient
healthcare solutions [91]. To develop and evaluate innovative approaches for
improving the quality of healthcare, innovations in the organization, funding, roles
of health professionals as well as the use of technology, are equally important. With
the present Information and Communication Technology (ICT) development,
healthcare, as well as every aspect of human life today, has been revolutionized. In
other words, the impact of technology in healthcare is immense—the rapid
advancements in the ICT have changed healthcare systems locally and globally.
Hence, a fundamental change over the last decades in both ICT and the medical
sector, has switched the traditional view of health, where healthcare delivery has
been designed around the provider (located in hospitals or clinics), to a new and
multifaceted scenario, where the care goes to the patient, instead of the patient
going to the care [38, 75]. The application of ICT to human health is one of the
leading research goals for the 7th and 8th Framework Programs of European Union
(EU). Beyond the technological factors, it is important to highlight that socioeco-
nomic and political factors have also a significant influence on the evolution of
digital healthcare (Fig. 1).

As can be seen in Fig. 1 healthcare is outstandingly affected by technological
advancements [61]. Technological breakthroughs change healthcare in all its areas,
creating a new vision of healthcare known as e-health. E-health with the help of
ICTs creates novel opportunities for information distribution, interaction and
joining forces of all participants in healthcare sector (the public, institutions, health
professionals and healthcare providers). E-health, despite its social, political, ethi-
cal, technological and economic constraints, became a major part of a modern 21st
Century society [38]. Development of new technologies, particularly the Internet
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and Wireless Sensor Networks (WSNs) that together make the new unique concept
called “Internet of Things” (IoT), has created a new horizon in the healthcare sector.
As an emerging paradigm and a cutting edge technology, IoT connects the world
via smart objects [56] and holds enormous potential for transforming the healthcare
delivery system in the modern healthcare systems of 21st Century. Communications
in IoT vision relates to communications among devices and objects, as well as
among diverse devices (machine-to-machine (M2M) communications), supporting
people daily patterns within a smart environment. These principles provide abilities
to human to interact with various types of smart (intelligent) devices, converge and
make applications, and commonly participate without outstanding interworking
technologies [62]. It is considered that the IoT has greatest potential in the
healthcare sector. This can be seen in many current healthcare solutions, which are
already applied to enhance the availability and quality of care, and above all to
avoid unnecessary healthcare costs and efforts. Using smart IoT devices, remote
health monitoring and notification can be done easily, accurately and in a timely
manner, what is essential in emergency cases [60, 103]. In theory, emergency
admissions could be reduced with the help of proactive IoT-driven e-health systems
which should be able to address the problems before they become more serious or
irreversible. Relying on these facts, new concepts and technologies like network
architectures, services, applications, interoperability, and security and privacy
issues represent leading research trends in the IoT-based healthcare. In addition,
there is a need for continuous work on legislation, policies, and guidelines in order
to successfully implement the IoT principles in the medical field [59].

Fig. 1 Digital health evolution [36]
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From an economic point of view, healthcare, as the global largest and fastest
growing industry, is one of the areas that are expected to progress notably over
years to come. McKinsey Global Institute [80] reveal prognosis and economic
feasibility of the IoT-based healthcare. Figure 2 shows that by 2025 the highest
percentage of the IoT incomes will go to the healthcare sector and hopefully will
lead to fully customized, available, and on-time healthcare services for everyone.

Evidently, technology is increasingly playing a role in almost all healthcare
processes, creating e-health services which provide better healthcare accompanied
with improved availability, efficiency, responsibility and satisfaction of consumers.
However, with the e-health industry growth more questions and challenges are
faced in healthcare research. In other words, despite the potential of IoT-based
e-health systems and services to improve the quality of healthcare, its wider uptake
is hampered by a number of factors, such as the lack of access to capital by
healthcare providers, resistance to change on the part of healthcare professionals
and patients as well, standardization issues connected with security, privacy and
confidentiality concerns, legal barriers and lack of technical skills.

To get as much as possible insights into the IoT role in progressive healthcare,
this chapter examines the ideas and current impacts of IoT on the design of new
e-health solutions and future directions for incorporating IoT into the clinical
practice of medicine. It begins with a recapitulation of the literature, which includes
the currently available systems on the market, as well as technological approaches
for their implementation. A detailed analysis of the e-health system benefits,
together with the objectives which must be fulfilled for their progress and signifi-
cant improvement, are presented too. Relying on these objectives and modern
technologies, a comprehensive analysis of applying the IoT in healthcare has been
given. The study also includes the technological and methodological approach for
the implementation of IoT-based healthcare systems. Alongside this, the IoT-based
e-health system architecture was presented coupled with analysis of numerous
recent studies that include the latest trends and challenges for integrating the
modern technology in the IoT healthcare system. As a part of the performed
research, benefits and expectations are especially highlighted, and challenges, risks
and concerns which deal with various factors that have a direct or indirect impact on

Fig. 2 The IoT leading applications and their economic impact in 2025 [55]
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the implementation of IoT in healthcare are discussed as well. The chapter is
concluded with summary representation of facts and includes SWOT analysis to
evaluate the Strengths, Weaknesses, Opportunities, and Threats of presented con-
cepts which determine successful IoT-based e-health system adoption.

2 E-health

E-health, as one of the results of the Internet expansion and appearance of e-terms
during the 1990s, becomes an indispensable term which represents a mean of
improving health services access, efficiency and quality by applying ICTs to health.
Nowadays, e-health as a way of achieving healthcare reform represents one of the
main research goals by many academic institutions, professional bodies and funding
organizations. There are various currently used forms of e-health:

• Electronic Health Record (EHR)—an electronic version of a comprehensive
report of the patient’s overall health that make all information available
immediately and in a secure way to authorized users [20],

• Electronic Medical Record (EMR)—a digital report that encompasses all of
patient’s medical history from one practice [50],

• Personal Health Record (PHR)—a health report where the patient keeps his
health-related data in a private, secure, and confidential environment [70],

• Virtual healthcare teams and decision support teams—teams of healthcare
professionals who cooperate, exchange information on patients through digital
equipment with aim to improve their knowledge and make better decisions [40,
128],

• e-prescribing—a technology framework that allows writing and sending pre-
scription electronically and directly from the healthcare institution to the phar-
macy [20],

• e-appointments—an online service that makes scheduling an appointment for
any health institution fast and easy, while reducing waiting time [135],

• m-health (mobile health)—a universal term that encompasses health practices
enabled by mobile devices and other wireless technology [70, 74],

• Telemedicine—the ICT based remote delivery of healthcare information and
services [51, 78, 131, 132],

• Telehealth—the distribution of health-related services and information via ICTs
[25],

• Internet-based technologies and services, and more.

These are some of the many digital health technologies that serve to make easier the
health-related data aggregation, storage, transfer, retrieval and processing; improve
interaction between patients and healthcare providers; monitor various (biological
and physiological) parameters, and ensure distant healthcare services [36].
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Some of well-known intelligent pervasive healthcare systems, among others, are
[86, 94, 125]: @Home system (enables remote monitoring of patient’s vital
parameters); HEARTFAID (enables on-time diagnosis and more effective insights in
heart diseases within old people); ALARM-NET (an Assisted-Living and Residential
Monitoring Network for ubiquitous, adaptive healthcare); CAALYX (Complete
Ambient Assisted Living Experiment based on the usage of wearable lightweight
devices that measure vital signs of a patient and automatically alert care provider in
an emergency case); TeleCARE (enables the development of a configurable com-
mon infrastructure useful for the elderly people and the healthcare providers);
CHRONIC (an integrated IT (Information Technology) environment for the care of
chronic patients); MyHeart (with the help of smart electronic and textile systems
and adequate services offers the means for dealing with cardiovascular diseases);
OLDES (enables a wider range of services to old people using an innovative
low-cost technology); SAPHIRE (implements the patient monitoring by using agent
technology and intelligent decision support systems); MobiHEALTH (facilitates the
online, continuous monitoring of vital signs, via GPRS (General Packet Radio
Service) and UMTS (Universal Mobile Telecommunications System) technolo-
gies); SAPHE (allows intelligent, unobtrusive continuous healthcare monitoring via
telecare networks with small wireless body sensors and sensors integrated in
homes); DITIS (an e-health mobile application which supports networked collab-
oration for home healthcare); AXARM (an extensible remote assistance and moni-
toring tool for neurodegenerative disease telerehabilitation); VirtualECare (an
intelligent multi-agent system for health monitoring and interacting with elderly
people). The list of pervasive healthcare systems grows constantly along with the
rapid advancements in ICTs and their widespread adoption can benefit patients,
healthcare providers, managers and policy makers as well (Fig. 3) [2].

From a patient’s point of view, e-health makes easier access to quality healthcare
services through associated networked-monitoring equipment, particularly to

Fig. 3 The role and importance of participants in healthcare sector [2]
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people in remote, rural and isolated communities. The old and less “physically”
mobile patients, especially benefit from these health services over distance because
they require fewer visits to the healthcare professional and institutions and thus they
are more capable of living on their own. In the case of a potentially dangerous
situation or detected anomalies (when dataset goes beyond the normal range,
approaching to potential emergency), the system can generate an alarm [21]. Thus,
e-health gives health professionals faster, secure access to all the data they need to
care for the patient (Fig. 4). Recent surveys on patients’ behavior to digital health
(according to Frost & Sullivan) show that about 16% of them use wearable sensors,
24% use mobile applications to track their health and wellness, and 29% use
electronic PHR. It is anticipated that this tendency will continue as 47% of patients
would consider using wearable devices in the closest future [26]. The benefits of
these self-monitoring devices are the removal of the need to run expensive and long
tests as well as the realized connection with healthcare expert systems. These
systems are essential in providing accurate information for diagnosis, decision-
making, reducing medical errors and enabling prompt healthcare [91].

Since relevant health data are available to healthcare providers when required,
e-health is seen as an opportunity to make healthcare more efficient by facilitating
communication and enhancing patient care offering new services and types of
treatments, alongside reduced delays, errors and administrative costs [47]. Mul-
tidisciplinary teams of health professionals, through e-health, have faster and secure
access to all the information required to treat the patients in an adequate and timely
manner. They can exchange health information and arrange health interventions in
an effective way, thereby avoiding tasks duplications and cutting costs. Possible
errors and complications, especially medication errors and adverse drug reactions,
can be deflected through the role of e-prescribing systems. If an order is made for
medications to which a patient is known to be allergic or there are potential
contra-indications and drug interactions, this system flags alerts. Consequently, the
less time is spent to clarifying and rewriting illegible prescriptions, and thus can be
better used. However, Li et al. [71] identify and synthesize factors which influence
healthcare providers’ acceptance of e-health vision: healthcare provider character-
istics (experience and knowledge in IT sector, gender, age, race, professional role
and experience); medical practice characteristics (practice size and level, single or
multi-specialty, location, teaching status, patient age range); voluntariness of use;

Fig. 4 The massive aggregation of healthcare data in the healthcare ecosystem
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performance expectancy (the usefulness and needs, relative advantage, job-fit,
payment and financial stimulus); effort expectancy (simplicity of usage and com-
plexity); social influence (the subjective norm, competition, supportive organiza-
tional culture for change, and friendship network) and facilitating or inhibiting
conditions (legal concerns, patient privacy issues, financial limitations, IT support).
Having in mind that healthcare providers are the key enablers of e-health initiatives,
their acceptance of e-health systems and applications is essential to reform and
revolutionize healthcare.

Easy access, dissemination, use and exchange of accurate and reliable infor-
mation, enable policy makers to made correct healthcare investment decisions
(Fig. 4). In this way, health service interventions are conducted to where they are
instantly required. Managers, through access to national health data summaries, can
better supervise and evaluate health intervention programs.

Therefore, e-health has many benefits to offer. Organizations and governments
worldwide are choosing to implement e-health in order to enhance quality of care as
well as the patient experience. The major benefits can be summarized in [65]:

• Technology usage effectively saves time (increased timeliness of treatment and
decreased transfer rates) and eases financial pressures.

• Quality of care is enhanced through more informed decision making processes.
Diagnoses are on-time and more accurate.

• Online healthcare services are provided for members, employers, providers and
brokers. Wireless devices’ usage enables real-time treatment, while telemedicine
and remote in-home monitoring support senior wellness and preventative care,
as well as expert diagnosis and treatment to rural residents. Remote consulta-
tions, whether urgent or diagnostic saves lives.

• Delivery of care is more efficient, cost-effective and convenient. Customer
experience is more satisfied while staff and doctor satisfaction is also improved.

• ICTs usage can enable health processes to cover more cases without raising staff
numbers or related costs. Thus, costs are reduced and administrative efficiency
and coordination are improved.

• Revenue cycle management is speeded through electronic payment technology.
• Enhanced access to a patient’s health information decreases the incidence of

medical errors.

As can be noticed, e-health is rapidly growing and changing and owns the
enormous potential to improve the quality and efficiency of healthcare. However, its
widespread use is obstructed by a number of barriers, ranging from technical to
financing to political issues (Fig. 5) [30].

As technology is rapidly changing, new e-health solutions are constantly pro-
gressing to satisfy the needs of current practice. Appropriate technology infras-
tructure, systems integration, standardization as well as social, ethical, and
economic questions, represent the main challenges for ubiquitous e-health adoption
and achieving higher quality and more productive healthcare. To achieve healthcare
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improvements, it is recognized that every healthcare system should accomplish next
six goals [57], Steinwachs and Hughes (2008):

• Patient safety—includes the prevention of errors and adverse effects to patients
associated with healthcare. To accomplish this goal, it is necessary to perform
certain actions such as correct identification of the patient, enhancing commu-
nication, enabling adequate care and reducing the risk of undesired outcomes.

• Effective care—is based on scientific evidence (laboratory experiments, clinical
research, epidemiological studies…) that treatment will lead to desired health
outcomes.

• Timeliness—considers that healthcare organization should be organized to
provide care to patients in a timely manner. Although occasionally harmless, a
misdiagnoses or failure to timely diagnose a medical condition, illness, or injury
could lead to worsening of the condition and outcomes to worsen.

• Efficiency—is based on identifying and eliminating waste of resources (equip-
ment, energy, supplies and ideas).

• Patient-centered healthcare—involves the creation of individualized healthcare
services according to the patient’s needs, values, and preferences.

• Equity—means providing the same quality of care regardless of personal
characteristics such as gender, race, education, geographic location, and
socioeconomic status.

These six goals represent a guideline for creating a contemporary, Internet-based
healthcare system, and in the rest of this chapter a discussion will show their
significance.

3 The IoT Based E-health Systems and Services

In the past, sensing in the healthcare was applicable mainly in healthcare institu-
tions, and rarely outside of hospitals. Additionally, sensing unit at an early stage,
were simple devices for measuring parameters of interest and creating some form of
the output signal (mechanical, electrical, or optical). Nowadays, a development of

Fig. 5 The major barriers to wider uptake of e-health
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computing and pervasive communications, connectivity to the Internet and Cloud
integration as well as use of mobile smart devices, have added outstandingly to the
capabilities of sensor devices, their number and scope (Fig. 6) [79].

Society is currently witnessing ICT influences on the evolution of sensors and
their applications which can be almost everywhere: from health and fitness, aging
demographics, personalized healthcare, public health, national security, IoT, water
and food traceability and production. Consequently, using new concepts and
approaches like IoT, Big data and Cloud computing, novel healthcare solutions
have a huge potential to easily meet all of six improvements goals.

IoT-powered healthcare systems of 21st Century rely on the fundamental defi-
nition of the IoT as a network of intelligent, interconnected devices (which are
usually equipped with microcontrollers or microprocessors, memory, wireless
transceiver, sensing unit and autonomous power supply) based on existing and
evolving interoperable ICTs [56]. To realize the integration of IoT principles in
e-health, a variety of sensors (wearables and ingestible devices) gather patient’s
health-related data; microcontrollers process and wirelessly transmit those data;
microprocessors provide user interfaces and displays while healthcare-specific
gateways and the Cloud are used to analyze and store the data. The analyzed data
are then transmitted wirelessly to medical professionals for further medical analysis,
the remote control of certain medical treatments or parameters or real-time feedback
[69, 89, 121].

To continuously monitor several vital signs of patients and transmit the data to
the server, different health sensors either embedded in some device, like a smart-
phone, or wearable by users, are utilized. Ideally, the chosen sensors should be
invisible, unobtrusive and non-invasive, able to protect user privacy and data

Fig. 6 Evolution of sensors [79]
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confidentiality, to consume low-power and demand minimal computational
resources, to be cheap and easy to install and have low-maintenance overhead
[130]. For example, various sensors like temperature sensors, voice-sensors (mi-
crophone), video sensors, image sensors, IR (infrared) sensors, optical sensors,
ultrasonic sensors, piezoelectric sensors, accelerometer, and more, can be used to
address the same or different problems (fall detection, child care, disabled care, etc.)
[120]. Connecting diverse medical devices (e.g., thermometers, glucometers, smart
heart rate monitors, fitness tracking device, blood pressure cuffs, asthma inhalers,
etc.) creates a new paradigm commonly referred the “Internet of Medical Things”
(IoMT) [108]. To allow synchronization of the real world with its virtual repre-
sentation and therefore enable enhanced process and decision-making support,
these smart objects used for medical purposes should be unique in its context or
system (to have an identity), have abilities to gather the information and to interact
with environment (sensors and actuators), determine the current position, com-
municate with other objects, store data (memory) and act autonomously to
accomplish a predefined goal [127]. Relying on these principles, according to report
by the Atlantic Council [44] a four categories of medical devices led by IoT
concepts are identified: consumer-based (e.g., fitness tracking devices), wearable,
external devices (e.g., insulin pumps), internally embedded devices (e.g., pace-
makers, within the body sensors) and stationary devices (e.g., home-monitoring
devices, IV (intravenous) pumps and fetal monitors). These four categories of
medical devices may be considered as the foundation of any modern healthcare
system nowadays.

With the rapid technological advancements, the new generation of “medical” or
“clinical wearables” has more advanced performances in the sense of sensing,
capturing and analyzing, making them more clinical useful [76]. Using a new type
of networks, various communication technologies like GSM (General System for
Mobile communication), RFID (Radio Frequency Identification), GPS (Global
Positioning System), Bluetooth, Wi-Fi, ZigBee and NFC (Near Field Communi-
cation) for interconnecting wearable health sensors, and transferring sensor data to
the central server [100, 120] enables making the human body as a part of the IoT,
bringing in such way integration to a completely new level. Following these
principles, in the next few years it is expected that the 5G network, with its
superfast connectivity, intelligent management, and data capabilities, will provide
new possibilities in healthcare, including diagnostics, data analytics, and treatment
[126]. More specifically, the IETF (Internet Engineering Task Force) has stan-
dardized 6LoWPAN (IPv6 over Low-Power Wireless Personal Area Networks),
ROLL (Routing over Low power and Lossy-networks), and CoAP (Constrained
Application Protocol) to equip constrained devices used in IoT vision [72].

How to deal and process a large amount of gathered data is one of the biggest
challenges in present healthcare systems. The large quantity of data is usually stored
in the Cloud where they are reachable worldwide, by a virtually unlimited number of
participants, even simultaneously. Private information of a patient, are usually
accessible to himself and to the healthcare givers but they are also anonymously
available to anyone, so that can be effectively aggregated for research or statistical
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worldwide analysis [38]. A variety of techniques, such as artificial intelligence,
machine learning, intelligent data mining, computer vision, Big data and analytics
and more, are used to discover hidden patterns, anomaly detection, perform pre-
dictive modeling and to make actionable decisions. In this way, using smart devices
equipped with evidence-based algorithms increase the possibility to significantly
reduce the number of medical errors. Alongside this, information regarding health
should be always accessible to both healthcare provider and patient in the most
understandable formats for each [42]. In order to understand the life cycle of the
device, researchers propose the usage of six C’s: Connection (the path showing how
device is connected to the ecosystem); Collection (how data are collected from the
sensing element); Correlation (mapping the data to a context and perform correlation
to produce relevant and concise data); Calculation (making a decision based on
filtered and processed data); Conclusion (taking appropriate actions); and Collabo-
ration (the patient and the healthcare teams’ work together). Relying on six C’s
definition, the architecture for e-health must support diverse devices, applications,
and backend systems to enable the free information flow (satisfying the needs of six
C’s life cycle) in order to make on-time and right decisions [69]. Therefore, gate-
ways, medical servers, and health databases, are crucial in making medical records
and bringing health services to authorized stakeholders whenever required [59].

The elements defined above for gathering, storing, transmitting and analyzing
data are essential regardless of different technologies and architectures of IoT
healthcare solutions that can be found in a review of literature [4, 21, 46, 82, 84, 86,
90, 93, 97, 104, 110, 134]. In addition to technology, that creates the capacity to
provide health services, the structure of healthcare also includes the facilities (e.g.,
hospitals and clinics) and personnel (e.g., physicians and nurses) [109]. Enabling
simple and cost-effective collaboration of patients, hospitals and healthcare orga-
nizations, via smooth and secure connectivity, is a significant trend [59].

The representative cases of IoT/IoMT include remote monitoring of people
health (chronic or long-term conditions); tracking patient medication orders and the
location of patients admitted to hospitals; and patients’ wearable mobile health
devices, which can send data of interest to healthcare providers. In other words,
nowadays the Internet and smart mobile devices provide a quite simple interactive
environment for all, fulfilling the principles of IoT-based e-health: to enable anyone
to access e-health services anytime, anyplace and on any device (Fig. 7). Mobile
medical devices (e.g., wearable sensors, bands, watches) and smart applications
facilitate continuous self-monitoring of various vital parameters while Cloud-based
architectures enable storing and sharing large amounts of data in an effective and
easy manner [19]. Therefore, the presented architecture consists of three basic
layers:

• Sensing/perception layer: the most basic layer which key component is sensing
device for capturing and presenting the physical in the digital world. The
essential data sensing/gathering from sensing devices and some controlling
actions and communications are the main functions of this layer.
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• Network layer: the middle layer which includes all kinds of access networks,
protocols, communication devices and routing modules.

• Application layer: includes operating modules for analyzing sensed data,
computation, and actions.

Bearing in mind the importance of new healthcare solutions, a variety of recent
studies accentuate tendency and challenges for ubiquitous health technologies in the
IoT. Over the last years, academic researchers have paid increasing attention to this
field, proposing numerous more or less similar solutions, based on the basic three
layers IoT architecture, highlighting: the usage of smart, intelligent, wireless sensor
devices to perceive utilization of the appliances necessary for daily living and in
this way determine the lifestyle of old people living alone [41, 83, 112]; an IoT
low-cost technology solution for observing human vital parameter [76, 97, 111,
114]; a simple and secure IoT for creating a general and pervasive Ambient
Assisted Living framework to be used by m-health applications [37, 41, 74, 103];
IoT-based e-health solutions, creating a M2M system based on a Cloud computing
[102, 110, 123], and more. In addition, one of the most important trends in 2015
became the development of Do It Yourself (DIY) healthcare platforms [24]. With
the help of inexpensive hardware and open-source software, a DIY system which
satisfies the user’s specific needs can be easily created. The created solution can be
used to monitor human vital parameters as well as some of the environmental
parameters affecting health. Providing techniques and the customizable solutions to
the consumers is valuable for both end-users and product developers [76]. Some of
the IoT e-health solutions currently present on the market are [105, 115]: Empatica
Embrace (a sleek watch that collects data regarding to epilepsy, autism and other
chronic disorders, makes it available to caregivers and creates alerts in case of
emergency); Lumo Lift (a discreet lightweight wearable that tracks patient’s posture
and activity); Philips Respironics breathing masks and SleepMapper application (an
interactive self-management system that tracks user’s sleeping patterns); Chrono

Fig. 7 The IoT-based e-health system architecture
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SmartStop (a wearable lightweight transdermal device that relies on nicotine
replacement therapy); Real Time Healthcare (a platform that helps the patient
follow their medication routines, informs healthcare professionals about important
information, including location details if the patient becomes confused and lost);
Scanadu Scout (an electronic device which enables quickly check of patient’s vital
signs by placing the device on patient’s temple); iOTOS (a wireless device which
have possibility to be integrated in all kinds of devices used from diagnostics to
home monitoring). At the hospital side, it is important to highlight [105]: smart IV
pumps (intelligent infusion devices which can preset doses and have ability to
communicate with electronic medication administration records); robotic-assisted
surgery; wireless capsule endoscopy (as an alternative to the tube-based endoscope
where the patient swallows camera in a pill and it moves through the gastroin-
testinal track taking pictures); tracking medications administered to patients and
assets via RFID. Based on currently available IoT-powered healthcare solutions,
Islam et al. [59] categorize services (used to develop applications) and applications
of IoT in healthcare sector (Fig. 8), where applications are further classified into
two groups: single- (a specific disease or infirmity) and clustered-condition appli-
cations (a number of diseases or conditions together as a whole).

Despite the way IoT-based e-health systems are realized, they all should provide
the effective and efficient healthcare for anyone, anytime and anywhere. Therefore,
regarding data, the IoT-driven e-health solution must:

• Collect patient health data from a various types of sensors remotely and in a
secure and safe way,

• Apply complex algorithms from a broad scope of pattern recognition and
machine learning techniques, to analyze the gathered data, and

• Exchange the data through wireless networks (satisfying privacy and security
demands) with who can make real-time feedback.

Fig. 8 Services and applications of IoT-powered healthcare
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As ICT is used to support the core processes of healthcare, in the first step a
prodigious amount of data has been produced. Due to datasets volume, variability,
and velocity, there is a need to filter out relevant, differentiating information from
the voluminous datasets. This implies a quick growth of Big data analytics, which
gives an opportunity to healthcare organizations to improve care and profitability.
With the limitless potential to effectively store, process and analyze medical data,
the Big data in healthcare are being applied in many prevention and personalization
purposes. In other words, successfully dealing with a huge volume of data can
improve profits, and effectively reduce the cost of healthcare. Furthermore, the rapid
development of IoT healthcare is accompanied with the increased risk of security
and privacy. Therefore, security and privacy are crucial design goals that should be
taken into consideration. To receive as much as possible benefits of the IoT-based
e-health system, devices must connect to networks and the Cloud in ways that are
interoperable and secure. It implies that generated, assembled, and shared data must
be protected with appropriate authentication methods. The additional important
factor is the data access control, which prevents unauthorized accesses to the
patient’s data. Healthcare providers and patients will be able to experience the
advantages of digital modernization for wellness and healthcare only satisfying
essential demands for IoT-driven healthcare system development and Quality of
Services (QoS) requirements. In order to measure QoS of IoT-based e-health sys-
tem, various QoS parameters and QoS metrics must be considered. They can be
classified according to three layers’ structure of IoT [13]:

• Sensing/perception layer: reliability, throughput, real-time, sampling parame-
ters, time synchronization, location/mobility, sensing and actuation coverage.

• Network layer: lifetime of sensing networks, utilization of network resources,
bandwidth, delay, packet loss rate, jitter, services perform cost, perform time,
load, reliability, fault tolerance.

• Application layer: service issues (time, delay, priority, availability, accuracy,
load), information accuracy, costs (network deployment, service usage).

As tracking, identification, authentication, data collection and sensing are essential
characteristics of IoT-driven e-health, among various QoS metrics, several of them
can be considered as of special interest in IoT healthcare applications: reliability,
throughput, delay, energy consumption, system lifetime, network coverage, packet
loss rate, scalability. However, QoS support provided in IoT-based e-health systems
varies and targets different QoS levels for specific uses (e.g., emergency case,
intensive care).

In summary, using smart IoT devices, comprehensive physiological information
is collected and shared directly with each other and the Cloud, enabling to gather,
store and analyze a mixture of health status indicators faster and more accurately
[89]. Therefore, the idea of IoT-based e-health solutions is to accomplish all six
goals for health improvements and QoS requirements, by enhancing life quality,
providing medical support and life-saving care, decreasing barriers for monitoring
important patient health data, reducing the cost of care and providing the on-time
and right prevention and treatment.
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3.1 Benefits and Expectations

New approaches to the procedures, equipment, and processes by which medical
care is delivered have led to impressive achievements in health worldwide during
the past few decades. With the power of ICT, healthcare becomes more efficient as
well as cheaper and more reliable. In e-health, the IoT’s connectivity provides
means to monitor, record and transmit health data on a 24/7 basis from a patient
home to the healthcare providers (using sensors in mobile devices, within bodies
sensors or sensors attached to clothing) and enable the IoT-related data and services
to be pervasive and personalized [97].

The IoT-powered e-health systems, using small, lightweight wireless approaches
connected through the IoT, have potential to enable remote monitoring and secure
capturing of a great wealth of patient health data and fitness information. In other
words, medical devices such as wearables and home health monitoring devices
(e.g., wirelessly connected thermometers, glucometers, heart rate or blood pressure
monitors) can be connected to the IoT technology enabling remote, timely and
comfortable monitoring of patient’s vital signs from a hospital environment. The
device which uses the IoT scheme is unique to the world and identifiable at anytime
and anywhere through the Internet. The IoT-powered health devices in distance
health monitoring systems, alongside the traditional sensing tasks, can also share
health-related data with each other, as well as with hospitals or clinics through the
Internet, outstandingly facilitating setup and administration work [49]. The col-
lected health information, stored in a central data server, can be intelligently ana-
lyzed to identify patterns and trends and represents a basis for the statistical and
epidemiological researches (e.g., disease and epidemic outbreak prediction, track-
ing and controlling in an efficient manner) [97]. Using gathered information and
applying complex algorithms and evidence-based models in order to perform cer-
tain actions, significantly improve health by enhancing the access to healthcare and
quality of care alongside drastically costs cutting (Fig. 9).

The most promising IoT-based e-health use cases are preventive health actions,
proactive monitoring, follow-up care and management of chronic care diseases. The
benefits of IoT-driven e-health as a technique to improve the quality of healthcare
are recognized worldwide. Opposed to traditional paper-based practice and
expensive physical interactions between healthcare givers and patients, the
IoT-based e-health solution provides a faster, easier and cost-effective ways to
accessing healthcare [119]. The important modifications that IoT has already
brought in diverse areas of healthcare are noticeable in [15, 93]:

• Patient tracking, monitoring and diagnostics (e.g., preventive care, monitoring
patient’s health, chronic disease self-care),

• Sharing and recording health-related data, and collaboration,
• Smart healthcare devices and tools (e.g., smart wheelchair, sensors),
• Cross-organization integration (e.g., connected emergency units, response

vehicles, and healthcare institutions).
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To develop a successful IoT-driven e-health system, it is necessary to satisfy
following demands:

• To effectively manage healthy living, the system must be unobtrusive and
comfortable as possible and available 24/7.

• Ubiquitous technology should be used for sensing, monitoring, analyzing, and
communicating. Telemedicine advancements, videoconferencing and the IoT,
provide means for monitoring patients’ health at home, virtually from anywhere.
Therefore, using digital communication technologies and virtualization, the
appropriate healthcare can be provided anytime and anywhere.

• Any medical device (wearable or portable) must be connected to the Cloud,
pulled and be capable of analyzing a vast range of collected health markers of a
patient in real time and to identify important signs of possible health risk.

• The connected devices must be able to speak the same language using protocols
and collaborate with each other without human involvement. Connected devices
should be ubiquitous and a programmable platform.

• Monitoring of vital health indicators collected by portable devices (e.g.,
smartphones and tablets) must be realized. The data gleaned from the smart IoT
devices are used by healthcare professionals to figure out who needs the most
hands-on attention and to help diagnose the patient so they can get the best
treatment as quickly as possible. Data collected from health monitoring devices

Fig. 9 Improved quality of life followed with reduced cost of care [75]
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should be visualized in easy understandable charts and diagrams. Thus, pro-
viding visualization of the voluminous data and analysis results accessible to
healthcare practitioners in an understandable and adjustable format, regardless
of the underlying development platform, are essential.

• Shifting reactive treatment towards precise, predictive and preventive should
significantly reduce the number of alerts. In the case of emergency (when any
abnormality is detected) intelligent notifications must be enabled and sent to a
caregiver.

• The growth of medical devices at a hospital and clinical side requires stabi-
lization of existing wired and wireless infrastructure as well as pervasive Wi-Fi
connectivity and bandwidth for clinician workflow and communications.
Automated and secure provisioning and control of medical devices on the
wired/wireless network, staff supporting and consulting, and technical support
24/7 are mandatory.

• Authorization processes, data exchange and privacy must be compliant with EU
Data Protection Directive (Europe) or HIPAA (Health Insurance Portability and
Accountability Act) in the USA (United States of America) as well as national
regulations [88].

• Reduce costly and unnecessary medical services.
• Deliver personalized experiences to users, which meet their specific needs

through flexibility, convenience and technologies.
• Scaling sensors down to the nanoscale, and reduce energy consumption.

Remote monitoring, real-time monitoring and online medical consultations are
major benefits patients experience in the IoT-driven e-health vision. These benefits
are the consequence of growing number of technological solutions aimed to help
save lives and improve the health of humans on a global scale. With the help of
such IoT-powered e-health systems, patients better understand their health status
and much more participate in the healthcare decisions affecting them. An active
participation ensures their well-being through access to a summary of their health
information (from anywhere), giving them more insight into their health by tracking
of their medications, immunizations and allergies. It is believed that web portals,
the Internet and social media, improve access to health-related information [19].
Using the IoT-based e-health systems and services the point of care is shifted
towards patients, placing the patient in the center of the treatment process followed
with the reduced demand for physical contact between patients and healthcare
givers [36]. Moreover, in the IoT-based e-health system, where smart (intelligent)
devices can bring decisions and perform actions without human intervention,
impact of racial bias and any kind of discrimination in healthcare (income, gender,
age, education, race, etc.) patient can face with health professionals or anyone else
can be minimized [42]. Hence, with the help of the IoT-driven e-health patients can
receive better and safer healthcare, anywhere and at any time as needed by them.
Fast and more quality healthcare is based on more complete patient information
availability. The IoT nature of e-health systems enables data exchange between
smart devices as well as between devices and health institutions and professionals
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automatically through the Internet. Collected and analyzed data facilitate fast and
safe treatment decisions. Some of the benefits healthcare professionals achieve are:
remote access to the patient chart; identifying necessary laboratory tests; being
alerted in case of critical laboratory values or possible medication errors; being
reminded to provide preventive care, facilitated direct communications with
patients as well as the ability to cope easier with increases in patient numbers. To
point out, the IoT has potential to revolutionize how healthcare is delivered and
operationalized, by radically reducing costs and improving the availability and
quality of healthcare by focusing on the way all participants in healthcare processes,
devices and applications are connected and cooperate with each other. Currently
applied IoT-driven e-health applications already show the tremendous benefits IoT
brings to health services.

Maximization of socioeconomic benefits through the implementation of e-health
systems is a goal of the new European e-health Action Plan for the period 2012–
2020. It defines the vision for novel healthcare for the 21st Century where physicians
will spend more time with their patients and reduce unnecessary administrative
tasks. According to the plan, during the period 2014–2020, research and innovation
will be supported in the field of IoT in order to develop digital, personalized and
predictive, patient-centric and cost-effective healthcare, focusing on the embedded
and cyber-physical systems, operating platforms, network technologies, semantic
interoperability, and security and privacy issues [30]. Moreover, by 2020, it is
expected that shrinking sensors to the nanometer scale will imply nanotechnology
widespread use and its involvement in every aspect of life. Embedding nano-devices
in the environment creates a new vision—the “Internet of Nano Things” (IoNT). The
IoNT in the field of medicine creates a new term—“nanomedicine”, which has
potential to make diagnoses and treatment less invasive and more intelligent. The
elimination of many invasive procedures will be realized with the help of smart pills
and nanoscale robotics. Beyond numerous benefits nanomedicine has to offer, big
challenges will have to be met: the linkage of the nanoscale networks to the Internet,
communication issues between the nano- and micro networks, privacy and safety
issues, potential toxic and hazardous effects of nanoparticles, generation of large
amounts of data, etc. [91]. Nevertheless, the use of nanotechnology in medicine
opens a whole new world of exciting possibilities, and it is expected to revolutionize
the healthcare over decades to come.

Beyond the technical/scientific factors, it is important to address and
non-technical challenges of different nature, such as socioeconomic challenges
during the IoT domains and technologies’ progress [36]. Hence, the incredible
benefits of the IoT integration into the healthcare system for both an individual and
a society will be achieved only when most of these concerns and risks are over-
come. Thus, the success of the IoT-powered healthcare depends on the overall
ecosystem development, embraced by an adequate regulations and appropriate level
of trust. Accomplished identification, privacy and security, confidentiality, trust and
semantic interoperability issues can lead to wisely used and widely applied
IoT-driven e-health, therefore improving access, availability, and increasing the
financial efficiency of healthcare systems in general.

Internet of Things Based E-health Systems … 259



3.2 Challenges, Risks and Concerns

Despite the opportunities and benefits, e-health widespread adoption is facing with
numerous barriers. On the other side, the realization of the IoT vision, in order to
create adjustable, secure, ubiquitous and non-invasive solution, requires significant
modifications of systems, architectures and communications [133]. In general, the
challenges IoT faces are: availability of Internet at any place and without costs,
development of low-cost smart sensing platforms, scalability, energy consumption,
computational capacity, fault tolerance, security and privacy issues and a climate of
trust [85]. Alongside technology impacts to the IoT development and usage, it is
important to point out and social and economic factors. All these facts make the
IoT-driven e-health systems a complex and exciting field. The challenges IoT-based
e-health vision deals with may result significantly slower than anticipated adoption
of the IoT-powered e-health systems and services as well as nullify any or all of the
identified benefits.

In the rest of the chapter main challenges, risks and concerns of modern IoT
healthcare system are discussed.

Government action

Governments are responsible for providing fundamental services, such as health-
care and ICTs infrastructure, continuity of funding, accessible education as well to
support services around personal health issues including implementation of stan-
dards and protecting privacy and security rights.

Technology issues

The technology domains that will provide the IoT practicable and reliable solutions’
wider uptake, including healthcare sector, are: (i) identification, (ii) IoT architecture,
(iii) communication, (iv) network, (v) network discovery, (vi) software and algo-
rithms, (vii) hardware, (viii) data and signal processing, (ix) discovery and search
engine technology, (x) relationship network management technology, (xi) power and
energy storage, (xii) security and privacy, and (xiii) standardization [12]. In other
words, the experts assume that the progress and mature of IoT technologies will
require continuous and intense work in data protection, ethical issues, architecture,
identification of networked objects, standards and regulations, and governance [81].
As a consequence, the IoT-driven e-health adoption on a large scale is being hindered
by a variety of factors. Successful IoT applications in the area of personalized
advanced healthcare require home diagnostic kits, healthcare monitoring and the
low-cost collection of medical data shared with the patient’s healthcare providers
through the Cloud. Medical devices, opposite to office computer systems, are often
used in a harsh environment. Therefore, the hardware components of medical
devices should have higher physical tolerance against environmental conditions. To
prevent wrong measurements or treatment parameters, medical devices often use a
dual communication channel design, in order to detect and correct wrong trans-
mission and ensure the totality of the transmitted information [117].
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Hence, availability of required data is essential for making right and timely
health-related decisions [88]. Therefore, IoT medical devices must: (i) gather data
and analyze real-time data, (ii) monitor device operation for faults and prevent
malfunctions, (iii) remote control and device configuration, (iv) enable devices to
broadcast results and notifications to other devices, (v) maintain an active device
inventory and track assets, and (vi) enable remote software/firmware updates.
Having in mind that one of the obstacles to healthcare technology embracement is
that healthcare professionals and patients often resist technology, the IoT smart
medical devices must be easy to handle devices, customized, affordable, powerful,
safe and comfortable. With technology advancements, creating hardware and
wireless connectivity equipment becomes cheaper and more efficient, enabling
connection of a whole range of objects together. As a result, healthcare-related
information systems and hardware are now omnipresent. With the help of small,
powerful and cheap devices, and medical software applications, people are able to
monitor themselves on a daily basis and share their health information with
healthcare providers when needed and start to become more responsible for their
own care along with a deeper understanding of own illness. To achieve these
benefits, interoperability appears as a key challenge. Therefore, an interoperable
ecosystem of many heterogeneous sorts of systems (devices, sensors, equipment,
etc.), services and applications, to provide the free health-related information stream
for accurate and on time decision is crucial.

Human factors

People are key components to the creation and use of e-health products and ser-
vices. Cognitive, social, and cultural barriers can enable patients and consumers to
benefit from rapidly changing and growing e-health systems. These barriers include
cultural and language differences, lack of knowledge and access to technology.
Even the lack of IT knowledge may be one of the main barriers, the data scandals
that regularly occur represents a higher obstacle. Some potential patients of the
IoT-driven e-health services, feel their lives are being controlled and therefore have
resistance and may reject them. Also, some professionals are mainly focused to give
their best to treat the patient and other activities usually consider as a loss of control
over their patients’ care. Consequently, technology rejection by influential health-
care givers affects other healthcare staffs [35]. One of the ways to deal with these
barriers is to give an opportunity for healthcare professionals and customers to
participate in designing and adopting technologies, improving system development
and facilitating them to control the effects of the information system based on their
engagement [95]. Computer and web technology skills, the organizational and
managerial competencies and leadership, as well as the awareness of the associated
legal, ethical, and economic issues, are necessary for the changes IoT brings in
e-health tasks, processes and job roles. Only through the continuous and reactive
work on overcoming these barriers e-health strategies can be customized in order to
satisfy a wide scope of society demands [47].
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Big data and analytics

According to Cisco predictions, by 2020, 50 billion diverse devices will be con-
nected to the Internet [32]. Consequently, the IoT growth will imply the
large-volume, complex, growing data sets. Some estimates states that the amount of
generated data will be 507.5 ZB (zettabyte = 1 trillion gigabyte) of data per year or
42.3 ZB per month by 2019. It is expected that the data produced by IoT connected
devices in 2019 will be 269 times greater than the data being transmitted from
end-user devices to data centers and 49 times higher than total data center traffic
[27]. Regarding produced healthcare data on a global scale, in 2012 the amount of
generated data was 500 petabytes (1015 bytes), while 25000 petabytes can be
expected in 2020 [34]. Evidently, a voluminous nature of data produced by the
IoT-driven e-health systems represents a big challenge. A large, rapidly growing,
and mostly unstructured medical data are the consequence of increased digitaliza-
tion of formerly analogue media (images, reports, lab results, etc.), the continuous
optimization of diagnostic laboratory and imaging sensors, increased monitoring
with sensors of all kinds, etc. However, voluminous data alone doesn’t do much,
but IoT collected health data and algorithms together, are exceptionally valuable.
Thus, the main question is how to analyze, capture, search, share, store, and
visualize data which have a tendency to grow. In the modern approach, a solution
can be found in the concept of “Big data”, which is primarily used to describe large
sets of data. Opposite to traditional datasets, Big data usually encompasses volu-
minous sets of unstructured data. These data require real time analysis, and any of
required operation can’t be performed using existing IT and software/hardware
tools [22]. Concepts and technologies which are usually closely related to Big data
are almost always [22, 101, 107]:

• Cloud computing (provide reliable storage for data),

• IoT (gathering prodigious amount of data from real world—sensors and
actuators),

• Data center (acquiring, managing, organizing, and leveraging the data), and

• Hadoop (data storage and processing, system management, and incorporation of
variant modules).

One of the essential concepts in Big data is “Not Only Structured Query Language”
(NoSQL) which represents a well-known set of non-relational data management
systems. Unlike traditional Relational Database Management Systems (RDBMS)
which use table-based approach and SQL for accessing data, NoSQL systems are
not table-based and do not depend on SQL. Instead, these systems are based on a
key-value storage. NoSQL database management systems are useful when working
with masses of data which nature does not demand a relational model [7, 33, 43,
113]. Today, there are a various NoSQL database types, such as the Key Value
Pairs, Column, Document, and Graph-based databases [107].
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Volume, variety, velocity, value and veracity, as the foundational characteristics
of Big data, discussed through application in healthcare, justify application of Big
data for this purpose [11, 96]:

• Volume: As time goes on, a high quantity of health-related data is produced and
accumulated, resulting in terabytes and petabytes of data. These systems include
medical and healthcare information such as: personal information, radiology
images, personal medical records, 3D imaging, genomics, and biometric sensor
readings. Nowadays, relying on advances in data management, healthcare sys-
tems have the potential for manipulation, storage and use of such a complex data
structure by using virtualization and Cloud computing.

• Variety: The most challenging aspect of Big data appliance in healthcare con-
sists of joining traditional data with new data forms to get the most closer to the
right solution for a specific patient. Structured information, such as clinical data,
can be stored, processed and manipulated by machine in an easy way. However,
most of health-related data, such as office medical records, doctor handwritten or
machine-written notes and prescriptions, images and radiograph films, e-mail
messages and attachments are unstructured or semi-structured. From that reason,
healthcare applications demand more efficient ways to merge and convert var-
ious types of data, in particular to convert structured to unstructured data.

• Velocity: Most healthcare data has been traditionally static, but today velocity of
data increases with massive data that are the results of continuous regular
monitoring. The information stored in healthcare systems is often correct, but
not always even if it is updated on a regular basis. Thus, Big data must be
retrieved, analyzed and compared to make time and accurate decisions based on
real-time data processing, which sometimes can make decision between life and
death.

• Value: Advances in Big data is process of creating value which can be translated
into understanding new diseases and therapies, predicting outcomes at earlier
stages, making real-time decisions, promoting patients’ health, enhancing
medicine, reducing cost and improving healthcare value and quality.

• Veracity: Quality of data is of primary concern in health sector because the
quality of offered healthcare as well as life or death decisions depends on having
the accurate health-related data. In order to achieve effective results with data
analytics, it is necessary to provide health-related information of high-quality.

In the summary, Big data analytics, as a top issue in the healthcare industry, are
needed to extract useful information from the collected voluminous datasets, and,
based on this, adapt the therapy according to the needs. Hence, in the IoT world,
health-related data is transmitted to patient’ EHR system automatically. The IoT
solutions in healthcare enable health practitioners to merge the IoT data from
various medical devices. In this way healthcare professionals obtain a complete
picture of patient’s health status [68]. Possible benefits of Big data application in
healthcare include detecting diseases at earlier stages, predicting epidemics, curing
disease, avoiding preventable deaths and therefore improving the quality of life and
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support prevention and personalization. With the help of Big data and analytics,
healthcare institutions get an opportunity to create more affordable and better
healthcare, moving reactive treatment towards predictive and preventive medicine.
However, there are a lot of challenges that hinder the development of Big data in
healthcare. Difficulties lie in technical issues (to successfully deal with growing
amounts of great variety of data and high speed of data generation and processing—
data recording, gathering, analyzing, manipulating and visualization) and security
issues (to secure personal data as well as corporate data from unauthorized access or
from loss) [45]. So, besides physical sensor development, the IoT-driven e-health
system growth relies on the development of Big data analytics tools, interfaces, and
systems that will allow healthcare providers to observe and apply the resulting
information.

Security and privacy

Matched to the traditional definition of security (which includes secure commu-
nication, cryptography and guaranteed privacy), security in the IoT vision involves
information integrity, confidentiality of data, availability of services, anti-malware,
privacy protection, access control, etc. [72]. Consequently, IoT presents new
challenges to network and security architects.

Security, as one of the top challenges IoT faces with, involves the security issues
on sensing, communication, and application level as well as overall system security
[72]. At the sensing layer, an IoT sensing infrastructure/device/technologies (which
have low power and constrained resources, limited connectivity and computing
capabilities) don’t have the power to provide appropriate security protection. The
IoT at middle layers (network and service layers) is based on networking and
communications which make easier eavesdropping, interception and Denial of
Service (DoS) attacks. The information collection and encryption at the upper
(application) layer, which is the topmost and terminal level, help obtaining the
security requirements at all layers [66, 72]. In summary, each layer has the ability to
provide corresponding security controls, while the security requirements between
layers are of the great importance as well. Security threats in IoT layers, as well as
those between layers, are shown in Table 1 [72].

The Open Web Application Security Project [92] defines top ten IoT vulnera-
bilities as:

• Insecure Web interface (e.g., default accounts, SQL injection),
• Insufficient authentication/authorization (e.g., weak passwords, no two-factor

authentication),
• Insecure network services (e.g., ports open, DoS attacks),
• Lack of transport encryption/integrity verification (e.g., misconfigured or no use

of Transport Layer Security (TLS), custom encryption),
• Privacy concerns,
• Insecure Cloud interface (e.g., default accounts, no lockout),
• Insecure mobile interface (e.g., account enumeration, no account lockout),
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• Insufficient security configurability (e.g., lack of password security options, no
security monitoring and logging),

• Insecure software/firmware (e.g., old device firmware, unprotected device
updates), and

• Poor physical security (e.g., accessed or removed data storage media, easily
disassembled device itself).

When it comes to healthcare and e-health applications in an IoT environment,
there is a need to pay more attention to the security design than in many other IoT
networks because the medical data (all data related to a person’s health and medical
history) are exceptionally sensitive and need to be protected in appropriate way.
The exploitation of vulnerabilities mentioned above represents a risk to the safety
and effectiveness of IoT-based e-healthcare. The success of healthcare application is
determined by the achieved level of patient security and privacy. IoT-based e-health
applications operate on a variety of elements: sensor devices, actuators, processing,
networking and memory components. The general security level is determined by
the weakest element of the system. Therefore, the security must be built into each
component, and the overall system (Fig. 10).

With regards to security, data, communication channels and the medical device
itself, are the weakest points [69]. In other words, during plugging a large number
of diverse connected devices into the IoT system they should be securely identified
and have the ability to be discovered. Even most of today’s IoT medical devices use
secure communication methods, they could still be vulnerable to hackers since
communications are mostly wireless (e.g., stealing information, disruption of

Table 1 Security threats in IoT

Sensing/perception
layer

Middle layers Application-interface
layer

Between
layersNetwork layer Service layers

• Unauthorized
access
• Availability
• Spoofing attack
• Selfish threat
• Malicious code
• DoS
• Transmission
threats
• Routing attack

• Data breach
• Transmission
threats
• DoS
• Public key
and private key
• Malicious
code
• Routing
attack

• Privacy
threats
• Services
abuse
• Identity
masquerade
• Service
information
• Manipulation
• Repudiation
• DoS
• Replay attack
• Routing
attack

• Remote
configuration
• Misconfiguration
• Security
management
• Management
system

• Sensitive
information
leakage at
border
• Identity
spoofing
• Sensitive
information
spreads
between
layers
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services like pacemakers, remote hacking of a vehicle control system, remotely
unlocking locked door) while unattended elements are mainly unprotected from
physical attacks [63]. The additional problem is the fact that execution of complex
security-enabling algorithms in IoT devices requires their significant energy,
communications, and computation capabilities. Hence, by connecting more intel-
ligent devices to the Internet, the privacy and security issues become critical,
representing the major challenges in realization of IoT vision. Considering that the
information collected by the IoT system might reveal personal information, the
security issues (protection of data and privacy) arise during aggregation of data and
their exchange. In other words, with the larger transfer of sensitive data over IoT
devices, there is more risk of data to be leaked, falsified or manipulated.
Untraceability, unlinkability, unobservability, anonymity and pseudonymity, are
mandatory to satisfy privacy issues. Thus, private information from patients, which
makes e-health as a highly sensitive yet personal area, appears as an essential
component in the widespread adoption of IoT principles in healthcare. The rela-
tionship between security and privacy concepts is data protection. Hence, the
special interest during the healthcare security architecture design must be given to
confidentiality and protection of information. Other factors such as information
security, trust, end-to-end personal data privacy and protection should be also
systematically and carefully addressed at the conception phase of each component
and overall IoT-based e-health system. Figure 11 shows the relationship between
information security and present healthcare research problems [9].

The security requirements and challenges of the IoT e-health applications are
shown in Fig. 12 [59].

As the first step in the entire health information access procedure, user authen-
tication is essential in healthcare information systems. Some of the authentication
mechanisms used to verify the user’s identity are: password, PIN (Personal

Fig. 10 IoT security points [8]
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Identification Number), fingerprint, signature, voice pattern, smart card, token, etc.
Only in this way it can be assured that the information is sent by the trusted sender
[76]. Moreover, networked devices that exchange data with other IoT devices need
to be properly authenticated to avoid security problems. This may need to include
certain authentication protocols, and to use integrity-secured or encrypted channels
of communication [31]. Interoperability, as an essential characteristic of the
IoT-driven e-health system, enables diverse things to better cooperate and integrate

Fig. 11 Research areas in the healthcare information security [9]

Fig. 12 Security requirements and challenges for the IoT-based healthcare solutions
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in order to produce the desired outcome [18]. In order to make an interoperable
system, its elements have to be designed according to standards satisfying their
properties on: (i) technical (interoperability achieved using compatible hardware
interfaces), (ii) syntactical (compatible data exchange protocols and data containers),
and (iii) semantical (the same understanding of the meaning of data) levels [88].
When health-related sensitive data are shared across the network, authentication,
availability, confidentiality, and integrity are mandatory in order to realize secure
communications in IoT. With patient data integrity, the received medical reports
can’t be altered in transit. In this way, patient’ medical data, transferred to the
medical personal, can’t be modified, changed or interpreted by any unauthorized
source. Additionally, data confidentiality ensures that a patient’s health-related
records are secured from passive attacks [29]. Availability, as another security
requirement (Fig. 12), ensures the continuity of the IoT healthcare services to
authorized person upon demand. Due to the sensitive nature of health data, bounded
latency and reliability of the IoT-based e-health system are crucial to effective
intervention, especially in a case of emergency. It is important to highlight that data or
messages sent earlier can’t be denied by a node (non-repudiation). Employed system
security scheme must protect the data, device and network from any attack as well as
to provide respective security services at any moment, even some interconnected
health devices are harmed, failed, run out of energy or there is a software glitch [59].

Clearly, to enable at least a minimum level of security, IoT healthcare services
are facing with numerous challenges (Fig. 12). Bearing in mind that a typical IoT
healthcare system consists of small health-related devices of limited computational
performances, memory and battery power, finding a security solution that over-
comes these computational, memory and energy limitations and maximizes security
performance is a challenging task [59]. To secure devices in sensing layer of IoT,
all devices should be produced according to specific security criteria and implement
security standards for IoT. A trustworthy data sensing system, ability to detect and
identify the source of users and securely designed software or firmware at IoT
end-node are mandatory as well [72]. Other serious challenges are focused on
develop a mobility-compliant security algorithm and design highly scalable security
scheme applicable to the simplest of devices, and be appropriate for dynamic
network topology as well. An overall security protocol that has ability to equally
deal with both wired and wireless channel characteristics represents important
challenges security specialists facing with. Dynamic security updates and
tamper-resistant packages of IoT health devices are nothing less challenging to
implement [59]. Therefore, to implement the IoT-powered e-health system, using
portable health devices to collect, store, and transfer patient health-related sensitive
data to a central server, requires secure manners to rapidly transfer recorded data so
that patient’s personal information can’t be compromised at any stage. Only sat-
isfying requirements defined above and successfully dealing with mentioned
challenges, this goal can be accomplished. A large number of research is devoted to
the integration of enormous streams of real-time data from the IoT with all of
existing data, preserving and protecting user security with the help of pervasive
sensing and analytics systems and choice of hardware and software which will
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contribute to development of new intelligent, secure, easy and modern IoT appli-
cations. Novel research regarding security topics in IoT-driven e-health are also
based on improving several algorithms in medical applications that can be sup-
ported by the IoT technology and security issues and on defining new cryptographic
protocols that are able to work on tiny, low-power devices [1, 28, 64, 87, 98]. The
ways of reducing and solving the risk of security and privacy in an e-health
environment are discussed in many works [5, 9, 53, 54, 59, 67, 69, 73, 106, 118,
122, 129].

Nevertheless, protecting privacy and security and assuring fairness in the IoT is a
critical, yet complex task. As a very important and full of challenges, security and
privacy issues must be taken into account during the whole IoT lifecycle, from the
design phase to the services running. To protect privacy, in order to facilitate the
overall adoption of the IoT, following tasks must be performed [48, 124]:

• Take into account technical solutions,
• Encompass regulatory considerations,
• Include market-based aspects, and
• Incorporate socio-ethical issues.

However, it has been proven that, regarding privacy, a technical solution is not an
unattainable goal. On the contrary, political and economic factors are much greater
constraints society is facing with regard the level of privacy [52].

In summary, the security and privacy issues of IoT-powered e-health systems
must be threatened on many levels, what is essential for the success of IoT
implementation in healthcare. Confidentiality, data integrity, accountability, avail-
ability of services and access control are the essential goals that systems have to
achieve in order to satisfy certain security and safety demands [88]. Since an
IoT-driven e-health system store and process data of special interest, they should be
equipped with appropriate mechanisms of their protection. Security should be built
hierarchal into the whole healthcare ecosystem. Still, there are many open problems
in areas of security and privacy protection, network protocols, standardization,
identity management, etc. [72]. Assured privacy, security and consumer trust are
the keys to realizing the full potential of the IoT application in healthcare. This
highlights the fact that novel security protocols and identification techniques are
mandatory, as well as more intelligent security systems that include managed threat
detection, anomaly detection, and predictive analysis [23].

Regulations and standardization

The IoT success depends on the standardization issues, which provide secured
interoperability, compatibility, reliability, and effective operations on a global level
[72]. Therefore, standards, simply put as a list of agreed-upon rules and guidelines,
are considered as fundamental for facilitating e-health system interoperability,
providing adherence to current privacy and security legislation as well as ensuring
the ability to successfully leverage various devices and applications. Not only are
they important with regards to traditional e-health systems, standards also playing a
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role in the success of the novel IoT-based e-health solutions. In other words, taking
into account that a patient may necessitate the services of various healthcare pro-
viders, uses various devices, many different electronic systems and information
systems while used devices and information systems may use disparate (commu-
nications) protocols and messaging formats, the IoT-driven e-health must be sup-
ported with numerous standards. Lake et al. [69] classify standards used in e-health
applications in: data, message, document and process standards. The standards are
also classified into syntax, semantics, relationship, purpose and classification based.
However, standards for the IoT-based e-health together with technology are key
enablers of the transformation and revolutionizing healthcare. To deal with
deployments and utilization of diverse products, global interoperability standards
are necessary. These standards enable that variety of devices, systems and appli-
cations for health monitoring and preventive care talk the same language and
intercommunicate. To provide a common methodology for specifying sensor per-
formance and facilitate integration for multi-vendor sensors, the IEEE 2700–2014
“Standard for Sensor Performance Parameter Definitions” has been developed as
the result of the IEEE Standards Association and MEMS Industry Group collab-
oration [10]. Moreover, due to the sensitivity of medical data and required strong
legal regulation, healthcare-related systems are significantly harder to
develop. Safety and performance of products on the EU market are determined
either by Directive 2001/95/EC 11 on general product safety or by specialized
medical device directive in case of medical products [36]. Telemedicine, e-health
and IoT technologies are advancing rapidly, requiring new generations of com-
munication protocols, provisions for the service layer and interoperability guide-
lines. Work in standardization of this area is continuous and intense. An IEEE
active project P2413 “Draft Standard for an Architectural Framework for the
Internet of Things (IoT),” [58] defines an architectural framework proposing
cross-domain interaction, system interoperability and functional compatibility for
the IoT [10]. As the Cloud is one of the major building blocks of the IoT-based
e-health vision, Cloud-related standards at various layers of Cloud infrastructure
and services as well as some level of confluence of e-health and Cloud-related
standards are essential too. Moreover, the processes and services automation is not
feasible without adequate data standards that permit communication through open
access Internet-oriented software languages. Some of the common e-health data
standards include [69]: ICD (International Classification of Disease)—international
standard codes for diagnoses; LOINC (Logical Observation Identifiers Names and
Codes)—a universal coding system for the reporting of laboratory and clinical
measurements; CPT (Current Procedural Terminology)—standard for coding
medical procedures; SNOMED CT (Systematized Nomenclature Of Medicine)—
widely used hierarchical healthcare terminology; NDC (National Drug Codes)—
Food and Drug Administration’s numbering system for medications. It is important
to mention and following standards: HL7 (Health Level System 7)—a standard for
exchanging integration, sharing, and retrieval information between medical appli-
cations; CCR (Continuity of Care Record) and CCD (Continuity of Care Docu-
ment)—standards for solving the problem of patient-data portability and
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interoperability; DICOM (Digital Imaging and Communications in Medicine)—the
international standard for the communication and management of medical imaging
related information; IHE (Integrating the Health Enterprise)—an initiative to
improve the way computer systems in healthcare sector exchange information.
Furthermore, adequate regulative and standards (necessary to ensure that infor-
mation systems can exchange and share the patient information in order to provide
appropriate and timely care) like the ISO/IEC 27,000-series which encompasses
information security standards, must be satisfied [76]. There is also the Federal
Information Processing Standard (FIPS 140), a USA government computer security
standard, which deals with security in the transmission of information, what is a
crucial in the successful deployment of medical IoT applications. The ISO/IEEE
11073 family of standards has potential to provide complete and interoperable health
IoT architecture. In this way, the applications in the Cloud are able to supervise and
gather health-related information from personal health devices, enabling health
professionals to access remotely and directly to the newest measurement values of
each patient from the Cloud [77]. A comprehensive review of widely adopted e-health
interoperability standards has been presented in [3]. As can be seen, the collection,
processing, recording and dissemination of medical patient data are under the control
of many laws and regulations. Even these regulations and laws vary greatly between
different countries and continents, authorization procedures, data interchange and
privacy must be compliant with EU Data Protection Directive (e.g. Directive
2011/24/EU—the application of patients’ rights in cross-border healthcare; Directive
2000/31/EC—electronic commerce; Directive 95/46/EC—Data Protection) and the
national Patients’ Rights Laws (Europe) or the HIPAA in the USA [39].

It is worth to note that the IoT-driven e-health systems create complete new
challenges in sense of legislation and policy issues. From a standards perspective,
the IoT-based e-health systems represent a huge challenge for standardization.
Standardization, as a time-lagged and long-term process, is a complex task that has
to involve all participants. Moreover, standards development and implementation
lag behind technological development, making this process slow and may require
concerted regulatory action. Nevertheless, the success of IoT-powered e-health
vision relies mainly on standardization, which provides reliability, compatibility,
interoperability, and effectiveness of the operations on a worldwide scale.

Investment

Growing demand for real-time disease management, improved patient care services,
effective and efficient treatment outcome implies investors, providers, and devel-
opers rising interest in the IoT appliance in the healthcare. The IoT in the healthcare
market is segmented based on application, into telemedicine, inpatient monitoring,
clinical operations, medication management, and connected imaging. Regardless of
the applications, the basic requirement for implementing the IoT e-health services is
the access to the Internet. Besides rapid Internet growth, Internet access is not still
available to every place in the world. This implies a need to largely invest in IT
infrastructure and resources. The private companies will invest only if they can
make a profit. Hence, at this point the government comes in play [85]. On the other
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side, many companies and organizations largely invest in adopting new technolo-
gies in order to gain patients’ attention and deliver actionable insights for their
personalized care. One of the leading trends in the market is the result of high
consumerization. Patients want to have insight in their health condition as well as to
take control of it [99]. Even BI Intelligence [14] predicts that on a global scale 73
million IoT devices will be installed for the healthcare sector by 2016 and 161
million by 2020, the IoT-based healthcare isn’t just about devices. Instead of
hardware devices, more investment will be aimed at developing appropriate soft-
ware and services of IoT healthcare solutions [14]. The development of Big data
analytics, Cloud services and artificial intelligence are in the center of healthcare
industry’s investments. According to multiple market reports, the investments in
Big data analytics platforms and tools, the IoT, Cloud computing technologies, and
business intelligence tools in healthcare sector will continue their rapid growth. It is
anticipated that the healthcare-specific IoT market will expand from $32.47 billion
in 2015 to $163.24 billion by 2020 [16]. In other words, the immense interest in
completely connected health and supporting devices, sensors, and clinical tools,
will imply new and numerous investment in many key market segments that will
integrate to create the healthcare-specific IoT [17].

4 Discussion And Concluding Remarks

With the technology-driven developments, people in the 21st Century via more
effective and efficient healthcare systems and services are able to have insight and
proactively manage their health conditions. The IoT and e-health are keystone
technologies which together entirely change person-to-person, human-to-machine
and M2M communications, revolutionizing healthcare in all its aspects. IoT smart
devices applied in healthcare provide novel and attractive ways to monitor, record
patients’ data in home and work environments, and automatically transmit gathered
information to electronic systems. Data analyzed and delivered in easily under-
standable formats, enable healthcare practitioners to quick and easy gain insights
into the health conditions of patients and start using the collected data in their clinic
practice, providing in such way a faster, easier and cost-effective means to
accessing healthcare. Even the IoT integration in healthcare is still early in the
maturity, it can be expected that connected medical devices will become ubiquitous
and programmable, with the possibility to talk to each other while improving
quality of care and consequently patients’ personal health. In other words, in both
hospitals and at home, the possibilities of IoT-based e-health solutions are endless.

With this in mind, it can be pointed out that the advantage of IoT-based e-health
system is in possibility of smart objects to continuously monitor the health con-
dition of a patient and exchange information with other devices and health insti-
tutions via the Internet, in order to help make correct and personalized treatment
decisions. An intelligent infrastructure for personal health management through
smart devices and technologies accessible to all citizens, enable omnipresence of
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many medical applications such as remote health monitoring, fitness and wellness
programs, chronic diseases, and care of old and disabled people. Reducing the costs
and the time to perform health tasks and processes, more quality health decisions
and activities at the operational, managerial and policy levels and dealing with an
increasing number of cases without raising staff numbers or associated costs, are the
main advantages IoT brings in the healthcare domain.

This chapter, in addition to a performed review of the literature and existing
solutions, highlights six objectives for improving the current e-health system.
Guided by the improvements’ objectives and the new concepts, primarily IoT, Big
data and Cloud computing, the IoT-based e-health system architecture that includes
key elements of the modern healthcare system is presented as well. The conducted
analysis has confirmed that potential outcomes are significant. Still, there is a
number of possible challenges, risks and concerns that may prevent the full
adoption of IoT-powered healthcare. It is important to note technological, man-
agerial, organizational and ethical challenges, as well as standardization, interop-
erability, security and privacy issues, and economic factors which all together
represent the major challenges and barriers to revolutionize the healthcare pro-
cesses, increasing the availability and quality of medical care embraced with dra-
matically lowering costs.

Understanding the IoT-driven e-health may perhaps best be achieved by
reviewing a SWOT analysis to evaluate the Strengths, Weaknesses, Opportunities,
and Threats of the IoT-based healthcare at the present time.
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Hence, to develop and integrate effective ubiquitous IoT-powered healthcare, it
is essential to recognize and deal with many ethical concerns, equal rights in
accessing to healthcare services and receiving care, accountability, the effectiveness
of patient involvement and quantity and quality of online health-related informa-
tion. Successfully dealing with numerous challenges IoT-based healthcare services
are faced with, should enable reduced costs, increased the quality of life, and enrich
the both patients and healthcare providers’ experience. Even the IoT is immensely
changing healthcare, those changes are barely starting. Satisfying essential
demands, immensely improving existing healthcare systems and continuously
looking for entirely novel ways of monitoring and delivering healthcare will lead to
experience the maximal benefits IoT-based e-health has to offer.
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Abstract In the era when the market segment of Internet of Things (IoT) tops the

chart in various business reports, it is apparently envisioned that the field of medi-

cine expects to gain a large benefit from the explosion of wearables and internet-

connected sensors that surround us to acquire and communicate unprecedented

data on symptoms, medication, food intake, and daily-life activities impacting one’s

health and wellness. However, IoT-driven healthcare would have to overcome many

barriers, such as: (1) There is an increasing demand for data storage on cloud servers

where the analysis of the medical big data becomes increasingly complex; (2) The

data, when communicated, are vulnerable to security and privacy issues; (3) The

communication of the continuously collected data is not only costly but also energy

hungry; (4) Operating and maintaining the sensors directly from the cloud servers

are non-trial tasks. This book chapter defined Fog Computing in the context of med-

ical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in

IoT, providing the interfaces between the sensors and cloud servers for facilitating

connectivity, data transfer, and queryable local database. The centerpiece of Fog
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computing is a low-power, intelligent, wireless, embedded computing node that car-

ries out signal conditioning and data analytics on raw data collected from wearables

or other medical sensors and offers efficient means to serve telehealth interventions.

We implemented and tested an fog computing system using the Intel Edison and

Raspberry Pi that allows acquisition, computing, storage and communication of the

various medical data such as pathological speech data of individuals with speech

disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocar-

diogram (ECG)-based Q, R, S detection. The book chapter ends with experiments

and results showing how fog computing could lessen the obstacles of existing cloud-

driven medical IoT solutions and enhance the overall performance of the system in

terms of computing intelligence, transmission, storage, configurable, and security.

The case studies on various types of physiological data shows that the proposed Fog

architecture could be used for signal enhancement, processing and analysis of vari-

ous types of bio-signals.

Keywords Big data ⋅ Body area network ⋅ Body sensor network ⋅ Edge comput-

ing ⋅ Fog computing ⋅Medical cyber-physical systems ⋅Medical internet-of-things ⋅
Telecare ⋅ Tele-treatment ⋅ Wearable devices

1 Introduction

The recent advances in Internet of Things (IoT) and growing use of wearables for the

collection of physiological data and bio-signals led to an emergence of new distrib-

uted computing paradigms that combined wearable devices with the medical internet

of things for scalable remote tele-treatment and telecare [11, 14, 36]. Such systems

are useful for wellness and fitness monitoring, preliminary diagnosis and long-term

tracking of patients with acute disorders. Use of Fog computing reduces the logis-

tics requirements and cut-down the associated medicine and treatment costs (See

Fig. 1). Fog computing have found emerging applications into other domains such

as geo-spatial data associated with various healthcare issues [4].

This book chapter highlights the recent advancements and associated challenges

in employing wearable internet of things (wIoT) and body sensor networks (BSNs)

for healthcare applications. We present the research conducted in Wearable Biosens-

ing Lab and other research groups at the University of Rhode Island. We developed

prototypes using Raspberry Pi and Intel Edison embedded boards and conducted

case studies on three healthcare scenarios: (1) Speech Tele-treatment of patients with

Parkinson’s disease; (2) Electrocardiogram (ECG) monitoring; (3) Phonocardiogra-

phy (PCG) for heart rate estimation. This book chapter extends the methods and

systems published in our earlier conferences papers by adding novel system changes

and algorithms for robust estimation of clinical features.

This chapter made the following contributions to the area of Fog Computing for
Medical Internet-of Things:
∙ Fog Hardware: Intel Edison and Raspberry Pi were leveraged to formulate two

prototype architectures. Both of the architectures can be used for each of the three

case-studies mentioned above.
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Fig. 1 Fog computing as an intermediate computing layer between edge devices (wearables) and

cloud (backend). The Fog computer enhances the overall efficiency by providing computing near

the edge devices. Such frameworks are useful for wearables (employed for healthcare, fitness and

wellness tracking), smart-grid, smart-cities and ambient-assisted living etc.

∙ Edge Computing of Clinical Features: The Fog devices executed a variety of

algorithms to extract clinical features and performed primary diagnosis using data

collected from wearable sensors;

∙ Interoperability: We designed frontend apps for body sensor network such as

android app for smartwatch [22], PPG wrist-band, and backend cloud infrastruc-

ture for long-term storage. In addition, transfer, communication, authentication,

storage and execution procedures of data were implemented in the Fog computer.

∙ Security: In order to ensure security and data privacy, we built an encrypted server

that handles user authentication and associated privileges. The rule-based authen-

tication scheme is also a novel contribution of this chapter where only the individ-

uals with privileges (such as clinicians) could access the associated data from the

patients.

∙ Case Study on Fog Computing for Medical IoT-based Tele-treatment and
Monitoring: We conducted three case studies: (1) Speech Tele-treatment of

patients with Parkinson’s disease; (2) Electrocardiogram (ECG) monitoring; (3)

Phonocardiography (PCG) for heart rate estimation. Even if we conducted valida-

tion experiments on only three types of healthcare data, the proposed Fog archi-

tecture could be used for analysis of other bio-signals and healthcare data as well.

∙ Android API for Wearable (Smartwatch-based) Audio Data Collection: The

EchoWear app that was introduced in [12] is used in proposed architecture for

collecting the audio data from wearables. We have released the library to public

at: https://github.com/harishdubey123/wbl-echowear.

https://github.com/harishdubey123/wbl-echowear
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2 Related and Background Works

In this section, we present recent emergence of wearables and fog computing for

enhancement processing of physiological data for healthcare applications (Fig. 2).

2.1 Wearable Big Data in Healthcare

The medical data is collected by the intelligent edge devices such as wearables,

wrist-bands, smartwatches, smart textiles etc. The intelligence refers to knowledge of

analytics, devices, clinical application and the consumer behavior. Such smart data

is structured, homogeneous and meaningful with negligible amount of noise and

meta-data [28]. The big data and quiet recently smart data trend had revolutionized

the biomedical and healthcare domain. With increasing use of wireless and wear-

able body sensor networks (BSNs), the amount of data aggregated by edge devices

and synced to the cloud is growing at enormous rate [30]. The pharmaceutical com-

panies are leveraging deep learning and data analytics on their huge medical data-

bases. These databases are results of digitization of patient’s medical records. The

data obtained from patient’s health records, clinical trials and insurance programs

provided an opportunity for data mining. Such databases are heterogeneous, unstruc-

tured, scalable and contain significant amount of noise and meta-data. The noise and

meta-data have low or no useful information. Cleaning and structuring the real-world

data is another challenge in processing medical big data. In recent years, the big data

trend had transformed the healthcare, wellness and fitness industry. Adding value

and innovation in data processing chain could help patients and healthcare stake-

holders accomplish the treatment goals in lower cost with reduced logistic require-

ments [30]. Authors in [45] presented the smart data as a result of using semantic web

and data analytics on structured collection of big data. Smart data attempts to provide

Fig. 2 The conceptual overview of the proposed Fog architecture that assisted Medical Internet of

Things framework in tele-treatment scenarios



Fog Computing in Medical Internet-of-Things . . . 285

Fig. 3 The flow of information and control between three main components of the medical IoT sys-

tem for smartwatch-based speech treatment [12]. The smartwatch is triggered by the patients with

Parkinson’s disease. At fixed timings set by patients, caregivers or their speech-language patholo-

gist (SLPs), the tablet triggers the recording of speech data. The smartwatch interacts with the tablet

via Bluetooth. Once tablet gets the data from smartwatch, it send to the Fog devices that process

the clinical speech. Finally, the features were sent to the cloud from where those could be queried

by clinicians for long-term comparative study. SLPs use the final features for designing customized

speech exercises and treatment regime in accordance with patient’s communications deficits

a superior avenue for better decision and inexpensive processing for person-centered

medicine and healthcare. The medical data such as diagnostic images, genetic test

results and biometric information are getting generated at large scale. Such data has

not just the high volume but also a wide variety and different velocity. It neces-

sitates the novel ways for storing, managing, retrieving and processing such data.

The smart medical data demand development of novel scalable big data architecture

and applicable algorithms for intelligent data analytics. Authors also underlined the

challenges in semantic-rich data processing for intelligent inference on practical use

cases [45] (Figs. 3 and 4 and Table 1).

2.2 Speech Treatments of Patients with Parkinson’s Disease

The patients with Parkinson’s Disease (PD) have their own unique set of speech

deficits. We developed EchoWear [12] as a technology front-end for monitoring

the speech from PD patients using smartwatch. The speech-language pathologists

(SLPs) had access to such as system for remote monitoring of their patients. The

rising cost of healthcare, the increase in elderly population, and the prevalence of

chronic diseases around the world urgently demand the transformation of healthcare

from a hospital-centered system to a person-centered environment, with a focus on

patient’s disease management as well as their wellbeing.
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Fig. 4 The proposed Fog architecture that acquired the data from body sensor networks (BSNs)

through smartphone/tablet gateways. It has two choices for fog computers: Intel Edison and Rasp-

berry Pi. The extraction of clinical features was done locally on fog device that was kept in patient’s

home (or near the patient in care-homes). Finally, the extracted information from bio-signals was

uploaded to the secured cloud backend from where it could be accessed by clinicians. The pro-

posed Fog architecture consists of four modules, namely BSNs (e.g. smartwatch), gateways (e.g.

smartphone/tablets), fog devices (Intel Edison/Raspberry Pi) and cloud backend

Table 1 A comparison between Fog computing and cloud computing (adopted from [7])

Criterion Fog nodes close to IoT

devices

Fog aggregation nodes Cloud computing

Response time Milliseconds to

sub-second

Seconds to minutes Minutes, days, weeks

Application examples Telemedicine and

training

Visualization simple

analytics

Big data analytics

graphical dashboards

How long IoT data is

stored

Transient Short duration:

perhaps hours, days or

weeks

Months or years

Geographic coverage Very local: for

example, one city

block

Regional Global

Speech Disorders affected approximately 7.5 million people in US [40].

Dysarthria (caused by Parkinson’s disease or other speech disorders) refers to motor

speech disorder resulting from impairments in human speech production system. The

speech production system consists of the lips, tongue, vocal folds, and/or diaphragm.

Depending on the part of nervous system that is affected, there are various types of

dysarthria. The patients with dysarthria posses specific speech characteristics such

as difficult to understand speech, limited movement in lips, tongue and jaw, abnormal

pitch and rhythm. It also includes poor voice quality, for instance, hoarse, breathy

or nasal voice. Dysarthria results from neural dysfunction. It might happen at birth

(cerebral palsy) or developed later in person’s life. It can be due to variety of ailments
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in the nervous system, such as Motor neuron diseases, Alzheimer’s disease, Cere-

bral Palsy (CP), Huntington’s disease, Multiple Sclerosis, Parkinson’s disease (PD),

Traumatic brain injury (TBI), Mental health issues, Stroke, Progressive neurologi-

cal conditions, Cancer of the head, neck and throat (including laryngectomy). The

patients with dysarthria are subjectively evaluated by the speech-language patholo-

gist (SLP) who identifies the speech difficulties and decide the type and severity of

the communication deficit [16].

Authors in [48] compared the perceived loudness of speech and self-perception

of speech in patients with idiopathic Parkinson’s disease (PD) with healthy controls.

Thirty patients with PD and fourteen healthy controls participated in the research sur-

vey. Various speech tasks were performed and nine speech and voice characteristics

were used for evaluation. Results showed that the patients with PD had significant

reduction in loudness as compared to healthy controls during various speech tasks.

These results furnished additional information on speech characteristics of patients

with PD that might be useful for effective speech treatment of such population [48].

Authors in [24] studied the acoustic characteristics of voice in patients with PD.

Thirty patients with early stage PD and thirty patients with later stage PD were com-

pared with thirty healthy controls for acoustic characteristics of the voice. The speech

task included sustained /a/ and one minute monologue. The voice of patients with

early as well as later stage PD were found to have reduced loudness, limited loudness

and pitch variability, breathiness, and harshness. In general, the voice of patients with

PD had lower mean intensity levels and reduced maximum phonational frequency

range as compared to healthy controls [24].

Authors in [50] studied and evaluated the voice and speech quality in patients with

and without deep brain stimulation of the subthalamic nucleus (STN-DBS) before

and after LSVT LOUD therapy. The goal of the study was to do a comparative study

of improvement in surgical patients as compared to the non-surgical ones. Results

showed that the LSVT LOUD is recommended for voice and speech treatment of

patients with PD following STN-DBS surgery. Authors in [18] performed acoustic

analysis of voice from 41 patients with PD and healthy controls. The speech exer-

cises included in the study were the sustained /a/ for 2 s and reading sentences. The

acoustic measures for quantifying the speech quality were fundamental frequency,

perturbation in fundamental frequency, shimmer, and harmonic to noise ratio of

the sustained /a/, phonation range, dynamic range, and maximum phonation time.

Authors concluded that the patients with PD had higher jitter, lower harmonics to

noise ratio, lower frequency and intensity variability, lower phonation range, the

presence of low voice intensity, mono pitch, voice arrests, and struggle irrespective

of the severity of the PD symptoms.

People suffering from Parkinson’s disease experience speech production diffi-

culty associated with Dysarthria. Dysarthria is characterized by monotony of pitch,

reduced loudness, an irregular rate of speech and, imprecise consonants and changes

in voice quality [34]. Speech-language pathologists do the evaluation, diagnosis and

treat communication disorders. Literature suggests that Lee Silverman Voice Treat-

ment (LSVT) has been most efficient behavioral treatment for voice and speech dis-

orders in Parkinson’s disease. Telehealth monitoring is very effective for the speech-
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language pathology, and smart devices like EchoWear [12] can be of much use in

such situations. Several cues indicate the relationship of dysarthria and acoustic fea-

tures. Some of them are,

1. Shallower F2 trajectories in male speakers with dysarthria is observed in [31].

2. Vowel space area was found to be reduced relative to healthy controls for male

speakers with amyotrophic lateral sclerosis [31].

3. Shimmers as described in [13] as a measure of variation in amplitude of the

speech and it is an important speech quality metric for people with speech disor-

ders.

4. Like shimmers, Jitters (pitch variations) and loudness and sharpness of the speech

signal can be used as a cue for speech disorders [13].

5. In ataxic dysarthria, patients can produce distorted vowels and excess variation

in loudness, so speech prosody and acoustic analysis are of much use.

6. Multi dimensional voice analysis as stated in [31] plays an important role in motor

speech disorder diagnosis and analysis. Parameters that can effectively used are

relative perturbation (RAP), pitch perturbation quotient (PPQ), fundamental fre-

quency variation (vF0), shimmer in dB (ShdB), shimmer percent (Shim), peak

amplitude variation (vam) and amplitude tremor intensity index (ATRI).

7. Shrinking of the F0 range as well as vowel space are observed in dysarthria

speech. Moreover, from the comparison of F0 range and vowel formant frequen-

cies, it is suggested that speech effort to produce wider F0 range can influence

vowel quality as well.

EchoWear [12] is a smartwatch technology for voice and speech treatments of

patients with Parkinson’s disease. Considering the difficulties associated with the

patients in following prescribed exercise regimes outside the clinic, this device

remotely monitors speech and voice exercise as prescribed by speech-language

pathologists. The speech quality metrics used in EchoWear presently as stated in [12]

were average loudness level and average fundamental frequency (F0). Features were

derived from the short-term speech spectrum of a speech signal. To find the funda-

mental frequency, EchoWear uses SWIPE pitch estimator, whereas other methods

such as cepstral analysis and autocorrelation methods are also extensively used for

estimation of the pitch. The software Praat is designed for visualizing the spectrum

of a speech signal for analysis. Fundamental frequency (F0) variability is associ-

ated with the PD speech. There is a decrease variation in pitch, i.e. Fundamental

frequency associated with PD speech.

3 Proposed Fog Architecture

In this section, we describe the implementation of the proposed Fog architecture.

Figure 5 shows the overall architecture of proposed system in the context of fron-

tend and backend services. It shows the information flow from the patients to SLPs

through the communication and processing interfaces. Instead of layers, we describe
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Fig. 5 Overall architecture of the proposed Fog architecture in the context of frontend and backend

services. It shows the information flow from patients to clinicians through the modular architecture

the implementation using three modules namely, (1) Fog device; (2) Backend Cloud

Database; and (3) Frontend App Services. These three modules gave a convenient

representation for describing the multi-user model of the proposed Fog architecture.

3.1 Fog Computing Device

To transfer the audio file/other data file from a patient, we used socket streaming

using TCP wrapped in Secure Socket Layer/Transmission Layer Security (SSL/TLS)

sockets to ensure the secure transmission. Sockets provide communication frame-

work for devices using different protocols such as TCP and UDP that could then be

wrapped in secured sockets. Next, we describe these protocols and their usage in the

proposed architecture.

∙ Transmission Control Protocol (TCP) is a networking protocol that allows guar-

anteed and reliable delivery of files. It is a connection-oriented and bi-directional

protocol. In other words, both devices could send and receive files using this pro-

tocol. Each point of the connection involved Internet Protocol (IP) address and a

port number so the connection could be made with a specific device. Furthermore,

we wrapped the TCP sockets in SSL Sockets for ensuring the security and privacy

of the data collected from the users/patients.
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∙ Secure Sockets Layer (SSL) is a network communication protocol that allows

encrypted authentication for network sockets from the server and client sides.

To implement it in the proposed Fog architecture, we used two python modules,

namely SSL and socket. To create the certifications for the server and client, we

also used the command line program called OpenSSL [41]. OpenSSL is an open-

source project that provides a robust, commercial-grade, and full-featured toolkit

for the Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols.

Once all the SSL certification keys were built for client (the Android gateway

devices/wearables) and server (Fog computer e.g. Intel Edison or Raspberry Pi),

we ran the secure sockets on the server and continuously listened for a connection

for file transfer. We renamed the file with date and time stamps before it could be

used for further processing. As soon as the audio file was completely transferred, the

connection was closed and the processing began. We used the python based Praat
and Christian’s Library described for processing and analysis of audio data. For

other healthcare data such as Phonocardiography (PCG) data and Electrocardiogram

(ECG) data etc., we implemented the associated methods using Python, C and GNU

Octave.

3.2 Frontend App Services

For the frontend users, including patients and clinicians (SLPs), we designed Android

applications and web applications that could be used to log-into the system and

access clinical features. Also, front-end apps were running on wearable devices are

facilitating the data collection. Our app, IoT PD, took advantage of the REST pro-

tocol. We used REST protocol for simplicity of implementation. For every REST

request of data information gathering, we returned a JSON (JavaScript Object Nota-

tion), a format of data-interchange between programs [25]. The IoT PD app is based

on software engine Hermes. We open-source the URI library for audio data collec-

tion from wearable devices.

The app allowed access to two categories of users as shown in Fig. 6. Both the

patients and healthcare providers were allowed to login and view their profile; how-

ever their profiles were different, only the clinicians could give permission to their

patients for app registration. Further, the physician could setup personalized notifi-

cations for their patients. For example, the physician could schedule a personalized

exercise regime for a given patient so that their speech functions could be enhanced.

On the other hand, patients could only view their information and visual data.

3.3 Backend Cloud Database

To support the centralized storage of clinical features and analytics, we implemented

a backend cloud database using PHP and MySQL. Firstly, we set up a Linux, Apache,
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Fig. 6 The interface view of the IoT PD Android app for frontend users such as clinicians, care-

givers and patients. Different categories of users have different privileges. For example, a patient

can register with the app only upon receiving the clinician’s approval

MySQL, PHP (LAMP) server, an open-source web platform for development on

Linux systems using Apache for web servicing, MySQL as database system for man-

agement and storage, and PHP as the language for server interaction with applica-

tions [49]. The main component of the backend was the relational database devel-

opment. We designed a database revolving around the users and Fog computers that

could easily engage with the database. It created three tables that were used for the

users (patients and healthcare providers such as clinicians). The fourth table was

created for the information extracted from the patient’s data. The extracted features

obtained from the Fog computer were entered in the data table.

3.4 Pathological Speech Data Collection

Earlier, we described our implementation of EchoWear that was used in an in-

clinic validation study on six patients with Parkinson’s disease (PD). We received

an approval (no: 682871-2) of the University of Rhode Island’s Institutional Review

Board to conduct human studies involving the presented technologies including IoT
PD and proposed Fog architecture. First, the six patients were given an intensive

voice training in the clinic by Leslie Mahler, a speech-language pathologist, who also

prescribed home speech tasks for each patient. Patients were given a home kit con-

sisting of a smartwatch, a companion tablet and charging accessories. Patients were

recommended to wear the smartwatch during the day. Patients chose their preferred

timings for speech exercise. A tactile vibration of the smartwatch was used as a noti-

fication method to remind the patients to perform speech exercises. The IoT PD app

took the timings to set the notifications accordingly. Home exercise regime had six

speech tasks. The six speech tasks assigned to patients with PD are given in Table 2.
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Table 2 List of speech exercises performed by the patients with Parkinson’s disease

Task Exercise name Description

t1 Vowel prolongation Sustain the vowel /a/ for as long as possible for

three repetitions

t2 High pitch Start saying /a/ at talking pitch and then go up and

hold for 5 s (three repetitions)

t3 Low pitch Start saying /a/ at talking pitch and then go down

and hold for 5 s (three repetitions)

t4 Read sentence Read ‘The boot on top is packed to keep’

t5 Read passage Read the ‘farm’ passage

t6 Functional speech task Read a set of customized sentences

t7 Monologue Explain happiest day of your life

Speech-language pathologists (SLPs) use extensive number of speech parameters in

their diagnosis. We skip the clinical details of prescription as it is out-of-the-scope

of this book chapter.

3.5 Dynamic Time Warping

Dynamic time warping (DTW) is an algorithm for finding similar patterns in a time-

series data. DTW has been used for time-series mining for a variety of applications

such as business, finance, single word recognition, walking pattern detection, and

analysis of ECG signals. Usually, we use Euclidean distance to measure the distance

between two points. For example, consider two vectors, x = [x1, x2,… , xn] and y =
[y1, y2,… , yn]

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + (⋅xn − yn)2 (1)

Euclidean distance works well in many areas. But for some special case where two

similar and out-of-phase series are to be compared, Euclidean distance fails to detect

similarity. For example, consider two time series A = [1, 1, 1, 2, 8, 1] and B = [1, 1,

1, 8, 2, 1], the Euclidean distance between them is

√
72. Thus, DTW is an effective

algorithm that can detect the similarity between two series regardless of different

length, and/or phase difference. The example vectors are similar but the similarity

could not be inferred by Euclidean distance metric while DTW can detect the sim-

ilarity easily. DTW is based on the idea of dynamic programming (DP). It builds

an adjacency matrix then finds the shortest path across it. DTW is more effective

than Euclidean distance for many applications [10] such as gesture recognition [19],

fingerprint verification [32], and speech processing [39] (Figs. 7 and 8).
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Fig. 7 a Spectrogram of acquired speech signal. The frequency sampling rate is 8000 Hz. Time-

windows of 25 ms with 10 ms skip-rate were used. b Spectrogram of enhanced speech signal

Fig. 8 Bar chart depicting the data reduction achieved by using dynamic time warping (DTW),

clinical speech processing (CLIP) and GNU zip compression on ten sample speech files collected

from in-home trails of patients with Parkinson’s disease (PD)

4 Case Studies Using Proposed Fog Architecture

4.1 Case Study I: Speech Tele-treatment of Patients with
Parkinson’s Disease

A variety of acoustic and spectral features were derived from the speech content of

audio file acquired by wearables. In proposed Fog architecture, noise reduction, auto-

mated trimming, and feature extraction were done on the Fog device. In our earlier
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studies [9, 12, 15, 38], trimming was done manually by human annotator and feature

extraction was done in the cloud. In addition, there were no noise reduction done in

previous studies [12, 15]. The Fog computer syncs the extracted features and prelim-

inary diagnosis back in the secured cloud backend. Fog was employed for in-home

speech treatment of patients with Parkinson’s disease. The pathological features were

later extracted from the audio signal. Figure 14 shows the block diagram of patholog-

ical speech processing module. In our earlier studies, we computed features from the

controlled clinical environment and performed Fog device trails in lab scenarios [15].

This paper explored the in-home field application. In-clinic speech data was obtained

in quiet scenarios with negligible background noise. On the other hand, data from in-

home trials had huge amounts of time-varying non-stationary noise. It necessitated

the use of robust algorithms for noise reduction before extracting the pathological

features. In addition to previously studied features such as loudness and fundamental

frequency, we developed more features for accurate quantification of abnormalities

in patient’s vocalization. The new features are jitter, frequency modulation, speech

rate and sensory pleasantness. In our previous studies, we use just three speech exer-

cises (tasks t1, t2 and t3) for analysis of algorithms. In this paper, we incorporated all

six speech exercises. The execution was done in real-time in patient’s home unlike

pilot data used in our previous studies [15, 38]. Thus, Fog speech processing module

is an advancement over earlier studies in [12, 15, 38].

The audio data was acquired and stored in wav format. Using perceptual audio

coding such as mp3 would have saved transmission power, storage and execution

time as the size of mp3 coded speech data is lower than corresponding wav for-

mat. The reason for not using mp3 or other advanced audio codecs is to avoid loss

of information. Perceptual audio codes such as mp3 are lossy compression scheme

that removes frequency bands that are not perceptually important. Such codecs have

worked well for music and audio streaming. However, in pathological speech analy-

sis, patients have very acute vocalizations such as nasal voice, hypernasal voice,

mildly slurred speech, monotone voice etc. Clinicians do not recommend lossy cod-

ing for speech data as it can cause confusion in diagnosis, monitoring, and evalua-

tion of pathological voice. Since we use the unicast transmission from BSNs to fog

computers, we employed Transmission Control Protocol (TCP). The data have to be

received in the same order as sent by BSNs. We did not use User Datagram Protocol

(UDP) that is more popular for audio/video streaming as UDP does not guarantee

receipt of packets. For videos/audios that are perceptually encoded and decoded,

small losses lead to temporary degradation in received audio/video. We do not have

that luxury in pathological speech or PCG data that have to be guaranteed delivery

even if delayed and/or have to be re-transmitted. The pathological data was saved as

mono-channel audio sampled at 44.1 kHz with 16-bit precision in .wav format.

4.1.1 Background Noise Reduction

The audio signals from in-home speech exercises are highly contaminated with time-

varying background noise. Authors developed a method for reducing non-stationary
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noise in speech [8]. The audio signal is enhanced using noise estimates obtained

from minima controlled recursive averaging. We performed a subjective evaluation

for validating the suitability of this algorithm for our data. The enhanced speech was

later used for extracting perceptual speech features such as loudness, fundamental

frequency, jitter, frequency modulation, speech rate and sensory pleasantness (sharp-

ness). We used the method developed in [8] for reducing non-stationary background

noise in speech. It optimized the log-spectral amplitude of the speech using noise

estimates from minima-controlled recursive averaging. Authors used two functions

for accounting the probability of speech presence in various sub-bands. One of these

functions was based on the time frequency distribution of apriori signal-to-noise ratio

(SNR) and was used for estimation of the speech spectrum. The second function was

decided by the ratio of the energy of noisy speech segment and its minimum value

within that time window. Objective, as well as subjective evaluation, illustrated that

this algorithm could preserve the weak speech segments contaminated with a high

amount of noise [8]. Figure 7 shows the spectrogram of acquired speech signal from

in-home trials and the spectrogram of corresponding enhanced speech signal. Speech

enhancement is clearly visible in the darker regions (corresponding to speech) and

noise reduction in lighter regions (corresponding to silences/pauses).

4.1.2 Automated Trimming of the Speech Signal

We used the method developed in [52] for automated trimming of audio files by

removing the non-speech segments. This method was validated to be accurate even

at low SNRs that is typical for in-home audio data. The low computational com-

plexity of this algorithm qualifies it for implementation on Fog device with limited

resources. After applying the noise reduction method on acquired speech signal, we

used voice activity detection (VAD) algorithm for removing the silences. Authors

in [52] proposed a simple technique for VAD based on an effective selection of

speech frames. The short time-windows of a speech signal are stationary (for 25–

40 ms windows). However, for an extended time duration (more than 40 ms), the sta-

tistics of speech signal changes significantly rendering unequal relevance of speech

frames. It necessitates the selection of effective frames on the basis of posteriori

signal-to-noise ratio (SNR). The authors used energy distance as a substitute to the

standard cepstral distance for measuring the relevance of speech frames. It resulted in

reduced computational complexity of this algorithm. Figure 9 illustrates automated

trimming of a speech signal for removing the pauses present in the audio files. We

used time-windows of size 25 ms with 10 ms skip-rate between successive windows.

4.1.3 Fundamental Frequency Estimation

We used the method proposed in [23] for estimation of the fundamental frequency.

It was found to be effective even at very low SNRs. It is a frequency-domain method

referred as Pitch Estimation Filter with Amplitude Compression (PEFAC). We used



296 H. Dubey et al.

Fig. 9 Top sub-figure shows time-domain enhanced speech signal. The middle sub-figure depicts

corresponding fundamental frequency contour. The bottom sub-figure shows the speech activity

labels where ‘1’ stands for speech and ‘0’ for silence/pauses. We used speech activity detection

proposed in [52]. This is effective and has low computational expense

25 ms time-windows with 10 ms skip-rate for estimation of the fundamental fre-

quency. In the first step, noise components were suppressed by compressing the

speech amplitude. In the second step, the speech was filtered such that the energy

of harmonics was summed. It involved filtering of power spectral density (PSD) fol-

lowed by picking the peaks for estimation of the fundamental frequency (in Hz).

Figure 9 shows the time-domain speech signal along with automatic trimming deci-

sion and pitch estimates for each overlapping windows.

Another method we implement for fundamental frequency estimation is based on

harmonic models [2]. Voiced speech is not just periodic but also rich in harmonic,

so voiced segments are modeled by adopting harmonic models.
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4.1.4 Perceptual Loudness

Speech-language pathologists (SLPs) use loudness as an important speech feature

for quantifying the perceptual quality of clinical speech. It is a mathematical quan-

tity computed using various models of the human auditory system. There are dif-

ferent models available for loudness computation valid for specific sound types. We

used Zwicker model for loudness computation valid for time-varying signals [56].

The loudness is perceived intensity of a sound. The human ears are more sensitive

to some frequencies than the other. This frequency selectivity is quantified by the

Bark-scale. The Bark scale defines the critical bands that play an important role in

intensity sensation by the human’s ears. The specific loudness of a frequency band is

denoted as L0 and measured in units of Phon/Bark. The loudness, L, (in unit Phon)

is computed by integrating the specific loudness, L0, over all the critical-band rates

(on bark scale). Mathematically, we have

L =
24Bark∑

0
L0 ⋅ dz (2)

Typically, the step-size, dz, is fixed at 0.1 [56]. We used Phon (in dB) as the unit

of loudness level. Figure 10 shows a time-domain speech signal and corresponding

instantaneous loudness in dB Phon. It depicts the dependence of loudness on speech

amplitude.

4.1.5 Jitter

Jitter (J1) quantifies changes in the vocal period from one cycle to another. Instanta-

neous Fundamental frequency was used for computing the jitter [53]. J1 was defined

as the average absolute difference between consecutive time-periods. Mathemati-

cally, it is given as:

J1 =
1
M

M−1∑
j=1

|Fj − Fj+1| (3)

where Fj was the j-th extracted vocal period and M is the number of extracted vocal

periods.

Figure 11 shows the comparison of jitter of six patients with PD from home-trials.

Three patients used the Fog for first week and third week of the trial-month. Another

three patients used Fog for second and fourth week. This swapping was done to see

the effect of Fog architecture. In absence of Fog device, data was stored in android

tablet (gateway) device and later was processed in offline mode. In presence of Fog,

the data was processed online. Since same program produced these results, we can

compare them. Figure 11 shows the Jitter (in ms) for all cases. We can see that the

change in jitter from first/second to third/fourth week is complicated. In some cases
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Fig. 10 The time-domain speech signal and corresponding instantaneous loudness curve. Loud-

ness was computed over short windows of 25 ms with 10 ms skip-rate

it increases while in other it decreases. Only specialized clinicians can interpret such

variations. The Fog architecture facilitate the computation of jitter and sync it to

cloud backend. Speech-language pathologists (SLPs) can later access these charts

and correlated it with corresponding patient’s treatment regime.

4.1.6 Frequency Modulation

It quantifies the presence of sub-harmonics in speech signal. Usually, speech signals

with many sub-harmonics lead to a more complicated interplay between various har-

monic components making it relevant for perceptual analysis. Mathematically, it is

given as [51]:

Fmod =
max

(
Fj
)M
j=1 − min

(
Fj
)M
j=1

max
(
Fj
)M
j=1 + min

(
Fj
)M
j=1

(4)
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Fig. 11 The average jitter, J1 (ms) computed using speech samples from six patients with Parkin-

son’s disease who participated in field-trial that lasted 4 weeks. Three patients used Fog for first and

third week while other three patients used it for second and fourth week. We are comparing weeks

where Fog was used

where Fmod is frequency modulation, and Fj is the fundamental frequency of j-th

speech frame.

4.1.7 Frequency Range

The range of frequencies is an important feature of speech signal that quantifies its

quality [3]. We computed the frequency range as the difference between 5-th and

95-th percentiles. Mathematically, it becomes:

Frange = F95% − F5% (5)

Taking 5-th and 95-th percentiles helps in eliminating the influence of outliers in

estimates of fundamental frequency that could be caused by impulsive noise and

other interfering sounds.

4.1.8 Harmonics to Noise Ratio

Harmonics to Noise Ratio (HNR) quantifies the noise present in the speech signal

that results from incomplete closure of the vocal folds during speech production

process [53]. We used method proposed in [5] for HNR estimation. The average and

standard deviation of the segmental HNR values are useful for perceptual analysis



300 H. Dubey et al.

by speech-language pathologist. Lets assume that Rxx is normalized autocorrelation

and lmax is the lag (in samples) at which it is maximum, except the zero lag. Then,

HNR is mathematically given by [5]:

HNRdB = 10 log 10
(

Rxx(lmax)
1 − Rxx(lmax)

)
(6)

4.1.9 Spectral Centroid

It is the center of mass of spectrum. It measure the brightness of an audio signal.

Spectral centroid of a spectrum-segment is given by average values of frequency

weighted by amplitudes, divided by the sum of amplitudes [43]. Mathematically, we

have

SC =
∑N

n=1 kF[k]∑N
n=1 F[k]

(7)

where SC is the spectral centroid, and F[k] is amplitude of k-th frequency bin of

discrete Fourier transform of speech signal.

4.1.10 Spectral Flux

It quantifies the rate of change in power spectrum of speech signal. It is calculated

by comparing the normalized power spectrum of a speech-frame with that of other

frames. It determines the timbre of speech signal [55] (Fig. 12).

4.1.11 Spectral Entropy

We adopted it for speech-language pathology in this chapter. It is given by:

SE =
−
∑

Pjlog(Pj)
log(M)

(8)

where SE is the spectral entropy, Pj is the power of j-th frequency-bin and M is

the number of frequency-bins. Here,
∑

Pk = 1 as the spectrum is normalized before

computing the spectral entropy.

4.1.12 Spectral Flatness

It measures the flatness of speech power spectrum. It quantifies how similar the spec-

trum is to that of a noise-like signal or a tonal signal. Spectral Flatness (SF) of white
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Fig. 12 The weights that were used for computing sharpness based on [56]. Sharpness quantifies

perceptual pleasantness of the speech signal. We can see that the higher critical band rates use lower

weights for computing the sharpness

noise is 1 as it has constant power spectral density (PSD). A pure sinusoidal tone

has SF close to zero showing the high concentration of power at a fixed frequency.

Mathematically, SF is ratio of geometric mean of power spectrum to its average

value [26].

4.1.13 Sharpness

Sharpness is a mathematical function that quantifies the sensory pleasantness of the

speech signal. High sharpness implies low pleasantness. It value depends on the

spectral envelope of the signal, amplitude level and its bandwidth. The unit of sharp-

ness is acum (Latin expression). The reference sound producing 1 acum is a narrow-

band noise, one critical band wide with 1 kHz center frequency at 60 dB intensity

level [17]. Sharpness, S is mathematically defined as

S = 0.11
∑24Bark

0 L0 ⋅ g(z) ⋅ z ⋅ dz∑24Bark
0 L0 ⋅ dz

acum (9)

However, its numerator is weighted average of specific loudness (L0) over the critical

band rates. The weighting function, g(z), depends on critical band rates. The g(z)
could be interpreted as the mathematical model for the sensation of sharpness shown

in Fig. 16.
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Fig. 13 The left sub-figure a shows the articulation rate (nsyll/phonation time) for the patients with

PD and healthy controls. It shows that the healthy controls exhibit significantly higher articulation

rate as compared to the patients with PD that is in accordance with the findings in [37]. The right
sub-figure depicts speech rate for the same case. The y-axis represents the speech rate (number

of syllables/duration) for the healthy controls and the patients with PD. The findings were that,

Healthy control showed a higher speech rate as compared to the patients with Parkinson’s disease.

Speech rate for the healthy control was, 3.74 and for the PD subject 2.86. The analysis is done using

Praat [46] and the bar graph plots were generated using R statistical analysis software

4.1.14 Speech Rate and Articulation Rate

Praat scripting is extensively used in speech analysis. Some analysis were done using

Praat scripting language. Slurred speech, breathy and hoarse speech, difficulty in

fast-paced conversations are some of the symptoms of Parkinson’s disease. The pro-

gressive decrease in vocal sonority and intensity at the end of the phonation is also

observed in patients with PD [37]. Literature suggests that speech and articulation

rates decrease in PD, and there is a causal link between duration and severity of PD

with this decrease in articulation rate [37]. Articulation rate is a prosodic feature and

is defined as a measure of rate of speaking excluding the pauses. Speech rate is usu-

ally defined as the number of sounds a person can produce in a unit of time [37].

As illustrated in [46], Speech rate is calculated by detecting syllable nuclei. We used

Wempe’s algorithm for estimating the speech rate [46]. For analysis of speech rate

and articulation rate, Praat scripts were used. Two sound samples were chosen for

comparative analysis. Samples comprised of healthy control and the patients with

PD. Figure 13 shows the bar-chart for articulation rate and speech rate (Fig. 14).

4.2 Case Study II: Phonocardiography (PCG)-Based Heart
Rate Monitoring

Phonocardiography refers to acquisition of heart sounds that contains signatures of

abnormalities in cardiac cycle. There are two major sound, S1 and S2 associated with

cycle of cardiac rhythm. Traditionally, specialized clinicians listen heart sound using
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Fig. 14 Block diagram of pathological speech processing module in proposed Fog architecture.

The speech signal is first enhanced to reduce the non-stationary background noise. Next, speech

activity is detected to identify the speech regions and discard pauses/silences. Speech activity detec-

tion reduces the computation by ignoring non-speech frames. Finally, the speech is used for com-

puting clinically relevant features using mathematical models of auditory perception

devices such as stethoscopes for cardiac diagnosis. Such examination need special-

ized training [20]. Authors developed a computationally inexpensive method for pre-

liminary diagnosis of heart sound [47]. Segmentation of PCG signals and estimation

of heart rate from it has been done primarily using two approaches. Segmentation

of PCG signals and estimation of heart rate from it has been done primarily using

two approaches. The first approach uses ECG as a reference for synchronization of

cardiac cycles. Second approach relies solely on PCG signal and is appropriated for

wearable devices that relies on smaller number of sensors (Figs. 15 and 16).

In this paper, we integrated the analysis method into Fog framework for providing

local computing on Fog device. With the growing use of wearables [6] for acquiring

PCG data, there is need of processing such data for preliminary diagnosis. Such

preliminary diagnosis refers to segmentation of PCG signal into heart sounds S1 and

S2 and extraction of heart rate. Figure 17 shows the proposed scheme for analysis of

PCG data for extracting the heart rate. We detect the time-points for heart sounds

S1 and S2. Later, these were used for extracting the heart rate. The development and

execution of a robust algorithm on Fog device is novel contribution of this chapter.
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Fig. 15 Depicting the variations in frequency in sustained /a/ (task t1), HIGHS (task t2), and LOWS

(task t3) for several speech samples

Fig. 16 The comparison of average sharpness of the speech signal obtained from in-home trails of

a patient. The 6 days of 2 weeks are compared with respect to average sharpness (in acum). These 2

weeks are separated by 1 week. Low sharpness shows high sensory pleasantness in a speech signal.

We can see that the evolution of sharpness on different days is very complicated even during the

same week. It is because the speech disorders are unique for each patient with PD

4.2.1 PCG Data Acquisition

PCG signals were acquired using a wearable microphones kept closer to the chest.

Such wearable devices could send data to a nearby placed fog device through a smart-
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Fig. 17 Proposed method for estimation of heart rate from PCG signal. We first do low pass fil-

tering for reducing the high frequency noise. It is followed by downsampling for reducing the com-

putational complexity. Next, Hilbert envelope is extracted and envelope is processed with Teager

energy operator (TEO). The output of TEO is smoothed by Savitzky–Golay filtering. We performed

moving averaging for further enhancement of peaks corresponding to heart sound S1. The time-

period of heart sound S1 (in seconds) is multiplied with 60 get the heart rate in Beats per minute

(BPM). The normal heart rate lies in range 70–200 BPM. Significant deviation from this range

shows abnormality in cardiac cycle. This method was implemented in Python and executed in the

Fog computer

phone/tablet (gateway). Fog saves the PCG data in .wav format sampled at 800 Hz

with 16 bit resolution. The microsoft wav format is lossless format and is widely used

for healthcare sound data. We are not discussing the hardware details as our primary

goal is computing signal features on Fog device. The segmentation step (see block

diagram in Fig. 17) separated the heart sounds S1 and S2 from the denoised PCG

signal. The heart sounds S1 and S2 captures the acoustic cues from cardiac cycle.

The peak-to-peak time-distance between two successive S1 sounds make one cardiac

cycle. Thus, time-distance between two S1 sound determines the heart rate.

We used the data from four scenarios of cardiac cycles namely, normal, asd, pda,

and diastolic. The ‘normal’ refers to normal heartbeat from an healthy person. The

‘asd’ refers to PCG data induced by an atrial septal defect (a hole in the wall separat-

ing the atria). The ‘pda’ refers to PCG signal induced by patent ductus arteriosus (a

condition wherein a duct between the aorta and pulmonary artery fails to close after

birth). The last one, ‘diastolic’ refers to PCG signal corresponding to a diastolic mur-

mur (leakage in the atrioventricular or semilunar valves). Figure 18 shows the time

domain PCG signals corresponding to these scenarios. We can see that PCG signal

contain signatures of cardiac functioning and clear distinction is portrayed by these

time-domain signals. Figure 19 shows the enveloped of these signals (see Fig. 17).

We can see that envelope shows the better track of time-domain variations.

4.2.2 Noise Reduction in PCG Data

The PCG signal was acquired at 800 Hz for capturing high fidelity data. Some noise

is inherently present in data collected using wearable PCG sensors. We do low pass

filtering using a sixth-order Butterworth filter with a cutoff frequency of 100 Hz. It

reduces the noise leaving behind spectral components of cardiac cycle. We down-

sampled the low-pass filtered signal to reduce the computational complexity.
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Fig. 18 Time-domain PCG signal for four conditions namely normal, asd, pda, diastolic. The

variations in these signals reflect the corresponding cardiac functions

Fig. 19 Envelope of the PCG signal using procedure shown in block diagram (see Fig. 17) for four

conditions namely normal, asd, pda, diastolic. The envelope shows clear transitions in PCG signal

that can be further processed for localizing the fundamental sound S1 and hence estimation of heart

rate in Beats per minute (BPM)

4.2.3 Teager Energy Operator for Envelope Extraction

Teager Energy Operator (TEO) is a nonlinear energy function [29]. TEO captures

the signal energy based on physical and mechanical aspects of signal production. It

has been successfully in various applications [33, 35]. For a discrete signal x[n], it

is given by

𝛹 (x[n]) = x[n] ∗ x[n] − x[n + 1] ∗ x[n − 1] (10)
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where 𝛹 (x[n]) is the TEO corresponding to the sample x[n]. We applied TEO on

the downsampled signal (see Fig. 17) to extract the envelope. The TEO output is

further smoothed using Savitzky–Golay filtering. Savitzky–Golay filters are polyno-

mial filters that achieve least-squares smoothing. These filters performed better than

standard finite impulse response (FIR) smoothing filters [42]. We used fifth-order

Savitzky–Golay smoothing filters with a frame-length of 11 windows. Next, we per-

form moving-average filtering on smoothed TEO envelope. The window-length of

11 was used for moving averaging. In next step, the output of moving-average filter

is mean and variance normalized to suppress the channel variations.

4.2.4 Heart Rate Estimation by Segmentation of Heart Sounds S1

The heart sound S1 marks the start of the systole. It is generated by closure of mitral

and tricuspid valves that cause blood flow from atria to ventricle. It happens when

blood has returned from the body and lungs. The heart sound S2 marks the end of

systole and the beginning of diastole. It is generated upon closure of aortic and pul-

monary valves following which the blood moves from heart to the body and lungs.

Under still conditions, the average heart-sound duration are S1 (70–150 ms) and

S2 (60–120 ms). The cardiac cycle lasts for 800 ms where systolic period is around

300 ms and diastolic period being 500 ms [54] (Fig. 20).

The mean and variance normalized envelope is used for detecting the fundamen-

tal heart sound (S1). Since S1 marks the span of cardiac cycle, we compute time-

distance between two S1 locations. It gives the length of cardiac cycle (in seconds).

This is multiplied by 60 (see Fig. 17) to get the heart rate in Beats per minute (BPM).

Under normal cardiac functioning heart rate lies in range 70–200 BPM. In case,

where estimated heart rate is significantly large than this range over a long duration

of time, it shows some abnormality in health. It is worth to note that intense exer-

cises such as running on treadmill, cycling etc. can also cause increase in heart rate.

The Fog computer receives the PCG signals from wearable sensors and extract heart

rate in BPM for each frame. We choose a time-windows of size 2 s with 70% overlap

between successive windows.

4.3 Case Study III: Electrocardiogram (ECG) Monitoring

Heart diseases are one of the major chronic illness with a dramatic impact on produc-

tivity of affected individuals and related healthcare expenses. An ECG sub-system

is considerably for more out-of-hospital applications, manufacturers face continued

pressure to reduce system cost and development time while maintaining or increas-

ing performance levels. The electrocardiogram (ECG) is a diagnostic tool to assess

the electrical and muscular functions of the heart. The ECG signal consists of com-

ponents such as P wave, PR interval, RR interval, QRS complex, pulse train, ST seg-

ment, T wave, QT interval and infrequent presence of U wave. Presence of arrhyth-
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Fig. 20 Detecting heart sound S1 and using it for heart rate estimation in units of beats per minute

(BPM). The top-figure shows the low pass and downsampled PCG signal. The middle figure shows

the envelope by procedure shown in block diagram of Fig. 17. The bottom sub-figure shows the

final post-processed envelope. It is clear that by choosing a suitable threshold, we can detect the S1

sound from PCG signal. Since the cardiac cycle time-length (in seconds) is same as time-difference

between two S1 sound (in seconds), we can estimate heart rate by multiply it with 60

mias changes QRS complex, RR interval and pulse train. For instance a narrow QRS

complex (<120 ms) indicates rapid activation of the ventricles that in turn suggests

that the arrhythmia originates above or within the his bundle (supraventricular tachy-

cardia) and a wide QRS (greater than 120 ms) occurs when ventricular activation is

abnormally slow. The most common reason for a wide QRS complex is arrhythmia of

the ventricular myocardium (e.g. ventricular tachycardia) [1]. Figure 21 shows ECG

time series with P wave, T wave and QRS complex. These three patterns are search

using DTW for a large number of ECG data sets. The last section of this case study

will discuss the data reduction using DTW and GNU zip compression on ECG data.
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Fig. 21 An example typical time-domain ECG waveform showing phases P, QRS complex and T

The goal of our experiment is to detect arrhythmic ECG beats or QRS changes using

QRS complex and the RR interval measurements. The ECG data is fed to the Fog

computer from Internet-based database. The Fog computer extracts QRS complex

from ECG signals using real-time signal processing implemented in Python on Intel

Edison. The Pan–Tompkins algorithm is used for detection of QRS complex [44].

Pan–Tompkins algorithm consists of five steps:

4.3.1 Band Pass Filtering

The energy contained in QRS complex is approximated in 5–15 Hz range [1]. We

apply a band pass filter for extracting 5–15 Hz content of ECG signals. The band

pass filter reduces muscle noise, 60 Hz power-line interference, baseline wandering

and T wave interference. This filter achieve a 3 dB pass-band from about 5–12 Hz.

The high-pass filter is designed by subtracting the output of first-order low-pass filter

from an all-pass filter with delay of 16 samples (80 ms) [44].

4.3.2 Derivation

The output of band-pass filter is differentiated to get the slope. It uses a five-point

derivative. After differentiation, the output signal is squared to get only positive val-

ues. It performs non-linear amplification of the output suppressing the values lower

than 1 A moving-window integration is applied on output of last step. It smoothens

the output resulting in multiple peaks within duration of QRS complex. It adapts

to changes in the ECG signal by estimating the signal and noise peaks for finding

the R-peaks (Fig. 22). The Pan–Tompkins based QRS detection is implemented on

ECG signals obtained from MIT-BIH Arrhythmia Database [27]. Figure 22 illus-

trates the QRS detection using Pan–Tompkins algorithm on Intel Edison using MIT-

BIH Arrhythmia data. The ECG signal containing 2160 samples take 1 s of process-
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Fig. 22 Illustration of QRS detection using Pan–Tompkins algorithm; a Raw ECG data; b ECG

signal after band-pass filtering and derivation; c Squaring the data; d Integration and thresholding

to detect QRS; e Pulse train of ECG signal

Fig. 23 Comparison of data

reduction resulting from

DTW based pattern mining

and GNU zip based

compression for ECG data

obtained from MIT-BIH

Arrhythmia Database [27]
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Fig. 24 Execution time (in seconds) for Pan–Tompkins based QRS detection on Inter Edison Fog

computer for ECG data from MIT-BIH Arrhythmia Database [27]

ing time on Intel Edison Fog computer. It shows that proposed Fog architecture is

well suited for real-time ECG monitoring.

We used DTW based pattern mining for P wave, T wave and QRS complex in ECG

data. The DTW indices showing the location of these pattern in ECG time-series is

sent to the cloud. Similarly, we use GNU zip program to compress the original ECG

time series. The compressed ECG data files are then send to the cloud. Figure 23

shows the data reduction resulting from DTW based pattern mining with compres-

sion. Similar to speech data, DTW reduces ECG data by more than 98% in most

of the cases while compression reduces around 91%. Figure 24 shows the execution

time (in seconds) for Pan–Tompkins based QRS detection implemented in Python

on Intel Edison Fog computer. The data sets from MIT-BIH Arrhythmia Database

are used. The size of the data sets range from 16.24 to 36.45 kB. The execution time

increases with increase in file size. The time taken is always less than 15 s. This val-

idates the efficacy of Fog Data architecture for real-time ECG monitoring (Figs. 25

and 26).

Fig. 25 Comparing loudness computed from speech signal recorded by smartwatch at sampling

rate of 44.1 kHz and half of it. We can see the variations are low. The mean change with respect to

44.1 kHz is 2.86% with a standard deviation of 1.26%
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Fig. 26 Comparing fundamental frequency (in Hz) computed from speech signal recorded by

smartwatch at sampling rate of 44.1 kHz and half of it. We can see the variations are low. The

mean change with respect to 44.1 kHz is 0.0818 % with a standard deviation of 0.1786%

5 Experiments and Results

5.1 Intel Edison Description

The Intel Edison platform used in this application was designed with a core sys-

tem consisting of dual-core, dual-threaded Intel Atom CPU at 500 MHz and a 32-bit

Intel Quark microcontroller at 100 MHz, along with connectivity interfaces capable

of Bluetooth 4.0 and dual-band IEEE 802.11a/b/g/n via an on-board chip antenna.

This platform came with a Linux environment called Yocto, which is not an embed-

ded distribution of Linux itself, its true purpose is to provide an environment to

develop a custom Linux distribution. We did not create a Linux distribution, instead

we deployed a prebuilt distribution of Debian/Jessie for 32-bit systems. This deci-

sion was made such that we could deploy the same environment on both the Intel

Edison and the Raspberry Pi.

5.2 Raspberry Pi Description

The Raspberry Pi Model B platform used in this application was designed with a core

system consisting of a 900 MHz 32-bit quad-core ARM Cortex-A7 CPU, and 1 GB

RAM. Since the Raspberry Pi does did not have WIFI connectivity built-in a WIFI

dongle based on the Realtek RTL8188CUS chipset was installed. This platform came

with a custom Linux distribution called Raspbian. Since Raspbian would provide a

slightly different environment it was replaced with the Debian/Jessie distribution

used on the Intel Edison.
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5.3 Fog Computing: Feature Extraction on Fog Devices

The fog devices, the Intel Edison and Raspberry Pi, were both configured to run the

same Debian/Jessie i386 distribution. Once the distribution was setup, both devices

installed the same version of Octave 3.8.2-4, along with the additional packages

required to perform the processing required by our algorithms. We also ensured that

both gateway devices tracking system performance using the same tools. The tools

we used included the Linux program top and the Octave function Profiler. The top
program provided real-time insights into CPU Load, Memory Usage, and run-times

for processes or threads being managed by the Linux kernel. This was used later to

provide use with benchmarking for the system overall. The Octave function Profiler
provided insights into the run-times for each of section of the algorithm. This was

used later determine which parts of the algorithm required more time to complete.

5.4 Benchmarking and Program Setup

The gateway devices where remotely logged into via the SSH protocol. From here we

ran the same benchmarking scripts for both devices. The scripts would start Octave

and load it with the data and use-case based algorithm, while top was started in

parallel. The script searched top for the process ID (PID) for this new instance of

Octave. Once determined it would extract all the information top provided about the

systems performance and the load imposed on the system by this instance of Octave.

The extracted information was logged into a csv file and saved for analysis after the

algorithm ran its course. Once the instance of Octave was ready to run the algorithm

it started the Profiler function in the background. At the conclusion of the algorithm

the Profilers set of data was stored into a .mat file for later analysis.

5.5 Bandwidth and Data Reduction

We conducted an experiment to measure the percentage by which Fog could reduce

the data by processing the audio files using proposed Fog architecture. In our pre-

vious studies [12], we developed a clinical speech processing chain (CLIP), a series

of filtering operations applied on the speech data for computing the clinical features

such as loudness and fundamental frequency. We incorporated several new features

in present chapter in addition to loudness and fundamental frequency used in [12].

We took 20 audio files and processed them with two methods;

1. Conventional method of compressing the files using GNU zip [21] and sending

them to the cloud server for further processing;

2. Extracting the clinical features on the fog computer (proposed Fog architecture).
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Table 3 Latency measurements of Fog for computing the clinical speech features namely zero

crossing rate (ZCR), special centroid (SC), and short-time energy (STE)

Speech tasks Processing time (s) File duration (s) Size (kB)

Task 1 2.34 6.24 551

Task 2 2.33 6.18 545

Task 3 2.12 5.62 496

Task 4 2.28 6.08 537

Task 5 1.86 4.96 438

Total 10.94 29.08 2567

Table 3 lists the performance of Fog computer with respect to computation of clinical

features. Figure 8 shows the percentage reduction in data size achieved by clinical

speech processing and GNU zip compression. We can see that there is huge gains by

processing data on Fog computer and sending only the features to cloud as compared

to sending the original files to the cloud.

5.6 Engineering Perspectives

Charging the wearables such as smartwatches etc. and gateways such as (smart-

phones/tablets) was necessary at least once in a day. In case patients want to do

exercise while being away from home, they need to carry the tablet along with them.

Patients were asked to do exercise in a quiet place where the noise is very low or

negligible. The patients could wear the smartwatch all the time. The tablet and the

smartwatch need to be within a range of 50 m. The speech recordings were saved

with date and time stamp that helped in sorting and query-ing them in cloud database.

The participants have the choice to switch-on the recording system using smartwatch

when they want to perform their vocal and other exercises. Similar procedures for

other wearables.

5.7 Medical Data Analytics and Visualization

The part (a) of Fig. 27 shows the size of speech data collected from one of the patients

for 8 days. We can see that the least amount of data (24 MB) was collected on the first

day. On later days, the data size had been increasing. The part (b) of Fig. 27 shows the

patients feedback on using the IoT PD technology for facilitating the remote monitor-

ing of their vocal and speech exercises. Five out of six participants of in-home trials

express a pleasant experience in using it. One participants had problems in using it

for the first week. This patient had severe movement disorders in addition to speech

disorder that made it difficult to switch ON/OFF the smartwatch. One week later, we
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Fig. 27 a The data collected from one of the patients for 8 days. The speech data collected was well

structured with date and time stamps. b The pie chart shows the user acceptability of the proposed

system during in-home trials. By non-positive, we mean neither a positive nor a negative inclination

towards proposed system. For one participant with severe motor disorders, using smartwatch needed

some effort and hence had neither a positive or negative inclination

made a software update allowing easier mechanism for switching ON/OFF. After

using the updated IoT PD, the patient reported that it was easy to use it. Accounting

one feedback out of six as neutral, we depict the user experience as the pie chart

shown in Fig. 27b.

6 Practical Insights

6.1 Data Versus Fog Data for Cloud Storage

Table 4 shows approximation on the cloud storage requirement when we compare the

conventional model of raw data transfer with the presented Fog Data. It is clear that

for the long-term continuous data including speech and ECG, Fog Data architecture

reduces the storage requirements tremendously and ultimately cuts the storage and

maintenance cost as well as power demand on the cloud. Moreover, the reduced

storage reduces the complexity of Big Data Analytics (Figs. 28 and 29).

Figure 30 shows the loudness computed by capturing pathological speech data at

44.1 kHz and downsampling it half the rate. It is clear that downsampling degrades

Table 4 Cloud storage requirement for 100 patients undergoing speech tele-therapy at home

Time Raw data (GB) Fog data (GB)

1 Day 12 0.0012

1 Week 84 0.84

1 Month 360 3.6

1 Year 4079 43.8
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Fig. 28 The average loudness for 2 days on task “Highs” (task t2) and “Lows” (task t3) for six

patient doing speech exercises at home. The data was processed with Fog in real-time. It illustrates

the Fog functionality to compute these features

Fig. 29 Showing average loudness and pitch for each day for in-home trials for six patients. The

patients used Fog for alternate weeks. We can see that each patient has a different trend for change

in loudness and pitch. Interpretation of these variations is done by trained clinicians such as speech-

language pathologists (SLPs). Fog compute these features and sync it to the secured cloud backend

from where it can be accessed by SLPs, caregivers

Fig. 30 Showing effect of downsampling on loudness. We can see that by capturing pathological

speech at lower sampling rate, we are still approximately at same loudness level. The lower sampling

rate would lead to lower power consumption in battery-operated wearable devices
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Table 5 Various resources required to develop Fog architecture

Languages Tools Usage

MySQL SequelPro, DataGrip Run queries and check database tables for testing

purposes

PHP PhpStorm, Postman Code the server to return the data and information

to the mobile application

Python PyCharm Code the data processing, storage, transmission,

and interfacing with database

Android IntelliJ, Android Studio Coded the client transfer code and the complete

mobile application

All languages Atom, Sublime Text2 Editors which can code all languages

the perceptual quality of pathological speech at the advantage of lower power con-

sumption. This graph shows that if needed lower sampling rate can still be a useful

in situations where power consumption on wearable devices is an issue.

System Complexity: Our experiences with Fog provide evidence that establishing

an intelligent computing resource in remote settings where the patients were located

was not only challenging in terms of hardware development and programming, but

also required the interdependence of many tools and libraries to build automated

exchange of information among various elements of telemedicine. For example,

Table 5 shows the various tools needed to bring autonomy, configurability, security,

and smart computing on the Intel Edison. We spent months to pursue a systematic

survey of what was available and what was useful. Surveying the useful tools was

time consuming yet rewarding.

6.2 Compatibility Issues

There were countless instances when we had to find unconventional ways to establish

intelligence in Fog. For example, installing Praat python library on the Intel Edison

was extremely difficult.

6.3 Security and Privacy

In this work, we presented how the fog computer could be configured for computa-

tion and database access. We also touched upon Fog security from the authenticated

access point-of-view. However, we believe that security needs can be addressed more

rigorously since Fog allows us to configure the fog computing node remotely and

inject algorithms that could make the communication and storage more secure.
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6.4 Challenges in Using Fog Computing for Telemedicine

No system is perfect and fog computing is no exception. There are difficulties in

deploying Fog architecture for telemedicine applications. Although the fog comput-

ing provides the data computation on the edge, reducing the data significantly, the

data becomes non-reversible when only analytics are communicated to the cloud.

The fog has a limited storage space such that it can only store data for days or weeks,

depending on the type of data. In our case, the data were audio files that could eas-

ily exceed the storage limit on the fog within a few days. An alternative is to create

a query mechanism to access the data on fog when the clinicians want to listen to

the audio files. Furthermore, since the raw data was not communicated to the cloud,

there was no way to perform additional analysis in the cloud. In other words, it is

necessary to ensure the reliability of the computational models used for analysis of

the data before they are injected into the fog computing resources.

7 Conclusions

We presented a multi-layer telemedicine architecture of the fog-assisted Medical

Internet-of-things that was implemented on Intel Edison with layers for hardware,

middleware (communication and software), and application (with security services).

The Fog framework achieves intelligent gateway functions by processing audio files

using signal processing algorithms such as psychoacoustic analysis to extract the

clinical features; storage of raw data and features that are on-demand queryable by

the cloud as well as the Fog interface. We also implemented Android apps for stake-

holders such as patients, healthcare providers and administrators who require access

to the backend database. This enabled speech-language pathologists (SLPs) to query

the data showing daily progress of their patients. Our case study demonstrated that

managing computations on Intel Edison (fog computer) reduces the data by 99%;

though less data reduction would occur if more features were analyzed. Our study

also showed that it is possible to perform high-fidelity signal processing on the fog

device to extract pathological speech features and communicate them to the cloud

database.

Moreover, the paper not only provides a high level understanding of the fog-based

IoT system, but also provides details of how each layer was implemented including

the tools and libraries used in the development. If implemented appropriately, Fog

has a great potential to provide more autonomy and reliability in telemedicine appli-

cations driven by IoT. In future, we plan to deploy Fog in patient’s homes. This will

help us face operational challenges when the fog computer is located remotely in a

different network.
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Technologies and Practices: Mobile
Healthcare Based on Medical Image Cloud
and Big Data (in China)

Jianzhong Hu, Weihong Huang and Yedong Huang

Abstract Modern information technologies such as mobile computing, cloud
computing and big data have brought new possibilities for modern healthcare
services. In developing countries such as China where the vast majority of
healthcare has been delivered in hospitals, mobile healthcare is of great significance
to provide easy and quality care for everyone in and out of hospitals. In response to
China’s national strategy “Healthy China 2030”, a nationwide hierarchical medical
system needs to be established in due course. Featuring ubiquitous access with
quality guarantee and consistent user experience on different terminals anytime
anywhere, mobile healthcare has been regarded as one of the most important means
to support the grand mission of hierarchical medical system. In the process of
implementing mobile healthcare, all types of medical data (e.g. patient information,
medical records, medical images, health check data, etc.) are to be shared across
hospitals boarders. From the computing perspective, mobile medical imaging is
regarded as the most challenging issue as medical image processing is the most
network and computation resource consuming. Based on systematic requirement
analysis, this chapter presents an innovative mobile medical image cloud system.
The system enables seamless integration of multiple types of medical data espe-
cially medical image data from different vendors globally, and forms the basis for
Big Data analysis for smarter healthcare in the future. A real-world case study of
cloud teleconsultation using medical image cloud and big data technologies is also
presented to prove its technical feasibility and replicability in practice in China.
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1 Introduction and Background

1.1 Introduction of Modern Healthcare Information
Technologies

With the fast development and popular use of Information and Communication
Technology (ICT), healthcare services provided by general hospitals are now in
good use of information technologies for acute care. The digitalised healthcare is
usually called eHealth, and its typical systems include Hospital Information System
(HIS), Electronic Medical Record (EMR) system, Picture Archiving and Commu-
nication Systems (PACS), Laboratory Information Systems (LIS) and related
medical emergency services (e.g. 999 in the United Kingdom, 119 in the United
States, 112 in China). Mobile healthcare (mHealth) is commonly regarded as an
extension of eHealth, a term used for the practice of medicine and public health
supported by mobile devices [11]. The term is used in reference to using mobile
communication devices, such as mobile phones, tablet computers and PDAs, for
health services and information. A lot of mobile devices are now widely adapted in
community and rural healthcare contexts, where patients or health professionals
might have difficulties in travelling or short in time to get prompt results and right
information, smart mobile devices could help to provide flexible communication
among consultants, general practitioners and patients in care process. In most cases,
mobile healthcare features real-time monitoring of patient vital signs (e.g. heart rate,
blood pressure, blood oxygen, blood glucose, etc.), viewing medical images such as
X-Ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI),
ultrasound, and pathology images, and video/audio conferencing. These on-demand
mobile healthcare services could be provided based on networking and computing
capacities conditions where mobile imaging is the most challenging and complex
among these mobile services.

Mobile computing is not the only new technology that modern healthcare
embraces, cloud computing [20] is another important emerging healthcare infor-
mation technology and gradually got matured in the past several years. Cloud
computing is a model for enabling ubiquitous, on-demand access to a shared pool
of configurable computing resources (e.g., computer networks, servers, storage,
applications and services), which can be rapidly provisioned and released with
minimal management effort. Traditionally medical images are accessed and man-
aged through PACS in hospitals using proprietary formats, patient care and services
outside the hospital may be compromised without support. By introducing the
cloud technology into medical imaging, the medical imaging service could offer
global storage of image generated by different devices and global access on dif-
ferent terminals including mobile phones and tablets anytime anywhere with con-
sistent user experience. The ubiquitous storage and access model of medical images
eliminates the barrier between hospitals and saves the hassle of carrying large scale
printed copy around.
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In addition to medical images from PACS, there are many other types of data in
healthcare generated by all kinds of systems such as HIS/EMR/LIS in hospitals. To
analyse and understand the huge amount of data better, this intersection of tech-
nology and healthcare sometimes is called “Big Data” [19]. The utilisation of Big
Data technology from traditional management perspective could help to improve
profits and cut down on wasted overhead, Big Data in healthcare means more than
that. It is expected to help predicting epidemics, curing disease, improving quality
of life and avoiding preventable deaths. However the bright future of Big Data in
healthcare is yet to arrive. One of the reasons is because most IT systems in
hospitals built in the past mainly work in proprietary ways and don’t talk/interact to
other systems within the same hospital easily, not to mention other hospitals. This
has caused a typical “information island” problem which not only creates diffi-
culties for doctors and nurses in practices, but also brings extra hassles to patients
particularly in referral. From practical point of view, it is critical to enable flexible
data and information sharing among clinical settings and to offer simple and clear
healthcare pathways for patients with good user experience in order to welcome the
new era of Big Data.

1.2 Background of Healthcare Information Technology
Development in China

The majority of hospitals in China started their digitalisation process using infor-
mation technologies in 1990s. At present time, most referral hospitals in China in
secondary care have established essential information systems such as HIS, EMR
and PACS. But in contrast to those in developed countries such as the UK and
USA, the digitalisation level of primary care in China is rather poor. With limited
resources in hardware and personnel, the traditional model of healthcare service
provided by hospitals and within hospitals has met the biggest challenge ever in
history to cope with the 1.4 billion people’s ever-growing demand of healthy living.
In order to address the general care and health issues in the long run, China
published its national strategy of “Healthy China 2030” in August 2016. It is now a
national policy and demand to improve medical care as high quality as possible for
everybody around the country. Notified challenging issues in the national policy
include public hospitals reform, national health insurance system, drug supply
assurance mechanism and many others. Among these topics, a pragmatic hierar-
chical medical system [6] is considered the top priority to be addressed
immediately.

There are several tangible targets to be met for a hierarchical medical system in
China: bidirectional patient transfer between hospitals (70% cities to pilot test),
resident registration to general practitioners (200 cities to pilot test), and primary
hospital service capacity improvement (90% patients cared in local districts). In
order to meet those targets and to balance the service and quality of care gap
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between big hospitals and primary level hospitals/surgeries, great efforts will be
needed in both technology and clinical practices. To some extent, the blueprint of
hierarchical medical system in China [6] is similar to the NHS system in the UK.

Apart from building more and closer links between top hospitals and primary
hospitals, consultants in hospitals and general practitioners in communities, tech-
nical assistance by mobile telemedicine services could be very helpful and easy to
adapt to build the hierarchical medical system [6]. However, after over 10 years of
introduction of telemedicine [17], it is not frequently used due to various reasons in
China. Since telemedicine is actually an advancement of health information tech-
nology at the time of invention, its use by doctors has been limited by their fixed
locations of communication and high costs of terminal installation, these drawbacks
appeared to be even worse when almost everyone gets a mobile phone in China
where the total population of mobile user has reached 1.306 billion in January 2016
[21].

With new mobile computing and cloud computing technologies, the concept of
telemedicine has now been redefined. Mobile imaging technology is now practi-
cally available for patients and doctors to access medical images such as MRI, CT
and X-ray on their smart phones and tablets anytime anywhere, and the operation
and quality of images are similar to PACS desktop applications in Intranets within
hospitals.

1.3 Major Contribution of This Chapter

There are two approaches in implementation of mobile medical imaging applica-
tions [23]. The first approach features moving traditional desktop PACS applica-
tions onto mobile terminals by transferring image data to tablets and smart phones,
where data is still stored in PACS systems within hospitals and transcoded onto
mobile devices for access. The advantage of this approach is being straightforward
and leaving existing system architecture and data flow unaffected, where its
weakness is limited access and performance due to restriction on computation
resources and extra costs for extension. The second approach features recon-
structing and storing image data on cloud for universal mobile access. The
advantage of this approach is high flexibility of universal access, good image
quality and user experience in clinical practice where its disadvantage is in need of
new establishment of image data flow for cloud operation. Apparently the second
approach is more practical despite it may require dedicated system design and
implementation as its major computing work is done on the cloud.

Following the second approach, this chapter systematically presents an inno-
vative medical image cloud (MIC) system which enables universal mobile image
storage and access on various cloud terminals. The system also enables seamless
integration of multiple types of medical data from different hospitals over the
Internet, and forms the basis for Big Data analysis for smarter medical care in the
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future. A case study of regional medical imaging centre is presented to demonstrate
its technical feasibility with evaluation of system operational metrics in comparison
with traditional PACS services, and to prove its replicability in practice in China.

2 Why Medical Image Cloud?

2.1 Demands for MIC in Operations

With the wide deployment of advanced medical imaging equipment such as
MRI/CT/X-Ray/Ultrasound in recent years, hospital generates vast amounts of
medical image data every day [13]. The average total volume of medical image data
of a tertiary referral hospital is about 100 GB per day (equivalent to about 500 CT
scans), while a basic level primary hospital could have 5 GB data per day
(equivalent to 25 CT scans). With such large volume of data in size and quantity,
manging such a vast amount of medical image data becomes the most resource
consuming task for the IT department in hospitals. Also traditional PACS only
works within the intranet, it is impractical for doctors to access and share quality
medical images over the Internet securely for both clinical practice and research.
A cloud solution of mobile medical imaging could help in this case.

Firstly, image cloud could ease the burden of hospital networks. Massive volume
of medical image has great impact on hospital intranets. In the networks and
databases of a hospital, medical image data accounts for almost 95% of the total
volume. If this large volume of medical image data transmits across hospital net-
works, the shared bandwidth naturally takes very high load, and affects other
network applications, which might risk into safety and stability issues. With the fast
development of science and technology in big data, more and more advanced
medical devices and systems produce much more data, for example, Positron
Emission Tomography/Computed Tomography (PET-CT) aims at showing tumour
as small as 0.2 mm, while the finest CT/MRI does the check at 0.8 mm [9]. Finer
granularity means more levels of scans and more pieces of image data. The
exponential growth of medical image data will bring great impact on hospital
network. By diverting the medical image data flow to the cloud and only stream
down to terminals on demand, it could release the bottleneck of hospital networking
at all times.

Secondly, image cloud could support flexible and affordable new functional
upgrades. Traditional PACS system usually works in client/server mode, and new
functional requirements are not easily updatable and upgrades usually cost a lot of
money. Most old PACS systems built many years ago in small hospitals only came
with simple functions such as 2D image processing and adjustments. New image
processing technologies such as intensity projection, 3D reconstruction, interface to
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3D printing, and new requirements in practices such as Multi-Disciplinary Team
(MDT) consultation [25] would be very interesting to doctors and radiologists, but
the financial, time and personnel costs of upgrading the whole PACS hardware and
software system sometimes are too expensive to afford by hospitals, and sadly the
upgrades could never catch up the pace of technology advancements. By pushing
the medical imaging services on to the cloud, upgrading in functionality would not
be an awkward issue anymore and also more affordable to hospitals especially small
hospitals.

Thirdly, image cloud could support universal practice by clinicians. Tradi-
tional PACS and other healthcare information systems only work within the hos-
pital, which creates a nature barrier for universal practice. Despite the adoption of
mobile technologies has enabled various types of mobile healthcare services such as
mobile clinical rounds and PDA-based mobile nursing, proven with good user
experiences to doctors, nurses and patients [26]. In the context of telemedicine and
hierarchical medical care, doctors require easy communication on mobile phones,
tablets, and networked computers for consultation, education, diagnosis and treat-
ment and many more. Traditionally restricted service model would not meet the
growing demand. Having the clinical pathway and required medical data enabled
on the cloud could eliminate the barriers and bring the freedom for clinicians in
practice, but also forms a good basis for future Big Data analysis with coverage of
more and more cases and medical records.

2.2 Roles and Problems Faced in MIC

There are four categories of users (roles) in a regional medical image cloud:

(1) Health administrative departments (i.e. different levels of Health and Family
Planning Commission offices in China);

(2) Healthcare service organisations (i.e. hospitals and community health centres);
(3) Medical experts (i.e. doctors, radiologists, pathologists, lab technicians);
(4) Customers (i.e. patients).

Different roles face different problems in the context of mobile healthcare and
MIC.

(1) Problems faced by health administrative departments
Resource equal distribution: care quality and professional excellence are the core
resources of medical services, and these core resources are currently centralised in
good hospitals in China. It is under the top priority of the administrative department
to share and distribute valuable resources across regions, which means remote
out-patients with complex conditions are expected to have the same consultation of
their examinations, diagnosis just like the quality services they could get as
in-patients in top hospitals.
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Homogenization of medical examinations: the quality of medical report not only
relies on equipment but also experience and expertise of clinicians. Without quality
control of diagnostic practices and assessment standards, it is hard to mutually
approve the examination results across hospitals, and this may lead to unnecessary
troubles in administration and resource waste in repeated examinations. A standard
of practice in similar context would help to assure the quality in medical
examinations.

Practices of distance health education: Every year there are about 600 thousands
medical students graduate from universities in China, but there is still a long way
ahead when these graduates get their licenses to work as formal physicians. Con-
tinuous education and distance learning has always been an important matter on the
health regulatory authorities’ agendas, unfortunately they still lack of feasible
solutions in practice.

Real-time disease statistics: without regional centres of medical imaging and
examination reporting, it is hard for the regional health regulatory authorities to get
accurate real-time statistics as hospitals work independently on their own health
information technology systems. It would be good to have a centralised platform of
raw data and reports across the region for future Big Data analysis, and to provide a
scientific basis for decision making in disease control and prevention.

(2) Problems faced by healthcare service organisations
Tertiary referral hospitals: Medical image data volume increases constantly, but
the hardware computing capacity of existing PACS system is always limited and
system can be slowed down if the data volume gets bigger and bigger. In order to
maintain the operation speed of PACS system in daily use, it is reasonable to put
some historical medical image data stored offline for archive and only leave
certain period of image data online (e.g. 2 years). This compromised solution may
lead to two potential risks: safety of historical data in offline disk storage and
difficulty in accessing historical data when it comes to clinical research and data
analysis.

Secondary and primary level hospitals: traditional PACS system requires certain
level of IT support, but the information departments of these hospitals are relatively
weak in personnel. The workload of general maintenance has somehow constrained
the adoption and upgrade of traditional PACS in these hospitals. On the other hand,
there is a shortage of qualified radiologist in these hospitals due to various reasons
such as income level and career development, but it is relatively easy to recruit a
technician to operate the medical equipment.
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(3) Problems faced by medical experts
With the wide adoption of mobile technology, people work and communicate
everywhere with their tablets and smart phones, it is naturally expected by medical
experts (including clinicians, radiologist, pathologist, and so on) to have access to
high quality medical image when they are not in front of office desktop computers.
Without a cloud-based secure solution, doctors can only share images by re-taking
photos with their phone cameras and transmit over public social networks e.g.
mobile Apps like WeChat in China [27].

(4) Problems faced by customers
Most top medical experts work in good hospitals in China, which means majority
residents in urban and rural areas may not have the opportunity to be cared by top
experts. The demand of care mainly shows in the following aspects: firstly, cared at
the nearest clinic to save time and money involved in travelling and queuing for
consultation. This is actually one of the targets defined in the national health reform
strategy: minor illness cared in communities, serious and complex diseases treated
in hospitals. Secondly, accessible to assured quality care with affordable cost by
having the same quality diagnosis remotely by experts on the cloud. Thirdly,
universal access of personal health records especially medical images and reports
on regional cloud would help to manage full lifecycle health information of
patients.

3 Objectives of Building a Medical Image Cloud

3.1 Administrative Objectives of MIC

To resolve the problems faced by different stakeholders in the hierarchical medical
system, a regional medical image cloud is set to achieve the following objectives
from technical and operational perspectives:

(1) To offer quality imaging services in secondary and primary level hospitals
Without costly investments in money, time and human resources, secondary and
primary hospitals could be connected to a cloud PACS system and assisted by
experts on the Internet, carrying out medical imaging diagnosis and reporting
service in full with quality control. Other business extensions such as two-way
patient referral could improve the overall healthcare service level locally.
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(2) To achieve mobile medical imaging services
Based on cloud computing technologies, doctors and patients could share the same
quality medical image, communicate in real-time, anywhere anytime on any
available terminal devices. Mobile phones with large screen and tablets could be
used to access image for viewing and analysis, which makes for teleconsultation
and tele-diagnosis and discussion convenient and effective at very low cost.

(3) To achieve the integration of medical resources regionally
In China, first-hand medical data and resources are managed independently by
individual hospitals. By pushing doctor-doctor collaboration onto medical cloud
platforms (e.g. regional imaging and examination cloud centre), originally cen-
tralised resources in top hospitals could be shared across the region in low cost, and
related education and quality control could be achieved in a relatively easy way.

(4) To reduce the cost of medical care
By having centrally controlled quality medical imaging services on cloud, raw
images and reports could be recognised and accepted in different hospitals in the
region. This is a very direct and important factor to avoid duplicated and over
examinations. On one hand it reduces the radiation damage to patients, and on the
other hand it reduces the cost of medical care when transfer happens between
hospitals.

3.2 Technological Objectives of MIC

In order to fulfil the requirements above, a medical image cloud system should also
meet the technological objectives as follows:

(1) To adapt to regular routines of radiology department including workflow
management, collaboration, communication and interaction over the same
platform;

(2) To enable paperless and filmless medical mobile image services;
(3) To achieve minimum maintenance over the Internet with ultimate aim of

training-free and support-free after sales;
(4) To support universal access (server: Windows, Mac, Linux, client: iOS,

Android, Windows Phone);
(5) To enable mobile healthcare services (e.g. multimedia tele-consultation, online

doctor-patient triage, history electronic medical records review, etc.);
(6) To support further medical Big Data analysis.
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4 Requirement Analysis of Medical Image Cloud

4.1 Process Requirement Analysis of MIC

The medical image cloud system mainly addresses two functional issues: storage
and transmission of large volume of medical image data and medical image
front-end processing. Ultimately full scale and quality images should be presented
on tables and mobile phones over mobile networks just like that on desktops.
Normal PACS operational functions (e.g. image zooming and marking, advanced
image processing, image segmentation and analysis, and smart decision support)
should also be supported on all types of mobile terminals.

There are several important modules of function involved in regional cloud
medical image services: cloud PACS with full process support, doctor-to-doctor
teleconsultation and tele-diagnosis, remote video/image education, patient referral,
mobile imaging application.

(1) Cloud PACS with full process support
To simplify the overall process of PACS in secondary and primary level hospitals,
most IT maintenance work could be done directly on cloud. After the medical
equipment such DR X-Ray, ultrasound, CT were install locally, the rest processes
could be done on the cloud rather than buying an expensive and complex set of
PACS software and storage facility. Processes in its typical workflow include
patient registration, examination appointments, image processing, report generation
and distribution, image storage and searching [18]. This means least requirements
on IT support, least requirements on radiologist, but same quality of imaging
assessment and report as that of referral hospitals.

(2) Doctor-to-doctor teleconsultation and tele-diagnosis
Teleconsultation [8] processes are fully supported on cloud, which include tele-
consultation request, request acceptance, tele-diagnosis, cloud-based reporting.
Normally a teleconsultation process involves two parties, and more parties are also
supported without any problem based on the extensible cloud computing archi-
tecture. By enabling the universal electronic medical record sharing and medical
image presentation, doctors from different hospitals could work seamlessly as a
team on cloud.

(3) Remote multimedia medical education
The image cloud should also support live/on-demand multimedia (video/audio/
image) medical education which is quite useful rural areas [10]. Alongside medical
images, other demonstration video/audio and education contents could also be
shared online, which could be of great help for young doctors learn from senior
experts anytime.

332 J. Hu et al.



(4) Two-way patient referral support
As the cloud connects many hospitals in the region, with patient electronic medical
records, medical images and reports, it is easy to implement a two-way referral
system between any two hospitals (mainly between a secondary hospital or com-
munity health centre and a tertiary hospital) or at least to provide necessary
information for referral without information loss or distortion.

The two-way patient referral system is one of the targets set in the hierarchical
medical system [3]. It is of great importance to coordinate resources among public
hospitals at different levels, chronic and common diseases and post-operation
re-habitation could be cared in community health centre and primary hospitals,
while serious and emergencies could be treated in referral hospitals with better
resources. To get the referral process done smoothly, ideally all hospitals in the
region should have the same access to patients’ medical data rather than asking
patients to wait and carry hardcopies from one hospital to another.

(5) Mobile imaging application
Based on cloud computing and mobile Internet technology, the system platform
provides mobile imaging applications across different platforms. Mobile terminals
such as smart phones and tablets could access original standard DICOM [24]
images anytime anywhere. Advanced features are also supported to resolve
real-time high quality mobile imaging requirements, including 3D reconstruction,
virtual scalpel function, coronary segmentation and analysis, vessel analysis, lung
segmentation analysis, 1:1 operation mode and other advanced imaging capabili-
ties, which is particularly useful in emergencies.

4.2 Technical Requirements Analysis of MIC

To build a successful medical image cloud, technical solutions should not only
consider the advancements of new technologies, but also the maturity, practicality
and scalability of technologies used, so that data processing sharing between
connected systems and other functional information systems could meet future
extension requirements.

The overall system architectural design and development should:

(1) Use mainstream technology in accordance with international standards,
national standards, regulations in related technical requirements and man-
agement practices;
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(2) Use advanced architecture to build a powerful system with distinctive features;
it should integrate various information resources in medical imaging and
structured/semi-structured medical record information under reliable net-
working environments;

(3) Construct secure and fast medical image cloud for storage and indexing,
breaking the traditional medical information “isolated island” effect;

(4) Achieve the shared standard image data exchange, and consequently support
all kinds of cloud applications and get ready for future research in medical big
data applications.

The system should be component-based, modularised, object-oriented, and flex-
ible enough for future extension [7]. Its basic technical requirements are as follows:

Standardization: the entire cloud system is to meet the related practice codes and
regulations issued by the National Health and Family Planning Commission in
China, and to be compatible to relevant national and international standards.

Reliability: as the cloud works on the Internet, it requires top reliability to
guarantee the operation 24/7, to some extend it should be more reliable than a local
PACS and eventually treated as a new technical alternative to traditional PACS
solutions.

Usability: the client user interfaceUI on different platforms and terminals should be
universally accessible, user-friendly and consistent in design. The system should be
easy to operate, and no need for complicated professional training to use the system.

Scalability: the system operation, storage and indexing capacities should not be
affected when medial data volume grows, the overall performance should show
excellent scalability.

Modularity: it is expected to have more types of equipment and devices to the
cloud, and new functions will be developed to fulfil specific tasks. System design
and implementation should support modular extension and work in cloud
architecture.

Data interface: the medical image cloud database should support standard data
interface for exchange, backup and recovery. It is also expected to provide superior
query performance guaranteed security mechanism over mass.

Adaptability: system should be adaptable to different operational environments
such as terminal processing capability, network connection speed, browser and
operating system variety etc.

Performance: system shall provide 7 × 24 h of continuous operation, the
average annual downtime should be less than 1 day and the Mean Time to
Restoration should be less than 30 min. System should not run into fatal errors in
daily use and affect daily routines.

Security: it should technically meet the security requirements in physical secu-
rity, network security, host security, application security, and data security. There
should also be unified authentication centre for identification and role-based
authorisation control. Access control is down to the page level and to ensure
encryption in transmission for secure transmission without leakage of sensitive
data.
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4.3 Information Security Requirement Analysis of MIC

In addition to the basic physical and networking and security mechanisms, extra
care should be taken consideration for the privacy and information security in MIC.

(1) Privacy protection of patient personal information
When data flows on regional medical image cloud, patient personal information
needs to be protected, particularly identification and contact information contained
in DICOM images, reports, and teleconsultation and health history in diagnosis and
records [22]. Leak of patient data without authorisation will directly violate the
privacy of patients, and affect the reputation of the hospital. The information might
leaked in transmission, be tampered, damaged or even lost in storage, which could
affect the consultation result, and might even lead to medical accidents. It is
required to have overall data transmission and storage being secured on integrity,
confidentiality, safety, recoverable and traceable.

(2) Protection of internal information of hospitals
Regional medical image cloud contains medical data from various hospitals. This
connection brings new challenges to hospital IT systems when data exchanges
between the hospital Intranet and Extranet. It is important to assure other information
on network not to be compromised, and the information gateway needs to be robust
enough to assure leak-free and anti-intrusion. To do that, domain division needs to
be in place clearly, and firewalls should have control measures such as malicious
code attack protection, border integrity protection, intrusion detection and so on.

(3) Safety in medical information service processes
Regional medical image cloud not only stores massive volume of medical exami-
nation data, but also contains a large number of telemedicine, two-way referral, the
doctor-patient interaction and other medical service process information. Therefore
it is important to maintain the continuity and completeness of information across
multiple hospitals [16]. If the information on cloud is leaked, damaged or lost due
to external attacks, the care business will be affected adversely and immeasurably.

(4) Safety in hospital operational management
The regional medical image cloud platform is operated by people just like other
information systems, but it involves much more parties, therefore it is important to
have regulations in place to ensure role-authorisation access mechanism well in
place, and try to avoid security risks caused by human factors such as abuse of
authority that may lead to excessive use of system resources, abnormal changes to
the system configuration that affects performance, maintenance error made by IT
staff and so on [12].
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5 System Architecture of Medical Image Cloud

5.1 Mobile Healthcare System

Figure 1 shows a typical modern mobile healthcare eco-system in China. The lead
hospital Xiangya Hospital Central South University is located in Changsha, Hunan
Province, China. It is a top class hospital in China as being one of the 44 com-
prehensive public hospitals under direct administration of the National Health and
Family Planning Commission of China (The Ministry of Health). It serves about
100 million people across 3 provinces in southern China. Its mobile healthcare
network runs across a large regional medical collaboration network, which includes
1 lead hospital (Xiangya Hospital), 19 general hospitals in 12 provinces, 20 com-
munity hospitals in Changsha, 51 primary hospitals in Hunan Province, and 138
remote networking hospitals nationwide. Major network collaboration activities
include staff training, practice supervision, research collaboration, telemedicine, and
bi-directional referral (as shown in Fig. 2).

A typical mobile healthcare system reference architecture is illustrated in Fig. 3.
There are two versions of mobile applications to be delivered on the client side, one
for patient and one for clinician. The patient version client features an interface
connected with sensors for home care. On the server side, the mobile healthcare
platform contains necessary modules to connect and management data for operation
and user accounts. A security gateway is normally in use to ensure necessary
security mechanisms in place while other operational modules such as configuration
management, session management, service management, and help desk are to assist
the access of medical data based on account management (sometimes including
billing function if required). The medical data management module then connects to
the traditional healthcare information systems such as HIS/EMR/LIS/PACS in
different hospitals. As mentioned before the most challenging issue in traditional
mobile healthcare information services is medical imaging, which requires high
computation capacity and high bandwidth in operation. The challenge should be
addressed in a systematic way if mobile healthcare services go onto cloud.

5.2 Construction Principles of MIC

There are several principles to be considered in design and development of a
medical image cloud.

(1) Comprehensive planning, gradual implementation
Normally a regional medical image is formed by a number of hospitals and health
centres, it is important to have an overall planning with all social, economic,
technological, and political aspects considered from the beginning. In the process of
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implementation, apart from building the centralised cloud for the whole region,
pilot tests and experiments in departments and hospitals are to be carried out
individually and regionally before the whole platform is rolled out in full scale
action.

(2) Standardised interface, connected process
To achieve smooth universal medical imaging operation across tens of hospitals and
hundreds of different medical equipment from different manufactures, it is critical to
ensure raw data and information exchange interfaces are standardised (e.g. DICOM
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Fig. 1 Mobile healthcare eco-system of Xiangya hospital
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for medical images). Other business processes other than image processing such as
referral and teleconsultation processes should also be tested in workflow and
connected to existing hospital information systems.

(3) Collaborative service, improved performance
One of the objectives to build a regional medical image is to enable more collab-
oration between hospitals and doctors, and under the same quality control frame-
work in the region, it is expected improve the overall performance of care services
by enlarging the service coverage, improving information sharing, reducing
resource waste and enhanced service administration.

(4) Extensible architecture, secured protection
Cloud system should support constant data growth and new application develop-
ments, therefore should follow open architecture for scalable and sustainable future
extension. Its built-in security mechanisms should be effective and reliable in trust
management, access control, network security, storage and recovery to guarantee
the safe operation of regional medical care and patient information privacy.

5.3 System Components of MIC

A medical image cloud normally includes the following important components: the
medical image cloud centre is responsible for storage of medical image data on the
large image cloud pool provided by cloud service provider (e.g. China Telecom or
other mobile network providers offering similar service). The front-end gateway is
normally a hardware device similar to the size of a set-top box or a blade server in
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large scale applications in core hospitals. The cloud PACS system for hospitals
refers to the full PACS workflow process management for radiology department,
just like a traditional PACS on cloud for better understanding by radiologists. There
are also two major types of image viewing/diagnosis applications, one is mobile
(Android & iOS) and the other is a typical application on desktop OS. As the cloud
computing relies heavily on network bandwidth, it is always recommended to have
high-speed dual fibre connection to ensure major data flow between hospitals and
the cloud, note the viewing client network doesn’t require such.

Module System and resources Description

Medical image
cloud centre

Mobile network
operator medical
image cloud

Reginal cloud PACS centre storage
management system

Image storage pool Storage resource pool for medical images
for the region

Front-end gateway M-Box (hardware) Hardware gateway to enable medical
equipment directly connected to the regional
cloud PACS

Cloud PACS system
for hospitals

Mobile network
operator Cloud PACS
platform

Offer full PACS workflow process
management for radiology department
including 2D/3D image processing capacity
on cloud

Medical image
diagnosis mobile
application

Mobile Apps for
medical imaging

iOS and Android applications on
smartphone and tablets to support full image
review and diagnosis operations

Medical image
diagnosis desktop
application

Desktop application
for medical imaging

Client application on desktop to load, read,
save, process and report on medical images
just like traditional PACS clients

Network connection Fibre Internet/Gigabit
Intranet

Dual fibre connection if available to support
reliable connection from hospital to regional
cloud

5.4 System Architecture of MIC

There are two major parts in the regional imaging cloud system: hospitals and cloud
of regional centre. To ensure the best speed, quality and capacity of massive
medical image processing, system architecture should work a guaranteed service
provider on the network. In this case, the image cloud computing service provider is
China Telecom. The overall system architecture is illustrated as Fig. 4.

Local medical image data generated by medical equipment like CT/X-Ray will
be uploaded to cloud in real-time via the gateway M-Box in a secured channel.
After the image raw data is stored and processed instantly by the powerful cloud
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computing centre, doctor could review and process the image data on desktop
computers and mobile terminals without delay, and diagnosis and reporting could
be done afterwards.

5.5 Data Logic Architecture of MIC

In accordance with the system architecture, the data generated from the hospital will
be uploaded and stored in the cloud and processed for cloud access later. The
overall data flow process involves several steps (as shown in Fig. 5):

(1) Medical equipment pushes raw data to gateway;
(2) Gateway preprocesses data upload to the cloud;
(3) Cloud receives data and processes it for storage on cloud Object-Oriented

Storage (OOS) [15];

Fig. 4 System architecture of medical image cloud
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(4) Cloud offers service management and cloud PACS and Radiology Information
System (RIS) for universal access (e.g. desktop and mobile applications) over
the Internet.

5.6 Software Architecture of MIC

The medical image cloud system consists of three parts: computing service system,
data management system and OOS cloud storage system. Computing service sys-
tem and data management system are constructed in clustering architecture, which
supports linear scalability, can be extended from a single server to multiple servers
according to the volume of business volume. Gigabit network is in place to support
internal data exchange within the cloud system.

Fig. 5 Data logic architecture of medical image cloud
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(1) Computing service architecture
The computing service system architecture is shown as Fig. 6.

The computing service system architecture consists of four layers:

(1) Data Layer: designed for medical image processing and computing, consists of
multiple servers. These arrays do not need to face external access directly, and
only communicate with the Process Layer via different functional centres such
as patient centre, filming centre and image centre. Its scale of computing could
grow depending on the computation demand, and the overall elastic increment
on cloud would assure the smooth capacity upgrade and guarantee the per-
formance for medical imaging operations online.

(2) Process Layer: designed for data process workload distribution and balancing,
consists of multiple provider groups where each group contains one or more
providers. Each provider connects functional centres in the data layer. Each
server requires an independent external network IP for data exchange. Network
bandwidth is to be allocated depending on data volume from external.

(3) Access Layer: designed for account management for user identification and
verification, consists of two servers, one for disaster recovery redundancy, and
these two servers do not need to have public network IP address.

(4) Device Layer: generally refers to terminal devices over the Internet and con-
nected to the cloud via Network Address Translation (NAT) from Intranet,
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Database

Filming CentrePatient Centre Image Centre
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Desktop

Internet/NAT

Account Manager

Load Balancer (Groups)

MobileLaptop Tablet M-Box

Fig. 6 Software architecture of medical image cloud
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which include designated M-Box from medical devices, Laptops, desktops,
tablets, and smart phones with applications.

5.7 Data Management System Architecture of MIC

The data management system architecture is shown as Fig. 7.
Data management system architecture consists of three parts on top of devices:

(1) Storage Arrays: consists of multiple servers for medical image storage. These
arrays do not need to face external access directly, and only communicate with
the transfer servers. Its scale of computing could grow depending on the
computation demand, and the overall elastic increment on cloud would assure
the smooth capacity upgrade and guarantee the performance for medical
imaging operations online.

(2) Transfer Servers: consists of multiple servers for receiving and sending the
medical image data from clients, user identification and verification. Each
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Task Servers

Devices
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Store 1 Store N

X-Ray

Internet/NAT

Receiver 1

CT MRI...

M-Box M-Box M-Box

Receiver N

Fig. 7 Data management system architecture of medical image cloud
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server requires an independent external network IP for data exchange. Network
bandwidth is to be allocated depending on data volume from external.

(3) Task Servers: consists of two servers for task access and distribution with
including one as disaster recovery redundancy, and these two servers share a
single network IP address for users to access from external.

5.8 Standards and Interfaces of MIC

(1) Medical image standard
In order to work with different medical devices and equipment from different
vendors, it is important to have the whole system data for storage and processing be
compliant with international standard in medical image, which currently is
DICOM3.0 [14].

(2) Interface with hospital
The interface between a hospital and the medical image cloud is implemented by
Front-end Processor (FEP). There are two types of FEPs for different scenarios. One
is blade server on rack in top hospitals that connects multiple CT/MRI/X-Ray
machines, and the other is a small box at the size of a set-top-box that deals with
one single medical imaging device. Both machines work in Linux. It is quite simple
and easy to setup for interface, a normal installation process of FEP takes only
about 30 min (Fig. 8).

The major functions of FEP include:

(1) Receiving/pulling device from local PACS or medical imaging device
workstation;

(2) Uploading data to cloud with automatic routing;
(3) Data returning and synchronization of image data;
(4) Medical image data encryption and compression.

FEP gets data from local PACS in two different modes:

Fig. 8 DICOM3.0 and front-end processor

344 J. Hu et al.



The first mode is use of PACS image data automatically routing. Automatic
routing means is a basic file transfer function of a PACS system [2]. By predefining
the destination machine’s IP address for image transfer, this function automatically
transfers the image files to the destination (usually a radiologist’s computer) once
the image files are generated. It saves time for radiologist to pull the data from the
device to their computers. To route the image data to the FEP, just need to add data
receiving terminal’s IP, Port, AETitle in the system, and on the FEP, just need to
add DICOM parameters (i.e. FEP IP, Port, AETitle, PACS etc.), then the data
received from PACS will be uploaded automatically to the cloud.

The second mode is DICOM Query PACS image data. This query function is
also another basic function of PACS, supported by all PACS vendors [4]. The only
difference here is the FEP fetches data from PACS or workstation automatically,
and only the PACS or workstation needs to set related parameters (e.g. IP, Port,
AETitle) to allow FEP fetch the data, and rest process of upload to the cloud is the
same as that in the first mode.

In order to maintain the data consistency, the FEP also supports data returning
and synchronization. After the data from hospital PACS is uploaded to the cloud,
whenever it is requested, the local hospital PACS could acquire the same raw data
from the cloud down to PACS, only in a reversed order to the upload process.

6 Cloud-Based Mobile Healthcare Services

The medical image cloud provides three different front-end entries: Yizhen website
[28], a mobile app (for iPad, iPhone and Android), and a desktop application. The
website is mainly used for business services such as registration and teleconsultation,
while the standalone applications are used to execute the image processing tasks.

6.1 Services Enabled on Applications in MIC

Both basic and advanced functions are supported in medical image processing
services on desktop and mobile applications.

Types Function descriptions

Basic functions Mobile medical image review
2D image processing (grayscale adjustment, measurement, tag and
annotation)

Ultrasound application module
3D image processing (density projection, surface reconstruction, volume
reconstruction, etc.)
2D image chord processing, DSA subtraction angiography
Full lung reconstruction, coronary extraction

(continued)
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(continued)

Types Function descriptions

Advanced
functions

Automatic boning

Stenosis analysis
Operation mode (1:1), virtual operation
Stereoscopic display, 3D printing interface (3D printers needed)

6.2 Care Services Enabled on the Website

The website actually enables a full workflow in RIS for radiology department. The
processes enabled on the website are listed as follows:

No. Processes Process descriptions

1 Registration and
booking

Automatically or manually arrange booking according to
requirements

2 Queuing and number
calling

Queue management and supporting queue number calling
when connects to big screens with speakers

3 Medical image
examination

Get ready to operate the medical equipment and transfer the
image data to cloud

4 Medical image review Viewing the image cloud with advanced features in
processing

5 Tele-consultation and
tele-diagnosis

Initiate and manage group consultation, filing report online

6 Report review and
audit

The final reports on medical images could be reviewed and
audited online before released to patients

The external and internal processes are described as Figs. 9 and 10.

Fig. 9 External process of medical image cloud
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6.3 Operational Services Enabled on MIC

The medial image cloud platform also supports other services related to operations
such as image statistics, image management, user account and organisation account
management, FEP monitoring and early warning in operation.

No. Processes Process descriptions

1 Event warning Automatic warning on FEP error and offline, cloud storage close to
limits, account membership expiry

2 Image statistics Real-time statistics on upload images by equipment, date/month for
operational monitoring

3 Image
management

Managing the availability and correctness of the images on cloud

4 Accounts
management

Management organisation’s account registration and allocate
doctor’s personal account for access

5 FEP
monitoring

Real-time comprehensive monitoring of all FEPs’ status (e.g. CPU,
memory, HD I/O, network) for smooth business operation

6.4 Comparison in Operational Costs Between MIC
and Traditional PACS

The comparison between medical image cloud solution and traditional PACS
system in operational costs are as follows. Clearly cloud-based solution is very
cost-effective especially for those secondary and primary level hospitals.

Fig. 10 Internal process of medical image cloud
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Item Medical image cloud Traditional PACS

Initial investment
(Software/hardware)

0 Millions RMB

Implementation Extremely simple (one M-Box, one
network cable)

Complicated (servers,
software system
configurations)

Deployment time Very fast (from hours to days) Long (normally
6 months+)

Storage cost Clear and explicit accounting (e.g.
DR, CT by case and type)

Hundreds of thousands
RMB

System maintenance
cost

0 10–15% of initial cost

Shared computing
room cost

0 High (increasing yearly)

6.5 Basis for Medical Image Big Data

By getting more and more volume and types of data on the cloud, the medical
image cloud contributes to a base for medical Big Data in the future. In the overall
Big Data analysis process, medical image data mining plays an important role,
which is considered an advanced feature and function of medical image cloud.

(1) Medical image data mining approaches
Medical image data mining mainly works in two models: function-driven model
and information-driven model [1].

Function-driven model is to use different functional modules for specific
requirements, normally involves image acquisition (extracting image data from the
image database), image pre-processing (image feature extraction and storage),
search engine (using image features for inquiry), and knowledge discovery (using
image data analysis algorithms to find the related data, characteristics and
relationships).

Information-driven model works on contents of the images. It starts from
meaningful segmentation of images based on original characteristics using data
mining algorithms and domain knowledge, then carries out higher-level analysis,
and derives more accurate and understandable semantics [29]. Normally the model
works at four different levels accordingly from pixels, objects and semantics to the
highest knowledge level.

In the context of medical image cloud, it is more effective to use the information
driven model by making use of annotated/embedded information in DICOM image
data and related EMR information.
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(2) Medical imaging big data task force
Medical imaging big data is the most challenging subdomain in interdisciplinary
medical big data research and development [5]. Requirements and solutions may
vary depending on disease contexts. It is so complicated that neither doctors nor IT
experts could work out a successful solution alone. It requires close cooperation
between clinical experts (domain knowledge) and IT experts (computing technol-
ogy). An experimental task force for medical image big data is now initiated
between hospitals and companies specialised in medical imaging.

The operation model of the multi-discipline task force works like this: “medical
experts describe the requirements → engineering specialist provide technical
solutions → Medical experts verifies results” in order to solve the dilemma. Led
by famous doctors in top teaching hospital, medical experts collate medical records
and related information especially medical image data disease by disease. IT experts
then start to build models on the pre-organised data for machine learning and cross
referencing. With powerful computation capacity on the cloud, intermediate results
could be shown to medical experts for evaluation or approval, and to make
adjustment to algorithms and even original data/information sets if necessary. By
experimenting on certain diseases first, and extend to other diseases later, gradually
build an efficient medical big data research framework, and eventually to be applied
in clinical practices.

7 Case Study: Cloud Teleconsultation in Real Practice

7.1 Processes of Cloud Teleconsultation

In order to demonstrate how mobile healthcare works on cloud in real practice, a
scenario of teleconsultation is illustrated as an example, it happens quite frequently
when junior doctors face difficult and complex cases and ask for senior doctor’s
help. Part of the tele-consultation practice process is illustrated as Fig. 11.

It is a relatively simple process. The requester initiates the teleconsultation, and
sends the invitation to one or multiple recipients in the same hospital or other
collaborative hospitals, and wait for the advice and report back from the telecon-
sultation in the end. The requester could join the discussion over the phone or on
the cloud if needed. A corresponding detailed process flow of the requestor in real
practice is shown as Fig. 12.

On the teleconsultation receiver side, the cloud will send out a notification
message automatically when the request is initiated. When the consultant receives a
mobile message, he/she could then log on to the website, and follow the instructions
on the website or mobile phone, view the medical image on the cloud and fill in the
necessary form for advice and comments for the requester. The corresponding
processes are shown as Fig. 13.

Technologies and Practices: Mobile Healthcare Based on Medical … 349



During the cloud image viewing process, it could be opened from cloud via
desktop application as shown in Fig. 14, or via mobile applications as shown in
Fig. 15 (note: images below are for illustration purpose, not necessarily correspond
to each other).

Fig. 11 Example: process of teleconsultation on cloud
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7.2 Recommended System Specification for MIC

In terms of recommended system specification in implementation, the system
actually requires no special configuration apart from a high-speed (20 Mbps plus)
network connection between the front-end gateway FEP (provided by the manu-
facturer) sitting between the medical imaging device and the Internet all compu-
tation is done on the cloud. The only thing requires for the desktop client side is an
up-to-date browser (e.g. Chrome) on a typical mainstream office desktop computer
(e.g. Intel i3 with 2 GB RAM). The mobile client runs very smoothly on any

(Step 1). invitation: choose the patient 
record and click “initiate teleconsultation”:

(Step 2). Choose “recipient in the same 
organisation” or “recipient in other 
organisation”:

(Step 3). Select doctor (same organisation/
other organisation), click “next”:

(Step 4). Set time, fill in the notes for 
consultation, click “finish”.

(Step 5) After the teleconsultation, 
complete the diagnosis report and publish 
the report.

Fig. 12 Requestor process illustration
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mainstream Android and iOS smart phones with 2 GB RAM, preferably with 4
screen for better viewing result.

7.3 Photos of Teleconsultations on MIC and More

It would be interesting to see some photos of teleconsultation and other applications
on medical image cloud in real practices (Figs. 16, 17 and 18).

(Step 1) On the top right corner of the 
interface, click "My mailbox" to view 
and select the consultation request.

(Step 2). Check the teleconsultation 
details.

(Step 3) Accepts the consultation 
request.

(Step 4) Choose “continue” or “check 
image”.

(5) check the consultation information 
and fill in the comments, then publish.

Fig. 13 Receiver process illustrations
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Fig. 14 Cloud RIS desktop application screenshot

Fig. 15 Android App screenshot 1: CT, screenshot 2: ultrasound
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These photos present a recent successful case just launched in China. Under the
support from local Health and Family Planning Commission, a regional medical
image cloud is now online, which covers over 8 million residents across 2 city
districts and 9 counties, connects 1 referral hospital, 20 secondary county hospitals,
and 107 primary level health centres. This project is highly approved and appraised
by local government that it is nominated as one of the model projects of “top 10

Fig. 17 Left A regional medical imaging centre in China; Right using medical image cloud for
education

Fig. 16 Two different teleconsultation rooms with big screen TVs connected to the cloud

Fig. 18 Left cloud imaging in operating room; Right using tablet in department rounding
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practical projects for the people in 2016 in the region”. This example shows that
medical image cloud is also feasible, practical at the small regional levels organised
by regional hospitals, and it is replicable to other regions in different part of China.

8 Conclusions and Future Work

To address the most challenging issue of mobile imaging service in mobile
healthcare and to form a solid base for future medical Big Data processing in
healthcare, this chapter systematically presents an innovative medical image cloud
solution. This chapter not only describes how a medical image cloud is imple-
mented, but also shows how technology solutions like medical image cloud could
contribute to a regional hierarchical medical system construction in China by
connecting medical experts and patients safely and seamlessly on the cloud across
the traditional hospital barrier. With dedicated system architectural design and
enabled collaborative processes such as teleconsultation, the medical image cloud
enables easy installation and configuration of a cloud-based PACS, universal access
of different types of medical image data on various terminal including desktops,
tablets and smart phones. From the management and operational perspective, the
medical image cloud assures mobile healthcare quality, reduces care costs for both
government and patients, provides reliable, secure, and convenient access to
medical images for doctors and patients, and literally creates a win-win ecosystem
in modern healthcare system in China.

Current hardware products and software architecture in the presented medical
image cloud system are mature and stable for large scale deployment in China.
A promising direction for future development would be medical image Big Data
analysis. This has been a world-class challenging issue in healthcare information
technology industry. Based on the powerful computing capacity and
constant-growing medical image data and related medical information on cloud,
medical experts could now work closely with computing scientists towards a
promising breakthrough in Medial Image Big Data will be expected in the near
future.
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Large-Scale Innovations and Approaches
for Community Healthcare Support
in Developing Nations
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Abstract Over the past two decades, many large-scale innovations have been
designed for the individuals’ information support in improving public healthcare.
Studies show rapidly growing interests on cloud computing and telecommunication-
based technologies such as mobile-based innovations that are mainly evident in form
of improving the social healthcare support systems for community, organisations
and individuals. Approaches for various innovations to healthcare support delivery
enable people to build on their strengths and to improve the independence and
overall wellbeing in the community. The objective of such innovations for com-
munity healthcare has been well-established in developed nations, but still emergent
to achieve various goals for many developing nations. A lot of application aspects
are therefore under-researched to achieve the outcomes such as for encouraging
healthy lifestyle choices [4, 8], for individual’s wellness monitoring [31], and in
providing general-healthcare information and advice for self-management [21]. This
chapter describes issues of the innovative large-scale technological developments for
the community healthcare and well-being in context of developing nations, from an
angle of service receivers’ perspective. The discussion in the chapter will also
capture on various useful large-scale technologies and their effective provisions. In
relation to the software-as-service and other forms of cloud technologies as well as
the mobile health infrastructure are discussed as they would be useful for the benefit
of healthcare service receivers, and through them how individuals can be able to
achieve services in the community for enhanced self-management-oriented
healthcare.
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1 Introduction

Large-scale computing technologies become essential in improving healthcare
systems, especially both to improve processes for efficient care facility and to
address organisational and managerial changes in industries. Approaches for vari-
ous innovations to healthcare support delivery enable people to build on their
strengths and to improve the independence and overall wellbeing in the community.
Implications of large-scale computing provisions, such as cloud computing and
relevant telecommunication service options such as e-health and m-health (mobile
health) for improving healthcare delivery, demonstrate potential to significantly
improve the accessibility and quality of public or community health and their
well-being. The service related to public health includes advisory, emergency and
any form of consultation support, treatment and enhanced patient diagnosis through
the provisions of m-health and cloud computing are well-established in developed
nations [11, 27] but still emergent to fully adopt the applications in many devel-
oping nations.

The limitations of medical resources and skilled healthcare professionals are
common in rural areas of developing nations. Specifically, resources and healthcare
expertise on various support care are inadequate in most of the district towns of
developing countries. Network of transportation are also not robust in rural and
remote areas; however, wireless and cable based infrastructure and Internet facilities
are quite rapidly growing (3G mobility), in rural areas of developing countries [32].
It is due to new research on sustainable and demand-driven technological provi-
sions development. There are scopes to develop sustainable large-scale techno-
logical solutions for healthcare industry to maintain and improve information
dissemination in relation to various supports such as diagnosis, clinical consulta-
tions and for business operations in rural areas.

Cloud computing can be seen as large-scale computing resources as the tech-
nological provisions are demand-driven, end-user enabled, resource pooling based
and easy to access and manage [3]. For instance, [3] propose a cloud computing
based solution for diagnosing neurological diseases in developing countries. The
solution uses patient’s voice sample for diagnosing the diseases via mobile appli-
cation. The system uses an artificial neural network classifier for the diagnosis.
Rural patients can communicate to healthcare professionals if they use Internet to
access the cloud-based solution through their mobile or other form of computing
tool. The cloud-based solution also ensures large-scale infrastructure as a service,
large-scale platform as a service (PaaS), and user demand oriented large-scale
software as a service [3]. Such huge hierarchical view can exemplify the devel-
opment and use of sustainable public healthcare in order to meet its diverse
demands across the huge population.

A large-scale technology in from of telecommunication infrastructure base,
m-health provides health service through mobile communication on medical issues
and diagnosis of both—well-known and complex diseases, by electronically con-
nected to healthcare professionals who are geographically dispersed. The growth of
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m-health adaptations in forms of telemedicine, mobile applications, telehealth, and
telematics are widely accepted provisions for their service delivery capability and
they successfully address issues to bridge social and economic gaps between rural
and urban communities [24]. Such m-health infrastructure improves access and
provides options for various health services to enhance wellbeing and quality of life
of underserved people who are living in the rural, regional and remote locations.
For the huge population, m-health innovations have been gained numerous atten-
tions to both—researchers and service industries, because of its basis is on
telecommunication infrastructure. Since telemedicine has become a prosperous
evidence to be an useful approach for information exchange and transferring,
mobile phone convert as an ubiquitous electronic tool for rather than communi-
cation and shopping [16].

Having mentioned about the provisions of the large-scale computing technolo-
gies for improving rural healthcare, it is imperative task for exploring aspects that
are under-researched but hold promises to achieve potential improvements for the
rural communities, such as, for encouraging healthy lifestyle choices [4, 8], for
individual’s wellness monitoring [31], and in providing healthcare information and
advice for self-management [21]. The aim of the chapter is to describe issues of the
innovative large-scale technological developments for the rural community
healthcare and well-being in the developing nations. The discussion in the chapter
will also capture on various useful large-scale technological innovations and their
effective provisions for improving public healthcare delivery.

The chapter is organised through five sections as follows. The Sect. 2 presents
background of relevant large-scale technologies for various healthcare service
innovations. The section after that provides two vital but common general solution
frameworks for enabling healthcare services to rural community. The next section
presents the issues of the service provisions followed by a discussion and further
research directions drawn from the study.

2 Large Scale Innovations

The innovations around the large-scale technologies have demonstrated its positive
impacts on the structural transformation in organisations, specially for achieving
various business, economic and social objectives. Tegenu [26] described that

Large scale technologies are the means for the reallocation of resources between and across
sectors, particularly in a country such as Ethiopia where there is high population growth
and pressure. I am of the opinion that incremental approach to technological change in a
model designed for small scale production does not help us to cope up with the demand and
speed of growing population of the country (pp. 1).

In healthcare sector, digital healthcare became a rapidly-growing discipline that
deals with various ICT based innovations for addressing health service problems
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and challenges encountered by healthcare professionals, patients and relevant
administrative managements. The healthcare is a multi-disciplinary platform in
which different sectors are interconnected to serve the healthcare operations and
functions, therefore complex and large computing technologies for improving the
functions and operations are essential for providing benefits to relevant people and
management in organisations [30].

In an editorial note titled “What is e-Health: the death of telemedicine”, Mea
[15] described telemedicine, as a type of healthcare systems, that is related to
medical professionals, while e-health is driven by non-professionals, namely
patients (or, in the e-health jargon, consumers) that hold potentials to drive inno-
vative services of healthcare delivery, typically for general parients’ empowerment
through their freedom of access to relevant information and knowledge. Although
the central focuses of the large-scale innovations are considered as drivers of three
main aspects in organisations: for large-scale change management, for large-scale
integration in service management and for large-scale process maximisations, latest
innovations lead the development and innovation for improving public focused
process and practices, through which empowerment of users is vital for designing
technological solutions.

The ultra large scale technologies are not new aspect in healthcare domain for
meeting various stakeholders’ service demands. The large-scale technologies are
mainly used for addressing integration issues and often with conflicting purposes
where interchangeable needs are necessary. The concept was first introduced by
Northrop et al. [19] as a problem concept for solving issues in the United States
Department of Defence. The technology represents complex IT systems that
involved many stakeholders from multiple organizations, in heterogeneous forms
that signify complex dependencies and growing properties. Northrop et al. [19] also
reported on key characteristics of the ultra large scale technologies that can be
viewed as aspects for innovations. The aspects of innovations development are
given below:

• Technological provisions for managing decentralized data and their operational
control.

• Technological features for continuously addressing conflicts and incompre-
hensible requirements.

• Technological improvement for evolving operational capabilities.
• Technological improvement for continuously meeting user’s demand for

encountering failure and exception.
• Technological features that are required for acquisition of new knowledge,

policy and control methods for re-adjustments.

The country wide national healthcare system can have lots of benefits from the
concept of an ultra large scale system. National healthcare builds on projects that
demands not just from the cutting-edge innovative technological development, but
involved latest software, system engineering and operations managements of
information processing systems. Although Sullivan [25] explained the ultra large
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scale system as a “Cyber-Social Systems Approach” for meeting the demand of
cyber-infrastructure requirements for healthcare system, all most none of the studies
previously, so far, discussed the ultra large scale digital technologies for the
advancement of the public access, their empowerment and appropriate service
delivery options for their self-management.

3 Common General Framework of Large Scale
Innovations

Various public-focused healthcare innovations have been introduced over the past
few years for the developing nations. Such large-scale innovations are mainly for the
purpose of countrywide healthcare service delivery. Two vital technologies are used
as the basis: cloud computing and telecommunication based such as mobile-based
service allows options both—healthcare professionals for maintaining and moni-
toring heath records, collaborate with healthcare professionals, analyse patient health
record (PHR) as well as for patients for their freedom of information access.

3.1 Cloud Based Innovations

Relatively new information technologies based research movement such as cloud
computing provides a strong infrastructure and offer a true enabler for e-health
services over the Internet. Cloud computing is a large-scale ICT service model
where computing services (both hardware and software) are delivered on-demand to
customers over a network in a self-service fashion, independent of device and
location [14]. Cloud computing adopts a service oriented architecture that enables
functionalities in form of an integrated e-health system in order to offer various
inter-operable software services [12]. Such services exchange and share healthcare
data among patients, healthcare workers/professionals, facilitators, nurses, and
doctors in order to improve the overall quality of healthcare diagnosis and con-
sultation offered to people. The adoption of cloud computing for e-health introduces
many opportunities to innovate healthcare service delivery in various ways, espe-
cially for developing nations. However, existing e-health solutions utilized in
developing nations has been incomplete, under quality remarks, inefficient and in
most of the cases, requires extensive internal and external resources and consid-
erations to be operationalised [6, 9].

As mentioned earlier the end user or internal system can be a part of cloud based
platform that services can be as Infrastructure as a Service, Software as a Service,
and Platform as a Service in order to ensure appropriate and effective storage,
processing, and controlling services for supporting applications without physical
computing hardware or devices. This clearly represents an option with none or
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minimal technological intervention needing at user-end and enable less chances of
service interruption or access restrictions, as long as the Internet connection is
provided. Two vital examples of cloud computing based innovations for the ben-
efits of public healthcare are given in the section below, for better understanding on
the growing demand of the field.

Framework 1

Hossain and Muhammad [11] reported an innovative country-wide approach of
cloud-based system in which a platform for collaborative services were offered
among service or care-givers and healthcare professionals. In the large-scale sys-
tem, cloud computing provisions mainly facilitated an environment for effective
collaboration by considering a voice pathology assessment scenario, in which all
stakeholders such as healthcare professionals, care-givers and patients in the
communities can collaborate to assess voice pathology, using an extensible mes-
saging and presence protocol and the sensing capability of the smart phones’s
audio components [11]. This collaboration was mainly aimed for delivering quality
patient care.

Figure 1 illustrates the overall framework which is developed based on the
model of Hossain and Muhammad [11]. In the framework, a patient can give his or
her voice through a smartphone, which is used as a media sensor then the media
content server (a component of the cloud-based framework) receives and transmits
it to the other node, cloud manager. The could manager then sends the voice data to
a collaborative service manager for uploading the information to the website for the
use of a family doctor. The collaborative service manager are key part of the
framework dedicated to the extraction of features from the patient’s voice, to
modelling pathological samples or/and to classifying the samples.

After analysing the doctor prepares a report or feedback for sending it to col-
laborative service manager. If the family doctor needs to check the report by an
external doctor, the report can be accessed by the doctor and they can analyse the
report prior to process in the collaborative service manager for storage. The patient
can get the feedback from the doctor from the CM. One of the main problems of
this collaboration between the patients and the doctors is to maintain the quality of
the voice during transmission, because pathological voice is already noisy [11].
Central focuses are to empower patient community by giving them option to
actively collaborate and participate for their own potential health monitoring,
quality care, and decision.

Framework 2

Miah et al. [16] introduced a consultancy system utilizing cloud computing that
enabled healthcare professionals and field workers to identify and treat
non-communicable diseases in rural and remote communities. The framework is
called as ‘‘On-Cloud Healthcare Clinic”. Figure 2 illustrates below an overall
architecture of the solution.

According to Miah et al. [16], the idea of designing the cloud-computing tool is
mainly the intermediary tier through which patients were introduced and linked up
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with the doctors. Such cloud-based approach could be local hospitals or in a form of
healthcare centres. Access to the cloud based service was managed through local or
assisted IT services. The solution structure allowed front-end applications at end
users’ level that can be seen as an extension to this, addressing the problem on
intermediary assistance, and shifting the burden of data inputs to the patient. This
option also enables monitoring and assessment role at intermediate level. For
various diseases management, such solution can work with body sensors, wearable
monitors and other specialised devices potentially to generate accurate data as
required in real time, and without necessitating physical travel.

Mobile Network

Cloud
Manager

Resource 
Allocation 
Manager

Collaborating Service 
Management

Internet Cloud

Server

Database

Monitoring 
Unit

Fig. 1 Solution framework of the cloud based collaborative environment for patients

Fig. 2 Solution framework of On-Cloud Healthcare Clinic
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The cloud computing solution provides storage support for patient initials
records, patient medical history, and diseases conditions with treatments details for
mobile healthcare professionals. Access controls via login forms, and registration
processes for new patients have been designed for web access using technologies
such as MySQL and PHP in the server side. Appointments are managed through the
features of the system that were populated from the database of existing medical
records, input—verified by healthcare workers. Using open or cloud-based software
means, the solution is not locked into proprietary data forms or devices and liable to
commercial pricing concepts.

In the cloud-based system, healthcare professionals also are to be registered with
their expertise and availability details. Load balancing allocations can be naturally
handled in the cloud, so the system was entirely scalable, and because it is located
on cloud, appears unified to the people in the community for their information aids.
Person specific details and medical conditions are formulated in terms of medical
‘‘rules of thumb” that begin to specify diagnosis and other information control and
delivery to specific actions [16].

The cloud-based approach allows storage of detailed record of workflow, tests or
medicines required, time spent and the like, making both individual and collective
pricing and informing future resourcing and provisioning decisions. There is no
overhead for such record keeping, as it is all mediated within the flow of the system.
Healthcare professionals can do evaluation through patient details and concerns,
perform an initial diagnosis, so that they can convey additional advice through the
system, in case any further diagnostic tests are required or emergency is considered.
That does mean that healthcare professionals and patient can meet up online as
required through an intermediary platform [16].

Medicine prescriptions or lifestyle adjustment guidance can be provided and
followed up on over time, especially in the case of diabetes treatment, as a case. In
the same way, details of healthcare professionals and healthcare workers can be
populated for the coverage of areas. They are also in terms of providing necessary
support during and after healthcare professionals’ specific patient consultation
process. Comprehensive reporting for the patients the system provides options for
healthcare professionals but any complete online-based healthcare system would
need to be monitored for patient data security and privacy details [16].

3.2 M-health Innovations

M-health aims to provide health professionals, patients, clinicians and other rele-
vant users with information support services to manage, disseminate, collect,
administer, control and monitor healthcare information and improve health service
delivery and quality of care support. The service eliminates geographical and
temporal constraints while enhancing the coverage, quality, cost savings and other
user provisions of healthcare [7, 18, 28]. Moreover, the m-health innovations allow
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acquisition, monitoring, forecasting, sharing and control of various health condi-
tions. Such provision is designed for healthcare personnel and patients with various
needs to make decisions regarding treatments and care support, and administration
requirements for developing anytime-anywhere service support. Illustrative exam-
ples include: m-health systems for remote patient monitoring [5], disease prevention
and wellbeing [29], knowledge exchange [22] and medication management [13].

Many current m-health innovations are, however, designed that encompass steps
or iterations for identifying and analysing requirements, designing or implementing
a system solution and testing the system within the problem domain. For instance,
Radzuweit and Lechner [23] utilised prototyping for designing a consultation ser-
vice that supported effective interaction between individuals and health profes-
sionals. Oluwafemi and Olanrewaju [20] proposed a patient communication
solution through messaging but, although the study used phases such as design,
development and evaluation, the authors did not evaluate the solution with the
target user patient group. In the following sections two vital frameworks are
introduced for better understanding on the growing demand of the field. Milošević
et al. [17] used a basic software engineering methodology for designing an m-health
application for community well-being by monitoring individuals’ health conditions
such as physical activity, weight and heart activity. The methodology consisted of
common phases such as problem definition, (mobile) architecture design and
implementation. Many of the m-health innovations designs, however, did not
develop the large-scale capacity and evaluate the solution capacity directly or
indirectly with the target user groups.

Framework 1

Wayne and Ritvo [31] designed a health coach intervention for patients with dia-
betes in the community that promoted adoption and maintenance of health beha-
viours. The solution framework was so-called “Connected Health and Wellness
Platform Health Coach app” offers advisory support for helping people to attain
personal goals through their intrinsic health-oriented motivations. The
smartphone-based application framework supported multi-channel communications
between stakeholders such as patients in the community and health (professionals)
coaches and supportive family members. The solution framework in a form of
prototype version established positive gains in terms of medication adherence and
improved psychological functioning, as the people’s positive illness-coping
strategies [31].

According to Wayne and Ritvo [31], the solution framework was collaboratively
developed by application designers and researchers to support participants in
electronically tracking health behavioural matters. These matters are mainly exer-
cise, diet, stress reduction practices and self-monitoring health data such as—blood
glucose, blood pressure, mood, pain, and level of energy. In the solution frame-
work, security provisions were vital for the service provider-patients interactions
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through the two-way communication channel in which certificate-based authenti-
cation and individual’s password were encrypted with entered data recalled by the
patients and healthcare professionals or service providers. Figure 3 illustrates an
example of mobile healthcare support system for rural communities.

Framework 2

Thomas and Wing [27] introduced an innovative m-health approach so-called
“Health-E-Call” and the main objectives of the innovative smartphone application
was to determine whether key components of behavioural weight loss treatments
such as self-monitoring, feedback, and skills training could be accomplished and
potentially enhanced. The idea was to reducing the need for intensive care for
person specific treatment. Main aim of the solution is to enhance patient’s
self-monitoring, given the importance of this skill for successful weight loss. Use of
an electronic handheld device already popularised not only for self-monitoring
improved adherence to the self-monitoring procedures, but also to improve accu-
racy of self-monitoring. Figure 4 illustrates an example GUI of this type of
mobile-based applications. The vital outcome measures in the system were weight
loss and devotion to the self-monitoring procedure and transparent reporting for
self-satisfaction by patients [27].

Fig. 3 Example solution framework of a mobile healthcare support system for rural communities
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4 Potential Aspects of General Large-Scale Framework

In this section potential aspects in which various applications are designed are
described. For both technological innovations top ten aspects are only given as case
demonstration. The findings are collected through a literature review study to
investigate relevant literature in both fields. Following Figs. 5 and 6 represent
various aspects of existing application design through the innovations of cloud
computing and m-health technologies.

The importance of utilizing cloud computing for providing health analysis,
diagnosis and consultancy made strong argument for it to be adopted for rural and
remote communities where a trained professionals or nurses would be able to record
and enabled the entry of data on cloud based e-health systems using preferably
mobile computing devices. With the extensive usage of mobile computing and
telecommunication infrastructure, such a system solution would be feasible to quick
design and implement for meeting any healthcare information service demands. The
mobile platform allowed for direct healthcare professional patient discussion for
effective medical diagnosis, monitoring, consultations and follow-up.

Fig. 4 Example GUI of a
mobile-based approach
(adopted from [27])
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5 Discussion

In this book chapter, large-scale innovations and approaches for community
healthcare support have been discussed. The aim was to focus the emergent tech-
nological perspectives in healthcare for developing countries. We focused on two
divergent of large-scale technologies related innovations with their applications.
These are cloud computing and telecommunication infrastructure for m-health that
were described with its provisions and benefits for improving healthcare support
and service delivery for citizen/patients in developing countries. The discussion
also highlighted existing aspects of both cloud and telecommunication based
interventions that could be of paramount for underdeveloped nations particularly
when they aim to adapt large-scale computing resources through the implementa-
tion of cloud computing and m-health systems/services. Based on the theoretical

Fig. 5 Various aspects of cloud computing based application innovations
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analysis, a conceptual framework was proposed that combines both cloud and
mobile computing provisions as a platform of large-scale healthcare service.
Figure 7 illustrates the diagram of the combined solution platform.

Fig. 6 Various aspects of m-health based application innovations

Fig. 7 Conceptual framework of a large-scale healthcare service

Large-Scale Innovations and Approaches … 371



In developing countries, the public healthcare situation is considerably over-
looked over the past years. The situation has changed a lot in the current era.
Government, NGOs and private organisations are concerned to put forward their
effort and financial budgets to improve the situations. Relevant researchers are keen
to investigate the practical issue for meeting the complex healthcare demand of
rural communities. South-Asian developing countries have large remote popula-
tions, but lack of balanced medical and healthcare expertise. For example, Ban-
gladesh has only one healthcare professional for every 1700 patients, against a
Millennium Development Goal of at least 2.5 healthcare professionals per 1000
people [32]. The healthcare sectors in Bangladesh are undeveloped due to inap-
propriate use of ICT for the need of the remote communities [16]. The majority of
the population in Bangladesh live in remote areas without access to modern
healthcare facilities and specialized hospitals [2, 10, 16].

The government authorities in developing countries have been considered the
public healthcare a priority agenda due to the growing interests of the international
donner and aids agencies such as United Nations and World Bank. Without
large-scale technologies it would be nearly impossible to deliver a satisfactory and
effective level of health care for the public demand of medical support. One of the
reasons of that is, the healthcare and its underlying issues are include from large and
widely spread population. Most of the nations at their developing stage or still lack
of medical infrastructure due to many issues such as organisational heritages and
bureaucracy in civil services, and limited financing for improving healthcare sector
[1]. In some cases, there is a recognised shortage of well-trained healthcare pro-
fessionals and nurses but they do not have required skills and motivation to work on
a large-scale technological platform for providing support services to rural and
regional people. In some other cases, telecommunication infrastructures and support
services are quite advanced, with extensive and rapidly growing coverage. They
just need to commence new projects on large-scale systems development. Devel-
oping large-scale system solutions utilizing these infrastructures such as cloud
computing therefore suggests functional methods to deliver healthcare services to
meet the demand of individuals in rural areas.

6 Conclusion and Future Aspects for Research

The chapter discussed both the issues and potential solutions for more sustainable
healthcare service delivery. In this chapter, we reinforced on the requirements of
developing large-scale technologies for the communities in developing nations. We
reinforced the requirement of a comprehensive approach using cloud-based and
telecommunication based technologies for various aspects such as community care,
treatment support, patient self-management support, medical consultation support
etc. we also discussed various examples in Sect. 4 for both technological diver-
gence. We focused on the public care aspect, but professionals at specific problem
domain may have their own opinions about a variety of different system that may be
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used involving different management concerns that were not covered in the chapter.
We may only covered the technological aspects on limited organizations that may
not have appropriate reflections in terms of resource allocations and infrastructure
required associated to particular service management. Although the cloud-based
solution can support flexibility and easier access to real-time data and mobile
infrastructure can support every-where any-where access and presence, both tech-
nological provisions involve common issues of security and privacy of information
and integrity of data or information resources including access control policy and
other legislative and management concerns.

Although individual or end user computing techniques have grown to a
sophisticated level, the large-scale technologies and their relevant services through
the use of cloud-based and mobile computing are still in the emergent stage. Many
relevant tools and technologies are still being developed. The topic area introduced
in the chapter on public healthcare aspects of developing nations is just based on
existing studies and concepts. There is a need for considerable research on devel-
oping new knowledge and technological innovations in this field to address the
complex practical demand in public healthcare. The author attempts to bring an
overview of the relevant technological developments and introduce the application
area of large-scale techniques to enhance readers’ knowledge in the field.
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Part IV
Wearable Computing
for Smart Healthcare



Wearable Computers for Sign Language
Recognition

Jian Wu and Roozbeh Jafari

Abstract A Sign Language Recognition (SLR) system translates signs performed
by deaf individuals into text/speech in real time. Low cost sensor modalities, inertial
measurement unit (IMU) and surface electromyography (sEMG), are both useful to
detect hand/arm gestures. They are capable of capturing signs and are comple-
mentary to each other for recognizing signs. In this book chapter, we propose a
wearable system for recognizing American Sign Language (ASL) in real-time,
fusing information from an inertial sensor and sEMG sensors. The best subset of
features from a wide range of well-studied features is selected using an information
gain based feature selection approach. Four popular classification algorithms are
evaluated for 80 commonly used ASL signs on four subjects. With the selected
feature subset and a support vector machine classifier, our system achieves 96.16
and 85.24% average accuracies for intra-subject and intra-subject cross session
evaluation respectively. The significance of adding sEMG for American Sign
Language recognition is explored and the best channel of sEMG is highlighted.
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1 Introduction

According to World Health Organization (WHO), over 5% of the world’s popu-
lation—360 million people—has disabling hearing loss (328 million adults and 32
million children) by March, 2015. Disabling hearing loss refers to hearing loss
greater than 40 decibels (dB) in the better hearing ear in adults and a hearing loss
greater than 30 dB in the better hearing ear in children. The majority of people with
disabling hearing loss live in low- and middle-income countries. Hearing loss may
result from genetic causes, complications at birth, certain infectious diseases,
chronic ear infections, the use of particular drugs, exposure to excessive noise and
ageing. 50% of hearing loss can be prevented by taking medicines, surgery and the
use of hearing aids and other devices. However, there are still a large number of
people who have profound hearing loss which is also defined as deafness. They
often use sign language for communication.

A sign language is a language which uses manual communication to convey
meaning, as opposed to acoustically conveyed sound patterns. It is a natural lan-
guage widely used by deaf people to communicate with each other [1]. However,
there are communication barriers between hearing people and deaf individuals
either because signers may not be able to speak and hear or because hearing
individuals may not be able to sign. This communication gap can cause a negative
impact on lives and relationships of deaf people. Two traditional ways of com-
munication between deaf persons and hearing individuals who do not know sign
language exist: through interpreters or text writing. The interpreters are very
expensive for daily conversations and their involvement will result in a loss of
privacy and independence of deaf persons. The text writing is not an efficient way
to communicate because writing is too slow compared to either spoken/sign lan-
guage and the facial expressions during performing sign language or speaking will
be lost. Thus, a low-cost, more efficient way of enabling communication between
hearing people and deaf people is needed.

A sign language recognition (SLR) system is a useful tool to enable commu-
nication between deaf people and hearing people who do not know sign language
by translating sign language into speech or text [2, 3]. Figure 1 shows a typical

Fig. 1 Typical application of sign language recognition system
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application of sign language recognition system. The SLR system worn by deaf
people facilitates the translation of the signs to text or speech and transfer it to the
smart phones of the people who can hear and speak. The spoken language of
individuals who do not know sign language is translated into sign language
images/videos by speech recognition systems. The speech recognition systems is
not considered in this book chapter. The real-time translation of sign language
enable deaf individual to communicate in a more convenient and natural way.

Similar to spoken languages, different countries have different sign languages.
About 300 sign languages are currently being used all over the world. Due to the
differences, the SLR should be trained and customized for every individual sign
language. In our work, we have considered ASL. ASL dictionary includes thou-
sands of signs, but most of them are not commonly used. In this chapter, 80 most
commonly used signs are selected from 100 basic ASL signs [4, 5]. A sign is made
up by five parts: hand shape, hand orientation, hand location, hand and arm
movement and facial expression. Facial expression is more complicated and is not
considered in this chapter.

Vision-based and glove-based SLR systems are well-studied systems which
capture signs using cameras and sensory glove devices, respectively [6–10].
However, each of these two modalities has their own limitations. Vision-based
systems suffer from occlusion due to light-of-sight factor. Moreover, cameras are
mounted fixed in the environment and thus they can only be used in a limited range
of vision. They are also considered to somewhat invasive to user’s privacy. The
glove-based systems are usually expensive which limits their usage in daily life.

Wearable inertial measurement unit (IMU) based gesture recognition systems
attract much research attention due to their low cost, low power consumption and
ubiquitous sensing ability [11, 12]. An IMU consists of a 3-axis accelerometer and a
3-axis gyroscope. The accelerometer measures 3-axis acceleration caused by
motion and gravity while the gyroscope measures 3-axis angular velocity. A surface
electromyography (sEMG) sensor is able to capture muscle electrical activities and
can be used to distinguish different gestures since different gestures have different
muscle activity patterns [13, 14]. For sign language recognition systems, the wrist
worn IMU sensor is good at capturing hand orientations and hand and arm
movements while sEMG does well in distinguishing different hand shapes and
finger movements when the sensors are placed on the forearm. Thus, they are
complementary to each other capturing different information of a sign and the
fusion of them will improve the system performance [15]. Fortunately, the IoT
platforms offer information from various sensor modalities and thus the perfor-
mance of SLR would be enhanced by data fusion. However, additional sensor
modalities will generate highly complex, multi-dimensional and larger volumes of
data which introduce additional challenges. Challenges to address include increase
in power consumption of wearable computers which will impact the battery life
negatively and reducing the impact of modalities that appear to be too noisy and
will degrade the performance of the classifiers.

In this book chapter, we propose a real-time wearable system for recognizing
ASL by fusing inertial and sEMG sensors. Although such a system has been studied
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for Chinese Sign Language [16], to the best of the authors’ knowledge this is the
first time such a system is studied for the ASL. In this chapter, we first propose an
adaptive auto-segmentation algorithm that determines the period during which the
sign is performed. A wide range of well-established features are studied and the best
subset of features are selected using an information gain based feature selection
scheme. The feature selection determines the smallest feature subset which still
provides good performance. It reduces the possibility of over-fitting and the smaller
feature size is more suitable for wearable systems. Four commonly used classifi-
cation algorithms are evaluated for intra- and inter-subject testing and the signifi-
cance of adding sEMG for SLR is explored. When the best classifier is determined,
the power consumption and the scalability of the classifiers are also considered.

The remainder of this book chapter is organized as follows. The related work is
discussed in Sect. 2. Our lab customized sEMG data acquisition and IMU hardware
platforms are introduced in Sect. 3. The details of our system are explained in
Sect. 4, followed by the experimental setup in Sect. 5. The experimental results are
explained in Sect. 6 and limitations are discussed in Sect. 7. At last, the chapter is
concluded in Sect. 8.

2 Related Work

SLR systems are broadly studied in the field of computer vision with camera as a
sensing modality. Two vision-based real-time ASL recognition systems are studied
for sentence level continuous American Sign Language using Hidden Markov
Model (HMM) [6]. The first system is evaluated for 40 signs and achieves 92%
accuracy with camera mounted on the desk. The second system is also evaluated for
40 signs and achieves 98% accuracy with camera mounted on a cap worn by the
user. A framework for recognizing the simultaneous aspects of ASL is proposed
and it aims at solving the scalability issues of HMM [7]. The signs are broken down
into phonemes and are modeled with parallel HMM. It reduces HMM state space
dramatically as the number of signs increases. Another vision-based SLR system is
studied for a medium vocabulary Chinese Sign Language [17]. It has two modules
and the first module consists of three parts: robust hand detection, background
subtraction and pupil detection. The second module is a tiered-mixture density
HMM. With the aid of a colored glove, this system achieves 92.5% accuracy for
439 Chinese Sign Language words. In another work, three novel vision based
features are learned for ASL recognition [18]. The relationship between these
features and the four components of ASL is discussed. It yields 10.99% error rate on
a published dataset. A Chinese Sign Language recognition system is proposed to
address the issue of complex background in the environment [19]. The system is
able to update the skin color model under various lighting conditions. A hierar-
chical classifier is used which integrates Linear Discriminant Analysis (LDA),
Support Vector Machine (SVM) and Principle Component Analysis (PCA).
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Glove-based SLR systems recognize signs using multiple sensors on the glove.
They are usually able to capture finger movements precisely. A glove-based Aus-
tralian SLR system is proposed using some simple features and achieves 80%
accuracy for 95 AUSLAN signs [20]. Another glove-based system is studied using
artificial neural network classifier and it offers 90% accuracy for 50 ASL signs [9].
A flex sensor based glove is introduced recently that can be used to recognize 26
alphabets [21].

Similar to glove-based systems, the low cost wearable accelerometer and sEMG
based SLR systems do not require cameras to be mounted at a certain location while
they cost less than glove-based systems. Therefore, this kind of wearable SLR
system is gaining more popularity. The importance of accelerometer and sEMG for
recognizing gestures is studied [22]. The results show accelerometer and sEMG do
well in capturing different information of a gesture and the fusion of them improve
the system performance. In another work, 5–10% performance improvement is
achieved after fusing these two modalities [23]. The sample entropy based feature
set is proven to be effective for both accelerometer and sEMG and the system
achieves 93% accuracy for 60 Greek Sign Language signs using this feature set
[24]. A Chinese SLR framework is proposed fusing data from an accelerometer and
4-channel sEMG sensors [16]. It automatically determine the beginning and ending
of a sign based on sEMG signal strength. Multi-stage classifications are applied to
achieve an accuracy of 96.8% for 120 Chinese signs with sensors deployed on two
hands. At the first stage, LDA is used for both accelerometer and sEMG to detect
hand shape and hand orientation, respectively. In the meantime, a multi-stream
HMM is applied for sEMG and accelerometer features. At the second stage, the
decisions achieved from the first stage are fused with a Gaussian mixture model.
Despite the good performance, multiple stages and multiple classifiers are not
favorable for real-time wearable computers based applications. Recently, the same
group proposes a component-based vocabulary-extensible sign language recogni-
tion system [25]. In this work, the sign is considered to be a combination of five
common sign components, including hand shape, axis, orientation, rotation, and
trajectory. There are two parts of this system. The first part is to obtain the
component-based form of sign gestures and establish the code table of target sign
gesture set using data from a reference subject. In the second part, which is
designed for new users, component classifier are trained using a training set sug-
gested by the reference subject and the classification of unknown gestures is per-
formed with a code matching method. Another system is proposed to detect seven
German sign words with 99.82% accuracy achieved using an accelerometer and one
channel sEMG [26]. However, this work is not extensively evaluated for a large
number of signs and does not include auto-segmentation which makes it difficult to
operate in real time. The major differences between our work and the previous
works are as follows: (1) An adaptive auto-segmentation is proposed to extract
periods during which signs are performed using sEMG. (2) The best feature subset
is selected from a broad range of features using information gain criterion and the
selected features from different modalities (e.g. accelerometer, gyroscope and
4-channel sEMG) are discussed. (3) Gyroscope is incorporated and the significance
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of adding sEMG is analyzed. (4) Although such a system has been studied for
Chinese Sign Language [16], our work is the first study for American Sign Lan-
guage recognition fusing these two modalities.

3 Hardware Description

A. IMU Sensor

Figure 2 shows the 9-axis motion sensor customized in our lab. The InvenSense
MPU9150, a combination of 3-axis accelerometer, 3-axis gyroscope and 3-axis
magnetometer, severs as the IMU sensor. A Texas Instruments (TI) 32-bit micro-
controller SoC, CC2538, is used to control the whole system. The board also
includes a microSD storage unit and a dual mode Bluetooth module BC127 from
BlueCreation. The system can be used for real-time data streaming or can store data
for later analysis. It also has an 802.15.4 wireless module which can offer low
power proximity measurement or ZigBee communication. In this book chapter, the
sampling rates for accelerometer and gyroscope are chosen to be 100 Hz which is
sufficient for the sign language recognition system [27].

B. sEMG Acquisition System

sEMG measures the electrical activity generated by skeletal muscle. Figure 3 shows
a customized 16-channel Bluetooth-enabled physiological signal acquisition sys-
tem. It can be used for ECG, sEMG and EEG data acquisition. The system is used
as a four channel sEMG acquisition system in this study. A TI low power analog
front end, the ADS1299, is used to capture four channel sEMG signals and a TI

Fig. 2 Motion sensor board
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MSP430 microcontroller is responsible for forwarding data to a PC via Bluetooth.
A resolution of 0.4 μV is achieved setting a gain of 1 on the ADS1299. Covidien
Kendall disposable surface EMG patches are attached to skin and the same elec-
trodes are used as introduced in our previous work [28].

Generally, sEMG signals are in the frequency range of 0–500 Hz depending on
the space between electrodes and muscle type [29]. To meet the Nyquist criterion,
the sampling rate is chosen as 1 KHz, which is usually used in surface EMG based
pattern recognition tasks [30].

4 Proposed SLR System

The block diagram of our proposed multi-modal ASL recognition system is shown
in Fig. 4. Two phases are included: training phase and testing phase. In the training
phase, the signals from 3-D accelerometer (ACC), 3-D gyroscope (GYRO) and four
channel sEMG are preprocessed for noise rejection and synchronization purposes.
The sEMG based auto-segmentation technique obtains the beginning and ending of
a sign for both IMU and sEMG. As the segmentation is done, a broad set of
well-established features are extracted for both IMU and sEMG signals. All
extracted features are then put into one feature vector. The best feature subset is
obtained using an information gain (IG) based feature selection scheme. Four
different classifiers are evaluated (i.e. decision tree, support vector machine,
NaïveBayes and nearest neighbor) on the selected feature subset and the best one is
selected. In the testing phase, the same techniques are repeated for preprocessing
and segmentation. The selected features are extracted and recognition of the sign is
achieved by the chosen classifier.

Fig. 3 8-channel sEMG acquisition system
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A. Preprocessing

The synchronization between IMU and sEMG data is important for fusion. In our
system, IMU data samples and sEMG data samples are sent to a PC via Bluetooth
and time-stamped with the PC clock. The synchronization is done by aligning
samples with the same PC clock. Bluetooth causes a transmission delay (5–20 ms)
for both IMU and sEMG data and this small synchronization error is negligible for
the purposes of our system. To remove low frequency noise in sEMG, a 5 Hz IIR
high pass filter is used since the frequency components of sEMG beyond the range
of 5–450 Hz are negligible [31]. The raw data is used for accelerometer and
gyroscope.

B. Segmentation

Automatic segmentation is crucial for real-time applications. It extracts the period
during which each sign word is performed such that the features can be extracted on
the correct segment before classification is done. For certain parts of some signs,
only finger movements are observed and no obvious motion signal can be detected
from the wrist. Thus, sEMG signals are used for our automatic segmentation
technique since sEMG signals can capture larger number of movements.

To explain our segmentation technique, we first define the average energy E of
four sEMG channels in an n sample window in Eq. (1). Sc(i) denotes ith sample of
cth channel of sEMG. m is total number of channels which equals four in our case.
A non-overlapping sliding window is used to calculate E in every window. The
length of the window is set to 128 ms, which covers 128 samples with the 1000 Hz
sampling frequency. If E in five continuous windows are all larger than a threshold
T, the first sample of the first window will be taken as the beginning of a gesture. If
E in four continuous windows are all smaller than the threshold, the last sample in
the last window is considered to be the ending of this gesture.
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m

c=1
s2cðiÞ ð1Þ

Different people have different muscular strengths which will result in different
E. A simple threshold may not be suitable for all subjects. An adaptive estimation
technique is proposed to adjust the threshold according to different subjects and
different noise levels on-line. The proposed approach is explained in two steps. In
the first step, the average energy E is calculated for five continuous windows. If all
five E is smaller than a * T, it is assumed no muscle activity is detected and the
threshold is updated with b * T in the second step. a is called the converge
parameter and this reduces the threshold T when quiet periods are detected. b is the
diverge parameter which enlarges the threshold T as the noise level increases. The
values of a, b and T are set to be 0.5, 4 and 0.01 for the system empirically. 0.01 is
much bigger than E for all subjects and the user is requested to have a 2–3 s quiet
period at the beginning of system operation to have the system converge to a
suitable threshold.

C. Feature Extraction

A broad range of features have been proposed and studied for both sEMG and IMU
sensors for recognizing activities or gestures. In this chapter, these well-studied
features are investigated [32–36]. Tables 1 and 2 list features and their dimensions
from sEMG and IMU, respectively. The sEMG features are extracted for all four
channel signals and the total dimension is 76. The IMU sensor features are extracted
for 3-axis accelerometer, 3-axis gyroscope and the magnitude of accelerometer and

Table 1 SEMG features

Feature name (dimension) Feature name (dimension)

Mean absolute value (1) Variance (1)
Four order reflection coefficients (4) Willison amplitude in 5 amplitude ranges (5)
Histogram (1) Modified median frequency (1)
Root mean square (1) Modified mean frequency (1)
Four order AR coefficients (4)

Table 2 IMU sensor features

Feature name (dimension) Feature name (dimension)

Mean (1) Variance (1)
Standard deviation (1) Integration (1)
Root mean square (1) Zero cross rate (1)
Mean cross rate (1) Skewness (1)
Kurtosis (1) First three orders of 256-point FFT coefficients (3)
Entropy (1) Signal magnitude area (1)

AR coefficients (10)
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gyroscope. The number of total IMU features is 192. The sEMG and IMU features
are cascaded into a 268 dimension feature space.

D. Feature Selection

For classification, it is important to select the most useful features. There are usually
two approaches to select the most useful features. The first approach is to define
most useful and relevant features from a domain expert. For those experts who are
familiar with their field, they usually know what the useful features are for certain
tasks. The second approach is to select a certain subset features from an extensive
number of features. Since even a domain expert may not be aware of all best
features, thus the second approach is preferred. In this chapter, we use the second
approach to select a subset of features from a wide range of features. It reduces over
fitting problems and information redundancy in the feature set. It is also helpful if a
small feature set is required by certain applications with limited computational
power.

There are three different feature selection methods which are filter methods,
wrapper methods, and embedded methods [37]. Wrapper methods generate scores
for each feature subset based on a specific predictive model. Then, cross validation
is done for each feature subset. Based on the prediction performance, each subset is
assigned a score and the best subset is chosen. Filter methods use general mea-
surement metrics of a dataset to score a feature subset instead of using the error rate
of a predictive model. Some common measures are mutual information and
inter/intra class distance. The embedded methods perform the feature subset
selection in conjunction with the model construction. In our work, an information
gain filter method is used in conjunction with a ranking algorithm to rank all the
features. The best n features form the best feature subset which is evaluated with
different classifiers. The choice of n is discussed in Sect. 5. Compared to wrapper
methods, the features selected by filter methods will operate for any classifier
instead of working only with a specific classifier.

E. Classification

Four commonly used classification algorithms are investigated in this chapter:
decision tree (DT) [38], support vector machine (LibSVM) [39], nearest neighbor
(NN) and NaiveBayes. The implementations of these classifiers are achieved by
Weka, a popular open source machine learning tool [40]. LibSVM uses radial basis
function (RBF) kernel and uses a grid search algorithm to determine the best kernel
parameters. The default parameters are applied for other classifiers. In machine
learning, it is usually hard to determine which classifier is more suitable for a
specific application and thus it is worth testing several algorithms before we choose
one.
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5 Experimental Setup

A. Sensor Placement

The signs can involve one hand or two hands. In our work, we only look at the right
hand movements for both one-hand or two-hand signs. If they system is deployed
on two hands, it will increase the recognition accuracy. Figure 5 shows the sensor
placement on right forearm of the user. Four major muscle groups are chosen to
place four channel sEMG electrodes: (1) extensor digitorum, (2) flexor carpi radialis
longus, (3) extensor carpi radialis longus and (4) extensor carpi ulnaris. The IMU
sensor is worn on the wrist where a smart watch is usually placed. To improve
signal-to-noise ratio of sEMG readings, a bi-polar configuration is applied for each
channel and the space between two electrodes for each channel is set to 15 mm
[41]. The electrode placements are also annotated in the figure.

B. Data Collection

In this chapter, we selected 80 most commonly used ASL signs in daily conver-
sations. The data is collected from four subjects (three male subjects and one female
subject). The subjects performed the signs for the first time and did not know the
ASL prior to the experimentation. For each subject, the data collection includes
three sessions which were performed on three different days. During each session,
all signs were performed 25 times. The dataset has 24,000 instances in total.

Inertial 
Sensor

Fig. 5 Placement of sEMG
electrodes
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C. Experiments

To evaluate our system, four experiments are carried out: intra-subject testing, all
cross validation, inter-subject testing and intra-subject cross session testing. In
intra-subject testing, the data from the same subject from all sessions are combined
and for each subject, a ten-fold cross validation is conducted. Ten-fold validation
means that the data is split into 10 parts randomly and the model is trained with 9
parts and is tested on the 10th part. This process is carried out 10 times and the
average performance outcome is considered the cross validation result. In all cross
validation, all the data from different subjects from different days are combined.
The ten-fold cross validation is performed similarly. In the inter-subject testing, the
model is trained with data from three subjects and is tested on the fourth subject.
This process is repeated four times. The feature selection for the first three
experiments is performed during all cross validation since it has all the data and it
will offer better generalization for classification models. The fourth experiment is
called intra-subject cross session testing. The feature selection and model training
are done with two sessions of data from the same subject and tested on the third
session. This process is repeated three times for each subject and the average is
taken over. The experiment indicates how well the model will perform with new
data and a new subject.

6 Experimental Results

A. Auto-segmentation

In this chapter, no gold standard (e.g. video record) is included to determine the
accuracy of our auto-segmentation technique. However, we approximately evaluate
our auto-segmentation performance by looking at the difference in the number of
signs each subject performed and the number of signs our system recognized. We
define an error rate as in (2):

ER=
detected nums− performed numsj j

perfomed nums
ð2Þ

detected nums and performed nums are the numbers of signs our algorithm detected
and numbers of signs the user actually performed, respectively. Our approach
achieves 1.3% error rate which means our auto-segmentation algorithm performs
well. The intra-subject classification results in Sect. 5. C also indicate suitable
performance of the segmentation.
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B. Feature Selection

All features are ranked with information gain criterion and the features with highest
scores are chosen to form the best feature subset. To decide the size of best feature
set, all cross validation is performed on four different classifiers as feature subset
size increases from 10 to 268.

Figure 6 shows the accuracies of four classifier as the selected feature size
increases. All classifier accuracies increase as the feature size increases. However,
when the feature size is larger than 120 for the LibSVM and nearest neighbor, the
accuracies decrease due to the over-fitting. This proves the feature selection is
necessary. Table 3 shows the data points for four classifiers when they achieve the
best accuracy.

It is shown in Fig. 6, when feature subset size becomes 40, LibSVM already
offers 96.16% accuracy. The feature size is determined to be 40 in order to save
computational cost for wearable systems. Among the 40 features, the numbers of
features selected from different sensors are shown in Table 4. More than half of the
features are selected from accelerometer which means accelerometer plays the
principal role in recognizing signs. Accelerometers measure both gravity and
acceleration due to the motion. Gravity is the major part of accelerometer mea-
surements and captures the hand orientation information. It indicates hand orien-
tation plays a more important role when recognizing different signs. 10 gyroscope
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Fig. 6 Results of feature selection

Table 3 Optimal data point of feature selection

Classifier Optimal point
(feature number, accuracy) (%)

NaiveBayes (270, 82.13)
Neareast neighbor (120, 98.73)
Decision tree (100, 78.00)
LibSVM (120, 98.96)
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features are chosen which indicates the hand and arm rotation is also important. It is
necessary to include sEMG sensors since nine features are selected from sEMG.

To have a better understanding of the importance of each individual feature, the
rankings of 40 features are listed in Table 5. In the table, Acc_x, Acc_y and Acc_z
represent accelerometer readings along x-axis, y-axis and z-axis, respectively.
Similarly, Gyro_x, Gyro_y and Gyro_z are gyroscope readings along x-axis, y-axis
and z-axis, respectively. From the table, the accelerometer contributes to the most
highly ranked features which means the most significant modality of our system is
the accelerometer. The gyroscope features are not as highly ranked as the
accelerometer, but they have higher rankings than sEMG features. From the table,
sEMG contribute least among all three. Among accelerometer and gyroscope fea-
tures, the most important ones include mean, integration, standard deviation, RMS
and variance. Mean absolute value, variance and RMS are valuable features for
sEMG signal. One interesting observation of sEMG features is that four selected
features from channel one have higher ranks than the others from channel two and
channel four. Channel one is placed near the wrist where a smart watch is usually
worn. In reality, if only one electrode is allowed, channel one could selected and it
can be integrated into a smart watch without introducing a new device.

C. Classification Results

Table 6 shows the classification results of intra-subject testing on four subjects. In this
experiment, each classifier is trained and tested with data from the same subject. We
can see that nearest neighbor and LibSVMachieve high accuracies while decision tree
classifier obtains the lowest accuracy. Nearest neighbor classifier is a lazy learning
classifier and it does not require a trained model. In the testing phase, it compares the
testing instance with all instances in the training set and assigns it a same class label as
the most similar instance in the training set. It will require a large computation power
as the number of training samples increase and thus is not suitable for our wearable
SLR system. LibSVM trains a model based on training data. As the size of training set
increases, it only increase the training time without affecting the time needs in testing
phase. This is crucial for real time wearable computer based applications. Therefore,
LibSVM is selected for our system. The results achieved for 80 signs are consistent
with the results obtained for 40 signs in our prior investigation [42]. It indicates our
technique scales well for intra-subject testing.

Table 7 shows classification results of all cross validation. For all classifiers, the
classification results with sEMG and without sEMG are given. The performance
with sEMG is when the performance achieved using all 40 selected features while

Table 4 Number of features selected from different sensors

Sensor Number of feature selected Sensor Number of feature selected

Accelerometer 21 sEMG2 2
Gyroscope 10 sEMG3 0
sEMG1 4 sEMG4 3
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performance without sEMG is when the performance obtained using 31 features
selected from accelerometer and gyroscope. The performance improvements by
adding sEMG are also listed in the table. Among four classifiers, LibSVM achieves
the best performance in accuracy, precision, recall and F-score while NaiveBayes
gives the worst performance. The accuracy, precision, recall and F-score are very
close to each other for all classifiers which indicates all classifiers achieve balanced
performance on our dataset. With 40 features, LibSVM achieves 96.16% accuracy.
It is consistent with the results (95.16%) we obtained for 40 sign words with 30
features in our prior study [42]. This proves the scalability of approach for all cross
validation test.

Table 5 Fourty selected features

Rank# Feature
name

Rank# Feature name Rank# Feature name Rank# Feature name

1 Mean of
Acc_y

11 RMS of
Gyro_x

21 RMS of sEMG1 31 Signal
magnitude
area of Acc_x

2 Mean of
Acc_z

12 RMS of
amplitude of
accelerometer

22 Zero cross rate
of Acc_y

32 Variance of
sEMG4

3 RMS of
Acc_x

13 Mean of
amplitude of
accelerometer

23 Variance of
Gyro_z

33 Entropy of
Gyro_x

4 RMS of
Acc_z

14 Mean of Acc_x 24 Standard
deviation
Of Gyro_z

34 RMS of
sEMG4

5 RMS of
Acc_y

15 Signal
magnitude area
of Acc_x

25 Variance of
Acc_y

35 Signal
magnitude
area of
Gyro_x

6 Integration
of Acc_y

16 Standard
deviation
of Acc_z

26 Standard
deviation
of Acc_y

36 Zero cross rate
of Acc_z

7 Integration
of Acc_x

17 Variance of
Acc_z

27 Modified mean
frequency of
sEMG1

37 Mean absolute
value of
sEMG4

8 Integration
of Acc_z

18 Standard
deviation
of Gyro_z

28 Mean absolute
value of sEMG1

38 Signal
magnitude
area of
Gyro_z

9 Entropy of
Acc_x

19 Variance of
Gyro_x

29 First
auto-regression
coefficient of
Acc_x

39 RMS of
sEMG2

10 RMS of
Gyro_z

20 Variance of
sEMG1

30 Mean absolute
value of sEMG2

40 Mean of
amplitude of
gyroscope
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The improvement after adding the sEMG modality is most significant for
NaiveBayes classifier. It achieves about 15% improvement for all four classification
performance metrics. However, for our chosen classifier LibSVM, the accuracy
improvement is about 4% while the error rate is reduced by 50%. It indicates the
sEMG is necessary and significant. The significance of sEMG is further analyzed in
next section.

Figure 7 shows the average accuracy of inter-subject testing for both 80 sign
words and 40 sign words. The figure shows none of four classifier achieves good
performance. LibSVM is still the best classifier. There are three reasons for such
low accuracies. First, different people perform the same signs in different ways.
Second, all subjects in our experiment are first time ASL learners and never had
experience with ASL before. Even though they follow the instructions, the gestures
for the same signs are different from each other. Third, different subjects have very
different muscular strength and thus leading to different sEMG features for same
signs. From the comparison between accuracy of 40 signs and 80 signs, our
technique offers low accuracy for all classifiers consistently. The low performance
suggests our system is not suitable for inter-subject applications and it is recom-
mended that our system should be trained on each individual to provide good
performance.

Table 6 Results of intra-subject validation

NaiveBayes (%) DT (%) NN (%) LibSVM (%)

Subject 1 88.81 83.89 96.6 98.22
Subject 2 97.01 91.54 99.16 99.48
Subject 3 92.74 81.97 92.89 96.61
Subject 4 91.15 77.98 95.77 97.23
Average 93.68 83.85 96.11 97.89

Table 7 Results of all-cross validation

NaiveBayes (%) DT (%) NN (%) LibSVM (%)

Accuracy with sEMG 63.87 76.18 94.02 96.16
Accuracy without sEMG 48.75 68.93 87.62 92.29
Improvement 15.12 7.25 6.4 3.84
Precision with sEMG 66.9 76.3 94.0 96.7
Precision without sEMG 51.8 69.0 87.7 92.3
Improvement 15.1 7.3 6.3 4.4
Recall with sEMG 63.9 76.2 94.0 96.7
Recall without sEMG 48.8 68.9 87.7 92.3
Improvement 15.1 7.3 6.3 4.4
F-score with sEMG 63.6 76.2 94.0 96.7
F-score without sEMG 47.6 68.9 87.6 92.3
Improvement 16.0 7.3 6.4 4.4
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The first three experiments show our system achieves suitable performance if the
system is trained and tested for the same subject and the system obtains less ideal
performance for inter-subject testing. We further investigate how well the system
will generalize for new data collected in future for the same subject. Figure 8 shows
the results of the intra-subject cross session testing in which the feature selection is
performed and the classifier is trained with two days data from the same each
subject and is tested on data of the third day for the same subject. This process is
repeated three times for the same subject and the accuracy measures are averaged.
We can see that both NaiveBayes and decision tree yield poor accuracies while
LibSVM offers best accuracy. Table 8 shows the average accuracy of different
classification algorithms between four subjects. LibSVM achieves 85.24% which is
less suitable than the 96.16% of intra-subject testing. Two reasons may explain this
performance decrease. The first reason is that the user may have placed the sensors
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at slightly different locations for the sEMG and IMU sensors, and with a slightly
different orientation for the IMU sensor. The second reason is that all four subjects
are first time learner who have not developed consistent patterns for signs. They
may have performed the same signs somewhat differently on different days.

D. Significance of sEMG

From the analysis of inter-subject testing in previous section, the error rates for the
accuracy, precision, recall and F-score are reduced by about 50%. In this section, we
analyze the importance of sEMG in details. From the previous discussion,
accelerometer and gyroscope are more important than sEMG. However, in ASL,
there are some signs that have similar arm/hand movement and different hand shape
and finger configurations (e.g. fist and palm). For these signs, they will have similar
accelerometer and gyroscope readings and the IMU is not able to distinguish these
signs. The sEMG is able to capture the difference of these signs since they will have
different muscle activities. Figure 9 shows an example of sequences of postures
when the user is performing two signs ‘Please’ and ‘Sorry’. We can see from the
figures, the arm has the same movement which is drawing a circle in front of chest.
The inertial sensor will offer same readings for these two different signs. However,
the hand is closed (i.e. fist) when performing ‘Sorry’ while it is open (i.e. palm)
when performing ‘Please’. This difference can be captured by sEMG and thus they
will be distinguishable if sEMG is included.

Table 8 Results of
intra-subject cross session
testing

Classifier Accuracy (%) Classifier Accuracy (%)

NaiveBayes 50.11 NN 81.37
DT 46.01 LibSVM 85.24

Fig. 9 Sequence of postures when performing ‘Please’ and ‘Sorry’
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In order to show how sEMG will enhance recognition performance of each
individual sign, the improvement on the true positive (TP) rate of each individual
sign is investigated. TP rate is rate of true positive and true positives are number of
instances which are correctly classified as a given class. Figure 10 shows the TP
rate improvement for 80 signs and the improvement is sorted in descend order.
From the figure, we can see that for most of signs (last 29–80), the rate of
improvement is within the range of [−5, 5]%. However, for the signs from 1 to 11,
the improvement is bigger than 10% which is very helpful for recognizing these
signs. In Table 9, 10 signs are listed with the highest TP rate improvement. We can
see that ‘Sorry’ and ‘Please’ are both improved significantly since they are confused
with each other. In reality, it is important to eliminate the confusion between signs
which have similar motion profile but different sEMG characteristics. Therefore, the
sEMG is significant for our system.
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Table 9 10 signs with most
TP rate improvement

Sign ID Sign Improvement (%)

29 Thank 21
19 My 18.2
9 Have 16.7
24 Please 16.7
37 Work 16.5
57 Tall 14.3
67 Girl 13.9
26 Sorry 13.8
76 Doctor 12.5
66 Boy 12.5
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7 Limitations and Discussion

The wearable inertial sensor and sEMG sensors based sign language
recognition/gesture recognition systems have become more and more popular in
recent years because of low-cost, privacy non-intrusive and ubiquitous sensing
ability compared with vision-based approaches. They may not be as accurate as
vision-based approaches. A vision-based approach achieves 92.5% accuracy for
439 frequently used Chinese Sign Language words [17]. Although we have not
tested for such a large number of signs, it may be challenging with wearable inertial
and sEMG systems to recognize such a big number of signs. Another disadvantage
with wearable inertial sensor and sEMG based sign language recognition system is
that the facial expression is not captured.

In our study, we observe that the accelerometer is the most significant modality
for detecting signs. When designing such systems, if fusion of multiple modalities is
not possible, the suggested choice order of these three are: accelerometer, gyro-
scope and sEMG. The significance of sEMG is to distinguish sets of signs which
are similar in motion and this is crucial for sign language recognition. For some
gesture recognition tasks, if gesture number is not big and there are no gestures
which are very similar in motion, one inertial sensor may be sufficient for the task to
reduce the system cost.

Our system offers high accuracy for both 40 signs and 80 signs for intra-subject
testing and all cross validation. This shows our system is scalable for American
Sign Language recognition if the system is trained and tested on the same subjects.
However, very low accuracy is achieved for inter-subject testing which indicates
our system is not very suitable for use on individuals if the system is not trained for
them. We have talked to several experts of American Sign Language and they think
it is reasonable to train for each individuals since even for expert, they will perform
quite differently from each other for the same signs based on their preference and
habits. This is the major limitation of sign language recognition systems. Our
system is studied and designed to recognize individual signs assuming a pause
exists between two sign words. However, in daily conversation, a whole sentence
may be performed continuously without an obvious pause between each words. To
recognize continuous sentence, a different segmentation technique or other possi-
bility models should be considered.

Machine learning is a powerful tool for different applications and is gaining a lot
of popularity in recent years in wearable computer based applications. However, it
is important to use it in a correct way. For different applications, different features
and different classifiers may have significantly different performance. It is suggested
to try different approaches to determine the best one. The other point is that the
classifier parameters should be carefully tuned. In our approach, if we do not choose
the correct parameters for LibSVM, only 68% accuracy can be achieved.
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As IoT emerges, the information from different sensing modalities could be
explored. When designing applications, data from different sources should be
considered and verified if they are complementary and the fusion of the modalities
could potentially enhance the application performance.

8 Conclusion

A wearable real-time American Sign Language recognition system is proposed in
this book chapter. This is a first study of American Sign Language recognition
system fusing IMU sensor and sEMG signals which are complementary to each
other. Our system design is an example of fusing different sensor modalities and
addressing computation cost challenge of wearable computer based SLR due to the
high-dimensional data. Feature selection is performed to select the best subset of
features from a large number of well-established features and four popular classi-
fication algorithms are investigated for our system design. The system is evaluated
with 80 commonly used ASL signs in daily conversation and an average accuracy
of 96.16% is achieved with 40 selected features. The significance of sEMG to
American Sign Language recognition task is explored.
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Real-Time, Personalized Anomaly
Detection in Streaming Data for Wearable
Healthcare Devices

Bharadwaj Veeravalli, Chacko John Deepu and DuyHoa Ngo

Abstract Ubiquitous deployment of low cost wearable healthcare devices and
proactive monitoring of vital physiological data, are widely seen as a solution for
the high costs and risks associated with personal healthcare. The healthcare data
generated from these sensors cannot be manually analyzed for anomalies by clin-
icians due to its scale and therefore automated techniques has to be developed.
Present approaches in literature depends on accurate detection of features from the
acquired signal which is not always realistic due to noisy nature of the ambulatory
physiological data obtained from the sensors. In addition, present anomaly detec-
tion approaches require manual training of the system for each patient, due to
inherent variations in the morphology of physiological signal for each user. In this
chapter, we will first introduce the system architecture for wearable health-care
monitoring systems and present discussions on various components involved. Then
we discuss on the complexities involved in realizing these methods and highlight
key features. We then present our experiences in extracting the ECG segments in
real-time and detecting any anomalies in the streams. Particularly, we apply
real-time signal processing methods and heuristics to estimate the boundary limits
of individual beats from the streaming ECG data. We discuss the importance of
designing methods, which are blind to inherent variations among multiple patients
and less dependent on the accuracy of the feature extraction. The proposed methods
are tested on public database from physionet (QTDB) to validate the quality of
results. We highlight and discuss all the significant results and conclude the chapter
by proposing some open-ended research questions to be addressed in the near
future.
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1 Introduction

Healthcare expenditure has been steadily increasing worldwide over the past several
decades. This increase is primarily attributed to (1) a fast aging population and
declining birth rates, (2) chronic conditions which need sustained medical care, and
(3) focus on treatment of diseases rather than pro-actively preventing it. Cardio-
vascular diseases (CVDs) is one of the major contributors for this spending and is
one of the leading causes for death [1]. It is noted that even with the large spending
on CVDs, 47% of all CVD related deaths happen outside of the hospital premises
[2]. All of these triggered a renewed interest in developing wearable healthcare
systems which can proactively monitor the user’s health to reduce the risks and
costs associated with personal healthcare. Thanks to ultra-low power circuit design
and device integration, several miniature wearable sensors which can continuously
acquire user’s physiological signals like Electrocardiogram (ECG), Bio impedance
has been developed [3–8].

The top level architecture of a wearable healthcare monitoring setup is illustrated
in Fig. 1. The physiological signals like ECG, from the subject is continuously
acquired using wearable sensors and is streamed in real-time to a gateway device.
Typically, low power radios like Bluetooth Smart are used in the wearable sensor
for data transfer. The gateway can be a dedicated hardware device or simply a
smartphone app, which collects data from all connected sensors and transfers it to a
cloud server. The data collected in the cloud server is constantly examined for
signal patterns that matches potentially anomalous conditions. Also various pre-
dictive algorithms that can identify different types of arrhythmias can be deployed.
A client interface web application can be used to visualize real-time data streaming
from the sensor.

Electrocardiogram (ECG) signal, which represents the electrical activity of heart,
is one of the most commonly measured physiological signal for monitoring
patients. For healthy subjects, ECG rhythm variations are minimal. Also mor-
phology and timing intervals of various ECG wave segments will be within defined
limits. The variations in morphology, wave timing intervals and rhythm can
potentially an indicator of various ailments that is associated with the human heart.

WiFi/4G

Cloud

Predic ve 

Analy cs 

Client InterfaceGateway 

h p

ECG

Fig. 1 System architecture for wearable healthcare monitoring system
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ECG can be measured in different lead configurations, i.e. from a single lead up to
12 leads. Typical lead configurations are (1) Single lead, (2) 3 Leads which are
typically the limb leads, (3) 6 leads—which includes the limb leads and augmented
leads, and (4) 12 leads, which include the limb leads, augmented leads and the 6
precordial leads.

Different cardiac arrhythmias can be detected by identifying the changes in
rhythm, morphology and timing interval of various segments across all or some of
the 12 leads of ECG Signal. Many of these arrhythmias are ‘asymptomatic’ and
doesn’t cause any noticeable discomfort or uneasiness to the subject in the initial
stages. However, if not treated in-time these can trigger other complex and fatal
conditions. For e.g., Atrial fibrillation an often unnoticed arrhythmia is one of the
leading causes for stroke related fatalities [9]. An early detection of the onset of
these conditions are necessary for responding with treatment options and making
proactive changes in lifestyle. Since many of cardiac arrhythmias are paroxysmal in
nature, regular hospital visits won’t help to identify these ailments [10]. Therefore,
continuous monitoring of ECG is essential to improve the diagnostic yield. Auto-
mated methods for detection of anomalies in ECG signals are needed to continu-
ously analyse the vast amount of data collected.

2 Related Works

There are several approaches proposed in literature for automatic detection of
cardiac conditions. Majority of them focuses on automatic detection of arrhythmias
from single or multi lead ECG signals [11–13]. However, till date none of these
techniques can classify arrhythmias with a high level of accuracy. Often the
algorithms are tuned for lower level false negatives at the expense of higher false
positives. Therefore, participation of clinicians is still essential and often they are
desensitized to the automatic alerts due to large false positives.

Cardiac arrhythmia classification is a pattern recognition task which can be done
using syntactic or machine learning methods. In syntactic methods the features of
ECG signal are carefully extracted using signal processing and feature extraction
methods and after which rules are applied to the extracted features to detect
arrhythmias [14, 15]. For example, a PR interval longer than 0.2 s is potentially
caused by a first degree heart block; a QRS duration greater than 0.12 s could be the
result of a ventricular premature complex [16]. Obviously, the accuracy of this
method extremely depends on the precision of the features extraction. Due to the
ambulatory nature of wearable sensors, the signals acquired by the sensors are often
noisy and hence would require complex signal processing approaches (wavelet
transforms [17], empirical mode decomposition [18] etc.) for accurate feature
extraction.

Machine learning based methods uses a combination of signal features and
morphology as feature vectors [19, 20]. Learning methods such as decision tree
[11], SVM [12], ANN [13], etc., train the model using existing training data,
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annotated by clinicians. The trained classifier can be then used to classify/identify
the real time streaming ECG signals into various arrhythmias. However, the
accuracy of those methods heavily depends on the selected learning schemes and
the distribution of training data. The classification accuracy can be improved by
ensemble learning [21, 22], but it has very high computational complexity. Another
major issue with this approach is that the training data set are often very limited and
has large variation between patients, therefore the classifiers which performs well
on one data set performs poorly with other data sets [23].

Our approach differentiates with the above methods, in terms of the required
ECG signal analysis, to detect the abnormality in ECG pattern. In our technique, we
treat the problem similar to that of anomaly detection problem in a time series data
[24, 25], where precise characteristics of the ECG signal is not necessary to be
extracted. Instead, such methods compare signal patterns within a stream to detect
the anomalies. Most of these methods do not need or need very little of existing data
for configuration of system parameters.

A popular approach in time series data mining is to approximate the streaming
binary data into a sequence of text data. Some approximation methods such as
Symbolic Aggregate Approximation (SAX) [26, 27], Piecewise Linear, and
Piecewise Constant models (PAA) [28] have been widely studied in time series
mining, but might not be useful in ECG data. Our observation is that even for the
same type of ECG heart cycle, the wave timing intervals and morphology varies
among different people. Therefore, those approximations may cause high
inaccuracy.

Some approaches that are closely related to our approach are [29, 30]. We seg-
ment the streaming ECG data and apply DTW algorithm to compare ECG segments.
In [29], author still use some existing data for pre-training system, whereas, in [30],
authors require accurate detection of ECG wave onsets, offsets and peak of P, QRS
and T wave. In contrary, our approach neither requires precise detection of P, QRS,
T waves, nor require any training data for configuring the system.

3 Requirements for Data Analysis Algorithms

To be used for analysing the huge volume of streaming ECG data from wearable
devices, the algorithms should possess the following desirable characteristics.

Single lead based anomaly detection: Although ECG signal can be measured
using up to 12 leads, in the case of wearable devices typically only single lead or
three lead ECG signal is acquired [3]. This is because wearable devices are made to
be minimally obtrusive with small form factors and therefore has minimal number
of leads acquired. For single lead devices typically only lead II signal is acquired.
Many of the existing arrhythmia classification algorithms requires the multiple ECG
leads, i.e. signal from limb leads as well as precordial leads. This is because
arrhythmias can be reflected in multiple ECG leads. Since wearable devices can
pick up only one or a few leads, the algorithm used should be able to work with a
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single lead. It is understood that an accurate identification of a specific arrhythmia
may not be possible from a single lead ECG signal. However, in the context of
wearable devices, detection of an anomaly is good enough to alert the user for a
more thorough analysis at a hospital.

Minimal training or calibration requirements: The algorithm should be able to
detect the anomalous patterns in the streaming ECG with no or minimal pre training
and calibration. For optimal performance in learning based algorithms, significant
amount of training with pre marked ECG signals are required for each patient.
However, this is not practical for real life use cases. The algorithms should be
self-adaptive and no calibration/modifications should bemade for individual subjects.

Low computational complexity and high accuracy: The techniques used for
wearable health monitoring should have a high detection accuracy and lower
computational complexity. Often these two requirements contradict each other and
therefore a balanced tradeoff is desirable. Usage of syntactic or machine learning
methods, which require ECG delineation, wave morphology identification etc. will
increase overall computational complexity due to the complex signal processing
methods involved.

Real-time detection: The algorithms used should be able to detect the anomalies
in the incoming streaming data in a real time fashion. The user/clinicians should be
alerted as and when an event occurs. The storage requirements for past data should
be minimal to limit overall complexity. Some of the existing feature detection
algorithms need to analyze the entire dataset at once to decide on the computational
thresholds which is not practical for real time usage.

The above requirements necessitate simple RR interval based algorithms for
arrhythmia detection, like the one mentioned in [31]. However, RR interval based
algorithms are not able detect abnormalities causing variations in the morphology
of the ECG signal. Therefore, in this paper we propose a novel method for ECG
anomaly detection, which has low computational complexity and yet has high
detection accuracy. The proposed method doesn’t individually identify each
arrhythmia; however, it can classify a cardiac beat as normal versus abnormal based
on the RR interval and the signal morphology. For a wearable health monitoring
system, such a classification is a more appropriate choice, considering the limita-
tions mentioned above. The proposed technique can be used individually for ECG
anomaly detection or in conjunction other arrhythmia detection approaches for
improving its accuracy. The main contributions of this work are:

1. A technique for real-time detection and adaptive segmentation of each cardiac
beat.

2. A method to compute similarity between two adaptive beat segments of different
length.

3. A technique to automatically detect the normal beat for individual patients in the
monitoring process.

4. A fast and effective incremental algorithm to identify abnormal heart beat in the
real-time mode.
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We evaluated the proposed method using publicly available QT database from
physionet library. The QT Database includes ECGs that represent various heart beat
morphologies, in order to challenge detection algorithms with real-world variabil-
ity. The experimental result shows that the proposed approach is suitable to be used
in wearable healthcare monitoring applications.

4 Proposed Methodology

4.1 Overview

The overview of the proposed ECG monitoring technique is shown in the Fig. 2
[32]. The data streamed from wearable ECG device is processed using a real-time
signal processing block which will extract the R-peak locations from the ECG
signal. Typically, the ECG Lead II signal from the wearable device is used for
processing since the morphologies of the normal and abnormal beats can be clearly
and easily distinguished compared to other ECG leads [33]. Once the R-peak is
extracted, the beat segment surrounding the R-peak is identified and fed into the
anomaly detection block. The current beat segment to be monitored is adaptively
detected, so as to make sure to include the P-wave and T-wave from each individual
beat from the ECG Signal. The variations in morphology of these wave segments
may indicate various anomalies. The timing of the onset and offset of T-wave and
P-wave varies among different subjects as well as within the ECG of the same
subject. Hence the wave onsets and offsets has to be detected in real-time to make
sure T-wave and P-wave is included in the extracted current beat segment. How-
ever, the exact detection of the wave onsets and offsets is a complex signal pro-
cessing task [34, 35]. Therefore, to reduce the computational complexity, we used a
heuristic to approximate a left and right signal boundary which will include the all
ECG waves (P-QRS-T) in its entirety. The next sections will describe details about
R-peak detection and how the current beat segment is extracted for anomaly
detection.

Fig. 2 Overview of the
proposed methodology [32]
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Once an adaptive beat segment, which captures the P-QRS-T waves from every
beat in the ECG signal is extracted, a quantitative measurement of similarity of the
adaptive current beat segment with a normal beat segment is to be calculated.
Based on the similarity measure, the current beat can be classified into a normal or
anomalous beat. Since the length of the extracted adaptive beat segments are not
always constant, typical similarity measures like Euclidean distances, Cosine dis-
tances, Correlation measures is not suitable for computation of the similarity
between 2 different beat segments. Therefore, in this work, we propose to use a time
series based similarity measure called discrete time warping, which quickly com-
putes the similarity between beat segments.

Identification of anomalous beat segments from a stream of incoming data is a
time series data analysis task, which is usually complex due to the high dimensional
features of the data objects. Typically, dimensionality reduction is required in such
cases to reduce the computational complexity. However, in the proposed scheme
we converted a multivariate stream of beat segments into a uni-variate stream of
numbers by calculating the similarity measure between the current beat segment
and the normal beat segment and thus limits the computational complexity.
The normal beat segment is identified individually for each subject to represent the
normal status of the heart rhythm during the time of monitoring. However, the
normal beat segment isn’t necessarily a clinically normal beat as found in a normal
sinus rhythm. For e.g., in patients with chronic arrhythmia conditions like left
bundle branch block, the occurrence of a beat segment with arrhythmia is very
frequent compared to the normal sinus rhythm and hence occurrence of normal
sinus rhythm is to be considered abnormal. Therefore, the identification of normal
beat segment must be patient adaptive. An initialization routine, which is one-time
process is used for identifying normal beat segment template for each patient. Once
the normal beat segment template is selected as a reference, the incoming data,
which is a stream of current beat segments are transformed into a stream of
numerical values, where each of them is the measure of similarity between the
current and the normal beat segments. Finally, the online Anomaly detection
technique, described in Sect. 4.5 will detect if the current beat segment is an outlier
among the streaming data, to classify it is as a regular or anomalous beat.

4.2 Real-Time Signal Processing for Extracting Current
Beat Segment

The signal processing block extracts individual non overlapping beat segments
from the incoming ECG data stream in a real-time fashion. The R-peaks from the
ECG stream is detected in real-time using an adaptive linear predictor based QRS
detection technique (Fig. 3) [36]. The linear predictor effectively estimates the low
frequency components of the ECG signal, including the P, T waves and slow
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varying baseline noises. The prediction error computed therefore contains the high
frequency noise components and the QRS segment only. The prediction error is
passed through a Savitzky-Golay (SG) [37] filter which will filter out all the high
frequency impulse noises, while preserving high order moments which corresponds
to the QRS Peaks. The SG filtered signal is further de-noised using a squaring and
moving average filter to smoothen and amplify the QRS peaks. Further, an adaptive
threshold is used to detect the R-peaks from the smoothened signal. The adaptive
threshold used for detection is computed as 25% of average of the past 4 detected
peaks. The overall algorithm is simple with low computational complexity and is
implemented in real-time and operates on the streaming input on a sample by
sample basis. The detection accuracy of the QRS detection scheme was measured
using MIT-BIH Arrhythmia database and found to be very high with a sensitivity of
99.64% and positive predictivity of 99.81%. More detail about the implementation
and evaluation results can be found at [36].

Ideally the current beat segment should start from the onset of P-wave and end at
the offset of T-wave. However, detection of the wave onset and offset involves
using complex signal processing methods. Therefore, to reduce the complexity of
the current beat segment extraction we used a heuristic to estimate the maximum
left and right boundaries within which the onset and offset of the waves are con-
tained (Fig. 4). Once an R-peak (red circle), the beat segment of the previous
R-peak will be extracted as shown in Fig. 4. The boundary estimation is inspired
from [38, 39] and is determined as follows.

Pwindow =QRmax +0.2 ×RRprev +0.1

Twindow =1.5 ×QTcmax ×
ffiffiffiffiffiffiffiffiffiffiffiffi
RRprev

p
−QRmax

Here, QTcmax =0.42 corresponds to the maximum value for the QT coefficient in
Bazet’s formula; and QRmax =0.08 is a half of the maximum of QRS duration [33].
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Fig. 3 Block diagram for the R-peak extraction block
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4.3 Similarity Measure for Beat Segment Comparison

To compare the similarity between beat segments, we propose a modified dynamic
time warping (DTW) based similarity measure. DTW is a common algorithm used
in time series analysis for measuring similarity between two temporal sequences
[40]. It calculates an optimal match between two given sequences (e.g. time series)
with certain restrictions. DTW can compare 2 beat segments of different lengths
while aligning waveforms and peaks that are significantly similar as shown in
Fig. 5. The two ends of the sequences are also involved in the alignment. The
computational complexity of DTW operation is minimal and suitable for real-time
applications as well.

For each of the extracted current beat segment, the beat segment is split into 2
segments w.r.t R-peak, i.e. RP which has length Pwindow and contains left P region,
and RT, which has length Twindow and contains right T region. To compare the
corresponding sequences from the two beat segments, we have implemented a fast

Fig. 4 Adaptive beat
segment extraction [32]

Fig. 5 Dynamic time warping (DTW) distance [32]
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DTW algorithm [41] with warping window constraint [42].The measure of simi-
larity between two beat segments s and t is calculated as below.

DtwDist s, tð Þ=DTW RPs,RPt,wð Þ+DTW RTs,RTt,wð Þ

Here, the value of warping window is chosen that the P wave and T wave do not
overlap the R wave during the DTW alignment. In our experiments, we set
w = 0.1 × Fs where Fs is sampling frequency of the ECG record.

Ideally, a similarity measure should not only be identifying similar beat types but
also distinguish them with the other types based on their morphologies. For
example, in Fig. 6, the similarity measure has to detect beat 2 and beat 6 are highly
similar because they belong to the same type, i.e., normal beat (N). Whereas, they
are highly different with beat 344 (V—premature ventricular contraction) and beat
341 (F—fusion of ventricular and normal beat). Using the proposed DTW based
similarity measure, the distance between beat 6, beat 344 and beat 341 in com-
parison with beat 2 are 5.9984e-04, 0.5851 and 0.2281 respectively. It is obvious
that our proposed DTW measure finds the two beats number 2 and 6 are highly
similar, but clearly different with beats number 344 and 341.

Fig. 6 Example of beat segments in record qtdb/sel114 [32]
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4.4 Extracting Normal Beat Segment

A normal beat segment, which corresponds to the normal status of patient’s ECG
has to be extracted as a reference for performing anomaly detection. The normal
beat segment template should be automatically extracted from the individual’s ECG
stream instead of statistical datasets, as it will vary among different patients. Due to
its quasi-periodic property, most anomalous beat patterns are repeated with irregular
periodicity. Moreover, a normal beat pattern appears much more frequently than an
anomalous beat pattern. Therefore, without the prior knowledge of the data, our
heuristic assigns a normal beat status to the one which occurs most frequently from
the stream, since abnormalities occur intermittently. This idea is widely adopted in
the unsupervised anomaly and outlier detection methods [25, 43] for the real cases.

Algorithm 1: Selection of a normal beat segment
Input: Seg[1:N] : list of extracted beat segments
K : number of partitioned clusters
Output: Inorm : index of the selected normal beat

// build a feature matrix
1. V = {Vi, j = DtwDist(Segi,Segj) | i,j [ 1: N]};

// partition by K-mean algorithm
2. {Clus}[l:K] Kmeans(V, K);

//get the largest cluster
3. MaxClus findMaxSize({Clus}[1:K]);

// internal, external average distances
4. ID [ IDi = avgj MaxClusV(i,j) | i MaxClus];
5. ED [ EDi = avgj MaxClusV(i,j) | i MaxClus];

// select an index for normal beat
6. A [ai = (EDi - IDi) | i MaxClus];
7. Inorm k | ak = max(A);

By adopting this heuristic, clustering analysis techniques have been applied in
order to determine the normal beat status. In particular, the beat segments from the
first 30 s ECG stream are collected and analyzed by K-means clustering algorithm
[44]. The procedure in detail is shown in Algorithm 1. Assume that Seg[l:N] is a list
of beat segments extracted from the first 30 s and are statically stored in the main
(executable) memory. The K-means clustering algorithm will partition those seg-
ments into K clusters. In our approach, we select K = 2 corresponding to normal
and abnormal beats. In order to provide input to the K-means algorithm (See line 1),
the feature matrix V is built by pairwise similarity using DtwDist (ref. Sect. 4.3)
between segments. In the matrix V, each row is a representative feature vector of the
corresponding beat segment. After performing partitioning by K-means algorithm
on matrix V, in line 2, each cluster Clusi contains a list of indices of beat segments
and, in line 3, the largest size cluster MaxClus is selected. For each item i in the
MaxClus, we compute the internal (IDi) and external (EDi) average distances from
the corresponding beat segment to all other beat segments in the same cluster
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(line 4) and to all beat segments outside (line 5). The normal beat will be the one
that has low internal average distance and high external average distance. There-
fore, in lines 6 and 7, we select the index of a normal beat segment by finding the
maximum difference between the two average distances, i.e., ai = EDi − IDi over
all items inside the MaxClus cluster. Thereafter only the normal beat segment is
stored in the memory and other segments are erased for saving memory space.

4.5 Online Anomaly Detection

Once a normal beat segment is identified from patient’s incoming ECG data stream,
the algorithm starts comparing it with current beat segments extracted in real-time
to detect the anomalies. Figure 7 shows an example of comparison from Phys-
ionet QTDB record sel114, when lead MLII is used. The y-axis shows the value of
similarity measure computed in real-time against the normal beat segment which
was identified to be beat 2 (type N).

It can be observed from the Fig. 7, that the numerical values corresponding to
the normal beats (type N) are much smaller than the ones corresponding to other
beats (type V and F). A threshold method potentially can distinguish the normal
beats and abnormal ones. However, finding an appropriate threshold value is a
challenge because the range of values are unknown. Moreover, a fixed threshold
value may work for one patient but fails for the others.

Fig. 7 Transform ECG stream to numerical stream [32]
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Actually, the anomaly detection here is indeed a detection of outliers from the
uni-variate data set, which can be solved by various methods [43]. Among
uni-variate outlier detection methods, Hampel identifier is often found to be prac-
tically very robust and effective. Additionally, in term of dynamic data, a dynamic
Hampel filter obtained by applying the Hampel identifier on moving windows has
been proposed to effectively work with streaming data in different real cases [45].
Based on those advantages, a modification of the dynamic Hampel filter has been
implemented in our approach.

Algorithm 2: Real-time anomaly detection
Input: X: streaming of numerical values,

W: haft-width of moving window,
θ: threshold value for anomaly detection

Output: Anomalylnds: indexes of the detected anomaly

1. Anomalylnds 0;
// stat. info of anomaly

2. N 0; S 0; D 0; lastOutlier 0;
// index of the incoming value

3. i 1;
4. while true do

// suspected index & sliding window
5. I i - W; IW [I - W: I + W];

// median absolute deviation (MAD)
6. Xmedian median (Xk | k IW);
7. DXmedian 1. 4826 x median (abs(Xk - Xmedian));

// Hampel condition
8. rule1 abs(X(I) - Xmedian) ≥ θ x DXmedian;

// 3σ condition
9. rule2 X(I) ≥  lowerBound(N, S, D, 3);

// anomaly detection
10. if rule1 or rule2 then
11. Anomalylnds Anomalylnds U I;

// update stat. infor.
12. N N + 1; S S + X(I); D D + X(I)2;
13. if not rule2 then
14. X(I) Xmedian;
15. lastOutlier X(I);
16. else if not rule1 then
17. X(I) lastOutlier;
18. end
19. end
20. end 

Algorithm 2 summarizes the idea of dynamic Hampel filter as described in [45].
Indeed, for each incoming value Xi from the stream data X, a sliding window X
[i −2 W:i] will be inspected for detecting outlier at center value X(I)| I = i − W
(line 5). On this window, the Hampel breakpoints, i.e., median absolute deviation
(MAD), are calculated at lines 6 and 7. Those values are used in the Hampel
condition (line 8) to check if the center X(I) is an outlier. If it is as an outlier, value
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at index I will be marked (line 10) and the outlier value X(I) is removed by
assigning a current median value of the window Xmedian (line 14).

Due to the locality property of the dynamic Hampel filter, the filter output can be
incorrect when the outliers are continuous and lasting longer than the width of the
moving window. For example, assume that the window data showing in Window 1
in the Fig. 8 are [0.2, 0.6, 0.4, 8.2, 8.0, 8.4, 8.6] with the half-width of moving
window W = 3, threshold θ = 1 and the inspected value X(I) = 8.2 at the center.
According to median absolute deviation (MAD) computation, we have Xme-

dian = 8.0, DXmedian = 0.8896, X(I) − Xmedian = 0.2. Obviously, even with small θ,
the Hampel rule fails. Thus, the center point (red circle) is not detected as an outlier
and its value is kept the same. Consequently, in the Window 2, outlier will not be
detected neither. In order to overcome this problem, we amend a global rule as a
compensation to the Hampel local identifier rule. The statistical information per-
taining to the previous detected outliers will be used to identify the new incoming
outlier. Particularly, at line 9, function lowerBound determines the lower bound
value of the 3σ limits computed from overall detected outliers. The mean value µ
and standard deviation σ can be easily computed through: N—number of data
items, S—sum of all values and D sum of square values.

μ=
S
N
; σ =

ffiffiffiffiffiffiffiffiffiffiffiffi
D− s2

N

N − 1

s

lowerBound N, S,D, 3ð Þ= μ− 3xσ

The second rule will check if the suspected value X(I) is higher the lower bound
value. If the X(I) is detected as an outlier, the statistical information is updated (line
12) and X(I) is replaced by the last updated outlier value (line 17).

Fig. 8 Weakness of moving Hampel identifier over long continuous outliers [32]
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5 Evaluation

The complexity and accuracy of the proposed technique is evaluated in this section.
As mentioned in the requirement section, the proposed method can be used for
anomaly detection in a single lead ECG signal acquired from wearable sensors. The
algorithm doesn’t need long training to start functioning as opposed to typical
machine learning based approaches. The proposed technique comprises several
incremental algorithms that can be used in real-time. In particular, the signal pro-
cessing algorithm given in Sect. 4.2 handles sample-by-sample in order to detect
the R-peak of the heartbeat. Consequently, beat segments can be extracted online
from the streaming ECG data. Thereafter each incoming beat segment is trans-
formed into a numerical value, which is then used in the modified Hampel filter to
detect anomaly in the current moving window in Sect. 4.5. On the other hand, the
identification of normal beat segment in Sect. 4.4 is done offline with static data for
just first 30 s. It run only once during initialization, and thus it does not impact the
real-time monitoring process. In the rest of this section, the computational com-
plexity, memory usage and accuracy performance will be studied.

5.1 Complexity Analysis

The computational complexity and memory usage will be considered for (i) signal
processing block for extracting current beat segment, (ii) morphology-based sim-
ilarity measure, (iii) identification of normal beat segment, and (iv) online anomaly
detection.

In the signal processing block for R-peak detection and current beat segment
extraction, different filters are used for processing and de-noising the data stream.
Assume that the length of filter coefficients is k, then the complexity of convolution
operations performing inside filters for each incoming sample data is O(k). The
convolution requires an array buffer with size k numeric values. On the other hand,
to extract a beat segment, we need a buffer storing 03 consecutive detected R-peaks.
This buffer size is around 3×Fs×60

HR = 750, where Fs = 250 Hz is sampling fre-
quency of the ECG record; HR ≈ 60 bpm is a heart rate value. Therefore, it
requires around 1.5 K (bytes) of memory for buffering 750 numeric 2-byes values.
For computing similarity between beat segments, the time complexity of the fast
DTW algorithm [41] x is O(N), where N is the length of beat segment (around
Fs = 250 samples). Additionally, the memory space used to store input and warp
path is 2 × N ≈ 500 2-byes numeric values (≈1 K bytes). The adaptive setting
component requires memory allocation for storing ECG data in the first 30 s
(around 30 beat segments), which is around 250 × 30 = 7500 samples. It also
needs to store the feature matrix of size 30 × 30 = 900 cells. The total buffering
memory is (7500 + 900) × 2 ≈ 16 K. The computational complexity of the
K-means algorithm for one dimensional data is O(IKN), where, K is number of
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clusters, N is number of data items and I is a fixed number of iterations. However,
this component runs only one time, so with small N ≈ 30, this process can be done
fast. Finally, for the online anomaly detection, the algorithm incrementally works
with a small moving window of data, i.e., an array of numerical values with length
N = 2 W, where W = 5 is set in our approach. Finding median for moving window
is done by rolling median filter [46] which yields a linear-time algorithm.

As per the above discussion, the computational and space complexity of our
approach is relatively minimal and therefore is suitable for deploying in cloud
servers for monitoring several patients at once.

5.2 Accuracy Evaluation

To analyze the accuracy of the proposed technique, we used the physionet QT
database (QTDB) [47]. QTDB consists of 15 min ECG records acquired from 105
patients, which were specifically chosen from existing databases, to represent a
wide variety of QRS and ST-T morphologies, with reference annotations for
arrhythmias. In the MIT-BIH Arrhythmia (15 records) and MIT-BIH Supraven-
tricular Arrhythmia (13 records) groups in QTDB, abnormal heart beats appear in
various types with high frequency. The MIT-BIH Normal Sinus Rhythm group
(10 records) in QTDB does not contain any abnormality; and in the MIT-BIH
Long-Term ECG group (4 records), abnormalities are sparse and intermittent. The
MIT-BIH ST Change (6 records) and European ST-T (33 records) groups mainly
focus on harmful ventricular arrhythmias. Since in our approach, individual
arrhythmias are not identified, the default physionet annotations are converted into
AAMI recommended categories as showing in Table 1.

The statistical values, i.e., true positive (TP), false positive (FP), true negative
(TN) and false negative (FN) are as defined in Table 2. Here, the detected normal
and abnormal beats are identified by our anomaly detection algorithm. Whereas, the
annotated normal beats are determined from the gold standard annotation of the
ECG record. Once an annotation is determined as a normal beat, the other beat
annotation will be assumed as abnormal.

Technically, anomaly detection performance is measured using the standard
metrics, i.e., Sensitivity (Se), Specificity (Sp) and Accuracy (Acc) as follows:

Table 1 AAMI
recommended beat categories

AAMI categories Physionet heart beat annotations

N (normal) N, L, R, e, j
Y (ventricular) Y, E
S (supraventricular) A, a, J, S
F (fusion) F
Q (unclassified) f, /, Q
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Se %ð Þ= TP
TP+FN

Sp=
TN

TN +FP
Acc=

TP+ TN
TN +TP+FN +FP

Qualitatively, Sensitivity and Specificity corresponds to the performance of the
technique in picking up actual anomalies and skipping the normal beats respec-
tively. Accuracy refers to the detection performance in terms for both normal and
abnormal beats.

Table 3 shows the experimental results for each record in the Arrhythmia
group. The average of Sensitivity, Specificity and Accuracy overall records are
0.995, 0.996 and 0.996 respectively. There are several types of arrhythmia in the
ECG signal of these records and the normal beat status is different in different
records. For e.g., in record sel100, the normal beat status is a sinus normal heart
beat (physionet—N) but in the record sell02 and record se1232, the normal beats
status is paced beat (physionet—/) and atrial premature beat (physionet—A). Due to
the adaptive normal beat segment identification method, the normal beat status is
selected accurately for each record, resulting in good detection performance.
Record sel213 which contains 1308 normal beats (N) and 332 abnormal beats (V
and F) performed the worst, with 9 F beats are un-identified and 17 beats are
incorrectly marked as anomalous beat. By manually checking form the signal
visualization, we realized that those mis-identified F beats are quite similar to the
normal beats because by the definition, it is a fusion of ventricular and normal beat.
On the other hand, some of the wrongly detected beats are indeed atrial premature
type (physionet—A). This is not a dangerous arrhythmia (that is why it still belongs
to AAMI category N), however, it causes the shorter RR-interval, thus makes the
morphology of the current beat segment different from the selected normal beat

Table 2 Definition of
statistical values

Annotated
abnormal

Annotated
normal

Detected
abnormal

TP FP

Detected normal FN TN

Table 3 Detection on arrhythmia group

Sel Se Sp Acc Sel Se Sp Acc

100 1.0 1.0 1.0 102 1.0 1.0 1.0
103 1.0 1.0 1.0 104 0.998 0.997 0.999
114 1.0 0.997 0.998 116 1.0 0.988 0.989
117 1.0 1.0 1.0 123 1.0 1.0 1.0
213 0.972 0.987 0.984 221 1.0 1.0 1.0
223 0.973 0.997 0.992 230 1.0 0.997 0.997
231 1.0 0.989 0.989 232 1.0 0.997 0.997
233 0.990 0.992 0.992
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status and this behavior happens the same for the record se1223. The other records
do not suffer from this issue, consequently, they obtain high (≈1.0) sensitivity.

The detection performance from the Supraventricular group is given in Table 4.
The records in this group includes ECG with supraventricular premature or ectopic
beats (S type). Although most of S beats are successfully detected, due to the wide
variety S-type morphologies involved, a few are not detected and shows up as low
sensitivity and specificity for some records. The average of Sensitivity, Specificity
and Accuracy are still acceptable at 0.839, 0.981 and 0.979 respectively.

The performance results from the Normal Sinus Rhythm and Long-Term groups
are given in Tables 5 and 6. The proposed method performs well for both these
groups. For the Normal Sinus Rhythm group, there isn’t any anomalous beat in the
record and the technique achieves 100% accuracy. For the Long-Term group, most
abnormalities are V or F types, which are highly different with normal beat N in
term of morphology. An average Sensitivity, Specificity and Accuracy of 0.994,
0.999 and 0.999 is achieved respectively for this group.

The performance results of MIT-BIH ST-change and European ST-T groups are
shown in Tables 7 and 8 respectively. The average Sensitivity, Specificity and
Accuracy for all records of the both groups are 0.996, 0.997 and 0.997 respectively.
Generally, the sensitivity values in most records are 1.0, i.e. all anomalous beats are
successfully detected. On the record sele0606, among 6 beats V, the first beat is

Table 4 Detection on supraventricular group

Sel Se Sp Acc Sel Se Sp Acc

803 1.0 0.997 0.997 808 0.75 0.975 0.974
811 1.0 0.987 0.987 820 1.0 0.980 0.980
821 0.987 0.964 0.968 840 1.0 0.960 0.960
847 0.909 0.986 0.984 853 0.75 0.987 0.986
871 0.714 0.941 0.938 872 0.783 1.0 0.992
873 0.375 0.998 0.987 883 0.773 0.993 0.987
891 0.996 0.987 0.989 – – – –

Table 5 Detection on
normal sinus rhythm group

Sel Se Sp Acc Sel Se Sp Acc

16265 1.0 1.0 1.0 16272 1.0 1.0 1.0
16273 1.0 1.0 1.0 16420 1.0 1.0 1.0
16483 1.0 1.0 1.0 16539 1.0 1.0 1.0
16773 1.0 1.0 1.0 16786 1.0 1.0 1.0
16795 1.0 1.0 1.0 17453 1.0 1.0 1.0

Table 6 Detection on
long-term group

Sel Se Sp Acc Sel Se Sp Acc

14046 1.0 0.998 0.998 14157 1.0 1.0 1.0
14172 1.0 0.998 0.998 15814 1.0 1.0 1.0
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quite similar to the normal beat thus the algorithm fails to identify it. The specificity
values are not high as the sensitivity values in some records, since normal beats N
have been incorrectly detected as abnormalities. Checking the waveforms in sim-
ulation, we realize that in those beats, despite the fact that the ST segment and T
wave are significantly different, are still identified as normal beats in the annota-
tions. A typical example is shown in the Fig. 9, in which, both of the beats number
1 and 783 have beat type N. However, we can see that they are very different in
term of both P wave (marked by red ovals), ST segment and T wave regions
(marked by yellow ovals). This behavior can happen because the high changing
range of ST segment deviation and T wave morphology in different normal heart
beats [33].

The average values for Sensitivity, Specificity and Accuracy on the whole 105
ECG records in QTDB are 0.971, 0.995 and 0.994 respectively. These high per-
formance results prove the reliability of the proposed approach. Indeed, almost all
of the anomalous beats (i.e., V, F and Q categories) are absolutely detected. This
success will limit the life threatening risks caused by heart diseases. On the other

Table 7 Detection on ST-change group

Sel Se Sp Acc Sel Se Sp Acc

301 1.0 0.995 0.995 302 1.0 0.995 0.995
306 1.0 1.0 1.0 307 1.0 1.0 1.0
308 1.0 0.998 0.998 310 1.0 0.994 0.994

Table 8 Detection on European ST-T group

Sel Se Sp Acc Sel Se Sp Acc

e0104 1.0 1.0 1.0 e0106 1.0 l.0 l.0
e0107 1.0 0.996 0.996 e0110 1.0 0.973 0.973
e0111 l.0 1.0 l.0 e0112 l.0 l.0 l.0
e0114 l.0 1.0 l.0 e0116 l.0 0.998 0.998
e0121 l.0 1.0 l.0 e0122 l.0 0.999 0.999
e0124 1.0 1.0 1.0 e0126 1.0 l.0 l.0
e0129 1.0 1.0 1.0 e0133 1.0 l.0 l.0
e0136 1.0 1.0 1.0 e0166 1.0 0.992 0.992
e0170 l.0 1.0 l.0 e0203 l.0 l.0 l.0
e0210 l.0 1.0 l.0 e0211 l.0 l.0 l.0
e0303 l.0 1.0 l.0 e0405 l.0 l.0 l.0
e0406 1.0 0.997 0.997 e0409 l.0 0.993 0.993
e0411 1.0 0.999 0.999 e0509 1.0 l.0 l.0
e0603 1.0 1.0 1.0 e0604 1.0 l.0 l.0
e0606 0.833 l.0 0.999 e0607 l.0 l.0 l.0
e0609 l.0 0.999 0.999 e0612 l.0 0.994 0.994
e0704 l.0 0.995 0.995 – – – –
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hand, detection of the abnormal heart beats belonging to the S categories is less
accurate due to their high similarity to the normal heart beats. However, most of the
supra-ventricular (S)\ beats are not dangerous that unable or wrong detection few of
them does not cause a serious problem.

6 Conclusions

In this paper, we have proposed a novel ECG anomaly detection technique to be
implemented in cloud systems for wearable healthcare monitoring. A low com-
plexity technique with high accuracy, which can work on single lead ECG data and
doesn’t require personalized calibration for individual users is the fundamental
requirement for practical, large scale wearable cardiac monitoring deployments.
The proposed technique which works by comparing the beat segments against a
normal beat, succeeds in fulfilling all the necessary prerequisites for large scale
monitoring. The complexity of the proposed technique is kept under control by
using simple SG filtering for signal processing and Discrete time warping for
measuring the similarity between two multi-dimensional beat vectors. The ECG
stream is converted into a stream of numerical values, which is then monitored by
an online anomaly detection method to classify incoming beats to be a normal or
abnormal types. To avoid calibration of the technique for individual users, we
automatically identified the normal beat segment using K-means clustering tech-
nique. The performance of the proposed method has been evaluated on publicly
available QTDB which consists of a wide variety of ECG Signal morphologies and
found to be very high with an average sensitivity and specificity of 0.971 and 0.995
respectively. We demonstrated that complexity of the technique is very modest and
therefore the proposed method can be easily deployed in HPC platforms for
monitoring of large scale wearable healthcare data.

Fig. 9 Differences between beats of the same type [32]
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7 Future Works

The technique proposed in this paper can be improved by using more accurate
extraction of the current beat segment from the streaming ECG signal. In this paper
we used heuristics to estimate the maximum possible limits which would include
the P wave in the right side of the R-peak and T wave in the left side of R-peak.
However, this can potentially reduce the accuracy of the beat segment limits
extracted for comparing the similarity. If we can use a low complexity method, to
extract the onset and offset of P wave and T wave respectively, then the beat
segments extracted are more accurate representation of the signal segment that
needs to be compared. We propose to use a wavelet based ECG delineator for this
purpose. The added complexity can be mitigated by using the wavelet delineator for
R-peak extraction along with P, T wave onset/offset extraction and replacing the
current linear predictor based R-peak extractor. We propose the usage of Haar
based ECG delineator which proven to have lower complexity [48].

The proposed technique currently can be augmented by a ECG classifier so that
the exact arrhythmia can be detected. A plethora of methods currently exists for
ECG classification, with lower detection accuracies. The proposed method when
used in combination with existing classification methods can help to (1) improve
the detection/classification accuracy, and (2) distribute the processing load of
anomaly detection and classification on different elements in the wearable health-
care system.
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Activity Recognition Based on Pattern
Recognition of Myoelectric Signals
for Rehabilitation

Oluwarotimi Williams Samuel, Peng Fang, Shixiong Chen,
Yanjuan Geng and Guanglin Li

Abstract Limb-amputation, stroke, trauma, and some other congenital anomalies
not only decrease patients’ quality of life but also cause severe psychological
burdens to them. Several advanced rehabilitation technologies have been developed
to help patients with limb disabilities restore their lost motor functions. As a kind of
neural signal, surface electromyogram (sEMG) recorded on limb muscles usually
contain rich information associated with limb motions. By decoding the sEMG with
pattern recognition techniques, the motion intents can be effectively identified and
used for the control of rehabilitation devices. In this chapter, the control of
upper-limb prostheses and rehabilitation robots based on the pattern recognition of
sEMG signals was detailedly introduced and discussed. In addition, the clinical
feasibility of sEMG-based pattern recognition technique towards an improved
function restoration for upper-limb amputees and stroke survivors is also described.
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1 Introduction

Individuals with upper-limb disabilities from amputations or strokes are often found
all around the world. For instance, over 1 million persons in the USA were reported
to be leaving with limb amputations, and about 10% of them suffer from different
forms of upper-limb amputations [39]. Report from a previous study indicated that
approximately 15 million people suffer from stroke-related diseases yearly in the
world, among which one third are permanently disabled [48]. Meanwhile, stroke
was reported as the principal cause of adult disability with an annual incidence of
about 152,000 patients in the UK [34]. Hence, both limb amputation and stroke
would lead to a decreased quality of life, because such patients have lost their
upper-limb motion functions [1], and as well an important communication tool
needed in daily life.

Over the years, different types of prostheses have been developed to restore the
limb functions of amputees. As categorized in Table 1, there are different levels of
upper-limb amputations. Usually, prostheses are specifically designed for each
individual by considering the length of residual limb, limb activity level, limb
prognosis, employment status, as well as the individual’s specific needs for assis-
tance. In addition, developing prostheses for individuals with high-level amputa-
tions such as FQ or SD would require more efforts than that for those with low-level
amputations like PH or FA (Fig. 1).

The body-powered prostheses were firstly introduced as an alternative to lost
limbs to aid amputees in performing some simple tasks [35]. However, the
body-powered prostheses could only provide support for motions with single
degree of freedom (DOF) and are counter-intuitive. In addition, they require a
significant amount of energy to perform a simple motion, which would cause strong
burdens to amputees and impede their use for a long period of time. Later,
motorized prostheses that are controlled based on the amplitude and rate of change
of surface electromyogram (sEMG) signals were invented [30]. This type of

Table 1 Levels of
upper-limb amputation

S/N Amputation categorization

1 Forequarter (FQ) Transhumeral (AE)
2 Shoulder disarticulation (SD)
3 Elbow disarticulation (ED)
4 Wrist disarticulation (WD) Transradial (BE)
5 Partial hand (PH)
6 Finger amputation (FA)
aAE and BE represent above elbow and below elbow, respectively
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prostheses could decrease the body burden for amputees to a certain extent, but still
provide a control of single DOF due to insufficient residual muscles for signal
generation. Although the concept of mode switching among different joints has
been proposed to realize the control of additional DOFs [14], but the switching
itself would lead to a cognitive burden to the users and reduce the control per-
formance of the prosthetic systems.

Besides prosthetic limbs, a number of therapeutic rehabilitation robots have been
developed to facilitate the recovery of motor disorders for stroke survivors. The
different levels of impairment caused by strokes have been objectively quantified by
the National Institutes of Health Stroke Scale (NIHSS), as presented in Table 2 [46].

In like manner with the amputation levels described above, stroke patients with
high-level severity would need to recover from a number of motor function dis-
orders while those with low-level severity only require less motor function
restoration.

Generally, the end-effectors and exoskeletons are two types of robots that have
proven to be effective compliments to the conventional physiotherapy approach for
limb motor function restoration in stroke patients [7]. Robot-aided rehabilitation
devices such as the MIT-MANUS robot [11, 23] and the MINE robot [32, 33] among
other mechatronic robots have been developed. These devices often assist patients to
perform exercises which involve repetitive movement of their paretic limbs in a
passive or active manner [9, 24, 25]. Examples of the rehabilitation devices that
could help restore the limb functions for stroke survivors are shown in Fig. 2.

FQ SD ED WD PH FA

Elbow
AE

BE

Fig. 1 Illustration of upper-limb amputation of different levels

Table 2 Levels of
impairment by stroke

S/N Stroke severity Score

1 No stroke symptoms 0
2 Minor stroke 1–4
3 Moderate stroke 5–15
4 Moderate to severe stroke 16–20
5 Severe stroke 21–42
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Generally, most functional tasks are accomplished through a complex temporal
and spatial coordination of multiple muscles. It is therefore difficult to realize a
control of multiple DOFs via the one-to-one mapping principle adopted by the
above described mechatronic robot-aided rehabilitation devices. In addition, such
mechatronic devices cannot support volitional control which would be very
important for the motor function recovery.

Pattern recognition (PR) technique was proposed several years ago as a potential
method for the control of rehabilitation devices such as the prostheses [18, 22].
A number of recent studies [1, 6, 17, 27, 31, 41, 48] suggested that PR of myo-
electric signals might potentially facilitate the development of an efficient reha-
bilitation device that could help restore upper-limb function for amputees and stroke
survivors. The remaining part of the chapter is structured as follow: in Sect. 2, a
detailed description of pattern recognition technique for upper-limb motion intents
decoding, Sect. 3 discusses the potential of large-scale distributed processing as
applied to myoelectric signals, Sect. 4 discusses the clinical feasibility of myo-
electric pattern-recognition, while Sect. 5 concludes the chapters.

2 Pattern-Recognition Technique for Rehabilitation

In the control of rehabilitation devices like the prostheses and assistive robot, the
PR technique is considered as a promising alternative to the conventional
amplitude-based method. The PR-based control is grounded on the assumption that
the patterns of sEMG signals regarding the intended limb motions are consistent

(a) (b)

Fig. 2 Therapeutic devices for the restoration of upper-limb and backside functions. a David
F400 Pullover for the restoration of latissius dorsi, teres major, and trapezius muscle. b David
F450 Rowing Torso/Pec Deck for the restoration of targeted muscles (pectoralis major, pectoralis
minor, serratus anterior, and deltoideus posterior)
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and repeatable over time. Also, each limb motion is characterized by a series of
consistent muscle activations that can be described by a set of features, and the
features should be reproducible across trials for the same limb motion and dis-
criminative between different ones [15]. The PR technique primarily provides a
more intuitive mapping of physiologically appropriate muscle contractions to the
corresponding prosthetic movements. Also, it requires less specific electrode
placement compared to the conventional myoelectric control methods. The PR
technique easily adapts to changing conditions, and thus users could wear the
prosthesis and calibrate the arm to recognize the current location of multiple
myoelectric signals [45].

The development of rehabilitation devices based on PR technique to restore limb
functions of patients could be generally divided into two stages. Firstly, the limb
motion intents of the patients are decoded from a set of acquired myoelectric
signals. In the second stage, the output of the first stage (the decoded limb motion
intents) is used as a command to control a motorized assistive device such as
prosthesis, an exoskeleton, or other forms of rehabilitation robots. The next section
in this chapter shall focus more on the first stage which involves the decoding of
various upper-limb motions from a set of acquired myoelectric signals based on PR
method. This stage fundamentally consist of recording myoelectric signals from the
disabled limb, preprocessing the myoelectric signal, segmentation of the prepro-
cessed signals, extraction of features from the segmented data, and decoding of the
limb motion intents. These processes are described sequentially as follows. Addi-
tionally, the PR-based control strategies for rehabilitation devices are introduced.

2.1 Myoelectric Signal Acquisition

Myoelectric signals are recorded during muscle contractions either invasively with
needles or wires inserted into muscles or non-invasively with electrodes placed on
the skin surface overlying the muscles. The intramuscular recordings have the
ability to maintain robust electrode contact with the muscle and could acquire
signals from deep muscles with little or no crosstalk. For several years, the intra-
muscular recordings have not been clinically feasible because it requires the use of
percutaneous wire/needle electrodes for signal transmission [44]. On the other hand,
the non-invasive method has been widely adopted in both research and clinical
applications due to their relative ease of acquisition. The non-invasive collection of
myoelectric signals often requires the placement of a certain number of electrodes
on the skin surface as shown in Fig. 3a, b. It is important to note that before
electrode placement, the skin needs to be properly cleaned with alcohol swabs to
guarantee good electrode-skin contact, which would minimize the impedance and
improve the signal quality [16, 20]. The sEMG electrodes are usually placed at
some selected positions experientially. Muscle crosstalk, an important factor that
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affects the quality of sEMG recordings, could be minimized by choosing an
appropriate electrode conductive area as well as the inter-electrode distance during
electrode placement. Decreasing the size of conductive area on the skin leads to a
reduction in effective sEMG measurement, and decreasing the inter-electrode dis-
tance usually shifts the sEMG bandwidth to higher frequencies [26].

After a successful electrode placement, participants are often instructed based on
the experimental design to elicit a number of upper-limb motions for a specific
period of time based on either an audio or video prompt. Then, sEMG signals from
muscle contractions corresponding to the intended limb motions are recorded by the
electrodes and stored for further analysis in offline scenarios.

2.2 Myoelectric Signal Preprocessing

The recorded sEMG signals are usually sampled at a frequency range of between
1000 and 2500 Hz depending on the objective of the experiment. Power line
interference should be firstly attenuated from the sEMG recordings by using a
50–60 Hz notch filter. In addition, a band-pass filter with certain range of cutoff
frequency is adopted to improve the signal quality. The low frequency cutoff of the
band-pass filter is designed to eliminate baseline drift that is sometimes associated
with movement, perspiration, as well as any direct current offset, and typical values
of the low frequency cutoff range between 5 and 20 Hz. The high frequency cutoff
of the band-pass filter basically removes high frequency noise and prevents aliasing
in the sampled sEMG signals. This frequency should be quite high so that rapid
on-off bursts of the sEMG signals could still be clearly identified. In practice, values
for the high frequency cutoff usually range between 200 and 1000 Hz.

(a) (b)

Fig. 3 sEMG electrode placement on patient’s residual limb, a Wireless sEMG electrodes,
b Wired sEMG electrodes
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2.3 Data Segmentation

The preprocessed signals are segmented into a series of analysis windows with a
window length raging between 150 and 250 ms [15, 31, 41, 43] and an increment
of about 100–150 ms. and usually with an overlap of about 50–100 ms [28, 29]
(Fig. 4). The fundamental trade-off in selecting the window length is that longer
windows will improve the stability of features by reducing the variance and
increasing the classification performance, but may result in a longer delay in the
motion classification decision [42].

The concept of overlapping the analysis window is often adopted to maximally
utilize the continuous stream of data that could produce an acceptable decision
stream as fast as possible with regards to the available computing capacity [43]. For
overlapping analysis windows, the operational delay in real-time control due to data
buffering would simply be the duration of the overlapping window instead of the
window length [30]. Therefore, an operational delay (T) between 50 and 100 ms in
real-time use may be considered.

2.4 Feature Extraction

After segmenting the preprocessed sEMG data into a series of analysis windows, a
set of features characterized by rich neural information that could aid the decoding

A sequence of 
arm mo ons

A sequence of 
EMG signals

A sequence of EMG 
analysis windows 

100 200 300 400 500 700 

Time (ms)W1

T

T

T

T

W2

W3

W4

Wn

Fig. 4 Segmentation of sEMG data based on the “sliding windows” technique. W1 to Wn

represent the analysis windows and T is the delay between any two consecutive windows
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of different upper limb motion intents are often extracted from each analysis
window. A proper extraction of signal features from the preprocessed sEMG data
would eventually lead to a high performance in terms of motion classification. In
several previous studies, features from time, frequency, and time-frequency
domains have been proposed for limb motion classification [38]. Four time-domain
features shown in Table 3 were widely adopted in myoelectric signal classification
because of their relative ease of computation and good performance. Then, the
desired feature sets are extracted and projected into a matrix of feature vector that
contains the coefficients of the features.

2.5 Motion Recognition

The classification of limb motion intents of patients from extracted feature sets
constitutes an integral part of myoelectric PR based method since the classifier’s
output directly serve as the control commands for rehabilitation devices. Due to the
nature of myoelectric signals, it is sometimes reasonable to expect a large variation
in the value of a particular feature between individuals. Instances of this kind could
be observed in situations where the muscle structure is disrupted as a result of

Table 3 Conventionally used time-domain features

S/N Commonly used time domain features Description

1
MAV = 1

k ∑
k

n= 1
xnj j Mean Absolute Value is an

average of the absolute value of
the EMG signal amplitude per
time

2
WL = ∑

k− 1

n= 1
xn+1 − xnð Þj j Waveform Length (WL) gives a

measure of the complexity of the
EMG signal in each analysis
window

3
NZC = ∑

k− 1

n= 1
sgn xn * xn+1ð Þ ∩ xn − xn+1ð Þ≥Thres½ � Number of Zero Crossings

(ZC) is the number of times that
the signal (xn) crosses the zero
point within an analysis window
and it has been reported to have
association with the frequency of
the signal

4
SSC = ∑

k− 1

n=2
f xn − xn− 1ð Þ * xn − xn+1ð Þ½ � Slope Sign Changes (SSC) is

related to the signal frequency and
is defined as the number of times
that the slope of the EMG
waveform changes sign within an
analysis window
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amputation or congenital defect [22]. Also, factors such as electrode shift, variation
in muscle contraction level, change in limb position, and body-weight fluctuation
may lead to changes in the feature values over time. Considering all these factors,
choosing an efficient classifier becomes necessary to ensure accurate and consistent
classification performance. In line with this, several machine learning and statistical
classifiers have been examined with respect to their classification performance in
the identification of different upper-limb motions. For instance, classifiers based on
Bayesian Statistical Method [21], Adaptive Neural Networks [22], Fuzzy Logic [3],
Support Vector Machine [38], and Linear Discriminant Analysis [19, 28, 31] have
been investigated. Among those classifiers, the Liner Discriminant Analysis clas-
sifier has been considered as the most prominent candidate because it was reported
to be relatively less complex in terms of implementation but still with good per-
formance compared to some existing complex classification scheme [19].

The decided classifier is built and trained with a portion of the extracted feature
sets. Subsequently, the trained classifier is tested with the remaining portion of the
feature vector to determine the classification performance in identifying the dif-
ferent limb motion intents. The control performance of a myoelectric PR-based
method is assessed in both real-time and off-line scenarios by using a number of
standard metrics. Evaluation metrics such as classification accuracy across different
limb motions, motion completion rate, motion completion time, and motion
selection time are some common metrics.

2.6 Device Control

Currently, there are two types of PR control methods for prostheses and robots
namely the “sequential PR” and “simultaneous PR” method. Figure 5 shows the
two methods together with the conventional one, which depends on signal ampli-
tude and rate of change. Take a 2-DOF upper-limb prosthesis as example, which
contains four active motions of hand-open (HO), hand-close (HC), elbow-flexion
(EF), and elbow-extension (EE). The conventional control scheme (A) requires two
different decision nodes, and each consisting of two channels to determine a motion
output based on the amplitude of recorded sEMG signals. In the “sequential PR”
control method (B), sEMG recordings from more than two channels often serve as a
single input that is used to determine any of the four discrete motion classes or no
movement. Meanwhile, the “simultaneous PR” control method (C) also receives its
input from more than two sEMG channels and outputs any of the four discrete
motions or no movement. In addition, the simultaneous PR method could provide
output for any combination of elbow and hand movements [47].
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3 Clinical Feasibility of Pattern Recognition Technique
for Rehabilitation

The myoelectric PR approach for prosthesis and assistive robot control was
hypothesized several decades ago as a prospective method that would revolutionize
the rehabilitation industry due to the advantages it has over the conventional control
methods. Though lots of research efforts have been made to advance this control
technique, however, the clinical performance of the current myoelectric PR-based
prostheses for upper-limb amputees is not yet satisfactory. The limited translation of
advances in academic researches relating to upper-limb prosthetic devices into
commercially available products for amputees can be attributed to a number of
factors which are described as follows.

In laboratory researches, only a limited number of conditions could be consid-
ered when carrying out an experiment. Under this limited condition, relatively
stable and good performances are usually achieved relating to the controllability of
myoelectric PR-based prostheses. Meanwhile, in clinical applications, some other
conditions which were not considered in the laboratory are often encountered and
thereby compromises most of the results reported in the laboratory. This in turn
affects the performance of the assistive devices as well as their acceptance for
clinical use. It is worthy to note that rehabilitation devices such as the upper-limb
prostheses would generally need to undergo extensive evaluation in accordance
with strict medical device requirements. And in most cases, a sizable number of
upper-limb amputees are usually not easily accessible to extensively test the
functionality of the developed assistive devices. Also, the development of
upper-limb prosthetic devices would require lots of funding and such devices may
be quite expensive for patients with average to low income in the developed
countries. In addition, considering the fact that the market for upper-limb prostheses
is small compared to that of the lower-limb prostheses, not many investors would
be interested in funding projects relating to the development of upper-limb pros-
theses. At the long run, the issue of inadequate funding would result in less
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Fig. 5 A block diagram of different myoelectric control strategies
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innovative ideas since the numbers of researchers working on such project are
limited by fund. In a way, this has been slowing down the clinical realization of
upper-limb prostheses. Another important issue that may be limiting the clinical
viability of upper-limb PR-based prostheses is the lack of intelligent feedback
mechanism that could provide users with the ability to intuitively operate the
device. With proper feedback mechanism, it is believed that a reliable control could
be achieved with ease. Also, such closed loop would enable proper integration of
the whole device consisting of the socket, the prosthetic device, and other
components.

One way to guarantee the clinical feasibility of myoelectric PR-based prostheses
for upper-limb amputees would be to carefully consider the above discussed
challenges with the aim of resolving them. In addition, the introduction of an
iterative user-centered design approach would be instrumental to establishing a
close relationship among the necessary stakeholders (researchers, clinical experts,
professionals, and end-users). Furthermore, integrating some adaptation features
into the prosthesis would make users feel that the device is part of their body.
Though achieving this may be challenging, but we believe it would improve users’
confidence and level of reliance on the devices. It is also important to note that for
PR technique to be a success in rehabilitation robots for stroke survivors, the above
highlighted issues limiting the clinical success of myoelectric prostheses would
need to be properly addressed.

It also is important to note that apart from the rehabilitation of amputees and
stroke survivors, upper limb EMG signals have found more applications such as
post-surgery evaluation where there is articular instability and/or damage to liga-
ments [4], sports and occupational medicine to determine the existence or absence
fatigue and analyze its development over time [5, 36], quantitative analysis of
neuromuscular disorder [37], and personal entertainment.

4 Large-Scale Distributed Computing in EMG Pattern
Recognition

Distributed systems consist of a group of networked computers, which have been
designed to achieve the same goal with respect to a task. Basically, the processing
of the whole task is shared among the computers on the network in order obtain
timely results [12]. Typically in such systems, the processors have associated
memories and they run concurrently in parallel. For instance, a schematic view of a
typical distributed system is shown in Fig. 6a, where the system is represented by a
network topology in which each node is a computer and each line connecting the
nodes is a communication link. Meanwhile, Fig. 6b shows the same distributed
system in more detail: each computer has its own local memory, and information
can be exchanged only by passing messages from one node to another by using the
available communication links.
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A common characteristic of distributed systems is that they can support efficient
processing of data (especially large-scale dataset) within short space of time. And
such platforms are usually readily accessible at a relatively low cost and this makes
them indispensable in the modern day society. Some recent studies indicated that
distributed computing offers new possibilities that can improve healthcare services
and benefit biomedical research [2, 13, 40]. Machine learning assisted decision
support systems are often designed for centralized systems that require a relatively
small amount of data. In Big data systems, such designs may not be efficient and
redesigning another platform for such systems are often challenging due to com-
putational cost and network bandwidth requirements especially when there is need
to integrate some learning algorithms into the system. However, with technologies
like the Hadoop and MapReduce [10], efficient distributed systems could be
incorporate learning algorithms could be developed. The benefits of such dis-
tributed systems in healthcare include higher performance at a lower cost, higher
reliability, and more scalability [8].

Considering the fact that microcontrollers embedded in upper-limb prostheses or
rehabilitation robots are often limited by their memory size and processing power,
the overall performance of such devices would be affected in some ways by these
factors, especially when a high-density EMG electrode array and a high sampling
rate are required in some applications. With such limited hardware capability,
integrating additional features into the prostheses or assistive robots that could
make them more attractive to users may be challenging. For individuals who mostly
carry out their daily life activities within a confined space (especially the elderly),
upper-limb prostheses could be designed for them in a way that the processing and
memory requirements would be distributed remotely to a computing platform for
smooth operation. For instance, the sensors on a prosthesis or even rehabilitation

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Memory

(a)

(b)

Fig. 6 An illustration of a typical distributed computing system; a a schematic view, b a detail
view
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robot could be configured to acquire and transmit myoelectric signals from muscle
contractions wirelessly to a server installed within the confined space. Subse-
quently, the data will be processed on the server and the output would be com-
municated back to the prosthetic or rehabilitation device. Such distributed
computing approach may enable the integration of additional features into a
prosthesis or rehabilitation robot easily and also enhance the performance of the
whole device. This idea is relatively new and we believe that it may be beneficial to
future designs of upper-limb prosthesis as well as other rehabilitation devices.

5 Conclusion

The field of rehabilitation robotics has been a major research focus in recent years
due to the roles played by such assistive technologies in ensuring that the functions
of certain body parts are restored. In line with this, a number of prosthesis and robot
aided rehabilitation devices have been developed over the years. Therefore, this
chapter presents motion recognition method for the control of upper-limb prosthetic
and robotic devices with emphasis on myoelectric pattern recognition technique.
The fundamental procedures for the decoding of upper-limb motion intents of
amputees and stroke survivors from myoelectric signals have been described with
emphasis on the commonly adopted practices in research and clinical applications.
In addition, the potential of distributed computing concept in healthcare especially
its prospects in the development of robust upper-limb rehabilitation device has been
discussed. Finally, several factors currently challenging the clinical success of
myoelectric PR-based rehabilitation devices for patients, and some possible solu-
tions have been presented.
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Infrequent Non-speech Gestural Activity
Recognition Using Smart Jewelry:
Challenges and Opportunities
for Large-Scale Adaptation

Mohammad Arif Ul Alam, Nirmalya Roy, Aryya Gangopadhyay
and Elizabeth Galik

Abstract Wearable Body Area Network (BAN) based activity recognition is one

of the fastest growing research areas in activity recognition and context reasoning.

However, wearable physical sensor based Infrequent Non-Speech Gestural Activity

(IGA) recognition is not well studied problem because IGAs are not directly observ-

able from BAN sensor devices. Due to the recent proliferation of smart jewelries

capable of monitoring locomotive and physiological signals from certain specific

human body positions which are currently hitherto impossible to measure by tra-

ditional fitness and smart wristwatch devices opens up unprecedented research and

development opportunities in anatomical gestural activity recognition. Inspired by

this, we propose a new wearable smart earring based framework which is capable of

differentiating IGAs in a daily environment with a single integrated accelerometer

sensor. The natural gestures associated with the first portion of the human alimen-

tary canal, i.e., human mouth can broadly be categorized in two types; frequent (talk-

ing, silence etc.) or infrequent (coughing, deglutition, yawning) gestures. Infrequent

Gestural Activities (IGAs) help create an abrupt but distinct change in accelerometer

sensor signal streams of an earring pertaining to specific activities. Mining and clas-

sifying the abrupt changes in sensor signal streams require high sampling frequency

which in turn depletes the limited battery life of any smart ornaments. Extending the

battery life of smartened designer jewelry requires probing those devices less which

in turn prohibits of achieving high precision and recall for non-frequent gestural

activity discovery and recognition. In this book chapter, we propose a novel data seg-

mentation technique that harnesses the power of change-point detection algorithm to

detect and quantify any abrupt changes in sensor data streams of smart earrings. This
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helps to distinguish between frequent and infrequent gestural acclivities at a high pre-

cision with a low sampling frequency, energy, and computational overhead. Exper-

imental evaluation on one real-time and two publicly available benchmark datasets

attests the scalability and adaptation of our techniques for both IGAs and postural

activities in large-scale participatory sensing health applications.

Keywords Infrequent gesture ⋅ Activity recognition ⋅ Smart segmentation

1 Introduction

Modeling fine-grained physiological symptoms and chronic psychological condi-

tions of older adults have significant impacts on smart connected elderly health-

care. The fine-grained insights about the human health and wellness can be obtained

from the physiological and psychological data processing if they are combined with

Activities of Daily Living. Human contexts refer to a variety of dynamically chang-

ing states, relevant to either activities, biomedical states, or behavioral conditions.

Such contexts enable critical capabilities, such as alerting a first responder on an

abnormal behavioral incident or recommending avoidance of a potential health risk

behavior by analyzing health data related to continuous deglutition or coughing

after every day eating [1]. Cognitive dissonance and psychological disorders often

evolve from abnormal physical behaviors. For example, while suffering with differ-

ent kinds of physiological health issues, patient may show irregular gestures such as

frequent coughing, yawning, breathing irregularities etc. Therefore mental and phys-

ical health of older adults are correlated and if harnessed appropriately may provide

meaningful microscopic physiological and psychological contexts. For example, a

person feeling a headache from anxiety or anger might shout loudly or show irregu-

lar interpersonal traits. Thus the mental hygiene or physical wellness of a particular

person can be inferred by monitoring the IGAs which reflect the emotional or behav-

ioral state of the individual. In this chapter, we explore the recognition of non-speech

infrequent gestural activities (henceforth defined as IGAs) which provide significant

insights about the long-term well-being of the older adults.

With the technological advancements and emergence of sophisticated microelec-

tronic technologies, the modern age has seen the advent of smaller devices. These

advancements have also enabled the development of intelligent and miniaturized

biomedical sensors. Very small biomedical sensors can be either worn or implanted

inside the body to collect a variety of physical information and services. The multi-

modal networking ability between these body node mounted devices and integration

with existing device infrastructure can convey health-related information between

the user’s contexts and the caregivers. On the other hand, the employment of wireless

networks is becoming more and more extensive with the increase in the number of

devices being able to communicate wirelessly. With such an advent, studies ensued

whether electronic devices could be operated on and near the human body. It was

during this time that the idea of Body Area Network or BAN was invented.
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In this chapter, we propose a new wearable smart Body Area Network (BAN)

device (say earring) based framework which is capable of differentiating infre-

quent movements of the wearable sensor attached body parts in a daily environ-

ment with a single integrated accelerometer sensor. The framework is inspired by the

change-point detection based segmentation and feature extraction that can effectively

perform higher in terms of accuracy in very low sampling frequency confirming

lower battery power consumption in the daily environment. We built a customized

accelerometer sensor integrated wearable jewelry (earring) and implement our pro-

posed framework to distinguish non-speech infrequent gestural activities (IGAs) to

prove the efficacy of our framework.

2 Design Considerations and Contributions

Most of the prior works focused on speech based acoustic signal processing to

detect human speech and non-speech gestures [2–5]. While acoustic signal can

help determine the speech and non-speech human gestures but undermine signif-

icantly the computational cost and life longevity of wearable devices. Recording,

pre-processing, ambient noise reduction, segmentation, features extraction and clas-

sification processes cause huge computational overhead which rapidly drains out the

battery power of source devices. However, continuous sensing of acoustic signals

causes privacy violations.

More specifically, any ubiquitous wearable device must facilitate the following

critical requirements:

∙ Long Battery Life: Earring has become very common for men and women to

have both ears pierced, and is becoming more acceptable for teenagers as well.

The advantage of smart earring based physical/gestural activity recognition is its

ubiquitous usage of all time even during sleep. However, the most advantageous

fact also creates the most disadvantageous charge. Since users keep it worn for

a long time, it is obvious that they are reluctant of changing batteries frequently.

Moreover, if the batteries must be replaced often (every day or every week), not

only will the primary benefit (freedom from wiring constraints and costs) of wire-

less networks be lost, but also many remote sensing applications may become

impractical. Therefore, long battery life is essential in earring sensor networks.

∙ Small Form Factor: Devices used as wearable data collector must be small

enough to be embedded in their operating environment. This requirement affects

the choice of batteries which possibly could be very small in size with very low

powers.

∙ Lower Sampling Rate: In our framework, sensor data is captured in the earring

but transmitted, stored and processed by a remote node before it is transmitted to

the central base station. The entire data streaming, transmission, storage and local

processing are exhilarated with low sampling rate. However, low sampling rate

costs the accuracy of the recognition process which also needs to be handled.
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In this chapter, we first describe the anatomy of non-speech infrequent gestural

activities that includes IGAs selection, analyzing non-speech gesture patterns and

critical requirements for BAN based IGAs recognition framework design considera-

tions. Next, we describe a retrospective change-point detection framework that helps

represent the instant transition of gestural signals as an abrupt change and continu-

ous perturbation as a specific pattern. We use this framework (i) to detect appropriate

position of wearable jewelry and (ii) data segmentation technique for gestural activity

recognition confirming highest detection accuracy with lowest sampling frequency.

The structure of our entire chapter is as follows. We start with the relevant works.

Next, we describe our proposed change-point scoring method and its application

on device position setup and dynamic segmentation. We highlight the anatomy of

non-speech gestural activities which includes gestural activities selection process,

device position setup details and gestural activity patterns analysis. Next, we describe

our experimental methodology that comprises of device customization, data collec-

tion, feature extraction, feature selection and description of performance metrics. We

describe our evaluation method that consists of segmentation, device position setup

and classification performance analysis, baseline classification algorithm develop-

ment and comparisons of performances. To attest the scalability and adaptation of

our techniques for other activity and large-scale participatory sensing health applica-

tions, we evaluate our framework on two wearable sensor-based daily activity bench-

mark datasets.

3 Related Works

This chapter builds on previous works on wearable sensor-based context recognition

techniques that offer better healthcare and physical well-being. Here we compare and

contrast our contributions with the most relevant existing literature.

3.1 Acoustic Signal Processing

Most of the oral gestural activities i.e. non-speech infrequent gestural activity involve

vision feed (sequence of images) analysis for tracking facial expressions or body pos-

tures. Previous works for detecting oral gestures were based on only one criterion

such as vocal features, body postures, facial expressions or physiological changes

[6–12]. Some researchers used microphones [13], weight detection panels [14], cam-

eras [15], and water usage detectors [13] to detect gestural activities. [5] proposed a

mobile sensing system that leveraged microphone sensor to detect non-speech oral

gestural activities. DeepEar has been proposed a mobile audio sensing framework

built from coupled Deep Neural Networks (DNNs) that simultaneously perform

common audio sensing tasks and distinguish speech and non-speech human sounds
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in the mobile environment [2]. However, audio sensing based speech or non-speech

human gesture recognition costs higher battery power consumption for a mobile

device.

3.2 Accelerometer Sensor Signal Processing

Among the various wearable devices, the most popular wearable for activity detec-

tion purposes is the accelerometer [16, 17]. Besides being inexpensive, accelerome-

ters tend to be small and lightweight, and so are fairly unobtrusive and user-friendly

[18]. RisQ presents a single wrist worn 9-axis inertial measurement unit (IMU) based

smoking gesture detection [19] along with a static point detection based segmen-

tation technique to improve detection accuracy in lower sampling rate. However,

accelerometers or IMU based non-speech gesture recognition techniques rely on

hand mounted sensor system [19, 20] which is extremely inconvenient if the non-

speech human gestures are infrequent or not relevant to hand (for example, degluti-

tion, yawning, chewing etc.). Accelerometers gather data at a high frequency, and as

such may be used to collect a sizeable amount of data in a relatively short amount

of time. To differentiate between different variants of vocal sounds Mel-Frequency
Cepstral Coefficient (MFCC) has been applied achieving 66% average accuracy in

detecting human emotions [3]. [4] added acceleration of pitch with MFCCs in form-

ing cintinuous feature streams.

3.3 Multi-modal Sensor Signal Processing

Researchers have proposed multimodal signal processing approaches where multi-

ple sensors have been considered simultaneously [16, 21–24]. While Coulson et al.

[25] and Gunes et al. [26] proposed the bi-modal approach to capture human ges-

tures using both facial expressions and body postures Ginerva et al. [27] used facial

expressions, vocal features, body movements and gestures fused altogether. Silve et

al. [28] proposed a rule based classification technique on audio-visual data. Whether

or not an accelerometer yields data that is discriminative for a set of activity types

depends partially on where the accelerometer is worn on a subject’s body [29]. For

example, an accelerometer worn on the ankle will be more discriminative for the

activity of cycling than it would be if it was worn on the hip, and different types of

arm movements will likely be discriminated only by an accelerometer worn on the

arm. For this reason, some researchers have considered to use multiple accelerometer

systems to capture movement information from different parts of the body [30]. This

approach can be cumbersome for the wearer, so a single accelerometer is preferred

when it is reasonable to assume that it will be discriminative for the relevant set of
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activities. However, wireless sensor network based activity recognition imposes sev-

eral other issues like performance expectancy in terms of hardware cost and process-

ing delay, human training effort expectancy, social influence, facilitating condition

and privacy issues [31, 32]. In the past few years researchers have begun to recog-

nize the need to test on realistic free-living data [33, 34]. The time required to detect

that a change in activity has occurred was considered in [35], but in the context of

the very different problem of video activity recognition. We consider the feasibil-

ity of performing accelerometer based IGA recognition in real time by using both

accuracy and detection time as performance metrics.

3.4 Reduced Sampling Rate for Activity Recognition

Reducing sampling rates to save energy is also a well investigated research problem.

Some prior researchers have proven that it is not necessary for sensors be at full sam-

pling rate to achieve higher accuracy [36]. Krause et al. [37] addresses the tradeoffs

between accuracy and energy consumption which reports that for both time and fre-

quency domain features there are some knee exists for sampling rate and accuracy.

Below the knee, there is a significant accuracy degradation. It suggests using the

sampling rate at the knee to save energy while enjoying a relatively high accuracy.

In addition, Chu [38] achieves significant accuracy of mobile sensor data classifi-

cation based on Krause et al. proposed energy latency accuracy tradeoffs. However,

we proposed a novel approach of segmentation by accumulating change-point scor-

ing based feature extraction method that significantly enhances IGAs recognition

performances in lower sampling rate which confirms energy savings as well as com-

putational cost.

4 Application of Change-Point Detection Algorithm

Change point detection refers to detect the instances or the point of occurances when

the probability distribution of a continuous (time-series) process. While the tradi-

tional statistical features fail to expedite the abrupt changes in infrequent oral ges-

tural signals (infrequency of signal refers abruptness in nature), we propose to use

change-point scoring to capture the signal divergence. We design a change-point

scoring method taking relative Pearson divergence as a divergence measure esti-

mated by a method of direct density-ratio estimation method [39]. We first describe

the mathematical background of change-point scoring for single dimensional time

series sample and extend to multi-dimensional abrupt change-point score estimation

relevant to three axis-accelerometer sensor signal values.
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4.1 Change-Point Scoring Method

Let us consider x(t) as a 1-dimensional time series with one sub-sequence sample at

time t where x(t) =[x-axis reading, t]. Then, the sub-sequence of the time series at t
time with length k will be,

X(t) = [x(t)T , x(t + 1)T ,… , x(t + k − 1)T ]T ∈ 𝐑𝐤
(1)

Here, x(t)T = transpose of x(t).
Let us consider 𝐗(𝐭) be a set of n retrospective sub-sequence samples starting at

time t. Then, 𝐗(𝐭) will be

𝐗(𝐭) = X(t),X(t + 1),… ,X(t + n − 1) ∈ 𝐑k×n
(2)

Now, consider x(t) be a d-dimensional time series (3 dimensional accelerometer val-

ues say x, y and z axis values) with n sub-sequence sample where x(t) =
⎛
⎜
⎜
⎝

x t
y t
z t

⎞
⎟
⎟
⎠

Then,

the sub-sequence of time series at time t be:

𝐗(𝐭) = X(t),X(t + 1),… ,X(t + n − 1) ∈ 𝐑dk×n
(3)

Here, 𝐗(𝐭) forms a Hankel matrix [40]. We considered k = 10, n = 50 and d = 3
which was proved to be optimal in our case. We estimate the dissimilarity measure

between two consecutive segments 𝐗(𝐭) and 𝐗(𝐭 + 𝐧), and use it as the plausibility

of change-points i.e., the higher the dissimilarity measure, the more likely the point

is an abrupt change-point as shown in Fig. 1.

Fig. 1 One-dimensional time-series data for Pearson divergence estimation based Change-point

detection.
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4.2 Optimal Device Position Detection

While change-point score measures the abrupt changes over time-series data stream,

we argue that, it also can be used in determining the informativeness of the data.

In general, to find the informativeness of any data stream, researchers collect entire

dataset with maximum fine-grained granularity with several cross-validated fine-

grained labelings. Then, use different classifiers to find the best dataset to be the

best position of the device. We argue that, we can detect the best position setup of

the device only taking the advantage divergence measure achieved of the transition

points from the change-point scoring method. Our proposed position setup method

is stated as following steps:

1. We first define and label the transition points of activities i.e., a small segment of

data streams where two consecutive activities are present while transiting from

one activity to another. In our scenario, we defined five gestural activities to be

distinguished (silence, talking, coughing, yawning and deglutition) which gener-

ated 28 (5 × 2 + 4 × 2 + 3 × 2 + 2 × 2) bilateral transition points. For example,

silence to talk, talk to silence, silence to cough, cough to silence, silence to yawn,

yawn to silence etc.

2. We take the change-point scores of each segment that signify the divergence

measures of the transition point. If the divergence is more significant (higher

value), then the data stream contains higher informativeness of that position of

the device.

4.3 Change-Point Detection Based Segmentation

For this approach, we split data stream (x, y and z axis of accelerometer data) into

non-overlapping segments using a statistical field of change-point detection. Change-

point detection in general is used to analyze time series data from dynamic systems,

including failure detection [41], quick detection of attacks on computer networks

[42], monitoring of heartbeat fluctuations during sleep [43]. Very few of prior works

applied change-point detection in segmentation but most of these were related to

vocal or non-vocal sound segmentation [44, 45]. We are the first of a kind to apply

change-point detection in segmenting accelerometer data stream. We identify the

best change-point score threshold to segment time series data, apply supervised clas-

sification techniques and show how we can get more fine-grained performance in

classifying infrequent gestural activities.

To explain how Change-point scores are used for segmentation, we have to con-

sider each tick of a time series as some sort of probability distribution, but that the

distribution may suddenly change as time passes. The goal of change-point detec-

tion is to predict when these changes have occurred, a significant score is generated

for each time tick (described in the previous section). If the score is above a given

threshold a change is predicted to have occurred between that tick and its immediate
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detection based
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predecessor. This change-point is considered as a partition between two consecutive

segments. We then extract the features of each segment throughout the data stream

for next level of classification. Figure 2a illustrates the data stream where Xr(i) and

Xt(i) represent two consecutive sub-sequence of data stream associated with the ith
tick. Figure 2b represents the change-point score based segmentation. Here, change-

point score S(i) goes below the minimum threshold resulting an end of previous

segment Y(i − 1) as well as a start of next segment Y(i).

5 Anatomy of Non-speech Gestural Activities

The goal of this chapter is that we can detect IGAs from an earring placed on ear

location using only integrated accelerometer with lower battery power consump-

tion. Towards this broader goal, we analyze the anatomy of infrequent non-speech

gestures and recognizing their patterns in terms of acceleration in details. We start

with infrequent gestural activities selection which carries significance in determining

behavioral and physical health status. Next, we test using our proposed change-point

score based informativeness heuristic to setup possible position of the accelerome-

ter. Then, we analyze the gestural activity patterns in terms of acceleration for the

selected position towards recognizing through machine learning algorithm.
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5.1 Selection of Gestural Activities

The major goal of this study is to provide both behavioral and physical health status in

terms of non-speech gestures. Towards this broader perspective, we choose 5 impor-

tant non-speech gestural activities which are closely relevant to proactive healthcare

and abnormal physical behaviors: (i) silence, (ii) talking, (iii) coughing, (iv) yawn-

ing and (v) deglutition. ‘Silence’ is the most common form of human non-speech

gesture which defines a state when the person does no significant sound through her

mouth and stays the mouth close to normal position. The silence movement does not

change the jaw and ear positions of the face. However, it also can be considered as

a separator from one IGAs to another due to its universal presence in-between all

IGAs natural performance. ‘Talking’ is the speaking state of human gesture which

has been considered in this study to distinguish it from other IGAs. ‘Coughing’ is a

sudden and often repetitively occurring reflex which helps to clear the large breath-

ing passages from secretions, irritants, foreign particles and microbes. ‘Deglutition’

or ‘Swallowing’ is the process in the human or animal body that makes something

pass from the mouth, to the pharynx, and into the esophagus, while shutting the

epiglottis. ‘Yawning’ is a reflex consisting of the simultaneous inhalation of air and

the stretching of the eardrums, followed by an exhalation of breath. ‘Yawning’ most

often occurs in adults immediately before and after sleep, during tedious activities

and as a result of its contagious quality. It is commonly associated with sleepiness,

tiredness, stress or even boredom and hunger, though studies show it may be linked

to the cooling of the brain [46]. The above activities can be related to each other

based on their nature. For example, ‘Coughing’ can be followed by ‘Deglutition’,

‘Silence’ or ‘Talking’ which represent a different form of pattern and may consist

of clinical significance in nature of ‘coughing’ detection. However, ‘Coughing’ fol-

lowed by ‘Yawning’ could be an indication of sleep disturbance caused by couching.

However, our baseline framework has an opportunity to add more activities too.

5.2 Device Position Setup

To investigate the appropriate device position, we engaged 10 users and collected

data in a controlled lab environment. This experiment consisted of two parame-

ters: (i) change of body positions (pant pocket, chest pocket, neck and ear) and (ii)

change of gestural activities (silence, talking, coughing, yawning and deglutition).

We recorded accelerometer signal streams on five gestural activities, label the transi-

tion points and took the average accelerometer magnitudes and average change-point

scores of accelerometer magnitude to compute the average acceleration changes on

each transition point segment. Then, we compute and compared average change-

point scores, average magnitudes of the captured accelerometer data and machine

learning classification method of the features with respect to different body posi-

tions for different gestures. Figure 3 shows a comparison of average magnitude and



Infrequent Non-speech Gestural Activity Recognition . . . 453

70 72
85

69 73
85 86 88 88 9086 84

90 94 90

64
74 69

115
128

0

20

40

60

80

100

120

140

Silence Talking Coughing Yawning Deglutition

A
cc

el
er

om
et

er
 M

ag
ni

tu
de

Pant Pocket Chest Pocket As Necklace As Ear Ring

0.96
1.11

0.92 0.99 1.031.1

1.4

1.1 1.1 1.1
1.3

1.1

1.5

1.1

1.6

0.91

2.2

2.5

2.2
2.4

0

0.5

1

1.5

2

2.5

3

Silence Talking Coughing Yawning DeglutitionA
ve

ra
ge

 C
ha

ng
e 

Po
in

t S
co

re

Pant Pocket Chest Pocket As Necklace As Ear Ring
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ent types of gestural motion

change-point detection scores of each activity in different position. We can clearly

see that consideration of average change-point scores gives us ear position as most

values for each gestural activities except silience which coincides with the real-life

scenario. The breathing motion only affects chest and neck creating abrupt changes

in acceleration than at pant pocket or ear. This continuous changes in acceleration

due to the inherent breathing activity poses challenges to detect our finer IGAs based

on chest or neck mounted accelerometer. Through the device position experiment (as

shown in Fig. 3), we establish that the position ear is always less affected by any exter-

nal noise sources providing more information about the relevant gestural activities

in presence of regular ADLs.

5.3 Analysis of Oral Gestural Activity Patterns

The continuous and instantaneous periodicity of oral gestural activities and their

impacts on human motion pose significant challenges on dintinguishing them from

each other successfully. Different gestural activities have different motion character-

istics and intensity that posit valuable movement information to differentiate them.

Every infrequent oral gestural activity (e.g., yawning, coughing, talking etc.) occurs

when a sequence of events is stimulated by the presence of sputum or foreign parti-

cles in the main, central airways of a person [47]. For example, normal coughing can
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Irritation Inspiration Compression Expulsion

Fig. 4 Usual coughing consists of four events: a irritation, b inspiration, c compression and

d expulsion

be referred as the sequence of irritation, inspiration, compression and expulsion [47].

Irritation is an abnormal stimulus which provokes sensory fibers to send impulses

to the brain’s medullary cough center. In inspiration phase, the glottis becomes wide

open due to reflex muscle contraction. Each phase of coughing causes a unique pat-

tern of movement associated with the human body (as shown in Fig. 4). In Fig. 4, we

see sudden upward and downward movements during different coughing phases of

movements. To capture these slightest movements and acceleration changes of the

user, we place an accelerometer as a smart jewelry earring.

From the above discussion, we can firmly say that different micro events that con-

struct human gestures can be defined with a sequence of micro events. However, the

duration, occurrence sequence and acceleration features in terms of body movements

of those micro events vary from one gesture to another. For example, single cough

consists of four events: irritation, inspiration, compression, and expulsion but nor-

mal yawning consists of only irritation, inspiration and expulsion having different

duration [47]. On the otherhand, dry coughing caused by tuberculosis, consecutive

coughing can be occurred which may cause intense pain in the throat creating several

extra compression events. Thus it is extremely challenging to recognize IGAs using a

unified model. While using smart earring to capture the acceleration of the different

types of coughing, the x and z axis accelerometer sensor data are always steady, but

y axis acceleration increases when the transition from irritation to inspiration occurs.

On the other hand the acceleration decreases when the transition from compression

to expulsion occurs (see Fig. 5). In Fig. 6, if we consider raw acceleration signals,

different gestural activities have almost similar movement patterns that makes it is

impossible to classify. To distinguish these similar statistical features we propose

to use change-point scoring method on each statistical feature. Figure 6 shows the

change-point scores of magnitudes applied on each statistical feature which visual-

ize the unique pattern of each IGA.
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Fig. 5 a Chronos. Wrist Watch, CC1111 USB RF access point, eZ430 USB programming and

debugging interface b Coughing data from Chronos used as earring

Fig. 6 Acceleration (magnitude =
√

x2 + y2 + z2) and corresponding Change-Point Score of talk-

ing, coughing, yawning and deglutition
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6 Experimental Methodology

Detection of abrupt changes based on change-point scores can be classified into two

categories:

∙ Real-time detection: It targets applications that require immediate responses such

as intrusion detection, robot control etc.

∙ Retrospective detection: It targets more robust results in detecting abrupt signal

changes although detection may require longer reaction periods.

In this paper, we incorporate retrospective change-point detection based method

along with a unique segmentation algorithmic approach to distinguish different IGAs

with more fine-grained granularity.

6.1 Device Setup and Customization

We choose Texas Instruments Chronos development [48] device which was found

to fit our needs and used for the development. ‘Chronos’ an MSP430-compatible

system-on-chip with an integrated wireless modem is usually being used as a smart

watch. We customized the basic communication firmware establishing communica-

tions between computer and the integrated modem through wireless “access point".

The accelerometer integrated with the Chronos device is a Bosch BMA250 [49]

which offers a bandwidth of up to 1000 Hz. Though the pre-programmed device

provides an evaluation firmware that demonstrates the features of the device it does

not provide an option to save the data received to disk or in the computer. We develop

interfacing software, communications between the Texas Instruments host-side soft-

ware and the virtual COM port parser. The software was written in C# and the data

was saved to computer hard drive in a CSV format (Fig. 7).

6.2 Data Collection

We recruited 20 student volunteers (5 female and 15 male) with different heights

(mean 170.3 cm with standard deviation 5.83 cm), weights (mean 176.3 pounds with

standard deviation 15.3) and ages (19–30 years old with mean 25.3 and standard

deviation 2.6) to collect five different IGAs as mentioned before in two postural posi-

tions (i.e., standing and sitting). The participants were asked to wear our customized

earring device on their ear and to perform 5 different gestural activities (IGAs are

listed in Table 1). While most of the previous works considered talking and silence

activities as noise [5, 50], in our system we consider them one of the gestural activ-

ities that also should be distinguished from each other as well. In total, each of our
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Fig. 7 Chronos in different position

Table 1 Gestural activities with distribution details

Index Gestures Details # Samples Time distribution

(min)

1 Silence No gestural

activities

181.6

2 Coughing Natural two

consecutive

coughing (single,

consecutive two

and three)

263 (186, 49 and

28)

12.6 (7.7, 3.2 and

1.7 respectively)

3 Yawning Natural yawning 285 19.3

4 Deglutition Natural water

deglutition

281 31.15

5 Talking Normal talking 220 55.3

Total 300

participants performed a session of data collection of 15 min with proper instruc-

tions and sequences. Table 1 shows the detailed description of our captured IGAs

and gestural activities.

6.2.1 Description of Data Collection Session

We build a video manual instructing how the participants require to perform the

IGAs. The manual starts with an instruction about the entire experiment, the goals of

the experiment, final outcomes and a consent form. Then, the participants are asked

to read several segments of paragraphs in natural talking voice chosen from recent
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articles published in New York Times newspaper displayed on the screen. Then, the

video displays an instruction requesting to cough for 1–3 consecutive times as nat-

ural as possible. Similarly, the participants are asked through the video instruction

to perform all of the IGAs and silence activities in two different positions, (i) sitting

and (ii) standing. A glass of water is kept in front of the participants to help perform

‘deglutition’. However, the participants are allowed to do any of the 5 activities at any

time in the middle of the session. A webcam camera enabled with an audio recording

has been configured with time to record entire session. The nature of ‘coughing’ is

designed very carefully in three coughing forms (single, two consecutive and three

consecutive) as rest of the activities (i.e., ‘silence’,‘talking’, ‘yawning’ and ‘degluti-

tion’) do not have diversity like ‘coughing’ in natural scenario.

Two trained graduate student annotators are recruited to properly annotate the

ground truth of the entire session and another one graduate student is recruited to

validate the annotation. To help them annotate the ground truth, a continuous graph

of acceleration magnitude (similar to Fig. 6 spectrogram) has been displayed along

with the video. Table 1 shows the details of our dataset, class distribution and sub-

class of coughing (single, consecutive two and consecutive three coughing samples)

distribution with sample sizes.

We plot corresponding spectrograms of our collected gestural activities in Fig. 6.

In the spectrograms visualization, ‘Silence’ is not shown separately due to its pres-

ence in between of every two consecutive gestural events. While the distinct spectral

pattern is not clearly visible in the original graph of raw accelerometer spectrum,

change-point scoring for all of the gestural activities makes it more clear.

6.3 Feature Extraction

We split each time series data stream into a set of non-overlapping windows of feature

vectors. We used 18 statistical features that have uni-axial and bi-axial statistical

properties. The uni-axial statistics were applied to data from each axis separately

and the bi-axial statistic was applied to data from each of the C3
2 = 3 possible pairs

of axes for a total of 18 × 3 + 3 = 57 features [51]. We briefly describe our feature

sets below.

The sum and the sample mean act such properties that as more intense activi-

ties will tend to involve higher rates of acceleration during movement. We also used

the 10th, 25th, 50th, 75th, and 90th percentiles of the data, as well as signal power

and log energy as supplemental measures of overall activity intensity. The standard

deviation, coefficient of variation, amplitude, zero crossings count and the interquar-

tile range are useful for discriminating between activities with a consistent level of

intensity and activities. Lag-one-autocorrelation, skewness, kurtosis, and peak inten-

sity are useful for discriminating between activities that tend to be similar in their

overall intensity and variation in intensity. The correlation coefficient feature, which

discriminates between activities where acceleration values in one axis are predictive

of acceleration values in another axis, versus activities where that is not the case. We
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also applied change-point scoring [39] on each axis value and extracted above men-

tioned 57 statistical features on these. We used efficient feature selection algorithm

to find out the best features out of 114 (57 + 57) features separately.

6.4 Feature Selection

Our above mentioned feature extraction method generates 114 statistical features. We

use the correlation feature selection (CFS) algorithm to select the subset of features

to improve the computational efficiency of our method [52].

6.5 Performance Metrics

To measure the performance of our classification algorithms we used two perfor-

mance metrics, accuracy and detection time. Accuracy is computed by counting the

number of correctly predicted ticks for each true window separately, summing the

counts, and dividing by the total number of ticks. From Fig. 8, the accuracy of the

prediction is given as follows:

Accuracy =
CPT(A1) + CPT(B) + CPT(C) + CPT(A2)

(Total number of ticks)
= 3 + 3 + 0 + 4

20
= 50%

(4)

where CPT(.) is the number of correctly predicted ticks in an interval, and A1 and

A2 are the true class “A” windows.

Detection time is computed by counting how many ticks are required for a pre-

diction algorithm to start correctly predicting the class, after a true window begins.

From Fig. 8 the true window begins at tick 1 (class A), the algorithm predicts A
immediately, so the detection time for that window is 0. Over the second true win-

dow beginning at tick 4 (class B), the algorithm does not start predicting B until tick

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A B C A

A B C A

True Class Label

Predicted Class Label

Fig. 8 Time series example with 20 ticks from a dataset of three classes A, B and C with true

labels and predicted labels



460 M.A.U. Alam et al.

6 so the detection time for that window is 6 − 4 = 2 and so on. Thus the average

detection time over the time series segment is:

(0 + 2 + 3 + 4) ticks
4 windows

= 9
4

ticks per window

7 Evaluation

Activity recognition using accelerometer data is a rapidly emerging field with many

real-world applications. We apply accelerometer data based activity recognition for

infrequent gestural behavior analysis and detection. Though much of the prior works

in this area have assumed that the accelerometer data has already been segmented

into pure activities, in reality, activity recognition would need to be applied to “free-

living” data, which is collected over a continuous time period and would consist of

a mixture of activities. We applied our proposed novel change-point segmentation

based method and compare their performances with traditional fixed segment based

HMM method as follows.

7.1 Change-Point Scoring Based Segmentation

In this approach, we used [39] written Matlab implementation of relative density

ratio based change-point scoring algorithm [53] (explained in Sect. 5). Once change-

point detection scores were generated, we tested a number of threshold values that

determined which scores were high enough to be considered a predicted change-

point. Threshold values were chosen by considering the false positive rates of change

prediction for the change-point detection algorithms. A smaller false positive rate

corresponded to a higher and more conservative threshold, which split the time series

into fewer segments. A larger false positive rate corresponded to a lower thresh-

old, which split the time series into more segments. After segmenting the data, we

extracted features (114 features), applied feature selection and finally classify using

mostly explored classifiers for IGAs recognition. Towards the classification, we split

data stream into three equal parts: training, validation and testing.

7.2 Baseline Classification Method

In this method, we partitioned each time series into small non-overlapping windows,

where each window corresponded to a discrete time index in the HMM (explained

in Sect. 6). Then we applied feature extraction on each window. We build and tunes

classification models (SVM, C4.5 and Neural Networks) to select observation state.
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We split data into 4 equal parts: training base classifier, validation, training (HMM),

and testing. Here we formulated the problem of making predictions on the testing set

in terms of an HMM by treating the second training set as a training HMM. In our

dataset we let X be the ground truth activity classes of the windows, and O be the

predicted activity classes of the windows. We used the procedure above to calculate

̂T and ̂S, and assumed that these estimates held for the testing set as well as the second

training set. We then used the tuned base classifier to predict on the testing set, giving

us O. Finally, we used O, ̂T and ̂S to run the Viterbi algorithm on the testing set and

predict the ground truth activity classes X.

7.3 Performance Analysis

We tested our approaches with five base classifiers: decision tree, support vector

machines, neural networks, naive Bayes and Bayesian network. We used WEKA

API in java platform for our experiments. For decision tree, we chose C4.5 (J48

in WEKA API) with a confidence factor of 0.25. J48 implementation of WEKA

API provides auto pruning for tuning the classifier which helped avoid the usage of

validation dataset. We used [54] implementation of support vector machine called

sequential minimal optimization (SMO). For neural network, we used the iteration

number of 1000 with 100 hidden layers. We implemented Hidden Markov Model

(HMM) in java platform using HMMWeka [55] package. The details of results of

our two approaches are described as follows.

7.3.1 Change-Point Scoring Segmentation Method

In this approach, we followed two different strategies. First, we have extracted 57
pre-defined features using the raw sensor data stream (x, y and z axis values) and

used CFS algorithm to choose 13 best features for target classifiers. In Fig. 9a and

b, we illustrated details of performance metrics (accuracy and detection time) of

our chosen 5 different classifiers with increasing of change-point score threshold for

segmentation. Second, we have extracted 57 features using the change-point score of

the data stream and used CFS algorithm to choose 11 best features for final classifi-

cation. Figure 9c and d presented details performance metrics of our base classifiers

with increasing of change-point score. Figure 9 clearly shows that change-point score

threshold 3 gives the best performance of each base classifier. We also can say that

though Naive Bayes classifier performs better in terms of detection time, Decision

Tree algorithm outperforms another classification algorithms as it provides the most

accurate classification and close to best detection time.
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Fig. 9 Comparisons of different base classifiers with the increasing of change-point score seg-

mentation threshold with features from raw sensor a accuracy versus threshold b detectiontime

versus threshold and features from change-point scores of time series data stream c accuracy versus

threshold d detection time versus threshold
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Fig. 10 Comparisons of HMM performance (accuracy on the top and detection time on the bottom)

with the increasing of window sizes based on different base classifiers a Decision Tree b Support

Vector Machine c Neural Network d Naive Bayes e Bayesian Networks

7.3.2 HMM Based Method

In this approach, we split each time series into windows of fixed length correspond-

ing to discrete time ‘ticks’ in an HMM, and results for windows of length 2; 4; 6;

8; 10 s are shown in Fig. 10. We can see the window size of 4 s always gives better

classification accuracy as Decision Tree outperforms other base classifiers. It also
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depicts that in every case, incorporating HMM increases the accuracy measure for

all base classifier. Meanwhile, the increment of window size is inversely proportional

to the detection time.

7.3.3 Comparison

From the above results, we can see, for change-point scoring based segmentation

method, the best performance can be achieved if we use raw sensor data stream

for feature extraction and change-point score threshold of 3 for segmentation with

Decision Tree classification algorithm. On the other hand, for HMM based classifi-

cation method, we can achieve best performance if we use raw sensor data stream

and 4 s window size of segmentation with Decision Tree classification algorithm as

base classifier. For the first method, we achieved maximum accuracy of ≈95% with

21.1 s of detection time on average. On the other hand, for HMM-based method,

we achieved maximum accuracy of ≈96% with 10.5 s of detection time on an aver-

age. Tables 2 and 3 show the true positive rate (TP rate), false positive rate (FP rate),

recall, precision and F-measure from the 10-fold cross validation experiment of both

baseline and our method. Though, our first method shows significant accuracy, the

second approach slightly outperformed in terms of both accuracy and detection time.

HMM-based approach does not include the computation of a change-point detection

Table 2 The TP rate, FP rate, Precision, Recall and F-measure for each class from the LOPO

experiment using C4.5 as classifier and change-point score as frame-level features

Accuracy TP rate (%) FP rate (%) Precision (%) Recall (%) F-measure (%)

Silence 95.7 5.8 96.4 95.7 96.0

Coughing 86.0 00.3 84.0 86.0 85.0

Yawning 90.5 0.1 93.8 90.5 92.1

Deglutition 88.5 1.9 85.8 88.5 87.1

Talking 96.5 1.2 95.9 96.5 96.2

Weighted Avg. 95.1 4.1 95.3 95.1 95.1

Table 3 The TP rate, FP rate, Precision, Recall and F-measure for each class from the HMM

Experiment

Accuracy TP rate (%) FP rate (%) Precision (%) Recall (%) F-measure (%)

Silence 97.8 7.5 96.4 97.5 97.1

Coughing 88.4 00.7 90.1 88.4 89.2

Yawning 81.5 0.3 89.5 87.3 88.4

Deglutition 87.3 0.5 89.5 87.3 85.8

Talking 92.4 1.3 93.0 92.4 92.7

Weighted Avg. 95.8 5.7 96.1 96.3 96.0
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Fig. 11 Comparisons of HMM and change-point based classification performances with the
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score, but does include a final step the computation (via the Viterbi algorithm) of

the set of hidden states in an HMM that are most likely to correspond with classifier

predictions on the windows in the test data. The Viterbi algorithm is an offline algo-

rithm that considers all of the windows in the time series rather than just the latest

window, but it nonetheless runs quickly.

From the above results, it is really difficult to disseminate that HMM-based model

outperforms change-point detection based model as the outperformance is not sig-

nificant (≈1%). To expurgating the comparison more clearly, we reduce our sam-

pling rate from 22 to 2 samples per second and analyze the accuracy and detection

time for both of our approaches illustrated in Fig. 11. From Fig. 11, we can depict

that for low sampling rate, change-point score based classification outperforms

HMM-based approach. Figure 12 shows the ROC curve for both of our method that

clearly depicts that change-point based method outperforms HMM-based method

significantly. However, Fig. 12 also depicts that how correlation feature selection

can improve the classification accuracies for both change-point and HMM-based

method. Table 4 clearly depicts that our model outperforms other existing solutions

in classifying different types of IGAs.
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Table 4 Comparison with prior works’ classification recalls measure

Methods Hayley Hung [50]

2013

BodyBeat [5]

2014 (%)

1st approach (%) 2nd approach (%)

Silence N/A 74.38 95.9 97.6

Coughing N/A 80.0 82.7 88.4

Yawning 24% 75.0 80.2 81.5

Deglutition 21% 72.09 81.1 87.3

Talking 82.0% 81.06 89.0 92.4

Weighted Avg. N/A 71.2 95.3 96.7

7.4 Performance on Benchmark Datasets

It has become really hard to come up with a firm conclusion that our proposed

change-point detection based segmentation outperforms existing HMM-based

method significantly in lower sampling rate from the above analysis. To strengthen

our method’s outperformance precisely, we choose two benchmark datasets with

high sampling rate, HHAR [56] and REALDISP [57], to evaluate our novel change-

point detection based segmentation method in terms of sampling rate.

HHAR dataset consist of 6 postural activities (biking, sitting, standing, walking,

stair up and stair down), accelerometer and gyroscope sensors integrated 12 wearable

devices (4 smartwatches, 8 smartphones) with 9 users. We choose only one Samsung

Galaxy S3 smartphone integrated accelerometer sensor streams (sampling frequency

100 Hz) placed in the right pocket of each user for detecting 6 postural activities per-

formances to evaluate the efficiency of our approach. On the other hand, REALDISP

dataset consists of 33 activities, multi sensors (accelerometer, gyroscope and mag-

netometer) integrated wearable devices in 9 difference nodes of the body with 17

users. We choose right thigh worn wearable sensor device integrated accelerome-

ter signal streams (sampling frequency 50 Hz) and 6 activities (walking, jogging,

running, jump up, jump sideways, and cycling) dataset to evaluate our approach’s

efficiency.

For change-point detection based approach, we apply change-point scores and

find the segments, apply accelerometer feature extraction and feature selection to

extract 12 best features then finally apply decision tree algorithm to evaluate results.

For fixed length segmentation technique, we first set the segment window to 4 s,

apply accelerometer feature extraction and feature selection to extract 12 best fea-

tures and apply HMM method (explained before) for classifying activities (Fig. 13).

In REALDISP dataset, classification accuracies with change-point based decision

tree method shows 86.9% (FP rate 11.5%) while fixed length segmentation based

HMM algorithm shows 82.3% (FP rate 13.3%). On the other hand, on HHAR dataset,

our change-point segmentation based decision tree algorithm shows 93.4% (FP rate

3.5%) accuracy while HMM-based classification accuracy stagnates at 87.3% (FP

rate 9.3%). We downsample the sensor signal by a fixed factor to test the algorithms



466 M.A.U. Alam et al.

0 0

24 21

82

74
.3

8

80

75 72
.0

986

0

20

40

60

80

100

120

Silence Coughing Yawning Deglutition Talking

Hung[16] BodyBeat[24] Our Model

Ac
cu

ra
cy

 %

95

96

97

98

99

100

101

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

Accelerometer+Mic

Mic

Accelerometer

Ba
tt

er
y 

Po
w

er
 %

(a)
(b)

81
.0

695
.7

90
.5

88
.5 96

.5
Fig. 13 a Comparison of Results with prior works b Comparison of battery power drop of sensors

35

45

55

65

75

85

95

50 45 40 35 30 25 20 18 16 14 12

A
cc

ur
ac

y 
(%

)

Samples per second

Change-Point Markovian

55

60

65

70

75

80

85

90

95

100 90 80 70 60 50 40 30 25 20 15

A
cc

ur
ac

y 
(%

)

Samples per second

Change-Point
Markovian

(a) (b)

Fig. 14 Comparisons of change-point segmentation method based decision tree algorithm and

fixed length segmentation based HMM algorithm accuracies on a REALDISP and b HHAR datasets

performances in lower sampling frequency. Figure 14 shows the comparisons of the

accuracies for both of our method and HMM method on two benchmark datasets

which clearly depicts that in lower sampling rate, our method outperforms traditional

fixed length based HMM method significantly.

8 Discussion

The body motion and social behavior of the people are highly correlated [58–60].

It has also been proven that, social psychology has strong correlation with both the

speech and body gestures among the speaker and listener [59, 60]. In lower sampling
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Fig. 15 Accuracy
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rate, the traditional accelerometer feature-based activity recognition fails to achieve

higher accuracy for infrequent gesture recognition because each infrequent gestural

activity executes completely different pattern with different episode duration. Fixed

length segmentation fails to find fine-grained classification accuracy which neces-

sitates to apply different segmentation for different activity classification. In this

chapter, we show that CPS approach outperforms the fixed length based traditional

activity recognition methods in terms of accuracy and close enough in terms of the

detection time toward classification of IGAs. GeSmart also attests significant energy

savings sustaining the detection accuracy compared to the existing methods (Fig. 13).

We do more microscopic analysis of ‘coughing’ activity recognition performance to

evaluate our proposed change-point segmentation based method and fixed length

segmentation based HMM method. If we consider, three ‘coughing’ states (sin-

gle, two and three consecutive coughing) as three classes, then our total classifica-

tion problem consists of 7 classes (‘silence’,‘talking’,‘single coughing’, ‘consecutive

two coughing’, ‘consecutive three coughing’, ‘yawning’ and ‘deglution’). Figure 15

shows the classification accuracies for 7 class problem of the two approaches which

clearly depicts that the detection accuracy of ‘consecutive three coughing’ is much

higher for both of the method followed by ‘consecutive two coughing’ and ‘single

coughing’ IGAs. However, it also can be seen that our method outperforms for both

overall and individual coughing IGAs classification accuracies. To test our feature

selection performance, we train

Privacy and energy efficiency: Collecting data from microphone or camera involves

serious privacy concern that doing so without proper consent of the users is unethical

and often illegal. Hence, most of the people especially the elderly people, are reluc-

tant of wearing some devices which capture audio or video of ADLs. Our system

values user’s privacy by applying a highly privacy concerned sensor accelerometer.

However, only using accelerometer itself reduces significant amount of energy con-

sumptions. For example, as shown in Fig. 13b, a simple measure of battery power
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drainage of different sensors in Google Nexus 4 smartphone shows that accelerome-

ter sensor helps improve the battery life of smartphone 2.3 and 3.3 times respectively

compared to an audio and audio cum accelerometer sensor based activity recognition

approach.

9 Conclusion and Future Work

Behavioral health safety assurance of older adults has become increasingly important

as the number of older adults living worldwide and average life expectancy of them

increases. In this chapter, we presented an energy efficient infrequent IGAs recog-

nition model to predict the chronic behavioral conditions. We explored one online

(CPS), one offline (HMM) method and a smart segmentation method towards clas-

sification of IGAs in different human postures. Change-point detection is a field of

statistics popular in control theory and other similar applications. This method takes

as input an initial time series and partitions it into smaller pieces using change-point

detection. While, regular activity recognition can be exploited easily using fixed

length window based traditional activity recognition algorithm, infrequent gestural

level activity recognition fails with it in terms of lower sampling rate which is usual

case for available cheap devices. We are the first of a kind used Change-point scoring

based segmentation to provide more fine-grained classification accuracy for IGAs

detection than existing works.

The objective of this work is to make an energy efficient, computationally fast

and accurate classification of activities which are subjected to be abrupt changes

(infrequent non-speech gestures like coughing, deglution and yawning) and distin-

guish them from other frequent gestures (such as talking and silence). For any sensor

device, sensing with low sampling rate is one of the primary ways of reducing com-

putational cost and energy consumption. However, low sampling rate costs the accu-

racy which can be reduced using proper segmentation rather than using fixed length

segmentation. We propose a new segmentation technique (change-point detection

based) and compare its performance with the most popular fixed length segmenta-

tion based technique (HMM).

Our device is customized in the lab and not commercially marketable. The device

needs more miniaturization and light weight conversion to use it as an ubiquitous

wearable earring for older adults. Our initial goal of this study is to find out the

opportunity to detect IGAs using only a single accelerometer integrated earring with

very lower sampling rate thus the data length and transmission consume less power.

That is why, we customize a device that facilitates a controllable sampling rate. In our

future goal, we will build a complete, light weight, energy efficient, micro accelerom-

eter sensor integrated earring that can come up with all commercial requirements.
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Smartphone Based Real-Time Health
Monitoring and Intervention

Daniel Aranki, Gregorij Kurillo and Ruzena Bajcsy

Abstract Smartphones are often dubbed as “a doctor in your pocket” as they have

in recent years become one of the most notable platforms for health management and

monitoring. In this chapter we discuss the potentials for real-time health monitoring

of chronic health conditions and data-driven intervention that aim to improve patient

care at a lower cost. We outline several challenges that developers, patients, and

providers face with respect to this new technology. We then review several commer-

cial platforms for health monitoring and discuss their pros and cons. Furthermore, we

present Berkeley Telemonitoring Framework, a recently developed Andorid-based

open source solution for development of health-monitoring applications with secu-

rity and privacy in mind. In particular, our framework offers an easy-to-use API

for building client apps, deploying data-hosting servers, fault-tolerant data retrieval

and storage, access to event-based Bluetooth and BLE stacks with standards for per-

sonal health devices, access to phone sensors, implementation of several vital signs

estimators, gait analysis, etc. We demonstrate the use of the framework on an exam-

ple fitness application MarathonCoach. We further discuss several challenges facing

real-time telemonitoring. In particular, we focus on privacy and propose a novel

information-theoretic framework called Private Disclosure of Information (PDI).

The PDI framework formalizes a scheme for encoding the collected health data in

a manner that minimizes the ability of an adversary from gaining knowledge about

the patient’s diagnosis (or other information private by implication) through statis-

tical inference, while allowing the authorized provider to use this information with

no loss in utility.
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1 Introduction

The current prevalent healthcare model is reactive in nature. That is, in most cases,

an individual seeks medical care or advice after a deterioration of her or his health

status is perceived. In general, the current healthcare model does not encourage peo-

ple to invest into their health until notable symptoms that indicate serious conditions

occur. There are some exceptions to this rule. For instance, women are encouraged

to get checked regularly for breast cancer, even before any signs of deterioration

are present. As such, a healthcare model where health changes can be detected in

advance and intervened upon is desired. We will call this model the proactive health-
care model in the remainder of this chapter. Other names for this model exist in the

literature, including predictive healthcare and preventive healthcare. The potential

benefits of the proactive healthcare model include: (i) improvement in individuals’

well-being; (ii) reduction in healthcare costs; (iii) reduction in readmission rates in

chronic health conditions; and ultimately (iv) reduction in all-cause mortality.

For example, the cost of healthcare in the United States of America reached $3.0
trillion in 2014 ($9, 523 per person), a 5.3% increase following the growth of 2.9%
in 2013. The spending for hospital care increased 4.1% to $971.8 billion in 2014
compared to the 3.5% growth in 2013. The spending on physician and clinical ser-

vices followed a similar trend by increasing 4.6% in 2014 to reach $603.7 billion

from a 2.5% growth in 2013. In contrast, the acceleration in spending on prescription

drugs was significantly higher in 2014 at 12.2% to reach $297.7 billion compared to

the 2.4% growth in 2013 [21]. A more proactive healthcare model may help reduce

these costs for individuals, healthcare institutions, the government, and insurance

companies.

To reduce the rising cost of healthcare in the United States, the US legislation

under President Barack Obama passed Patient Protection and Affordable Care Act

(PPACA) in March 2010. One of the main mechanisms to achieve this goal was to

reduce readmission rates in chronic health conditions [60, 65]. Chronic health con-

ditions are particularly prevalent in older population which is by and large covered

by the Medicare program. The Medicare program, which in 2015 covered 46 million

people age 65 and older and 9 million younger people (with disabilities), is funded by

taxpayers. Fig. 1 depicts the 12-month moving average of 30-day all-condition hospi-

tal readmission rates for discharges occurring in each month in Medicare. Although

there is an improvement in the all-condition 30-day readmission rates following the

enactment of PPACA in 2010, the full potential of improvement however is yet to

be attained. For example, 26.9% of patients with congestive heart failure (CHF) in

Medicare were readmitted within 30 days of discharge between October 1, 2003

and December 31, 2003 24.6% of patients with psychosis in Medicare, 22.6% of

patients with chronic obstructive pulmonary disease (COPD) in Medicare and 20.1%
of patients with pneumonia in Medicare were readmitted within 30 days of discharge

in the same period [51]. In another study, it was reported that 50% of patients with

CHF were readmitted within 6 months of discharge [43].
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Fig. 1 Medicare 30-Day, all-condition hospital readmission rate. Data were provided by the Cen-

ters for Medicare and Medicaid Services. The plotted series reflects a 12-month moving average of

the hospital readmission rates reported for discharges occurring in each month [60]

In current medical practice, patients typically visit their physician only a few times

a year. This provides a limited number of data points that may not be sufficient to

forecast the patient’s health prognosis. In order to implement a more proactive health-

care model, more data points are needed, however with the increasing amount of

information, the doctors cannot review all the data manually to provide appropriate

feedback to each patient. Instead, predictive models have to be utilized to provide

the decision-making support [10]. Furthermore, the data collection does not neces-

sarily have to happen only in the clinical environment, but can be instead, with the

support from technology, accomplished from home by patient self-reporting or in a

more continuous manner via the real-time telemonitoring. In the last decade, smart-

phones have become one of the most notable platforms for health management and

monitoring, giving rise to the term mHealth for services accessed through mobile

technologies. In the context of healthcare, smartphones can be used not only to seek

medical information online almost anytime and anywhere, but also to keep track of

one’s health status through various apps. However, due to the complexity of health

regulations and various technical obstacles, the use of smartphones for health man-

agement has been to date primarily limited to various fitness and wellness purposes.

Many clinical and technology researchers have on the other hand explored the use of

smartphones in various health-related applications, including monitoring of chronic

health conditions, such as CHF, diabetes, hypertension, depression and others (e.g.,

[62, 67]). Although such studies demonstrated the utility of mHealth technologies

for telemonitoring, they were typically only observational and limited to short-term

experiments in the laboratory controlled environments.

The smartphone however has the potential to not only facilitate the data col-

lection but also to provide intervention for the proactive healthcare model. Unfor-

tunately, continuous health monitoring comes with several challenges that need

to be addressed in order to maximize the potential benefits of this approach. For



476 D. Aranki et al.

example, predictive models that utilize the collected health data and the population

data to assess risks of clinical deterioration first need to be developed before they can

provide reliable information to patients. Predictive models for healthcare are chal-

lenging to develop and to validate clinically. For starters, the development of these

predictive models requires collection of preliminary patient data, which may pose

a challenge to technology researchers and data scientists who have no direct access

to patients. Second, the development of the models requires expertise in medical

sciences and practice; in addition to expertise in data science (for example, statisti-

cal machine learning). This usually requires collaboration between researchers from

both disciplines which may pose an extra challenge in the process. Third, the clinical

validation of such predictive models is a long and costly process, requiring long-term

monitoring of both healthy subjects and patients with specific health conditions in

order to collect sufficient data. Take, for example, the Framingham Heart Study, a

study that aims to unveil facts about the epidemiology of cardiovascular diseases,

which has been ongoing since 1948 [29].

Subsequently, the involvement of healthcare professionals and researchers in the

development of medical apps in general, and health monitoring apps specifically,

is necessary and currently lacking [48]. There are several barriers that hinder such

involvement from reaching its maximum potential; most notably, the complexity of

designing such apps in a technologically robust way, ensuring reliability of collected

data, ensuring data security and privacy, and designing apps in a way that keep the

patients engaged over time. In this chapter, we will discuss these challenges in detail

and argue for the need of a more systematic approach. We will introduce a num-

ber of attempts to address them through generalized frameworks for mobile health

monitoring in research and commercial space and discuss the features and potential

drawbacks of these platforms. Furthermore, we will examine some of the remaining

challenges and propose directions of addressing them.

Almost by definition, mobile health monitoring is a distributed paradigm. That

is, the health data authored by patients are collected and partially processed at dis-

tributed nodes and submitted to distributed servers (often referred to as “the cloud”).

This provides the opportunity to apply and recycle many of the techniques that are

well-studied in the field of distributed computing. It is also of importance to note that

incorporating distributed systems design principles when designing health monitor-

ing systems is a requirement, if health monitoring is to be scaled beyond a small

number of patients. On the other hand, the distributed nature of health monitoring

systems also provides some challenges. For instance, in parallel to the technologi-

cal challenges in mHealth, privacy is an important issue that needs to be addressed

by design. At the same time, distributed computing could potentially help in cer-

tain privacy challenges arising in mobile health monitoring. For example, allowing

medical apps to compute certain functions on the cloud allows patients to protect

their privacy in case their data are needed to assess the health status of an indi-

vidual patient (for example, if population data are used in the process). This goal

can be achieved because the health status factor can now be calculated on trusted

nodes without disclosing any particular patient data to the client app running on the

smartphone. Unfortunately, a survey of the literature reveals a lack of studies on the
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security and privacy aspects of health apps, which have received considerable atten-

tion in the literature on more traditional eHealth technologies, such as electronic

health records and databases [48]. Therefore, at the end of this chapter we provide a

view of privacy from a perspective relevant to mobile health monitoring.

In the reminder of this chapter, we first review the literature for related stud-

ies in the field of telemonitoring (Sect. 2). We then survey existing solutions to

smartphone-based health and fitness monitoring (Sect. 3). Finally, we introduce and

describe the Private Disclosure of Information (PDI) framework, which is applicable

to patient privacy in telemonitoring scenarios (Sect. 4).

2 Potential, Feasibility and Related Work

In this section we briefly review three topics that closely relate to continuous smart-

phone based health monitoring addressed in this chapter: (a) clinical telemonitoring,

(b) use of smartphone apps in mHealth, (c) measurement of physical activity, and

(d) privacy. These related works provide the background information and motivation

for some of the solutions that are discussed in subsequent sections.

2.1 Telemonitoring

We first review several examples of telemonitoring for proactive healthcare which

gave rise to the idea of continuous real-time monitoring with smartphone. We par-

ticularly focus on the chronic heart failure (CHF) as one of the notable examples

where telemonitoring and timely intervention based on collected data could reduce

the re-hospitalization rates and overall cost of care. For brevity, we summarize results

from several systematic reviews while interested readers are encouraged to refer to

the cited papers—and the references therein—for more information.

Telemonitoring of CHF has been the focus of several studies even before the con-

ception of mHealth. Chaudhry et al. [22] conducted a telemonitoring randomized

clinical trial, where telemonitoring was accomplished by means of telephone-based

interactive voice-response system that collected daily information about symptoms

and weight of patients with CHF (826 patients in the telemonitoring group and 827
in the standard care group). The collected data were subsequently reviewed by the

patients’ clinicians. The study reported no significant difference in hospital readmis-

sions or mortality within 180 days from the enrollment between the two groups.

In [26], Clark et al. reviewed 14 randomized controlled trials (4, 262 patients

in total) of telemonitoring and/or structured telephone support for patients with

CHF. Among the reviewed trials, only one study collected some form of daily phys-

ical activity information, which was self-reported to a nurse via telephone. Only

five of the studies collected vital signs (e.g., weight, blood pressure, heart rate

and/or periodic electrocardiogram) on a daily basis; four of which also collected



478 D. Aranki et al.

information about related symptoms (e.g., fatigue). The authors reported average

reduction of hospital readmissions by 21% (95% confidence interval 11–31%) and

average reduction in all-cause mortality by 20% (8–31%).

The review by Giamouzis et al. reported results of 12 studies on telemonitoring

of patients with CHF in [44], two of which were also included in the review by

Clark et al. [26]. Although some of the studies collected self-reported data about

physical activity, none of the trials captured any quantitative information, such as

energy expenditure (EE), that could provide a more objective estimate of patients’

physical activity levels [44].

Inglis [49] reviewed a set of 30 studies on telemonitoring and structured tele-

phone support with medical intervention mechanisms for patients with CHF. Only

one study provided subjects with activity monitors; however, the data were used for

self-monitoring only and were not transmitted to the medical staff [42]. One struc-

tured telephone support study inquired daily about patients’ physical activity (the

study was also included in the review by Clark et al. in [26]). However, none of the

reviewed studies performed continuous activity monitoring. From the above litera-

ture review it is clear that there is a need to implement more continuous monitoring

that could alert physicians when changes in physical activity or relevant vital signs

occur. In Sect. 2.3, we review and discuss various methods of obtaining continuous

measures of physical activity that can be applicable for mHealth purposes.

2.2 mHealth and Smartphones

In this section we briefly review the smartphone app development related to mobile

health (mHealth). We summarize the results of a comprehensive survey article by

Hussain et al. who reviewed 133 articles on mHealth from MEDLINE, Web of Sci-

ence, ScienceDirect, and IEEE Xplore [48]. The aim was to examine the trends of

using smartphone apps for medical purposes (from the beginning of 2010). In their

report they found that the majority of existing research literature (68/133) either

concerns specific medical apps or provides an overview of apps dedicated to spe-

cific clinical specialty, disease area, or usage as a clinical tool. These areas include

anesthesia, surgery (including plastic surgery), oncology, internal medicine, pallia-

tive medicine, ophthalmology, dentistry, pharmacy, psychiatry, pediatrics, infectious

diseases, public health, women’s health, dermatology, family medicine, endocrinol-

ogy, cardiopulmonary resuscitation (CPR), asthma, cardiology, rehabilitation, and

sports medicine. Another group of articles (43∕133) reported on the usability and

design aspects of the apps, such as evaluating existing apps or exploring desired fea-

tures of mHealth systems. They further found that only a few researchers (17∕133)
reported on the experience in developing new medical apps. The rest of the articles

(5∕133) were dedicated to general frameworks that would address several aspects of

medical app development and their operation. The review by Hussain et al. empha-

sizes (i) that medical apps development is not standarized, resulting in a relatively

small number of researchers developing medical apps; and (ii) that there is a need
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for clinical validation of medical apps. We believe that standardization of mHealth is

crucial in order to facilitate progress in the field addressing both of these shortcom-

ings. In the rest of this chapter, we discuss several frameworks which attempt some

degree of standardization for the development and operation of mHealth systems and

outline the outstanding challenges in the field.

2.3 Measurement of Physical Activity

Regular physical activity is one of the most important factors in the primary and

secondary prevention of several chronic diseases (e.g., cardiovascular disease, dia-

betes, cancer, hypertension, obesity, depression, and osteoporosis) and premature

death [73]. Although many of the previous works used telephone support to moni-

tor patients’ activity, such service requires substantial involvement of the staff and

may as such be cost-prohibitive to track larger number of patients. In addition, self-

reporting through telephone creates additional burden to the patients and does not

provide objective way to quantify the activity levels and vital signs in order to make

reliable predictions needed for an automated alert system. In this context, an expert

report by Dhurandhar et al. argues that self-reported physical activity EE data are

too inaccurate to be used in scientific research [32].

Objective measurement of physical activity could thus facilitate relevant informa-

tion on the patient’s health status for prediction and intervention that would encour-

age individuals to initiate the change and sustain a positive health behavior over

a longer time period, as it has been demonstrated in various wellness applications

[53]. Physical activity can be in general quantified by estimating EE. Some research

efforts are aimed at incorporating activity monitoring capabilities in daily-life con-

sumer products such as the design of smart clothes and smart gloves [12, 54]. In the

consumer market, several off-the-shelf products for EE data collection are currently

available. Some examples include Nike+ FuelBand
1
; Fitbit’s Activity Wristbands

and Trackers,
2

and others. Several research studies that examined the accuracy of

such monitoring showed that many of these devices are accurate in counting steps

but inaccurate in EE estimation [30, 61]. In another study, researchers found smart-

phone applications to be more accurate in counting steps than some of the wearable

devices [20]. This emphasizes the need to take into account the model of the sensor

accuracy and the measurement distribution when developing predictive healthcare

models.

Many wearable devices require (or benefit from) a smartphone (or other internet-

connected device) and would as such require patients to carry with them an additional

device at all times while having to keep track of the battery charge and connectiv-

ity. With smartphones becoming ubiquitous, we believe that the smartphone alone

is currently the most convenient device for continuous EE estimation as opposed to a

1
http://www.nike.com/us/en_us/c/nike-plus.

2
http://www.fitbit.com/.

http://www.nike.com/us/en_us/c/nike-plus
http://www.fitbit.com/
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dedicated wristband, hip clip, heart rate monitor or other discrete tracking device [64].

One of the limiting factors in adopting wearable devices for health monitoring is the

battery life [2]. Majority of the wearables work in conjunction with a smartphone and

thus require charging two or more devices. Using the smartphone alone for the activ-

ity monitoring reduces the burden of keeping track of battery levels across devices,

which is especially important for less tech-savvy users. Smartphones have thus the

necessary sensory (e.g., accelerometer) and computing capabilities to accomplish

this task. Accelerometers have been used for activity monitoring and recognition

in many previous studies (for example, [33, 61]). These studies have shown that

accelerometers can be used reliably to estimate EE [61]. In a study on CHF, Aranki

et al. included continuous estimation of EE using the algorithm developed by Chen

and Sun [24] and validated by Donaire-Gonzalez et al. [33]. The algorithm solely

relies on the built-in triaxial accelerometer sensor available on the phone [10].

2.4 Privacy

Attention to privacy has been rising in the healthcare domain with the spread of

electronic health-records usage and the growing data sharing between medical insti-

tutions. It has been reported that consumers are expressing increasing concerns

regarding their health privacy [15, 46, 48]. Most of the research in privacy from

the health community focuses on medical data publishing and is therefore database

centric. For a survey of results in this domain, we refer the reader to [45].

In more general-purpose scenarios, the privacy of statistical databases and data

publishing has been extensively studied. Denning et al. presented some of the early

privacy threats related to inference in statistical databases and reviewed controls that

are based on the lattice model [31]. Duncan et al. studied methods for limiting dis-

closure and linkage risks in data publishing [34, 35]. Sandhu provided a tutorial on

lattice-based access controls for information flow security and privacy [69]. Later,

Farkas et al. provided a survey of more results in the field of access controls to the

inference problem in database security [40]. For rigorous surveys in the fields of data

publishing privacy and statistical databases privacy, we refer the reader to [1, 41].

Two semantic models of database privacy of growing interest in the privacy liter-

ature are k-anonymity [71] and differential privacy [36, 37]. In k-anonymity, given

a set of quasi-identifiers that can be used to re-identify subjects, a table is called k-

anonymous if every combination of quasi-identifiers in the table appears in at least

k records. If a table is k-anonymous, assuming each individual has a single record

in the table, then the probability of linking a record to an individual is at most 1∕k.

Other extensions and refinements of k-anonymity have been proposed including l-
diversity [56], t-closeness [55] and others.

In differential privacy, the requirement is that the output of a statistical query

should not be too sensitive to any single record in the database. Formally, given

a statistical query M, then M is 𝜖-differentially private if ℙ
(
M

(
D1

)
∈ S

)
≤ e𝜖 ×
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(
M

(
D2

)
∈ S

)
for any two realizations D1 and D2 of the database such that

|D1ΔD2| = 1 and all S ⊂ Range(M), where D1ΔD2 is the symmetric difference

between D1 and D2 [36, 37]. Cormode showed that sensitive attribute inference can

be done on databases that are differentially private and l-diverse with similar accu-

racy [27].

As can be seen from the review above, most of the research in data-privacy

is focused on privacy-preserving data publishing and privacy-preserving statistical

databases. In contrast, in Sect. 4 we will focus on preventing adverserial statisti-

cal inference of a piece of private information based on the disclosed messages in

an individual’s information exchange scenario during communication applicable to

health telemonitoring systems.

3 Solutions

3.1 Apple Health, ResearchKit, and CareKit

Recognizing the need for smartphones to include a central data collection point for

health related data, Apple in September of 2014 released Health app with an accom-

panying HealthKit Application Program Interface (API). The framework addressed

the fragmentation and lack of interoperability of third-party health apps and con-

nected health devices. Health app thus provides users with controls to grant other

applications access to health and fitness data. Furthermore, it includes a dashboard

with an overview that displays the data, such as heart rate, calories burned, weight,

blood pressure, measured blood sugar, etc. An example screenshot is depicted in

Fig. 2a.

With the release of Apple Watch in March 2015, Apple introduced ResearchKit,
an open-source software framework designed to collect data for health and med-

ical research. ResearchKit enables researchers to develop mobile applications that

can accumulate various types of data from surveys and patient-reported vital signs,

access data from Apple Health (given user permission), track movements from the

phone’s internal sensors or a wearable device, and take various other measure-

ments using the iPhone [50]. The premise was to take advantage of proliferation

of smartphones in daily lives and around the globe to perform scientific studies with

a much larger number of subjects that was possible to date and thus help medical

research move ahead faster. Simultaneously with the release of the ResearchKit,

Apple announced five research studies that were lead by several prominent medical

institutions around the country. The initial ResearchKit apps included: (1) Asthma
Health app (Mt. Sinai, Weill Cornell Medical College, and LifeMap) for collecting

asthma related markers, (2) mPower app (University of Rochester and Sage Bionet-

works) for tracking symptoms in Parkinson’s Diseases, (3) Share the Journey app

(Dana-Farber Cancer Institute, UCLA Fielding School of Public Health, Penn Medi-

cine, and Sage Bionetworks) to study quality of life of patients treated for breast



482 D. Aranki et al.

Fig. 2 a A screenshot of the Apple Health activity tracking screen; b a screenshot of the Samsung

S Health summary screen; and c a screenshot of the Google Fit activity tracking screen

cancer, (4) GlucoSuccess app (Massachusetts General Hospital) to track diet, phys-

ical activity, and medication in persons with diabetes, and (5) MyHeart Counts
app (Stanford University and American Heart Association) to study risk factors for

cardiovascular disease [72]. Since the release, several other studies have been in

progress, including Autism & Beyond ResearchKit app for autism, CTracker to under-

stand impacts of hepatitis C in daily life, Mind Share app for studying Alzheimer’s

disease, and others.

ResearchKit is aimed to lower the barriers to development, integration, data stor-

age, and distribution of such apps for clinical research. To simplify the development,

the framework is composed of three pre-defined modules which can be further cus-

tomized, including: (1) informed consent, (2) surveys, and (3) active tasks [50].

By providing electronic version of the informed consent for research studies, sci-

entists using ResearchKit have much greater outreach to potential subjects across the

country (and across the globe) while also simplifying and accelerating the enroll-

ment process. When MyHeart Counts ResearchKit app lead by Stanford University

was first released in March 2015, over 10,000 participants signed up within the first

24 h [5]. Such wide scale medical research however raised several ethical concerns,

including privacy, research on minors, and potential issues with the informed consent

process [47].

Survey modules provide pre-defined layouts to create different type of surveys that

include a sequence of questions with various answering modes. The surveys can use

ordered tasks where the steps are always the same or navigable ordered task where

tasks can change or branch out. ResearchKit offers various answer formats, including

scale, boolean, multiple choice, and location. In addition to these, the ResearchKit
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framework provides special answer formats for asking questions about quantities or

characteristics that the user might already have stored in the Health app [3].

Finally, the active tasks modules include several pre-defined activities that are

performed under semi-controlled conditions (e.g., time limited) while iPhone sen-

sors actively collect data. The collected data are in the raw form passed on to the

app. The ResearchKit framework currently includes six predefined active task cate-

gories, including motor activities, fitness, cognition, voice, audio, and hole peg. The

motor activities are focused on (a) gait and balance and (b) tapping speed. Fitness

active tasks include (a) general fitness activity and (b) timed walk. Cognition active

tasks include (a) Spatial memory, (b) Paced Serial Addition Test (PSAT), (c) Tower
of Hanoi, and (d) Reaction time measurement. Voice active task is focused on sus-
tained phonation, while audio includes tone audiometry. Hole peg is the latest active,

which evaluates hand dexterity via multi-touch display. The developers can further

extend the set of tasks by defining their own active tasks that collect simultaneous

data from a set of iPhone sensors.

One of the important features of Apple ResearchKit is that it protects user privacy

by giving users controls on what health information they would like to provide for

each study they are enrolled in. Although ResearchKit provides encryption for data

transmission and storage, it is up to the investigators to ensure that their apps are

compliant with regulatory requirements (e.g., HIPAA in the United States) [68].

From the success of ResearchKit to be able to conduct large-scale studies, Apple

realized that the same principles could help with individual care (Jeff Williams,

Apple COO). In March 2016, Apple released CareKit, an open-source framework

designed specifically for patient-centered disease self-management [4]. The CareKit

framework is available for developers to build apps that would encourage users to

take more active role in their care and share the data with their doctor. The CareKit

framework was initially released with four modules that included (1) Care Card to

help people track individual care plans and action items (e.g., taking medications),

(2) Symptom and Measurement Tracker to let users record their symptoms via notes,

measurements, and photos, (3) Insight Dashboard to graphically map symptoms

against the action items in the Care Card to show effects of treatments, and (4) Con-
nect to easily share health information with their doctor, care teams or family mem-

bers [4]. The first two CareKit apps released were Parkinson’s Central (by National

Parkinson Foundation, Inc.) aimed to empower people with Parkinson’s and their

caregivers to track symptoms and medications and One Drop (Informed Data Sys-

tems, Inc.) app for managing diabetes. Several other CareKit apps are in development

at the time of writing (September 2016), including apps for post-surgery progress,

home health monitoring, diabetes management, mental health, and maternal health.

The open source model of Apple ResearchKit and CareKit allows the researchers

and developers to continue expanding the existing set of modules and adding new

ones. Some of the recent contributions include incorporation of genetic data and

lab test results. Although several research studies are on-going, to date only the

mPower study on Parkinson’s Disease has published a report in a scientific journal

by releasing their mobile data of subjects who opted to share their data broadly [17].

The released data includes demographics, monthly survey responses for Parkinson
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Disease Questionnaire 8 (PDQ-8) and Universal Parkinson Disease Rating Scale

(MDS-UPDRS), and data from four activities on memory, tapping, voice, and walk-

ing, which were completed three times a day, of over 9,000 subjects.

3.2 Samsung Digital Health and S Health3

Samsung launched the health platform S Health in July 2012 with the release of their

Android phone Galaxy S III. The initial intention was to create a wellness platform

that is compatible with a number of healthcare sensors such as blood glucose meters,

blood pressure monitors, and body composition scales. The S Health platform was

intended as the Andorid counterpart to Apple’s iPhone HealthKit. Over the years,

the S Health platform created an ecosystem for tracking fitness and health by pro-

viding their development platform, Samsung Digital Health software development

kit (SDK), to third-party developers.

The S Health platform thus provides a mechanism for data sharing between data-

sensing devices and various consumer applications for analysis, coaching, and social

interaction. One of the important components of S Health is the dashboard which

integrates the results obtained from various apps and provides different ways to track

and visualize health data as graphs or tables. An example screenshot is depicted in

Fig. 2b. The basic building block of the S Health platform is a tracker. The platform

comprises of various pre-defined trackers, including step, weight, sleep, heart rate,

oxygen saturation (SpO2), blood glucose, blood pressure, food, water and caffeine

intake, and several exercise trackers. Some of the trackers can take advantage of the

smartphone’s internal sensors to provide values directly, such as step tracking and

heart rate, while others connect to wearables or third-party apps to obtain the data

for a particular tracker. Users have various privacy controls to select which data can

be shared between the apps or with the platform itself.

Initially, S Health was limited only to Samsung Galaxy devices. In September

2015, S Health support was extended to all devices running Andorid 4.4 (KitKat)

or higher. The latest release of S Health (v. 5.0) added various features such as vital

signs tracking, creating training plans, setting goals for workouts or sleep, weekly

summaries, and social interaction with the feature ‘Together’ where users can chal-

lenge their friends in various fitness activity competitions. Furthermore, the security

of health data is now being addressed through Samsung Knox,
4

an enterprise-grade

security platform that provides a level of protection and encryption with hardware-

backed credential storage. The S Health app can thus detect unauthorized changes on

the smartphone via the Knox framework and render the data inaccessible if a security

threat is determined.

3
Samsung renamed “S Health” to “Samsung Health” in April 2017.

4
https://www.samsungknox.com.

https://www.samsungknox.com
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Although S Health has been primarily geared towards fitness and individual-

ized health self-monitoring, Samsung has established several collaborations with

health care researchers that would “accelerate the validation and commercialization

of new sensors, algorithms, and digital health technologies” for preventive medi-

cine.
5

Samsung partnered with University of California San Francisco (UCSF) in

2014 and established the UCSF-Samsung Digital Health Innovation Lab. Within

the announcement of this collaboration, Samsung also released a new open hard-

ware platform Simband. Simband was intended to provide a design blueprint for

developing wearable devices which would incorporate various advanced sensors,

including measurements of galvanic skin response, ECG, heart rate, and others. In

collaboration with UCSF, these sensors were also being clinically validated [16]. To

facilitate large-scale clinical trials, the health researchers can now take advantage of

Samsung ARTIK Cloud
6

(formerly known as SAMI), which is a device-agnostic

cloud-based data exchange platform that aggregates measurements from a variety of

sources (including smartphones, smart-watches, IoT devices, etc.). This framework

can provide researchers with capabilities to collect, securely store, view, and analyze

data in real-time. At the time of writing, Samsung does not have a publicly available

equivalent of Apple’s ResearchKit that would specifically target clinical trials.

3.3 Google Fit

Google Fit health-tracking platform was released in October 2014 for the Android

operating system. The platform is intended to collect and aggregate data from pop-

ular fitness trackers and health-related apps into a central repository. Google Fit can

take advantage of the smartphone’s sensors or wearable devices to count steps and

record exercise activities (e.g., walking, running, cycling). Google Fit consists of the

following components: (1) fitness store for storing data from various fitness devices

and apps in a cloud-based repository, (2) sensor framework which defines high-level

representations for sensors, fitness data types, data points, and sessions, (3) permis-
sions and user controls that implements a mechanism for user-controlled access to

collected data, and (4) Google Fit APIs which include Android API for access and

recording from sensors and REST API for storing and access of user data in the

fitness store.
7

An example screenshot is depicted in Fig. 2.

Following the announcements by Apple and Samsung to enter the clinical

research, Google announced in June 2015 that their Google X research division

developed a health-tracking wristband that can be used for clinical and drug tri-

als [23]. The wearable device would measure pulse, heart rhythm, skin tempera-

ture, light exposure, and noise levels, providing researchers with minute-by-minute

5
https://www.ucsf.edu/news/2014/02/111976/samsung-ucsf-partner-accelerate-new-innovat

ions-preventive-health-technology.

6
https://www.artik.cloud/.

7
https://www.developers.google.com/fit/.

https://www.ucsf.edu/news/2014/02/111976/samsung-ucsf-partner-accelerate-new-innovations-preventive-health-technology
https://www.ucsf.edu/news/2014/02/111976/samsung-ucsf-partner-accelerate-new-innovations-preventive-health-technology
https://www.artik.cloud/
https://www.developers.google.com/fit/
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patient data. To date, no further information has been released, however Google con-

tinues to show interest in health research with the founding of their company Verily8

and their effort DeepMind Health.
9

3.4 Other Commercial Platforms

Aside from the big players in the mobile market, Microsoft in October 2014 released

the smart wearable device Microsoft Band and the health-tracking platform Microsoft

Health. The two products enable users to collect and view their data about step

counts, workouts, and sleep quality. Since its release, Microsoft Health has been

updated to support several other wearable devices and connects to partner apps,

such as MyFitnessPal, Strava, RunKeeper, and MapMyFitness. The Microsoft Band

SDK and Microsoft Health Cloud API provide developers with tools to access mea-

surements on the smartband and to create new health apps that take advantage of

Microsoft’s ecosystem.

Several other health and fitness platforms that collect data from smartphone

and wearable devices have been developed over the years. Under Armour recently

released their fitness platform Under Armour Connected Fitness10
and the accompa-

nying app UA Record. The platform aggregates collected data on activity, sleep, and

workouts from mobile sensors and third party devices. Through their app, members

can share their data and compete with their friends in various customized health and

fitness challenges. Under Armour provides an SDK for developers as well as access

to the platform with free and paid subscriptions. In addition, Under Armour released

UA HealthBox which includes a scale, wristband, and chest heart rate monitor to

measure, track, and manage sleep, fitness, activity, and nutrition.

Finally, several of the wearable smart device manufacturers also provide apps that

are geared towards collecting fitness activity data and tracking progress over time,

while being able to share these data with other users. Some of these applications can

be used independently or they can connect to one or more major health frameworks,

such as Apple Health, Samsung S Health, and Google Fit. Examples of such wearable

smart-bands include FitBit,
11

Pebble watch,
12

Nike FuelBand,
13

and JawBone.
14

8
https://www.verily.com/.

9
https://www.deepmind.com/applied/deepmind-health/.

10
https://www.underarmour.com/en-us/ua-record.

11
https://www.fitbit.com/.

12
https://www.pebble.com/.

13
https://www.nike.com/us/en_us/c/nike-plus.

14
https://www.jawbone.com/.

https://www.verily.com/
https://www.deepmind.com/applied/deepmind-health/
https://www.underarmour.com/en-us/ua-record
https://www.fitbit.com/
https://www.pebble.com/
https://www.nike.com/us/en_us/c/nike-plus
https://www.jawbone.com/
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3.5 The Berkeley Telemonitoring Project

The Berkeley Telemonitoring Project at University of California, Berkeley has

recently released an open source framework for the development of research-oriented

telemonitoring systems.
15

The development of this framework was preceded by a

pilot study of telemonitoring patients with CHF using a smartphone. The study

was conducted between University of California at Berkeley, Northwestern Med-

ical Faculty Foundation (Chicago, IL), and New York University [9, 10]. Fifteen

patients, who were recruited for the study, were remotely monitored for a period of

three months using a smartphone app that collected information about their vital

signs, physical activity, symptoms, and health behavior. The goal of the study was to

evaluate the feasibility and acceptability of telemonitoring via a smartphone under

real-world conditions. Specifically, the study aimed to examine the usability, pri-

vacy implications, and technical requirements of telemonitoring as encountered by

patients and healthcare providers. The study findings guided the design and imple-

mentation of the aforementioned framework [8].

The Berkeley Telemonitoring framework consists of a set of libraries that can

be used to build a distributed real-time health-monitoring system comprised of

telemonitoring servers and Andorid-based telemonitoring nodes (e.g., smartphone,

smartwatch, tablet, etc.). For the remainder of this section, we will refer to the tele-

monitoring node as a smartphone for simplicity. The choice to support Android

thus complements the efforts carried out by Apple ResearchKit for the iOS devices.

The share of Android operating system (OS) in the smartphone market, as of June

2016, was 83.7% (versus 15.3% for Apple iOS), making it an attractive choice for

a telemonitoring platform. To the best of our knowledge, there are no similar gen-

eral frameworks for research currently available for Android. A systematic review of

the mHealth research by Hussain et al. reveals that the majority of the first medical

apps targeted iOS (since its release predated Android); however, most of the health

research apps available now, based on the surveyed sample, target either Android

alone or both platforms [48].

In the next few paragraphs we outline some of the design objectives that were

followed to develop this framework.

There are several disadvantages in using smartphones as telemonitoring nodes.

For starters, smartphones are limited in their battery, computational, and connec-

tivity resources. As a result, smartphone apps are more susceptible to interruptions

than software running on personal computers. For instance, if resources are needed,

the Android OS may choose to kill an app that is running in the background. Subse-

quently, telemonitoring apps have to be able to recover from faults in a tolerant way,

including retaining any collected data which were not delivered to the server before

the fault. Thus, one goal is to elevate the responsibility of fault-tolerance from the

app layer to the framework.

15
https://www.telemonitoring.berkeley.edu.

https://www.telemonitoring.berkeley.edu


488 D. Aranki et al.

Second, telemonitoring apps, particularly those running continuously in the back-

ground, need to be mindful of their battery consumption. High battery consump-

tion may ultimately entice users to uninstall the app from their smartphone [9,

10]. Therefore, another design objective is to (i) design the different modules in an

energy-aware manner; and (ii) provide tools to allow the delegation of computationally-

intensive tasks from the smartphones to remote servers (distributed computing).

Moreover, telemonitoring systems curate health data, which are privacy-sensitive

by nature. As such, it is vital to design the framework with privacy in mind. For

example, in order to assess a subject’s risk of clinical deterioration in certain chronic

health conditions, the analysis may rely on the subject’s relative parameters com-

pared to the rest of the population. Therefore, by utilizing distributed computation

on the cloud, the system can request this analysis to take place on a trusted server

where the population data reside, and by that mitigate the privacy risks of sharing

the population data (or statistics based on them) with the smartphone of the subject.

However, distributed computation, in conjunction with data access controls, is not

sufficient to protect patient privacy. More sophisticated privacy threats need to be

addressed within the framework, such as for example statistical inference attacks.

Since the framework is aimed at non-technical developers, the programing inter-

face has to be simple enough; while being at the same time flexible enough to allow

more seasoned developers to extend its functionality. To achieve this goal, a sim-

ple API is provided that hides the complex implementation details. The different

modules included in the framework can be further extended using Object-Oriented

Programming (OOP) principles.

Finally, health telemonitoring systems must be able to collect health-related data

from various sources at different scales. These sources include self-reported data by

patients through survey-like instruments, such as for examples various symptoms

that a patient may be experiencing. Other sources of health-related data are exter-

nal sensors, wearable devices, and stationary devices. Similarly, any internal sensor

available on the smartphone may serve as a source of health-related data. For exam-

ple, accelerometer data can be used to estimate step counts and energy expenditure.

Therefore, the framework needs to include tools that facilitate data collection from

all of these sources in an easy-to-use way.

A summary of the objectives can be found in Table 1.

Framework Structure
The Berkeley Telemonitoring framework consists of three main libraries: client
library, server library, and core library. The client library, written in Java as a

natural selection for Android-based system, is used by the smartphone app. Sim-

ilarly, the server library deployed on the server is also implemented in Java in

order to reduce the development overhead. The uniformity of implementing both

libraries in Java enables them to share certain data structures that can be placed

in a common library, the core library. This consistency also allows telemonitoring

apps and servers to communicate data structures seamlessly via serialization (i.e., the

process of translating data structures into a format that can be transmitted or stored).
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Table 1 Objectives and principles in designing the Berkeley Telemonitoring framework

Identified issue Design objective

Fault-tolerance Embedded fault telerance in the framework’s

modules

Battery consumption Provide tools for delegating computation to a

server (distributed computing) and for

monitoring battery consumption

Privacy Design privacy-preserving data structures,

access controls, and data analysis and

communication technologies

Flexibility The framework should enable developers to

extend its functionality

Ease of use The API should be easy to use and should hide

any technical details that are not health-related

Access to vital signs and symptoms The framework should facilitate the collection

of health data (i) by implementing algorithms

that estimate vital signs from internal sensors;

(ii) by supporting the collection of data from

external devices, wearables and sensors; and

(iii) by supporting the collection of

self-reported data by patients, which can take

the form of surveys

Serialization is useful because it is typically independent of the communication pro-

tocol, security and privacy layers or data-storage paradigm.

To be concrete, the core library supplies data structures for data storage, privacy

and security, surveys, and fault tolerance. The client library supplies tools to (i) con-

nect to external devices for data acquisition; (ii) estimate health-related variables

from internal smartphone sensors; (iii) delegate computation; (iv) communicate with

the server; and (v) render surveys on the smartphone screen. Consequently, the server

library includes tools to (i) manage data collection and retention; (ii) analyze data;

(iii) perform delegated computation; and (iv) communicate with the smartphones.

The architecture of the Berkeley Telemonitoring framework is depicted in Fig. 3.

Event-Based Programming
The Berkeley Telemonitoring framework adopts the event-based programming par-

adigm. In this paradigm, the app requests a service from the framework and immedi-

ately resumes control of the CPU. The framework in return, will attempt to provide

the requested service and will inform the app through callbacks whenever a change

to the status of the requested service occurs. These changes are referred to as events,

and the constructs that are used by the app to implement the actions performed when

an event occurs are referred to as listeners.

Data Storage Paradigm
As mentioned previously, oftentimes the Andorid OS may need to free resources by

killing apps that are not actively being used in the foreground. This means that the
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Fig. 3 The architecture of the Berkeley Telemonitoring framework

telemonitoring app has to be developed in such a way to be able to recover from such

situations gracefully. The naive approach is to dismiss any datapoints that were col-

lected prior to such an event but not yet submitted to the server. Another option is to

design data structures in a fault-tolerant way by ensuring that a copy of every data-

point is stored in some non-volatile storage (e.g., built-in storage) upon its collection.

This copy can then be retrieved after such a hiatus. Altough this enables a more reli-

able data collection process, it normally requires careful implementation from the

developer of the telemonitoring app, increasing the complexity of the development

cycle.

The Berkeley Telemonitoring framework achieves fault-tolerance by providing

backables, data structures that are able to be immediately backed up on non-volatile

storage whenever their content changes. Another component related to fault-tolerant

data storage is called a backup cabinet. Each backup cabinet has designated loca-

tion on the internal storage for data storage. Backup cabinets allow backables to be

registered inside them for automatic backup services as described earlier. Upon reg-

istration of a backable, the backup cabinet retrieves any previously backed-up copy

of that backable if it exists. Afterwards, the backup cabinet creates (if necessary) and

updates the backup copy whenever the contents of the backable change.

Privacy and Security
To ensure that the collected data are secure, backup cabinets utilize the Android

OS storage options to store the data in a space only accessible to the app that gen-

erated them. Further mechanisms that would allow storing, recovering, and com-

municating data structures in a secure and privacy-preserving manner are currently

being implemented in the Berkeley Telemonitoring framework. Those technologies

are being implemented over backables and backup cabinets for easy and seamless

integration. For example, privacy-preserving measures against statistical inference
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attacks are being incorporated in the framework. These measures are based on the

Private Disclosure of Information framework that is discussed in Sect. 4.

Bluetooth and BLE
The Berkeley Telemonitoring framework extends the Android Bluetooth and Blue-

tooth Low Energy (BLE) stacks in an effort to unify their behaviors [13]. Origi-

nally, Android’s stack for Bluetooth is polling based; that is, the app layer has to

actively check whether any change in the status of any connection occurs (e.g., mes-

sage received, connection established, etc.). On the other hand, Android’s BLE stack

is event-based; which makes it fundamentally different than the Bluetooth stack. The

framework’s extended Bluetooth and BLE stacks both conform with the event-based

paradigm. For example, when the app requests from the framework’s Bluetooth stack

to connect to an external device, the app regains control over the CPU immediately

after placing the request. The framework, on the other hand will inform the app

through the app’s listeners upon the occurrence of any event.

Moreover, the Berkeley Telemonitoring framework provides an extension to

natively support data collection from Bluetooth or BLE devices that are compliant

with the ISO/IEEE 11073 Personal Health Device (PHD) standard [38]. That is, the

app only needs to define an object representing a PHD device and request to connect

and collect data from it. The framework, in turn, will connect to the device and start

collecting data from it and delivering the data to the app through listeners, comply-

ing with the event-based programming paradigm. Note that the app does not need to

implement the PHD standard protocols or know what type of device it is connecting

to beforehand (e.g., blood pressure monitor vs thermometer). For example, consider

an app that wants to support data collection from any PHD-compliant thermome-

ter as well as any PHD-compliant blood pressure monitor. The app can initialize a

backable for the thermometer data and another one for the blood pressure data. In

addition, if the app has an object representing a PHD-compliant device (as returned

by the Bluetooth/BLE stack to the app), it can register both backables with it and

request to start collecting data. The framework in turn will fill the applicable back-

able(s) depending on the type of the device, and the app can be notified when data

are added to the backable(s) using listeners as described earlier. Figure 4a depicts a

screenshot of an app using the Bluetooth stack to scan for nearby devices.

Estimators and Extractors
In addition to the ability of the Berkeley Telemonitoring framework to collect data

from IEEE 11073 compliant devices, it also provides the ability to use data from

internal smartphone sensors to estimate health-related variables. These components

are referred to as estimators. Similarly, the framework provides the app the ability

to extract raw sensory data from internal sensors available on the phone through

components that are referred to as extractors. An estimator or an extractor uses a

backable to store the data it estimates or extracts in. The estimation or extraction

process starts upon request from the app and remains active until the app requests to

stop it.

At the time of writing, the following estimators and extractors were supported:

(1) Heart rate estimator from a face video: the estimator calculates an estimate of
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Fig. 4 a Bluetooth/BLE stack example: scanning for nearby devices; b Face-based heart rate esti-

mator example; and c finger-based heart rate estimator example (top positioning of the finger on

the smartphone camera; bottom video frame captured by the camera with the estimator’s output)

the heart-beat rate in real-time from a video feed of the subject’s face. This estima-

tor is a real-time implementation of the algorithm described by Poh et al. [13, 66].

An example of the estimator in action is depicted in Fig. 4b; (2) Heart rate estima-

tor from a finger video: the estimator calculates an estimate of the heart-beat rate

in real-time from a video feed of the subject’s index finger that is placed over the

camera [13]. An example of the estimator in action is depicted in Fig. 4c; (3) Energy

expenditure estimator: the estimator calculates an estimate of energy expenditures

in a real-time from tri-axial accelerometer data [24, 33]; (4) Cadence estimator: the

estimator calculates an estimate of cadence (steps per minute) in real-time from tri-

axial accelerometer data [11, 59]; (5) Speed estimator: the estimator calculates an

estimate of walking speed in real-time from tri-axial accelerometer data [13, 63]; (6)

Global Positioning System (GPS) extractor: the extractor allows the app to collect

the GPS data as provided by the phone; (7) Battery extractor: the extractor allows

the app to collect selected battery status information, including whether the phone

is charging and the current battery level; and (8) Call status extractor: the extractor

allows the app to collect information about whether the phone is currently in a phone

call or not.

Surveys
In addition to the sensor-facilitated data collection, the Berkeley Telemonitoring

framework also provides the ability to represent, render, and collect data from sur-

veys that can be delivered to the patient through the smartphone. In the framework,

a survey is a list of survey nodes; and each survey node is composed of a question
and an answer pair. The node question describes the question component (e.g., text

question, picture question, etc.) and the node answer describes the answer component
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Fig. 5 a The survey components; and b an example of a survey node composed of a text question

and a text answer

(e.g., check list, radio list, text box, etc.). See Fig. 5a for a depiction of this design.

An example of a survey node with a text question and a text answer is depicted in

Fig. 5b.

In addition to the survey construct, the framework also includes a survey renderer
module that automatically renders any given survey node and returns an Android

fragment that can be placed anywhere in the app. This design (a) enables mHealth

apps to deploy surveys that include any combination of question type and answer

type; (b) enables developers to extend the framework in order to include new types

of questions and answers; and (c) allows apps to easily include the surveys (both

designing surveys and displaying them).

Client-Server Communication
The Berkeley Telemonitoring framework provides modules facilitating the

smartphones-servers communication. The burden of implementing these modules

traditionally falls on the app developer. Similar to previously discussed constructs,

the communication modules need to be implemented in a manner that is tolerant

to faults. The Berkeley Telemonitoring framework abstracts the communication by

defining the job construct as the atomic communication unit. We describe the fol-

lowing two types of jobs.

Data Jobs: Jobs that describe the intent to transmit data from the smartphone to

the server. The most common use of these jobs is to transmit the health-related data

collected during monitoring (e.g., vital signs and surveys).

Request Jobs: Jobs that describe the smartphone’s intent to delegate computation

to a server. As discussed earlier, there are mainly two important benefits of allowing

delegation of computation:
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1. Computational power: Delegating heavier computations allows the smartphone

to obtain their results in a quicker manner, without incurring a cumbersome con-

sumption of battery on the smartphone; and

2. Privacy: The server has access to information about the rest of the monitored

population. Delegation of computation allows telemonitoring apps to complete

computations that may require access to data other than those pertaining to the

smartphone’s owner in a privacy-preserving way. The classical example of such

computation is estimating a patient’s risk of clinical deterioration. This computa-

tion may need to compare the patient’s data to the rest of the population. Sending

relevant statistics of the population data to the smartphone presents a privacy risk

[36, 37]. Therefore, instead of bringing the data to the computation, this mech-

anism allows the computation to be delivered to the data (where it is trusted to

reside), potentially better protecting the privacy of the other patients.

The Berkeley Telemonitoring framework includes the design of the jobs and

the infrastructure to implement specific protocols that can communicate these jobs.

This specification in the framework is referred to as meta-protocol; i.e., the set of

requirements for a protocol in terms of handling jobs. Any implementation that sat-

isfies these requirements is considered a valid telemonitoring communication pro-

tocol. This design allows developers to implement their own protocols by satis-

fying the requirements dictated by the meta-protocol [8]. The meta-protocol also

natively facilitates distributed computing by allowing a server to have multiple phys-

ical addresses for distribution of load and data as needed (similar to SMTP servers

for mail). The framework also includes an off-the-shelf fault-tolerant protocol, Tele-
interfacing (TI) protocol, that performs communication using Transport Layer Secu-

rity (TLS), or its predecessor, Secure Socket Layer (SSL)—if desired—over Trans-

mission Control Protocol (TCP).

Example App: MarathonCoach
Figure 6 depicts screenshots from an example fitness app, MarathonCoach, that was

built using the Berkeley Telemonitoring framework. The app takes advantage of sev-

eral of the aforementioned functionalities. MarathonCoach aims to provide person-

alized coaching to long-distance runners through the runner’s physical parameters

and monitoring during runs [11]. The model adopted for marathon-running train-

ing is to try to optimize the cadence of the runner during a set time frame. That is,

once the runner’s physical parameters are provided to the app (Fig. 6a), the runner’s

cadence is obtained (during the initial run), the target cadence is set and the target

date to reach the target cadence is set, the app will develop an exercise regimen that

helps the runner achieve his or her target cadence (Fig. 6b). MarathonCoach starts by

showing a list of the past runs by the runner using the app. When the runner triggers

the start of a new run, the app requests to take heart-beat rate measurements from a

face video or a finger video (Figs. 4b, c). The user in turn can opt to take these mea-

surements or skip them, after which the run starts and the monitoring app begins to

collect data about the runner’s speed, cadence, GPS location, and heart rate via an

any ISO/IEEE 11073 compliant external heart rate monitor (Fig. 6c). During the run,

the app gives the runner feedback about his or her run, such as for example cadence
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Fig. 6 Screenshots from the MarathonCoach app that was built using the Berkeley Telemonitoring

framework: a the main screen for the runner’s physical parameters; b a runner’s exercise regimen

for cadence as a function of time; c the screen that is displayed during a run; and d the screen that

is displayed after the run is completed

being too high or too low. The feedback is delivered to the runner through vibration

and audio cues (and on the screen). Once the run is completed, the app will again

request to take heart-beat rate measurements from a face video and a finger video.

Similarly to the pre-run case, the user can choose to take these measurements or skip

them. This is done in order to further validate the accuracy and usability of the face-

based and finger-based heart-beat rate estimation algorithms as used by individuals

in a non-controlled environment (outside of the lab). We achieve this validation by

comparing the estimates from the algorithms with the data obtained from the external

heart rate monitor. Afterwards, the app displays the summary of the run (Fig. 6d). At

the time of writing, the app was being studied for efficacy and usability at University

of California, Berkeley.

3.6 Intervention

One of the important aspects of proactive health care is the intervention. The goal of

health-behavioral intervention is to initiate and sustain health-improving activities;

similarly, the preventive interventions are intended to discourage unhealthy behav-

iors before they start [70]. Health behavioral interventions originate from social sci-

ence theories which primarily relied on observational and self-reported data. The

goal of the intervention process is to assess the health risk from the data by using

predictive health-behavior models [25]. Furthermore, one needs to also monitor the

response to the intervention and modify it appropriately in order to be effective.

According to Spring et al. this process can be characterized by “4 Ms”: monitoring,

modeling, motivating, and modifying [70].

Availability of real-time data through smartphone monitoring provides new oppor-

tunities to revisit health-behavioral modeling. The high granularity and multi-modal



496 D. Aranki et al.

nature of the observations can help build better models and facilitate more effec-

tive interventions. As mentioned previously, the observations can include objective

measurements, such as physical activity, vital signs, location, phone usage, and sub-

jective information such as pain, energy level, emotional state, etc. Based on these

data, we can create models that capture the health-behavior to various degrees of

fidelity. The models, which are typically based on control systems engineering, are

aimed to determine the level of intervention that would maximize the effect on the

individual’s behavior. The models have to be dynamically adapted as the behavior of

the user changes over time. In the context of changing health-behavior, motivation is

the driving force of understanding, changing, and maintaining health behavior [70].

Since different people are motivated differently, it is important that the entire process

is individualized in order to keep the users engaged. In addition to technological fea-

tures (e.g., intuitive interaction, appealing design, variety in incentives, etc.), health

intervention needs to activate effective behavior change mechanisms that will initiate

the change and sustain the positive behavior over a longer time period.

There have been a handful of studies evaluating mobile intervention via smart-

phones in various populations, including in patients with depression [19] and

schizophrenia [14], and to promote weight loss [57] and physical activity [19].

3.7 Challenges

In spite of the efforts described thus far to advance the potential of health and fit-

ness monitoring and intervention, many challenges remain open. On the clinical side,

designing monitoring and intervention systems and studies requires the involvement

of qualified professionals in healthcare, which is currently lacking [48]. Moreover,

there is a lack of evidence of clinical effectiveness, efficacy and objective research

to evaluate clinical outcomes of mHealth systems [10, 39]. A better understanding

of the negative effects of mHealth apps and systems is also needed, and the develop-

ment of predictive models that take behavior into consideration is required (dubbed

physio-behavioral models) [10, 39, 48]. Another challenge related to the clinical

aspects of mHealth is that there is a considerable amount of mHealth systems, apps,

devices, and frameworks that facilitate collection of data; however, there is a lack

of autonomous expert systems that can provide effective feedback and timely inter-

vention based on these data [8, 10]. The proper authorship of data can also be a

challenge; that is, are we able to identify when the data collected through telemoni-

toring are authored by the someone other than patient being monitored? [10].

From a systems and standardization point of view, there is an absence of a regula-

tory framework for design and development of mHealth systems [48]. Moreover, for

mHealth systems to be adopted in healthcare institutions, there is a need to integrate

them in existing healthcare delivery and/or reimbursement systems [39, 48]. Partic-

ularly, technical challenges arise from the lack of seamless interfaces between app

platforms and existing information technology systems used by healthcare providers

(e.g., integration with electronic health records) [48]. An additional challenge in this
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category is the user experience and usability of mHealth systems for patients. A few

examples include (a) commitment of patients to use a specific mHealth system on a

daily basis; (b) achieving user engagement that does not diminish over time (usage
fatigue); (c) remembering to recharge the devices involved in the mHealth system;

(d) the consumers’ learning curve in using new mHealth systems; and (e) getting

reliable access to the mHealth systems in rural areas due to poor or lack of signal

[10, 48]. Moreover, some of the frameworks provide capabilities of collecting the

data related to selected tasks but do not provide any post-processing capabilities to

calculate relevant medical quantities based on the collected data. For example, they

enable apps to collect accelerometer data or step counts, but do not provide tools to

estimate energy expenditures based on such data. Furthermore, many commercial

platforms implement proprietary solutions for processing the sensor data, making

the comparison of the same quantity between different apps and platforms difficult.

The lack of standardization and transparency therefore also limits the medical pro-

fessionals and researchers to unify the data collection processes, share data, and draw

reliable conclusions from different studies since each study may have calculated the

values using a different method or algorithm. This problem is apparent even in sim-

ple quantities such as step counting [20]. With higher-level inferences from these

measurements, such as energy expenditure, there are even more variables that affect

the accuracy and reliability of the extracted feature. Apple’s ResearchKit, for exam-

ple, allows for the researchers to calculate energy expenditure from given step counts

and raw accelerometer data instead. In such scenario different researchers may imple-

ment the calculation not only using a different algorithm but a different code which

may be prone to errors. With this example, it is clear that for the health research there

is a need to standardize and provide open source methods for calculation of health

markers that can be affirmed and maintained by the scientific community [8, 10, 48].

In addition to these challenges, legal and ethical concerns are being raised in the

mHealth literature. For example, it is not clear what is the best way of obtaining

informed consent for studies based on mobile apps in healthcare. This challenge is

particularly interesting in studies that target a large number of participants, such as

in the case of the studies conducted with Apple ResearchKit [47, 48]. To that end,

as of September 2016, a clinical study is being conducted by Duke University to

compare the standard informed consent process in medical practice to the process

featured in Apple’s ResearchKit.
16

Although the use of mHealth technologies, such

as Apple ResearchKit, provides unprecedented opportunity for large scale clinical

trials, there is also a significant lack for population coverage and a potential bias

due to differences between the user bases of specific platforms and smartphones in

general [50].

There are also challenges on the administrative side. For instance, the financial

costs of developing new mHealth systems and/or interfacing them to existing health

IT system may hinder their wide adoption [18, 48]. Another example of challenges

in this category is privacy and security. Health data are privacy-sensitive data and as

such, need to be stored, transmitted, analyzed and retained carefully. Currently, there

16
https://www.clinicaltrials.gov/ct2/show/NCT02799407.

https://www.clinicaltrials.gov/ct2/show/NCT02799407
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is little research on privacy-aware methods that are geared towards mHealth relative

to the amount of privacy-related research being performed in other fields of health-

care information technology such as electronic health records [6, 10, 18, 47, 48]. For

example, Apple HealthKit and ResearchKit provide the consumer the ability to grant

permissions to the different mobile health apps to access her or his health data. This

approach provides access control but does not protect against other types of privacy

leaks such as inference attacks [6]. Moreover, compliance of mHealth systems with

governmental regulations such as the Health Insurance Portability and Accountabil-

ity Act (HIPAA) is an open challenge. A taxonomy summary of the different health

and fitness frameworks presented in this section can be found in Table 2.

4 Private Disclosure of Information

4.1 Introduction

Telemonitoring is one example of an emerging area with growing interest to collect

sensitive personal and private data. Warner argues that the lack of privacy guaran-

tees can cause individuals to be reluctant to share their data with data collectors (such

as doctors, government agencies, researchers, etc.) or instead provide false informa-

tion [74]. Therefore, users need to be assured that their privacy will be preserved

throughout the whole process of data collection and use. Since the data involved

in the telemonitoring setting are sensitive from a privacy point of view, privacy-

preserving technologies are needed in order to protect patients’ privacy and increase

compliance and adoption.

In order to achieve this goal, we first have to identify the stages in the life cycle of

data in telemonitoring. These stages include (i) the disclosure (or submission) of the

data by the users to the data collector; (ii) the processing of the data; (iii) the analy-

sis; and/or (iv) the publishing of (often a sanitized version of) the data or relevant

findings based on them. In this section we discuss the framework for Private Disclo-

sure of Information (PDI), which aims to prevent an adversary from inferring certain

sensitive information about patients—typically diagnosis—using the data that were

disclosed during health telemonitoring communication with their doctors [6]. This

threat is usually referred to as inference attack.

In traditional encryption approaches to maintaining privacy, it is often implicitly

assumed that the data themselves are the private information. However, in some sce-

narios, the data can be used to infer certain private information about the subjects

from the given data. For example, respiration rate by itself might not be considered

private information. However, if the data from the collected respiration rate are used

to infer whether the individual is a smoker or not, they become sensitive informa-

tion. One can argue that because the information about whether someone smokes is

private, the respiration rate data become private by implication.
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Under such circumstances, one should sanitize the transmitted data in a way that

reveals as little as possible about the private information to an adversary. In sum-

mary, our objective is to encode the transmitted data in order to hide another private

piece of information that can be derived from these data. In the words of Sweeney:

“Computer security is not privacy protection” [71]. The converse is also true, privacy

does not replace security. The discussed approach is therefore to be viewed as com-

plementary to classical security approaches. For example, data can be first sanitized

then encrypted.

4.2 Problem Formulation

Notation
We use the following shorthand notation for probability density (mass) functions.

We always use a pair of a capital and a small symbols of the same letter for a random

variable and a realization of it, respectively. For notation simplicity and conciseness,

given random variables X and Y , instead of writing pX(x) for the marginal density

(mass) function of X we simply write p(x), and instead of writing pX|Y (x|y) for the

conditional density (mass) function of X given Y , we simply write p(x|y).

Setting and Threat Model
Consider a setting in which a patient, Bob, is diagnosed with a health condition c.

Bob’s doctor, Alice, offers Bob a telemonitoring technology in order to stay updated

about his vital signs, symptoms and other health-related variables. Note that for the

purposes of this section, the goal is not to provide or update the diagnosis, but to

merely remotely monitor Bob’s health status after a diagnosis is obtained.

The information that Bob would like to share with Alice, x, is of sensitive nature.

That is because if x fell in the hands of an adversary, Eve, it can be used to learn

Bob’s diagnosis through statistical reasoning. It is therefore desirable to devise an

information disclosure process that would protect Bob against Eve’s inference attack.

This process is desired to work in conjunction with the traditional techniques that

protect the disclosed message itself (e.g., encryption). Finally, we denote the encoded

information that Bob actually discloses to Alice through the telemonitoring system

by z (the sanitized version of x).

The threat model can be described as follows. Eve does not originally know Bob’s

diagnosis c, and therefore treats it as a random variable C (Note that the diagnosis c is

known to Alice beforehand and is therefore not part of the transmission). Eve wants

to update her belief about Bob’s diagnosis p(C|Bob) to p(C|Bob, z) after observing

Bob’s disclosed information z. We will assume in this setting, that both Eve and Alice

know that the sender of the message z is Bob. That is, we assume that Bob’s identity

is attached to his disclosed messages in the system. The threat model is depicted

in Fig. 7. We therefore are defending Bob against an inference attack by a passive

eavesdropper, Eve.
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x,Bob Bob

encode(·)
Alice

decode(·)
x,Bob

c c

z,Bob

p(C|z,Bob)

Eve

Fig. 7 The threat model which PDI is addressing: a passive eavesdropper performing a statistical

inference attack on a piece of private information c (diagnosis) from a disclosed message z

Based on this, our goal is to encode the information x to z in a way that minimizes

Eve’s ability to gain information about the diagnosis c from z. In contrast, traditional

encryption techniques aim to limit Eve’s ability to reason about the original message

x—not c—from z. Using our notation, if Eve treats the original message as a ran-

dom variable X, the goal of traditional encryption is to limit Eve’s ability to update

her belief P(X|Bob) to p(X|Bob, z). Although these two goals are related, they are

also different as has been demonstrated in inference attacks relying on encrypted

messages (for example see [58, 75]).

In summary, if we denote the subject identifier of the patient using the telemon-

itoring system by s (which is Bob in the discussion above), the goal is to devise an

information disclosure process that delivers the following premises:

DECODING Alice can make full use of the sent information z, i.e. obtain the

original message x from the transmitted message z; and

HIDING CLASS Eve’s ability to make inference about c given s, based on the

sent information z is minimized.

Definitions
Formally, we use 𝕊 for the set of identifiers of patients using the telemonitoring

system. We use 𝐈 for the information space from which the health data is drawn and

ℂ for the set of possible diagnoses of patients which we would like keep private.

Similarly, we define the random variables S for the identity of the patient disclosing

the information. We define the random variable C for the private diagnosis. Finally

we define the random variables X and Z for the piece of health information that the

patient would like to disclose and the piece of information that the patient actually

discloses (after encoding), respectively. We call Z the sanitized information. In our

treatment, we will consider encoding mechanisms of the following form.

Definition 1 A privacy mapping function (PMF) is a function R ∶ ℂ → 𝐈𝐈 where 𝐈𝐈
is the set of injective functions 𝐈 → 𝐈.

A simple way to think about a PMF, R, is as an encoding scheme. That is, for every

diagnosis c ∈ ℂ, R(c) is an encoding function. Recall that Alice knows the diagnosis

of her patient s, and that the patient identity s is attached to every (sanitized) mes-

sage that is disclosed. Since R(c) is injective by definition, there exists a left inverse
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S C

X

Z

Fig. 8 The statistical graphical model of PDI. S: the patient’s identity; C: the patient’s diagnosis;

X: the original data to be disclosed; and Z: the sanitized data actually disclosed

[R (c)]l that Alice can use to decode any disclosed message back to the original

message.
17

This ensures the satisfaction of the premise (DECODING) above. Our

encoding process (encode(⋅) from Fig. 7) is therefore z = [R (c)] (x) and the decod-

ing process (devode(⋅) from Fig. 7), is therefore x = [R (c)]l (z). From this, it follows

that the random variables Z,X and C are related as Z = [R (C)] (X). The statistical

graphical model relating the random variables is depicted in Fig. 8.

Illustrating Example
To illustrate the concepts presented thus far, we consider the following example of

a telemonitoring scenario for the purpose of monitoring the weight of patients who

are of ages 19 or younger. Let the information space be 𝐈 ≜
{
(bmi,w) ∈ ℝ2}

where

bmi and w represent the patient’s body mass index (BMI) [
kg

m2 ] and weight [kg],

respectively.
18

Let the set of diagnosis beℂ ≜ {UW,HW,OW,OB} for underweight,

health weight, overweight, and obese, respectively. These categories are consistent

with the definitions of the Center for Disease Control and Prevention (CDC) for

weight categories. According to these definitions, the weight category of a child or

a teen is classified based on the individual’s BMI percentile among the same age

and gender group as described in Table 3. Note that since the age and gender of the

patient are not part of the information space, the adversary’s inference of the weight

status category of a patient based on BMI and weight is not perfect.

From these definitions, the distribution of diagnoses is p(UW) = 0.05, p(HW) =
0.8, p(OW) = 0.1 and p(OB) = 0.05 among individuals from our patient population.

If Eve has no extra knowledge about any particular patient, her prior belief p(c|s)
is simply equal to p(c) for all c ∈ ℂ and s ∈ 𝕊. However, if Eve observes the mes-

sage x = (50, 120) ∈ 𝐈 without encoding (i.e., z = x) coming from the patient Bob

(corresponding to Bob weighing 120 kg and being about 155 cm tall), her poste-

rior belief p(C = OB|Z = (50, 120), S = Bob) will substantially increase, compared

to her prior belief of 0.05. The reason this was possible is that p(Z = (50, 120)|C =
OB, S = Bob) is much larger than p(Z = (50, 120)|C = c, S = Bob) for any c ≠ OB.

To see this, consider the Bayesian update p(c|z, s) = p(z|c,s)
p(z|s)

p(c|s). A high ratio of

17
We say that g ∶ D2 → D1 is a left inverse of a function f ∶ D1 → D2 if for all x ∈ D1 we have

g (f (x)) = x.

18
BMI is a measure of relative weight based on an individual’s mass and height. Defined as BMI ≜

mass(kg)
height(m)2

.
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Table 3 BMI-for-age weight status categories and the corresponding BMI percentiles within the

same age and gender group. Definitions corresponding to individuals of age 19 or less

Weight category BMI Percentile range

Underweight BMI < 5%
Healthy weight 5% ≤ BMI < 85%
Overweight 85% ≤ BMI < 95%
Obese 95% ≤ BMI

p(z|c,s)
p(z|s)

will increase the posterior confidence that Eve has in the diagnosis c for the

patient s.

What happens if we, alternatively, encode the message x = (50, 120) ∈ 𝕀 in a way

that yields a ratio
p(z|c,s)
p(z|s)

close to one for all c ∈ ℂ, s ∈ 𝕊 and z ∈ 𝐈? Eve’s Bayesian

update will yield a posterior belief p(c|z, s) that is very close to her prior belief p(c|s),
as desired.

Satisfying the HIDING CLASS Premise
Recall that the requirement (DECODING) is satisfied by construction. We would

now like to address the second premise (HIDING CLASS). For the model in Fig. 8,

one needs to supply the following probability distributions. p(s), the prior of patients

transmitting messages in the system. p(c|s), Eve’s prior of patients’ diagnoses—

based on auxiliary knowledge. p(x|c, s), the generative model of health data given a

diagnosis and a patient. Finally, p(z|x, c) is simple and can be modeled as

ℙ (Z = z|X = x,C = c) = 1 if and only if z = [R(c)] (x) and 0 otherwise, for all

z, x ∈ 𝕀 and c ∈ ℂ.

From the example discussion in the previous subsection, we see that it is desirable

to choose a PMF, R, that yields a posterior belief p(C|s, z) that is as close as possible

to the prior belief p(C|s) for all s ∈ 𝕊 and z ∈ 𝐈. For that purpose, we elect to utilize

the Conditional Mutual Information measure, defined as follows.

Definition 2 [28, c.f. Definition 8.49] Let X,Y and Z be random variables. The

conditional mutual information of X and Y given Z, I(X,Y|Z), is defined as

I(X,Y|Z) ≜ 𝔼p(x,y,z)

[
log

p(x, y|z)
p(x|z)p(y|z)

]

The use of Mutual Information as a measure of privacy for side information chan-

nels was axiomatically justified by Jiao et al. and is applicable to our setting [52].

Formally, we choose a PMF that minimizes the conditional mutual information mea-

sure between Z and C, given S—which is a function of the PMF R:

R∗ = argminR is a PMF
I(Z,C|S;R) (1)
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Once a PMF R is chosen—which can be made public, even to Eve—the disclosure

process can be carried as follows.

Sending The transaction of disclosing a piece of information x ∈ 𝐈 by a patient

with diagnosis c ∈ ℂ is performed by applying the following transformation

z ← [R(c)] (x) and sending z (or some encrypted version of it).

Receiving The transaction of receiving a piece of information z ∈ 𝐈 sent by patient

with diagnosis c ∈ ℂ is performed by applying x ← [R (c)]l (z). Where [R (c)]l is

a left inverse of R(c).

Note that the problem in Eq. 1 is not convex. Furthermore, it is of interest to

study how to learn the model in Fig. 8 and find an optimal PMF R from data. For

that purpose, a MATLAB toolbox was developed by the Berkeley Telemonitoring

Project [7]. We briefly mention a result and refer the reader to [6] for more formal

and thorough analysis and further properties of the presented information disclosure

process. The result states that if a PMF maps all data from the different diagnosis

onto the same distribution, then (i) the PMF is an optimal solution to Eq. 1; and (ii)

the PMF achieves perfect privacy (i.e., the eavesdropper’s belief about the patient’s

diagnosis does not improve after observing the sanitized data). An example of this

result on a simple case is presented below in Equation Theorem 1, which states that

if data are distributed uniformly per diagnosis, then a PMF exists that achieves per-

fect privacy. Furthermore, Theorem 1 provides a closed-form formula for said PMF,

which maps the data from the different diagnosis onto the standard uniform distri-

bution, making them look identical to an eavesdropper; thus eliminating the ability

of an eavesdropper to perform statistical inference based on the sanitized data.

Theorem 1 If X|C = c, S = s ∼ U(ac, bc) (Continuous Uniform distribution) for
every c ∈ ℂ and s ∈ 𝕊, then [R(c)] (x) = x−ac

bc−ac
is an optimal solution to Eq. 1 achiev-

ing I(Z,C|S;R) = 0.

The intuition set forth here is further empirically demonstrated in Sect. 4.3 where

the data from each diagnosis, after sanitization, are mapped onto a distribution that

is similar to that of the data from the other diagnoses (Fig. 10) to limit inference

attacks.

4.3 Experimentation

In this section we walk the reader through an example that aims to motivate and

demonstrate PDI. The example is in line with the one given in the Illustrating Exam-

ple Subsection. In this example we use data that are published by the Center for

Disease Control and Prevention (CDC) as part of the National Health and Nutrition
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Fig. 9 BMI and weight for

the different weight status

groups. Note the regularity

of the clusters for the

different weight groups
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Examination Survey of 2012.
19

Specifically, we use the Body Measures (BMX_G)

portion of the data.
20

Setting
In our setting, we consider the disclosed information to be both Body Mass Index

(BMI) and weight. Our patients are assumed to be individuals of both genders that

are 19 years of age or less. We consider the private information to be the weight status

category of the subject. The CDC considers the following four standard weight status

categories for the aforementioned age group (i) underweight; (ii) healthy weight; (iii)

overweight; and (iv) obese. There are 3, 355 data points in the data set with subjects

of 19 years of age or less.

Recall that according to the definitions of the CDC, the weight category of a child

or a teen is classified based on the individual’s BMI percentile among the same age

and gender group as described in Table 3. Since the age of the patient is not part of

the information space, the inference of the weight status category of the patient based

on BMI and weight is not perfect. The data for the different classes (diagnoses) are

depicted in Fig. 9.

Inference Based on Original Data Using the data, we trained 3 SVM classifiers

with Gaussian kernels. The classifiers are aggregate in terms of the “positive” class

in the following sense. The first classifier treats the “positive” class as the Under-

weight category (and so the “negative” class is the rest of the categories). The sec-

ond classifier treats the “positive” class as either the underweight or healthy weight

category. Finally, the third classifier treats the “positive” class as any category except

the obese category. We used a 40–60 split for training-testing. In numbers, we used

1, 371 data points for training and 1, 984 data points for testing.

The training for all SVMs was done using 10-fold cross-validation among the

data in the training set to pick the best 𝜎 of the Gaussian kernels and the best box

boundaries of the classifiers. The classification phase is done by taking a majority

vote from the three classifiers and the output is the class which most classifiers agree

19
https://www.n.cdc.gov/nchs/nhanes/search/nhanes11_12.aspx.

20
https://wwwn.cdc.gov/nchs/nhanes/2011-2012/BMX_G.htm.

https://www.n.cdc.gov/nchs/nhanes/search/nhanes11_12.aspx
https://wwwn.cdc.gov/nchs/nhanes/2011-2012/BMX_G.htm
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Table 4 Confusion matrix before sanitizing. UW = Underweight, HW = Healthy Weight,

OW = Overweight, OB = Obese

True category

UW HW OW OB

Predicted UW 47 20 0 0

category HW 14 1203 66 1

OW 0 45 194 47

OB 0 2 37 308

Fig. 10 BMI and weight for

the different weight status

groups after sanitization.

Note how the clusters for the

different weight groups are

now less distinguishable
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on. The results of the classifier are described in Table 4 in terms of the confusion

matrix of the different categories. The total accuracy of the classifier is 88.31%.
21

Inference Based on Sanitized Data We would like to sanitize the information at

hand (BMI and weight) in order to maintain the weight status category as private as

possible (based on the training set only). Therefore, we aim to utilize PDI in order

to sanitize the data as discussed earlier. In order to learn the PMF from the training

data, we use the MATLAB toolbox [7]. The code snippet that achieves this is listed

in Algorithm 1. The distribution of the resultant sanitized data is depicted in Fig. 10.

In order to evaluate the quality of the sanitization, we now train three new SVM

classifiers with the same training procedure as in the Inference Based on Original

Data Subsection, but this time using the sanitized data (and of course, encoding the

test set too for evaluation). Same as before, we then use a majority vote from the

three classifiers to predict the class of any data point. The resultant confusion matrix

is described in Table 5.

It is clear that the classification results would degrade after sanitizing the informa-

tion. The total accuracy dropped to 66.03% (from 88.31%). Given that the data from

different classes are highly indistinguishable, the classifier now classifies most data

points as “healthy weight”. This is to be expected since most of the data points are in

the “healthy weight” category. In informal words, if a classifier would have to make

21
The adopted total accuracy measure is trace(M)∕N where M is the confusion matrix and N is the

cardinality of the test set. This is the percentage of true classifications over the test set.
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Table 5 Confusion matrix after sanitizing. UW = Underweight, HW = Healthy Weight,

OW = Overweight, OB = Obese

True category

UW HW OW OB

Predicted UW 48 14 0 5

category HW 13 1217 276 290

OW 0 25 13 29

OB 0 14 0 32

a “bet”, it would bet on the class with the most amount of data points. Formally, a

lower bound on the total accuracy can be achieved by considering the trivial classi-

fier that always predicts “healthy weight” (deterministic), which has total accuracy

of 1, 270∕1, 948 = 64.01%. This shows that our result of 66.03% is not much further

from a lower-bound guaranteed accuracy.

Algorithm 1 The MATLAB code for learning the PMF from the BMX_G data using

the toolbox [7].

pdi_begin % Begin the definition of a PDI problem

% Declare data dimensions of the data

pdi_dimension weight 0:5:180; % Weight is discretized by 5 kg

pdi_dimension BMI 0:2:60; % BMI is discretized by 2 kg/(mˆ2)

% Declare diagnoses

pdi_class UW HW OW OB % Underweight; Healthy Weight; Overweight; Obese

% Provide data for the different diagnoses

pdi_datapoints UW UW_DATA

pdi_datapoints HW HW_DATA

pdi_datapoints OW OW_DATA

pdi_datapoints OB OB_DATA

% Declare parameters for PMF (affine transformations)

pdi_var shift(pdi_nrdimensions , pdi_nrclasses ); % Shift parameters

pdi_var scale(pdi_nrdimensions , pdi_nrclasses ); % Scale parameters

% Constraints on the parameters

scale (:,1) == 1; % Don 't scale the data from the Underweight diagnosis

shift (:,1) == 0; % Don 't shift the data from the Underweight diagnosis

scale >= 0.1; % Don 't scale by 0 (to insure left inverse)

% PMF: function of the parameters and diagnosis (affine transformations)

pdi_reference f(x, c) bsxfun(@times , ...

bsxfun(@minus , x, shift(:,c)), scale(:,c));

pdi_end % End the definition of the PDI problem and solve

Note that the data set is biased in size against the “underweight” category. There

are only 126 data points with weight category “underweight” out of the 3, 355 total

data points (3.76%). This makes sanitizing that class particularly hard, especially



Smartphone Based Real-Time Health Monitoring and Intervention 509

because the modeling in the toolbox is based on n-dimensional histograms and is

not parametric. For this reason the classification results before and after sanitization

for the “underweight” category are comparable.

To intuitively demonstrate how privacy is preserved, we take a piece of sanitized

information at random from our data set, z = [77.17, 296.45]T , without looking at

its ground truth weight category. If we decode this data point using the decoding

function of “healthy weight”, we get x = [21, 53.8]T , which is a legitimate “healthy

weight” BMI and weight data point. If we use the decoding function of “over-

weight”, we get x = [25.12, 62.4]T , which is also a legitimate “overweight” BMI

and weight data point. Similarly, if we use the decoding function of “obese”, we get

x = [30.42, 69.08]T , which is also a legitimate “obese” BMI and weight data point.

Simply put, if Eve decodes a sanitized datapoint z using a hypothesized diagnosis c,

she will get a decoded message that cannot be used to rule out c as the diagnosis,

since [R (c)]l (z) will look like a valid datapoint from the class c according to the

generative model p(x|c, s). This is, in essence, how the privacy of the diagnosis c
gets protected even after disclosing the sanitized data z.

5 Discussion and Future Research Directions

In this chapter we have explored real-time health monitoring that can be accom-

plished using a smartphone in combination with other connected mHealth technolo-

gies. There are currently numerous smartphone apps pertaining to fitness, health

management, and medical applications. Initial fragmentation in this space gave rise

to development of more general frameworks, such as Apple Health and Samsung S

Health, that would provide a more concise way to track the health data as well as to

exchange the data between different apps and support sharing. Apple ResearchKit

now facilitates several large scale clinical trials that use smartphone to collect vari-

ous health-related data. The smartphone thus opened new opportunities to improve

health and healthcare delivery for individuals. The distributed nature of the tele-

monitoring can, in connection with big data analytics, such as predictive modeling,

provide new insights into prevention and management of existing diseases, improve

support for patients and their care takers, lead to discovery of new drugs, protect

patient privacy, and reduce overall cost of health care.

Adoption of smartphone-based health monitoring however still faces several chal-

lenges that were discussed in this chapter. These challenges include: (i) lack of evi-

dence of clinical effectiveness, efficacy and objective research to evaluate clinical

outcomes; (ii) the absence of a regulatory framework that standardizes development;

(iii) lack of integration into existing healthcare IT systems; (iv) usability; (v) finan-

cial costs of development, integration and testing; (vi) lack of automated intervention

technologies based on the data being collected; (vii) proper delivery of informed con-

sent; (viii) objectiveness of authored data (can the data be trusted, and when?); (ix)

standardization of health measures obtained from smartphone and wearable sensors;

(x) proper authorship (were the data authored by the patient being monitored?); (xi)
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battery consumption of devices; (xii) usage fatigue (patients’ willingness to use the

technology wears out with time); (xiii) understanding negative effects and develop-

ment of physio-behavioral models; and (xiv) privacy. Some of the remaining issues

are addressed by The Berkeley Telemonitoring Framework, an open source frame-

work that enables development of research telemonitoring smartphone applications

with security and privacy in mind. In this chapter we also included a novel approach

to privacy based on Private Disclosure of Information (PDI) which is aimed to pre-

vent an adversary from inferring certain sensitive information from data that are

being collected during telemonitoring. With commercial entities entering the health

telemonitoring, we believe the privacy will become an increasingly important issue

for patients.
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and Biosignal Processing to Enhance
Monitoring Care in Mental Health
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Abstract In this chapter, we describe how it is possible to exploit physiological

sensors and related signal processing methods to enhance monitoring care mental

health. Specifically, focusing on wearable sensors for Autonomic Nervous System

(ANS) dynamics, we report on recent progresses in monitoring mood swings asso-

ciated with bipolar disorder through the so-called PSYCHE system. Current clinical

practice in diagnosing patients affected by this psychiatric disorder, in fact, is based

only on verbal interviews and scores from specific questionnaires. Furthermore, no

reliable and objective psycho-physiological markers are currently taken into account.

We particularly describe a pervasive, wearable, and personalized system based on

a comfortable t-shirt with integrated fabric electrodes and sensors able to acquire

electrocardiogram, respirogram, and body posture information. In order to identify

a pattern of objective physiological parameters to support the diagnosis, we describe

ad-hoc methodologies of advanced biosignal processing able to effectively recognize

four possible clinical mood states in bipolar patients (i.e., depression, mixed state,

hypomania, and euthymia) who underwent long-term (up to 24 h) monitoring. Mood

assessment is here intended as an intra-subject evaluation in which the patient’s states

are modeled as a stochastic process with time dependency, i.e., in the time domain,

each mood state refers to the previous one(s). Experimental results are reported in

terms of statistical analysis, as well as confusion matrices from automatic mood state

recognition, and demonstrate that wearable and comfortable ANS monitoring could

be a viable solution to enhance monitoring care in mental health. We conclude the

chapter describing a methodology predicting mood changes in bipolar disorder using

heartbeat nonlinear dynamics exclusively.
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1 Introduction

In this section, we briefly report on symptoms, prevalence, current clinical practice,

and diagnosis and treatment limitations related to bipolar disorder. Then, recent find-

ing linking autonomic nervous system dynamics with pathological mood changes

follow below.

1.1 The Bipolar Disorder

Bipolar disorder, formerly known as manic-depressive illness, is a psychiatric con-

dition in which patients experience dramatic mood shifts. Typically, the disorder is

cyclic passing from episodes of pathological low moods (depression) to pathologi-

cal high moods (mania or hypomania) through episodes of co-presence of depressive

and maniacal symptoms (mixed state). Sometime, in the middle, patients experience

periods of relatively good affective balance (euthymia). Depression is characterized

by symptoms of sadness a desperation with a lack of interest together with other sev-

eral neurovegetative symptoms including loss of appetite and sleep. Other symptoms

such as cognitive retardation, somatic pain or functional symptoms (headache, dys-

pepsia etc.) are frequent as well. Moreover, thoughts of ruin, guilt or death including

suicidal thoughts that might end in suicide attempts can be experienced by depressed

patients. On the other hand, patients with mania experience an increased activity

and an acceleration of thoughts. Hyperactivity is often not finalized and patients

switching from task to task are not able to complete any activity. In the maniac phase

patients also experience a reduction of the necessity to sleep, sleeping a few hours per

night without feeling tired. Finally, mania is characterized by an iperexcited mood

with the idea of grandiosity and hypertrophic self-esteem. Maniacs often believe

of being a descendent of some important historical character. In the mixed state,

patients experience shared symptoms of both mania and depression. For instance,

patients can be hyperactive but have insomnia, have an increased self-esteem but

also thoughts of inadequacy, and so on.

Bipolar disorder is very common in western population [1–4]. Almost 15% of

the population in the United States has suffered from at least one episode of mood

disorder [1], and more than two million Americans have been specifically diagnosed

with bipolar disorder. Furthermore, it has been estimated that about 27% (equals 82.7
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million; 95% confidence interval: 78.5–87.1) of the adult European population, from

18 to 65 years of age, is or has been affected by at least one mental disorder [2, 3].

A recent worldwide survey in 11 countries has found an overall lifetime prevalence

of 1% for the typical forms of bipolar disorder and 1.4% for milder sub-threshold

disorders [5].

Although this important prevalence and high cost of treatment, the clinical man-

agement of mood disorders is still controversial.

First of all, bipolar disorder is often undetected for years before it is diagnosed and

treated. Secondly, bipolar patients are extremely heterogeneous in terms of phenom-

enology, severity of the symptoms, number and duration of the episodes, as well as

the time interval between them. Even during euthymic periods (i.e., after remission

from maniacal or depressive episodes), patients tend to experience sub-threshold

mood alterations over time. In spite of the non-specific symptoms, the diagnosis

of bipolar disorders and, more in general, of psychiatric pathological conditions is

based only on interviews with the clinicians who evaluate symptoms self-reported

by the patients themselves relying on scores obtained from rating scales. Although

these interviews are ‘structured’ (i.e. questions and question order are established

and defined in specific manuals) and high rates of consensus can be achieved among

specialists (psychiatrists and clinical psychologists), the diagnosis is subjected to per-

sonal and often arbitrary interpretation of the clinicians. Indeed, there are no objec-

tive clinical exams are envisaged in current clinical practice [6–8].

Clinical diagnosis is based on the criteria proposed by the Diagnostic Statistic

Manual of Mental Disorders (DSM-IV-TR) [9] edited by the American Psychiatric

Association. According to this manual, the diagnosis of depression is made if 5

symptoms out of 9 are present. Similar cut-offs are applied for the diagnosis of

other episodes. In line with this approach, a patient who has had only 4 symptoms

of depressive episodes is considered remitted (although partially remitted). These

clearly can bring to biased interpretation and inconsistency [6–8].

The above description portrays a dramatic scenario in which research and techno-

logical advances could (and should) greatly contribute and bridge the current gaps.

Despite the fact that many studies have been carried out on several biomarkers, e.g.

sleep quality, circadian heart rate rhythms, cortisol dynamics, as well as dysfunctions

of the central and autonomic nervous systems, none of them has attained an accept-

able level of accuracy in clinical use in order to evaluate and predict the development

of mental disorders.

Next, after reporting on recent findings linking bipolar disorder and autonomic

nervous system (ANS) dynamics, we briefly describe a textile-based, ANS and

behavioural monitoring platform (see Sect. 2). Then, we describe the experimental

setup (see Sect. 3.2) of three exemplary studies involving patients with bipolar disor-

der, whose mood changes are characterized and predicted through advanced signal

processing methods (see Sect. 3.3). Experimental results (Sect. 4) and Discussion

(Sect. 5) of the main achievements close the chapter.
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1.2 Bipolar Disorder and Autonomic Nervous System
Dynamics

Mood disorders have been previously associated with alterations in Autonomic Ner-

vous System (ANS) functioning [10, 11]. Depressed subjects frequently present clin-

ical symptoms related to autonomic dysfunction such as sleep pattern alterations,

decreased appetite, gastrointestinal paresthesia and increased sweating [12]. In addi-

tion, multiple studies have reported decreased Heart Rate Variability (HRV) and

baroreflex sensitivity in these subjects [13].

Several studies have been performed on proposing biomarkers that consider sleep

quality [14–16], circadian heart rate rhythms [17, 18], cortisol dynamics, [19–21],

as well as ANS functionality [22–27]. However, none of these studies is sufficiently

reliable to have a translational application in the current clinical practice. A pos-

sible explanation for these negative results can be that mood disorders are more

heterogeneous, in terms of psychophysiological, neuroendocrine and neurobiolog-

ical correlates, than relatively simple clinical phenotypes usually adopted for clini-

cal and also for research purposes. In other words, patients, although homogeneous

from a clinical descriptive point of view, are extremely dishomogeneous in terms of

endophenotypes.

2 The PSYCHE Platform

A collaborative European research project called PSYCHE, PerSonalized monitoring

sYstems for Care in mental HEalth, aims to overcome the above mentioned limita-

tions [24, 28–35]. The scope of the PSYCHE project is to identify a personalized,

pervasive, cost-effective, and multi-parametric platform for long-term monitoring

of mental disorders. Patients were monitored by means of sensorized clothes and

could interact with user-friendly interfaces on smartphones to communicate with

clinicians, who, in turn, could check the mental status of patients by means of pro-

fessional web-based interfaces.

More specifically, PSYCHE acquired a wide set of behavioral and physiologi-

cal parameters that were continuously monitored through a smartphone and a sen-

sorized t-shirt. The sensorized t-shirt (developed by Smartex s.r.l, Pisa, Italy) is able

to comfortably evaluated the cardiac activity by recording the electrocardiogram

(ECG) through dry textile-based electrodes, the respiration activity by means of tex-

tile piezoresistive sensors, and the physical activity using a three-axial accelerome-

ter. More specifically, the inter-beat interval series (hereinafter RR) extracted from

the ECG, i.e. the series constituted by the distance of two consecutive peaks of the

ECG, and the respiratory dynamics were considered in the biosignal analysis strat-

egy. A wide set of physiological features, both in the time and frequency domain,

both through standard and non linear techniques, were extracted from the RR and

the respiration signals in order to evaluate mood changes.
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The smartphone collects these data sending it out to a remote data server. More-

over, the smartphone includes digital agendas, digitalized questionnaires, voice

analysis, and scheduling of dedicated affective elicitation protocols. Accordingly, the

aim is to support the standard clinical practice, which as a whole remains unchanged,

continuing to use questionnaires and interviews for diagnosis, through an appropriate

unobtrusive system which continuously collects physiological and behavioral data to

be further analyzed and used as decision support to clinical diagnosis.

Other physiological signals as well as behavioral parameters were taken into

account as part of the PSYCHE project (e.g. voice, activity index, sleep pattern alter-

ation, electrodermal response, biochemical markers), but they are not reported in this

chapter. A user-friendly device such as a smartphone for monitoring environmental

information such as light, temperature and noise further completes the PSYCHE

platform.

The PSYCHE concept of decision support system for bipolar disorder and a sys-

tem prototype are shown in Figs. 1 and 2, respectively.

It is worth noting that the use of dry textile-based electrodes provides several

advantages. First, the system is easy to use because sensors are automatically located

and allows maximizing comfort. Second, a special multilayer structure increases the

amount of sweat and reduces the rate of evaporation reaching electrochemical equi-

librium between the skin and electrodes after a couple of minutes. Therefore, the

signal quality [36] is remarkably improved and kept as constant as possible. When

skin-electrode contact is not satisfactory, the quality of the signals is remarkably

worsened. Accordingly, a preliminary check on the quality of data is necessary. The

shirt, in male or female version, is made of elastic fibers enabling tight adhesion to the

body and metallic knitted fibers to form the electrodes. Moreover, respiration activ-

ity is recorded through piezoresistive fiber stretching. These materials are knitted

Fig. 1 Overview of the PSYCHE system as global platform serving as decision support system

for bipolar disorder management
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Fig. 2 Wearable system

prototype

together and are fully integrated in the garment without any mechanical and physi-

cal discontinuity, creating areas with different functionalities. The shirt was designed

to appear as a usual and ordinary underwear garment. It is thermally comfortable and

includes a polyamide yarn with antibacterial properties. Garments, indeed, are made

of commercial yarns, to be easily washed and disinfected, which are already tested

(and certified) to come into contact with human skin. The fabric electrodes for ECG

recording and the piezoresistive sensors for respiration activity acquisition are finally

connected through conductive fabric wires to a portable electronics inserted into a

small pocket. Connection between garment and electronics is made by means of a

simple plug, easily removable.

Technical specifications of the PSYCHE wearable monitoring platform are

reported in Table 1.

Throughout this chapter, we demonstrate that a single-variable approach, as pro-

posed by previous literature, is not sufficient to robustly characterize mood episodes

in bipolar disorder [24]. Instead, a multi-parametric and personalized approach, i.e.,

mood episodes are identified as an intra-subject analysis, is much more effective.

Furthermore, our personalized approach identifies mood states as an intra-subject

analysis taking into account the temporal dynamics of the illness. From a signal

processing point of view, patients’ mood changes are modeled as a discrete-time

stochastic process in which each recording, associated to a specific mood state, also

depends on the previous state respecting the so-called Markov property [37]. We

demonstrate that mood changes in bipolar disorders can be modeled as a Markov

chain, in which each state is characterized by ANS-HRV features extracted over

long periods of time (up to 18 hours). Multi-class recognition of these mood states

achieved an accuracy as high as 99%.
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Table 1 Technical

specifications of the wearable

monitoring platform

(provided by Smartex s.r.l.)

Characteristics

Power supply Litium battery (life up to 18 h)

Data storage MicroSD card

Data communication Micro USB, bluetooth

Electrocardiogram

Measurement principle Bio-potentials on the thorax

Sensors Textile electrodes

Number of leads 1

Input auto configurable analog filter 0.67–40 Hz

Analog-to-digital conversion 16 bits

Sampling rate 250 Hz

Respiration signal

Measurement principle Piezoresistive method

Range of electrical resistance 20kΩ–10MΩ

Bandwidth DC to 10 Hz

Resolution 12 bits

Sampling rate 25 Hz

Finally, we propose a methodology predicting mood changes using heartbeat lin-

ear and nonlinear dynamics. Such changes are intended as transitioning between

euthymic state (EUT), i.e., the good affective balance, and non-euthymic state (non-

EUT)—which means fulfilled the criteria for one of the mood states defined

above -, and vice-versa.

3 Materials and Methods

This chapter aims at presenting methods and results on the identification of mood

swings on bipolar patients by acquiring and processing peripheral physiological sig-

nals. Specifically, a set of features, i.e. commonly-used standard features and features

extracted through nonlinear dynamic methods, were extracted from the peripheral

signals and used to implement the automatic mood-tracking system. Experimental

results are shown by means of confusion matrices [38].

3.1 The Mood Model

As mentioned above, the diagnosis of bipolar disorder in the current clinical prac-

tice is made through clinician-administered rating scales and questionnaires, namely

the Bauer internal mood scale (IMS) [39], the profile of mood states (POMS) [40],
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the 16th items version of the quick inventory of depressive symptomatology (QIDS)

[41], and the Young mania scale (YMS) [42]. Concerning the Italian versions of

these scales, IMS and YMS can be found in [43]. The Italian version of POMS was

published by Farné et al. [44]. Finally, the Italian version of QIDS can be found in the

web-page https://www.ids-qids.org/tr-italian.html. Bipolar disorder can be concep-

tualized through two main dimensions, i.e. mania and depression, onto a cartesian

plane as shown in Fig. 3. This model of mood states describes all of the possible

states of the mental disorder. During each clinical visit, each patient was diagnosed

as belonging to a class of this model according to outcomes of the clinical rating

scales.

Unlike some commonly used mood agendas, this model considers mania and

depression not as opposite sides of a unique dimension, but as two different dimen-

sions, whose linear combination allows for the identification of mixed states. Three

levels with two degrees of severity for each of the two dimensions were considered

in order to approximate the mixed clinical severity. This model has to be intended

as a preliminary approach to categorize the mood states. In the literature other stud-

ies exploring the mood assessment (e.g. Mehrabian et al. [45]) consider other basic

dimensions. However, this preliminary clinical model fitted the needs of the PSY-

CHE project, which were to classify different clinical states. Moreover, the algo-

rithm for datamining, which is part of the PSYCHE project, might allow for multi-

ple classes with a higher number of subjects. The model will be enriched with other

dimensions (e.g. anxiety levels) when the enrollment of the patients will be sufficient

to increase the complexity of the analysis.

Fig. 3 The mania-depression model for bipolar mood assessment

https://www.ids-qids.org/tr-italian.html
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3.2 Recruitment of Eligible Subjects and Experimental
Protocol

Patients were recruited according to the following general inclusion/exclusion

criteria:

∙ Age 18–65.

∙ Diagnosis of bipolar disorder (I or II).

∙ Presence of a mood episode at the moment of the recruitment of any polarity

(depression, hypomania, mixed).

∙ Low risk of suicidality (as assessed as no thoughts of death and no previous

attempts).

∙ No somatic or neurologic disorders that might be related to bipolar disorders (e.g.

thyroid alterations).

∙ Absence of cognitive impairment.

∙ Absence of substance abuse disorders.

∙ Necessity of a change in treatment (treatment change is defined as a augmentation

of doses, introduction of or switch to new drugs, introduction of physical treat-

ments).

∙ Willingness of all patients to sign the informed consent for the PSYCHE project

approved by the ethical committee of the University of Pisa and Strasbourg.

∙ Absence of delusions or hallucinations at the moment of the recruitment.

Before being recruited, the patient was introduced by a clinician to the purpose of

the study and was asked to sign an informed consent approved by the ethical com-

mittee of the University of Pisa and Strasburg University Hospital. Once enrolled,

the patients were asked to fill out severa questionnaires and rating scales in order

to assess the current clinical mood at the hospital. All clinical states were evalu-

ated by clinicians according to DSM-IV-TR criteria [9]. In this way four possible

clinical mood labels (depression, hypomania, mixed-state, and euthymic state) were

assigned. The mood label associated to each patient’s evaluation was assigned inde-

pendently of the previous ones. Each patient, moreover, was assigned to a specific

class of the previously described mania-depression model.

During the clinical interview two questionnaires are administered in order to iden-

tify the mood state: Quick Inventory of Depressive Symptomatology Clinician Rat-

ing (QIDS-C16) and Young Mania Rating Scale (YMRS). More specifically, depres-

sion was diagnosed when QIDS-C16 score was greater than or equal to 8, hypomania

when YMRS score was greater than or equal to 6, and mixed state when QIDS-C16

score was greater than or equal to 8 and YMRS score was greater than or equal

to 6. The cut-off for the QIDS-C16 was set at 8 as it is considered equivalent to an

HDRS-17 (Hamilton Depression Rating Scale 17 items) score of 10. Such a score on

the HDRS has been proposed as a threshold to define recurrence or relapse [46]. For

the YMRS, the score of 6 for hypomania is quite a standard threshold to quantify the

lack of hypomanic symptoms. Such a value is in between the strict threshold defini-
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tion at 4 [47], and the less stringent definition at 8 [48]. Euthymic state, i.e., clinical

remission, was defined by having a score below the thresholds above mentioned for

both the scales.

During the study, treatment choice remained at the discretion of the clinician as

well as the change of treatment in case of lack of response.

After the interview, each patient was asked to wear the sensing shirt and keep it as

long as the battery ran out, i.e. approximately for 18 h after leaving the hospital. They

are free to perform daily activities at home or elsewhere while the aforementioned

physiological signals are monitored and stored in a microSD card. As soon as the

subject gave the t-shirt back, data were downloaded and stored in the database for

further analysis.

3.2.1 Study 1: Characterization of Pathological Mood
States in Bipolar Disorder

In this preliminary study, three bipolar patients were monitored for a period between

the enrollment and the reaching of euthymia condition. The study can achieve up to

a maximum of 6 evaluations for each patient, over a period of 90 days. More specif-

ically, the protocol was defined so as to evaluate the patient at the enrollment time

repeat the clinical assessment after one, two, four, eight, and twelve weeks.

The first three consecutive patients enrolled for the preliminary validation phase

of the PSYCHE project were included in this study.

Patient 1 (hereinafter BP1) is a 38 year-old female, patient 2 (hereinafter BP2)

is a 55 year-old male, and patient 3 is a 37 year-old female (hereinafter BP3). The

mood state diagnosed by the clinician corresponded to a class label, which in turn

was associated to a point in the feature space, according to the model described

in Sect. 3.1 and schematically reported in Fig. 3. According to this model, Table 2

reports the mood states of the patients during each acquisition. The mood states

evaluated in this study are the remission- euthymia, (ES), mild depression (MD),

severe depression (SD), and mild mixed state (MS).

Table 2 Clinical labels associated to each patient during each acquisition

ID ACQ. 1 ACQ. 2 ACQ. 3 ACQ. 4 ACQ. 5 ACQ. 6

BP1 MD SD MD ES

BP2 MD MD MD MD MD ES

BP3 MS ES
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3.2.2 Study 2: Temporal Characterization of Pathological
Mood States in Bipolar Disorder

In order to study the temporal dynamics of mood swings in bipolar disorder, a total of

15 patients were recruited: 7 in Pisa and 8 in Strasbourg. Among these, we used for

our study 8 subjects for a total of 42 acquisitions (2 from Pisa and 6 from Strasbourg)

because they had more than one long-term acquisition and at least one mood change.

Patients BP1, BP2, BP3, BP4, BP5, and BP6 were recruited in the out- patient Uni-

versity clinic of Strasbourg, France. Patients BP7 and BP8 were recruited in high

intensity clinical facilities (psychiatric ward and day-hospital) at the University Hos-

pital of Pisa, Italy.

Each patient was evaluated and monitored over a period starting from the day

of the enrollment up to remission, i.e. when the patient reaches an euthymic state

within an observation window of 3 months. In any case, each patient cannot exceed

six evaluations over the whole monitoring period.

Details on the patients’ acquisitions as well as mood state information are reported

in Table 3.

3.2.3 Study 3: Prediction of Pathological Mood States
in Bipolar Disorder

This study was designed to test the ability of the proposed methodology, using the

PSYCHE system, to predict mood changes in cyclothymic and rapid-cycling bipo-

lar disorders subjects. Specifically, 14 patients were enrolled (age: 33.43 ± 9.76,

age range: 23–54; 6 females) including 6 rapid-cycling bipolar patients, 4 patients

with cyclothymic disorders, and 4 subjects with cyclothymic temperament. At the

enrollment time, 8 patients were not taking any psychotropic medication. None of

the subjects suffers from cardiac arrhythmia or significant cardiovascular disease

needing pharmacological treatment. The following psychotropic medications were

prescribed at inclusion: Antidepressants (fluoxetine): 1 subject (P1); mood stabiliz-

ers (lamotrigine 4; lithium 2; pregabaline 1): 5 subjects (P5, P6, P10, P12, P14);

Table 3 Clinical labels associated to each patient during each acquisition

ID ACQ. 1 ACQ. 2 ACQ. 3 ACQ. 4 ACQ. 5 ACQ. 6

BP1 HY HY HY ES ES

BP2 HY MS HY HY

BP3 HY HY HY ES ES

BP4 DP DP DP DP DP ES

BP5 DP DP HY DP HY

BP6 HY HY HY ES ES

BP7 DP DP ES

BP8 MS MS DP DP DP ES
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antipsychotics (quetiapine 4; aripiprazole 2; cyamemazine 1): 5 subjects (P5, P6,

P11, P12, P14); benzodiazepine-like: 2 subjects (P5 and P11). The study took place

in the psychiatry department of the University Hospital of Strasbourg and Geneva.

Patients with cyclothymia and cyclothymic temperament, or with rapid cycling

bipolar disorder were recruited in the general population via ads in newspapers and

universities and in the clinical population (patients followed by the clinical inves-

tigators). First interview with the participants was made on the phone. During this

preliminary phone interview they were asked to fill out the 12-item cyclothymic

subscale from the short version of the Temperamental Evaluation of Memphis, Pisa,

Paris and San Diego or TEMPS-A. If the screening outcome was positive the patients

were recruited. Cyclothymia had to be confirmed by a clinical assessment based

on the DSM-IV-TR criteria of cyclothymic disorder and the Akiskal criteria of

cyclothymia.

Patients were monitored for a period of 14 weeks and they were required to wear

the sensorized shirt just a few hours before going to bed and keep it overnight twice

a week. They were not constrained to stay still, but they were free to perform daily

activities at home or elsewhere while the aforementioned physiological signals were

monitored. Participants were asked to use the system during the night from early

evening, e.g. 8 p.m. until morning, after wake-up time. The patients could take the

system off when they take a shower and/or want to get dressed. Then, patients were

asked to bring the system back to their clinician, while the recorded data was man-

ually sent to a central database. Accordingly, each patient can be associated with a

sequence of consecutive mood states.

3.3 Biomedical Signal Processing Methodology

Details on the pre-processing, feature extraction and reduction, and classification

follow below.

A general scheme of the proposed mood recognition system is shown in Fig. 4.

3.3.1 Preprocessing

Signals were acquired from the wearable system and preprocessed. A specific seg-

mentation of 5 min wide windows has been made on each signal in order to achieve

conditions of stationarity [49]. A tenth order band-pass finite impulse response filter

with cut-off frequencies of 0.05–35 Hz realized through the Butterworth polynomial

has been applied to ECG signal. Next the well-known automatic algorithm developed

by Pan-Tompkins [50] has been applied to the ECG signal in order to detect the R

peaks from each QRS complex. The temporal distance between two consecutive R

peaks is referred to as RR interval (tRR), consequently the HR (beats per minute)

is estimated as the following ratio: HR = 60
tRR

. Moreover, as the obtained time series
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Fig. 4 Block diagram representing the acquisition and processing chain

sequence of RR intervals is non-uniform, this sequence was further re-sampled in

agreement with the algorithm of Berger et al. [51]. The respiration (RSP) signal was

filtered as well in order to detrend the baseline and reject possible movement artifacts.

More specifically, baseline is removed by applying a band-pass filter with a band-

width 0.05–1 Hz. Generally, when signals come from wearable systems the issue of

movement artifacts is very crucial, as mismatch between skin and fabric electrode

is intrinsically present. Accordingly, the signals need to be carefully filtered remov-

ing artifact movements. Specifically, a specific artifact movement removal (AMR)

algorithm has been applied before the feature extraction process. It is a simple and

robust algorithm consisting of four steps as shown in Fig. 5. The first step is to filter

the ECG within the bandwidth in which the artifact movements were strongest, i.e.

from 0.1 to 4 Hz [52]. Then, the filtered signal is treated in order to extrapolate the

maximum and the minimum envelopes thus extracting the smoothed mean envelope.

Finally, a simple statistical threshold, i.e. 95th percentile, has been applied in order

to identify the portions of the signal affect by movement artifacts. More specifically,

when the threshold is exceed the signal is considered to be affected by artifacts. The

relative parts of the signals with artifacts were discarded.

3.3.2 Feature Extraction

The feature extraction phase of the signals require the non-stationary condition.

Accordingly, features were extracted within moving time windows of length W of the
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Fig. 5 Artifact movement removal algorithm

artifact-free signal. Each acquisition (see Table 8) can be considered as a concate-

nation of equally-long (i.e. W) segments of biosignals. The feature space is built by

associating each multidimensional point with each acquisition having the same class

label. A set of general statistics and specific features (hereinafter called standard
features) has been extracted along with features extracted from nonlinear dynamic

techniques (e.g. entropy measures, recurrence plot, etc.). The feature set is extracted

using techniques well-known in the literature, which here are briefly described. Stan-

dard features were extracted from time series analysis, statistics, frequency domain

transformation and geometric evaluation. The selected features extracted from the

RR and RSP signals are reported in Table 4. These measures have been identified

according to guidelines and previous outcomes from psycho-physiological and bio-

engineering studies reported in the current literature. Specifically, the RR standard

features were extensively reported in [49, 53], and the nonlinear measures were

already treated and used in a previous study of the authors [54].

RR interval series: standard features Concerning the RR signal, the traditional

approach proposed in the current literature (see [49, 53] for review) was applied.

Time domain features included statistical indices such as the mean (𝜇RR) and the

standard deviation (𝜎RR) value of the RR intervals, the root mean square of succes-

sive differences of intervals (RMSSD), and the number of successive differences of

intervals which differ by more than 50 ms (pNN50% expressed as a percentage of the

total number of heartbeats analyzed). Referring to the morphological patterns of RR,
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Table 4 Selected features extracted from RR and RSP signals

Typology Biosignal Feature Typology Biosignal Feature

Standard

measures

RR 𝜇RR
𝜎RR
RMSSD

pNN50%

TINN

LF

HF

LF/HF

High order

spectra

RR & RSP MBI

VBI

MMB

PEB

NBE

NBSE

RSP RSPR

MFD

SDFD

MSD

SDSD

MAXRSP

MINRSP

DMMRSP

Skewness

Kurtosis

Power in 0–0.1 Hz

Power in 0.1–0.2 Hz

Power in 0.2–0.3 Hz

Power in 0.3–0.4 Hz

Nonlinear

dynamics

RR DLE

ApEn

RecR

DET

LAM

TT

AV

ENTR

Lmax
DFA 𝛼1
DFA 𝛼2

the triangular index was calculated. It was derived from the histogram of RR inter-

vals into the NN window (TINN) in which a triangular interpolation was performed.

All extracted features in the frequency domain were based on the power spectral den-

sity (PSD) of the RR. An auto-regressive (AR) model was used to estimate the PSD

in order to provide a better frequency resolution than the nonparametric method. The

optimal order p was estimated according to the Akaike information criterion [55].

The Burg method was used to get the AR model parameters. Two main spectral com-

ponents were distinguished in a spectrum calculated from short-term recordings: the

low frequency (LF), 0.04–0.15 Hz, and the high frequency (HF), 0.15–0.4 Hz. The

distribution of the power changes was in agreement with the ANS modulation. In

the literature, the LF/HF ratio is considered to mirror sympatho/vagal balance or to

reflect sympathetic modulations [49].

Respiration activity: standard features Regarding the RSP signal, several features

were calculated following the same time-domain segmentation defined for the RR.

Specifically, the mean and the standard deviation of the first (MFD and SDFD,

respectively) and second derivative (MSD and SDSD, respectively), i.e. variation

of the respiration signal, and the standard deviation of the amplitude were evalu-

ated for each segment of length W of each acquisition. The respiration rate (RSPR)

was calculated as the frequency corresponding to the maximum spectral magnitude.

Other statistical parameters such as the maximum (MAXRSP) and the minimum
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(MINRSP) values of breathing amplitude and their difference (DMMRSP) were esti-

mated. Moreover, the skewness, which quantifies the asymmetry of the probability

distribution, and the kurtosis, which was a measure of the peakedness of the prob-

ability distribution, were evaluated. Concerning the RSP features in the frequency

domain, spectral power in the bandwidths 0–0.1 Hz, 0.1–0.2 Hz, 0.2–0.3 Hz, 0.3–

0.4 Hz, [56] was calculated as well.

High order spectra and nonlinear analysis: For both RR and RSP signals, high order

spectra (HOS) features were also evaluated. HOS refers to the Fourier transform of

moments or cumulants of an order grater than two. In particular, the two dimen-

sional third order cumulant Fourier transform, called bispectrum [57, 58] was cal-

culated. It measures the correlation among three spectral peaks,𝜔1, 𝜔2 and (𝜔1 + 𝜔2)
and also estimates the phase coupling among frequencies. In this work, the bis-

pectral feature set was comprised of: mean and variance of bispectral invariants

(MBI and VBI, respectively), mean magnitude of the bispectrum (MMB) and the

phase entropy (PEB), normalized bispectral entropy (NBE) and normalized bispec-

tral squared entropy (NBSE). For a detailed review of these features, please refer to

[59]). Several nonlinear RR measures were also extracted along with the standard

morphological and spectral features [49, 53]. Even if the physiological meaning of

these features is still unclear, they resulted to be an important quantifier of cardiovas-

cular control dynamics mediated by the ANS [60–66]. Finally, nonlinear measures

related to ANS modulation were estimated. Specifically, the dominant Lyapunov

exponent (DLE) [67, 68], the approximate entropy (ApEn) [69, 70], features from

the recurrence plot [71] by means of the recurrence quantification analysis (RQA)

[72], and the detrended fluctuation analysis (DFA) [73, 74] were evaluated. DLE was

calculated through the approach proposed by Rosenstein et al. [75], which ensures

reliable values even in short data sets. In fact, it is easy and fast to implement because

it uses a simple measure of exponential divergence that circumvents the need of

approximating the tangent map. In this way, the convergence, if negative, or diver-

gence, if positive, of trajectories in each dimension of the RR attractor could be easily

described. ApEn is a common measure of dynamical systems [76], even in terms of

complexity or irregularity of the signal [69, 70]. Large values of ApEn indicate high

irregularity while smaller values suggests a more regular signal. RQA quantifies

the number and the duration of recurrences of a dynamical system. The following

features were calculated [72]: recurrence rate (RecR), determinism (DET), laminar-

ity (LAM), trapping time (TT), average diagonal line length (AV), entropy (ENTR),

and longest diagonal line (Lmax). Finally, in the nonlinear analysis, the statistical self-

affinity of a signal is determined by the DFA. It is commonly used to analyze time

series for long-memory processes [77] (as we think for mood disorders). DFA was

introduced by Peng et. al. 1994 [73] and represents an extension of the (ordinary)

fluctuation analysis, which is affected by non-stationarities. DFA features are con-

stituted by the two scaling exponents 𝛼1 and 𝛼2, which are related to the short-term

and long-term fluctuations.
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3.3.3 History-Dependent Analysis

Once all HRV features are extracted for each patient, the feature set related to the k-th

acquisition can be defined as a multidimensional vector Xnk(Tm) representing n fea-

tures evaluated within the time window Tm. Therefore, Xnk(Tm) is a matrix of features

consisting of m rows (each of the rows corresponds to one of the time windows Tm
within the acquisition) and n columns (each of the columns contains one of the HRV

features). In order to consider the process of mood states such as the Markov chain,

i.e., Pr{Xnk = x|(Xn(k−1) = xk−1)}, a simple rescaling procedure is applied. Specif-

ically, for each column of the matrix Xnk(Tm), the matrix Ynk(Tm) = [Xnk(Tm) −
Median(Xn(k−1)(Tm),m)]∕MAD(Xn(k−1)(Tm)) is calculated, where MAD(X) =
Median(|X −Median(X)|)). The quantity Median(Xn(k−1)(Tm),m) is intended as a

vector of the median values of the features calculated through all the rows m of the

matrix Xnk(Tm), thus over all the time windows Tm of the acquisition k − 1).

This model is based on the hypothesis that the transition between two clinical

mood states is dependent on the past history of mood fluctuations. In other words, the

current clinical status of a patient is influenced by the previous status, and therefore

also the neurovegetative balance should be rescaled by a factor taking into account

the previous clinical status. A simplified block scheme representing such a rescaling

procedure over multiple mood states of a patient is shown in Fig. 6. Because of the

absence of preceding recordings, the first observation of each patient was used exclu-

sively to obtain the rescaling values useful for the characterization of the observation

which followed in time.

3.3.4 Biosignal Processing for Mood State Prediction

A general block scheme of the signal processing chain for mood prediction is shown

in Fig. 7. From each acquisition the longest artifact-free segment of signal was

selected through the previously developed methodology for artifact detection and

removal described above [24], including visual inspection. Sub-segments of 5 min

of this segment were used to calculate informative features, which were defined in

Fig. 6 Simplified block scheme over multiple mood states representing the Markov modeling of

the mood recognition procedure



532 G. Valenza and E.P. Scilingo

Fig. 7 Block scheme of the proposed signal processing chain for mood prediction between

EUT/non-EUT class

the time and frequency domains, as well as from nonlinear analysis (see [53] for

calculation details and related literature review).

Each acquisition of each patient is represented in a NxM matrix (N: number of

windows x M: number of features), describing the evolution over time of the fea-

ture space. A method of size reduction, i.e. Principal Component Analysis, was then

applied to this matrix, and the first two dimensions were retained for further analy-

ses. This approach is justified by the fact that, in most cases, such first two dimen-

sions explained more than 90% of data variance. The evolution over time of these

two dimensions is synthesized through DFA, taking the 𝛼1 and 𝛼2 parameters as esti-

mates for the short- and long-term correlation, respectively. In addition to the features

coming from DFA analysis, also the current mood state was also included as an input

feature. This choice is motivated by the fact that, in a previous study [31], it has been

demonstrated that mood changes in bipolar patients can be modeled as a stochastic

process with Markovian properties. In other words, starting from a current observa-

tion at day t0, and considering past observations at days (t−1, t−2,...,), it is possible to

predict through a personalized approach the mood state between EUT/non-EUT at

day t+1. A graphical representation of this concept is shown in Fig. 8.

3.3.5 Feature Reduction and Classification

A suitable feature reduction strategy, i.e. PCA, has been applied in order to reduce

the high number of features and promote an effective pattern recognition. It allows
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Fig. 8 Graphical representation of mood state temporal dynamics of a given patient with BD

to project high-dimensional data to a lower dimensional space with a minimal loss

of information. This method does not select a feature subset, but creates new features

by a linear combination of the original values.

In the study 1, the standard Multi-Layer Perceptron (MLP) algorithm was used

to classify mood states. The MLP [78] with the integrate-and-fire neuron model is

one of the possible network used in the pattern recognition. It was trained through a

supervised learning method, i.e. input and output values are specified and the rela-

tions between them learnt. The MLP provided the highest statistically-significative

accuracy concerning the considered intra-subject recognition. Accordingly, only

results from MLP and, briefly, the theory behind will be reported and discussed.

Specifically, in the training phase, for each data record, each activation function of

the artificial neurons is calculated. The weight wij of a generic neuron i at time T for

the input vector f k
n = f k

n1, ..., f
k
nF is modified on the basis of the well-established back

propagation of the resulting error between the input and the output values. The output

from the MLP is a boolean vector; each element represents the activation function

of an output neuron. In this study, an MLP having three layers of neurons has been

implemented. The first layer, the input one, was comprised of 7 neurons, one for each

of the reduced dimension of the feature space. The third layer, the output one, was

comprised of 2 neurons, one for each of the considered classes to be recognized. The

second layer, the hidden one, was comprised of an empirically estimated number

of neurons. Specifically, this number was chosen as the superior limit of the half

difference between the number of the input and output neurons, i.e. 5.

Classification for Study 2 and Study 3 was carried out through a Leave-One-Out

(LOO) procedure applied on a Support Vector Machine (SVM)-based pattern recog-

nition. More specifically, we used a nu-SVM (nu = 0.5) having a radial basis kernel

function with 𝛾 = n−1.

All of the classification results were expressed as recognition accuracy in detailed

confusion matrices. The generic element rij of the confusion matrix indicated the

percentage of how many times a pattern belonging to the class i was classified as

belonging to the class j. A more diagonal confusion matrix corresponded to a higher

degree of classification. The matrix must be read by columns.
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4 Experimental Results

In this section, we report experimental results regarding the characterization of

pathological mood states in bipolar disorder (Study 1), the temporal characteriza-

tion of pathological mood states in bipolar disorder (Study 2), and the prediction of

pathological mood states in bipolar disorder (Study 3).

4.1 Study 1

According to the developed mania-depression model, the goal was to test the ability

of the classifiers of discriminating the mood state. Table 8 reports for each patient

the initial and final time of each acquisition along with the percentages of the signal

cleaned from the movement artifacts. After the AMR step, each signal was visually

checked in order to identify physiological (ectopic or arrhythmic beats) or algorith-

mic artifacts (i.e. errors due to misdetection of the R-peaks). As it can be seen, good

percentages of the retained signals were achieved, thus confirming the robustness

of the wearable system even during long-term monitoring in a natural environment.

The training phase was carried out on 80% of the feature dataset, while the test-

ing phase was on the remaining 20%. Moreover, a 40-fold cross-validation steps has

been performed. This latter method is done in order to obtain unbiased classification

results, i.e. to consider a gaussian distribution of the classification results, which

can therefore be described as mean and standard deviation among the 40 confusion

matrices obtained. According to the processing chain reported in Sect. 3.3, the fea-

ture set was constructed by using the segmented and filtered signals. Some descrip-

tive statistics about the most relevant indexes, also used for the classification, are

reported in Tables 5, 6 and 7. To average among all the values, the median values over

all the acquisitions for each class were considered according to the outcome of the

Kolmogorov-Smirnov test for normality (p < 0.05, i.e. data are not normally distrib-

uted). The values are expressed as median and its respective absolute deviation (i.e.

for a feature X, X = median(X) ± MAD(X)where MAD(X) = |X − median(X)|). The

dimension of this dataset was reduced by applying the PCA algorithm. Since each

principal component accounts for a given amount of the total variance, we found that

a reduced dimension of 7 components gives the cumulative variance equal to 95%
at least. In this study, due to the small number of patients as well as the small num-

ber of examples for some classes, only an intra-subject classification was performed.

We collected the confusion matrices from several commonly-used algorithms such

as LDC, QDC, MOG, k-NN, KSOM, MLP, and PNN. Taking into account the ele-

ments of the main diagonal, i.e. rij with i = j, a statistical analysis was performed for

each i = j = {1, 2} by means of the ANOVA test. Concerning BP1 and BP2, the post-
hoc analysis, using the Bonferroni correction, gave a significative p-value (p < 0.05)

for both elements r11 and r22 showing that the best accuracy was obtained by means

of the MLP neural network and, thus, it is the most suitable classifier for the con-
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Table 5 Selected descriptive statistics of the features from the bipolar patient BP1

BP1 features MD SD ES

𝜇RR 0.7559 ± 0.0615 0.7507 ± 0.0826 0.8224 ± 0.1267

𝜎RR 0.0317 ± 0.0172 0.0350 ± 0.0120 0.0685 ± 0.0250

RMSSD 0.0340 ± 0.0168 0.0424 ± 0.0181 0.0446 ± 0.0104

pNN50% 4.8128 ± 3.8649 3.9537 ± 2.4831 20.3980 ± 8.4363

TINN 0.2100 ± 0.1150 0.2825 ± 0.0975 0.3100 ± 0.1000

LF 2.6900 ± 2.2989 2.8248 ± 2.4202 0.0026 ± 0.0021

HF 3.6341 ± 2.9069 4.1721 ± 3.6044 8.4589 ± 3.1042

LF/HF 0.7388 ± 0.3289 0.6517 ± 0.2305 3.0415 ± 2.2429

ApEn 0.8640 ± 0.1186 0.8624 ± 0.1076 0.7077 ± 0.1145

DFA 𝛼1 0.9758 ± 0.1691 0.8489 ± 0.1670 1.3865 ± 0.2047

DFA 𝛼2 0.8288 ± 0.1798 0.6992 ± 0.1522 0.9661 ± 0.1615

Values are expressed as X = median(X) ± MAD(X)

Table 6 Selected descriptive statistics of the features from the bipolar patient BP2

BP2 features MD ES

𝜇RR 0.7687 ± 0.0661 0.8192 ± 0.0988

𝜎RR 0.0313 ± 0.0107 0.0319 ± 0.0136

RMSSD 0.0364 ± 0.0150 0.0274 ± 0.0129

pNN50% 3.4424 ± 2.3524 4.3256 ± 3.4817

TINN 0.2575 ± 0.0825 0.1800 ± 0.0650

LF 2.6926 ± 1.7427 4.4200 ± 3.2629

HF 2.4233 ± 2.0904 1.9436 ± 1.6271

LF/HF 1.0468 ± 0.5698 2.9063 ± 1.9288

ApEn 0.7891 ± 0.1226 0.7902 ± 0.1030

DFA 𝛼1 0.9322 ± 0.2053 1.2849 ± 0.2125

DFA 𝛼2 0.8364 ± 0.1575 0.7839 ± 0.1537

Values are expressed as X = median(X) ± MAD(X)

sidered application, i.e. mood recognition/discrimination. Regarding the three con-

fusion matrices of BP3, the MLP gave comparable results (p > 0.05) in terms of r11
values obtained by means of KSOM, and in terms of r22 values obtained by means

of QDC. Otherwise, significative p-values (p < 0.05) were obtained pointing out the

MLP better accuracy. We also report that the k-NN, LDC, MOG and PNN gave poor

results for all of the patients. In fact, at least one of the two elements of the main

diagonal of the confusion matrix was <67% (Table 8).

The MLP results are shown in Tables 9, 10, 11, 12 and 13. Insufficient recognition

was obtained by considering the 3-class problem (i.e. ES vs. MD vs. SD) on patient

BP1.
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Table 7 Selected descriptive statistics of the features from the bipolar patient BP3

BP3 features MS ES

𝜇RR 0.9698 ± 0.0244 0.7505 ± 0.0653

𝜎RR 0.0979 ± 0.0108 0.0218 ± 0.0072

RMSSD 0.0606 ± 0.0062 0.0221 ± 0.0108

pNN50% 33.9872 ± 5.2543 1.0959 ± 1.0959

TINN 0.4375 ± 0.0500 0.1650 ± 0.0850

LF 0.0062 ± 0.0019 13.4740 ± 8.9033

HF 0.0013 ± 0.0006 7.6230 ± 4.9012

LF/HF 5.4873 ± 2.5745 1.7222 ± 0.9657

ApEn 0.6399 ± 0.0517 0.8115 ± 0.0922

DFA 𝛼1 1.5118 ± 0.0914 1.0785 ± 0.2299

DFA 𝛼2 0.9476 ± 0.1344 0.8489 ± 0.1629

Values are expressed as X = median(X) ± MAD(X)

Table 8 Percentage of biosignals retained after the AMR step

Subj. ID Original signal length Retained signal length % Retained

BP1-ACQ. 1 15h40m33s 10h20m8s 82,3453

BP1-ACQ. 2 16h30m6s 12h54m30s 70,3354

BP1-ACQ. 3 13h22m52s 11h36m24s 94,7302

BP1-ACQ. 4 15h17m29s 12h40m33s 79,1542

BP2-ACQ. 1 12h15m39s 8h22m16s 68,2755

BP2-ACQ. 2 15h14m3s 11h48m35s 77,5215

BP2-ACQ. 3 11h59m31s 10h5m36s 84,1692

BP2-ACQ. 4 10h16m26s 7h5m2s 68,9507

BP2-ACQ. 5 12h54m12s 10h40m42s 82.7556

BP2-ACQ. 6 16h19m50s 8h56m1s 54.7045

BP3-ACQ. 1 17h36m7s 15h51m40s 90,1105

BP3-ACQ. 2 14h49m5s 11h24m28s 76,9848

The original signal length column refers to the amount of data recorded for each acquisition until

the wearable system battery ran out. The retained signal length column refers to the amount of

artifact-free data retained for the post-processing analyses

Table 9 Intra-subject BP3

Conf. mat. MLP Class ES Class MS

Class ES 97.96 ± 2.27 3.24 ± 3.06

Class MS 2.04 ± 2.27 96.76 ± 3.06
Class ES: 126 examples. Class MS: 162 examples. Total: 288 examples
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Table 10 Intra-subject BP2

Conf. mat. MLP Class ES Class MD

Class ES 68.31 ± 6.49 11.13 ± 3.23

Class MD 31.69 ± 6.49 88.87 ± 3.23
Class ES: 216 examples. Class MD: 412 examples. Total: 628 examples

Table 11 Intra-subject BP1

Conf. mat. MLP Class ES Class MD-SD

Class ES 74.58 ± 7.34 7.65 ± 2.05

Class MD-SD 25.42 ± 7.34 92.35 ± 2.05
Class ES: 131 examples. Class MD: 415 examples. Total: 546 examples

Table 12 Intra-subject BP1

Conf. mat. MLP Class ES Class MD

Class ES 79.00 ± 7.12 12.00 ± 3.82

Class MD 21.00 ± 7.12 88.00 ± 3.82
Class ES: 131 examples. Class MD: 283 examples. Total: 414 examples

Table 13 Intra-subject BP1

Conf. mat. MLP Class ES Class SD

Class ES 93.75 ± 3.81 5.25 ± 3.84

Class SD 6.25 ± 3.81 94.75 ± 3.84
Class ES: 131 examples. Class MD: 132 examples. Total: 263 examples

4.2 Study 2

Classifications were performed according to the methodology described in Sect. 3.3.3

and reported as intra-subject evaluations. Tables 14, 15, 16, 17, 18, 19, 20 and

21 show the recognition accuracy in terms of confusion matrices as well as the

total average accuracy obtained through the LOO procedure on nu-SVMs. Standard
dataset refers to an independently-processed feature set, i.e., the feature set belong-

ing to a specific acquisition of a patient is taken as an input for the LOO-SVM clas-

Table 14 Confusion matrix of SVM classifier for BP1. Values are expressed as percentages

Dataset Hypomania Euthymia

Hypomania Standard 91.99 8.01

Markov 88.64 11.36

Euthymia Standard 80.40 19.60

Markov 29.20 70.80
Total Accuracies: Standard 55.79%; Markov 79.72%

Bold values indicate the best correct classification results for each mood state
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Table 15 Confusion matrix of SVM classifier for BP3. Values are expressed as percentages

Dataset Hypomania Euthymia

Hypomania Standard 96.70 3.30

Markov 97.78 2.22

Euthymia Standard 64.44 35.56

Markov 11.11 88.89
Total Accuracies: Standard 66.13%; Markov 93.33%

Bold values indicate the best correct classification results for each mood state

Table 16 Confusion matrix of SVM classifier for BP2. Values are expressed as percentages

Dataset Hypomania Mixed-State

Hypomania Standard 97.03 2.97

Markov 86.46 13.54

Mixed-State Standard 62.5 37.5

Markov 3.75 96.25
Total Accuracies: Standard 67.26%; Markov 91.35%

Bold values indicate the best correct classification results for each mood state

Table 17 Confusion matrix of SVM classifier for BP4. Values are expressed as percentages

Dataset Depression Euthymia

Depression Standard 98.53 1.47

Markov 99.68 0.32

Euthymia Standard 83.91 16.09

Markov 8.05 91.95
Total Accuracies: Standard 57.31%; Markov 95.81%

Bold values indicate the best correct classification results for each mood state

Table 18 Confusion matrix of SVM classifier for BP5. Values are expressed as percentages

Dataset Depression Hypomania

Depression Standard 85.44 14.56

Markov 74.87 25.13

Hypomania Standard 23.02 76.98

Markov 3.77 96.23
Total Accuracies: Standard 81.21%; Markov 85.55%

Bold values indicate the best correct classification results for each mood state

sification without performing any rescaling procedure. Markov dataset refers to the

proposed methodology, i.e., feature set is processed ad-hoc in order to consider infor-

mation from the previous mood state (see details on Sect. 3.3.3).

According to the description of data processing reported in Sect. 3.3.3, n = 24 fea-

tures constituted the feature space dimension of both standard and Markov datasets.

No dimensionality reduction techniques were applied to reduce such a dimension.

Since no patients had a maniac episode, we assigned four labels: hypomania,

depression, mixed state and euthymia.
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Table 19 Confusion matrix of SVM classifier for BP6. Values are expressed as percentages

Dataset Hypomania Euthymia

Hypomania Standard 88.75 11.25

Markov 93.98 6.02

Euthymia Standard 27.27 72.73

Markov 7.49 92.51
Total Accuracies: Standard 80.74%; Markov 93.24%

Bold values indicate the best correct classification results for each mood state

Table 20 Confusion matrix of SVM classifier for BP7. Values are expressed as percentages

Dataset Depression Euthymia

Depression Standard 96.34 3.66

Markov 97.47 2.53

Euthymia Standard 45.56 54.44

Markov 13.33 86.67
Total Accuracies: Standard 75.39%; Markov 92.07%

Bold values indicate the best correct classification results for each mood state

Patients BP1 and BP3 underwent five visits alongside long-term ANS monitor-

ing. Starting from a period of hypomania, patients reached the euthymic state. As

shown in Tables 14 and 15, considering the proposed Markov dataset, the subjec-

tive ANS patterns are well-distinguished reaching more than 88% of accuracy in

recognizing the hypomaniac state. Concerning the results obtained from data gath-

ered from BP1, we report that higher classification accuracy on hypomania class was

achieved adopting a standard dataset. However, when using the same dataset, high

mis-classification accuracy was obtained for the euthymia class.

Likewise to BP1 and BP3, patient BP2 began the study showing hypomaniacal

psychosis. Then, depressive behaviors were diagnosed changing the mood state to

mixed-state. Afterwards, the previous observed hypomania state was observed twice.

In this case, more than 86 and 96% accuracy was reached in distinguishing hypoma-

nia from mixed-state patterns.

BP4 experienced depressive psychosis for the whole course of the illness, reach-

ing good affective balance after five monitoring sessions. In order to take into account

the unbalanced number of available examples per class, two different learning rates

were considered in the SVM training phase, giving the euthymic examples four times

more penalty with respect to the depressive examples. As the two considered states

are very different in clinical terms, the two patterns resulted strongly distinguished

with a recognition accuracy as high as 99.68%.

BP5 showed mood swings between depressive and hypomaniacal psychosis.

Despite the fact that about 25% of the depressive patterns were confused with the

hypomaniacal ones, the hypomania states were recognized with more than 96% accu-

racy. Likewise for BP1, results obtained on data gathered from BP2 and BP5 show

that in using the standard approach, a higher classification accuracy for one class is

associated to a very low and insufficient accuracy on another one. Like BP4, patients
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Table 21 Confusion matrix of SVM classifier for BP8. Values are expressed as percentages

Dataset Mixed-State Depression Euthymia

Mixed-State Standard 65.86 26.42 7.72

Markov 78.08 13.70 8.22

Depression Standard 13.79 78.52 7.69

Markov 4.51 93.90 1.59

Euthymia Standard 22.60 24.66 52.74

Markov 7.53 8.22 84.25
Total Accuracies: Standard 65.71%; Markov 85.41%

Bold values indicate the best correct classification results for each mood state

BP6 and BP7 displayed severe pathological behavior before reaching the euthymic

condition. Accordingly, accuracy greater than 86% was obtained in recognizing such

states.

BP8 showed mood swings among three states such as the mixed-state, depression,

and euthymia. This case is very interesting for this work as we obtained interesting

performance, considering a three-class pattern recognition problem (see Table 21).

For each patient, higher total accuracy was obtained considering mood states as

a Markov chain rather than using a standard approach. Although a further statis-

tical analysis revealed that there are no differences between the sensitivity values

given by the two methodologies, significant differences were found concerning the

specificity values (p < 0.02) and total accuracies (p < 0.01) according to the non-

parametric Wilcoxon signed rank test for paired data performed on all the subjects.

Moreover, in order to generalize these results, it is worthwhile mentioning that we

tested the classifier also when data were normalized with respect to a casual mood

status achieving also lower performances than the proposed Markovian approach.

4.3 Study 3

In this study, results were achieved considering data gathered from 14 patients. As

mentioned in the previous section, from each acquisition of each patient, the longest

artifact-free segment of signal was selected. Table 22 reports average lengths, across

all observations of each patients, of acquired signals and longest artifact-free seg-

ments.

During the acquisitions in Strasbourg, P3 interrupted the study for 5 weeks

between acquisition number 21 and number 22 due to summer holidays. For three

other patients, P1, P5 and P8, study duration has to be shortened respectively to 13, 12

and 11.5 weeks due to different factors (P1: leaving for summer holidays; P5: delay

in study inclusion due to personal unavailability; P8: delay in enrolling the patient

due to the prolongation of the participation of P3 in the study). Personalized predic-

tion accuracies in forecasting the mood state (EUT/non-EUT) at time t+1 are shown
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Table 22 Average lengths of acquired and longest artifact-free signals an expressed in seconds

Patient ID Acquired signal Longest Artifact-free segment

P1 26120.37 ± 7149.69 22350 ± 11400
P2 5889.30 ± 5990.24 5700 ± 6000
P3 22743.92 ± 19339.44 11400 ± 4800
P4 10990.78 ± 15108.46 10800 ± 5625
P5 9007.48 ± 4661.27 6150 ± 2400
P6 25492.20 ± 6865.27 16950 ± 14700
P7 28077.65 ± 4320.94 27600 ± 3900
P8 6957.64 ± 7864.32 5400 ± 3975
P9 25924.71 ± 12516.53 17400 ± 6600
P10 29916.71 ± 9192.53 22800 ± 11925
P11 30468.44 ± 5604.22 25200 ± 9675
P12 31165.16 ± 3654.47 12600 ± 3300
P13 20242.29 ± 5790.03 10500 ± 2250
P14 30400.33 ± 9032.32 14700 ± 4575

Ranges are expressed in seconds as median ± interquartile − range

Table 23 Experimental Results expressed as prediction accuracy for each patient. The total num-

ber of available acquisitions (‘N. Acq.’, second column), and the number of acquisitions taken as

initial training set (‘Training Acq.’, third column) are also reported

Patient ID N. Acq. Training Acq. Prediction Acc. (%)

P1 22 1:5 70.6

P2 18 1:3 75

P3 14 1:3 60

P4 15 1:3 83.3

P5 8 1:3 60

P6 19 1:4 73.33

P7 22 1:4 77.78

P8 10 1:2 42.85

P9 18 1:5 70

P10 12 1:3 80

P11 18 1:3 66.67

P12 8 1:3 66.67

P13 16 1:9 71.43

P14 8 1:3 66.67

in Table 23. In this table, the second column reports the total number of acquisitions

used for the accuracy estimation, whereas the third column reports the number of

acquisitions used for the initial training set (x ∶ y means that the initial training set

was considered from acquisition x to acquisition y).
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Fig. 9 Exemplary trends of prediction accuracy as a function of the acquisition number in four

patients

In addition to accuracy, reported in Table 23, the classifier performance was eval-

uated also in terms of sensitivity, specificity, positive predictive value and negative

predictive value. Results are reported in Table 3.

Importantly, prediction accuracies reported in Table 23 should be considered as a

snapshot of all possible prediction accuracies related to a given patient. As an exam-

ple, we report in Fig. 9 trends of the prediction accuracy as a function of different

observations, considering data gathered from 4 patients. It is possible to recognize

trends in which higher accuracy is associated with the first predictions and, then,

the accuracy decreases, as well as trends in which the lower recognition accuracy is

associated with first the predictions.

In order to investigate which feature could provide a major contribution in fore-

casting the next mood state, a further analysis based on the circle of correlation of

the PCA transformation matrix was performed. Table 24 shows the first 5 mostly

correlated features for each patient.
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Table 24 Experimental

Results expressed as

percentage among patients

Accuracy 69%

Sensitivity 57%

Specificity 78%

Positive predictive value 60%

Negative predictive value 76%

Table 25 First 5 mostly

correlated features among

patients, predicting mood

changes

HRV Feature Frequency

Std RR 12/14

RMSSD 11/14

Poincaré SD1 11/14

Poincaré SD2 11/14

HF power 8/14

This analysis was performed considering the PCA calculation on all the acquisi-

tions of each patient, and suggests that the HRV features reported in Table 25 are the

most informative in forecasting the next mood state.

5 Conclusions and Discussion

In this chapter, an effective mood recognition system in bipolar patients has been

presented [24, 28–35]. There are several studies in the literature that have shown

how mood disorders are correlated with several dysfunctions of the ANS [19–21].

Bipolar disorder is widespread and has a high impact on the society [1–4], there-

fore an effective and reliable decision support system to clinical diagnosis is crucial.

Clinicians, indeed, currently rely their diagnosis on rating scales and questionnaire

scores [6–8] with no objective exams.

Accordingly, a wearable system able to detect and predict mood fluctuation could

provide important clinical information even without physician. This will improve

the medical treatment as well as shorten the symptomatic period. Although there are

several studies reporting biomarkers that statistically discriminate different mood

states [14–23], a single-variable approach is not sufficient to robustly characterize

mood swings [24, 35]. In this frame, the PSYCHE platform is a wearable, comfort-

able and unobtrusive monitoring systems which apply a multi-parametric approach

to give decision support system for the diagnosis of bipolar disorder. Specifically,

the platform uses heart rate variability as a good non-invasive marker of the ANS

activity [49, 53], especially effective in emotion recognition systems [54, 79–83].

In this chapter, results have been presented through confusion matrices. This

approach allows showing values for the straightforward calculation of widely used

statistical measures such as the sensitivity, specificity, ROC curves, area under the

curve etc. Nevertheless, results only emphasize the whole cardio-respiratory pattern

of the different mood states instead of identifying the actual biomarkers.
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The proposed multi-parametric biomedical signal processing approach also

accounts for clinical course during a mood fluctuation. The onset of a new mood

state brings the past clinical history along, and the identification of the next state is

more accurate if the previous one is considered. From a point of view purely spec-

ulative our approach goes beyond the rigid application of DSM-IV-TR labels, but

introduces the new concept that the clinical diagnosis is looking backward. Better

understanding of the patient’s mood status can be achieved considering the dynamics

of the disorder rather than the single observation treated as completely independent.

For instance, patients with bipolar disorders present different clinical signs whether

a depressive episode follows or precedes a maniac status [84].

Experimental results were very satisfactory. Considering patients with a mood

label such as depression, hypomania, mixed-state, and euthymic state, we are able

to distinguish subjective mood states with high accuracy, especially when a patho-

logical clinical status is compared with the reference euthymic status (e.g. euthymic

versus depressed, and euthymic versus mixed-state). Moreover, the comparison of

the obtained findings through Markov mood state modeling with a standard approach

further confirms the crucial role played by the long-term dynamics of pathological

mental states. A further statistical analysis, in fact, revealed that a reliable and sig-

nificantly higher specificity values are achieved only when the temporal dynamics

of the illness is taken into account. The translational clinical application of the pro-

posed methodology is not a challenging task, as ECG monitoring systems are widely

available even in a portable fashion (e.g. standard ECG holter). However, as the pro-

posed methodology focuses on the intra-subject classification, the new training phase

has to be performed for every new patient. Ideally, such a training phase requires at

least four acquisitions of physiological data that covers all the possible mood states,

although a minimum switch of two mood states is strongly needed. Moreover, during

such a training phase, doctors have to determine the mood states during each of the

acquisitions. Then, these labels together with physiological data can be used to train

the classifier. Only after this training phase, the proposed system will be able to diag-

nose the patient without an input from doctors. Major improvements of the system

are expected to solve the inter-subject variability issue for the mood classification.

Furthermore, we reported promising results suggesting that it is possible to fore-

cast mood states in bipolar disorder and in cyclothymic temperament subjects using

heartbeat dynamics exclusively, gathered from ECG. To this extent, we reduced the

problem predicting two possible mental states: the euthymic state, i.e., the good

affective balance, and non-euthymic state, i.e., every mood state among depression,

hypomania, and mixed state. From a clinical point of view, outcomes of this mood

prediction study are very relevant. Knowing in advance whether the patient is get-

ting better or not could effectively help clinicians to optimize the therapy and make

changes in time, if necessary. On the other hand, understanding if the patient is going

to have a relapse is very important and informative to perform a more accurate clin-

ical monitoring, and plan a treatment at very early stage.

While the proposed experimental procedure provides for carrying out normal

life activities, it is worthwhile mentioning that different life activities could be eas-

ily associated to different HRV dynamics. Using the methodology proposed in this
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work, such changes are minimized considering long-term, history-dependent dynam-

ics referred to as one of the four possible pathological mood states. Given the high

classification accuracy, it is indeed possible to hypothesize that the few misclassified

samples can be interpreted as either algorithmic/mathematical artifacts or physiolog-

ical outliers, i.e. events not related to mood markers for any reason (including also

misleading daily activities).

The impact of this research can open new opportunities to create a closed loop

between patients and clinicians through continuous communication and feedback

that facilitates disease management by fostering a new collaboration, with more

autonomy and empowerment for the patient. Constant monitoring and feedback (to

both patients and physicians) are the new keys to managing the illness, to helping

patients, to facilitating interaction between patient and physician, as well as to alert-

ing professionals in case of relapse and depressive or manic episodes, and as a ulti-

mate goal, to identifying signal trends in order to predict critical events. Moreover,

the possibility of introducing other past mood states to the analysis and mood state

labeling features is intriguing also from a clinical point of view. This is because it

introduces the idea that mood disorders cannot be considered to be a series of inde-

pendent and stand alone states, but rather a chronological sequence of mood states

that are related each other. Previous studies have been limited to not considering this

issue and may be one of the possible reasons for their lack of ability to discriminate

mood status at single subject levels.

It is necessary to mention some limitations of our studies. In fact, the whole PSY-

CHE system relies on the patient mood label given by the physician during the train-

ing phase. Therefore, an error in such an evaluation could be crucial for the further

assessment biasing the decision support. In addition, more data coming from a sta-

tistical representative and homogeneous population of a bipolar patient is needed for

the validation of the system in terms of generalization, robustness and reliability. As

mentioned in the method section, another possible limitation of the study is the fact

that it relies on an ad-hoc mood model without a clinical validation. The model is a

summarized pattern sets of mood states relying on clinical observations. It resulted

to be an effective and viable means to fulfill the PSYCHE project mission, which is

to predict and classify the clinical status. A more detailed and validated model will

be defined when a higher number of participants will be available for the analysis.

However, it is worthwhile underlining that diagnosis in psychiatry still suffers, in

general, from a lack of validity, i.e. clinical diagnoses are not supported by the evi-

dence of neurobiological changes. Therefore, a validated model for clinical assess-

ment is quite far from being achieved. We are aware that more acquisitions, possi-

bly with more frequent transitions, can remarkably improve prediction performance

and may help to generalize our results to the wider clinical presentation and pheno-

types of bipolar disoder. Another limitation of this study is a potentially confounding

effect of the psychotropic medication in subjects including antidepressants, mood

stabilizers, antipsychotics and benzodiazepine-like medication prescribed regularly.

Common side effects of psychotropic drugs include anticholinergic and autonomic

effects. These effects might have diminished the predictive power of our study. How-

ever, in psychiatric practice, patients with mood disorders are very frequently treated
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with psychotropic medications. Therefore, our results are very encouraging regard-

ing the clinical usability of the PSYCHE system. Additional studies are needed to

assess the impact of psychotropic drugs on its predictive power.

Further analyses, in fact, highlighting the most relevant features for classifica-

tion will better clarify the psychophysiological correlates of bipolar disorders. The

future study will investigate if these specific features can be used as a preclinical

marker, meaning that they start to change even before the subject mood changes. In

this case, it would be possible to use the PSYCHE platform to have an early, pre-

symptomatic diagnosis of mood episodes. Further studies with a larger number of

recruited patients will be provided a more complete understanding and knowledge of

HRV and ANS alterations in bipolar disorder, therefore allowing for the assessment

of the most important features related to pathological mental states.
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Resource Allocation in Body Area
Networks for Energy Harvesting
Healthcare Monitoring

Shiyang Leng and Aylin Yener

1 Introduction

Health monitoring body area networks (BANs) have the potential to create a

paradigm shift in providing personal healthcare [1]. A BAN consists of multiple

wireless body sensors attached to or implanted in the human body to continuously

monitor the patient’s vital signs. The goal of BANs is to gather and analyze real-

time health information by delivering and computing data collected at the sensors

to physicians via wireless networking and mobile or cloud computing. Due to the

short communication range of BAN nodes, gateway devices such as smartphones

are usually exploited to relay the connection to remote stations.

One major challenge for health monitoring BANs is sustainable energy supply.

Body sensors are desired to be unobtrusive and small in size, and are thus envi-

sioned to employ energy storage devices with very limited storage capacity, which

leads to the energy-constrained scenarios. Such scarcity of energy is a potential road

block for perpetual and pervasive health monitoring. Energy harvesting has recently

emerged as a promising solution [2–4] that enables energy-constrained wireless body

sensors to scavenge energy from ambient energy sources such as sunlight, electro-

magnetic waves and so on. In particular, the human body has been confirmed to

be an eligible energy source candidate for energy harvesting [1, 2]. Body motion,

heat, or biochemical energy can be utilized to generate electrical energy powering

up wireless devices. Thanks to the significant progress on hardware implementation,

energy harvesting has been integrated into energy-constrained wireless body sensors

to realize self-sustainable BANs [5, 6].
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Unlike conventional battery energy supply that is stable and controllable, energy

harvesting is a time-varying process which largely depends on the environment. Due

to the intermittent nature of energy harvesting, energy harvesting devices require

careful management of energy expenditure to meet the quality of service (QoS)

requirement and energy efficient operation. In recent years, resource allocation in

energy harvesting communication networks has been studied extensively [7–10]. A

few works have investigated BANs with energy harvesting in terms of energy har-

vesting modeling, physical layer optimization, and protocol design [11–16].

In this chapter, we review recent progress on resource allocation for BANs with

energy harvesting. Data and energy scheduling with practical constraints in different

types of systems are summarized. The remainder of the chapter is organized as fol-

lows. In Sect. 2, energy harvesting sources and techniques for BANs are introduced.

Section 3 discusses resource allocation issues in fundamental point-to-point com-

munications. In Sect. 4, data and energy scheduling in multi-node communication

networks are presented. Section 5 summarizes the chapter.

2 Energy Harvesting Sources and Techniques

In this section, we introduce energy harvesting sources that are used to power the

body area sensors. The characteristics of different types of energy harvesting sources

and the associated energy harvesting techniques are discussed.

2.1 Photovoltaic Energy Harvesting

Photovoltaic energy harvesting is the process of converting light from the sun or arti-

ficial illumination into electricity using photovoltaic (PV) cells. When illuminated,

PV cells absorb light and result in photovoltaic effect. Specifically, incoming pho-

tons excite the electrons into higher energy states and enable them to form an electric

current that is proportional to the illuminance. Due to the abundant and highly acces-

sible source of light, photovoltaic energy harvesting is widely applied in a variety of

wireless devices in BANs from wearable sensors to implantable sensors [17–20].

For outdoor environments, sunlight is the obvious energy source, although its

availability could vary depending on weather condition, daytime duration, and loca-

tion. Generally, the PV panel generates 100 mW/cm
2

in standard outdoor conditions

[21]. For indoor environments, illumination from either artificial light or natural light

can be utilized to photovoltaic energy harvesting. The most common light source is

the overhead fluorescent lights in office, hospital, and residential environments. In a

typical room with windows, energy can also be harvested from the natural external

light source. Unlike outdoor natural irradiance of sunlight, the energy density of the

indoor light is inherently limited. Indoor illumination depending on the duration and

the intensity of the artificial and natural irradiance generally ranges from 100 lux
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to 1000 lux which is one or two orders of magnitude lower than the outdoor illu-

mination [22]. The outcome power density of the PV panel under indoor conditions

is about 100–1000 µW/cm
2

which is about 100–1000 times less than that of the

outdoor case [20, 21].

The energy conversion efficiency of a PV panel is influenced by many factors,

such as the material used for the PV panel, the amount of illumination, and the spectra

of light [22]. In particular, for wearable and implantable wireless sensors, bending

and shadowing of the PV panel caused by uncontrollable human body movements

and gestures also affect the generated power level, as less surface of the panel is

exposed perpendicularly to the light. Toh et al. [20] reports that the power produced

from the flexible PV panel with 30
◦

of bending, decreases about 4.85% compared

to that of a flat PV panel. To enable the PV panel to operate at the maximum power

point, a power/voltage management circuit, which is called Maximum Power Point

Tracking (MPPT), is typically implemented to optimize the current and voltage on

the panel [22].

2.2 Thermoelectric Energy Harvesting

Thermoelectric energy harvesting is to generate electrical energy from thermal

energy using the thermoelectric generator (TEG). A TEG is composed of two dissim-

ilar thermoelectric semiconductors, p-type and n-type, connected in series between

the hot and cold sides. It works as the energy converter based on the principle of

Seebeck effect, which states that a voltage gradient is stimulated when there is a

temperature difference between the two types of semiconductors [23]. Thermoelec-

tric energy harvesting is widely used thanks to the ubiquitous availability of thermal

energy, especially for wearable applications [24–30]. The human body continuously

releases heat to maintain a normal body temperature. An adult typically dissipates

power about 119 W, burning about 10.3 MJ a day when sitting in an office [24]. By

exposing the hot side of the TEG to the skin and the cold side to the environment,

the temperature gradient between the human body and the environment triggers the

Seebeck effect, generating energy proportional to the temperature difference.

The power density generated by thermoelectric energy harvesting on the human

body can be influenced by many factors, including the material and the structure

of the TEG, the attachment location, clothing thermal insulation, and the wearer’s

activity. For instance, the TEG attached on the human leg with normal temperature

35.5
◦
C generates less energy than that attached to the human palm with normal

temperature 38
◦
C [27]. The human body in a static state produces a relatively low

power compared with walking, in which state the temperature gradient is increased

by cooling via the wind [31]. As shown in [31], the produced power density is 20–

60 µW/cm
2

when the room temperature is 18–25
◦
C, and 600 µW/cm

2
when the

ambient temperature is 0
◦
C. However, the output voltage of a thermoelectric energy
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harvesting module is typically too low to power up the body sensor. A boost circuit,

which is usually a DC-DC (direct current) converter, is developed to amplify the

weak output to higher voltage [30].

2.3 Kinetic Energy Harvesting

Kinetic energy harvesting is a form of mechanical energy harvesting exclusively

applied to the human body. It produces electrical energy from human motion and

vibration via transduction methods [23]. The human body generates abundant kinetic

energy through daily activities, including macro motions like the movements of

limbs and joints and micro motions such as the natural vibration of the human chest

during breathing [32]. Kinetic energy harvesting has garnered significant research

interest and has become a popular energy harvesting technique for autonomous wear-

able sensors [23, 30, 33–35].

Conventional mechanical energy harvesting, that converts the energy of displace-

ments and oscillations of a transducer into electrical energy, falls into three cate-

gories: electromagnetic, electrostatic, and piezoelectric. Electromagnetic transduc-

tion is normally applied to macro-scale energy harvesting due to its large material

size [33]. In contrast, electrostatic and piezoelectric energy harvesting are more prac-

tical for small-scale applications. Electrostatic transduction can be implemented in

microelectronic devices via integrated circuits [23], while piezoelectric transduc-

tion is suitable for harvesting energy from periodic movements, which are typical in

human activities, like walking and running. Thus, piezoelectric energy harvesting is

largely utilized in wearable sensors for health monitoring [30, 34, 35]. The piezo-

electric energy harvester can produce a power density of 7.4 µW/cm
3

when the user

running at 7 mile/h [30]. The generated power depends on the user’s running speed.

2.4 Electromagnetic Energy Harvesting

Electromagnetic energy harvesting refers to the wireless energy transfer via electro-

magnetic (EM) waves. Due to the broadcast nature of EM waves, electromagnetic

energy is ubiquitously available either from existing ambient waves or dedicated

radio frequency (RF) energy transfer. This enables the electromagnetic energy har-

vesting to be a promising solution for self-sustaining wireless BANs [36–40].

Electromagnetic energy harvesting can be categorized into resonant energy har-

vesting and RF energy harvesting. Resonant energy harvesting is usually applied

to near-field recharging, where the energy transmitter and the receiver are closely

located. The energy is transferred via resonant inductive coupling between two mag-

netically coupled coils that resonant at the same frequency. Resonant energy harvest-

ing can achieve an energy transfer efficiency higher than 80% [40]. The implantable
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device designed in [36] incorporates a resonant energy harvester that can supply

1.7 mA at 3.3 V over a distance up to 25 mm between the coupling coils.

For far-field recharging, RF energy harvesting is utilized to scavenge energy via

a rectifying antenna (rectenna) from existing ambient electromagnetic waves such

as radio and WiFi signals or from dedicated electromagnetic energy beams. The

RF energy is collected by the antenna and rectified to DC output. However, the

energy transfer efficiency is relatively low as the electromagnetic waves are atten-

uated promptly in propagation. In order to mitigate this, beamforming for energy

transfer is developed [41]. On the other hand, in order to improve the RF-DC con-

version efficiency, the multi-band rectenna is proposed to collect ambient RF energy

from multiple frequency bands [39, 40]. In [40], a dual-band RF energy harvester

harvesting cellular and WiFi sources that are of power densities about 1 µW/cm
3

achieves RF-DC conversion efficiency of 37% at 915 MHz and 20% at 2.45 GHz.

2.5 Biochemical Energy Harvesting

Biochemical energy harvesting, used exclusively in human-powered BANs, extracts

energy from chemical energy sources in the human body [42–44]. Biochemical

energy harvesting benefits from biocompatibility and is more suitable to be used

in implantable devices. Biofuel cells are used to convert chemical energy into to

electrical energy via electrochemical reactions. A typical biofuel cell consists of two

electrodes, anode and cathode, that are located in separate chambers and connected

via an external circuit. Chemical substances are oxidized at the anode and release

electrons, which are conducted to the cathode via the external circuit. The protons

generated in oxidation travel from the anode to the cathode through the solution so

that a current is formed in a closed loop [42, 44].

Two major classes of biofuel cells are enzyme-based biofuel cells and microbial-

based biofuel cells. Enzyme-based biofuel cells use catalytic enzymes to facilitate

the oxidation of chemical substances to generate electrical energy [45]. On the other

hand, microorganisms are utilized by microbial-based biofuel cells in the energy

producing process. Among different types of potential chemical substances, glu-

cose is the most commonly considered chemical energy source. 24 electrons are

released from a single glucose molecule in oxidation and are conducted to form a

current by the biofuel cell [44]. In the recent implementations [42, 43], biofuel cells

using glucose fuels generate power densities 10–1000 µW/cm
2

to supply low-power

implantable microelectronic systems.

In Table 1, we summarize these energy harvesting sources and techniques applied

to BANs. For each energy harvesting technique, we list its energy harvesters and

energy sources. The energy harvesting amounts of specific application examples are

shown as well for each category.
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Table 1 Energy harvesting sources and techniques for BANs

Energy harvesting

techniques

Energy harvesters Energy sources Amount

Photovoltaic PV cells Outdoor sunlight 100 mW/cm
2

[21]

Indoor illumination 100–1000 µW/cm
2

[20, 21]

Thermoelectric TEG Body heat 20–60 µW/cm
2

(18–25
◦
C) [31]

600 µW/cm
2

(0
◦
C) [31]

Kinetic Piezoelectric

transducers

Body motion 7.4 µW/cm
3

(7 mile/h)[30]

Electromagnetic Resonant coupling

coils

EM induction 3.3 V at 1.7 mA

(25 mm) [36]

Rectifying antennas RF harvesting RF-DC efficiency

37% (915 MHz)

20% (2.45 GHz) [40]

Biochemical Biofuel cells Glucose 10–1000 µW/cm
2

[42, 43]

3 Data and Energy Scheduling in Point-to-Point
Communications

So far, we have seen that there are a number of potential energy sources to power

and sustain the operation of BANs via energy harvesting. In this section, we detail

efficient allocation of the harvested energy for perpetual operation. In particular, we

consider point-to-point data and energy scheduling in BANs with energy harvesting.

In point-to-point communications, a single body sensor transmits data directly to

a gateway device via a single link. For such a system with energy-constrained nodes

that are solely powered by energy harvesting, efficient energy allocation strategy has

to be carefully designed. We discuss both offline and online settings. In the offline

setting, perfect knowledge of the channel state, data state, and energy state in the

scheduling period is known a priori at the transmitter. For the online setting, only

causal knowledge and the statistics of either channel state, data state, or energy state

are available at the transmitter. In the sequel, both settings are introduced with the

system models of channel, data acquisition, and energy harvesting. Next, typical

system performance metrics including throughput, transmission completion time,

and generalized utility functions are specified. Lastly, resource allocation problems

and their solutions are presented.
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3.1 Offline Scheduling

In this setting, the channel state, energy harvesting state, and the data queuing state,

are known prior to transmission. Considerable effort has focused on resource alloca-

tion in point-to-point communications with offline approach [7, 8, 46–56]. Offline

resource allocation problems are commonly formulated as convex optimization prob-

lems and analytical solutions can typically be obtained by convex optimization tech-

niques. They serve as a benchmark for online cases, as well as an accurate perfor-

mance indicator for predictable energy sources like sunlight.

3.1.1 System Model

The system consists of a transmitter and a receiver as shown in Fig. 1. Energy is har-

vested by the transmitter to be used for data transmission. Throughout the chapter,

we will consider models which take into account the energy expended for data trans-

mission only, noting that other processing costs can be and have been considered in

follow up works [54]. We will also limit our discussion to models where the trans-

mitter can adjust its transmission power instantaneously so as to accommodate data

rate to its available energy, noting that recent work considers discrete rate adaptation

[49]. Throughout the chapter, we adopt a discrete time model, i.e., a time-slotted

system, without loss of generality.

Consider data transmission from the energy harvesting transmitter to the receiver

via a fading additive white Gaussian noise (AWGN) channel and a time-slotted

model. Assume that the duration of each time slot is L seconds within which the

channel fading level, energy harvesting state, and data queuing state are static. For a

transmission period of T time slots, the received signal at slot t is given by

yt =
√

htxt + nt, t = 1, 2,… ,T , (1)

Energy storage 

Data buffer

bt

th
Emax

et

Bmax

Transmi er

Receiver

xt

nt

yt

Fig. 1 System model for point-to-point communications. The transmitter harvests energy of

amount et at time slot t and stores in its energy storage unit of capacity Emax. bt represents the

data arrival at t. The data buffer has capacity Bmax. Signal xt is transmitted over an AWGN channel

with gain ht. The receiver receives signal yt corrupted by noise nt
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where ht is the channel gain, xt is the channel input signal, and nt is the white

Gaussian noise with zero mean and unit variance. The transmission power is pt at

time slot t, i.e., |xt|2 = pt. Hence, the instantaneous rate in bits per channel use is

rt =
1
2
log2(1 + htpt), t = 1, 2,… ,T . (2)

In this setting, channel state information (CSI) is assumed available at the transmitter

before transmission.

Energy Harvesting Model At the transmitter, energy harvesting occurs in an inter-

mittent manner. Energy harvesting amounts and arrival instants are known a priori.

At the beginning of time slot t, energy et ≥ 0 is harvested. The unused portion of

harvested energy can be stored in an energy storage device such as a supercapac-

itor or a battery. In this chapter, we review studies which assume that there is no

energy loss in recharging or discharging the storage device, noting that the extension

of the framework handling such losses has been studied in [55]. During the trans-

mission period, energy consumption up to a certain time should be no larger than the

total harvested energy by that time. This energy causality constraint is thus given by

[7, 46]
n∑

t=1
Lpt ≤

n∑

t=1
et, n = 1, 2,… ,T . (3)

More specifically, the consumed energy by the end of time slot n is no larger than

the total harvested energy up to time slot n.

In practice, the energy storage device has finite capacity, which is small for body

sensors. Let Emax denote the energy storage capacity. Any excess energy beyond the

storage capacity has to be discarded. Since waste of energy is not desired, we also

impose the no-energy-overflow constraint [7, 8]:

n∑

t=1
et −

n∑

t=1
Lpt ≤ Emax, n = 1, 2,… ,T , (4)

that is, the residual stored energy is no larger than the storage capacity at any time

slots.

Data AcquisitionModel The transmitter has a data buffer of size Bmax. While recent

work [48] addressed the impact of finite data buffers, here we consider simply that

a sufficiently large data buffer is available, i.e., Bmax → ∞. There are two scenarios

for data acquisition. One is that the total required data of B bits are available at the

beginning of transmission, namely, data ready before transmission (DBT). The other

scenario is that data packets arrive intermittently during the course of transmission,

namely, data during transmission (DDT), with a full knowledge of data amounts

and arrival instants available before transmission. For DDT model, bt ≥ 0 bits of
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data enter the data buffer at slot t. Similar to energy causality, the intermittent data

arrivals result in data causality constraints, i.e.,

n∑

t=1
Lrt ≤

n∑

t=1
bt, n = 1, 2,… ,T . (5)

3.1.2 Performance Metrics and Problem Formulations

The various metrics for resource allocation considered here includes throughput,

transmission completion time, and generalized system utility functions. The associ-

ated resource allocation optimization problems are introduced based on the afore-

mentioned system model.

Throughput Maximization [7, 8] Consider an AWGN block fading channel with

DBT data acquisition model, i.e., backlogged data is assumed. The objective is to

maximize transmitted data within T slots, namely, throughput maximization. The

problem is formulated subject to the energy causality constraint and the no-energy-

overflow constraint given as

Problem 1

max
𝐩≥0

T∑

t=1

L
2
log2(1 + htpt) (6a)

s.t.

n∑

t=1
Lpt ≤

n∑

t=1
et, n = 1, 2,… ,T , (6b)

n∑

t=1
et −

n∑

t=1
Lpt ≤ Emax, n = 1, 2,… ,T , (6c)

where 𝐩 = {p1, p2,… , pT} and 𝐩 ≥ 0 means that 𝐩 is nonnegative elementwise.

Transmission Completion Time Minimization [7, 8, 46] For the transmission

completion time minimization problem, the aim is to find an optimal transmission

strategy that sends the required data of B bits in the shortest period under the energy

constraints. Here, the simple DBT data model is considered, where B < ∞ bits need

to be delivered. The problem is formulated as

Problem 2

min
𝐩≥0,T

T (7a)

s.t.

T∑

t=1

L
2
log2(1 + htpt) = B, (7b)

n∑

t=1
Lpt ≤

n∑

t=1
et, n = 1, 2,… ,T , (7c)
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n∑

t=1
et −

n∑

t=1
Lpt ≤ Emax, n = 1, 2,… ,T . (7d)

System UtilityMaximization [56] System utility function U ∶ ℝ+ → ℝ is assumed

to be a nondecreasing, concave function of resource level 𝐩 = {p1, p2,… , pT}. For

instance, the rate-power function in (2) is a commonly used utility function, where

the resource is the transmission power and the utility is the rate. A general utility

maximization problem can be formulated as

Problem 3

max
𝐩≥0

T∑

t=1
U(pt) (8a)

s.t. pt ∈ F , t = 1, 2,… ,T , (8b)

where F is the feasible region of the relevant resource allocation constraints.

3.1.3 Resource Allocation Algorithm

In this part of the chapter, the solution to throughput maximization problem, i.e.,

Problem 1 described in (6), is presented. In particular, in the remainder of Sect. 3.1,

we summarize the results from [7, 8].

Let us define a change in either channel fading level, energy level, or data queuing

state as an event, and the time interval between two consecutive event as an epoch
[7]. For Problem 1, let K be the number of changes of channel fading within a finite

period of T slots, and J be the number of energy harvests. Then, there are K + J
epochs beginning at time instant si and of length 𝜏i for i = 1, 2,… ,K + J and s1 = 0,

as shown in Fig. 2.

X X X
s1 s2

h1

e1

Epoch 1

X
Channel gain change
Energy harvest

sK+J

h2

1τ

Epoch 2

2τ
s3

e3

Fig. 2 Events and epochs on the time axis. Events happen at time instants s1, s2, s3,…. At s1,

energy harvesting occurs, i.e., energy of amount e1 > 0 is harvested. At s2, a channel fading event

occurs, i.e., h1 ≠ h2. At s3, an energy harvest e3 > 0 takes place. The time intervals from s1 to s2
and from s2 to s3 are epoch 1 and epoch 2 with length 𝜏1 = s2 − s1 and 𝜏2 = s3 − s2, respectively
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As proved in [8, 46], the optimal transmission power that maximizes the through-

put must be constant in each epoch. Based on this observation, one can formulate

the equivalent optimization problem that finds the per epoch power. For epoch i, the

channel fading level is denoted by hi, the amount of energy harvest by ei, and the

transmission power by pi. Note that ei > 0 for some i if event i is an energy harvest,

while ei = 0 if event i is a change in the fading state. The throughput maximization

problem can thus be equivalently expressed as

max
𝐩≥0

K+J∑

i=1

𝜏i

2
log2(1 + hipi) (9a)

s.t.

n∑

i=1
𝜏ipi ≤

n∑

i=1
ei, n = 1, 2,… ,K + J, (9b)

n∑

i=1
ei −

n∑

i=1
𝜏ipi ≤ Emax, n = 1, 2,… ,K + J, (9c)

where 𝐩 = {p1, p2,… , pK+J} and 𝐩 ≥ 0, i.e., 𝐩 is nonnegative elementwise.

Note that (9) is a strictly convex optimization problem, since the objective func-

tion (9a) is strictly concave, and the feasible region that is restricted by a set of linear

constraints is convex [57]. The Lagrangian is given as

L(𝐩,𝝀, 𝜹, 𝜸) =
K+J∑

i=1

𝜏i

2
log2(1 + hipi) −

K+J∑

n=1
𝜆n

( n∑

i=1
𝜏ipi −

n∑

i=0
ei

)

−
K+J∑

n=1
𝛿n

( n∑

i=1
ei −

n∑

i=1
𝜏ipi − E

max

)
+

K+J∑

n=1
𝛾ipi, (10)

where 𝝀 = {𝜆n}K+J
n=1 , 𝜹 = {𝛿n}K+J

n=1 , and 𝜸 = {𝛾n}K+J
n=1 are sequences of Lagrangian

multipliers that are associated with energy causality constraints in (9b), no-energy-

overflow constraints in (9c), and nonnegative transmission power constraint, respec-

tively. The unique optimal solution satisfies the Karush-Kuhn-Tucker (KKT)

conditions that are

𝜕L
𝜕pi

=
𝜏ihi

(2 ln 2)(1 + hipi)
− 𝜏i

K+J∑

n=i
𝜆n + 𝜏i

K+J∑

n=i
𝛿n + 𝛾i = 0, (11)

n∑

i=1
𝜏ipi −

n∑

i=1
ei ≤ 0, (12)

n∑

i=1
ei −

n∑

i=1
𝜏ipi − Emax ≤ 0, (13)
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pi ≥ 0, (14)

𝜆n, 𝛿n, 𝛾n ≥ 0, (15)

for i = 1, 2,… ,K + J, n = 1, 2,… ,K + J. Equation (11) is the first-order stationar-

ity condition. Equations (12)–(14) give the primal feasibility conditions. Equation

(15) is the dual feasibility condition. Furthermore, the associated complementary

slackness conditions are

𝜆n

( n∑

i=1
𝜏ipi −

n∑

i=1
ei

)
= 0, (16)

𝛿n

( n∑

i=1
ei −

n∑

i=1
𝜏ipi − E

max

)
= 0, (17)

𝛾npn = 0, (18)

for n = 1, 2,… ,K + J. Conforming to (11) and (16)–(18), the optimal transmission

power is given by

p∗
i =

[ 1
(2 ln 2)

∑K+J
n=i (𝜆n − 𝛿n)

− 1
hi

]+
, ∀i, (19)

where [x]+ = max{0, x}. As shown in (19), the optimal power is given in a form of

water-filling solution with water level 𝜇i ≜
1

(2 ln 2)
∑K+J

n=i (𝜆n−𝛿n)
and base level the recip-

rocal channel gain
1
hi

. Formally, the structure of the optimal power allocation is given

by the following theorem.

Theorem 1 ([7, Theorem 1]) When Emax = ∞, the optimal water levels 𝜇

∗
i is a

monotonically increasing sequence: 𝜇

∗
i+1 ≥ 𝜇

∗
i . Moreover, if the energy causality

constraint (9b) holds with inequality for some m, i.e.,
∑m

i=1 𝜏ipi <
∑m

i=1 ei, then
𝜇

∗
m+1 = 𝜇

∗
m.

Proof [7] When Emax = ∞, the no-energy-overflow constraint (9c) always holds

with inequality, which results in 𝛿n = 0, ∀n. Then, the water level is 𝜇

∗
i

= 1
(2 ln 2)

∑K+J
n=i 𝜆n

. Since 𝜆n ≥ 0 for all n, 𝜇
∗
i is a monotonically increasing sequence.

Furthermore, if for some m,
∑m

i=1 𝜏ipi <
∑m

i=1 ei, this implies that 𝜆m = 0 by the

slackness condition in (16). Hence, 𝜇
∗
m+1 = 𝜇

∗
m. In particular, 𝜇

∗
m = 𝜇

∗
n for all epochs

m and n between two consecutive energy arrivals. Since only the changes of channel

fading occur in these epochs, it necessitates (9b) holding with inequality and results

in the equalized water level. ■

Theorem 1 implies that energy is allowed to flow only from present to the future

for optimal energy allocation, i.e., energy can be stored to be expended in the future.

More specifically, (9b) holding with inequality means that the energy is not depleted.
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Energy Allocation
Reciprocal channel gain

x x x x

11/h

p1
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Channel gain change
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Right permeable tap

1τ

e1

Emax

OFF

Emax
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ON
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Emax
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11/h

(a) (b)

Fig. 3 Illustration of the directional water-filling algorithm. The first bin (epoch) has width 𝜏1 and

base level 1∕h1. The permeable walls located at the 4 energy harvesting instants divides the bins

into 4 blocks. The first block has available water (energy) e1. a Water level is equalized between

bins within each block. b Water level is further equalized between blocks. Water (energy) flows

from block 1 to block 2 and from block 3 to block 4, i.e., is stored to be used in the future. The right

permeable taps limit the water (energy) flow up to Emax. The optimal transmission power in epoch

1 is p1

That is, some energy is available, but not used for current epoch, which will be trans-

ferred to future epochs to improve throughput. In this case, the optimal transmis-

sion strategy is to equalize the water level. However, when (9b) holds with equality,

energy is depleted for the current epoch so that no energy is transferred for future

use and the water level must change with an increase.

If Emax is finite, there may not be monotonicity of the water levels when the no-

energy-overflow constraint (9c) holds with equality and the associated Lagrangian

multiplier 𝛿n is nonzero. In fact, the no-energy-overflow constraint restricts the

energy that can be transferred from the current epoch i to future epochs to no larger

than Emax. Thus, the water levels are only equalized to the extent that no-energy-

overflow constraint allows.

The above observation of optimal transmission power allocation can be inter-

preted as directional water-filling algorithm as termed in [7]. That is, the process of

energy allocation is modeled as pouring water into a vessel with a number of bins.

The width of the ith bin is the length of epoch i, 𝜏i, and the base level is the reciprocal

channel gain
1
hi

as shown in Fig. 3. The bins are divided into blocks by permeable

walls at the instants of energy arrivals. Each nonzero energy harvest initializes one

block and becomes the available water (energy) for this block. The optimal energy

allocation policy tends to equalize the water level as much as possible subject to

the energy causality constraints and the no-energy-overflow constraints. The water
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level for the ith bin is
ei

𝜏i
. According to the energy causality constraint, the energy is

transferred only from the past to the future. Correspondingly, the permeable walls

allow water flowing between blocks only from left to right. If the water level of

block k is larger than the water level of block k + 1, the water level tends to be equal-

ized between these two blocks by flowing water to the right. Simultaneously, the

no-energy-overflow constraint imposes an upper bound Emax to the amount of flow-

ing water (transferred energy) from the kth block to the subsequent blocks. This is

indicated in Fig. 3 with taps that control the water flow to the right. Finally, the allo-

cated power pi for epoch i is the height difference between the water level 𝜇i and the

reciprocal channel gain
1
hi

.

The following theorem states that the solutions of the throughput maximization

and transmission completion time minimization problems are closely related.

Theorem 2 ([8, Theorem 2]) For a given energy harvesting scenario in Problems
1 and 2, the two optimization problems yield identical power allocation policies for
given transmission duration of T slots and data B. In other words, if the maximum
throughput power allocation policy for T time slots departs a total B bits, then the
minimum transmission completion time policy for B bits completes the transmission
at slot T, and vice versa.

Proof [8] The Lagrangian dual problem of transmission completion time minimiza-

tion in Problem 2 is formulated as

max
𝜃

{
min
𝐩∈P ,T

T + 𝜃

(
B −

T∑

t=1

L
2
log2(1 + htpt)

)}
, (20)

where 𝜃 is the Lagrangian multiplier associated with the data transmission comple-

tion constraint (7b). P is the feasible region formed by constraints (7c), (7d) and

𝐩 ≥ 0. For each given T , 𝐩 can be solved. Thus, the dual problem can be written as

max
𝜃

{
min

T

{
min
𝐩∈P

T + 𝜃

(
B −

T∑

t=1

L
2
log2(1 + htpt)

)}}
, (21)

which is equivalent to

max
𝜃

{
min

T
T + 𝜃

(
B −

{
max
𝐩∈P

T∑

t=1

L
2
log2(1 + htpt)

})}
. (22)

It can be observed that the optimal transmission power 𝐩∗ for transmission comple-

tion time minimization Problem 2 arises from the solution of the inner throughput

maximization problem which is Problem 1. Since both problems are strictly convex

and each has a unique optimal solution, they have identical optimal power alloca-

tion solution. Thus, the minimum transmission slots T∗
in Problem 2 is the time

constraint T in Problem 1. ■
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By Theorem 2, the transmission completion time minimization Problem 2 can be

solved iteratively by solving the inner throughput maximization problem in (22) for

each given T .

3.2 Online Scheduling

Online scheduling in point-to-point communications develops transmission policies

in terms of energy allocation and data management based on causal information

and statistical knowledge of the system state. Online resource allocation problems

have received significant interest in recent literature [11–13, 58–66]. Online formula-

tions are more suitable for more dynamic energy harvesting scenarios where treating

future energy arrival times and amounts as a random process is more fitting. Below,

we first provide a summary of the different stochastic models and then focus on one

specific model and provide the results to characterize the online power allocation

policy from [63–65].

3.2.1 System Models

In the online setting, a stochastic process that models energy harvesting can be time-

uncorrelated or time-correlated.

In time-uncorrelated models, the channel fading level, the energy harvesting

process, and the data arrival process are typically described as random processes

composed of independent channel changes, energy harvests, and data arrivals in

time, respectively. For instance, in a time-slotted system, the energy arrival in each

time slot can be modeled as an identical and independent distributed (i.i.d.) Bernoulli

process with parameter 𝜌 [63–65]. That is, in each time slot, either energy of amount

e is harvested with probability 𝜌, or no energy is harvested with probability 1 − 𝜌.

In another example [7], the stochastic energy harvesting process is modeled as a

Poisson counting process with rate 𝜆e such that energy is harvested independently at

ti with amount ei, i = 1, 2,… ,∞. By the Poisson property, the energy inter-arrival

time follows exponential distribution with mean 1∕𝜆e.

In time-correlated models, the channel fading level, the energy harvesting process,

and the data arrival process are modeled as a correlated random process. A Markov

decision process (MDP) is widely applied [12, 58–62] to characterize the online

resource allocation. An MDP is used to model a decision making problem for

time-correlated random processes. An MDP is generally defined by the quadruplet

⟨S ,A ,ℙ(𝐬′|𝐬, a),R(𝐬, a)⟩ [61], where S represents the set of system states consisting

of continuous or discrete channel, energy, and data states, A is the set of action,

which could refer to the transmission power or the energy expenditure, ℙ(𝐬′|𝐬, a)
denotes the state transition probability from state 𝐬 to state 𝐬′ given that action a ∈ A
is taken, and R(𝐬, a) is the reward yielded when action a is taken at state 𝐬, which

could be data throughput. An MDP is formulated to maximize the expected reward,
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for instance, the expected throughput, by deriving the optimal policy 𝜋(⋅) ∶ S → A .

MDP problems are generally solved numerically by dynamic programming. How-

ever, as indicated in [65], this approach often requires large computation load, high

dependence on the exact model of the stochastic process of channel fading, energy

harvesting, and data collection, which is hard to obtain in practice, and little insight

into the structure of the resource allocation policy. This makes it less than ideal for

body sensors which have limited computational capabilities.

In the following, we focus on online point-to-point communications with energy

harvesting by employing the time-uncorrelated system model. In particular, the

remainder of Sect. 3.2 summarizes references [63–65].

Consider the transmission of backlogged data from an energy harvesting trans-

mitter to a receiver over an AWGN channel. Just as in Sect. 3.1.1, a discrete-time

system model is used. Assume for simplicity that the duration of each time slot is 1
second. At slot t, the received signal is

yt =
√

hxt + nt, t = 1, 2,… ,T , (23)

where xt is the transmitted signal and nt is the white Gaussian noise with zero mean

and unit variance. h is the channel gain that is assumed to be static throughout the

transmission period of T time slots. The transmitter is equipped with a sufficiently

large data buffer and an energy storage device with finite capacity Emax. DBT data

acquisition model is employed. The energy harvesting process is modeled as an i.i.d.

Bernoulli random process denoted by 𝐞 = {et}T
t=1, where et is the random variable

denoting the energy harvest at time slot t. With the causal knowledge of the energy

harvesting process, the transmitter knows the harvested energy ei for i = 1,… , t.
Energy harvest et is a Bernoulli random variable given as

et =

{
Emax with probability 𝜌,

0 with probability 1 − 𝜌,

t = 1, 2,… ,T , (24)

which means that at each time slot the energy storage device is either fully charged

to Emax or harvesting no energy with probability 𝜌 and 1 − 𝜌, respectively. Let St
denote the available energy beginning at slot t and 𝐩 = {pt}T

t=1 be the transmission

policy throughout T slots, where pt is the transmission power of slot t. The energy

storage state St is given as

St = min{St−1 − pt−1 + et, Emax}, t = 1, 2,… ,T , (25)

where S1 = Emax is assumed without loss of generality. The instantaneous data

rate is

rt =
1
2
log2(1 + hpt), t = 1, 2,… ,T . (26)
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3.2.2 Problem Formulation and Solution

For a transmission period of T time slots, the T-horizon expected throughput is

defined as

T (𝐩) = 1
T

T∑

t=1
𝔼[rt], (27)

where the expectation 𝔼[⋅] is taking on the energy harvest random variables e1,… ,

eT . The aim is to maximize the long-term expected throughput Ψ under energy con-

straints. The problem is formulated as

Problem 4

max
𝐩

Ψ = lim inf
T→∞

T (𝐩) (28a)

s.t. 0 ≤ pt ≤ St, t = 1, 2,… ,T , (28b)

St = min{St−1 − pt−1 + et,Emax}, t = 1, 2,… ,T . (28c)

Recall that an epoch is defined as the inter-arrival time between two consecutive

nonzero energy harvests. It is shown in [63] that the optimal transmission policy

that solves Problem 4 has the same structure in each epoch, thereby, Problem 4 is

equivalent to maximizing the expected number of transmitted bits in each epoch. Let

JT be the number of epochs in T slots. Note that JT is a random variable following

geometric distribution due to the i.i.d. Bernoulli energy harvesting process. By the

strong law of large numbers, it is given that

lim
T→∞

T
JT

= lim
T→∞

T
1

Emax

∑T
t=1 et

=
Emax
𝔼[et]

=
Emax
𝜌Emax

= 1
𝜌

, (29)

almost surely. Let Qj be the number of transmitted bits in epoch j, j = 1,… , JT . The

objective function in Problem 4 can be written as [63]

Ψ = lim inf
T→∞

1
T

T∑

t=1
𝔼[rt] (30)

= lim inf
T→∞

∑JT
j=1 𝔼[Qj]∕JT

T∕JT

= lim inf
T→∞

1
JT

JT∑

j=1
𝜌𝔼[Qj].

Note that T → ∞ implies JT → ∞ almost surely. From (30), it is observed that in

order to maximize the long-term average throughput Ψ, it is sufficient to
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maximize the expected transmitted data in each epoch, i.e., 𝔼[Qj]. Since the energy

storage device is fully charged at the start of each epoch and the channel is static,

the transmission policy that maximizes 𝔼[Qj] also maximizes 𝔼[Qk], k ≠ j. This fact

reveals that the optimal long-term transmission policy that solves Problem 4 con-

sists of an identical optimal epoch transmission policy for each epoch and results in

an identical epoch expected throughput. Denote the epoch transmission policy by

𝐩ep = {pep
1 , p

ep
2 ,…}. Then, the epoch expected throughput 𝔼[Qep] can be explicitly

written as

𝔼[Qep] =
∞∑

n=1

n∑

i=1

1
2
log2(1 + hpep

i )𝜌(1 − 𝜌)n−1 =
∞∑

i=1

1
2
log2(1 + hpep

i )(1 − 𝜌)i−1.

(31)

Consequently, Problem 4 can be transformed to the following epoch expected

throughput maximization problem:

max
𝐩ep

𝔼[Qep] (32a)

s.t. 0 ≤ pep
i , i = 1, 2,… , (32b)

∞∑

i=1
pep

i ≤ Emax, (32c)

where the constraint (32c) is because the consumed energy in each epoch is limited

to the harvested energy Emax at the beginning of the epoch.

It can be seen that (32) is strictly convex. By formulating the Lagrangian and

solving the KKT conditions, the optimal epoch transmission policy is obtained as

pep
i

∗ =

{
(1−𝜌)i−1

(2 ln 2)𝜐
− 1

h
, if 𝜐 ≤

h(1−𝜌)i−1

2 ln 2
0, otherwise,

(33)

where 𝜐 is the nonnegative Lagrangian multiplier associated with constraint (32c).

Note that (1 − 𝜌)i−1 → 0 as i increases, which implies that pep
i

∗
vanishes to zero for

i > M, where M is the smallest integer that satisfies 𝜐 > h(1 − 𝜌)M∕(2 ln 2). By the

optimal transmission power pep
i

∗
, (32c) must hold with equality. Then, 𝜐 can be solved

as

𝜐 = h[1 − (1 − 𝜌)M]
(2 ln 2)𝜌(M + hEmax)

, (34)

where M is the smallest integer that satisfies [𝜌(M + hEmax) + 1](1 − 𝜌)M < 1.

Hence, the optimal epoch transmission policy is given as

pep
i

∗ =

{
1
h

(
M+hEmax
1−(1−𝜌)M

𝜌(1 − 𝜌)i−1 − 1
)
, if 1 ≤ i ≤ M

0, otherwise.

(35)
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Further, the optimal long-term transmission policy can be expressed as [65]

pt
∗ =

{
1
h

(
M+hEmax
1−(1−𝜌)M

𝜌(1 − 𝜌)t−jt − 1
)
, if t − jt ≤ M

0, otherwise,

(36)

where jt is the time slot index of the most recent energy harvest for current slot t.

3.2.3 Resource Allocation Algorithm

This section presents the extension of the above optimal transmission policy of

an i.i.d. Bernoulli energy harvesting process to general i.i.d. energy harvesting

processes summarizing the results in references [64, 65]. In a general i.i.d. energy

harvesting process denoted by 𝐄 = {Et}T
t=1, the energy harvest Et at time slot t for

t = 1, 2,… ,T are assumed to be nonnegative i.i.d. random variables with mean

𝔼[Et] > 0. In the following, a fixed fraction policy and its near-optimality are pre-

sented from [65].

From (36), it can be observed that the optimal transmission policy has an expo-

nentially decaying structure. The following fixed fraction policy is proposed in [65]

by preserving the exponentially decaying structure of the optimal policy:

Π =
{
𝜋t ∶ 𝜋t = 𝜌St, where St = (1 − 𝜌)t−jt Emax, t = 1,… ,T

}
. (37)

More specifically, in each time slot, 𝜌 portion of the residual energy is allocated for

transmission. It is obvious that transmission policy Π satisfies the energy constraints

in (28b) and (28c). Intuitively, this transmission policy is motivated as follows. Since

log(⋅) is concave, the throughput is maximized by uniformly allocating energy. In

other words, if it is known that the available energy is St currently and the next

energy harvest will arrive in m slots, allocating St∕m energy to each slot maximizes

the throughput. For the online setting of a Bernoulli energy harvesting process, the

expected time to the next energy harvest is 1∕𝜌 for each time slot. Thus, 𝜌 portion of

the residual energy is allocated.

In order to characterize the near-optimal property of the fixed fraction policy, the

following proposition is first presented to provide an upper bound on the achievable

throughput.

Proposition 1 ([65, Proposition 2]) The optimal throughput under any i.i.d. har-
vesting process 𝐄 is bounded by

Ψ∗
≤

1
2
log(1 + h𝜇),

where 𝜇 ≜ 𝔼[min{Et,Emax}].
Proof [65] Without loss of generality, the energy harvest variable Et can be replaced

with ̃Et ≜ min{Et,Emax}. This is from the fact that whenever the harvested energy Et
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is larger than Emax, it will clipped to at most Emax due to the limited energy storage

capacity. The average harvested energy is 𝜇 = 𝔼[min{Et,Emax}]. Then, for any T
and any transmission policy 𝐩, the long-term throughput is given as

Ψ = lim inf
T→∞

1
T

T∑

t=1
𝔼
[1
2
log2(1 + hpt)

]

(1)
≤ lim inf

T→∞

1
2
log2

(
1 + h

T
𝔼
[ T∑

t=1
pt
])

(2)
≤ lim inf

T→∞

1
2
log2

(
1 + h

T
𝔼
[
Emax +

T∑

t=2

̃Et
])

= lim inf
T→∞

1
2
log2

(
1 + h

T
Emax + hT − 1

T
𝜇

)

= 1
2
log2(1 + h𝜇)

where (1) is because log is a concave function, and (2) is because the total consumed

energy up to slot T is no larger than the total harvested energy plus the initially

available energy, i.e.,
∑T

t=1 pt ≤ Emax +
∑T

t=2
̃Et. ■

Applying the fixed fraction policy Π to an i.i.d. Bernoulli energy harvesting

process 𝐄 with mean 𝜇 = 𝔼[min{Et,Emax}], the performance can be characterized

as follows.

Proposition 2 ([65, Proposition 3, 4]) For an i.i.d. Bernoulli energy harvesting
process 𝐄 with mean 𝜇 = 𝔼[min{Et,Emax}], the throughput achieved by the trans-
mission policy Π is bounded as

1
2
log(1 + h𝜇) ≥ lim inf

T→∞
T (Π) ≥ 1

2
log(1 + h𝜇) − 0.72,

1
2
log(1 + h𝜇) ≥ lim inf

T→∞
T (Π) ≥ 1

2
⋅
1
2
log(1 + h𝜇).

As proved in [65], applying this transmission policy Π to any i.i.d. processes with

mean 𝜇 = 𝔼[min{Et,Emax}], an i.i.d. Bernoulli harvesting process gives the worst

performance. This results in a lower bound of the throughput for any i.i.d. harvesting

process with mean 𝜇 = 𝔼[min{Et,Emax}], which is the throughput achieved by the

Bernoulli energy harvesting process. The following theorem states the conclusion.

Theorem 3 ([65, Theorem 2]) For any i.i.d. nonnegative energy harvesting process
𝐄 with mean 𝜇 = 𝔼[min{Et,Emax}], the throughput achieved by the transmission
policy Π is bounded as
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1
2
log(1 + h𝜇) ≥ lim inf

T→∞
T (Π) ≥ 1

2
log(1 + h𝜇) − 0.72,

1
2
log(1 + h𝜇) ≥ lim inf

T→∞
T (Π) ≥ 1

2
⋅
1
2
log(1 + h𝜇).

The detailed proofs of Proposition 2 and Theorem 3 can be found in [65].

4 Data and Energy Scheduling in Multi-Node
Communications

In this section, data and energy scheduling in multi-node communication networks

are investigated. In contrast with point-to-point communications, multi-node com-

munications employ more complicated network topologies and present opportuni-

ties for efficient resource utilization by means of cooperation across multiple wire-

less nodes. Here we focus on offline resource allocation design for energy harvest-

ing systems in some canonical models that are building blocks of BANs, namely,

the two-hop channel, the broadcast channel (BC), and the multiple access channel

(MAC).

4.1 Two-Hop Channel

Wireless communications with relays extend communication ranges and lower

energy consumptions by multiple short hops instead of one single long hop [67, 68].

This model is especially fitting for health monitoring BANs where the sensor nodes

are small with limited energy storage and communication range. The challenge of

operating an energy harvesting multi-node network is to coordinate the transmis-

sion and reception of wireless nodes subject to the energy and data causality over

each hop. In this section, we provide the treatment of the two-hop energy harvesting

communications with half-duplex relays summarizing the results of [68]. The struc-

ture of optimal data and energy scheduling in terms of throughput maximization are

discussed.

4.1.1 System Model

Consider transmitting backlogged data from an energy harvesting source (S) to a

destination (D) via an energy harvesting relay (R) in T time slots as shown in Fig. 4.

The relay employs the decode-and-forward as in [68]. There is no direct link between

the source and the destination. The link between the source and the relay and the

link between the relay and the destination are modeled as independent AWGN chan-

nels with channel gain hSR and hRD, respectively, which are assumed to be static for
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Fig. 4 System model of multi-node communications in the two-hop channel. The source and the

relay harvest energy eSt and eRt respectively at time slot t. The source transmits signal xSt over an

AWGN channel with gain hSR and the relay receives signal yRt . A finite data buffer with capacity

Bmax is equipped at the relay. The relay decodes the received signal and forwards it to the destination

by transmitting signal xRt over an AWGN channel with gain hRD. The destination receives signal yDt .

nRt and nDt are the noise at the relay and the destination, respectively

simplicity. Then, in terms of the transmitted signal xSt at the source in time slot t, the

received signals at the relay and the destination are given by

yRt =
√

hSRxSt + nRt , t = 1, 2,… ,T , (38)

yDt =
√

hRDxRt + nDt , t = 1, 2,… ,T , (39)

respectively. nRt and nDt are the additive white Gaussian noise at the relay and the

destination with zero mean and unit variance. The relay first decodes the source

signal xSt based on the received yRt , then forwards it to the destination by transmitting

signal xRt . The source and the relay signals, xSt and xRt , are transmitted with power pS
t

and pR
t , respectively, i.e., |xSt |

2 = pS
t , |xRt |

2 = pR
t .

Assume that the source and the relay are capable to change their transmission data

rate instantaneously by adapting the transmission power. The rate-power function of

the SR link and the RD link at slot t are given by

rSt = 1
2
log2(1 + hSRpS

t ), t = 1, 2,… ,T , (40)

rRt = 1
2
log2(1 + hRDpR

t ), t = 1, 2,… ,T . (41)

DBT data acquisition model with a sufficiently large data buffer is applied at the

source. In particular, the relay is equipped with a finite data buffer with capacity Bmax.

The source and the relay harvest energy independently in the transmission period of

T time slots. Energy of amount eSt and eRt are harvested respectively at the source

and the relay at time slot t. Assume that the energy harvesting profiles are known

to all nodes prior to transmission. Both nodes are assumed to have infinite energy

storage capacity, i.e., Emax = ∞. Energy loss caused by recharging and discharging

is not considered.
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4.1.2 Problem Formulation

The aim is to maximize the data transmitted to the destination in T time slots. An

optimal transmission strategy is desired, by which power allocation and transmission

time scheduling for each node are optimally designed. Note that the optimality of

constant transmission power in epochs holds here, as for the single link point-to-point

transmission, due to the concavity of the rate-power function [68]. In the sequel,

epoch-indexed notation is used for the transmission power and the data rate.

For notation simplification, energy harvests at the source and the relay are com-

bined in a single time series s1, s2,… , sJ by allowing zero energy arrivals to the

source or the relay at some instants when only the other node harvests energy, where

s1 = 0 and J is the total number of energy harvests. Energy of amount eSi and eRi are

harvested respectively at the source and the relay at time instant si, i = 1, 2,… , J.

The inter-arrival time between consecutive energy harvests is denoted by 𝜏i for epoch

i. In each epoch, the half-duplex scheme necessitates the source and the relay to

transmit alternatively. Let lSi and lRi be the transmission durations of the source and

the relay in epoch i with corresponding transmission power pS
i and pR

i , respectively.

Due to the intermittent energy arrivals over time, energy causality constraint has

to be fulfilled by any feasible power allocation policy. Furthermore, data causality

and finite data buffer at the relay have to be taken into account. The data causal-

ity implies that the transmitted data by the relay by a certain time cannot exceed

its received data by that time. The finite data buffer constrains the data buffered at

the relay is no larger than Bmax. Based on these arguments, the transmission power

and duration sequences, 𝐩S = {pS
1 ,… , pS

J}, 𝐩R = {pR
1 ,… , pR

J }, 𝐥S = {lS1 ,… , lSJ}, and

𝐥R = {lR1 ,… , lRJ } are optimized by solving the following throughput maximization

problem as was done in [68].

Problem 5

max
𝐩S,𝐩R,𝐥S,𝐥R

J∑

i=1

lRi
2
log2(1 + hRDpR

i ) (42a)

s.t.

n∑

i=1
lRi pR

i ≤

n∑

i=1
eRi , n = 1, 2,… , J, (42b)

n∑

i=1
lSi pS

i ≤

n∑

i=1
eSi , n = 1, 2,… , J, (42c)

n∑

i=1
lRi rRi ≤

n∑

i=1
lSi rSi , n = 1, 2,… , J, (42d)

n∑

i=1
lSi rSi ≤

n∑

i=1
lRi rRi + Bmax, n = 1, 2,… , J, (42e)

lSi + lRi ≤ 𝜏i, i = 1, 2,… , J, (42f)

pS
i , pR

i , lSi , lRi ≥ 0, i = 1, 2,… , J. (42g)
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Constraints (42b) and (42c) state the energy causality at the relay and the source,

respectively. Constraints (42d) expressed the data causality and constraint (42e) is

due to the finite data buffer at the relay. Constraint (42f) describes the half-duplex

relaying scheme.

4.1.3 Resource Allocation Algorithm

Problem 5 as it is stated is not convex. However, it can be expressed in a form that

is convex in its variables [68]. To do so, first, note that the transmitted bits by the

source and the relay in epoch i are given by

dS
i =

lSi
2
log2(1 + hSRpS

i ), (43)

dR
i =

lRi
2
log2(1 + hRDpR

i ). (44)

Then, the transmission power can be expressed as

pS
i = 1

hSR
(

e(2 ln 2)dS
i ∕lSi − 1

)
, (45)

pR
i = 1

hRD
(

e(2 ln 2)dR
i ∕lRi − 1

)
. (46)

To obtain a convex formulation, the problem is rewritten in terms of 𝐝S = {dS
1 ,… ,

dS
J }, 𝐝R = {dR

1 ,… , dR
J }, 𝐥S, and 𝐥R, which is given as

max
𝐝S,𝐝R,𝐥S,𝐥R

J∑

i=1
dR

i (47a)

s.t.

n∑

i=1

lRi
hRD

(
e(2 ln 2)dR

i ∕lRi − 1
)
≤

n∑

i=1
eRi , n = 1, 2,… , J, (47b)

n∑

i=1

lSi
hSR

(
e(2 ln 2)dS

i ∕lSi − 1
)
≤

n∑

i=1
eSi , n = 1, 2,… , J, (47c)

n∑

i=1
dR

i ≤

n∑

i=1
dS

i , n = 1, 2,… , J, (47d)

n∑

i=1
dS

i ≤

n∑

i=1
dR

i + Bmax, n = 1, 2,… , J, (47e)

lSi + lRi ≤ 𝜏i, i = 1, 2,… , J, (47f)

dS
i , dR

i , lSi , lRi ≥ 0, i = 1, 2,… , J. (47g)
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Note that lRi e(2 ln 2)dR
i ∕lRi is the perspective of the convex function e(2 ln 2)dR

i , thus, it

is a convex function of lRi and dR
i [57]. Similarly, lSi e(2 ln 2)dS

i ∕lSi is a convex function

jointly of lSi and dS
i . This makes the reformulated problem convex so that a solution

can be identified. By taking derivatives of the Lagrangian with respect to dR
i and dS

i
and setting them to zero, and further exploiting the rate-power function, the optimal

transmission power for the source and the relay are expressed as

pS
i
∗ =

[∑J
n=i 𝜃3,n −

∑J
n=i 𝜃4,n

(2 ln 2)
∑J

n=i 𝜃2,n

− 1
hSR

]+
, ∀i, (48)

pR
i
∗ =

[1 −
∑J

n=i 𝜃3,n +
∑J

n=i 𝜃4,n

(2 ln 2)
∑J

n=i 𝜃1,n

− 1
hRD

]+
, ∀i, (49)

respectively. 𝜃k,i for k = 1,… , 4 are the nonnegative Lagrangian multipliers corre-

sponding to constraints (47b)–(47e). Based on the associated complementary slack-

ness conditions, the following lemmas that state the properties of the optimal trans-

mission policy can be proved.

Lemma 1 ([68, Lemma 4]) Whenever pR
i
∗ strictly increases from epoch i to i + 1,

either the energy storage or the data buffer of the relay must be depleted at si+1. And
whenever pR

i
∗ strictly decreases from epoch i to i + 1, the data buffer of the relay

must be full at si+1.

Proof [68] From the complementary slackness condition, it is argued that whenever

𝜃1,i > 0, constraint (47b) must hold with equality, i.e., the energy storage of the relay

must be depleted at time instant si+1, and whenever 𝜃3,i > 0, constraint (47d) must

hold with equality, which implies the depletion of the data buffer at si+1. From (49),

pR
i
∗
< pR

i+1
∗

results in either 𝜃1,i > 0 or 𝜃3,i > 0 or both. Similarly, by the complemen-

tary slackness conditions, whenever 𝜃4,i > 0, constraint (47e) must hold with equal-

ity, i.e., the relay’s data buffer must be full at si+1. From (49), pR
i
∗
> pR

i+1
∗

implies

𝜃4,i > 0. Therefore, the lemma is proved. ■

Lemma 2 ([68, Lemma 5]) The optimal transmission power of the source is non-
decreasing. Whenever pS

i
∗ strictly increases form epoch i to i + 1, either the energy

storage of the source must be depleted or the data buffer of the relay must be full,
or both the energy storage of the source and the data buffer of the relay must be
depleted at si+1.

Proof [68] By the complementary slackness condition, 𝜃2,i > 0 implies the energy

storage of the source must be depleted at si+1. Similarly, 𝜃3,i > 0 results that the data

buffer at the relay must be depleted at si+1, and 𝜃4,i > 0 results that the data buffer at

the relay must be full at si+1. Now different possible cases are investigated for 𝜃2,i,

𝜃3,i, and 𝜃4,i, in which (𝜃2,i = 0, 𝜃3,i > 0, 𝜃4,i > 0) and (𝜃2,i > 0, 𝜃3,i > 0, 𝜃4,i > 0) can

never happen as the data buffer cannot be empty and full at the same time.
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(i) For the case of (𝜃2,i = 0, 𝜃3,i = 0, 𝜃4,i = 0), from (48), pS
i
∗ = pS

i+1
∗
.

(ii) For the cases of (𝜃2,i > 0, 𝜃3,i = 0, 𝜃4,i = 0), (𝜃2,i = 0, 𝜃3,i = 0, 𝜃4,i > 0), and

(𝜃2,i > 0, 𝜃3,i = 0, 𝜃4,i > 0), it is obtained pS
i
∗
< pS

i+1
∗
.

(iii) For the cases of (𝜃2,i > 0, 𝜃3,i > 0, 𝜃4,i = 0) and (𝜃2,i = 0, 𝜃3,i > 0, 𝜃4,i = 0), it is

argued by contradiction that pS
i
∗
≤ pS

i+1
∗
. Suppose pS

i
∗
> pS

i+1
∗
. A new trans-

mission policy p̄S
i , p̄

S
i+1 can be obtained by equalizing the transmission power,

i.e., p̄S
i = p̄S

i+1 =
lipSi

∗+li+1pSi+1
∗

li+li+1
, such that same energy is consumed but more data

is sent to the relay because of the concavity of the rate-power function. Based

on this observation, another feasible policy can be deduced by decreasing the

transmission duration of the source and increasing the transmission duration of

the relay such that the extra data sent to the relay can be forwarded to the desti-

nation, in which way the total throughput is improved. Thus, the transmission

policy with pS
i
∗
> pS

i+1
∗

cannot be optimal.

■

It is shown in [68] that one can schedule the transmission between the source and

the relay within the feasible region. In each epoch, the source transmits until the data

buffer of the relay is full, or it approaches the optimal transmission duration, then the

relay starts transmitting until all data queuing in the buffer is departed, or it reaches

its optimal transmission duration in the current epoch [68].

4.2 Broadcast Channel

In a broadcast setting, data transmission occurs within T time slots from an energy

harvesting transmitter to two receivers as shown in Fig. 5. This setting is considered

in reference [68] whose results we summarize in this section. The scenario with more

than 2 receivers can be extended to as indicated in [69, 70]. The backlogged data is

buffered in a sufficiently large data buffer at the transmitter ready before transmis-

sion, i.e., DBT data acquisition model. Energy is harvested to maintain the operation

at the transmitter, where, like the other models we have described so far, energy con-

sumption only on transmission is taken into account. Assume that the transmitter has

infinite energy storage capacity.
1

Energy of amount et is harvested by the transmitter

at time slot t. The link between the transmitter and receiver k, k = 1, 2, is modeled

as an AWGN channel with static channel gain hBCk . At time slot t, the received signal

is

yk,t =
√

hBCk xt + nk,t, k = 1, 2, t = 1,… ,T , (50)

where xt is the transmit signal and nk,t is the white Gaussian noise at receiver k with

zero mean and unit variance. Without loss of generality, assume that hBC1 ≥ hBC2 ,

1
Finite storage capacity extension has been studied in [70].
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Fig. 5 System model of multi-node communications in the broadcast channel. The transmitter

harvests energy et at time slot t. It transmits signal xt simultaneously to receiver 1 and receiver

2 over two different AWGN channels with gain hBC1 and hBC2 , respectively. Receiver 1 receives

signal y1,t and receiver 2 receives signal y2,t. n1,t and n2,t are the noise at receiver 1 and receiver 2,

respectively

thus, receiver 1 has a stronger channel than receiver 2. The capacity region for this

two-user broadcast channel is given by [71]

rBC1,t ≤
1
2
log2

(
1 + 𝜂hBC1 pt

)
, t = 1,… ,T , (51)

rBC2,t ≤
1
2
log2

(
1 +

(1 − 𝜂)hBC2 pt

𝜂hBC2 pt + 1

)
, t = 1,… ,T , (52)

where pt is the transmission power for signal xt and 𝜂 ∈ (0, 1) represents the power

sharing parameter denoting that 𝜂 portion of the transmission power is dedicated to

receiver 1. With respect to the rate pair (rBC1,t , r
BC
2,t ) on the boundary of the capacity

region, the transmission power pt can be expressed as a function of rBC1,t and rBC2,t given

as

pt = f (rBC1,t , r
BC
2,t ) =

( 1
hBC2

− 1
hBC1

)
22rBC2,t + 1

hBC1
22(r

BC
1,t +rBC2,t ) − 1

hBC2
. (53)

Note that pt is convex with respect to rBC1,t and rBC2,t .

The aim is to maximize the sum number of bits transmitted to the two receivers

within T time slots. An optimal transmission policy that maximizes the sum channel

throughput in a period of T time slots is desired. Once again, by the optimality of

constant transmission power in epochs [68], policies with epoch-indexed transmis-

sion power pi and corresponding rate rBCk,i for k = 1, 2, i = 1, 2,… , J are considered.

J is the number of energy harvests, thus, the number of epochs. Denote the length of

epoch i by 𝜏i. Energy harvests occur at time instants si with amount ei, i = 1, 2,… , J.

Now the sum throughput maximization problem subject to the energy causality con-

straint is formulated as follows.
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Problem 6

max
𝐫BC1 ,𝐫BC2 ,𝐩1,𝐩2

J∑

i=1
𝜏i(rBC1,i + rBC2,i ) (54a)

s.t.

n∑

i=1
𝜏if (rBC1,i , r

BC
2,i ) ≤

n∑

i=1
ei, n = 1, 2,… , J, (54b)

rBC1,i ≥ 0, i = 1, 2,… , J, (54c)

rBC2,i ≥ 0, i = 1, 2,… , J. (54d)

Here the maximization is over 𝐫BCk = {rBCk,1 ,… , rBCk,J } and 𝐩k = {pk,1,… , pk,J}, k =
1, 2. Since f (rBC1,i , r

BC
2,i ) is a convex function with respect to rBC1,i and rBC2,i , Problem 6 is

convex. Then, by formulating the Lagrangian, equating its derivatives with respect

to rBC1,i and rBC2,i to zero, and exploiting the relationship between pi and rBCk,i , k = 1, 2,

in (53), it is obtained that

pi =
1 + 𝛽3,i∕𝜏i

(2 ln 2)
∑J

n=i 𝛽1,n

− 1
hBC2

, ∀i, (55)

where 𝛽1,n, 𝛽2,i, and 𝛽3,i are the Lagrangian multipliers with respect to constraints

(54b)–(54d), respectively. Since 0 < 𝜂 < 1 and pi > 0must hold, rBCk,i > 0, k = 1, 2, is

always true. Then, 𝛽3,i must be zero to satisfy the complementary slackness condition

𝛽3,irBC2,i = 0. Hence, the optimal transmission power is given as

pi
∗ = 1

(2 ln 2)
∑J

n=i 𝛽1,n

− 1
hBC2

, ∀i. (56)

The optimal transmission power pi
∗

has the same form as the single user transmis-

sion power in Sect. 3.1.3. Thus, it can be solved by directional water-filling algo-

rithm in Sect. 3.1.3 and preserving the monotonically increasing property stated in

Theorem 1.

4.3 Multiple Access Channel

In this section, data transmission is considered within T time slots from two energy

harvesting transmitters to one receiver over a multiple access channel as shown in

Fig. 6, and results from [68, 72] are summarized. DBT data acquisition model with

a sufficiently large data buffer is applied at the transmitters. Two transmitters harvest

energy independently during the transmission period of T slots with infinite energy

storage devices. Similar notation of energy arrivals as in Sect. 4.1.1 is applied, that
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MAC
1h

Receiver

MAC
2h

Energy storage 

Transmitter 2

Data buffer

Energy storage 

Transmitter 1 

Data buffer

e1,t x1,t

e2,t x2,t

yt

nt

Fig. 6 System model of multi-node communications in the multiple access channel. Transmitter

1 harvests energy e1,t at time slot t and transmits signal x1,t over an AWGN channel with gain hMAC
1 .

Simultaneously, transmitter 2 harvests energy e2,t and transmits signal x2,t over an AWGN channel

with gain hMAC
2 . The receiver receives signal yt. nt is the noise at the receiver

is, the energy arrival instants are combined in a single sequence allowing zero energy

harvests for some instants when only one of the transmitters has energy arrival.

Energy of amount ek,t is harvested by transmitter k at time slot t.
The backlogged data at the transmitters is sent to the receiver. The links from

transmitter 1 and transmitter 2 to the receiver are modeled as AWGN channels with

static channel gain hMAC
1 and hMAC

2 , respectively. Then, the received signal at the

receiver in slot t is given as

yt =
√

hMAC
1 x1,t +

√
hMAC
2 x2,t + nt, t = 1,… ,T , (57)

where xk,t is the signal sent by transmitter k and nt is the white Gaussian noise with

zero-mean and unit-variance. Denote the transmission power for xk,t by pk,t. The

capacity region for this two-user multiple access channel is [71]

rMAC
1,t ≤

1
2
log2(1 + hMAC

1 p1,t), t = 1,… ,T , (58)

rMAC
2,t ≤

1
2
log2(1 + hMAC

2 p2,t), t = 1,… ,T , (59)

rMAC
1,t + rMAC

2,t ≤
1
2
log2(1 + hMAC

1 p1,t + hMAC
2 p2,t), t = 1,… ,T , (60)
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where rMAC
1,t and rMAC

2,t are the data rates on the two links.

By the optimality of constant transmission power in epochs [68], the aim is to

find the transmission power pk,i and rate rMAC
k,i for transmitter k in the ith epoch for

i = 1, 2,… , J, where J is the number of energy harvests, thus, the number of epochs.

The length of epoch i is denoted by 𝜏i. At time instant si, energy of amount ei is

harvested, i = 1, 2,… , J. The throughput maximization problem under the energy

causality constraint and the MAC capacity region constraint is formulated as [68]

Problem 7

max
𝐫MAC
1 ,𝐫MAC

2 ,𝐩1,𝐩2

J∑

i=1
𝜏i(rMAC

1,i + rMAC
2,i ) (61a)

s.t.

n∑

i=1
𝜏ipk,i ≤

n∑

i=1
ek,i, k = 1, 2, n = 1, 2,… , J, (61b)

rMAC
1,i ≤

1
2
log2(1 + hMAC

1 p1,i), i = 1, 2,… , J, (61c)

rMAC
2,i ≤

1
2
log2(1 + hMAC

2 p2,i), i = 1, 2,… , J, (61d)

rMAC
1,i + rMAC

2,i ≤
1
2
log2(1 + hMAC

1 p1,i + hMAC
2 p2,i), i = 1, 2,… , J,

(61e)

rMAC
k,i ≥ 0, k = 1, 2, i = 1, 2,… , J, (61f)

pk,i ≥ 0, k = 1, 2, i = 1, 2,… , J, (61g)

where 𝐫MAC
k = {rMAC

1,1 ,… , rMAC
1,J } and 𝐩k = {pk,1,… , pk,J} for k = 1, 2. Note that

Problem 7 is convex. Therefore, the optimal solution can be attained by considering

its Lagrangian and KKT conditions. Formulating the Lagrangian L with multipli-

ers 𝜔k,n, 𝜅1,i, 𝜅2,i, 𝜅3,i, 𝜉k,i and 𝜙k,i associated with constraints (61b)–(61g), taking

derivatives with respect to each optimization variable and setting them to zero, it is

obtained that [68]

𝜕L
𝜕rMAC

1,i

= 𝜏i − 𝜅1,i − 𝜅3,i + 𝜉1,i = 0, (62)

𝜕L
𝜕rMAC

2,i

= 𝜏i − 𝜅2,i − 𝜅3,i + 𝜉2,i = 0, (63)

𝜕L
𝜕p1,i

= −𝜏i

J∑

n=i
𝜔1,n +

𝜅1,ihMAC
1

(2 ln 2)(1 + hMAC
1 p1,i)

+
𝜅3,ihMAC

1

(2 ln 2)(1 + hMAC
1 p1,i + hMAC

2 p2,i)
+ 𝜙1,i = 0,

(64)

𝜕L
𝜕p2,i

= −𝜏i

J∑

n=i
𝜔2,n +

𝜅2,ihMAC
2

(2 ln 2)(1 + hMAC
2 p2,i)

+
𝜅3,ihMAC

2

(2 ln 2)(1 + hMAC
1 p1,i + hMAC

2 p2,i)
+ 𝜙2,i = 0.

(65)
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Without loss of generality, both transmitters are delivering data to the the receiver

such that rMAC
k,i > 0 and pk,i > 0 for k = 1, 2. Thus, 𝜉k,i = 0 and 𝜙k,i = 0, k = 1, 2,

must hold to satisfy the associated complementary slackness conditions. By (62) and

(63), 𝜅1,i = 𝜅2,i for ∀i. Due to the MAC capacity region constraints in (61c)–(61e),

(61c) and (61d) cannot hold with equality simultaneously. This implies that 𝜅1,i =
𝜅2,i = 0 must hold to satisfy the corresponding complementary slackness conditions.

As a result, the optimal transmission power can be expressed as follows [68].

p1,i
∗ =

[ 1
(2 ln 2)

∑J
n=i 𝜔1,n

−
hMAC
2

hMAC
1

p2,i
∗ − 1

hMAC
1

]+
, ∀i, (66)

p2,i
∗ =

[ 1
(2 ln 2)

∑J
n=i 𝜔2,n

−
hMAC
1

hMAC
2

p1,i
∗ − 1

hMAC
2

]+
, ∀i. (67)

5 Conclusion

In this chapter, we studied resource allocation in BANs with energy harvesting. Mul-

tiple viable energy sources for BANs and the corresponding energy harvesting tech-

niques were introduced. Apart from conventional energy sources like photovoltaic,

thermoelectric, and electromagnetic energy harvesting applicable to BANs, we also

discussed the human-powered energy sources like kinetic and biochemical energy

harvesting.

In order to efficiently allocate the harvested energy from these potential sources,

optimal resource allocation policies have been studied in the literature in terms of

energy and data scheduling in both point-to-point and multi-node energy harvesting

communications. We have provided a detailed review of these recent developments.

The point-to-point transmission is the most common form of transmitting health

monitoring data from the wearable or implantable sensors to the gateway device.

We have provided the problem formulations and solutions in both offline and online

settings of energy and data scheduling in detail for different performance metrics.

In the offline setting, the full knowledge of the channel state and energy harvest-

ing profile is utilized to optimally allocate the limited harvested energy. This ide-

alized setting is applicable to BANs with predictable energy harvesting sources, for

instance, solar. Its system performance serves as a benchmark for the online settings.

On the other hand, more dynamic energy harvesting process such as kinetic energy

harvesting is difficult to precisely predict. For such scenarios, the online setting can

be applied to solve resource allocation in BANs when only causal knowledge and

the statistics of the energy harvesting process are available. Online resource alloca-

tion can be employed to facilitate real-time health monitoring data transmission in

an energy-efficient manner.

We have also reviewed multi-node communications with energy harvesting for

large-scale BANs that employs complicated network structures. Optimal offline
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strategies for data transmission between energy harvesting nodes have been stud-

ied for the two-hop channel, the broadcast channel, and the multiple access channel.

As building blocks of large-scale BANs, resource allocation problems addressed in

these canonical models shed some light on the overall energy-efficient system design.

Health monitoring sensors, in particular implantable sensors, are small in size

and may have very limited computational capabilities. Thus, it may be necessary to

look for near-optimal policies with very low computational complexity in practice.

The optimal energy allocation policies discussed in this chapter can be viewed as

performance benchmarks for such applications.
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Medical-QoS Based Telemedicine Service
Selection Using Analytic Hierarchy
Process

Ali Hassan Sodhro, Faisal K. Shaikh, Sandeep Pirbhulal,
Mir Muhammad Lodro and Madad Ali Shah

Abstract An emerging breakthrough paradigm shift in health industry and wear-
able devices, large scale and distributed mobile cloud computing technologies have
led to new opportunities for medical healthcare systems. Telemedicine service
selection and management of Medical-Quality of Service (m-QoS) in large-scale
and distributed medical health system (e.g. medical data centers, hospitals, medical
servers and medical clouds, etc.) is a key challenge for both industry and academia.
The aim of this chapter is to improve and manage m-QoS by prioritizing Tele-
medicine service by using decisive and intelligent tool called Analytic Hierarchy
Process (AHP). This service will be provided on urgency basis from the pool of
medical services with the help of AHP. In this connection, four telemedicine ser-
vices are considered i.e. Tele-surgery, Tele-Consultation, Tele-Education and
Tele-Monitoring. In this research, three m-QoS parameters are considered i.e.
throughput, jitter and delay. These services are evaluated by potential doctors and
patients. We propose an AHP based decision making algorithm for selecting urgent
and important service for the fast and cost-effective treatment of the emergency
patients at the remote location in the hospital, because AHP is the significantly fast
decision making technique used to assess, select and manage the emergency ser-
vices at various priority levels in large scale and distributed medical health systems.

A.H. Sodhro (✉) ⋅ M.M. Lodro ⋅ M.A. Shah
Sukkur Institute of Business Administration, Sukkur, Sindh, Pakistan
e-mail: ali.hassan@iba-suk.edu.pk

M.M. Lodro
e-mail: mir.lodro@iba-suk.edu.pk

M.A. Shah
e-mail: madad@iba-suk.edu.pk

F.K. Shaikh
Mehran University of Engineering and Technology, Jamshoro, Sindh, Pakistan
e-mail: faisal.shaikh@faculty.muet.edu.pk

S. Pirbhulal
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China
e-mail: sandeep@siat.ac.cn

© Springer International Publishing AG 2017
S.U. Khan et al. (eds.), Handbook of Large-Scale Distributed Computing
in Smart Healthcare, Scalable Computing and Communications,
DOI 10.1007/978-3-319-58280-1_21

589



The comprehensive purpose is indicated in the first level of the strategy. The
decisive entities are presented in the intermediate level and the target-based alter-
natives are located at the lowest level. MATLAB is used for experimental results to
measure and evaluate goal, decision making parameters and options from both
qualitative and quantitative aspect. The proposed AHP algorithm is simulated for
three decision parameters and four different Telemedicine services in which highest
priority is given to decision parameter, throughput and Telemedicine service,
Tele-Surgery for large scale and distributed medical health systems.

Keywords Medical-QoS ⋅ Telemedicine ⋅ Analytic hierarchy process

Main Goals of this Chapter

The main goal of this chapter is to manage medical Quality of Service (m-QoS) by
selecting Telemedicine service from the pool of medical services on the priority and
urgency basis for emergency patients at remote location in the hospital on the basis
of three decision parameters such as, throughput, delay and jitter with the help of
decision making mathematical tool known as AHP. Moreover, we construct a
hierarchy of Telemedicine service selection problem by dividing that into three
levels. In Level1 there is an objective, Level2 shows decision parameters or criteria
and Level3 contains Telemedicine services or alternatives. An AHP pair-wise
comparison matrix is constructed then weights and composite weights of Level2
and Level3 elements are calculated. However, the quality and quantity of multiple
entities such as, objective, decision parameters and alternatives is determined and
measured with the help of AHP. The algorithm is simulated for three decision
parameters and four different Telemedicine services in which highest priority is
given to decision parameter Throughput and Telemedicine service Tele-Surgery
respectively. In near future, we intend to optimize the m-QoS.

Contribution of this Chapter

The main contribution of this chapter is that we propose an AHP based algorithm in
order to manage m-QoS based on Telemedicine service selection, evaluation, and
assessment on the priority and urgency basis by randomly selecting three decision
parameters such as, throughput, delay and jitter, to provide cost-effective and
quality life to emergency patients at remote location in the hospital.

1 Introduction

Conventional healthcare services have seamlessly been integrated with pervasive
computing paradigm and consequently cost-effective and dependable smart
healthcare services and systems have emerged. Currently, the smart healthcare
systems use joint Telemedicine and Wireless Body Sensor Networks (WBSNs) and
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wearable devices for ubiquitous health monitoring and Ambient Assisted Living.
For better Telemedicine service selection and m-QoS measurement a large scale
and emerging breakthrough in wearable devices, large scale and distributed mobile
cloud computing technologies plays an important role. The Telemedicine system
uses smart-phones and several handheld devices to ensure ubiquitous access to the
healthcare information and services. However, due to the intrinsic architectural
limitations in terms of CPU speed, storage, and memory, the mobile and other
computing devices seem inadequate to handle huge volumes of medical data being
generated unceasingly. In addition, the sensor data is highly complex and
multi-dimensional. Therefore, integrating the Telemedicine with large-scale and
distributed computing paradigms, such as the cloud, cluster, and grid computing is
inevitable to handle the processing and storage needs to select Telemedicine ser-
vices and measuring m-QoS.

Moreover, the contemporary research efforts mostly focus on health information
delivery methods to ensure the information exchange within a Telemedicine service
selection. Consequently, the efforts have been very limited in interconnecting
several Telemedicine services remotely through the servers. This chapter aims to
concentrate the myriad research efforts appropriate to the large-scale distributed
computing, smart healthcare systems, Telemedicine service selection and m-QoS
measurement for healthcare.

Medical-Quality of Service (m-QoS) is relatively different from conventional
wireless QoS in terms of desired needs of the medical healthcare society. The main
quality evaluation ingredients for Telemedicine are the throughput, delay, and,
packet loss ratio, etc. In addition Telemedicine is integrated with multiple emerging
and state-of-the art technologies to facilitate users at cost-effective level. Tele-
medicine applications are categorized in large scale such as; surgery, consultation,
education and training and homecare etc. So, in order to choose and decide about
best one requires intelligent and effective decision making tool. In this regard AHP
is considered as a prominent and decisive technique to establish trade-off between
cost and benefits of the medical service. One of the pioneers and founders of AHP
proposal is T.L. Saaty. It is observed that AHP gives an impressive results and
structured approach to obtain individual weights of various attributes of a service so
that they can be compared in an easy and simple way then simplify decision making
in the selection process.

Moreover, AHP is a mathematical method and decision making tool that dis-
solves and synthesis a complex problem into a simple and understandable one with
unique and best decision strategy. In addition, the decision parameters and per-
formance indicators with inter-relationship between them at different levels to
present big picture of AHP is shown in Fig. 1. The relative values of service factors
and sub-factors with respect to their parents are approximated with the help of
matched comparison results according to the perception, knowledge and experience
of users. The compared results within each parent are shown in a matrix, and then
changed into a ratio scale by calculating the eigenvector of the matrix. The AHP
intelligently decides on the basis of ranking and ratio scale of elements and to be
integrated with other different methods e.g., linear programming, artificial
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intelligence and quality function deployment etc. This enables physicians and
patients to get facility from all the integrated techniques and thus to be aware about
the targeted outcome on time. There has not been much work done on m-QoS
management with the help of AHP by considering and prioritizing Telemedicine
services on the basis of urgency and emergency.

Many previous researches show that, large scale and distributed computing plays
an important role in massive medical data monitoring and management but do not
discuss the relationship of Telemedicine service selection, m-QoS and large scale
and distributed computing, that combination presents vital role in medical health
and provides many benefits to the patients and physicians as compared to traditional
medical care.

Althebyan et al. [1], develop the clod based medical health platform for large
scale and distributed telemedicine system. Trobec et al. [2], propose energy-efficient
algorithm for the large scale and distributed computing system to monitor the
patient’s health. Chung et al. [3], present large scale and distributed computing
scenario for the telemedicine system. Krivitski et al. [4], develop an algorithm for
dealing with large scale and distributed system for medical health monitoring. Von
Wangenheim et al. [5], design the medical image based large scale telemedicine
networks for medical health monitoring. Kovendhan et al. [6], propose a distributed
file transfer system for the large scale Telemedicine system.

Fouad [7], propose a joint framework of WBSN and Telemedicine system for
health monitoring from physician and patient-centric point of view. Kailasam et al.
[8], present a typical telemedicine system for providing cost-effective and easy
healthcare services in rural areas of developing countries with clear and big picture.
However, in developing nations like Pakistan where majority live in remote areas,
and it is hard to provide easy access and medical to emergency patients. In this
regard, large-scale and web-based telemedicine set-up is considered as viable option
to effectively entertain many users (i.e. patients and doctors) and whole population
from available health centers and medical operation theaters. Hsieh et al. [9],
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develop a 12 lead ECG based medical health monitoring system which improve
m-QoS and efficiency, especially for patients in rural areas. Topacan et al. [10],
present AHP in health service. Sharna et al. [11] and Tawil et al. [12] examine
performance of vertical handoff algorithms by differentiating QoS parameters using
AHP. Yeh et al. [13] discuss device selection for Telemedicine system. Alharthi
et al. [14] present AHP based method to rank different factors for pharmacy system.
Ajami et al. [15] design AHP-based approach for evaluating records of medical
departments. Sri Kavya [16], present how to select suitable wireless technology for
rural areas. Schiltz [17] analyse the e-health system from the business perspective
using AHP. Gao [18] discuss the AHP-based web service selection method.
Mirchandani [19] present the energy management technique for LTE system using
AHP. Al-Qurishi [20] present cloud based eHealth framework using AHP. Gülçin
[21] design fuzzy-AHP based strategy for analyzing healthcare service. Pecchia
[22] examine the physician’s assessment in healthcare using AHP. Oltés [23]
compare the functionality of healthcare systems based on AHP. Fengou [24],
present AHP-based approach for group profile creation in ubiquitous healthcare.

Saaty [25] develop AHP based decision making technique for leaders. Fortino
et al. [26], propose framework for medical health applications, body sensor net-
works for focusing on the main health problems. Ghasemzadeh et al. [27], develop
human activity monitoring using wearable devices for large scale health monitoring
system. Fortino et al. [28], discuss the blood pressure measurement techniques for
the healthcare monitoring system. Grayina et al. [29, 30], develop sensor fusion
mechanism and cardiac system for large scale BSNs. Galzarno et al. [31], present a
large scale wearable computing networks for medical applications, but they did not
consider the analytic hierarchy mechanism for Telemedicine services. Smart et al.
[32], design central channel shifting strategy for ad hoc networks. Fortino et al. [33,
34], discuss the IoT and programming based management systems for the health-
care applications, but AHP is not considered in their approach.

None of the existing works have focused on m-QoS management based on
Telemedicine service selection. Also no one discussed about the selection of critical
Telemedicine service from the pool of medical services on urgency and priority
basis with the help of AHP. To the best of knowledge our work is the first step to
achieve this goal.

The main contribution of this research is that we manage m-QoS based on
Telemedicine service selection, evaluation, and assessment on the priority and
urgency basis by randomly selecting three decision parameters to provide
cost-effective and quality life to patients.

The rest of the chapter is organized as follows; Sect. 2 discusses AHP in detail,
Sect. 3 describes AHP algorithm, Sect. 4 develops Telemedicine service selection
procedure. Section 5 presents results and chapter is concluded in Sect. 6.

AHP strategically lay-outs a problem into various distinct levels. In addition, it is
a structural procedure of modeling the decision at hand and consists of overall
target or goal, several options for reducing the objective, and a decision making
parameters that relate the alternatives to the goal as shown in the Fig. 1.
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2 Analytic Hierarchy Process

A decision making tool named AHP is considered as a viable approach for several
areas such as, medical health, education, and industry etc. The ultimate aim is in the
top-most priority level, whereas, decision making entities are placed in the
middle-level and options are kept in the last/final level.

An AHP has particular applications in decision making and is used in various
fields such as government, business, industry, healthcare and education etc. The
overall objective is the first level of the hierarchy. The decision parameters are
presented in the intermediate level and the alternatives are located at the lowest
level. For instance, a group of physicians and patients choose desired service among
the given pool of Telemedicine services. The performance indicators are through-
put, delay and jitter. The Fig. 2 presents the step-by-step service selection proce-
dure. In second step the main goals are compared with each other to determine
relative importance according to Table 1. The numbers 1, 3, 5, 7 and 9 are used to
show equal, moderate, strong, very strong and extreme levels respectively. While 2,
4, 6 and 8 shows the compromise between above values. The smaller one in a pair
is selected as a unit and larger one is estimated as a multiple of that unit. Similarly,
the complenteries of these numbers represent the inverted comparison results. In the
last step, the composite weights of the all decision parameters are obtained by
computing the values of AHP matrix. For instance, we fixed throughput to 1 and
vary delay from 1 to 9. i.e. 1_1 shows that throughput and delay are equally
important to the target and 1_2 shows that throughput have two times more priority
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than delay. Hence, 1_1–1_9 scale show different weight levels for decision making
entities and available services as given in Table 1.

Suppose, that n components to be compared, from these a1, . . . , an denote
relative significance of ai with respect to aj by aij and form a square matrix
M = ðaijÞ of order n with the constraints that aij=1 ̸aji, for i≠ j, and aii=1, such a
matrix is said to be complementary one. The weights are persistent if they are
transitive, that is aik= aij× ajk for all i, j and k. Such a matrix might exist if the aij
is calculated exactly from measured data. Then find a vector V of order n like as,
MV = λ×V . For aforesaid matrix, V is considered to be an eigenvector and λ is an
eigenvalue.

For a regular matrix, λ= n. In addition for matrices involving human analysis,
the condition aik= aij× ajk does not hold because of inconsistency in human
judgment to a greater or lesser extent. In such a case the V vector satisfies the
equation MV = λmax ×V ≥ n. Any difference between λmax and n, is an indication of
the discrepancy in people’s perception. If λmax = n then the prudence have turned
out to be steady. Finally, a consistency index (CI) can be computed from
ðλmax − nÞ ̸ðn− 1Þ that needs to be assessed against experience made completely at
random. Furthermore, Saaty has determined large samples at random matrices of
increasing order and consistency indices of those matrices. A true consistency ratio
(CR) is calculated by dividing CI for the set of perceptions by the index for the
corresponding random matrix. Saaty [25] suggests that if that ratio exceeds 0.1 the
set of judgments may be too deviated to be reliable. In practice, CR of more than
0.1 sometimes has to be accepted. A CR of zero 0 means that the judgments are
perfectly uniform.

3 Analytic Hierarchy Process Algorithm

The AHP algorithm in Fig. 3 is used to resolve very challenging and complex issue
of selecting best Telemedicine service among the presented options based on a set
of distinct decision parameters. For further information interested readers can see
[25].

Table 1 Saaty’s scale for matched Similarity [25]

Comparison Value of aij
A and B have same importance 1
A has relatively less valuable than B 3
A has more significance compared B 5
A is very strongly significant in comparison to B 7
A is precisely essential than B 9
To establish agreement between above values 2, 4, 6, 8
complementary 1/3, 1/5, 1/7, 1/9
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4 Analytic Hierarchy Process for Telemedicine Service
Selection

In this section a Telemedicine service is chosen step-by-step from the pool of basic
medical services of large scale and distributed healthcare system with the help of
AHP.

To achieve Goal by dividing the challenge into set of decision parameters
and options

To establish matched comparison matrices for the decision parameters at
Level-2

To establish matched comparison matrices of the existing services at
Level-3

Decide whether the Level-2 and Level-3 matched similar matrices satisfy
the consistency test. If it does not, reconstruct the same matrices

To determine weights of the decision making entities at Level-2

To find the weights of the services at Level-3

To calculate the composite weights of the services at Level-3

Choose the Telemedicine service with highest composite weight as the
main service

Fig. 3 Flowchart of the AHP Algorithm [25]
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4.1 Decision Making Hierarchy

Main goal of this sub-section is to manage the m-QoS by selecting critical Tele-
medicine service on priority and urgency basis. This establishes a strategic pro-
cedure at Level-1 as shown in Fig. 2. The performance metrics e.g., throughput,
delay and Jitter are treated as the decision making components, while Telemedicine
services are considered as the set of options, placed at Level-2 and Level-3 of the
hierarchy, respectively.

4.2 Formation of Similarity Matrix

The decisive entities are arranged into rows and columns format. Decision making
components are compared and evaluated based on the range of values from 1 to 9 as
shown in Table 1. Suppose, the diagonal elements in the range from top-left to
bottom-right are supposed to be 1. Initially, the upper triangular matrix is filled
according to the priority level of row parameter A and correlation level of column
parameter (B) with the help of Table 1. Equation (1) builds and fills upper trian-
gular matrix, which finally gives lower triangular matrix.

aji=
1
aij

ð1Þ

aji, is the pair-wise similarity matrix in the ith row and jth column. Building the
matched comparison and matched similarity matrices of the decision options at
Level-2 and Level-3 respectively. Therefore, 3 × 3 matrices at Level-2 and 4 × 4
matrices at Level-3 are possible. A square AHP matrix with similar outcome of two
choices is used to carry these results under one parent.

Throughput
Delay
Jitter

Throughput Delay Jitter
1 2 ̸1 3 ̸1
1 ̸2 1 2 ̸1
1 ̸3 1 ̸2 1

2
664

3
775

4.3 Calculation of Eigenvector and Consistency

An AHP matrix M, has the complementary formula as, MV = λ×V , whereas,
V and λ are the non-zero eigenvector, and scalar eigenvalue respectively. As each
element in M is the ratio of the weight of one decisive indicator to another
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according to their parents. When M is persistency matrix, i.e. mij=mik ×mkj
ði, j, k=1, 2, . . . , nÞ, then n× n matrix M is represented as

M =
m11 m12 . . . m1n

⋮ ⋮ ⋮
mn1 mn2 . . . mnn

2
4

3
5 =

w1 ̸w1 w1 ̸w2 . . . w1 ̸wn

⋮ ⋮ ⋮
wn ̸w1 wn ̸w2 . . . wn ̸wn

2
4

3
5

whereas, n is the number of decision parameters and wiði=1, 2, . . . , nÞ shows the
weight of the decision making entities. If all wi are arranged into a weight matrix
i.e. ðWÞT = w1 w2 . . . wn½ �, then MW = n × W . Thus, the weight vector and
number of elements of M become its eigenvector and eigenvalue respectively.
However, the AHP matrices are usually not exactly regular due to user’s random
perception. As a result, the eigenvector with the maximum eigenvalue λmax is
chosen as the weight matrix. The total value of each column of the pair-wise
similarity matrix is computed and kept in the final row. The last obtained matrix is
averaged by making the elements of the entire row as 1 and this matrix is known as
normalized comparison matrix. Normalized predominant eigenvector is acquired by
finding average value of each row of the normalized comparison matrix. Now λmax

can be achieved by using Eq. (2).

λmax = ∑
n

i=1
ai × bi ð2Þ

whereas, ai and bi represents the elements in the ith row of the normalized desired
eigenvector and sum row in the ith column of the similarity matrix before nor-
malization, accordingly.

The persistency of an AHP matrix can be analyzed by consistency ratio (CR),
which is defined as the ratio of consistency index (CI) to random index (RI) based
on the size of n, as shown in Table 2. CI is computed by using Eq. (3)

CI =
λmax − n
n− 1

ð3Þ

where, n depicts the size of the similarity matrix.
The consistency ratio (CR) is acquired by using Eq. (4)

CR=
CI
RI

ð4Þ

When CR < 0.1 then matched comparison matrix is uniform and adaptable.

Table 2 Consistency Index [25]

n 1 2 3 4 5 6 7 8 9 10 11

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51
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4.4 Determining Weight of Decision Parameters

The Eq. (5) determines the weight of each decision making entity.

WDP=
NEVn

309.9385
ð5Þ

WDP is the weight of decision parameters and NEVnðn=1, 2, 3Þ is the normalized
eigenvector at Level-2.

4.5 Determining Weight of Telemedicine Services

An Eq. (6) determines the weight of available Telemedicine services at Level-3
with respect to decision making parameters.

WasrvDP=
NEVDP
SNEVDP

ð6Þ

whereas, WaservDP, NEVDP and SNEVDP are the weight of existing service,
normalized eigenvector and the Sum of normalized eigenvector according to
decision parameters, respectively.

4.6 Composite Weights of Available Telemedicine Services

The composite weights in Level-3 can be found with the help of Eq. (7)

CWaserv= ∑
n

p=1
WDP×WasrvDP ð7Þ

CWaserv is the composite weight of pre-defined services with number of decision
making components n.

5 Experimental Performance and Discussion

An Intelligent Decision Analysis (IDA) technique is used to elect the random data
for establishing pair-wise comparison matrices to prioritize critical Telemedicine
service.

First we will find decision making parameters or criteria in Level-2.
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Step-1: Determining the pair-wise comparison Matrix

M =
Throughput

Delay
Jitter

Throughput Delay Jitter
1 2 ̸1 3 ̸1
1 ̸2 1 2 ̸1
1 ̸3 1 ̸2 1

2
664

3
775

Or Matrix M can be written as

M =
1.0 2.0 3.0
0.5 1.0 2.0

0.3333 0.5 1.0

2
4

3
5

Step-2: squaring the Matrix M

1.0 2.0 3.0
0.5 1.0 2.0

0.3333 0.5 1.0

2
4

3
5

1.0 2.0 3.0
0.5 1.0 2.0

0.3333 0.5 1.0

2
4

3
5=

3.0 5.5 10
1.6666 3.0 5.5
0.9166 1.6666 3.0

2
4

3
5

Step-3: To calculate the eigenvector by sum of rows (SoR) of Matrix (to first
four decimal places)

M =
3.0+ 5.5+ 10

1.6666+ 3.0+ 5.5
0.9166+ 1.6666+ 3.0

2
4

3
5

M =

SoR
18.5

10.1666
5.5832

2
4

3
5

SoR total 34.2498

18.5 ̸34.2498
10.1666 ̸34.2498
5.5832 ̸34.2498

2
4

3
5=

0.5401
0.2968
0.1630

2
4

3
5→Eigenvector =E0

0.5401
0.2968
0.1630

2
4

3
5

1.0

Again step-1: Establishing pair-wise square Matrix

M =
3.0 5.5 10

1.6666 3.0 5.5
0.9166 1.6666 3.0

2
4

3
5
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Again step-2: Squaring the Matrix

M =
3.0 5.5 10

1.6666 3.0 5.5
0.9166 1.6666 3.0

2
4

3
5

3.0 5.5 10
1.6666 3.0 5.5
0.9166 1.6666 3.0

2
4

3
5=

27.3326 49.666 90.25
15.0409 27.3326 49.666
8.2772 15.0409 27.3323

2
4

3
5

Again step-3: Compute the eigenvector

27.3326+ 49.666+ 90.25
15.0409+ 27.3326+ 49.666
8.2772+ 15.0409+ 27.3323

2
4

3
5=

167.2486
92.0395
50.6504

2
4

3
5=

0.5396
0.2969
0.1634

2
4

3
5→Eigenvector = E1

0.5396
0.2969
0.1634

2
4

3
5

1.0

Now we will compute difference (D) of eigenvectors E1 and E0.

D=E1−E0=
0.5396
0.2969
0.1634

2
4

3
5−

0.5401
0.2968
0.1630

2
4

3
5=

− 0.0005
0.0001
0.0004

2
4

3
5→Almost zero

So, E1 or V eigenvector is suitable for calculating maximum eigenvalue ðλmaxÞ,
CI, RI and CR for decision parameters at Level-2.

Step-4: Measure Consistency Index (CI)
CI is calculated by using formula MV = λmax ×V , M is an AHP matrix, V is the

eigenvector and λmax is the maximum eigenvalue.

1.0 2.0 3.0
0.5 1.0 2.0

0.3333 0.5 1.0

2
4

3
5

0.5396
0.2969
0.1634

2
4

3
5= λmax

0.5396
0.2969
0.1634

2
4

3
5

0.5396+ 0.5938+ 0.4902
0.2698+ 0.2969+ 0.3268
0.1798+ 0.1484+ 0.1634

2
4

3
5= λmax

0.5396
0.2969
0.1634

2
4

3
5

1.6236
0.8935
0.4916

2
4

3
5= λmax

0.5396
0.2969
0.1634

2
4

3
5, λmax=

1.6236 ̸0.5396
0.8935 ̸0.2969
0.4916 ̸0.1634

2
4

3
5=

3.0088
3.0094
3.0085

2
4

3
5
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Therefore, Average value of these maximum eigenvalues at n = 3 is.

λmax =
3.0088+ 3.0094+ 3.0085

3
=

9.0262
3

= 3.0087

Now, from Eq. (3) we have

CI =
λmax − n
n− 1

=
3.0087− 3

3− 1
=

0.0087
2

= 0.0043< 0.1

As CI value 0.0043 is <0.1 so pair-wise comparison matrices are consistent and
adjusted.

Now from Eq. (4) and Table 2 (RI = 0.58 at n = 3), we calculate consistency
ratio (CR)

CR=
CI
RI

=
0.0043
0.58

= 0.007413

As value of CR is also <0.1, so the evaluations are consistent.

Throughput = 0.5396 → first most important for m-QoS
Delay = 0.2969 → second most important for m-QoS
Jitter = 0.1634 → less important for m-QoS.

For further details see Fig. 4.
Now, for Telemedicine service selection at Level-3 as in Fig. 1.
Step-1: To build pair-wise comparison Matrix to obtain Throughput

M =

TeleSurgery
TeleConsultation
TeleEducation
TeleMonitoring

TeleSurgery TeleConsultation TeleEducation TeleMonitoring
1 2 ̸1 3 ̸1 4 ̸1
1 ̸2 1 2 ̸1 3 ̸1
1 ̸3 1 ̸2 1 2 ̸1
1 ̸4 1 ̸3 1 ̸2 1

2
66664

3
77775

Fig. 4 Decision parameters
and composite weights
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Matrix M also can be written as shown below

M =

1.0 2.0 3.0 4.0
0.5 1.0 2.0 3.0

0.3333 0.5 1.0 2.0
0.25 0.3333 0.5 1.0

2
664

3
775

Step-2: Squaring the Matrix M (to four decimal places)

M =

1.0 2.0 3.0 4.0

0.5 1.0 2.0 3.0

0.3333 0.5 1.0 2.0

0.25 0.3333 0.5 1.0

2
6664

3
7775

1.0 2.0 3.0 4.0

0.5 1.0 2.0 3.0

0.3333 0.5 1.0 2.0

0.25 0.3333 0.5 1.0

2
6664

3
7775

=

4 6.8332 12 20

2.4166 4 7 12

1.4166 2.3332 4 6.8332

0.8332 1.4166 2.4166 4

2
6664

3
7775

i.e. ð1.0 × 1.0Þ+ ð2× 0.5Þ+ ð3× 0.3333Þ+ ð4× 0.25Þ=4.0

Step-3: To find eigenvector by summing rows

4+ 6.8332+ 12+ 20
2.4166+ 4+ 7+ 12
1.4166+ 2.3332+ 4+ 6
0.8332+ 1.4166+ 2.4166+ 4

2
664

3
775

SoR

42.8332
25.4166
14.5830
8.6664

2
664

3
775

SoR total 91.4992

42.8332 ̸91.4992
25.4166 ̸91.4992
14.5830 ̸91.4992
8.6664 ̸91.4992

2
664

3
775=

0.4681
0.2777
0.1593
0.0947

2
664

3
775→Eigenvector = E1

0.4681
0.2777
0.1593
0.0947

2
664

3
775

1.0
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Step-4: Construct and squaring pair-wise comparison Matrix for Delay

M =

1.0 2.0 2.0 3.0
2.0 1.0 2.0 2.0
0.5 0.5 1.0 2.0

0.3333 0.3333 0.5 1.0

2
664

3
775

M =

1.0 2.0 2.0 3.0

2.0 1.0 2.0 2.0

0.5 0.5 1.0 2.0

0.3333 0.3333 0.5 1.0

2
6664

3
7775

1.0 2.0 2.0 3.0

2.0 1.0 2.0 2.0

0.5 0.5 1.0 2.0

0.3333 0.3333 0.5 1.0

2
6664

3
7775

=

7 6 9.5 14

5.6666 6.6666 9.0 14

2.6666 2.6666 4 6.5

1.5832 1.5832 2.3332 3.6665

2
6664

3
7775

Step-5: Find the eigenvector of the services by summing rows

7+ 6+ 9.5+ 14
5.6666+ 6.6666+ 9.0+ 14
2.6666+ 2.6666+ 4+ 6.5
1.5832+ 1.5832+ 2.3332+ 3.6665

2
664

3
775

SoR

36.5
35.3332
15.8332
9.1661

2
664

3
775

SoR total 96.8325

36.5 ̸96.8325
35.3332 ̸96.8325
15.8332 ̸96.8325
9.1661 ̸96.8325

2
664

3
775=

0.3769
0.3648
0.1635
0.0946

2
664

3
775→Eigenvector = E2

0.3769
0.3648
0.1635
0.0946

2
664

3
775

1.0

Step-6: Construct and squaring pair-wise comparison Matrix for Jitter
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M =

1.0 2.0 3.0 4.0
0.5 1.0 2.0 4.0
0.5 0.5 1.0 2.0
0.25 0.5 0.5 1.0

2
664

3
775

M =

1.0 2.0 3.0 4.0
0.5 1.0 2.0 4.0
0.5 0.5 1.0 2.0
0.25 0.5 0.5 1.0

2
664

3
775

1.0 2.0 3.0 4.0
0.5 1.0 2.0 4.0
0.5 0.5 1.0 2.0
0.25 0.5 0.5 1.0

2
664

3
775=

4.5 7.5 12 22
4 5 7.5 14

1.75 3.0 4.5 8.0
10 1.75 1.75 5.0

2
664

3
775

Step-7: Find the eigenvectors we will sum the rows

M =

4.5 + 7.5+ 12+ 22
4+ 5+ 7.5+ 14

1.75 + 3.0+ 4.5+ 8.0
1.0 + 1.75+ 1.75+ 5.0

2
664

3
775

SoR

46.0
30.5
17.25
9.5

2
664

3
775

SoR Total 103.25

46.0 ̸103.25
30.5 ̸103.25
17.25 ̸103.25
9.5 ̸103.25

2
664

3
775=

0.4455
0.2953
0.1670
0.0920

2
664

3
775→Eigenvector = E3

0.4455
0.2953
0.1670
0.0920

2
664

3
775

1.0

Step-8: Find the composite eigenvector; we multiple the eigenvectors (E1, E2,
E3) of the four services with the E1 of decisive factors and then sum them.

M =

0.4681 0.3769 0.4455
0.2777 0.3648 0.2953
0.1593 0.1635 0.1670
0.0947 0.0946 0.0920

2
664

3
775

Medical-QoS Based Telemedicine Service Selection … 605



0.2525+ 0.1119+ 0.07279
0.1498+ 0.1083 0.0482
0.0859 0.0485 0.0272
0.0511 0.0280 0.0150

2
664

3
775=

0.4371
0.3063
0.1616
0.0941

2
664

3
775

Tele-Surgery = 0.4371 → first highest priority
Tele-Consultation = 0.3063 → second highest priority
Tele-Education = 0.1616 → third priority
Tele-Monitoring = 0.0941 → fourth priority
For further details see Fig. 5.

An AHP is analyzed for Level-2 with three decision making entities and Level-3
with four Telemedicine services. All of the above performance indicators for
maintaining persistency proven to be consistent. Since, weights and average
weights of the each decisive parameter and available services are determined.

In Level-2 and Level-3, the throughput and Tele-Surgery as decision making
entities with maximum values of 0.5396 and 0.3063 respectively, are considered
to be desired decisive factors for m-QoS management. Graphical representation of
the composite weights of aforementioned levels and AHP strategy is shown in
Figs. 4, 5 and 6, respectively.

6 Conclusions and Future Research

Large scale and distributed computing healthcare systems aim at extending the
monitoring coverage from individuals who live at remote location. This chapter
proposes a large scale and distributed systems for Telemedicine service selection

Fig. 5 Telemedicine services and composite weights
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and m-QoS measurement at user end in a wide geographical area. The system is
efficiently integrating many emerging technologies such as, mobile computing,
wearable sensors, cloud computing, decision support systems, Telemedicine service
selection, and m-QoS measurement. It can propose remote monitoring of patients at
anytime and anywhere. Some unique functions that are of great importance for
patients’ health monitoring and diagnosing are deliberated. Furthermore, this
chapter presents m-QoS management by selecting Telemedicine service from the
pool of existing medical services on the priority and urgency basis. A structure of
main challenge such as, service selection is formed by dividing that one into three
levels. Level1 contains key goal, Level2 shows decision parameters and Level3
represents Telemedicine services as alternatives. An AHP pair-wise comparison
matrix is formed then weights and composite weights of Level2 and Level3
elements are obtained. Since, the AHP algorithm measures and evaluates distinct
entities such as, the objective, decision making parameters and criteria or alterna-
tives from qualitative and quantitative aspect. The designed algorithm is simulated
for three decision making parameters and four different Telemedicine services
in which highest priority is assigned to decision parameter; Throughput and Tel-
emedicine service; Tele-Surgery respectively. In near future, we intend to optimize
the m-QoS over the joint network of WBSN and Telemedicine.

Throughput
0.5396

Delay
0.2969

Jitter
0.1634

Tele-Surgery
1.0

Tele-Surgery
0.4371

Tele-Consultation
0.3063

Tele-Education
0.1616

Tele-Monitoring
0.0941

Tele-Surgery
0.4371

Tele-Consultation
0.3063

Tele-Consultation
0.3063

Tele-Education
0.1616

Tele-Education
0.1616

Tele-Monitoring
0.0941

Tele-Monitoring
0.0941

Tele-Surgery
0.4371

Le
ve
l-1

Le
ve
l -2

Le
ve
l-3

Objective

D
ec
is
io
n
Pa

r a
m
e t
er
so

r
C
ri t
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A
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Fig. 6 AHP hierarchy with all weights
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Development and Application of a Generic
Methodology for the Construction
of a Telemonitoring System

Amir Hajjam El Hassani, Amine Ahmed Benyahia,
Emmanuel Andres, Samy Talha, Mohamed Hajjam El Hassani
and Vincent Hilaire

Abstract Telemonitoring systems are nowadays being extensively developed and
utilized, due to the fact that the worldwide elderly population is increasing. In fact,
the use of a telemonitoring system alleviate the problem of health costs by pro-
viding a reliable way of alerting the healthcare personnel. The design of a tele-
monitoring system is a real challenge. In this context, the architecture of a
telemonitoring system must be generic and flexible and its knowledge must be well
defined so it can be shared between actors of the system. In this paper, we present a
methodology for the design of a telemonitoring system. This methodology is based
on the use of multi-agent system, ontologies and expert systems. The proposed
approach relies on an existing multi-agent methodology known as ASPECS. The
latter is adapted to construct a telemonitoring system by adding several activities
that introduce ontologies and expert systems. This methodology is applied to
E-care, a platform designed for a large scale computing. E-care is a telemonitoring
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platform for patients suffering from heart failure. As part of this platform, several
experiments were conducted to validate this methodology at Strasbourg University
Hospital (Strasbourg, France). Preliminary results show that this platform is able to
assist health care professionals. E-care processes data sent from the sensors and
generates automatically alerts in order to detect early risk situations of heart failure.

1 Introduction

The main objective of telemonitoring is to give people suffering from various
pathologies, chronic diseases or disabilities, an independent quality of living in their
homes. This objective can be realized by the use of telemonitoring systems. As a
result, these systems offer a way to monitor patients and answer their needs within
the comfort of their own homes [1].

Telemonitoring is based on the communication and the interpretation of medical
indicators (e.g. clinical, biological or radiological data) [2]. The output of this
interpretation may result in immediate intervention with the patient or may just
end-up in providing medical advices and directives.

The current research proposes a methodological process to facilitate the design
of a medical telemonitoring system. It also provides a scheme for early detection of
signs of any complications. The proposed methodology is based on a multi-agent
system using several types of ontologies associated with an expert system. In fact,
ontologies are widely accepted as an appropriate mean for the conceptualization of
knowledge through the use of adequate semantics to interpret information.

The multi-agent system used for medical monitoring, has a distributed archi-
tecture. The latter has the advantage to assure a certain level of autonomy to patients
and provide habitats with an effective response in case of emergency.

The proposed method identifies the generic and the specific aspects of each
multi-agent system. The designed architecture takes into account all the patient data
such as: patient profile, medical history, drug treatment, physiological and behav-
ioral data, as well as data relating to the patient’s environment and lifestyle. This
architecture should also be able to acquire new data sources (e.g. auscultation
signal).

Our proposed approach is based on an adapted version of the ASPECS
methodology [3]. It is based on multi-agent system which are applied to tele-
monitoring systems. ASPECS is a methodology [4] used to design complex sys-
tems using different activities in order to decompose the problem into
sub-problems. Our modification consists in the definition of new activities that
are proper to telemonitoring systems.

This methodology was then implemented using the E-care platform [5, 6] in
order to define its information system. This information system is composed of two
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types of ontologies: The problem ontology and several domain ontologies. The
information system integrates also an expert system for the detection of risk situ-
ations. The problem ontology was built to manage the system including users and
their tasks. In fact, three domain ontologies have been built to represent, disease,
drugs and cardiovascular risk factors. The expert system uses inference rules which
are defined in collaboration with medical experts using their knowledge and using
medical guidelines.

This methodology also defines the system architecture which consists of four
autonomous agent types namely, the medical sensors to collect physiological
measurements, etc. The gateway collects data from sensors and transmits them from
the patients’ homes, to the server. The server processes data and gives access to
them. Finally, the patient data are stored and secured in the database.

The rest of the paper is structured as follows: Sect. 2 presents a general overview
on ontologies and their advantages. This section also defines multi-agent systems
and their components. Section 3 introduces the ASPECS methodology in designing
complex systems with multi-agents. Section 4 describes our proposed readapted
ASPECS scheme in designing telemonitoring systems. Section 5 describes the
implementation of the telemonitoring scheme using E-care platform. Section 6
presents the experiments that were performed to validate the proposed telemoni-
toring scheme. Finally, Sect. 7 concludes the chapter.

2 Definition

2.1 Ontology

The first accepted definition for an ontology was proposed by Gruber in [7]. It is
described as the “explicit specification of a conceptualization”. This definition has
also been clarified by Fensel et al. in [8] to be: “Ontology is an explicit formal
specification and a shared conceptualization”.

Ontologies make use of common semantics. All involved individuals and con-
cepts can be explicitly defined in terms of their relationships and attributes.
Ontologies are commonly interpreted by a machine. This improves the quality of
the process of decision making and diagnosis. Moreover, ontologies share
knowledge between several people or objects; As a result, they can work together
without any ambiguity or loss of information.

Ontologies provide a model of high level of abstraction for the daily workflow
inside an organization. This model can be readapted and each organisation can have
an ontology adapted to its particular situation. Ontologies are generic and reusable.
They are very easy to maintain with a minimal cost.
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2.2 Multi-agent System

Multi-agent system (MAS) is associated to distributed intelligence. The goal of a
multi-agent system is to solve a problem by associating each sub-problem to a
sub-agent and coordinate the activities of these sub-agents. Following this principle,
the challenge is to increase collective intelligence through the cooperation of
agents.

Ferber et al. in [9], defined an agent as any physical or virtual entity with
expertise that is capable of providing services. It is able to perceive its environment
and limit its way of acting on it. It can communicate with other agents, perceive
their actions, and respond accordingly. An agent is also an autonomous and a
proactive entity. In other words, it is able to act without external intervention and
ready to take new initiatives.

According to Ferber, a multi-agent system should consist of:

• An environment E, a space usually associated to a metric;
• A set of objects O. These objects have a location in the environment E. At some

point, it is possible to associate an environment E to any object O;
• A set of agents A. These agents are specific objects (A can be included in O) and

which represent the active entities of the system;
• A set of relations R. These define the relations between objects (and therefore

between agents);
• A set of operators Op. These allow agents from set A to perceive, produce,

consume, transform and manipulate objects O.

3 ASPECS

ASPECS is a step-by-step requirement to code software process for engineering
Complex Systems using Multi-agent System and Holonic Multi-agent System [10].

To deal with all aspects of complex systems, multi-agent system must agree to
multiple levels of abstractions and openness.

The authors of ASPECS tried to propose a set of organization-oriented
abstractions. This set has been integrated into a complete methodological process.
We can found in complex systems and especially hierarchical complex systems the
target scope for the proposed approach. ASPECS offers the possibility to develop
holonic (as well as non-holonic) multi-agent system societies.

ASPECS is based on three principal phases as shown in Fig. 1. These phases are
described below:

1. The System Requirements Analysis phase: it identifies a hierarchy of organi-
zations, whose behavior may fulfill the system requirements in the defined
context.
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2. The Agent Society Design phase: it aims at designing a society of agents whose
behavior can provide an effective solution to the problem described in the
previous phase. This solution satisfies associated requirement.

3. The Implementation and Deployment phase: it aims at implementing the
agent-oriented solution designed in the previous phase by deploying it to the
chosen implementation platform.

4 Adaptation of Aspecs to Telemonitoring Systems

In our proposed methodology, the “System Requirement Analysis” phase was
modified. As described in ASPECS, this phase is composed of several activities.
Figure 2 illustrates these activities.

Fig. 1 The ASPECS process phases (and iterations) [10]

Fig. 2 System requirement phase adapted to telemonitoring
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The green rectangle represents the activities that already existed in ASPECS.
The orange rectangle represents the activities in ASPECS that have been changed.
The red rectangle represents the new activities that were added to adapt ASPECS to
telemonitoring systems. The following paragraphs will detail each set of activities.

4.1 Domain Requirements Description

The Domain Requirements Description activity consists of an initial requirements
elicitation and provide a description of the application behavior.

Several approaches can be used, such as: use cases diagrams or documented
version to introduce user annotations can specify functional and non-functional
requirements.

4.2 Problem Ontology Description

The Problem Ontology Description activity defines conceptually the aforemen-
tioned domain requirements. This ontology tries to conceptualize the experts’
knowledge that will provide the applications context. It helps to understand the
problem and allows the refinement of the requirements.

We have adapted this activity to telemonitoring systems by defining a
methodology to describe this ontology. This methodology is generic and can be
used in other systems.

4.3 Definition of Concepts to Describe with Domain
Ontologies

The purpose of this activity is to define the concepts of the problem ontology that
can be represented by a domain ontology or part of a domain ontology.

The use of domain ontologies facilitates the understanding of concepts and
knowledge and permits a more intuitive inference. Furthermore, the system’s
maintenance is easier.

4.4 Domain Ontologies Description

The Domain Ontologies Description activity aims to describe and build domain
ontologies that provide a formal semantics in our medical telemonitoring system.
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After studying various domain ontology construction methodologies, we pro-
posed a generic method. This methodology can be used for the construction of any
domain ontology and takes into account different types of resources like text cor-
pus, thesaurus or classifications.

4.5 Link Identification Between Ontologies

The objective of this activity is to define relations between the problem ontology
and the various domain ontologies. These links allow to have a connected onto-
logical base, where the concepts of the problem ontology refer to domain ontology
concepts. Moreover, every ontology can be individually updated without affecting
other ontologies.

4.6 Expert System Description

The Expert system description activity aims to define an expert system for the
detection of anomalies and changes in patient health conditions. An expert system
infers new data using an inference engine, a fact base and a rule base.

The facts base consists of built ontologies (ontology of the problem and domain
ontologies) and data about the patient (medical, analyzes, etc.). The inference
engine must be compatible with the facts base, that is, it must be able to infer on
ontologies.

A first level of reasoning is directly exploitable from the expressive power of
OWL-DL. These reasoning are based, for example, on the characteristics of the
relations in ontologies (reflexivity, transitivity, etc.).

For more complex reasoning of inference, rules must be defined in collaboration
with medical experts or using expert guidelines.

4.7 Organization Identification

The Organization Identification activity assigns to each requirement a behavior
represented by an organization. This behavior is the result of the interacting roles
within a common context. A requirement should then be satisfied by an
organization.
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4.8 Role, Scenario and Plan Identification

The Role and interaction Identification should distribute the behaviour by finer
actions represented by roles. The scenario should describe a set of possible inter-
actions within an organization. The behaviour of each role is detailed by the Role
Plan and represented by a general plan partial fulfilment of the objectives of the
organization.

5 Implementation Using the E-care Platform

E-care is a medical monitoring platform for patients with Heart Failure (HF). The
purpose of this platform is to contribute to a good level to the care of patients who
are not necessarily under the supervisory framework of a medical personnel. For
instance, the idea is that patients can stay at home while benefiting from ongoing
monitoring.

The E-care platform’s main objective is to optimize the monitoring of patients.
This is achieved by detecting the early signs of cardiac decompensation in a tele-
monitoring system, combined with a motivational and an educational tool. In order
to decentralize the data analysis tasks for a large scale computing, we opted for a
service-oriented architecture.

To construct the E-care telemonitoring system, we applied the methodology
described previously as well as its following activities.

In the first activity, we described the domain requirements namely heart failure
and its specificities. In a second step, the activity of problem ontology description
has allowed us to build a specific E-care ontology [11]. This ontology contains
medical records of patients, physiological and biological screening, medical history,
medications and other information related to heart failure like cardiovascular risk
factor.

The third and the fourth activities, allowed us to construct three domain
ontologies: (1) symptoms, (2) medications and (3) cardiovascular risk factor. To
build these ontologies we used the ICD (International Classification of Diseases)
and the ATC (Anatomical and Therapeutic Chemical Classification) classifications.

Using the expert system description activity, we built an expert system using the
constructed ontologies and we added the different rules. Rules were defined using
the knowledge of the domain experts by performing several working meetings and
brainstorming sessions. Other rules were extracted from guidelines found in liter-
ature [12].

The remaining activities define the system architecture using four organizations.
Each organization has its own roles and scenarios.

Finally, the E-care platform has been deployed and allowed the implementation
of several experiments that were conducted in hospitals and in patients’ homes [13].
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These experiments validated the usability of the developed system and the relia-
bility of the alert detection module.

6 Experiments and Results

The primary objective of the experiments was mainly the validation of the tech-
nological and medical choices. The first phase of the experiments was scheduled for
2 months’ duration. The steps of the E-care experiments were: (1) to test the various
functions of the system; (2) to improve the ergonomics; (3) to detect any vulner-
ability, (4) to identify its strengths; and last (5) to compare the output results with
reference devices. We used, in the second phase, pre-determined indicators to test
the E-care system. In order to assess improvements for a better patient management,
we also verified the relevance of the triggered alerts. The goal was early cardiac
impairment detection, before a degradation.

The system has been deployed during the period from October 2013 to
November 2014 in Medical Clinic B of the Strasbourg University Hospital (in
Strasbourg, France): Department of Internal Medicine, Diabetes and Metabolic
Diseases of the. This unit is “open” to the emergency wards and takes care of 800
patients every year. More than 180 patients have been included in the study.

The patient profile included in this experiment was elderly patient, in 25% of
cases, with a total loss of autonomy with:

• chronic HF > 60%;
• anemia > 40%;
• type 2 diabetes, chronic obstructive pulmonary disease and arrhythmia due to

atrial fibrillation (AAF) > 30%;
• cancer > 20%;
• dementia and chronic renal failure > 15%.

We validated the selected sensors deployed as part of the E-care platform in the
first experimental phase. We used a protocol of comparative measurements of the
E-care system devices (Blood Pressure (BP), Weight, Heart Rate (HR) and Oxygen
saturation (SPO2)) and those of the conventional hospital (Fig. 3). We performed
more than 150 measurements and these various measurements revealed a match
between the different devices proposed by the E-care system and those used on a
daily basis in the hospital. The E-care system operated as expected. The experi-
mental phase has allowed us to validate the technological choices.

In the second phase, over 1,500 measurements were performed for about 180
patients. Nurses used the E-care measurement devices on a daily basis. This phase
relies notably on the establishment of a new inference engine (Version 2 of E-care
platform). Figure 4 shows the new human-machine interface. This second phase
also includes a satisfaction survey of the system’s ergonomics. The survey was
filled out by caregivers and patients.
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Fig. 3 Comparison of measurements performed by the sensors of the E-care system with those of
the conventional hospital

Fig. 4 New human-machine interface of the system (version 2) deployed in the University
Hospital of Strasbourg (Strasbourg, France)
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In parallel, E-care platform is deployed in patient’s homes, in the Strasbourg
area, as part of the project INCADO [14], Heart Failure at home (grant from the
Alsace Regional Health Agency in Strasbourg, France: Agence régionale de santé
d’Alsace). Several patients (n = 10) were included and with a daily use of the
system. This project is expected to last at least 12 months before the solution can be
marketed.

This experimentation is registered on the ClinicalTrials.gov site: “Anticipation
and Detection of Heart Failure Decompensation with Automatic Treatment of
Information (e-INCA)” (No: NCT02411279).

7 Conclusion

In this paper, we presented a generic methodology for the construction of tele-
monitoring systems. This methodology is based on the use of ontologies for
knowledge representation and multi-agent system for system architecture.

We have adapted the ASPECS methodology to telemonitoring systems by
adding new activities related to telemonitoring.

We applied this methodology to define and construct the E-care platform tele-
monitoring system. E-care enables the home monitoring of patients with chronic
heart failure. It is an “intelligent” communicative platform using non-invasive
sensors. It uses ontology process and advanced technology. E-care assists the health
care professionals by providing a reliable way of alerting the healthcare personnel
in order to early detect and report risk situations of HF impairment.

Several experiments were conducted on E-care platform that validated its
architecture and its inference engine.
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Ontology-Based Contextual Information
Gathering Tool for Collecting Patients Data
Before, During and After a Digestive Surgery

Lamine Benmimoune, Amir Hajjam, Parisa Ghodous, Emmanuel Andres
and Mohamed Hajjam

Abstract In the health domain, computer-based questionnaires are beneficial since

they permit the collection of important elements regarding patients health status.

These elements are generally used as input data for many medical systems such

as health monitoring systems. The aim of this paper is to describe our contextual

Information Gathering Tool (IGT). This tool permits to gather data by providing

contextual questionnaires based on the question/answer mechanism and distributed

architecture. Our proposed IGT is based on the use of an interrogation engine and

ontologies. The engine provides contextual questionnaire as function of the user

context and adapts questions depending on the users answer. The use of ontolo-

gies permits to model questionnaires and interrogations history. Moreover, ontolo-

gies are used to control the creation of questionnaires by offering meanings to the

asked questions and then to the collected data. The proposed IGT is used in a clin-

ical setting as a part of the E-care medical monitoring platform. It is applied to the

rehabilitation process after a digestive surgery. The tool gathers contextual data rel-

ative to the patients hospitalization phase (i.e. before, during and after the surgery).

The collected data are then represented graphically for statistical purposes and ana-

lyzed by the medical platform to make decisions regarding the patients health status
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(i.e. warning medical staff if dangerous situations are detected, generating health

status indicators, providing useful therapeutic recommendations, etc.).

Keywords Information gathering tool ⋅ Distributed architecture ⋅ Questionnaire ⋅
Clinical decision support system ⋅ Monitoring ⋅ Surgery ⋅ Ontology

1 Introduction

Nowadays, the growth of information technology has allowed the development of

different data collection tools. These tools are designed to offer more advantages

compared to classical oral interviews and paper-based questionnaires [1]. In fact,

they offer a better structure with less time consuming and effort compared to classical

methods [2].

In the medical field, the Information Gathering Tools (IGTs) have had significant

benefits in reducing omissions and errors arising from traditional medical interviews

[3]. IGTs advantages include: reducing paper trails, providing of centralized infor-

mation leading to improved retrieval of patient medical data and save time [4].

Many research works are conducted to design and use the IGTs in a clinical setting

within Clinical Decision Support Systems (CDSS). For instance, in [2, 5], authors

proposed a generic model for context-sensitive self-adaptation of data gathering tool

based on a questionnaire ontology. The proposed model is then implemented in [4]

to collect patients medical data for preoperative risk assessment. In [6–8] authors

proposed a questionnaire ontology based on the model of Bouamrane et al. [2]. This

ontology is used to collect patients medical history, which is then integrated within

CDSS for hypertension risk prediction. In [9] authors proposed an ontology-based

CDSS for chest pain risk assessment based on [2]. The proposed CDSS integrates a

IGT to gather patients clinical data. In [1] author proposed an approach to design an

IGT based on the use of ontologies and inference engine. The approach consists to

model a generic questionnaire by an ontology and use the Pellet inference engine in

the questions selection process.

Despite the fact that the presented IGT in the literature allows the collection of

patient data using ontologies, the created questionnaires are hard coded for specific

domains. Moreover, the architectures of these tools are hard to maintain and update

because of its rigidity. Unlike previous approaches, we propose an Information Gath-

ering Tool based on an original approach that offers more flexibility by integrat-

ing a domain ontology to drive the creation of questionnaire models and separating

ontologies. The domain ontology allows to give meaning to the created questions,

and to be able to dynamically configure different models of questionnaires without

hard coding and regardless of the content of the domain. Therefore, many CDSS can

easily integrate the proposed IGT for their particular needs. Furthermore, the pro-

posed approach allows to collect relevant data by providing contextual questionnaires

depending on the patient context. The collected responses are also taken into con-
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sideration in the questions selection process. This improves the classical approach

by adapting the interrogations related to the patient responses and context.

The proposed IGT is integrated within the E-care health monitoring platform [10,

11]. The application consists in gathering patients data before, during and after diges-

tive surgery for follow-up purposes.

2 Information Gathering Tool Within E-care
Surgery Platform

We have implemented our IGT as a data collector module within the E-care surgery

platform for following-up with patients after digestive surgery by collecting their

data in each hospitalization phase.

The E-care surgery platform is a component of the E-care health monitoring plat-

form. The surgery module is applied to patients in each hospitalization phase of the

digestive surgery. It works by collecting relevant data from the patient before, during

and after the surgery and then by providing early detection of any anomaly. It is able

to generate health status indicators and provide useful recommendations. The col-

lected data are stored in the patients profile ontology. This profile models the health

status of the patient and analyses by mean of medical engines the possible detection

of anomalies while providing adequate recommendations.

3 Proposed Information Gathering Tool

The proposed IGT architecture (see Fig. 1) consists of four main components: Ques-

tionnaire Ontology, Interrogation History Ontology, Interrogation Engine and User

Interfaces.

3.1 Questionnaire Ontology (QO)

This ontology aims to model two distinct aspects: (i) the structure of the question-

naire and (ii) the adaptive behavior of the questionnaire. This ontology is created

based on research works presented in [2]. QO is designed as structured, generic and

flexible to accept most of the questionnaire models (see Fig. 2).

The main concepts are: Questionnaire, SubQuestionnaire, Question and Poten-
tialAnswer.

∙ Questionnaire concept: It is composed of Sub-questionnaires that represent a

group of thematically related question concepts.
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Fig. 1 Information Gathering Tool architecture

∙ Subquestionnaire concept: It aims to group semantic partitioning of the question-

naire under the same theme.

∙ Question concept: It encapsulates the necessary information for questionnaire

implementation. The questions could be interrelated using adaptive properties

such as ifAnswerToThisQuestionEqualsTo, thenGoToQuestion and structural prop-

erties such as hasParent, hasChild and hasSibling. Each question is characterized

by a label to display the questions text, the questions order and the related ques-

tions data type concept from the data type ontology (DTOnto). The question has

several types that are represented by the following concepts:

– MeasureQuestion concept: This type of question is used to collect physiological

data and laboratory tests. The response of this type of question is a numerical

number (float).

– FreeTextQuestion concept: This type of question is typically used to allow

repliers to experiment information, or to provide them with the opportunity to

explain a previous answer (i.e. complication details).

– MultiChoiceQuestion concept: This type of question provides a list of potential

answers. We distinguish 3 types of multiChoiceQuestion:

TrueFalseQuestion: This type of question provides by default two potential

answers yes and No with the possibility to select one answer.

MultiChoiceQuestionWithSingleAnswer: This type of question pro- vides a list

of potential answers with the possibility to select an answer.

MultiChoiceQuestionWithMultiAnswers: This type of question pro- vides a list

of potential answers with the possibility to select multiple answers.
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Fig. 2 Simplified representation of Questionnaire Ontology

3.2 Interrogations History Ontology (IHO)

It models medical interrogations and stores all asked questions, patient responses and

the response date. It is composed of five main concepts, namely: Interrogation,Ques-
tionnaireHistory, SubQuestionnaireHistory, QuestionHistory and ResponseHistory
(see Fig. 3).

∙ Interrogation concept: This concept models the interrogations history. It handles

the possibility to have multiple interrogations to a questionnaire. Recurring in

postoperative follow-up where the same questionnaire could be asked for several

times.

∙ QuestionnaireHistory concept: It models the questionnaire history related to the

interrogation. At each new interrogation a new questionnaire history is created.
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Fig. 3 Simplified representation of Interrogation Ontology

∙ SubQuestionnaireHistory concept: It models the sub-questionnaire history.

It allows to save the same structure as the posed questionnaire structure Fig. 3.

This concept is related to SubQuestionnaire from the Questionnaire Ontology.

∙ QuestionnHistory concept: It models the question history. This concept is related

to the Question concept from the Questionnaire Ontology.

∙ ResponseHistory concept: It models the response history. This concept is related

to PotentialAnswer concept from the Questionnaire Ontology in case the question

has multi-potential answers.

3.3 Interrogation Engine (IE)

The IE interprets the properties asserted in the Questionnaire Ontology, provides the

contextual questionnaires related to the current patient context, loads corresponding

questions in connection with the collected responses and stores the user answers in

the form of interrogations history.
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(a) Interrogations history consultation (b) Questionnaire configuration

Fig. 4 Clinician UI Portal web access

The IE can act according to two questioning modes:

∙ Sequential mode: In this mode, questions are displayed one by one according to

the order defined by the clinician. (See our previous work [12]). This mode is

generally used by patients when they answer questions by themselves.

∙ Instantaneous mode: In this mode, the questions are all displayed in the form of a

list. This mode is generally used by nurses.

3.4 User Interface (UI)

The User Interface consists of two parts, namely:

∙ Clinician UI: It allows clinicians to configure the IGT by defining questionnaire

models and to consult the interrogations history (see Fig. 4).

∙ Nurse UI: It permits nurses to collect daily patient data using a mobile device (i.e.

tablet). Nurse UI is a mobile application developed to give nurses more mobility

when they collect patients daily information (see Fig. 5).

Depending on the hospitalization period of the patient, the IGT delivers more

than one questionnaire. This allows to structure the collection of data and to avoid

data losses. The storage of data is shown by the filling rate indicator (see Fig. 4a).

4 Collected Data Interpretation

In order to interpret the collected data. A Data type ontology (DTOnto) is created. It

represents concepts that belong to a particular domain (i.e. digestive surgery domain

in our case). We use this ontology to drive the creation of questionnaires. The main

idea is to relate each created question to the corresponding concept in DTOnto (see
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(a) Questionnaire view (b) Question view

Fig. 5 Nurse UI Mobile access

Fig. 6 Example of questionnaire guided by the domain ontology (DTOnto)

Fig. 6). This is useful to give meanings to the collected data for analysis purposes (i.e.

similarity computing, rule executions, statistics, etc.). The collected data are stored

into a database using the patient profiles ontology for interpretation and analysis. The

latter step requires the representation of data using other modules, namely: statistical

module, chart measures, rule engine, case engine, etc.

For example, the rule engine executes rules on the collected patient data to derive

a number of scores. These scores range from simple formulas such as BMI (Body

Mass Index) to more complex algorithms, such as CCI score (Comprehensive Com-

plication Index) and ERAS score (Enhanced recovery after surgery).
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(a) Statistics on the collected data (b) Measures representation

Fig. 7 Collected data interpretation

The case engine uses the collected data of the current patient to search similar past

patient profiles in the purpose of providing personalized medical acts. Future works

will consider expanding this part. The collected data can have different natures and

can be represented in different forms depending on their nature. Data measures such

as physiological data (weight, blood pressure, etc.) can be represented by charts (see

Fig. 7b).

5 Distributed Data Collection

In order to decentralize the data analysis tasks so as not to weigh down the system,

we opted for a service-oriented architecture. The reasoning engine which comprises

the case engine and the rule engine is implemented as a remote web service while the

web application (clinician UI) and the mobile application (Nurse UI) of the system

are considered as clients to the web service (see Fig. 8).

Fig. 8 Distributed data collection architecture
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At each new data collected by the platform via the web application (client 1) or

the mobile application (client 2), the engine is notified by an HTTP request con-

taining the concerned patient identifier, the concerned data type and the data value.

The requests are stored in a queue in their arrival order to avoid redundancy in the

reasoning process.

The reasoning process is executed asynchronously, so as not to block clients (web

portal and mobile application) during the data collection process. Once the process

is complete, the inferred data is injected into the knowledge base which contains the

patient profiles.

6 Experimentation

The proposed IGT is experimented as part of E-care platform within the REPOSE

project at Strasbourg hospital, France. The goal of the REPOSE project is to follow-

up patients before, during and after digestive surgery by automating the collec-

tion and analysis of patient data. The experimentation started in November 2015.

It includes about 2500 patients over a period of 2 years with an average stay of 10

days.

6.1 E-care Platform Configuration

As a first step, we have defined with the medical experts 186 domain concepts for

the knowledge representation of the digestive surgery. These concepts were created

dynamically from the web portal of the platform and allowed to populate the domain

ontology (DTOnto). The following table (see Table 1) shows the number of domain

concepts created according to their types.

In a second step, we have created three hospitalized periods that allow to model

the patient context before, during and after the surgery (see Fig. 9).

The created domain concepts have allowed the generation of 186 questions divided

into 14 questionnaires and spread over the 3 hospitalized periods defined above. The

generation of these questions was made available from the web portal of the plat-

form. The following table (see Table 2) shows the number of questions with respect

to their types.

Table 1 The created domain concepts

Domain concept Number of concepts %

Measure type 42 22.58

Duration type 7 3.76

Date type 5 2.68

Qualitative type 132 70.96
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Fig. 9 Questionnaires related to hospitalization periods

Table 2 The created questions

Question type Number of questions %

Measure 42 22.58

Free text 24 12.9

Duration 7 3.76

Date 5 2.68

Multi-answers 4 2.15

Single answer 101 54.30

True false 3 1.61

The questionnaires created for the first two periods (Preoperative and Intraopera-

tive) are configured to be asked one time. However, the postoperative questionnaires

are configured to be asked several times during the third period (postoperative).

6.2 Evaluation

An evaluation survey was conducted by nurses to assess their satisfaction level over

the use of the proposed IGT as part of their daily work. Several points were evalu-

ated such as the ease of use, the ergonomy of the UI, the access speed to data and

the improvement of the daily work. Results showed that the nurses were satisfied
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regarding all the evaluation points. Thus, the collection of medical data using our

proposed IGT has proved advantageous compared to classical methods (i.e. paper-

based questionnaire), since it allows a better organization of the data collection with

respect to the patients context and saves time and effort.

7 Conclusion

In this paper, we presented our Ontology-Based Contextual Information Gathering

Tool. The proposed tool provides contextual questionnaires according to the hospi-

talization period of the patients and adapts them according to their answers. On one

hand, we have demonstrated the benefits of using the domain ontology DTOnto to

give a meaning to the collected data. The creation of questionnaires using the config-

uration interface can be made easier and faster compared to the previous approaches.

On the other hand, we have experimented the proposed IGT as a part of E-care

platform in clinical setting to follow-up patients before, during and after digestive

surgery as part of the REPOSE project. We have highlighted the interest of using

such Tool to help nurses in the daily work with organizing the data collection.
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