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Preface

Collecting, processing, and analyzing data have become important branches of com-
puter science. Many areas of our existence generate a wealth of information that must
be stored in a structured manner and processed appropriately in order to gain the
knowledge from the inside. Databases have become a ubiquitous way of collecting and
storing data. They are used to hold data describing many areas of human life and
activity, and as a consequence, they are also present in almost every IT system. Today’s
databases have to face the problem of data proliferation and growing variety. More
efficient methods for data processing are needed more than ever. New areas of interests
that deliver data require innovative algorithms for data analysis.

Beyond Databases, Architectures and Structures (BDAS) is a series of conferences
located in Central Europe and very important for this geographic region. The conference
intends to give the state of the art of the research that satisfies the needs of modern,
widely understood database systems, architectures, models, structures, and algorithms
focused on processing various types of data. The aim of the conference is to reflect the
most recent developments of databases and allied techniques used for solving problems
in a variety of areas related to database systems, or even go one step forward — beyond
the horizon of existing databases, architectures, and data structures.

The 13th International BDAS Scientific Conference (BDAS 2017), held in Ustron,
Poland, from May 30 to June 2, 2017, was a continuation of the highly successful BDAS
conference series started in 2005. For many years BDAS has been attracting hundreds or
even thousands of researchers and professionals working in the field of databases.
Among attendees of our conference were scientists and representatives of IT companies.
Several editions of BDAS were supported by our commercial, world-renowned partners,
developing solutions for the database domain, such as IBM, Microsoft, Sybase, Oracle,
and others. BDAS annual meetings have become an arena for exchanging information
on the widely understood database systems and data-processing algorithms.

BDAS 2017 was the 13th edition of the conference, organized under the technical
co-sponsorship of the IEEE Poland Section. We also continued our successful coop-
eration with Springer, which resulted in the publication of this book. The conference
attracted more than a hundred participants from 15 countries, who made this conference
a successful and memorable event. There were three keynote talks and one tutorial
given by leading scientists: Prof. Jens Allmer from the Department of Molecular
Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, gave an excellent
keynote talk entitled “Database Integration Facilitating the Merging of MicorRNA and
Gene Regulatory Pathways in ALS.” Prof. Dirk Labudde from the Bioinformatics
group Mittweida (bigM) and Forensic Science Investigation Lab (FoSIL), University of
Applied Sciences, Mittweida, Germany, honored us with a presentation entitled “3D
Crime Scene and Disaster Site Reconstruction using Open Source Software.” Dr.
Dominik Szczerba from Future Processing, Gliwice, Poland, gave a talk on “Com-
putational Physiology.” Prof. Jean-Charles Lamirel from SYNALP team, LORIA,
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Vandceuvre-lés-Nancy, France, prepared a tutorial on “Text Mining in the Big Data
Context: Existing Approaches and Challenges.” The keynote speeches, tutorials, and
plenary sessions allowed participants to gain insight into new areas of data analysis and
data processing.

BDAS is focused on all aspects of databases. It is intended to have a broad scope,
including different kinds of data acquisition, processing, and storing, and this book
reflects fairly well the large span of research presented at BDAS 2017. This volume
consists of 44 carefully selected papers that are assigned to seven thematic groups:

— Big data and cloud computing

— Artificial intelligence, data mining, and knowledge discovery

— Architectures, structures, and algorithms for efficient data processing

— Text mining, natural language processing, ontologies, and Semantic Web
— Bioinformatics and biological data analysis

— Industrial applications

— Data mining tools, optimization, and compression

The first group, containing four papers, is devoted to big data and cloud computing.
Papers in this group discuss hot topics of stream processing with MapReduce, a
tensor-based approach to temporal features modeling with application in big data,
querying XML documents with SparkSQL, and automatic scaling computing infras-
tructure of the cloud. The second group contains six papers devoted to various methods
used in data mining, knowledge discovery, and knowledge representation. Papers
assembled in this group show a wide spectrum of applications of various exploration
techniques, including decision rules, knowledge-based systems, clustering and classi-
fication algorithms, and rough sets, to solve many real-world problems.

The third group contains nine papers devoted to various database architectures and
models, data structures, and algorithms used for efficient data processing. Papers in this
group discuss the effectiveness of query execution, performance, and consistency of
various database systems, including relational and NoSQL databases, indexing struc-
tures, sorting algorithms, and distributed data processing. The fourth group consists of
nine papers devoted to natural language processing, text mining, ontologies, and the
Semantic Web. These papers discuss problems of building recommendation systems
with the use ontologies, extending expressiveness of knowledge description, ontology
reuse for fast prototyping of new concepts, processing natural language instructions by
robots, data integration in NLP, authorship attribution for texts, plagiarism detection,
and RDF validation.

The research devoted to bioinformatics and biological data analysis is presented in
six papers gathered in the fifth group. The papers cover problems connected with gene
expression and chromatography but also medical diagnosing as well as face and
emotion recognition. The sixth group includes four papers describing various appli-
cations of data mining — especially in coal mining and automotive industries. The last
group includes six papers presenting various data-mining tools, performance opti-
mization techniques, and a compression algorithm.

We hope that the broad scope of topics related to databases covered in this pro-
ceedings volume will help the reader to understand that databases have become an
important element of nearly every branch of computer science.
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Abstract. Works in the field of data warehousing (DW) do not address
Stream Processing (SP) integration in order to provide results fresh-
ness (i.e. results that include information that is not yet stored into the
DW) and at the same time to relax the DW processing load. Previous
research works focus mainly on parallelization, for instance: adding more
hardware resources; parallelizing operators, queries, and storage. A very
known and studied approach is to use Map-Reduce to scale horizon-
tally in order to achieve more storage and processing performance. In
many contexts, high-rate data needs to be processed in small time win-
dows without storing results (e.g. for near real-time monitoring), in other
cases, the objective is to relax the data warehouse usage (e.g. keeping
results updated for web-pages reload). In both cases, stream processing
solutions can be set to work together with the data warehouse (Map-
Reduce or not) to keep results available on the fly avoiding high query
execution times, and, this way leaving the DW servers more available to
process other heavy tasks (e.g. data mining).

In this work, we propose the integration of Stream Processing and
Map-Reduce (MRSP) for better query and DW performance. This app-
roach allows to relax the data warehouse load, and, by consequence
reducing the network usage. This mechanism integrates into Map-Reduce
scalability mechanisms and uses the Map-Reduce nodes to process
Stream queries.

Results show/compare performance gains on the DW side and the
quality of experience (QoE) when executing queries and loading data.

Keywords: Complex event processing * Stream processing - Extraction
transformation and load - Distributed system - Data warehouse - Big
data - Small data - Map-Reduce

1 Introduction

In this paper, we investigate the problem of integrating stream processing with
data warehousing systems oriented to Map-Reduce processing, with the objec-
tive to offer scalability, query and load performance, relax the data warehouse
storage and load, and at the same time dealing efficiently with high-rate data.

© Springer International Publishing AG 2017
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Consequently, our approach reduces the network usage, by minimizing query
access to the data warehouse. Query Data Warehouse access is performed the
first time a query is registered /submitted, second+ times query results are kept
for update as new data arrives.

Map-Reduce approaches are designed to scale the storage, process capacity
and assure fault tolerance mechanisms. However, the Map and Reduce processing
architecture for high fault tolerance, data redundancy, materialization mecha-
nisms (resulting in excessive network usage), impairs query execution perfor-
mance.

Complex Event Processing (CEP) applications deal mostly with high-right
data volume processing (big-data) based on a window. However, CEP engines
do not store any data. Although, they are extremely efficient processing queries
and keeping updated results as new data arrives.

In this paper, we propose a solution to enable CEP systems integration with
Map-Reduce based approaches. At the same time, the CEP approach should
be able to load-(re)balance and support automated elasticity as happens with
the Map-Reduce approach. Our proposed system is built to adapt itself when
overloaded nodes appear due to an increase of data or increase of simultaneous
queries. The approach allows isolating the query execution from the DW.

When a new query is registered, it is assigned to a pool of nodes (which
can include the Map and Reduce nodes), choosing the one with Least Work
Remaining (LWR). The first result is obtained using the Map-Reduce DW sys-
tem. Once new data arrives, before storing, it is sent to a layer running on top
of the Map-Reduce architecture, which will replicate data across the CEP nodes
and process the registered queries in order to update the results. After the queries
result updated, the data is stored in the Map-Reduce DW architecture. Thus,
instead of storing data and then process query results (traditional approach),
with our approach, MRSP, we first process the queries and then store the data,
this way relaxing the data warehouse load.

Based on the proposed approach, only for the first time, query results need to
use the Map-Reduce processing architecture, after that point, queries are keep
updated as new data arrives. This method improves, the data warehouse storage
system performance, availability, network usage, and saves processing resources
(hardware and software).

This solution shows promising results when applied to systems monitoring
(e.g. fraud detection) and for keeping heavy load websites updated in real-time
(i.e. avoiding constant access to the data warehouse to retrieve updated results).
In the following sections, we provide the description of the approach and exper-
imental demonstration.

2 Related Work

In this section, we analyze related works in the field of stream processing inte-
gration with Map-Reduce approaches, for query performance and DW load
relaxation.
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Most current distributed stream processing systems, including Yahoo!’s S4
[26], Twitter’s Storm [24], and streaming databases [4-6], are based on a record-
at-a-time processing model, where nodes receive each record, update internal
state, and send out new records in response. This model raises several challenges
in a large-scale cloud environment, especially regarding query performance due
to high amounts of data to be analyzed.

Academic related work on stream processing such as Aurora, Borealis, Tele-
graph, and STREAM [2,4-6], provide a SQL interface and achieve fault recovery
through replication (an active or passive standby for each node [4,14]), and on
top of all they focus on more theoretical aspects of the paradigm.

In addition, researchers have also focused on issues like load distribution [1],
load-balancing [29] and fault-tolerance [4] in stream processing systems. Stream
processing systems typically provide support for instantiating real-time data
analysis applications that consume high-rate data streams. However, such sys-
tems are not meant to analyze large volumes of stored data and often rely on
data warehouses and other ad-hoc mechanisms for analyzing stored data, and
such analysis is often the source of the analytic model used by stream processing
operators.

The industry activity [1] has primarily focused on commercialization and
wide availability of this novel data processing paradigm, most stream process-
ing frameworks, such as, S4, Storm, and Flume [13,24,26], focuses on recovery
from failures (e.g., by keeping all state in a replicated database) and consistency
across nodes. Several recent research systems have looked at on-line processing
in clusters, map-reduce Online [15] is a streaming Hadoop run-time, but can-
not compose multiple map-reduce steps into a query or reduce tasks. iMR [17]
is an in-situ map-reduce engine for log processing, but does not support more
general computation graphs and can lose data on failure. CBP [16] and Comet
[12] provide “bulk incremental processing” by running map-reduce jobs on new
data every few minutes to update state in a distributed file system. However,
they incur the high overhead of replicated on-disk storage. Naiad [18] runs com-
putations incrementally but does not yet have a cluster implementation or a
discussion of fault tolerance. Percolator [22] performs incremental computations
using triggers, but does not offer consistency guarantees across nodes or high-
level operators like map and join.

D-Streams [31] mechanism is conceptually similar to recovery techniques in
map-reduce, GFS, and RAMCloud [9,20,27], which all leverage (re)partitioning
for small timescales stream processing. D-Streams, re-computes lost data instead
of having to replicate all data, avoiding the network and storage cost of replication.

The map-reduce programming model [9] has gained significant acclaim for
its ease-of-use and scalability. It offers a parallelization framework that depends
on a run-time component for scheduling and managing parallel tasks [28] and a
distributed file system that is responsible for providing parallel access to different
blocks of the stored data [11,28]. The success of the programming model has
resulted in the development of an open source implementation of its run-time
called Hadoop [28] and the Hadoop distributed file system [27]. A number of
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efforts are also focused on developing languages that help the specification of
map-reduce jobs [19]. Recent research efforts have also focused on adapting map-
reduce for a database like operations using a map-reduce-merge framework [30].
Another effort focuses on implementing well-known machine learning algorithms
for the map-reduce programming model [21]. Although map-reduce has also
received a lot of criticism for ignoring a lot of research on task parallelization
and data modeling conducted by database researchers [10], it continues to be
the new preferred platform for developing large-scale analytic on static data.

Data analysis systems have evolved from monolithic data warehouses [23] of
the past to the modern day real-time data analysis systems [1]. The nature of
the task has changed from offline to online and therefore new sets of challenges
have been posed to the research community. Modern day data analysis systems
should not only scale with the volume of stored data but also scale with the rate
at which live data arrives. In addition to that, modern frameworks must be able
to provide processing capabilities to deal with both structured and unstructured
data. Another recent framework created for high-volumes of data and high-
performance is Spark [3] which focuses on adding an in-memory layer before
the fiscal data materialized storage to provide more performance. However, this
approach still focuses on storing and then querying data.

3 Architecture

In this section, we describe the most relevant aspects regarding the integration
of Stream-Processing and Map-Reduce. Moreover, we also discuss how MRSP
scales, and (re)balances registered queries for performance.

(1) MRSP

erformance| [ DFS Data Query sP O
monitor manager

(2) Hadoop(map-reduce)

DFS block 1 \

Fig. 1. Global architecture

Figure 1, shows the MRSP global proposed architecture. On top marked by
(1), we have the CEP layer, part of the proposed system, (2) represents the
Hadoop Map-Reduce. The MRSP (1) is composed by:
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— “Performance Monitor” - this module is responsible for monitoring the per-
formance of each query and the respective nodes. If performance is under the
desired threshold, queries are (re)scheduled to other node using a least-work-
remaining (LWR) algorithm. If the measure does not solve the performance
problem a new node is requested to the admin. This algorithm is described in
more detail bellow.

— “DFS Data Manager” - ensures the correct data insertion into (2) and data
replication for all registered queries.

— “Query Scheduler” - together with the “performance monitor” module (based
on its alarms), this module is responsible for (re)scheduling the registered
queries across the available nodes (LWR algorithm).

— “SP process” - this module manages the running registered queries. It must
assure the on-time start of each query (i.e. accordingly with its running fre-
quency) and output results.

(4) new query

3.1) (4.1)

(3) data (1) MRSP N
! 1stt
(1) MRSP rmho'am” DFS Data ” Query | Result
Query sp o i 0 ~

DFS Data
monitor manager scheduler process's
 — @2 4.3)
@33) \(5{ (2) Hadoop(map-reduce)
@t educe) DFS block 1
.'
l
' I
I y '
‘
' , [ PReduce ]

[ Redwe ] Y,

4.4)

Fig. 2. Data store Fig. 3. Processing new queries

Every time new data arrives to be stored, the entire MRSP and MR data
distribution process are transparent to the user. Figure 2, shows in (3) the data
to be stored and the steps inside the framework to replicate and store it into the
(2) and at the same time the necessary replication to keep the stream processing
queries results updated. In (3.1) the information is submitted, the “DFS Data
manager” in (3.3) it sends the data into the Map-Reduce architecture (2) and at
the same time it replicates the data into the “SP process” module (3.2) which
is processing and keeping the stream queries results updated. This operation is
performed automatically in all Stream Processing nodes simultaneously as data
is submitted. The user does not need to deal with the information distribution
across neither the MRSP (1) or the MR (2).

The first time a query is submitted the result from (2) needs to be merged
with (1), all the remaining times the same query is executed the result is kept
for update, thus no need to create more load in (2) - accessing it to compute
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and fetch the new/same result. Figure3, shows a new query being submitted
(4), then in (4.1) the “Query Scheduler” assigns the LWR node to register the
query and in (4.2) the query is set to run in the “SP process” module. Because
it is the first time this query is executed, there is no known result from the
DW to be updated and outputted, so the “SP process” request the query to
be executed at the DW (4.3) and waits until the result is returned back to the
“SP process” (4.4). Based on the result from the DW the query is processed and
results updated (merged with new information) if necessary to be outputted
(4.5). Note that, the first time a query is submitted the execution time depends
on the DW performance. Remaining times, second+, results performance are
assured by the MRSP proposed module.

For instance: A new tuple arrives for table T. The query we want to update is
T join S join V join ... As the query is registered in the framework and executed
for the first time all relevant information regarding the join condition is kept
on the stream-processing engine side (memory/disk depending on the available
space), in the form of column organization, as new data arrives to be stored, the
stream-processing engine keeps not only the registered queries updated but also
the data information, this way, there is no need to go back to the stored data
warehouse tables and repeat a full-table-scan to recreate the join information.
This process was implemented step-by-step, only for the tested queries.

(5) existent query

(5.1) (1) MRSP
(1) MRSP

1 4 53) [ updated erformance| | DFS Data Query sP
|rgvm|| Drsom“ Query | X+ Result monitor p

monitor manager || scheduler process's

N (1.1) 12) (13)

5.2)
(2) Hadoop(map-reduce) ¢

Process

DFS block 1

prooes rs oo
B e o]
e
Proec T prowend|;

(141) (e B8 B2

2

~

result updater

(143)

Fig. 4. Processing existent queries Fig. 5. Stream processing process

Second time (and more, second+) times the same query is executed, it does
not need to access the DW (2) since the result is already known. If new data
arrives, it will be replicated to the query processor module to keep results con-
stantly updated. Figure 4, shows the (5.2) and (5.3), where no access to the DW
(2) is required to output the query result. This way relaxing the DW access.

Each data “SP process” is formed by three main modules, Fig.5 (1.4), the
data queue (1.4.1) used to detect overload situations by (1.1). If this queue
increases above a certain configured limit size, it means that the node is over
capacity and queries/load needs to be re-balanced. The module (1.4.2) is used
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to request the first-time result of a query, and finally, the (1.4.3) keeps results
updated as new data arrives.

Note that, the Performance Monitor (1.1) module monitors both the data
queue size from (1.4) nodes and the executing performance time for the queries (the
desired query execution time is configured by the user, and applied to all queries,
future version will allow independently desired execution times for each query).

start
Schedule /re-
schedule a query

,mechanisms if possible ;
‘. and alert Admin

° of times query was
submitted

0

° of times query was
submitted

1

° of times query was
submitted

2

:'hegisterqueryimo the', Registerqueryintothe’ ! Register queryintoa
. node with less load; ,: :‘ node with less load; ! 'pew node (ready-node):

T LTI

Current query number of
submitted times = 2
AND Current query number of Current query number of
Previews submitted query, submitted times = 2 submitted times = 3
number of submitted
times =1

Fig. 6. Query load balance and scheduling algorithm

Figure 6 depicts the query scheduling algorithm. Each query has a counter
associated, representing the number of times a query was (re)scheduled.

— If the query was (re)scheduled zero times (meaning it is a new query), then the
scheduler will find the best node to register it, and the “number of scheduled
times” is set to two (2 because the query was placed in the best fitting node
(i.e. LWR algorithm), if it becomes overloaded (i.e. the queue starts increasing
above a threshold) it will go directly into a new node ...

— ... Then the “number of scheduled times” of the previous last registered query
is set to one. Because the “Query scheduler” already chooses the best node
to register the query (i.e. the one with least load) and it did not become
overloaded,;

— Now, if the “Performance monitor”, detects an overload situation in a node, it
sends the last submitted query in that node (by order of registration) to the
scheduler to be resubmitted into a better node, and the parameter “number
of scheduled times” is increased to 2 (it was set to one after a new query was
inserted, or already to 2);

— At the third (“number of scheduled times” =2) (re)schedule of a query, it is
put into a ready-node if available. If the ready node is not available or it gets
overloaded, then the load shedding and admin alert algorithm will deal with
the problem.
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Every time a query is relocated because of an overload situation, that query
is not removed from the overloaded node until the newly selected node (the one
with most available resources) is providing results from an equal data window.
Upon results provided, the scheduler decides in which node to leave the query
running. For that, the system scheduler analyses the throughput of both nodes
and removes the query from the node with less throughput. This process avoids
work loss due to relocation.

4 Experimental Results

In this section we present experimental results comparing the performance
improvements when inserting new data, performing queries for the first and sec-
ond+ times (i.e. second+, meaning the second and other/plus execution times),
and, inserting data while performing queries performance. Our tests aim to prove
that the MRSP performance improvements allow not only to optimize query exe-
cution but at the same time to relax the DW load, leaving it free to perform
other tasks (e.g. indexation, data replication, data transformations).

We used a setup with 10 physical machines, each equipped with 16 GB of
RAM, Intel core 13, 3.3 Ghz, 1TB of disk space, running Linux Ubuntu 14 LTS.
Note that, no virtual nodes were used.

As software, for the Map-Reduce approach, we used Hadoop with Hive. For
the MRSP, we used Hadoop with Hive, plus a modified version of Esper [8] (i.e.
complex event processing engine), which integrates on top of Hadoop-Hive, for
efficient data and query information exchange.

Each test was performed 6 times, the worst and best times were discarded
and remaining results were used to make an average. All performance times are
shown in seconds, and load speed in MB per second.

To benchmark the different scenarios, we used TPC-H schema [7], data, and
queries, with a scale factor of 1TB total. We use Hadoop with Hive [25], modified
to support the integration of the proposed MRSP. For the high-rate scenario we
used the same relational schema, in order to support the same results from the
tested queries. The selected queries to be tested were Q2, Q3, Q5, Q8, Q21 from
TPC-H. This choice was made based on their implementation complexity and
integration complexity with our prototype framework.

4.1 Data Load with and Without MRSP

In order to compare loading performance, we load 1TB of information into 10
nodes. We compare Hadoop-Hive (Map-Reduce approach) with the proposed
MRSP solution.

Figure 7 shows, the average performance of all nodes in MB/s for both
approaches over the time. When using only the Hadoop-Hive Map-Reduce the
global average load time was 35 min. When using the proposed approach it takes
43 min. Despite the difference between both systems, performance times are not
very distant from each other, the MRSP is slower due to the added layer on



Integrating Map-Reduce and Stream-Processing for Efficiency (MRSP) 11

Load speed MR (MBIs) and Load speed MRSP (MBIs) 1sh time query execution time, MR vs. MRSP

5500 a0
178 loaded
(10 nodes)
5000 /\/\/\/\/—\/\/\/\—\J\N\/ 60
500
20
w0 A A AMA A A AN/
20
3500
10 2 E 0 B )
Timo {mir) QMR @ GIMR Q3 OSMR 05 Q8MR G802 Q21
—— Load spesd MR (MBIS)  — Load speed MRSP (MBls) RSP RSP RSP VRSP MR MRSP
Fig. 7. Comparing data load perfor- Fig. 8. 1st time query execution

mance, MR vs. MRSP

top of MR to replicate all data into the stream processing module. This mod-
ule requires all data that arrives at the system to pass trough it so that it can
process and keep all registered queries results updated.

We conclude that load performance involving huge amounts of data is slightly
affected when using the proposed solution (MRSP). However, given the high data
volume, the performance difference is not very significant.

4.2 Query Performance in MR and MRSP (First-Time Run)

Query execution time represents the most important performance part of every
data storage system. In this section, we test query performance (in seconds)
when executing a new query, submitted for the first time.

Figure 8 shows, a comparison between the MR and the MRSP when executing
a new query for the first time. In the figure, we can see that for the first execution,
both systems take almost the same time to finish. This leads us to conclude that,
in MRSP the extra processing layer added on top of the MR, does not affect
query performance.

4.3 Query Performance in MR and MRSP (Second+ Time Run)

Query execution in all systems runs faster second+ times. This happens because
many of the queried information stays in memory (i.e. operating system, internal
database engine, disk caches, and so on). In this section, we compare second+
query execution on MR, where the query is performed over all stored data, and
in MRSP, where the query result is updated based only the new ingress data.

Figure 9 shows, the query performance improvement when executing for the
second+ time. Both MR and MRSP improve their performance speed, with
special attention to MRSP, where in just some seconds the results are outputted.
We conclude that MRSP is able to improve query performance very significantly
while at the same time relaxing resources of the DW to process other tasks.
MRSP is able to fast process the query results because it does not need to query
all 1TB of stored data, as happens in MR. Results are kept in memory or disk
and updated as new data arrives (i.e. the same way as Stream Processing engines
work).
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2nd+ time query execution (seconds) 2nd+ time query execution while loading new data (seconds)
600 1200

450 900

8,3 sec 7sec 7,8 sec 6,8 sec 8.2 5ec

0 0
Q2MR Q2 Q3MR Q3 QS5MR Q5 QSMR Q8 Q21 Q21 QMR Q2 Q3MR Q3 Q5MR Q5 Q8MR Q8 Q21 Q21
MRSP MRSP MRSP MRSP MR  MRSP MRSP MRSP MRSP. MRSP MR MRSP

Fig. 9. 2nd time+ query execution Fig.10. Query performance while
loading new data

4.4 Query Performance While Inserting New Data in MR and
MRSP

In high-rate demanding scenarios, at the same time queries are executing, also
new data is arriving to be treated and stored. This leads to an extra DW load,
consequently a performance degradation. In this section, we demonstrate, for
both MR and MRSP, the impact on queries execution (i.e. executing second+
times) when at the same time loading and storing new data to be queried.

Figure 10 shows, MR, query performance in seconds, while at the same time
loading data. When comparing MR results from Fig. 10 with 9, we notice that
in Fig.9 there is a slight increase on the query execution time. This is due to
the extra tasks being performed simultaneously while loading data (i.e. load,
indexation, replication of new data). The proposed solution, MRSP, every time
new data arrives, the registered query results are immediately updated, and then
data is stored. Although, we detect a time performance increase in MRSP while
loading data. In this scenario, MRSP still shows a very big performance increase
face to MR. MRSP performance decrease (i.e. execution time increase) is due
to the extra necessary memory and processing to keep results updated by the
stream processing engine.

With this results, we prove that MRSP allows not only to significantly opti-
mize query results but also to relax the DW nodes to perform other data main-
tenance operations such as transformation, indexation, replication, and so on.

5 Conclusions and Future Work

In this work, we research a solution for almost-real-time query performance on
MR systems. Our main approach consists on querying data before storing it,
for that we integrate a stream processing engine on top of the MR architec-
ture. On the other hand, traditional database engines approaches and also MR
approaches, first focus on storing data, and then on queering it. Our proposed
solution, MRSP, demonstrates huge performance gains, especially when execut-
ing queries for the second+ times, and on top of all, it allows to reduce the MR
data warehouse nodes load.
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Future work includes improvements to the MRSP prototype to support a
wider diversity of queries. Another direction for the future work would be to
include in MRSP query replication. In case one of the nodes computing/updating
the result fails, other node takes over. More important future work, not address in
this work, is the automatic query rewrite and adaptation to Hive Query Language
(HQL) and at the same time to the stream processing engine.
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Abstract. In this paper we propose a simple tensor-based approach
to temporal features modeling that is applicable as means for logistic
regression (LR) enhancement. We evaluate experimentally the perfor-
mance of an LR system based on the proposed model in the Click-
Through Rate (CTR) estimation scenario involving processing of very
large multi-attribute data streams. We compare our approach to the
existing approaches to temporal features modeling from the perspec-
tive of the Real-Time Bidding (RTB) CTR estimation scenario. On the
basis of an extensive experimental evaluation, we demonstrate that the
proposed approach enables achieving an improvement of the quality of
CTR estimation. We show this improvement in a Big Data application
scenario of the Web user feedback prediction realized within an RTB
Demand-Side Platform.

Keywords: Big data - Multidimensional data modeling - Context-aware
recommendation - Data extraction - Data mining - Logistic regression -
Click-through rate estimation - WWW - Real-Time Bidding

1 Introduction

Web content utility maximization is one of the main paradigms of the so-called
Adaptive Web [3]. Many researchers agree that Click-Through Rate (CTR) esti-
mation is important for maximization of Web content utility and that machine
learning plays a central role in computing the expected utility of a candidate
content item to a Web user. The click prediction — widely referred to as CTR
estimation — is an interesting and important data mining application scenario,
especially when realized on the Web scale [4,9,16]. Real-Time Bidding (RTB)
belongs to the best examples of widely-used Big Data technologies [15]. As con-
firmed by many authors, the research on RTB algorithms involves facing many
challenges that are typical for Big Data. In particular, RTB algorithms must be
capable to process heterogeneous and very sparse multi-attribute data streams
having the volume order of terabytes rather than gigabytes [4]. Moreover, to be
applicable in a real-world environment, an RTB optimization algorithm must be
able to provide its results in tens of milliseconds [15].
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Digital advertising is a rapidly growing industry already worth billions of dol-
lars. RTB is one of the leading sectors of the digital advertising industry. In this
paper, we contribute to the intensively investigated area of research on machine
learning algorithms optimizing RTB-based dynamic allocation of ads. The pro-
posed solution faces the challenges imposed by the RTB protocol requirements
and, at the same time, introduces the temporal feature engineering based on the
tensor model what has not been investigated yet.

Some of the tensor-based approaches to data modeling have already been
identified as addressing the Big Data challenges [5,10]. Although the area of the
research on tensor-based Big Data modeling has emerged quite recently [5], the
results achieved so far, indicate that, at least in online advertising application
scenarios, tensor-based approaches are able to outperform many alternative ones,
including those based on the matrix factorization and deep learning [16,21].

2 Related Work

As far as Big Data application scenarios are concerned, it is widely agreed that
Logistic Regression (LR) is the state-of-the-art CTR estimation method [4,16,
23]. For this reason, the scope of the research presented in this paper is limited
to feature modeling applicable to a data mining system based on LR.

In the context of the RTB Demand Side Platform (DSP) optimization sce-
nario, it is important to make the CTR, estimation algorithm highly contextual
and capable to exploit various data augmentations [16,22]. In the relevant papers
these two requirements are sometimes integrated into the single, more general
requirement. Specifically, recommender systems deployed to perform CTR esti-
mation are required to model the heterogeneous data attributes explicitly from
multiple alternative and complementary ‘aspects’ [16]. The idea of such ‘multi-
aspect’ data modeling is familiar to researchers working on tensor-based data
representation methods [2,13]. The need for ‘multi-aspect’ data modeling has
been recognized by the authors of tensor-based RTB CTR estimation systems
[16] and by the authors of advanced classification systems theoretically-grounded
on the rough set theory [12]. All these types of data mining systems perform
some type of ‘multi-aspect’ data modeling by using combinations of multiple
‘interacting’ features [4,16].

There are a few approaches to building feature conjunctions that have been
presented in the literature on RTB CTR estimation [4,9,16,21]. Some of the
papers involve the explicit use of the cartesian product or the tensor product in
the models’ definitions [4,16].

It is worth recalling that the tensor space is a space formed over a carte-
sian product of the constituent vector spaces. In the context of an algebraic
feature representation, it is a straightforward and widely-followed assumption to
represent features in their vector spaces and to map the feature values to the
dimensions of these spaces [8,14,18,20]. Although not all the authors of such
feature conjunctions models explicitly refer to the tensor product as the means
for building the algebraic representations of feature conjunctions, such a tensor-
based definition is a direct consequence of the assumption that the constituent
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features are represented by vector spaces. On the other hand, the authors of
many papers presenting tensor-based models of the data sets elements having the
form of the properties’ conjunctions, explicitly refer to the tensor product as the
means for building algebraic multi-feature data representations [8,14,16,18,20].

To the best of our knowledge, there are no publications presenting multi-
linear temporal feature models designed for CTR estimation systems based on
LR. Although temporal features are included in the overall feature sets of the
models proposed by the authors of the leading CTR estimation algorithms based
on LR [4,9,16,21], none of these models is both tensor-based and used for multi-
linear representation of temporal features. In consequence, none of these models
involves the use of feature conjunctions of different arity [4,9,16]. Moreover, the
impact of an application of temporal features (with or without their conjunc-
tions) on the quality of CTR, estimation has not been presented in any of the
above-recalled papers. Therefore, we believe that the research results presented
herein are not only practically useful, but may also be regarded as original and
interesting theoretical contribution to the field of the research on feature models
for CTR estimation systems.

3 Tensor-Based Feature Modeling

Tensor-based data modeling is a broad topic — typically investigated from the
perspective of various approaches to tensor-based data processing [5,11,20]. It
has to be stressed that the scope of the tensor-based modeling that is represented
by the model proposed in this paper is relatively narrow — it is limited to (i) the
‘feature addressing’ scheme based on the tensor product of the feature-indexing
standard basis vectors and (ii) the use of a simple multi-tensor network. In such
a simplified form, a tensor-based model of additional features (herein referred
to as metafeatures) is equivalent to the state-of-the-art feature models defined
with the use of the cartesian product that are presented in the literature on CTR
estimation based on LR [4,16]. It also has the most distinctive property of any
tensor-based data representation, which is the ability to represent data in its
natural form in which vector space dimensions represent feature values, rather
than data/training examples [14,20]. Thanks to this property, any combination
of the features may be mapped on its dedicated tensor entry. Moreover, the use of
the multi-tensor hierarchy network (presented in Sect. 3.2) provides simple means
for the mapping between a conjunction features’ subset and the corresponding
tensor network node; the arity of the conjunction tuple maps to the level of the
tensor network — the level including the tensors of the order equal to the arity
of the conjunction tuple.

3.1 Tensor-Based Multidimensional Data Modeling

Let us use the notation in which A, B,... denote sets, A,B,... denote ten-
sors and a, b, ... denote scalars. The tensor-based feature model represents the
multi-attribute data describing the given user feedback event (in the case of the
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application scenario presented in this paper — the event representing a user click
on a given ad in result of a given impression). This data have the form of a set of
logs &, in which each of the log entries is defined as a tuple of multiple features.
We model this set as an n-order tensor:

T = [til,...,in]ml Xore X MMy

defined in a tensor space 7; ® --- ® Z,, where each Z;, 1 < i < n indicates
a standard basis [14] of dimension |Z;| = m; used to index elements of the
domain F; — the domain of feature ¢. The entries of tensor ¢;, . ;. represent
the outcome of the investigated event — formally described using the function
Y Fp x -+ x F, — R. In the case of RTB CTR prediction task, the events’
outcomes are usually described by means of the binary-valued function v : F; x
- X Fn — {0,1} defining non-click and click events, respectively.

Since the input data form a sparse (incomplete) multidimensional structure,
the tensor T is usually stored in the form of n-tuples, for which a given tuple ~
is modeled as:

Y= (,w’y’fi‘/’ .. '7fg)a
where f;' € F; are the feature values defining the tuple v and w? =¥ (f],..., f7)
denotes its weight.

3.2 Multi-Tensor Hierarchy Network

In this paper we used the model, referred to as Multi- Tensor Hierarchy Network
(MTHN), enabling the representation of correlations observed in any subset
of the feature set. In contrast to other approaches (e.g., [16]), we do not use
any heuristic method for feature grouping which is necessary when simplifying
the model, e.g., to the single third-order tensor. The proposed model provides
the averaging framework enabling to represent the means within a network of
tensors, which is used for combinatorial exploration of all the possible subsets
of the features.

Let [n] = {1,2,...,n} denotes the set enumerating features describing the
investigated event. For each subset & = {p1,...,pr} C [n] we construct the
ten