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Abstract. Extending standard data analysis with the possibility to for-
mulate fuzzy search criteria and benefit from linguistic terms that are
frequently used in real life, like small, high, normal, around, has many
advantages. In some situations, it allows to extend the set of results by
similar cases that would not be possible or difficult with precise search
criteria. This is especially beneficial when analyzing biomedical data,
where sets of important measurements or biomedical markers describing
particular state of a patient or person have similar, but not the same
values. In other situations, it allows to generalize the data and aggre-
gate it, and thus, quickly reduce the volume of data from Big to small.
Extensions that allow the fuzzy data analysis can be implemented in
various layers of the database client-server architecture. In this paper,
on the basis of the ambulatory data analysis, we show extensions to the
Doctrine object-relational mapping (ORM) layer that allow for fuzzy
querying and grouping of crisp data.
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1 Introduction

Nowadays people live faster and more dynamically. Stress affects almost everyone
and sleep deprivation and neurosis occur even in children. Unfortunately, this
way of life is directly related to the appearance of various civilization diseases,
such as: heart disease, diabetes, nervousness, cancer, allergies. Fortunately, the
human conscience in this regard and attention to health are growing. People more
often report to doctors and often are sent for laboratory testing. Moreover, they
often are in control of their health, performing basic laboratory tests, such as:
morphology, erythrocyte sedimentation rate (ESR), blood sugar, lipid profile, or
by measuring independently blood pressure at home. The majority of these tests
are performed in medical laboratories, which services range from routine testing,
such as basic blood counts and cholesterol tests, to highly complex methods that
c© Springer International Publishing AG 2017
S. Kozielski et al. (Eds.): BDAS 2017, CCIS 716, pp. 386–402, 2017.
DOI: 10.1007/978-3-319-58274-0 31

http://orcid.org/0000-0001-6764-6656


Extending the Doctrine ORM Framework Towards Fuzzy Processing of Data 387

assist in diagnosing genetic disorders, cancers, and other rare diseases. Almost
70% of health care decisions are guided by lab test results.

Laboratories must keep information about the examined people – their per-
sonal data and the results of laboratory tests together with ranges for particular
test types. These results more often have numeric character.

Some examples of laboratory test are as follows:

– Blood sugar
Normal blood sugar levels are as follows:

• Between 4.0 to 6.0 mmol/L (72 to 108 mg/dL) when fasting
• Up to 7.8 mmol/L (140 mg/dL) 2 h after eating

But for people with diabetes, blood sugar level targets are as follows:
• Before meals: 4 to 7 mmol/L for people with type 1 or type 2 diabetes
• After meals: under 9 mmol/L for people with type 1 diabetes and under

8.5 mmol/L for people with type 2 diabetes

– Lipid profile
The lipid profile is used as part of a cardiac risk assessment to help determine
an individual’s risk of heart disease and to help make decisions about what
treatment may be best, if there is a borderline or high risk. A lipid profile
typically includes the following tests:

• LDL Cholesterol
∗ Optimal: Less than 100 mg/dL (2.59 mmol/L)
∗ Near/above optimal: 100–129 mg/dL (2.59–3.34 mmol/L)
∗ Borderline high: 130–159 mg/dL (3.37–4.12 mmol/L)
∗ High: 160–189 mg/dL (4.15–4.90 mmol/L)
∗ Very high: Greater than 190 mg/dL (4.90 mmol/L)

• Total Cholesterol
∗ Desirable: Less than 200 mg/dL (5.18 mmol/L)
∗ Borderline high: 200–239 mg/dL (5.18 to 6.18 mmol/L)
∗ High: 240 mg/dL (6.22 mmol/L) or higher

• HDL Cholesterol
∗ Low level, increased risk: Less than 40 mg/dL (1.0 mmol/L) for men

and less than 50 mg/dL (1.3 mmol/L) for women
∗ Average level, average risk: 40–50 mg/dL (1.0–1.3 mmol/L) for men

and between 50–59 mg/dl (1.3–1.5 mmol/L) for women
∗ High level, less than average risk: 60 mg/dL (1.55 mmol/L) or higher

for both men and women
• Fasting Triglycerides

∗ Desirable: Less than 150 mg/dL (1.70 mmol/L)
∗ Borderline high: 150–199 mg/dL(1.7–2.2 mmol/L)
∗ High: 200–499 mg/dL (2.3–5.6 mmol/L)
∗ Very high: Greater than 500 mg/dL (5.6 mmol/L)

The volume of such ambulatory data obtained in laboratory tests is large,
and the data must be stored in a repository. In biomedical laboratories this
is usually a relational database that holds all the data. Similarly, when people
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make measurements in their homes, for example blood pressure, the amount
of data related to measurements can be huge, especially, when the data are
collected remotely by an external system. Frequently it happens that a doctor
recommends measuring the patient blood pressure three times a day, and the
patient must record all measurements and report them to the doctor, or those
measurements are automatically sent to doctors though a telemedicine system
to monitor patient and provide clinical health care from a distance. No matter
where the data is stored, access to it by searching and retrieving appropriate
patients’ records should be quick.

Since results of various laboratory tests should fall into certain ranges or may
exceed them, people, including medical doctors, usually use common terms, like
normal, above or below to describe levels of particular biochemical markers. This
provides a good motivation to apply such a logic in computer processing of the
data, which would be able to appropriately assign particular values to a certain
range, or mark them as going beyond the range: above or below. These conditions
can be met by using fuzzy logic [20,21], which becomes particularly handy when
dealing with Big Data sets containing results of various ambulatory tests. The
fuzzy logic allows to generalize the data, which is of great importance in large
medical screenings.

2 Fuzzy Logic in Data Processing and Analysis

Extending standard data analysis with the possibility to formulate fuzzy search
criteria and benefit from imprecise and proximity-based linguistic terms that
are frequently used in real life, like small, high, normal, around, near has many
advantages. In some situations, it allows to extend the set of results by similar
cases, which would not be possible, or at least, difficult with precise search
criteria. This is especially beneficial when analyzing biomedical data [16], where
sets of important measurements or biomedical markers, e.g., blood pressure,
BMI, cholesterol, age, describing particular state of a patient or person may
have similar, but not the same values. Enriching the set of results with similar
cases can be then very helpful in drawing appropriate conclusions, reporting
on important lesions, suggesting certain clinical actions, and preparing similar
treatment scenarios for patients with similar symptoms. On the other hand,
incorporating routines for fuzzy processing in the data analysis pipeline allows
to generalize the data, group it and aggregate, or classify and assign to clusters
or subgroups, and thus, change the granularity of information that we have to
deal with. This provides a way to quickly reduce the volume of data from big to
small, which is highly required in the era of Big Data.

2.1 Related Works

Extensions that allow fuzzy processing, querying and data analysis can be imple-
mented in various layers of the database client-server architecture (Fig. 1). On
the client side, various software tools and applications may incorporate fuzzy
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extensions as procedures and functions that are parts of the software, bound to
particular controls of the Graphical User Interface (GUI) or invoked internally
from other functions. This has several advantages, including adaptation of the
fuzzy procedures to the object-oriented environment (which is frequently used
in development of such applications), and adjustment to the specificity of the
application and processed data. The fuzzy extensions seem to be tailored to data
being processed. The huge disadvantage of such a solution is a tight coupling
to a particular application and negligible re-usability of procedures for fuzzy
processing for other applications and the analysis of other data. Examples of the
implementation of fuzzy data processing on the client side include: risk assess-
ment based on human factors [2], database flexible querying [3], modeling and
control [6], historical monuments searching [7], damage assessment [8], decision
support systems [11], searching candidates for a date, human profile analysis for
missing and unidentified people, automatic news generation for stock exchange
[13], decision making in business [19], and others.

Database 
(Server)

Applica on 
(Client)

Object-Rela onal 
Mapping (ORM)

Doctrine

Fuzzy Extensions

Fig. 1. Client-server architecture with object-relational mapping layer and location of
fuzzy extensions proposed in the paper within the architecture.

On the other hand, procedures and functions that allow fuzzy processing of
data can be implemented on the server side. This involves implementation of the
procedures and functions in the programming language native for the particu-
lar database management system (DBMS). Examples of such implementations
are: SQLf [5], FQUERY [10], Soft-SQL [4], fuzzy Generalised Logical Condition
[9], FuzzyQ [13], fuzzy SQL extensions for relational databases [12,14,18], possi-
bilistic databases [17], and for data warehouses [1,15]. Such an approach usually
delivers universal routines that can be used for fuzzy processing of various data
coming from different domains. This versatility is a great asset, but it binds
users and software developers to particular database management system and
its native language, which may also have some limitations.

2.2 Problem Formulation and Scope of the Work

In both mentioned approaches, the prevalent problem is mapping between classes
of the client software application and database tables, which is necessary for
applications that manipulate and persist data. In the past, each application
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created its own mapping layer in which the client application’s specific classes
were mapped to specific tables in the relational database using dedicated SQL
statements. Object-relational mapping (ORM) brought evolution in software
development by delivering programming technique that allows for automatic
conversions of data between relational databases and object-oriented program-
ming languages. ORM was introduced to programming practice in recent decade
in response to the incompatibility between relational model of database systems
and object-oriented model of client applications. This incompatibility, which is
often referred to as the object-relational impedance mismatch, covers various
difficulties while mapping objects or class definitions in the developed software
application to database tables defined by relational schema. Object-relational
mapping tools mitigate the problem of OR impedance mismatch and simplify
building software applications that access data in relational database manage-
ment systems (RDBMSs). Figure 1 shows the role and place of the ORM tools
in a typical client-server architecture. However, ORM tools do not provide solu-
tions for people involved in the development of applications that make use of
fuzzy data processing techniques.

In the paper, we show extensions to the Doctrine object-relational mapping
tool that allow fuzzy processing of crisp data stored in relational database. Doc-
trine ORM framework is one of several PHP libraries developed as a part of
the Doctrine Project, which is primarily focused on database storage and object
mapping. Doctrine has greatly benefited from concepts of the Hibernate ORM
and has adapted these concepts to fit the PHP language. One of Doctrine’s
key features is the option to write database queries in Doctrine Query Language
(DQL), an object-oriented dialect of SQL, which we extended with the capability
of fuzzy data processing.

3 Extensions to Relational Algebra

For fuzzy exploration of crisp data stored in a relational database we have
extended a collection of standard operations of the relational algebra by fuzzy
selection operation.

Given a relation R with n attributes:

R = {A1A2A3...An}, (1)

a fuzzy selection σ̃ is a unary operation that denotes a subset of a relation R on
the basis of fuzzy search condition:

σ̃
Ai

λ≈v
(R) = {t : t ∈ R, t(Ai)

λ≈ v}, (2)

where: Ai
λ≈ v is a fuzzy search condition, Ai is one of attributes of the relation

R for i = 1..n, n is the number of attributes of the relation R, v is a fuzzy
set (e.g., young person, tall man, normal blood pressure, age near 30), ≈ is a
comparison operator used to compare crisp value of attribute Ai for each tuple
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t from database with fuzzy set v, λ is a minimum membership degree for which
the search condition is satisfied.

The selection σ̃
Ai

λ≈v
(R) denotes all tuples in R for which ≈ holds between

the attribute Ai and the fuzzy set v with the membership degree greater or equal
to λ. Therefore,

σ̃
Ai

λ≈v
(R) = {t : t ∈ R,μv(t(Ai)) ≥ λ}, (3)

where μv is a membership function of a fuzzy set v.
The fuzzy set v can be defined by various types of membership functions,

including:

– triangular

μv(t(Ai); l,m, n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if t(Ai) ≤ l
t(Ai)−l

m−l , if l < t(Ai) ≤ m
n−t(Ai)

n−m , if m < t(Ai) ≤ n

0, if t(Ai) > n

, (4)

where m is the core of the fuzzy set v, [l,m] determines the left spread (bound-
ary) of the fuzzy set, and [m,n] determines the right spread (boundary) of the
fuzzy set.

– trapezoidal

μv(t(Ai); l,m, n, p) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if t(Ai) ≤ l
t(Ai)−l

m−l , if l ≤ t(Ai) ≤ m

1, if m ≤ t(Ai) ≤ n
p−t(Ai)

p−n , if n ≤ t(Ai) ≤ p

0, if t(Ai) > p

, (5)

where [m,n] is the core of the fuzzy set v, [l,m] determines the left spread
(boundary) of the fuzzy set, and [n, p] determines the right spread (boundary)
of the fuzzy set.

– Gaussian
μv(t(Ai); c, s,m) = e−(

t(Ai)−c

2s )m

, (6)

where c is called a centre, s is a width, and m is a fuzzification factor (e.g.,
m = 2).

Figure 2 shows how filtering (selection) with fuzzy search conditions works for
sample data stored in tables Measurement and Measure of a relational database
(Tables 1 and 2).

Fuzzy selection can be performed on the basis of multiple fuzzy search con-
ditions (or mixed with crisp search conditions), e.g.:

σ̃
Ai

λi≈vi Θ...Θ Aj

λj≈vj

(R) = {t : t ∈ R, t(Ai)
λi≈ vi Θ...Θ t(Aj)

λj≈ vj}, (7)
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Table 1. Simplified structure of the Measure table

ID Name

1 BMI

2 Systolic blood pressure

3 Diastolic blood pressure

4 PLT

Table 2. Simplified structure of the Measure table

MEASURE ID VALUE USER ID

1 27 1

2 105 1

1 31 2

2 136 2

a) b)

1

λ

24 28 32 BMI

μV value
=31

value
=27 1

λ

90 110 130 140 SBP

μV value
=105

value
=136

Fig. 2. Filtering crisp data (selection) with fuzzy search conditions for fuzzy sets: (a)
body mass index (BMI) around 28 (b) normal systolic blood pressure (SBM is normal,
In both cases λ = 0.5.

where: Ai, Aj are attributes of relation R, i, j = 1...n, i �= j, vi, vj are fuzzy sets,
λi, λj are minimum membership degrees for particular fuzzy search conditions,
and Θ can be any of logical operators of conjunction or disjunction Θ = {∧,∨}.
Therefore:

σ̃
Ai

λi≈vi Θ...Θ Aj

λj≈vj

(R) = {t : t ∈ R,μvi
(t(Ai)) ≥ λi (8)

Θ...Θ μvj
(t(Aj)) ≥ λj},

where: μvi
, μvj

are membership functions of fuzzy sets vi, vj .

4 Extensions to Doctrine ORM

We have extended the Doctrine ORM library with a Fuzzy module that enables
fuzzy processing of crisp data stored in a relational database. In this section,
we describe the most important classes extending standard functionality of the
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Doctrine ORM library with the possibility of fuzzy data processing. Additionally,
we present a sample usage of the classes in a real application, while performing
a simple fuzzy analysis of ambulatory data.

4.1 Class Model of the Fuzzy Module

Extensions to Doctrine object-relational mapping tool are gathered in a dedi-
cated programming module, called Fuzzy. The module is available at https://
gitlab.com/auroree/fuzzy. The Fuzzy module is universal, i.e., independent of
the domain of developed application and data stored in a database. Software
developers can use the implemented functionality for fuzzy processing of any
values stored in the database, e.g., atmospheric pressure, body temperature,
person’s age, or the number of hours spent watching television. It is necessary
to select the type of membership function defining a fuzzy set and provide the
relevant parameters.

The Fuzzy module provides implementations of functions extending Doc-
trine Query Language (DQL), which is query language of the Doctrine ORM
library. Classes delivered by the Fuzzy module are presented in Fig. 3. They
are marked in green, in contrast to native PHP classes and classes of the Doc-
trine ORM/DBAL library that are marked in white. In order to enable fuzzy
data processing in the ORM layer we had to implement a set of classes and
methods that lead to proper generation of SQL queries for particular func-
tions of fuzzy data processing. To this purpose, we have extended the Doc-
trine\ORM\Query\AST\Functions/FunctionNode class provided by the Doc-
trine ORM library (Fig. 3). Classes that inherit from the FunctionNode class
are divided into two groups placed in separate namespaces: membership func-
tions (e.g., InRange, Near, RangeUp) and general-purpose functions (e.g., Floor,
Date). They all implement two important methods: parse and getSql. The parse
method detects function parameters in the DQL expression and stores them
for future use, then the getSql method generates an expression representing a
particular mathematical function in the native SQL for a database.

The InRange class represents classical (LR) trapezoidal membership function
and is suitable to describe values of a domain, e.g., a fuzzy set of normal blood
pressure, but also near optimal LDL Cholesterol (which are in certain ranges of
values). The RangeUp and RangeDown classes represent special cases of trape-
zoidal membership functions - L-functions (with parameters n = p = +∞) and
R-functions (with parameters l = m = −∞), respectively. They are both defined
automatically with respect to the fuzzy sets of chosen values of a domain and
are suitable to represent selection conditions, such as HDL below the norm or
slow heart rate (R-functions) and LDL above the norm or high blood pressure
(L-functions). The Near class represents triangular membership functions and
is suitable, e.g., in formulating fuzzy search conditions, like age about 35. The
NearGaussian class represents Gaussian membership function and has similar
purpose to triangular membership function.

The Fuzzy module also provides a function factory (FuzzyFunctionFactory
class), which creates instances of classes for the selected membership functions,

https://gitlab.com/auroree/fuzzy
https://gitlab.com/auroree/fuzzy
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Fig. 3. Overview of classes provided by the Fuzzy module extending the Doctrine ORM
library.
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based on the specified type of the function (one of the values of FuzzyFunction-
Types), e.g., instance of the NearFunction class for the Near characteristic func-
tion. The function factory class generates appropriate DQL expression together
with fuzzy selection condition (as formally defined in Sect. 3) on the basis of
declared query type (accepted types are constants of the class FuzzyModes).
The Fuzzy module also contains classes for various tests, e.g., for testing SQL
statements generated by the extended ORM library for particular membership
functions (e.g., InRangeTest, NearTest that inherit from FuzzyTestBase class).

4.2 Sample Usage of the Doctrine ORM Library with Fuzzy
Extensions

In this section, we present a sample usage of the Doctrine ORM library with
developed Fuzzy module in the analysis of ambulatory data. We show how the
fuzzy extensions are utilized in the PHP code of our software application that
allows reporting on measurements stored in MySQL relational data repository
by calling appropriate DQL queries of the Doctrine ORM library. Finally, we
present the form of the SQL query executed in the relational database that
corresponds to the DQL query.

Presented sample of the code refers to relational table measurement con-
taining ambulatory measurements in the value attribute for particular measures
identified by measure id attribute (like in Table 2 in Sect. 3). In the ORM layer,
this table is mapped to a class called Measurement, which attributes correspond
to fields (columns) of the measurement table. Fuzzy search conditions, created
by means of appropriate classes of the Fuzzy module, will be imposed on the
value attribute - Fig. 4, Sect. 2 - for selected measures of systolic blood pressure
and diastolic blood pressure (1).

Part of the PHP code was skipped for the sake of clarity of the presenta-
tion. In the presented example we assume that domains of both measures are
divided into three fuzzy sets: normal, low, and high blood pressure, according to
applicable standards for systolic and diastolic blood pressure. The starting point
in this case is to define fuzzy sets for normal systolic and diastolic blood pressure
with respect to which we define low and high fuzzy sets for both measures. To
represent normal blood pressure we use trapezoidal membership functions (spec-
ified by IN RANGE function type in the Fuzzy module) with 90, 110, 130, 135
parameters for systolic blood pressure (3) and with 50, 65, 80, 90 parameters for
diastolic blood pressure (4). We define both membership functions by invoca-
tion of the create function of the FuzzyFunctionFactory class. We are interested
in selecting patients, whose blood pressure (both types) is elevated (high), i.e.,
above the normal value, with the minimum membership degree equal to 0.5 (8).
Therefore, we have to define fuzzy search conditions by using getDql method
of the InRangeFunction class instance returned by the FuzzyFunctionFactory.
Then, we have to use ABOVE SET fuzzy mode in the getDql method in order
to get values above the normal. In such a way, we obtain two fuzzy search con-
ditions for DQL query that will be used in the where clause. To build the whole
analytical report we formulate a query by using Doctrine Query Builder with
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/** @var MeasurementRepository $repository */

$repository = ...;

$sysMeasureId = ...; // (1)

$diaMeasureId = ...; // (1)

$valueColumnName = ’mm.value’; // (2)

// (3)

$sysFunction = FuzzyFunctionFactory::create(

FuzzyFunctionTypes::IN_RANGE,

[90, 110, 130, 135]

);

// (8)

$sysDqlCondition = $sysFunction->getDql(

FuzzyModes::ABOVE_SET,

$valueColumnName,

0.5

);

// (4)

$diaFunction = FuzzyFunctionFactory::create(

FuzzyFunctionTypes::IN_RANGE,

[50, 65, 80, 90]

);

// (8)

$diaDqlCondition = $diaFunction->getDql(

FuzzyModes::ABOVE_SET,

$valueColumnName,

0.5

);

// (9)

$query = $repository->createQueryBuilder(’mm’)

->select(’u.id, m.name, mm.value’)

->join(’mm.user’, ’u’) // (5)

->join(’mm.measure’, ’m’) // (6)

->where("(mm.measure = {$sysMeasureId} AND {$sysDqlCondition})

OR (mm.measure = {$diaMeasureId} AND {$diaDqlCondition})") // (7)

->getQuery();

$result = $query->getResult();

Fig. 4. Sample usage of the Fuzzy module in PHP code.

appropriate clauses of the query statement (9). We join User (5) and Measure
(6) entities/classes to add data about patients and measure types. Finally, we
add fuzzy search conditions in (7). The query will return only those rows for
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which values of both measures belong to high fuzzy set (i.e., above the norm)
defined for the particular measure.

The PHP code presented in Fig. 4 produces the DQL query shown in Fig. 5,
which will be translated to SQL query for relational database (Fig. 6) by the
Doctrine library. Translation of the query built up with the PHP Query Builder
(Sect. (9) in Fig. 4) to DQL query produces WHERE clause containing two
invocations of the RANGE UP functions with appropriate parameters of L-type
membership functions representing above the norm fuzzy sets for particular mea-
sures.

SELECT u.id, m.name, mm.value

FROM Mazurkiewicz\TrackerBundle\Entity\Measurement mm

INNER JOIN mm.user u

INNER JOIN mm.measure m

WHERE (mm.measure = 2 AND RANGE_UP(mm.value, 130, 135) >= 0.5)

OR (mm.measure = 3 AND RANGE_UP(mm.value, 80, 90) >= 0.5)

Fig. 5. DQL query with two fuzzy search conditions for PHP code presented in Fig. 4

These invocations are then translated to the CASE ... WHEN ... THEN
statements in the WHERE clause of the SQL query command (Fig. 6).

SELECT u0_.id AS id_0, m1_.name AS name_1, m2_.value AS value_2

FROM measurement m2_

INNER JOIN user u0_ ON m2_.user_id = u0_.id

INNER JOIN measure m1_ ON m2_.measure_id = m1_.id

WHERE

(m2_.measure_id = 2 AND CASE

WHEN m2_.value <= 130 THEN 0

WHEN m2_.value <= 135 THEN (m2_.value-130)/(135-130)

ELSE 1 END >= 0.5

)

OR (m2_.measure_id = 3 AND CASE

WHEN m2_.value <= 80 THEN 0

WHEN m2_.value <= 90 THEN (m2_.value-80)/(90-80)

ELSE 1 END >= 0.5

)

Fig. 6. SQL query translated by fuzzy extension of the Doctrine library from DQL
query presented in Fig. 5

5 Experimental Results

We tested performance of the fuzzy extension for the Doctrine ORM library in
several series of tests. We were primarily interested in verification of how the
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Fig. 7. Membership functions for systolic blood pressure (a). Membership function for
the fuzzy set normal PLT (b).

necessity of calculation of value of a membership function influences the execu-
tion time of particular fuzzy queries with respect to classical queries that operate
on given ranges of values (appropriately chosen intervals). For this purpose, we
used a database containing 2,500,000 records in the Measurement table coming
from laboratory tests.

Results of performance tests are presented in Table 3 for three chosen sample
fuzzy queries (Q1–Q3) retrieving measurement data for patients having:

– Q1 - normal systolic blood pressure (Fig. 7a),
– Q2 - systolic blood pressure above the normal (Fig. 7a),
– Q3 - normal platelet count (PLT) (Fig. 7b),

with a minimum membership degree λ = 0.5. In a real implementation, we
tested many more queries, but they all shown the same execution time tendency.

Queries Q1–Q3 contain fuzzy search conditions. Definitions of fuzzy sets used
in these search conditions are presented in Fig. 7. Particular parameters of the
membership functions were set on the basis of arbitrary expert’s knowledge, and
include some tolerance. These parameters can be changed in specific implementa-
tions, which leads to different results. Therefore, they must be assumed carefully,
while consulting the shape of membership functions with domain experts.
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Additionally, for queries Q1–Q3 we created their classical counterparts with
precise search criteria based on intervals, where left and right boundaries of the
intervals were calculated for the membership degree λ = 0.5. Particular fuzzy
queries and their precise counterparts returned the same sets of results, but
were parametrized in a different way - precise queries need exact values of left
and right boundaries of intervals, while fuzzy queries need only the minimum
membership degree λ, above which the search condition is satisfied.

Table 3. Results of performance tests for fuzzy queries Q1–Q3 and their precise coun-
terparts for the minimum membership degree λ = 0.5.

Query Average execution time (s) Difference Relative

Precise query Fuzzy query (s) difference (%)

Q1 0.491274 0.496286 0.005012 1.02

Q2 0.485716 0.497575 0.011859 2.44

Q3 0.610142 0.627314 0.017172 2.81

Results of performance tests presented in Table 3 proved that execution times
of fuzzy queries were only slightly worse than execution times of precise queries
that returned the same sets of results. Fuzzy queries were executed relatively
1–3% longer than their precise counterparts. This means that for users of the
ORM library with fuzzy extensions the difference in execution time is almost
imperceptible.

6 Discussion and Concluding Remarks

Our research on extending the Doctrine object-relational mapping framework
toward fuzzy data processing show that it is possible to incorporate fuzzy logic
in the ORM layer and enhance standard database querying with new capabilities
of imprecise, proximity-based or similarity-based searching. The enhancement
brings new power to the analysis of crisp, numerical data stored in databases,
which is important when processing large volumes of biomedical or ambulatory
data, and can be now performed in the ORM layer, which is important for
software developers. As proved by our experiments, performance costs of such
an enhancement are negligible compared to the additional analytic possibilities
that are obtained by developers of database applications.

Fuzzy querying with fuzzy search conditions provides several benefits com-
pared to precise queries. Synthetic comparison of precise and fuzzy queries in
terms of flexibility of queries and corresponding requirements is presented in
Table 4. First of all, fuzzy queries give the possibility to easily filter out uninter-
esting data on the basis of soft search conditions, while still keeping similar data
in the final result set. Therefore, they narrow the result set to similar cases, which
is very important while performing large-scale medical screenings based on the
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Table 4. Comparison of fuzzy and precise queries in terms of flexibility, requirements,
and performance.

Fuzzy queries Precise queries

+ Soft filtering - including similar cases − Hard filtering - similar data filtered
out

+ Require value of the minimum
membership degree λ in a fuzzy search
condition

− Require crisp values in search
conditions, e.g., left and right
boundaries of an interval

± Require expert that arbitrary defines
fuzzy sets and corresponding membership
functions

− Require users to have knowledge of
data domain

− Require additional calculations of
membership degrees, which may affect
performance

+ No additional calculations are
required

+ advantage, − disadvantage

analysis of various types of biomedical data, including ambulatory data. Hard
filtering with precise queries may cause that important cases leading to the same
medical conclusions and therapeutic recommendations will be just skipped, as
they not satisfy precise search conditions. Secondly, precise queries require spec-
ification of crisp values for their filtering conditions. These crisp values may not
be known for the final users or may require further investigations to know them,
especially in medical domain. On the other hand, fuzzy queries require specify-
ing the minimum membership degrees λ for fuzzy search conditions, which may
also be a problem, but we must remember that they decide about the similar-
ity degree for data that is returned in the result set. Therefore, they can be
chosen in several trials narrowing the final result set in several following steps.
Consequently, precise queries require that users of the developed system have a
specialized knowledge of the domain of analyzed data, which is sometimes very
difficult to gain unless they are experts. For example, when analyzing results of
laboratory tests users have to find out what are the normal ranges for specific
ambulatory tests, if they are not doctors or laboratory staff, which is a weakness.
This can be also a weakness of fuzzy queries, since for many domains the require-
ment for dividing the analyzed domain into proper ranges and defining proper
membership functions for identified fuzzy sets is prevalent and can be a spark for
discussion. However, for ambulatory data and many other types of biomedical
data these values are usually arbitrary defined by experts and are indisputable
for, at least, some period of time. Therefore, for such domains this does not
constitute a problem and causes the use of fuzzy search conditions with their
large flexibility a more natural solution. Finally, a weak point of fuzzy queries is
the necessity to calculate membership degrees for each tuple from the database
processed by the fuzzy query, which may negatively affect performance of the
query. However, the fuzzy extensions to the ORM layer that we have developed
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proved to be only 1–3% slower for tested queries, which allows us to ignore this
slight decrease in performance in the face of much better querying capabilities.

Our fuzzy extensions to the Doctrine library mitigate the problem of object-
relational impedance mismatch for those software developers that want to per-
form fuzzy searches while working in the object-oriented model, regardless of
the data domain being analyzed. It is limited to the PHP technology of building
client software tools, but universal in terms of the type of analyzed data and
built application. The Fuzzy module for Doctrine framework presented in the
paper enables re-usability of procedures for fuzzy data processing for any client
application that is developed and any data that is analyzed, which was a limita-
tion of client-based solutions mentioned in Sect. 2.1. On the other hand, software
developers are not bound to a particular database management system and its
native query language, which was a weakness of server-side solutions presented
in Sect. 2.1. This ensures broader portability of our fuzzy extension. In such a
way, our solution complements a collection of existing solutions and, to the best
of our knowledge, is first such an extension for the ORM layer.
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