
Evaluation of XPath Queries Over XML
Documents Using SparkSQL Framework

Radoslav Hricov, Adam Šenk, Petr Kroha, and Michal Valenta(B)

Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

{hricorad,senkadam,krohapet,valenta}@fit.cvut.cz

Abstract. In this contribution, we present our approach to querying
XML document that is stored in a distributed system. The main goal
of this paper is to describe how to use Spark SQL framework to imple-
ment a subset of expressions from XPath query language. Five different
methods of our approach are introduced and compared, and by this, we
also demonstrate the actual state of query optimization on Spark SQL
platform. It may be taken as the next contribution of our paper. A sub-
set of expressions from XPath query language (supported by the imple-
mented methods) contains all XPath axes except the axes of attribute
and namespace while predicates are not implemented in our prototype.
We present our implemented system, data, measurements, tests, and
results. The evaluated results support our belief that our method sig-
nificantly decreases data transfers in the distributed system that occur
during the query evaluation.

Keywords: Spark · SQL · XML · XPath · Big data

1 Introduction

Currently, XML is a very popular language for its platform independent way of
storing data. The XPath query language is one of many possibilities to formulate
queries over data stored in XML documents. Having big data stored in XML
documents, the problem is how to retrieve data efficiently, i.e., how to implement
the XPath query language for big data.

In this paper, we investigate the case in which a single unit of data, usually
a file, can be processed by in-memory processing methods. This limitation is
often met, because it is currently possible to use computers that have 128 GB
operating memory.

The main topic of this paper is to describe how to use Apache Spark SQL
framework to implement a subset of expressions from XPath query language
under conditions described above. Apache Spark is a fast evolving engine for
in-memory big data processing that powers several modules. One of the modules
is Spark SQL. It works with structured data using SQL-like query language
or domain-specific language of DataFrame. We investigate its possibilities and
potential limitations.
c© Springer International Publishing AG 2017
S. Kozielski et al. (Eds.): BDAS 2017, CCIS 716, pp. 28–41, 2017.
DOI: 10.1007/978-3-319-58274-0 3

Evaluation of XPath Queries Over XML Documents 29

XML documents can be processed by XSL technologies including XSLT,
XPath, and XQuery. We choose XPath technology, as we worked with it suc-
cessfully before [7,11]. We map XML data into the relational tables, and we map
XPath queries to the SQL queries.

The paper is organized as follows. In Sect. 2, we present work related to our
investigations. Concretely, we start with Spark SQL in Sect. 3.1. We explain why
we need to transform XML documents into relational tables in Sect. 3.2.

Section 3.3 is dedicated to the investigated methods.
Our approach to query process analysis and the architecture of our system

are given in Sect. 3. In Sect. 4, we describe the data we use and measurements
we made, and we evaluate the results obtained. Finally, in Sect. 5, we draw
conclusions and discuss possible future work.

2 Related Work

In this section, we evaluate work related to our paper. We focus on three inher-
ently related topics: XML-to-relation mapping, Storing XML data in NoSQL
databases and distributed evaluation of XPath and XQuery queries.

Starting with strategies for mapping XML to relations, various ways have
been proposed in works such as [1,3].

On the other hand, the paper [10] introduces mapping methods that preserve
XML node order.

In this work, several indexing methods are described, and comparisons of
creating, updating, and reading cases are given.

Paper [8] introduces mapping of XML data to quasi-relational model. The
authors propose a simple, yet efficient algorithm that translates XML data into
structure savable in relational columns. Stored data can be queried by SQL
syntax based language - SQLxD.

The following papers describe mapping into various NoSQL database sys-
tems. Specifically, the paper [9] introduces XML format mapping into a key-value
store. Three possible ways of mapping are compared, however, query evaluation
was not investigated. The paper [4] describes a distributed query engine used
in Amazon Cloud. Three possible index strategies are introduced, and a subset
of XPath and XQuery is implemented. However, the aim of the present work is
to scale queries over a big set of XML documents. It does not investigate paral-
lel processing of a single document. The implemented subset of XPath includes
fewer operators than our solution.

Finally, distributed evaluation of XPath and XQuery language over a single
document is investigated in [2]. The query engine introduced in this work can
compute XML queries including only a small subset of XPath axis identifiers.
Some of the papers published in recent years use MR framework for efficient
XML query processing. The MRQueryLanguage is introduced in [6]. The query
language is designed for querying distributed data, but it brings a new syntax dif-
ferent from known XML query languages like XPath and XQuery. HadoopXML

30 R. Hricov et al.

[5] is a suite enabling parallel processing of XPath queries. Queries are eval-
uated via twig join algorithm. Unfortunately, the XPath subset (that can be
evaluated in HadoopXML) includes only root-to-leaf axis identities: child, and
descendant or descendant-or-self. Evaluation of all XPath axes using MR frame-
work is described in [11]. Authors focus on mapping complete XPath axes set to
a bash of MR queries. The results are satisfying, but evaluation of some axes is
highly inefficient.

3 Our Approach

First, we describe the Spark technology that we used. We focus both on the Spark
core and on the SparkSQL framework. Then, we introduce the architecture of
our system. In this part, we show how to map the XML data in data processable
by SparkSQL, how to store it, how to translate the XPath queries and evaluate
them, and how to reconstruct the results back to XML.

Finally, we describe our original approach to XPath query translation. We
introduce five different methods that can be used for processing XPath queries
using SparkSQL. In the last part of this section, we evaluated the methods and
compared them.

3.1 Used Technology - Spark

Apache Spark is a multipurpose cluster computing system for a large-scale data
processing. Spark is an open source engine originally developed by UC Berkley
AMPLab and later adopted by Apache Software Foundation in 2010. Spark
provides fast in-memory computing, and its ecosystem consists of higher-level
combinable tools including Spark Streaming, Dataframes and SQL, as well as
MLlib for machine learning, and GraphX for graph processing. The core engine
of Spark provides scheduling, distributing, and monitoring of applications across
the computing cluster. Spark is implemented in Scala that runs on Java Virtual
Machine. API of Spark and its tools are available in Scala, Java, Python and R.

The Programming of distributed operations is based on RDD (abbr. Resilient
Distributed Dataset). It is a Spark’s main abstraction. It is a collection of objects
that can be processed in parallel.

In our work, we use the SparkSQL module. This module enables to query
RDDs using SQL-like syntax, so even programmers not familiar with Spark API
can query data in parallel using Spark. However, SparkSQL implements only a
subset of SQL language, which brings severe limitations.

3.2 Transformation of XML Document to Data Frames

The main programming abstraction of SparkSQL is DataFrame. This is a dis-
tributed collection that is similar to the concept of relational table. The tree
structure of XML document is an ordered data model based upon the order of
each element within the XML document. We mainly focus on the selection of

Evaluation of XPath Queries Over XML Documents 31

nodes, and we want to be able to reconstruct selected nodes back to the valid and
ordered XML. Accordingly, we are not interested in insertion or deletion of nodes.
The transformation of XML document must be able to transform data from an
unordered relational model back to the XML document. Hence, we decided to
follow the paper [10], since it shows that XML ordered data model can indeed
be efficiently supported by a relational database system. This is accomplished
by encoding the data order as a data value. There are three methods for trans-
formation of XML documents in tables [1] global order encoding, local order
encoding, and Dewey order encoding.

From the three encodings mentioned above, the Dewey order encoding will be
used here, since it is the universal solution, and the information stored in Dewey
path is sufficient. Compared with the global encoding, it can be a bit slower
(depending upon the comparison of the paths). Dewey path implicitly contains
information about the node’s ancestor nodes and also about its position among
the siblings. Thus, Dewey encoding is the best option for our purposes.

The process of transformation begins with a numbering of elements and
text nodes. Based on the pre-order traversal of the XML tree, a Dewey path
is assigned to each node.

In the second phase of the transformation, the Dewey paths are recomputed
to preserve the document order information, and it also makes the paths com-
parable as String . Now, each part (parts are separated by dots) of Dewey paths
has the same length. The number of zeros in its prefix depends upon the number
of digits of the highest value of Dewey path part among all Dewey paths. This is
also helpful in SQL ORDER BY operation. Additionally, during the first phase,
i.e. during the numbering phase, the paths to the certain nodes built from the
names of nodes are created and assigned to each stored node.

A file containing serialized, transformed XML document is stored on a disk.
When we query the document, it has to be loaded into memory and serialized back
to Data Frame. We use Spark core to create RDD of XML nodes. Each row is read
and split to the Node object. Node object is then passed to RDD. DataFrame may
be created directly from RDD, but it is necessary to define a schema of a table. We
created a class Node, and by reflection, the schema defined through Node class was
applied on the RDD. Finally, a DataFrame was created from the RDD.

We experimented with datasets shown in Table 1. See Sects. 3.3 and 4 for
results.

Table 1. Size comparison of generated tables

XML file Text file Number of rows

books.xml 1.1 kB 1.4 kB 60

nasa.xml 25.1 MB 45.8 MB 791 922

proteins.xml 716.9 MB 2.3 GB 37 260 927

To make it easier for the reader to follow the discussion, let us show a sample
of an XML file translated into a (relational) table.

32 R. Hricov et al.

+--------------+------+----+--------------------+

| dewey|pathId|type| value|

+--------------+------+----+--------------------+

| 00.01| 0| 1| bookstore|

| 00.01.01| 1| 1| book|

| 00.01.01.01| 2| 1| title|

|00.01.01.01.01| 3| 3| XQuery Kick Start|

| ...| ...| ...| ...|

+--------------+------+----+--------------------+

Fig. 1. Nodes’ table of transformed XML

Optionally, an additional table containing the pathId and Path columns may
be generated. It may be helpful for a particular query evaluation, but in principle,
the table in Fig. 1 is enough. The column type contains the node type according
to the W3C classification.

3.3 XPath Queries Evaluation

In this section, we describe our approach to processing of XPath queries. We have
an XPath query and that, subsequently, must be translated into the SQL query
that can be evaluated in the SQL module of Spark. According to the description
given above, we developed two applications. The first one is an XML processor:
it transforms an XML document into a relational table, and we introduced it in
the previous section. The second one is a driver program for Spark: it processes
an XPath query (using SQL query or via Spark SQL API), and it applies it on
DataFrame built from the transformed XML document. The result of the driver
program operation is the final table of nodes; it may be further processed.

Fig. 2. Local cooperation of applications

Figure 2 shows how the applications locally cooperate to return XPath query
result. The transformed XML document is stored as a text file. Both the text

Evaluation of XPath Queries Over XML Documents 33

file and the XPath query are used as parameters of a driver program that is
then running on Spark. The result of evaluation of a XPath query by the driver
program is a JSON file stored in HDFS.

We implemented a simple XPath parser that parses XPath queries that were
inputted as parameters of the driver program. A support for abbreviated forms
of some XPath steps was added to the parser. In this prototype application, the
abbreviated forms of child axis as / and descendant as // are allowed. Further,
the wildcard * is an alias for any element node, which may be used in the queries
that are parsed by a parser.

The whole query is split to the separated XPath steps, and the abbreviated
forms are resolved. Then, all steps are evaluated step by step according to the
desired axis. The step by step evaluation is implemented by an indirect recur-
sive algorithm. It means that every next step is dependent upon the result of
the previously evaluated step. This parser is working just with axes that were
mentioned above and does not support predicates.

In following paragraphs, we describe five translation methods we investigated:

– Pure SQL method
– Join-based SQL method
– SQL query via DataFrame API
– Left semi join method
– Broadcasted lookup collection.

First, we introduce a native, trivial method, and then it will be improved in
the next subsections. The next two methods of use apply the SQL queries to
evaluate XPath queries. The other methods use a domain specific language of
Spark SQL API.

Pure SQL Method. In the early familiarization with the Spark SQL module,
we tried to directly translate an XPath query to the SQL query. For a faster
local testing, we were working with a small table of nodes containing 60 rows.
In all our tests, we performed translations of simple XPath queries that covered
all XPath axes.

The generated SQL query starts with a selection of an auxiliary node that
represents a parent of the root node. It is an alternative to a document statement
doc(‘‘xmlFile.xml’’) in XPath. Then, the inputted XPath query is translated
step by step. After the translation of the last step, one more selection and fil-
tration are needed. It completes the result of query by selecting all descendant
or self nodes of previously selected nodes. It is because the XPath steps traverse
through the nodes, so by the last extra step, their content is appended.

Let us show a basic example to illustrate our approach and to support better
understanding of following improvements. The example implements an XPath
expression //book/author/:

SELECT p2.dewey, p2.pathId, p2.type, p2.value FROM nodes p2,
(SELECT p1.dewey, p1.pathId, p1.type, p1.value FROM nodes p1,

34 R. Hricov et al.

(SELECT p0.dewey, p0.pathId, p0.type, p0.value FROM nodes p0,
(SELECT ’0’ as dewey) n0

WHERE p0.type=1 AND n0.dewey <= p0.dewey
AND p0.value=’book’
AND isPrefix(n0.dewey, p0.dewey)) n1

WHERE p1.type=1 AND n1.dewey < p1.dewey
AND p1.value=’author’
AND isChild(n1.dewey, p1.dewey)) n2

WHERE n2.dewey <= p2.dewey AND isPrefix(n2.dewey, p2.dewey)

We start with the parent of document root, i.e., doc(‘‘xmlFile.xml’’) – label
n0, followed by its descendant nodes named book, etc. Functions isChild and
isPrefix are based on Dewey encoding string, and their meaning is obvious.

Using our small testing file, it was relatively fast to compute a result; however,
when we started with processing larger table of nodes (containing 791922 rows),
problems with performance occurred.

After we examined an execution plan, we found out that for this naive
method, it was actually the Cartesian product followed by filtration that was
executed. It was the bottleneck of this method.

Remember that details of the following improvements can be found in [7].
We cannot discuss the problem fully given the limited space.

Join-Based SQL. In this case, the best solution is to avoid Cartesian product
and apply an SQL JOIN clause instead. Hence, the JOIN ON conditions were
defined to join results of a single XPath step. The idea is to select nodes that
are candidates for the next context node, then combine them with the current
context node and, based upon the relation, filtrate suitable nodes from joined
pairs by using user defined functions. Note that the context node is a set of
nodes returned by executing one step of XPath query. We use this term in the
next sections.

By analyzing Spark’s execution plans, we finally decided for RIGHT JOIN
(LEFT JOIN is also acceptable, but it depends upon the order in which XPaths
steps are joined). Although the type of JOIN was defined, Spark has generated
Cartesian product in some cases because joins conditions were not strong enough.
The conditions were based on non-equality of Dewey paths, and the user defined
functions were used in a filter condition. To solve this, the join condition had
to be enhanced, so instead of filtering based on a user defined function, we
add required UDF into the join condition. For the sake of completeness, let us
add that a JOIN, whose condition is based only upon the user defined function
(that requires arguments both from left and right tables), invokes the Cartesian
product: all pairs must be processed by UDF.

After the changes were done, the performance was admittedly better than
the performance of the Cartesian product using method.

We compare the two previously discussed methods in Table 2.
As we can see, the usage of OUTER JOIN and the proper definition of JOIN

conditions have a crucial impact upon the performance. After twenty minutes

Evaluation of XPath Queries Over XML Documents 35

Table 2. Performance of translated queries - Cartesian product versus Right JOIN

Table Method Query Time [s]

1 Books Cart. prod //book/author 9.790

2 Books RIGHT JOIN //book/author 8.372

3 Nasa Cart. prod //author/suffix 1200*

4 Nasa RIGHT JOIN //author/suffix 232.695

of computing, we were forced to cancel the third measurement marked with
asterisk. We realized that Cartesian product in Spark is really slow.

SQL Query via DataFrame API. So far, we have worked only with pure
SQL queries. However, DataFrame contains its own API that may be used to
obtain the same results as by using SQL queries. We rewrote the previous SQL
query that used RIGHT JOIN by calling a certain combination of functions from
API. Using API, we changed the order of processed axes, so instead of RIGHT
JOIN, the LEFT JOIN was applied.

Since we know that SQL and DataFrame shared the same optimization
pipeline, the physical plans vary in small details - depending upon the imple-
mentation - and they actually do the same work. Broadcast Nested Loop Join
is realized in Spark for OUTER JOINs. It compares the sizes of tables to be
joined, and it broadcasts the smaller one across the workers. As it was expected,
the durations of the computations of SQL and DataFrame are almost the same,
since the optimizer generates the same physical plan.

Alternative Methods Without Joins. After the previous findings, we
decided to restrict the usage of JOIN in further experiments. Several alterna-
tives - such as nested queries, SQL IN operator or SQL UNION statement - had
been tested, but the results were not satisfiable.

Instead, we decided to avoid joins altogether. To simplify the previous meth-
ods, we wanted to select those nodes of some XPath step that are in desired
relation with at least one node from the nodes of previously evaluated XPath
step. For this purpose, the best option is to use IN operator.

We wrote a user defined function Parent() that cuts the last part of inputted
Dewey path, and since Dewey path contains information about all ancestors,
this function returns the Dewey path of its parent node. This is the valid SQL
query and both - the query and the nested query - are executable, though, as it
turned out, Spark does not think the same.

Unfortunately, Spark SQL is not able to execute nested SELECT follow-
ing the WHERE clause. Using Spark SQL API is not applicable either: Spark
evaluates it in a different way - as expected.

Left Semi Join. As mentioned above, the IN clause may be used just with a
joined table. We realized that Spark SQL provides LEFT SEMI JOIN - and it

36 R. Hricov et al.

turned out to be more effective than all of our previous attempts. First, let us
explain how LEFT SEMI JOIN works.

“Semi” means that the result contains just rows returned from one table. In
case of LEFT SEMI JOIN, just the rows from the left table are returned. LEFT
SEMI JOIN is based upon the existence of records in the right table. It means
that if there is a record in the right table that fulfills the JOIN ON condition,
just this one record from the left table is returned.

Using this method, we implemented a translation of XPath steps for parent,
child, ancestor, ancestor-and-self, descendant, and descendant-or-self axes. Other
axes have to be implemented in a different manner, a one that does not use LEFT
SEMI JOIN, but it uses, for example, user defined functions (UDF). It is because
the implemented axes are based on prefixes.

Table 3 compares the computation times using SQL and DataFrame.

Table 3. SQL versus DataFrame

Table Method Query Time [s]

1 Books DataFrame //book/author 8.313

2 Books SQL //book/author 8.372

3 Nasa DataFrame //author/suffix 231.989

4 Nasa SQL //author/suffix 232.695

5 Nasa DataFrame //suffix 219.012

6 Nasa SQL //suffix 217.818

Broadcasted Lookup Collection. Concerning the JOIN statement, in Spark
tutorials, it is recommended to set a table that is repeatedly used in joins as a
broadcast variable, and then join it. This table is often considered as a lookup
table.

Since when we know that it is impossible to work with two DataFrames at
the same time without joining them together, we had to find a way out of this
loophole.

We adapt the idea of lookup table, but since we had bad experience with
the joins, we wanted to avoid them. To do that, we create a collection from the
context node by applying collect action on the DataFrame.

First, the action collect creates a collection of Strings where each element is a
Dewey path. Then, we register a user defined function, and during the registra-
tion, the broadcast variable from the collection is created. The input parameter of
the user defined function is a Dewey path of a candidate for a member of the new
context nodes. The candidates for a new context node are all rows whose values
of column value fulfill the node test of XPath step. The called UDF (User Defined
Function) checks whether the relationship between inputted Dewey path and the
Dewey paths in the collection of the context node is as it is desired. If the UDF is
evaluated as true, the currently checked node will be a member of the next lookup

Evaluation of XPath Queries Over XML Documents 37

table. The advantage of this method is that each executor may have its own parti-
tions of input file in memory, and just lookup collections are collected to the driver
and then broadcasted among other executors.

The user defined functions used in this method are different from those that
are used in the Pure SQL discussed method in Sect. 3.3. We created UDF sep-
arately for each axis. The difference is that these functions, firstly, create a
broadcast variable and then, according to the axis specifier, they detect whether
the examined node belongs to the desired axis that was desired. Instead of two
input parameters, just one is required by UDFs in this method, given that they
use the broadcast variable.

Also, in this method, the evaluation starts with a selection of a parent node
of a root node, and then independent XPath steps are evaluated step by step.

By the evaluation of the last XPath step, the result nodes are obtained, but
still, their content is not text nodes or other descendant elements. So, the last
step of the evaluation is to get them in the required format.

Table 4 shows a comparison of the method using LEFT SEMI JOIN and the
method using lookup collections. Unlike the previous measurement in Sect. 3.3,
in this case, both methods do as a first step caching of partitions of processed
DataFrame into the memory.

Table 4. Performance of translated queries - LEFT SEMI JOIN versus Lookup col-
lection

Table Method Query Time [s]

1 Books Lookup col //book/author 2.442

2 Books LEFT SEMI JOIN //book/author 3.064

3 Nasa Lookup col //author/suffix 7.024

4 Nasa LEFT SEMI JOIN //author/suffix 9.492

5 Nasa Lookup col //suffix 5.856

6 Nasa LEFT SEMI JOIN //suffix 7.235

7 Protein Lookup col //formal 418.305

8 Protein LEFT SEMI JOIN //formal 423.819

9 Protein Lookup col //organism/formal 1088.489

10 Protein LEFT SEMI JOIN //organism/formal 3441.569

4 Experimental Results and Discussion

In Sect. 3, we provided several comparisons, and in this section, we summarize
measured times of different methods.

Local Mode. All experiments of local performance testing were run on a virtual
machine hosted on an Intel Core i3 350 M 2.27 GHz processor, with 8 GB DDR3

38 R. Hricov et al.

RAM and 100 Mbps LAN network, and with installed Windows 8.1 Pro 64-bit
operating system. The virtual machine has allocated 2 CPU cores and 5 GB
RAM under the operating system Ubuntu 14.04 64-bit. All experiments were
run on Spark in version 1.5.2, for which 512 MB of memory has been allocated.
Information about tested tables containing transformed XML documents is in
Table 1. Table 5 summarizes tested queries and tested tables. All measured values
are summarized in Table 6. All the measurements in Table 6 were realized locally.

Table 5. Summarizing table of tested queries

Query XML file Text file Rows count

Books 2 //book/author 1.1 kB 1.4 kB 60

Nasa 1 //suffix 25.1 MB 45.8 MB 791 922

Nasa 2 //author/suffix 25.1 MB 45.8 MB 791 922

Protein 1 //formal 716.9 MB 2.3 GB 37 260 927

Protein 2 //organism/formal 716.9 MB 2.3 GB 37 260 927

Table 6. Performance of proposed methods in seconds

Method/Tab. Books 2 Nasa 1 Nasa 2 Protein 1 Protein 2

Cartesian 9,79 - 1200# - -

SQL JOIN 8,372 217,818 232,70 - -

DF JOIN 8,313 219,012 231,99 - -

SEMI JOIN 4,687 13,336 18,75 - -

SEMI JOIN* 3,064 7,235 9,49 423,819 3441,569

Broadcast coll. 2,442 5,856 7,02 418,305 1088,489

Note that some values were not measured in Table 6, because the computation
was very slow. The second SEMI JOIN marked with * is the caching using
method. The measuring of the value marked # was so slow that it had to be
interrupted. Measured values are shown graphically in Fig. 3.

It can be seen that the method using Cartesian product is really slow.
SQL RIGHT JOIN and DataFrame LEFT JOIN are use the same optimization
process, so given the same physical plan is generated, the computational time is
almost the same. In Fig. 3, one more thing is noteworthy: a positive impact of
caching. According to Table 6, the evaluation of XPath query //author/suffix

over the table Nasa is currently (with broadcast lookup collection method) more
than 150 times faster in comparison with the Cartesian product. Since our meth-
ods evaluate an XPath query step by step, the impact of the number of evaluated
steps can be seen in Fig. 3. This implies that more XPath steps mean longer com-
putation duration since there is no optimization used, so all steps are evaluated.

Evaluation of XPath Queries Over XML Documents 39

Fig. 3. Performance of proposed methods

Cluster Mode. The experiment ran on a cluster of 4 virtual machines hosted
on four processors Intel Xeon 3.4 GHz (each 2 physical cores and 4 logical cores,
with enabled Hyper Threading), with 32 GB DDR2 RAM and 2× 1 Gbps LAN.
Each virtual machine has allocated 6 GB RAM (of which 4,8 GB were used
by Spark) and 2 CPU cores. Virtual machines were connected via 10 Gbps
VMXNet3 LAN and the installed operating system was Ubuntu 14.04.

Using a small input file, it is impossible to see the benefits of cluster compu-
tation: in some cases, the communication load took more time then the actual
computation. The cluster computation forced us to use the Hadoop Distributed
File System to make our text files visible for workers. On our cluster, we con-
tinued our test attempts with bigger files, since a sufficient amount of memory
was available for the worker nodes.

Comparison of Performance in Local and Cluster Mode. Comparison
of computation in local mode and in cluster mode brought expected results.
Admittedly, the computation on the cluster with enabled cluster mode was faster
in some cases. Table 7 shows time comparison of local and cluster mode. In these
experiments, it turned out that the fastest method is the one that uses nested
lookup collection.

40 R. Hricov et al.

Table 7. Performance of cluster and local mode

Table Mode Query Time [s]

1 Nasa Local //author/suffix 7.024

2 Nasa Cluster //author/suffix 38.415

3 Protein Local //formal 418.305

4 Protein Cluster //formal 398.701

5 Protein Local //organism/formal 1088.489

6 Protein Cluster //organism/formal 957.729

Fig. 4. Performance of cluster and local mode

As we can see in Table 7, a processing of a smaller table can be faster when
it is done locally. The reason behind it are cluster overhead expenses such as
serialization and transporting data among other workers.

In Fig. 4, we can see the measured times from Table 7.

5 Conclusions and Future Work

We analyzed possibilities of applying XPath queries on XML-documents by using
framework Spark SQL. Additionally, we implemented, tested, and measured our
initial statements concerning querying process of XML documents using the
Spark SQL system - its advantages and disadvantages. We designed multiple
methods and compared their efficiency. Bases upon our experiments, we conclude
that the efficiency of some of the tested methods is limited. So, not all of the

Evaluation of XPath Queries Over XML Documents 41

proposed methods can be used to query large data. We compared the method
efficiency in both Spark modes, i.e. in the local mode and in the cluster mode.

One of the biggest advantages of Spark is the broadcast variables method.
As our measurements show, the broadcast variables method is the fastest (and
by far, the best) method from all the methods we investigated.

In the future, we plan to experiment with larger files and with more powerful
clusters to evaluate scalability of our methods. We want focus on utilization
using various Spark tuning possibilities to optimize computational cost and time.
Finally, we plan to compare parallel XPath queries evaluation (using Spark) to
other framework for distributed computing.

References

1. Amer-Yahia, S., Du, F., Freire, J.: A comprehensive solution to the XML-to-
relational mapping problem. In: Proceedings of the 6th Annual ACM International
Workshop on Web Information and Data Management, pp. 31–38 (2004)

2. Bidoit, N., Colazzo, D., Malla, N., Sartiani, C.: Partitioning XML documents for
iterative queries. In: Proceedings of the 16th International Database Engineering
& Applications Symposium, pp. 51–60. ACM (2012)

3. Bourret, R., Bornhövd, C., Buchmann, A.: A generic load/extract utility for data
transfer between XML documents and relational databases. In: Advanced Issues of
E-Commerce and Web-Based Information Systems, WECWIS 2000, pp. 134–143
(2000)

4. Camacho-Rodŕıguez, J., Colazzo, D., Manolescu, I.: Building large XML stores in
the Amazon cloud. In: 2012 IEEE 28th International Conference on Data Engi-
neering Workshops (ICDEW), pp. 151–158. IEEE (2012)

5. Choi, H., Lee, K.H., Kim, S.H., Lee, Y.J., Moon, B.: HadoopXML: a suite for
parallel processing of massive XML data with multiple twig pattern queries. In:
Proceedings of the 21st ACM International Conference on Information and Knowl-
edge Management, pp. 2737–2739. ACM (2012)

6. Fegaras, L., Li, C., Gupta, U., Philip, J.: XML query optimization in Map-Reduce.
In: WebDB (2011)

7. Hricov, R.: Evaluation of XPath queries over XML documents using SparkSQL
framework - Master thesis. FIT CTU - Master thesis (2016)

8. Marcjan, R., Siwik, L.: The concept of transformation of XML documents into
quasi-relational model. In: Kozielski, S., Mrozek, D., Kasprowski, P., Ma�lysiak-
Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 569–580.
Springer, Cham (2014). doi:10.1007/978-3-319-06932-6 55

9. Strnad, P., Macek, O., Jira, P.: Mapping XML to key-value database. In: The
Fifth International Conference on Advances in Databases, Knowledge, and Data
Applications, DBKDA 2013, pp. 121–127 (2013)

10. Tatarinov, I., Viglas, S.D., Beyer, K., Shanmugasundaram, J., Shekita, E., Zhang,
C.: Storing and querying ordered XML using a relational database system. In:
Proceedings of the 2002 ACM SIGMOD International Conference on Management
of Data, pp. 204–215. ACM (2002)

11. Šenk, A., Valenta, M., Benn, W.: Distributed evaluation of XPath axes queries
over large XML documents stored in MapReduce clusters. In: Proceedings of
the 2014 International Semiconductor Laser Conference, ISLC 2014, pp. 253–
257. IEEE Computer Society, Washington, DC (2014). http://dx.doi.org/10.1109/
DEXA.2014.59

http://dx.doi.org/10.1007/978-3-319-06932-6_55
http://dx.doi.org/10.1109/DEXA.2014.59
http://dx.doi.org/10.1109/DEXA.2014.59

	Evaluation of XPath Queries Over XML Documents Using SparkSQL Framework
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Used Technology - Spark
	3.2 Transformation of XML Document to Data Frames
	3.3 XPath Queries Evaluation

	4 Experimental Results and Discussion
	5 Conclusions and Future Work
	References

