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Abstract. The last few years have brought a lot of changes in the RDF
validation and integrity constraints in the Semantic Web environment,
offering more and more options. This paper analyses the current state
of knowledge on RDF validation and proposes requirementsL for RDF
validation languages. It overviews and compares the previous approaches
and development directions in RDF validation. It also points at the pros
and cons of particular implementation scenarios.
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1 Introduction and Motivation

Schemes pay a key role in databases. They organize data and determine the way
in which the database is constructed and what integrity constraints it is affected
by. Databases allow for checking the conformity of their instances with the given
scheme. Schemes in the RDF context describe integrity constraints imposed by
the application on documents and/or RDF graph stores. Integrity constraints
may account for the multitude of relations, restrictions in the allowed property
values, the presence of properties, certain types of data values or default values.
Current solutions [6,17,18,20,26] are trying to answer the needs of defining the
graph’s structure for validation and the way of matching the data with the
description. The main purpose of this paper is to support discussions of those
solutions and to help working groups in the development of suitable approaches.

In this paper, we perform an overview and comparison of current options for
RDF validation. Section 2 describes the basic notions of RDF. Section 3 presents
requirements for RDF validation languages. In Sect. 4 we perform an overview of
solutions and we compare their characteristics and expressiveness. This section
is also devoted to related work. Section 5 presents experiments performed to
evaluate presented approaches. The last section is a conclusion.

2 RDF Background

An RDF constitutes a universal method of the description and information
modeling accessible in Web resources. RDF is a very common data model for
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resources and relationship description between them. In other words, tt pro-
vides the crucial foundation and infrastructure to support the management and
description of data.

An assumption in RDF [12] is to describe resources by means of the statement
consisting of three elements (the so-called RDF triple): subject, predicate and
object. RDF borrows often from natural languages. An RDF triple may then be
seen as an expression with subject corresponding to the subject of a sentence,
predicate corresponding to its verb and object corresponding to its object. The
RDF data model depends on the concept of creating web-resource expressions in
the form of subject-predicate-object statements, which in the RDF terminology,
are referred to as triples.

An RDF triple comprises a subject, a predicate, and an object. In [12], the
meaning of subject, predicate and object is explained. The subject denotes a
resource, the object fills the value of the relation, the predicate refers to the
aspects or features of resource and expresses a subject – object relationship. In
other words, the predicate (also known as a property) denotes a binary relation.

The elemental constituents of the RDF data model are RDF terms that can
be used in reference to resources: anything with identity. The set of RDF terms
is divided into three disjoint subsets:

– IRIs,
– literals,
– blank nodes.

Definition 1 (IRIs). IRIs serve as global identifiers that can be used to identify
any resource. For example,

Example 1 (IRIs). <http://dbpedia.org/page/Car> is used to identify the car
in DBpedia [1].

Definition 2 (Literals). Literals are a set of lexical values.

Example 2 (Literals). Literals comprise a lexical string and a datatype, such
as "1"^^http://www.w3.org/2001/XMLSchema#int. Datatypes are identified by
IRIs, where RDF borrows many of the datatypes defined in XML Schema 1.1
[29].

Definition 3 (Blank nodes). Blank nodes are defined as existential variables
used to denote the existence of some resource for which an IRI or literal is not
given. They are inconstant for blank nodes and are in all cases locally scoped to
the RDF space.

RDF triple is composed of the above terms. Following [12], we provide defi-
nitions of RDF triples below.

Definition 4 (RDF triple). Assume that I is the set of all Internationalized
Resource Identifier (IRI) references, B (an infinite) set of blank nodes, L the set
of literals. An RDF triple is defined as a triple t = 〈s, p, o〉 where s ∈ I ∪ B is
called the subject, p ∈ I is called the predicate and o ∈ I ∪ B ∪ L is called the
object.
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Example 3 (RDF triple). The example presents an RDF triple consisting of sub-
ject, predicate and object.

<http://example.net/spec#d> rdfs:label "specification".

A set of RDF triples intrinsically represents a labeled directed multigraph.
The nodes are the subjects and objects of their triples. RDF is often referred to
as being graph structured data where each 〈s, p, o〉 triple can be interpreted as
an edge s

p−→ o.

Definition 5 (RDF graph). Let O = I ∪B∪L and S = I ∪B. G ⊂ S ×I ×O
is a finite subset of RDF triples and called an RDF graph.

Example 4 (RDF graph). The example presents an RDF graph of a FOAF [8]
profile in Turtle [2] syntax. This graph includes two RDF triples:

<#d> rdf:type foaf:Document.
<#d> rdfs:label "specification".

3 RDF Validation Language Requirements

In this section, we propose requirements that an RDF validation language should
fulfil. From presented approaches [6,17,18,20,26] and our experience in using
RDF validation language we have composed a list of key requirements:

1. representatable in RDF and concise language,
2. expressive power,
3. shortcuts to recurring patterns,
4. self-describability,
5. provide a standard semantics.

3.1 Representatable in RDF

Any non-RDF syntax will lose a key advantage of a triple-based notation. RDF
is well-implemented so RDF validation language shall use RDF as its syntax.
On the other hand, RDF constraints should be specifiable in a compact form.
Table 1 presents key approaches and their syntaxes. A language shall be designed
to easily integrate into deployed systems that use RDF (i.e. graph stores), and
provides a smooth upgrade. The use of RDF in a validation language makes
constraints accessible to developers without the obligation to install additional
parsers, software libraries or other programs. This requirement is satisfied by
all RDF validation languages, but an RDF syntax is the primary format for
SHACL, ReSh and SPIN.
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Table 1. Summary of RDF validation approaches

Name Syntax Related work

ShEx Compact, RDF, JSON [4,20,24]

SHACL RDF [17]

ReSh RDF [25,26]

DSP XML, RDFa [6,11]

SPIN RDF, SPARQL [14,18]

OWL, RDFS RDF (Turtle), XML, Manchester, functional [7,21,22]
aThe main syntax is XML.

3.2 Expressive Power

An RDF validation language should express:

– RDF terms restrictions:
• value restrictions,
• allowed values and not allowed values,
• default values,
• literal values,
• datatypes comparison,
• IRI pattern matching,

– cardinality constraints:
• minimum cardinality,
• maximum cardinality,
• exact cardinality,

– predicate constraints:
• class-specific property range,
• OR operator (including groups),
• required predicates,
• optional predicates,
• repeatable predicates,
• negative predicate constraints.

Table 2 presents features of the below-mentioned approaches, namely: RDF
terms constraints, cardinality and predicates constraints compared to RDFS
and OWL. Note that OWL and RDFS are developed for inference and do not
provide the features strictly for validation. This requirement is not satisfied by
any languages, but SHACL supports most of the features.

3.3 Shortcuts to Recurring Patterns

Another important requirement is a macro supporting. An RDF validation lan-
guage shall enable the definition of shortcuts to recurring patterns that improve
overall readability and maintainability. Macros also can separate various parts of
schema and enable users define rich constraints. It should provide a way to define
high level reusable components in SPARQL [15], JavaScript or other languages.
This requirement is satisfied by ShEx, SHACL and SPIN.
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Table 2. Validation features

3.4 Self-describability

An RDF validation language shall represent the schema specification using the
schema itself being defined. This makes creating meta scheme easier than in a
language without this property, since constraints can be treated as data. It means
that examining the schema’s entities depends on a homogeneous structure, and
it does not have to handle several different structures that would appear in a
complex syntax. Moreover, this meta schema can valuable in bootstrapping the
implementation of the constraint language. This requirement is satisfied by all
RDF validation languages.

3.5 Standard Semantics

An RDF validation language shall provide a standard semantics for describ-
ing RDF constraints. It should be defined in a commonly agreed-upon formal
specification, which describe a model-theoretic semantics for RDF constraints,
providing an exact formal specification of when truth is preserved by various
validation operations. This requirement is satisfied only by SHACL.



RDF Validation: A Brief Survey 349

4 RDF Validation

In this section we discuss main approaches, which are strictly designed for val-
idation (Sect. 4.1) and other approaches, which can be used for some scenarios
(Sect. 4.2).

4.1 Main Approaches

Shape Expressions. The first approach is Shape Expressions [4,20,24], which
is a language for describing constraints on RDF triples. In addition to validating
RDF, ShEx also allows to inform expected graph patterns for interfaces and
create graphical user interface forms. It is a domain specific language used to
define shapes, which describe conditions that handle a given node. It can be
transformed into SPARQL queries. The most common syntax of ShEx compact,
which is similar to RELAX NG Compact [9].

Example 5 (ShEx). The example presents a Shape Expressions schema in com-
pact syntax according to Example 3.

<Shape1> {
(rdfs:label xsd:string+)

}

Shapes Constraint Language. The next approach is the Shapes Constraint
Language [17], which is a language constraining the contents of graphs. SHACL,
similarly to ShEx, organises these constraints into shapes, which provide a high-
level vocabulary to distinguish RDF predicates and their constraints. Moreover,
constraints can be linked with shapes using SPARQL queries and JavaScript. In
addition to validating RDF, it also allows to describe information about data
structures, generate RDF data, and build GUIs.

Example 6 (SHACL). The example presents a Shapes Constraint Language
schema in Turtle according to Example 3.

<Shape1> a sh:Shape;
sh:property [

sh:predicate rdfs:label;
sh:datatype xsd:string;
sh:minCount 1.

].

Resource Shapes. Another approach is Resource Shapes [25,26] which is a
vocabulary for specifying the RDF shapes. ReSh authors assume that RDF terms
come from many vocabularies. The ReSh shape is a description of the RDF
graphs to integrity constraints those data are required to satisfy.
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Example 7 (ReSh). The example presents a Resource Shapes schema in Turtle
according to Example 3.

<Shape1> a oslc:ResourceShape;
oslc:property [

a oslc:Property;
oslc:propertyDefinition rdfs:label;
oslc:valueType xsd:string;
oslc:occurs oslc:One-or-many

].

Description Set Profiles and SPARQL Inferencing Notation. ShEx,
SHACL and ReSh are based on declarative and a high-level descriptions of RDF
graph contents. These three approaches have similar features. Description Set
Profiles [6,11] and SPARQL Inferencing Notation [18] are different approaches.
The first is used to define structural constraints on data in a Dublin Core Appli-
cation Profile. That approach allows to declare the metadata record contents in
terms of validatable constraints. In addition to validating RDF, it can be used
as configuration for databases and configuration for metadata editing software.

Example 8 (DSP). The example presents a Description Set Profiles schema in
XML according to Example 3.

<dsp:StatementTemplate minOccurs="1"
maxOccurs="infinity" type="literal">
<dsp:Property>

http://www.w3.org/2000/01/rdf-schema#label
</Property>

</dsp:StatementTemplate>

The latter one is a constraint and SPARQL-based rule language for RDF.
It can link class with queries to capture constraints and rules which describe
the behavior of those classes. SPIN is also a method to represent queries as
templates. It can represent SPARQL statement as RDF triples. That proposal
allows to declare new SPARQL functions.

Example 9 (SPIN). The example presents a SPARQL Inferencing Notation
schema in Turtle according to Example 3.

<#c> spin:constraint [
a spl:Attribute;
spl:predicate rdfs:label;
spl:minCount 1;
spl:valueType xsd:string.

].
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4.2 Other Approaches

In addition to the approaches presented in Sect. 4.1 there are OWL/RDFS [7,22]
based approaches [10,21,23,28,30] and SPARQL [15] based approaches [13,19,
27]. The first group uses of RDF and OWL expressions with a CWA (Closed
World Assumption) to express integrity constraints. The main drawback of those
approaches is that inference engines cannot be used for checking the constraints.

Kontokostas et al. [19] focus on the data quality test patterns and data quality
integrity constraints, which are represented in SPARQL query templates. Fischer
et al. present RDD, language for expressing RDF constraints, which can be
easily transformed into SPARQL queries. In the [27] authors propose approach
based on SPARQL property paths. This proposal is similar to Schematron [16]
in XML documents. The main drawback of those approaches is the need to know
SPARQL. Another approach to the requirement is presented in [5].

5 Evaluation

In this Section we evaluate the most promising constraint languages. We evaluate
all shape approaches (ShEx, SHACL and ReSh) that have community support
and advanced features (see Table 2). In this Section we analyze whether lan-
guages are concise and how fast we can process them.

All experiments have been executed on a Intel Core i7-4770K CPU @ 3.50GHz
(4 cores, 8 thread), 8GB of RAM, and a HDD with reading speed rated at ∼160
MB/s1. We have been used Linux Mint 17.3 Rosa (kernel version 3.13.0) and
Python 3.4.3 with RDFLib 4.2.1 and Virtuoso Open-Source Edition 7.2.4.

We prepare constraint rules for RDF data that was generated by Berlin
SPARQL Benchmark (BSBM) [3]. According to [3], the BSBM benchmark is
settled in an e-commerce scenarios in which a set of products (denotated P ) is
offered by different vendors and consumers who have posted reviews on various
sites. The benchmark defines an abstract data model for this scenarios together
with data production rules that allow benchmark datasets to be scaled to arbi-
trary sizes using the number of products as a scale factor. We enrich BSBM
to fake datatypes (denotated E). Our implementation is available at https://
github.com/domel/bsbm validation. The data description which was used in the
experiment, is presented in Table 3.

All RDF validation languages were created in RDF syntax. We choose
N-Triples2 because this serialization is normalized. In ShEx, SHACL and
ReSh we declared appropriate datatypes for predicates such as: foaf:name,
dc:publisher, dc:title, bsbm:price, bsbm:validFrom, bsbm:validTo and
bsbm:deliveryDays. Incorrect values refer to dc:date predicate. We choose
that scenario, because al validation languages support tested features, such as
value and datatype restrictions. We also prepare constraint rules for all BSBM
datasets.

1 We test it in hdparm -t.
2 https://www.w3.org/TR/n-triples/#canonical-ntriples.

https://github.com/domel/bsbm_validation
https://github.com/domel/bsbm_validation
https://www.w3.org/TR/n-triples/#canonical-ntriples
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Table 3. Datasets description

|P | |G| |E| |P | |G| |E|
10 4987 614 60 26143 2913

20 8458 928 70 29707 3230

30 11962 1244 80 33194 3544

40 16901 1845 90 36699 3859

50 22629 2598 100 40177 4174

|P | - cardinality of BSBM products.
|G| - cardinality of RDF triples.
|E| - cardinality of fake datatypes.

To test our schemes for different datasets, we built an RDF data validation
system. The prototype implementation of the testbed has been fully implemented
in the Python programming language with RDFLib. For storage, a Virtuoso
Open-Source Edition 7.2.4 RDF graph store has been used. Figure 1 shows archi-
tecture of our testbed. Our data validation system checks datatypes on-the-fly
before loading data.

Definition 6 (RDF data validation system). An RDF data validation
system is a tuple 〈D, C,Σ〉 where D is the source data, C is the constraints and
Σ is the state of the system.

RDF
graph
store

parser &
validator

source
data

constraints

Fig. 1. Testbed architecture
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Fig. 2. Evaluation times of validation and loading valid data
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Figure 2 shows that the number of predicates needed to describe validation
rules has the greatest influence on the differences in the validation times. The
fastest processing time belongs to SHACL and the slowest belongs to ReSh.

6 Conclusions

RDF validation is an important issue in the Semantic Web stack. There is no
standard way to validate RDF data conforming to RDF constraints like DDL
for relational databases or DTD for XML documents. Integrity constraints may
be necessary in editing documents and actions performed on RDF graph stores.
In this article, we conduct an overview of approaches to RDF validation and we
show the differences in these approaches, drawing attention to the advantages
and disadvantages of particular solutions.

We argue that RDF validation on the Semantic Web nowadays faces some
of the challenges we were facing in the past, when databases were at their
infancy. However, this area evolves very fast and attracts the attention of many
researchers, the resulting in the vast scope of works we showed in this paper. We
hope that this survey contributes to a better understanding of RDF validation.
As part of future work, we will continuously analyze solutions within the RDF
validation area.

Acknowledgment. We thank David Wood, co-chair of the RDF Working Group, for
comments that greatly improved the paper.

A Used Prefixes

In Table 4 we enumerate the prefixes used throughout this paper to abbreviate
IRIs.

Table 4. Used prefixes

Prefix IRI

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

foaf http://xmlns.com/foaf/0.1/

xsd http://www.w3.org/2001/XMLSchema#

sh http://www.w3.org/ns/shacl#

oslc http://open-services.net/ns/core#

dsp http://purl.org/metainfo/terms/dsp#

spin http://spinrdf.org/spin#

spl http://spinrdf.org/spl#

dc http://purl.org/dc/elements/1.1/

bsbm http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://xmlns.com/foaf/0.1/
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/ns/shacl#
http://open-services.net/ns/core#
http://purl.org/metainfo/terms/dsp#
http://spinrdf.org/spin#
http://spinrdf.org/spl#
http://purl.org/dc/elements/1.1/
http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/
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