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Abstract. This publication presents a survey on the clustering algo-
rithms proposed for spatiotemporal data. We begin our study with defi-
nitions of spatiotemporal datatypes. Next we provide a categorization of
spatiotemporal datatypes with the special emphasis on the spatial repre-
sentation and diversity in temporal aspect. We conduct our deliberation
focusing mainly on the complex spatiotemporal objects. In particular,
we review algorithms for two problems already proposed in literature:
clustering complex spatiotemporal objects as polygons or geographical
areas and measuring distances between complex spatial objects. In addi-
tion to description of the problems mentioned above, we also attempt to
provide a comprehensive references review and provide a general look on
the different problems related to the clustering spatiotemporal data.

Keywords: Data mining · Clustering spatiotemporal data · Clustering
algorithms

1 Introduction

Exploration of spatiotemporal data is a key aspect in many areas of manage-
ment, design and business. Rapid increase of collected spatiotemporal data is
associated with an intensive development of wireless sensor networks, improv-
ing sensors design techniques and increasing transmission capacity in mobile
networks. Spatiotemporal data may be related to the following areas of appli-
cations: collections of events generated by sensors deployed over certain geo-
graphical regions, information about trajectories of vehicles, animals or groups
of people or evolutions of phenomenons in both spatial and temporal aspects.
Analysis of changes in climate and weather is the field which may generate huge
amounts of spatiotemporal data described not only by the sets of points, but also
by the complex objects like polygons. The problem of discovering frequent pat-
terns in spatiotemporal data is related to several applications tasks like: analysis
of traffic in cities [20], movements prediction of celestial bodies in astronomy [6]
or crime analysis [41].

In addition, standard methods used in canonical data mining problems like
apriori based algorithms [1], efficient clustering [18], periodicity detection [39],
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fast validation and data interpolation [38] need to be integrated into non-trivial,
sophisticated approaches which can deal with data uncertainty, shifts in spatial
or temporal dimensions and non-invariant scaling problems. In the publication,
we attempt to provide a survey on the most recent methods developed for the
spatiotemporal data clustering.

In particular, we propose a review of clustering methods for both spatiotem-
poral points and polygons (geographical areas). Previous reviews on that mat-
ter consider only the categorization of spatial objects [34,48]. Additionally, we
review distance measures proposed for complex spatial or geographical objects.
To the best of our knowledge this is the first survey on the mentioned measures,
gathering their properties and computing algorithms from multiple resources and
recently proposed publications. In opposition to our paper, the survey proposed
in [47] considers the frequent patterns discovery methods rather than clustering
event-based spatiotemporal data. An attempt to provide a review of patterns
discovery methods for trajectory-based spatiotemporal data has been proposed
in [39], which do not consider at all clustering methods for complex geographical
objects and focus mainly on moving objects.

The layout of the paper is as follows: in Sect. 2 we review a categorization
of spatiotemporal datatypes in the view of their adaptations to clustering algo-
rithms. Section 3 summarizes results in the area of clustering complex spatiotem-
poral objects as polygons and areas. Section 4 recalls the most important distance
measures for complex spatial objects. Section 5 provides a survey on the recently
proposed clustering algorithms for moving objects and trajectories. Conclusions
to the survey are given in Sect. 6.

2 Spatiotemporal Datatypes

Spatiotemporal datatypes are dependent on the real-world applications. Based
on literature [34,39,48], we can distinguish two types of spatiotemporal data:
event-based (also known as location-based), collected from stationary deployed
sensors and trajectory-based (also referred as ID-based [39]) used to describe
movements of objects. For the event-based data case, each event may be asso-
ciated with a property p which value is denoted by the function f(x, y, t, p)
where (x, y) is a location (usually expressed in terms of longitude and lati-
tude), t is a time stamp during which the event has been collected. Consid-
ering the more complex spatiotemporal objects (as polygons or areas), the loca-
tion of an object may be denoted by the set of its coordinates. In the case of
trajectory-based spatiotemporal data, for a given set of n objects o1, o2, . . . , on,
a trajectory of an object oi is represented by a sequence of geographical points
(x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn), where (xj , yj) is a location at the time
stamp tj . The above distinction between event-based and trajectory-based spa-
tiotemporal data has been mainly introduced in [39].

The categorization presented above can be in addition broaden with the
specification of different spatial datatypes (points, lines and polygons) and their
extensions to time domain: database may contain only the last snapshot of actual
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positions of observed objects or the whole history of an evolution of a spatiotem-
poral phenomenon. In some other cases only a stream of spatiotemporal data
may be available.

The categorization of spatiotemporal datatypes is given in [34]. The authors
of [34] distinguish the following categories: Fixed location denoting datasets
containing occurrences of events of predefined types on geographical areas. Algo-
rithms for clustering (and partially patterns discovery) for that datatype have
been proposed in [9,23,41]. If the spatial dimension is extended to polygons or
geographical areas, then one may refer to the clustering algorithms presented
in [30,50]. On the other hand, category defined as Dynamic location refers to
trajectory-based spatiotemporal data. Datatypes denoted by Updated snapshot
and either by Dynamic location or Fixed location labels refer to spatiotem-
poral data streams. The former describes moving objects reporting only the cur-
rent location or position. The latter denotes streams of events occurrences (with
each event described as above). Algorithms for spatiotemporal data streams
clustering and classification have been recently proposed in [7,31,32].

The forms denoted by Time Series (according to categorization presented
in [34]) are particularly useful because provide means for adaptation of classical
algorithms and similarity measures used in time series analysis. For example,
[14] presents a new similarity measure (Edit Distance on Real sequence, EDR)
developed for the comparison of trajectories of objects. On the other hand, the
time series representations of event-based spatiotemporal data are still unknown
and will be developed in the future years.

In Table 1 we provide references contributing to the spatiotemporal datatypes
definitions and data mining techniques proposed for them.

First propositions of spatial and spatiotemporal clustering using statistical
approach have been given in [24,36]. [36] gives a clustering method using spatial
scan statistics (the approach has been improved in [27]), whereas [24] proposes
an extension taking into account spatial shifts in the nature of evolving phenom-
enon. Due to this, proposed algorithm is able to detect clusters of spatiotemporal
data which dynamically change their position and shape.

Clustering complex spatial and spatiotemporal objects is gaining attention
of researchers nowadays [29,30,50]. The idea is to discover neighboring areas
or geographical regions characterized by the same (or similar) value of non-
spatiotemporal attribute (f.e. pollution). [26] adapts Fuzzy C-Means algorithm
to spatiotemporal data. [25] raise the problem of anomaly detection in spatial
time series using spatiotemporal clustering.

3 Clustering Spatiotemporal Events and Complex
Geographical Objects

Proposed algorithms often operate on the more complex spatial objects f.e. poly-
gons or lines. Classical density-based clustering algorithm - DBSCAN has been
proposed in [18]. Many variations of the well-known density clustering algorithms
like DBSCAN, OPTICS, NN were adapted to operate on spatiotemporal data.
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Table 1. Summary of the publications on spatiotemporal data types and data mining
techniques proposed for them.

No First author Spatiotemporal datatype Data mining method

1 Erwig [17] Datatypes definitions

2 Wang [50] Polygons (geographical areas) Clustering

3 Birant [9] Points (events) Clustering

4 Joshi [30] Polygons (geographical areas) Clustering

5 Wang [49] Points (events) Clustering

6 Estvill-Castro [19] Points (events) Clustering

7 Wang [51] Polygons Clustering

8 Zhang [53] Polygons (geographical areas) Clustering

9 Damiani [15] Points\trajectories Clustering

10 Izakian [26,27] Points (time series) Clustering

11 Izakian [25] Points (time series) Clustering\anomaly
detection

12 Kulldorff [36] Discrete events Clustering\statistical
approach

13 Iyengar [24] Discrete events Clustering

14 Schubert [46] Discrete events Anomaly detection

15 Mohan [41] Discrete events Patterns analysis

16 Shekhar [47] Discrete events Patterns
analysis\anomaly
detection

17 Nanni [43] Trajectories Clustering

18 Li [39] Trajectories\discrete events Clustering\patterns
analysis

19 Palma [45] Trajectories Clustering

20 Gudmundsson [21] Moving objects Clustering

21 Jeung [28] Moving objects Clustering

22 Li [40] Moving objects Clustering

In addition, some non-standard grouping algorithms have been proposed: f.e.
Spatio-Temporal Polygonal Clustering (STPC). Clustering algorithms are cat-
egorized into five main domains: Partitioning, Hierarchical, Grid-based, Model-
based and Density-based [22].

In Partitioning methods, clusters are computed according to the mean value
in a cluster (K-means) or based on the selection of an object which is nearest to
the cluster’s center (K-Medoid). The name of the category: Partitioning methods
is inspired by the fact, that each object in a dataset is assigned to one and
only one cluster (there are no objects classified as a noise). Objects partitioning
is performed according to the predefined optimization criterion - for a given
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number of clusters we would like to find assignments which minimizes the sum
of distances between objects and centers of clusters (their mean values or the
most central elements) to which they belong. Hierarchical clustering methods
can be divided into two approaches: ascending and descending. In the ascending
approach, each data object is initially assigned to its own cluster. Then, the
algorithm gradually merges clusters until a predefined number of groups will be
reached. On the other hand, descending approach divides one cluster (into which
all data objects are initially assigned) until a predefined number of clusters will
be reached.

Grid-based methods proceed with dividing data space into cells (a grid).
Then, in the clustering phase, some cells are merged based on a predefined con-
dition. For example: two dense, neighboring cells are merged into one (a cell is
dense if it contains a number of objects greater than the predefined threshold).
STING is an example of grid-based clustering algorithm [50]. Model-based meth-
ods try to fit clusters according to the predefined model of the data (like prob-
ability distribution). An example of a model-based method is the Expectation-
Maximization algorithm [42]. Denisity-based methods try to find clusters accord-
ing to distributions of density in a dataset. Due to this, appropriate density
threshold should be specified by user: f.e. an estimated number of objects in a
predefined neighborhood of an object [18]. Due to their simplicity, density-based
clustering algorithms are widely used in data mining. Attempts to improve their
efficiency and reduce needs of expert knowledge during parameter specification
have been made in [4,19].

3.1 Algorithms for Clustering Complex Spatiotemporal Objects

In this section, we proceed with description of clustering algorithms for complex
spatiotemporal objects.

ST-GRID (SpatioTemporal-GRID) is a clustering method based on the par-
titioning spatiotemporal space into two separate grids: for spatial and temporal
dimensions. In [49], the authors propose to compute the precision of a grid,
based on the so-called k-dist graph which is constructed by random sampling of
a dataset, calculating distance from each sample to its k-nearest neighbor and
sorting calculated distances in decreasing order. The presence of clusters will be
indicated by the easily noticeable threshold in the sorted distances. Calculated
thresholds may be used as grid resolutions. As in the typical grid clustering
algorithms, dense neighboring cells are merged to create spatiotemporal clus-
ters. The above procedure has been originally developed only for spatiotemporal
points.

ST-DBSCAN (SpatioTemporal-DBSCAN) is the algorithm developed on the
conceptions of the well-known density clustering algorithm - DBSCAN (Den-
sity Based Clustering Algorithm with Noise) [18]. ST-DBSCAN has been intro-
duced in [49] and then rearranged in [9]. ST-DBSCAN modifies DBSCAN to
detect clusters according to their non-spatial, spatial and temporal dimensions.
Before we describe ST-DBSCAN algorithm, we took a quick glance on the pure
DBSCAN algorithm. One of the most important properties of DBSCAN is the
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ability to detect clusters with an arbitrary shape: circular, ellipsoidal, linear or
even more complicated. However, need to specify density thresholds may result
that the algorithm will do not detect proper but sparse clusters. That problem
has been addressed in the another density based clustering algorithm - OPTICS
[4]. ST-DBSCAN considers cluster densities according to both spatial and tem-
poral thresholds (assuming that for many applications they are very different).
Additionally, ST-DBSCAN is able to include or exclude an object from the
cluster on the basis of its non-spatiotemporal attributes: f.e. if the represented
temperature is very different from the cluster’s average temperature.

ST-SNN and ST-SEP-SNN Algorithms are two variations of the well known
Shared Nearest Neighbor (SNN) density-based clustering algorithm. It is a note-
worthy fact, that both algorithms ST-SNN and ST-SEP-SNN have been origi-
nally presented (in [50]) for clustering sets of polygons rather than points. Simi-
larity between two objects according to the SNN algorithm is defied as a number
of nearest neighbors shared by these two objects.

– A list of spatiotemporal neighbors of any polygon p is denoted by NN(p) =k-
SPN-List(p) ∩ k-TN-List(p) where k-SPN-List(p) and k-TN-List(p) are lists
of k neighbors of a polygon p in respectively spatial and temporal dimensions.

– Similarity between a pair of polygons p and q is the number of nearest spa-
tiotemporal neighbors that they share: similarity(p, q) =

∣
∣NN(p) ∩ NN(q)

∣
∣.

– The density of a polygon p is defined as the number of polygons that share at
least Eps neighbors with p - density(p) =

∣
∣{q ∈ D|similarity(p, q) ≥ Eps}∣

∣.
– A core polygon is a polygon where CoreP (D) = {p ∈ D|denisty(p) ≥

MinPs} where MinPs is a user specified threshold.

The above conceptions determine clustering spatiotemporal polygons accord-
ing to the ST-SEP-SNN algorithm. After marking each polygon either as a core
or non-core, the algorithm proceed with clusters creation by processing each
polygon in the dataset. During processing step, if an unprocessed core poly-
gon p has been encountered, a new cluster is created and all polygons in the
NN(p) list are assigned to the new cluster (the same is recursively applied to
the unprocessed core polygons encountered in the NN(p) list).

ST-SNN is an algorithm that proceeds similarly to the ST-SEP-SNN algo-
rithm presented above, with exception that the list of nearest neighbors NN(p)
of a polygon p is created using slightly different method. Rather than separately
compute and then intersect lists of k-nearest spatial and temporal neighbors, ST-
SNN combines spatial and temporal dimensions into one measure and computes
only one list of the k-nearest neighbors.

STPC [30] is another denisty-based clustering algorithm developed for spa-
tiotemporal polygons or areas. Again, the algorithm has been developed on the
basis of the conceptions of the DBSCAN algorithm. Referring to the above men-
tioned ST-SEP-SNN algorithm, STPC computes lists of spatial and temporal
neighbors on the basis of predefined distances (rather than k-nearest neighbors).
The union of both lists contain spatiotemporal neighborhood of a polygon. If
the neighborhood is appropriately dense, then the polygon is marked as a core
polygon and the algorithm proceeds similarly to the above.
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4 Distance Measures for Complex Spatiotemporal
Objects

It is noteworthy to recall spatial distance measures used for polygons or other
complex geographical objects. Table 2 provides a comparison of developed dis-
tance measures for complex spatiotemporal objects: polygons and trajectories.
In the case of polygons, m and n denote the numbers of their vertices and in the
case of trajectories their constituting sequences of locations.

Table 2. A comparison of distance measures for complex spatiotemporal data types.

No. Distance Spatiotemporal
data type

Computational complexity

1 Hausdorff distance Polygons and
trajectories

O(m + n) [5] - only for polygons
O(m ∗ n) [2] - both for polygons
and trajectories

2 Fréchet distance Polygons and
trajectories

O((m + n)log(m + n)) [10] - for
convex polygonsa

O((m ∗ n)log(m ∗ n)) [3] - for
trajectories

3 Exact separation
distance

Polygons O(log(m) + log(n)) [44]

4 Minimum vertices
approximation

Polygons O(m ∗ n) [44]

5 Centroid distance Polygons O(m + n) [44]

6 Simplified hausdorff
distance

Polygons O(m + n) [29]

7 Discrete Fréchet
distance

Trajectories O(m ∗ n) [16]

8 Edit distance on real
sequence

Trajectories O(m ∗ n) [14]

9 Dynamic time warping Trajectories O(m ∗ n) [52]

10 Edit distance with real
penalty

Trajectories O(m ∗ n) [13]

aFor non-convex but simple polygons one may refer also to [10] where the algorithm
with a non-trivial complexity is given.

Figure 1 presents a comparison between Minimum Vertices Approximation,
Exact Separation Distance and Centroid Distance. Also, in the figure we
show the Hausdorff distance for two polygons. The simplified Hausdorff distance
is computed using the same formula as shown in Fig. 1, but only between vertices
of polygons. Formula 1 presents a method for computing the Hausdorff distance
for two polygons.
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Fig. 1. Examples of distance measures for spatial polygons.

δH = max
(

δ̃H(A,B), δ̃H(B,A)
)

δ̃H(A,B) = max
a∈A

min
b∈B

∣
∣
∣
∣ (a, b)

∣
∣
∣
∣ .

(1)

A few distance measures presented in Table 2 may be used both for polygons
(geographical areas) and trajectories. If particular distance measure preserves
triangle inequality property, then it is possible to reduce the time of computa-
tions performed during clustering: f.e. neighborhood search [35]. Also, the meth-
ods combining the above measures with spatial and metrical indexes have been
proposed in [11,33].

5 Other Clustering Problems in the Area
of Spatiotemporal Data

In this section, we provide a look on the other clustering problems related to
spatiotemporal data. In particular, we attempt to provide a general overview of
the most important methods proposed for clustering trajectory-based data.

Finding groups of similar moving objects - let assume that for a set of objects
o1, o2, . . . , on a database stores the trajectory of a movement of each object.
Additionally, let assume that each trajectory is represented in the form of a
sequence of points, each associated with a timestamp. The problem of discov-
ering flocks in the dataset is described as the problem of finding those sets of
objects which for a predefined time interval stay within a disk which radius
length is a parameter specified by an expert. A time interval is expressed as the
sequence of consecutive timestamps. The problem of finding flocks of objects
have been introduced in [21] and also developed in [8]. The above problem has
been extended to finding convoys [28] and swarms of moving objects [39]. A
convoy is created from a flock by relaxing containment within a disk constraint
i.e. rather than looking for the fixed disks of objects, the algorithm searches for
dense regions using a clustering algorithm.

Clustering trajectories - the problem has been well studied in literature.
Among the most popular algorithms for clustering spatiotemporal trajecto-
ries and their similar segments are: Trajectory-OPTICS [43], TRACLUS [37]
or DENTRAC [12]. The important property of these algorithms is the ability
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to cluster segments of trajectories rather than whole trajectories. The property
is motivated by the fact that objects usually move together only in small seg-
ments of their trajectories. For example: TRACLUS proceeds with three phases:
in the first, a trajectory represented in the form of a sequence of points is sim-
plified. The number of points in the sequence is reduced and the resulting parts
of each trajectory are replaced with line segments. The replacement should pre-
serve trends and angles representing turns in movements. Then, in the second
phase, clustering of similar line segments is performed. In the last step, for each
discovered group of similar line segments a representative trajectory is com-
puted. Due to the complex nature of trajectories, an appropriate similarity met-
ric should be selected. The proposed distance measure between two trajectories
contains the following components: perpendicular, parallel and angle. The com-
ponents are computed as follows: the perpendicular components is computed as
a Lehmer mean of the distances between ending points of one segment projected
into another. The parallel component is computed as a minimum from the dis-
tances between endings of one line segment projected into another. The angle
component of the distance measure is defined as a product of the length of one
of line segments and sinus of an angle between line segments.

6 Conclusions

In the publication, we provide a descriptive review of recently proposed algo-
rithms for clustering complex spatiotemporal objects. In particular, we con-
duct a survey on the algorithms for clustering complex spatial objects: polygons
or dynamically changing areas. Among the reviewed algorithms are ST-GRID,
ST-DBSCAN, ST-SNN and STPC. Additionally, we provide references and a
brief summary of the distance measures proposed for complex spatial objects
(i.e. the Hausdorff distance, simplified Hausdorff distance and the other recently
proposed heuristics). We also attempt to provide a look on the other methods
proposed for clustering spatiotemporal objects i.e. trajectory-based data. The
categorization of spatiotemporal datatypes presented at the beginning of the
paper provides a staring point for considering new research fields in the area
of spatiotemporal data mining. In particular, the most promising directions are:
developing algorithms for spatiotemporal data streams and adaptation of knowl-
edge discovery methods proposed in time series analysis to spatiotemporal data.
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