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Preface

This book aims to give the reader some of the most recent research dealing with the
development of metaheuristics.

The document gathers 28 chapters. These chapters could be divided into two
main sets. The first one, Chaps. 1-10, is dedicated specifically to present some new
optimization and modeling techniques based on metaheuristics. The goal of the sec-
ond set, Chaps. 11-28, is to develop some advanced metaheuristic approaches to
solve real-life applications issue such as scheduling, vehicle routing problem, mul-
timedia sensor network, supplier selection, bin packing, objects tracking, radio fre-
quency identification.

All the results proposed in the present document were accepted and presented
during the conferences MIC’ 15, the eleventh edition of the Metaheuristics Interna-
tional Conference, which was held from June 7 to 10, 2015, in Agadir, Morocco,
and META’ 14, the fourth edition of the International Conference on Metaheuristics
and Nature Inspired Computing, which was held from October 27 to 31, 2014 in
Marrakech, Morocco.

The first chapter, entitled “Hidden Markov Model Classifier for the Adaptive
Particle Swarm Optimization,” by Oussama Aoun, Malek Sarhani, and Abdellatif
El Afia, presents an integration of hidden Markov Model (HMM) particle swarm
optimization (HMM) in APSO (adaptive particle swarm optimization) to have a
stochastic state classification at each iteration. To tackle the problem of the dynamic
environment during iterations, an additional online learning for HMM parameters
is integrated into the algorithm using online expectation-maximization algorithm.
The authors performed evaluations on ten benchmark functions to test the HMM
integration inside APSO.

The second chapter, by Oumayma Bahri, Nahla Ben Amor, and El-Ghazali
Talbi, is dedicated to deal with the possibilistic framework for multi-objective op-
timization under uncertainty. This chapter addresses the multi-objective problems
with fuzzy data, in particular, with triangular-valued objective functions. To solve
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such problems, the authors have proposed an extension of two multi-objective
evolutionary algorithms SPEA2 and NSGA-II, by integrating a new triangular
Pareto dominance.

The third chapter, “Combining Neighborhoods into Local Search Strategies,” by
Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, and Christophe Ponsard,
develops a declarative framework for defining local search procedures. It proceeds
by combining neighborhoods by means of so-called combinators that specify when
neighborhoods should be explored and introduce other aspects of the search proce-
dures such as stop criteria, solution management, and various metaheuristics. The
approach proposed by the authors introduces these higher-level concepts natively in
local search frameworks in contrast with the current practice which still often relies
on their adhoc implementation in imperative language.

The fourth chapter, “All-Terrain Tabu Search Approaches for Production Man-
agement Problems,” by Nicolas Zufferey, Jean Respen, and Simon Thevenin, is ded-
icated to the presentation of tabu search approaches with enhanced exploration and
exploitation mechanisms. For this purpose, some specific ingredients are discussed:
different neighborhood structures (i.e., different types of moves), guided restarts
based on a distance function, and deconstruction/reconstruction techniques.

The fifth chapter, “A Re-characterization of Hyper-heuristics,” by Jerry Swan,
Patrick De Causmaecker, Simon Martin, and Ender Ozcan, tackles with hyper-
heuristic optimization methodology. Hyper-heuristic search has traditionally been
divided into two layers: a lower problem-domain layer (where domain-specific
heuristics are applied) and an upper hyper-heuristic layer (where heuristics are se-
lected or generated). The interface between the two layers is commonly termed the
“domain barrier”. The authors show how it is possible to make use of domain knowl-
edge without loss of generality and describe generalized hyper-heuristics which can
incorporate arbitrary domain knowledge.

The sixth chapter, “POSL: A Parallel-Oriented Metaheuristic-Based Solver Lan-
guage,” by Alejandro Reyes Amaro, Eric Monfroy, and Florian Richoux, proposes a
parallel-oriented solver language (POSL, pronounced “puzzle”), a new framework
to build interconnected metaheuristic-based solvers working in parallel. The novelty
of this approach lies in looking at solver as a set of components with specific goals,
written in a parallel-oriented language based on operators. A major feature in POSL
is the possibility to share not only information, but also behaviors, allowing solver
modifications during runtime. POSL’s main advantage is to allow solver designers
to quickly test different heuristics and parallel communication strategies to solve
combinatorial optimization problems, which are usually time-consuming and very
complex technically, requiring a lot of engineering.

The seventh chapter, “An Extended Neighborhood Vision for Hill-Climbing
Move Strategy Design,” by Sara Tari, Matthieu Basseur, and Adrien Goéffon, aims
at determining pivoting rules that allow hill-climbing to reach good local optima.
The authors propose to use additional information provided by an extended neigh-
borhood for an accurate selection of neighbors and introduce the maximum expan-
sion pivoting rule which consists in selecting a solution which maximizes the im-
provement possibilities at the next step.
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The eighth chapter, “Theory Driven Design of Efficient Genetic Algorithms for
a Classical Graph Problem,” by Dogan Corus and Per Kristian Lehre, presents a
principled way of designing a genetic algorithm which can guarantee a rigorously
proven upper bound on its optimization time. The shortest path problem is selected
to demonstrate how level-based analysis, a general-purpose analytical tool, can be
used as a design guide. We show that level-based analysis can also ease the experi-
mental burden of finding appropriate parameter settings.

The ninth chapter, “On the Impact of Representation and Algorithm Selection
for Optimisation in Process Design: Motivating a Metaheuristic Framework,” by
Eric S. Fraga, Abdellah Salhi, and El-Ghazali Talbi, aims at demonstrating that the
method choice does matter. For a set of problems, all in the same domain of heat
exchanger network synthesis, different combinations of method and representation
work best for individual problems. This motivates the development of an over-
arching method which could identify the best combination and solve the problem
most effectively. The authors propose a Multiple Heuristics, Multiple Representa-
tion (MHMR) paradigm which mirrors the Multiple Algorithm, Multiple Formula-
tion (MAMF) model for the exact solution. Exploring this paradigm, say through
the design and implementation of prototype software frameworks will be the focus
for future work in our respective research groups.

The tenth chapter, “Manufacturing Cell Formation Problem Using Hybrid Cuckoo
Search Algorithm,” by Bouchra Karoum, Bouazza Elbenani, Noussaima El
Khattabi, and Abdelhakim A. El Imrani, presents an adapted optimization algo-
rithm entitled the cuckoo search algorithm for solving this kind of problems. The
proposed method is tested on different benchmark problems; the obtained results
are then compared to others available in the literature.

Chapter 11, “Hybridization of Branch-and-Bound Algorithm with Metaheuris-
tics for Designing Reliable Wireless Multimedia Sensor Network,” by Omer Ozkan,
Murat Ermis, and Ilker Bekmezci, contributes to deploy sensor nodes to maximize
the WMSN reliability under a given budget constraint by considering terrain and de-
vice specifications. The reliable WMSN design with deployment, connectivity, and
coverage has NP-hard complexity, therefore a new hybridization of an exact algo-
rithm with metaheuristics is proposed. A branch-and-bound approach is embedded
into hybrid simulated annealing (HSA) and hybrid genetic algorithm (HGA) to ori-
ent the cameras exactly. Since the complexity of the network reliability problem is
NP-complete, a Monte Carlo simulation is used to estimate the network reliability.

Chapter 12, “A Hybrid MCDM Approach for Supplier Selection with a Case
Study,” by Hanane Asselaou, Brahim Ouhbi, and Bouchra Frikh, considers the sup-
plier selection problem where one of the strategic decisions that have a significant
impact on the performance of the supply chain. In this chapter, the supplier selec-
tion problem of a well-known refining company in Africa is investigated, and an
integrated DEMATEL-ANP-TOPSIS methodology is used to select the best sup-
plier providing the most customer satisfaction for the criteria determined.

Chapter 13, “A Multi-objective Optimization via Simulation Framework for Re-
structuring Traffic Networks,” subject to increases in population by Enrique Gabriel
Baquela, and Ana Carolina Olivera, studies a nonlinear and stochastic problem
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which is the traffic network design problem. The origin-destiny traffic assignment
problem is a particular case of this problem. The authors propose the use of a multi-
objective particle swamp optimization together with traffic simulations in order to
generate restructuring alternatives that optimize both, traffic flow and cost associ-
ated to this restructure.

Chapter 14, by S. Chaimatanan and D. Delahaye and M. Mongeau, deals with
hybrid metaheuristic for air traffic management with uncertainty, the 4D trajectory
optimization of each aircraft so as to minimize the probability of potential conflicts
between trajectories. A hybrid-metaheuristic optimization algorithm has been devel-
oped to solve this large-scale mixed-variable optimization problem. The algorithm
is implemented and tested with real air traffic data, taking into account uncertainty
over the French airspace for which a conflict-free and robust 4D trajectory plan is
produced.

Chapter 15, by Michaela Zehetner and Walter J. Gutjahr, considers the sampling-
based genetic algorithms for the bi-objective stochastic covering tour problem. The
authors presented different approaches for solving an extended version of the cov-
ering tour problem (CTP), namely, the bi-objective stochastic.

Chapter 16, “A Metaheuristic Framework for Dynamic Network Flow Problems,”
by M. Hajjem, H. Bouziri, and E.G. Talbi, considers the definition of a metaheuris-
tic framework for the NP-hard flow over time problems. A specific case study of
dynamic flow problem is treated, precisely the evacuation problem from a building.
Therefore, the authors have supposed that the dynamic maximum flow model with
flow-dependent transit time could handle the dynamic property and the crowded-
ness on nodes and arcs. The genetic algorithm as a population-based evolutionary
method to treat this NP-hard problem is proposed.

In Chap. 17, “A Greedy Randomized Adaptive Search for the Surveillance Patrol
Vehicle Routing Problem,” by Simona Mancini, a new rich vehicle routing prob-
lem is introduced, the surveillance patrol vehicle routing problem (SPVRP). This
problem came out from a real need of a surveillance company to create fairer rout-
ing plans for its security patrols. The problem consists into routing a set of patrols
in order to visit a set of checkpoints. Each checkpoint requires one or more visits,
each one of which is to be performed within a fixed time window. Minimum time
spacing between two consecutive visits should be observed. The goal is to mini-
mize cost while minimizing, at the same time, time windows and minimum spacing
constraint violations. To address this problem, a greedy randomized adaptive search
algorithm is used to provide good solutions, and a further GRASP algorithm is used
to generate pools of good solutions.

Chapter 18, “Strip Algorithms as an Efficient Way to Initialize Population-
Based Metaheuristics,” by Birsen Irem Selamoglu, Abdellah Salhi, and Muhammad
Sulaiman, presents the strip algorithm (SA) which is a constructive heuristic. This
method has been tried on the Euclidean travelling salesman problem (TSP) and other
planar network problems with some success. The authors set out to investigate new
variants such as the 2-part strip algorithm (2-PSA), the spiral strip algorithm (SSA)
and the adaptive strip algorithm (ASA).
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Chapter 19, “Matheuristics for the Temporal Bin Packing Problem,” by Fabio
Furini and Xueying Shen, develops an extension of the bin packing problem, where
items consume the bin capacity during a time window only. The problem asks for
finding the minimum number of bins to pack all the items respecting the bin ca-
pacity at any instant of time. Both a polynomial-size formulation and an extensive
formulation are studied. Various heuristic algorithms are developed and compared,
including greedy heuristics and a column generation-based heuristic.

Chapter 20, “A Fast Reoptimization Approach for the Dynamic Technician Rout-
ing and Scheduling Problem,” by V. Pillac, C. Guéret, and A.L. Medaglia, the tech-
nician routing and scheduling problem (TRSP) consists in routing staff to serve
requests for service, taking into account time windows, skills, tools, and spare parts.
The authors tackle the dynamic TRSP (D-TRSP) with new requests appear over
time. They propose a fast reoptimization approach based on a parallel adaptive large
neighborhood search (RpALNS) able to achieve state-of-the-art results on the dy-
namic vehicle routing problem with time windows. In addition, the authors solve a
set of randomly generated D-TRSP instances and discuss the potential gains with
respect to a heuristic modeling a human dispatcher solution.

Chapter 21, “Optimized Air Routes Connections for Real Hub Schedule Using
SMPSO Algorithm,” by H. Rahil, B. Abou El Majd, and M. Bouchoum, presents
study dealing with the choice to open new routes for air carriers, airports and re-
gional governments have some tools to promote desirable connections to be offered
toward specific destinations. With a given flight program, the air carrier decision to
open new routes faces several constraints and affects the flight schedules in a re-
markable way. This chapter is the first to introduce the problem of connectivity in
the network of an airline whose main activity is based on air hub structure, opti-
mizing the insertion of new airline routes while ensuring the best fill rate seats and
avoiding significant delays during correspondence. Quality of service index (QSI)
will be considered as a dual parameter for the profit of a newly opened market. The
experimental tests are based on real instance of Royal Air Maroc flights schedule on
the hub of Casablanca.

Chapter 22, “Solving the P/Prec,pj;Ci j/Cmax Using an Evolutionary Algorithm,”
by Dalila Tayachi, tackles the problem of scheduling a set of related tasks on a set
of identical processors, taking into account the communication delays with the ob-
jective of minimizing the maximal completion time. As the problem is well known
as NP-hard, a particle swarm optimization (PSO) is proposed to solve it. The pro-
posed approach HEA-LS is a hybrid algorithm involving particle swarm optimiza-
tion (PSO) and local search algorithm (LSA). Experiments conducted on several
benchmarks known in the literature prove the effectiveness of the proposed approach
and show that it compares very well to the state-of-the-art methods.

Chapter 23, “A User Experiment on Interactive Reoptimization Using Iterated
Local Search,” by David Meignan, presents an experimental study conducted with
subjects on an interactive reoptimization method applied to a shift scheduling prob-
lem. The studied task is the adjustment, by a user, of candidate solutions provided
by an optimization system in order to introduce a missing constraint. Two proce-
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dures are compared on this task. The first one is a manual adjustment of solutions
assisted by software that dynamically computes the cost of the current solution. The
second procedure is based on reoptimization. For this procedure, the user defines
some desired changes on a solution, and then a reoptimization method is applied to
integrate the changes and re-optimize the rest of the solution.

Chapter 24, “Surrogate-Assisted Multi-objective Evolutionary Algorithm for
Fuzzy Job Shop Problems,” by Juan José Palacios, Jorge Puente, and Camino R.
Vela, Inés Gonzélez-Rodriguez and El-Ghazali Talbi, considers a job shop schedul-
ing problem with uncertain processing times modeled as triangular fuzzy numbers
and propose a multi-objective surrogate-assisted evolutionary algorithm to optimize
not only the schedules’ fuzzy makespan but also the robustness of schedules with
respect to different perturbations in the durations. The surrogate model is defined
to avoid evaluating the robustness measure for some individuals and estimate it in-
stead based on the robustness values of neighboring individuals, where neighbor
proximity is evaluated based on the similarity of fuzzy makespan values.

In Chap. 25, “Toward a Novel Reidentification Method Using Metaheuristics,”
by Tarik Ljouad, Aouatif Amine, and Ayoub Al-Hamadi, and Mohammed Rziza,
tracking multiple moving objects in a video sequence can be formulated as a profile
matching problem. The authors introduce a novel modified cuckoo search (MCS)
based reidentification algorithm. A complex descriptor representing each moving
person is built from different low-level visual features such as the color and the
texture components. The authors make use of a database that involves all previously
detected descriptors, forming therefore a discrete search space where the sought
solution is a descriptor and its quality is represented by its similarity to the query
profile.

Chapter 26, “Facing the Feature Selection Problem with a Binary PSO-GSA Ap-
proach,” by Malek Sarhani, Abdellatif El Afia, and Rdouan Faizi, considers feature
selection. The latter has become the focus of much research in many areas where
we can face the problem of big data or complex relationship among features. Meta-
heuristics have gained much attention in solving many practical problems, includ-
ing feature selection. The contribution of the authors is to propose a binary hybrid
metaheuristic to minimize a fitness function representing a trade-off between the
classification error of selecting the feature subset and the corresponding number of
features. This algorithm combines particle swarm optimization (PSO) and gravita-
tional search algorithm (GSA).

Chapter 27, “An Optimal Deployment of Readers for RFID Network Plan-
ning Using NSGA-II,” by Abdelkader Raghib, Badr Abou El Majd, and Brahim
Aghezzaf, considers radio frequency identification (RFID). RFID process depends
on radio frequency waves to transfer data between a reader and an electronic tag at-
tached to an item, in order to identify objects or persons, which allows an automated
traceability. In order to optimize the deployment of RFID reader problem, the au-
thors propose a new approach based on multi-level strategy using as main objectives
the coverage, the number of deployed readers and the interference. Non-dominated
sorting genetic algorithm II (NSGA-II) is adopted in order to minimize the total
quantity of readers required to identify all tags in a given area.
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Chapter 28, “An Enhanced Bat Echolocation Approach for Security Audit Trails
Analysis Using Manhattan Distance,” by Guendouzi Wassila and Boukra Abdel-
madjid, deals with the security audit trail analysis problem. This problem is clas-
sified as an NP-hard combinatorial optimization problem. The authors propose to
use the bat echolocation approach to solve such a problem. The proposed approach,
named an enhanced binary bat algorithm (EBBA), is an improvement of bat algo-
rithm (BA). The fitness function is defined as the global attack risks.

Troyes, France Lionel Amodeo
Villeneuve d’ Ascq, France El-Ghazali Talbi
Troyes, France Farouk Yalaoui

December 2016
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Chapter 1

Hidden Markov Model Classifier for the
Adaptive Particle Swarm Optimization

Oussama Aoun, Malek Sarhani, and Abdellatif El Afia

Abstract Particle swarm optimization (PSO) is a stochastic algorithm based popula-
tion that integrates social interactions of animals in nature. Adaptive Particle swarm
optimization (APSO) as an amelioration of the original one, improve the perfor-
mance of global search and gives better efficiency. The APSO defines four evolu-
tionary states: exploration, exploitation, convergence, and jumping out. According
to the state, the inertia weight and acceleration coefficients are controlled. In this
paper, we integrate Hidden Markov Model Particle swarm optimization (HMM)
in APSO to have a stochastic state classification at each iteration. Furthermore,
to tackle the problem of the dynamic environment during iterations, an additional
online learning for HMM parameters is integrated into the algorithm using online
Expectation-Maximization algorithm. We performed evaluations on ten benchmark
functions to test the HMM integration inside APSO. Experimental results show that
our proposed scheme outperforms other PSO variants in major cases regarding so-
lution accuracy and specially convergence speed.

Keywords Particle swarm optimization ¢ Swarm intelligence * Hidden Markov
model ¢ Machine learning ¢ Parameters adaptation * Metaheuristics control

1.1 Introduction

Nowadays, several approaches have been proposed to improve the performance and
the convergence of particle swarm optimization (PSO) algorithm. One of the main
challenges within PSO is to improve its capability of both global exploration and
local exploitation abilities. To achieve these goals, a number of variants of PSO
have been proposed. For example, PSO have been hybridized with several intelligent
algorithms such as genetic algorithm, local search, artificial immune system and
so on, in order to fix the problem of premature convergence. But, at the expense
of rapid convergence. Therefore, it is important to control the PSO parameters to
achieve the trade-off between the diversity and the convergence speed. That is, it is
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known that the accuracy of PSO depends on the selection of the appropriates values
of parameters and their values through the search process. See for instance [15].

There are three main strategies which can be used to categorize PSO parameters,
the first one is to affect this parameter randomly as a constant value, and the second
one is that the parameter depends on the iteration number. In the third one, the
value of this parameter at each iteration varies according to the results obtained
by the particles until this iteration [34]. The third approach enables the PSO to be
adaptive (adaptive PSO or APSO), another way to enhance the adaptivity of to PSO
is to vary the population size [4]. This problem can be formulated as a learning
process in which each particle learns from the obtained data and predict the values
of the parameters in accordance with the history of its values and the values of other
particles.

Several approaches have been used to improve PSO adaptivity including the
APSO approach. In this paper, we use the probabilistic machine learning method
by Hidden Markov Chain (HMM). That is, HMM is used to have stochastic state
control of APSO at each iteration. The main idea is to assign state selection inside
the adaptive particle swarm optimization to HMM. This process is performed by the
Viterbi algorithm that gives the most probable path of states in each PSO iteration.
Also, HMM parameters are calculated and updated at each iteration according to
the change in particle environment. An online Expectation-Maximization algorithm
gives a continuous parameter update for the HMM. At the best of our knowledge,
the Hidden Markov Model (HMM) has not been used yet for this type of learning
of PSO behavior.

The remainder of the paper is organized as follows. Section 1.2 provides a liter-
ature review. Section 1.3 describes the manner of integration of HMM in PSO. Sec-
tion 1.4 describes the experimental results and Sect. 1.5 is dedicated to a conclusion.

1.2 Literature Review

In the last few years, the use of the learning concept has become promising to en-
hance PSO adaptivity and then to improve its performance. That is, various meth-
ods have been proposed to improve the learning capability of the particles in PSO.
The learning process has been used in literature in different forms. van den Bergh
and Engelbrecht [27] used the concept of cooperative learning which consists of
using multiple swarms to optimize the various components of the solution vector
cooperatively. This idea is similar to the multi-agent approach which consists on
dividing the particles into agents. Another commonly used algorithm is the compre-
hensive learning [31]. In this case, each particle learns from another particle which
is chosen according to a learning probability. The basic idea behind the orthogonal
learning PSO proposed by Zhan et al. [33] is to determine the best combination of
historical values of the particle itself and other particles. Another approach is the
feedback learning which has been introduced by Tang et al. [26]. In the mentioned
work, the feedback fitness information of each particle (described especially by each
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particle’s history best fitness) is used to determine the learning probabilities. These
probabilities affect the acceleration parameters of PSO. In [9], the learning has been
done by different examples instead of one. The convergence has been analyzed the-
oretically by considering a Markov process of the PSO algorithm.

In particular, some papers have adapted the learning concept to adjust PSO pa-
rameters. The parameters that have to be defined are the velocity clamping, the
inertia weight (w) and the acceleration factors (cognitive attraction and social at-
traction). Thus, a number of methods have been proposed to learn the best values
of these factors. For instance, Ding et al. [6] employed a stochastic local search to
adjust the inertia weight in terms of keeping a balance between the diversity and the
convergence speed. Also, Zhang et al. [34] proposed a Bayesian PSO in which the
inertia weight vector is calculated by maximizing the posterior probability density
function of the weight.

Furthermore, in [1], the inertia weight was also dynamically adjusted at each
time step by taking into account the distance between the particles and gBest. The
classical way to define the inertia weight was proposed by Shi and Eberhart [23], it
consists on linearly decreasing w with the iterative generations. However, some pa-
pers proposed other variants of @. For instance, Tang et al. [26] proposed a quadratic
decreasing and Zhan et al. [32] chosen a sigmoid decreasing of this parameter. These
time-varying method of the inertia weight is chosen in order to control the exploita-
tion and exploration of PSO.

Concerning the acceleration parameters, according to [19], the particle swarm
can be stable if the following conditions are satisfied:

O<ci+cp<4
(c1+e)/2<w<1 (1.1)

The most used adaptive strategy of c¢; and ¢, has been formulated by Zhan
et al. [32], it consists in updating its values according to four defined states which
are: exploration, exploitation, convergence and jumping out. Other papers interested
in the relation between the learning behavior of PSO and acceleration parameters.
For instance, Kamalapur and Patil [13] examined the link between these parameters
and the topology of PSO. Moreover, Subbaraj et al. [24] interested in choosing the
best values of these parameters.

Epitropakis et al. [7] studied the effect of the social and cognitive parameters on
PSO convergence and used differential evolution to enhance it. In [10], the learning
process of fitness information is used to control the parameters of PSO. Therefore,
we can conclude that the learning ability of PSO is related to the choice of the
acceleration parameters.

On the other hand, machine learning methods have gained much attention and
wide application in several fields due to its ability of prediction with accurate pre-
cision. The configuration of metaheuristics by machine learning can be done in two
ways. The off-line configuration involves the adjustment of parameters before run-
ning the algorithm while the online configuration consists on adjusting the algorithm
parameters while solving the problem. In this paper, we interest on the online con-



4 O. Aoun et al.

figuration of metaheuristics. In particular, to learn and predict the PSO behavior,
some papers applied machine learning for this task. For instance, a variant of rein-
forcement learning approach (learning automata) has been used in [8] to enhance
the convergence of the comprehensive learning PSO. Also, the integration of classi-
fication algorithms for APSO has just been proposed by Liang et al. [16], their work
consists on adjusting the inertia weight based on the evaluation results of the states
of clusters and the swarm.

In terms of Hybridization between PSO and HMM, this has been done in most
cases for the aim of improving HMM performance by PSO. Phon-Amnuaisuk [20]
investigated the potential of the Particle Swarm Optimization (PSO) as an alterna-
tive method for HMM parameters instead of Baum-Welch algorithm. Furthermore,
Sun and Liu [25] proposed hybrid algorithm combining Viterbi and PSO to exploit
the randomness of HMMs parameters’ training. Yang and Zhang [30] proposed a
combination of Baum-Welch and PSO to train HMM parameters to deal with the
time sequence classification problem. Moreover, some improvements of PSO have
been proposed in some papers based on Markov chains. For instance, in [18], a def-
inition of the state sequence of a single particle and the swarm state based on the
proposed PSO difference model, then obtains the transition probability of the swarm
transferring to the optimal set.

On the other hand, HMM is a statistical learning tool used for modeling gener-
ative sequences characterized by a set of observations [22]. HMM capacity is re-
lated to statistical learning and classification. This framework can be used to model
stochastic processes where we have unobservable states of the system presented by
a Markov process and observations related to states by probabilistic dependencies.
HMM has been applied in many fields like speech recognition and engineering do-
mains [22].

Considering Online HMM training, it was defined by Di Mauro et al. [5] and
Polikar et al. [21], The main feature of an HMM which uses online learning is that
it can independently learn from new block of data at a time. So, HMM parameters
should be efficiently updated from new data without requiring access to all training
data. In addition, parameters are re-estimated online upon observing each new sub-
sequence [3]. The online EM algorithm for HMM allows continuous adaptation of
HMM parameters along a potentially infinite observation stream.

In our approach, we use Online HMM at each iteration of the adaptive PSO
(APSO) to classify particles states. This online classification of PSO particles enable
to improve its performances by an online machine learning technique.
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1.3 Classification of APSO States by HMM

1.3.1 Adaptive PSO Framework

First, PSO is a metaheuristic algorithm which was introduced by Kennedy and Eber-
hart [14]. The PSO concept consists of, at each time step, changing the velocity (ac-
celerating) of each particle toward its pBest and gBest locations. Finally, the results
are completed. Each particle i has two vectors: the velocity vector and the position
vector according to Egs. (1.2) and (1.3):

vi =wv; +ciri (pBest — x;) + cara(gBest — x;) (1.2)
Xi =X+ Vi (1.3)

Where: r; and r, are two independently uniformly distributed random variables in
the interval [0,1]. w is the inertia weight; it varies linearly from 1 to near O during
iterations. ¢1 and c; are acceleration factors; ¢ is the cognitive component that mea-
sured the degree of self-confidence of a particle and measured the degree at which
it trusts its performance. c¢; is the social component that relied in the capability of
the swarm to find better candidate solutions.

Our approach is based on adaptive particle swarm optimization (APSO) which
features better search efficiency than standard classical PSO. First, the APSO evalu-
ate the population distribution and particle fitness, a real-time state estimation proce-
dure is performed to identify one of four evolutionary states: exploration, exploita-
tion, convergence, and jumping out. It permits to have automatic control of inertia
weight, acceleration coefficients, and other PSO parameters. Then, an elitist learn-
ing strategy is performed when the evolutionary state is classified as convergence
state. APSO improves either the search efficiency and convergence speed [32].

As regards the update of the inertia weight, it is done as follows in order to
balance the global and local search capabilities as in the following equation:

1

= |4 1.50-26¢ €104, 0-9]f€[0, 1] (1.4)

omega(f)

The APSO gives the following major modifications:

* Evolutionary state estimation (ESE) technique and adaptive control according to
the state.
« Elitist learning strategy (ELS): in the case of convergence state.

Special interest is given to ESE technique in our approach. In APSO, an evolution-
ary factor f is calculated at each iteration and state is given by a defuzzification
technique [32]. Our method consists of replacing the defuzzification in APSO by
online HMM classification as described in the next paragraph.
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1.3.2 HMM Classification of Particle States

Our main contribution concerns the hybridization of HMM and APSO. That is, we
use of classification and learning capabilities of HMM to enhance APSO. On the
one hand, HMM is a stochastic method where we need to associate several proba-
bilities in the model definition; transitions between states are governed by a set of
probabilities named transition probabilities. In a particular state, observation is gen-
erated according to the related probability distribution. It is only the observation, not
the state is visible that is why the state is hidden. After model parameters definition,
aresolution algorithm is used to build HMM classification process.

We follow a similar approach than the one proposed by Zhan et al. [32] which
is also used by Ardizzon et al. [1] to enhance PSO adaptivity. It consists of iden-
tifying one of four evolutionary states: exploration, exploitation, convergence, and
jumping out in order to enable the automatic control of acceleration coefficients.
Our contribution to these works is to use HMM to identify the proper state (class) at
each iteration. So, we can generate the Markov Chain as described in Fig. 1.1. PSO
parameters are updated according to the classified state at every iteration. Then, the
same as Zhan et al. [32], an elitist learning strategy is performed when the evolu-
tionary state is classified as a convergence state.

Exploration Exploitation Convergence Jumping out

Fig. 1.1 Markov chain of APSO states

1.3.2.1 HMM Definition

We define the Hidden Markov Model by a triple A = (II1,A,B) , all processes are
defined on a probability space (Q, F, P):

» IT = (m;) The vector of the initial state probabilities;

* A = (ajj) The state transition matrix, P(X; = i|X,— = j),i,j € [1,N];

* B = (bji) The emission matrix also called the confusion matrix,
P(Y; =k|X; = j),j € [0O,N],k € [0,M].

The state {X; },cn takes values from the set S = {s;},c[; 4 What references respec-
tively: exploration, exploitation, convergence, and jumping out. The change of state
is reflected by the PSO sequence s1 = s» = s3 = s4 = §1 . . ., as deduced by Zhan
et al. [32], corresponding to the Markov Chain in Fig. 1.1.
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Furthermore, we define corresponding initial transition probabilities as:
P(X; =iVXi—1=J),i,j€[1,4].

This probability controls all behavior of transition between states of APSO reso-
lution. We take for all possible i and j transitions as mentioned in Fig. 1.1 a proba-
bility of 0.5.

The initial state probability corresponds to deterministic start in exploration state:

= (m)=[100 0 (1.5)

The observed parameter of this hidden chain is the evolutionary factor f of the
APSO. Observation will be belonging f to subintervals of [0,1] ([0,0.2], [0.2,0.3],
[0.3,0.4], [0.4,0.6], [0.6,0.7], [0.7,0.8], [0.8,1]). We divide [0,1] to seven subinter-
vals as mentioned by Zhan et al. [32], so the observation will be number of subin-
tervals witch belong f. Initial observation probabilities are deduced from the di-
fuzzification process defined in by Zhan et al. [32], we define coefficients values in
intervals as emissions and we dress the matrix of membership corresponding to the
difuzzification. It represents the emission probabilities follow:

0 0 0 05025025 0

p_ | 002502505 0 0 0 16
(23130 0 0 0 O '

0 0 0 0 0 1/32/3

1.3.2.2 Online HMM Learning

An online EM learning is first performed at each iteration to calculate and update
HMM parameters that are re-estimated upon observing each new sub-sequence.

Particles positions and velocities vary over iterations, impacting also the evolu-
tionary factor. Then, the classification environment for HMM changes during oper-
ations. Online learning of new data sequences allows adapting HMM parameters as
new data become available as shown if Fig. 1.2, where (oi),»e[o’n] are data observa-
tions and (A:)o,, parameters values update.

Ao Classification 1 A Classification 2 Ag weeeee Apy

Update 1 Update 2
I I I Observations
01 On

Fig. 1.2 HMM online classifications

At each iteration t, a new classifier 7; is performed with new updated parameters.
We choose online learning EM algorithm [3] instead of Bach learning (classical
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Baum-Welch algorithm [2], because this last one needs to run on all observation
sequence which this is not our case.

The online Expectation-Maximization algorithm used for HMM parameters
learning can be summarized as follows:

Algorithm 1 Expectations-maximization algorithm

Observation sequence O = (0103...0y)
Initialization: initial parameters set Ao;
for i =1to Ny, : do
E-step: find conditionally optimal hidden trace S' :
S' = argmax; P(O|S, Ai_1);
Compute likelihood
LY () =P(O|S', A1)
if (i < Ny.p & likelihood not yet converged) then
M-step - find conditionally optimal parameter set A :
A; = argmax; P(O|S, )
end if
end for
Results Estimated parameters Ay,,,

1.3.2.3 HMM Classification

The Viterbi Algorithm is used with online parameters setting to find the most prob-
able sequence of hidden states with a given sequence of observed states. The Viterbi
algorithm does not simply accept the most likely state at a particular time instant,
but also takes a decision based on the whole observation sequence. The algorithm
will find the max Q(state sequence Q = q1q>...qr) for a given observation sequence
by the means of induction. An array y;(j) is used to store the highest probability
paths [22].

HMM parameters, HMM classification is done by the Viterbi algorithm as de-
fined in the next algorithm:

1.3.2.4 Our Algorithm

Therefore, we delegate choosing states of APSO iterations to online HMM classifi-
cation, transitions between states is represented by online probabilities transitions.
At each iteration transition and observation probabilities are updated according to
the online EM algorithm. The Viterbi Algorithm is then used for state classification
of APSO iteration. Then, we update positions and velocities according to the classi-
fied state. The complete hybrid APSO with HMM is depicted below (Algorithm 3).
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Algorithm 2 Viterbi algorithm

Data: Observations of length T, state-graph of length N
Initialization: Observations of length T, state-graph of length N
Create a path probability matrix viterbi [N + 2, T]
Create a path backpointer matrix backpointer [N + 2, 7]
for s=1to N do
Sforward[s,1] — a, sxbs(01)
backpointer[s,1] — 0
end for
for time step ¢ from 2 to T do
for state s from 1 to N do
viterbi[s,t] — max_, viterbils',t — 1] xay ;xbs(0;)
backpointers, 1] —s argmax®_, viterbils',t — 1]xay
end for
end for
t—t+1
Result: Best-path of states: the classified current state

Algorithm 3 HMM-APSO algorithm

Data: The objective function

Initialization: positions, velocities of particles, accelerations factors and HMM parameters

Set ¢ value to 0
while (number of iterations ¢ < t,,,, not met) do
Update HMM parameters by online EM process (algorithm 1)
Classification of PSO state by HMM classifier (algorithm 2)
Update ¢, ¢z and w values according to the corresponding state
for i = 1 to number of particles do
compute f
Update velocities and positions according to Egs. (2) and (3)
lff < f best then
Joess — f
Pbest — X
end if
iff(pbext) < f(gbext) then
f(gbest) I fbest
8best — Xhest
end if
if state = convergence then
Elistic learning
end if
end for
t—t+1
end while

Result: The solution based on the best particle in the population and corresponding fitness value
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1.4 Experiment

In this part, tests and validations of the proposed hybrid approach HMM-APSO
are performed. Experimentations are done with several benchmark functions and
compared with other PSO’s variants of literature.

1.4.1 Parameters Setting

For each of benchmark functions shown in Table 1.1, we perform ten executions,
and compare for each function the best and the average value.

Table 1.1 Description of Benchmark functions

Test functions Name Type
fi=32,[100(xi 11 — )%+ (x; — 1)7] Rosenbrock Unimodal
£ =32 ,(lx+0.5])? Step Unimodal
fr= 2?:1 xi2 Sphere Unimodal
fa=10%3+ 32,52 Tablet Unimodal
fs= Z,DZ 1(2?: 1Xi)2 Quadric Unimodal
fo =32 ,[x? — 10cos(2mx;) + 10] Rastrigrin Multimodal
fr= fZOexp(fO.Z\/ 1 Ackley Multimodal
f8 = 4000 221 2 — M cos(x; /i) + 1 Griewang Multimodal
fo= Z,D=1 x;sin(y/x;) Schwefel Multimodal
S (1+cos(12\/x,2+x§) .
fio=— L2 42) 42 Drop wave Multimodal

Table 1.2 shows ten improved variants of PSO found in the literature. Tests are
executed with the same value of acceleration factors and inertia weight coefficients
which are:

C1 26‘222,(1):0.9

The used swarm population size is 30 with a dimension of 30. Each run contains
1000 generations of the optimization process. Performance is qualified following
two main measured observations: comparison on the solution accuracy and compar-
ison on the convergence speed.
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Table 1.2 Compared variants of PSO

Algorithm Name Specific parameters Reference
YSPSO PSO with compressibility factor — — [17]
SELPSO Natural selection based PSO - [11]
SecVibratPSO Order oscillating PSO - [12]
SecPSO Swarm-core evolutionary PSO - [28]
SAPSO Self-adaptive PSO WOpin = 0.01 [11]
RandWPSO Random inertia weight PSO mean g, = 1,mean,;; =0 [29]
LinWPSO Linear decreasing weights PSO @y, = 0.0001, @ex = 0.1 [29]
CLSPSO Cooperative line search PSO - [28]
AsyLnCPSO Asynchrous PSO Clmin = C2min = 0.01, [11]
Clmax = Comax = 2
SimuAPSO PSO with simulated annealing A =0.0001, [28]

1.4.2 Comparison on the Solution Accuracy

To examine our HMM-APSO approach, we compared results obtained for the
benchmark test functions with APSO. For every benchmark function, executions
are performed for all variants of PSO. Mean and best values are calculated to evalu-
ate the solution accuracy among other PSO variants from literature (Table 1.2). We
depict the obtained results in Table 1.3.

Table 1.3 Results comparisons with the variants of PSO

Functions APSO  PSO SimuA-PSO Sec-PSO RandWPSO YSPSO SelPSO  SecVibratPSO SAPSO LinWPSO AsyLnCPSO HMM-APSO
f1 Best 49 13566 115719 4689 9843 1420 16382 275 5095 7067 3765 44
Mean 150 24618 288102 10930 33384 2726 27998 32132 14850 20280 11045 171
f2 Best 0 5.1e—09 5.8e—06 1.9¢-31 2.le—12 0 8.6e—10 7.3e—10 0 0 0 0
Mean 0 6.5¢—05 0.04 9.8¢—12 3.6e—05 0 1.8¢—05 0.03 0 0 3.1e-30 0
f3 Best  0.01 2655 93.19 20.58 37.7 6.77 36.01 0.8 1820  17.66 22.89 4.6e—3
Mean 0.05 50.15 188.56 38.79 64.09 13.77 6359  71.05 3196 4053 34.58 0.04
fa Best  0.02 9497  251.36 714 11048 2372 3047 17.42 3721 5124 21.73 0.02
Mean 0.05 135.82  396.21 11048 246.78 4231 7751 199.04 8479 9574 4432 0.07
fs Best 16435 629e+5 587e+6 421e+5  102e+6 127e+4 839%e+5 107e+6 459e+5  165e+5 131e+5 7644
Mean 67851  196e+6 210e+7 978e+5  434e+6 843e+4 210e+6 562e+6 166e+6 155e+6  384e+5 49205
fe Best 824 266.20 358.22 208.54  293.88 14244 28516 22193 165.66  170.64 193.83 4.31
Mean 16.14  307.24  462.02 262.89 32235 175.84 315.60 344.76 27331 261.77 291.54 12.41
f1 Best  0.03 479 6.9436 4.8963  5.403 3.1785  5.665 1.2753 3.8279 4.7261 5.8372 0.03
Mean 0.31 5.61 8.6336 52716  6.5613 42219 6.1951 44528 52531 5.6829 6.8189 0.33
f3 Best 7.50e—5 0.17 0.52 0.15 0.25 0.05 0.27 0.05 0.13 0.14 0.08 1.1e-5
Mean 0.01 0.39 0.87 0.25 0.45 0.12 0.41 0.42 0.25 0.31 0.23 0.07
fo Best —1183 —3e+28 —7.2+4 —4+158 — —3+34 —le+3 — —14231 —le+22  —3e+47 —1183
Mean —1183 —3e+28 —le+47 —9e+15 - —3e+33 — - —le+23 —le+2]  —3e+46 —1183
fo Best —1 -1 —0.92 -1 —0.94 -1 —0.99 —0.93 -1 -1 -1 -1
Mean —1 —0.95 —0.74 —0.96  —0.93 —098 —-095 082 —0.97 —0.96 —0.98 —1

Results obtained from the mean of all executions shows that for these benchmark
functions (f1, f2, fs. fe, f7. f3.f9.f10) HMM-APSO gives almost the best results
among others used PSO variants. In general HMM-APSO gives good accuracy.
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1.4.3 Comparison on the Convergence Speed

In this section, we display in the following figures the obtained values at each itera-

tion:

x10°% Best individual fitness : Rosenbrock

fitness
@

21

o

f ——— HMMAPSO 2 —HMN-APSO
—— P50 —— P50
10- PSO PSO
—— SmUAPS0 02 —— SmUAPSD
—— P50 —— 8APSO

028 Best individual fitness : Step

0.15

fitness

01

0.05

U.
0 100 200 300 400 500 600 700 OO 000 1000
lteration

0 n n " " ]
0 100 200 300 400 500 600 700 800 900 1000
lteration

Fig. 1.3 Comparison on Rosenbrock and Step functions
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500 500
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450 APSO 450 — P30
ol PSO
400 —— SImUAPSO 40 —— SImuAPSO
e APLE —— 84PS0
350 30
300 300
8 b
g 0 2 250
g Z
200 200
150 150
100 100 LL
e Pl 'l
0 — 0
0 100 200 300 40 50 B0 700 80 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Iteration

Iteration

Fig. 1.4 Comparison on sphere and tablet functions

HMM-APSO gives frequently the best solution. When we interest on the conver-
gence rate, we can notice from Figs. 1.3, 1.4, 1.5, 1.6, and 1.7, that HMM-APSO
has faster convergence rate than other PSO.

We can conclude from experimentation that HMM-APSO can improve APSO
when comparing to others PSO with a number of benchmark functions. However,
those results improve the online HMM classification methodology. HMM coupled
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Fig. 1.5 Comparison on quadric and Rastrigrin functions
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Fig. 1.7 Comparison on Schwefel and drop wave functions

with unsupervised learning EM, gives more state adaptation to the APSO algorithm.
So, HMM-APSO outperforms significantly the original APSO algorithm.
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1.5 Conclusion

In this paper, we have integrated online HMM classifier inside the APSO. This looks
advantageous from the view that HMM is a robust stochastic classification tool. The
HMM can include stochastic information on transitions between states and also ob-
servations to give the most likely state for the APSO. The online EM process gives
more adaptive capacity to environment change during iteration which gives more
quality to the HMM classifier. We benefit from this feature of HMM classification
to integrate it inside APSO. On the other hand, we build an unsupervised state con-
trol of APSO iteration will be provided by online HMM. This approach gives better
results than the majority of the state of art of PSO improvement in terms of both
solution accuracy and convergence speed. Future research should attempt to pro-
vide more control to HMM inside the PSO algorithm in order to describe more the
stochastic PSO behavior through iterations. That is, by using Online learning HMM
in the convergence state instead of ELS procedure, it may further enhance APSO
more performance, or even constitute a new all based HMM learning for PSO, not
only for classification process.
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Chapter 2

Possibilistic Framework for Multi-Objective
Optimization Under Uncertainty

Oumayma Bahri, Nahla Ben Amor, and El-Ghazali Talbi

Abstract Optimization under uncertainty is an important line of research having to-
day many successful real applications in different areas. Despite its importance, few
works on multi-objective optimization under uncertainty exist today. In our study,
we address combinatorial multi-objective problem under uncertainty using the pos-
sibilistic framework. To this end, we firstly propose new Pareto relations for ranking
the generated uncertain solutions in both mono-objective and multi-objective cases.
Secondly, we suggest an extension of two well-known Pareto-base evolutionary al-
gorithms namely, SPEA2 and NSGAII. Finally, the extended algorithms are applied
to solve a multi-objective Vehicle Routing Problem (VRP) with uncertain demands.

Keywords Multi-objective optimization ¢ Uncertainty ¢ Possibilty theory ¢ Evo-
lutionary algorithms ¢ Vehicle routing problem

2.1 Introduction

Most real-world decision problems are multi-objective in nature as they require
the simultaneous optimization of multiple and usually conflicting objectives. These
multi-objective problems are a very important and widely discussed research topic.
Yet, despite the massive number of existing resolution methods and techniques for
multi-objective optimization, there still many open questions in this area. In fact,
there is no consideration of uncertainty in the classical multi-objective concepts and
techniques, which makes their application to real-life optimization problems impos-
sible.
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Moreover, uncertainty characterizes almost all practical applications, in which
the big amount of data provides certainly some unavoidable imperfections. This
imperfection might result from using unreliable information sources caused by in-
putting data incorrectly, faulty reading instruments or bad analysis of some training
data. It may also be the result of poor decision-maker opinions due to any lack of
its background knowledge or even due to the difficulty of giving a perfect qualifi-
cation for some costly situations. The classical way to deal with uncertainty is the
probabilistic reasoning, originated from the middle of the seventeenth century [19].
However, probability theory was considered for a long time as a very good quantita-
tive tool for uncertainty treatment, but as good as it is, this theory is only appropriate
when all numerical data are available, which is not always the case. Indeed, there
are some situations such as the case of total ignorance, which are not well handled
and which can make the probabilistic reasoning unsound [26]. Therefore, a panoply
of non-classical theories of uncertainty have recently emerged such as fuzzy sets
theory [33], possibility theory [34] and evidence theory [25]. Among the aforemen-
tioned theories of uncertainty, our interest will focus on possibility theory which
offers a natural and simple model to handle uncertain data and presents an appropri-
ate framework for experts to express their partial beliefs numerically or qualitatively.
Nevertheless, while the field of optimization under uncertainty has gained consid-
erable attention during several years in the mono-objective context, only few stud-
ies have been focused on treating uncertain optimization problems within a multi-
objective setting. This chapter addresses the multi-objective optimization problems
under uncertainty in the possibilistic setting [23].

The remainder of the chapter is organized as follows. Section 2.2 recalls the
main concepts of deterministic multi-objective optimization. Section 2.3 gives an
overview of existing approaches for multi-objective optimization under uncertainty.
Section 2.4 presents in detail our proposed possibilistic framework after briefly re-
calling the basics of possibility theory. Finally, Sect.2.5 describes an illustrative
example on a multi-objective vehicle routing problem with uncertain demands and
summarizes the obtained results.

2.2 Background on Deterministic Multi-Objective Optimization

Deterministic multi-objective optimization is the process of optimizing systemati-
cally and simultaneously two or more conflicting objectives subject to certain con-
straints. In contrast to mono-objective optimization, a multi-objective optimization
problem does not restrict to find a unique global solution but it aims to find the most
preferred exact solutions among the best ones.

Formally, a basic multi-objective optimization problem (MOP), defined in the
sense of minimization of all the objectives, consists of solving a mathematical pro-
gram of the form:
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MOP:{MlnF(x):(fl(x),fz(x),...,f,,(x)) @.1)
st.xeS
where n (n > 2) is the number of objectives and x = {x1,...,x; } is the set of decision

variables from the decision space S, which represents the set of feasible solutions
associated with equality and inequality constraints. F'(x) is the vector of independent
objectives to be minimized. This vector F' can be defined as a cost function in the
objective space by assigning an objective vector 7 which represents the quality of
the solution (or fitness).

Y1
F:X—YCR', F)=y=]|... (2.2)

Yn

In order to identify better solutions of a given MOP, other concepts of optimality
should be applied such as Pareto dominance, Pareto optimality, Pareto optimal set
and Pareto front. Without loss of generality, we assume that the sense of minimiza-
tion of all the objectives is considered in the following concepts definition:

An objective vector X = (x1,...,x,) is said to Pareto dominate another objective
vector y = (y1,...,y») (denoted by x <, y) if and only if no component of y is
smaller than the corresponding component of x and at least one component of x is
strictly smaller:

Viel,...,n:x;<y;AJiel,....n:x <y (2.3)

For a minimization MOP(F,S), a solution x* € X is Pareto optimal (also known
as efficient, non-dominated or non-inferior) if for every x € X, F(x) does not domi-
nate F(x*), thatis, F(x) A, F(x*).

A Pareto optimal set P* is defined as:

P ={xeX/I eX,F(x') 4, F(x)}. 2.4

The image of this Pareto optimal set P* in the objective space is called Pareto
front PF* defined as:
PF*={F(x),x € P*}. (2.5)

Yet, finding the true Pareto front of a general MOP is NP-hard. Thus, the main
goal of multi-objective optimization is to identify a good approximation of the
Fareto front, from which the decision maker can select an optimal solution based
on the current situation. The approximated front should satisfy two properties: (1)
convergence or closeness to the exact Pareto front and (2) uniform diversity of the
obtained solutions around the Pareto front. Figure 2.1 illustrates an example of ap-
proximated front having a very good spread of solutions (uniform diversity) but a
bad convergence, since the solutions are far from the true Pareto front.



20 O. Bahri et al.

S

Fig. 2.1 Example of Pareto front with uniform diversity and bad convergence

There are several deterministic optimization methods to deal with multi-objective
combinatorial problems, such as the metaheuristics, which mark a great revolution
in the field of optimization. A review of various metaheuristics can be found in
[29]. Among the well-know metaheuristics, evolutionary algorithms seem partic-
ularly suitable for both theoretical and practical MOPs, since they have the abil-
ity to search partially ordered spaces for several alternative trade-offs [6, 5, 7].
Some of the most popular multi-objective evolutionary algorithms (MOEAS) are:
Multi-Objective Genetic Algorithm (MOGA) [11], Niched-Pareto Genetic Algo-
rithm (NPGA) [14], Pareto-Archived Evolutionary Strategy (PAES) [18], Strength
Pareto Evolutionary Algorithms (SPEA, SPEA2) [35, 36] and Non-dominated Sort-
ing Genetic Algorithms (NSGA, NSGAII) [8, 9].

Such algorithms are based on three main components namely, Fitness assignment,
Diversity preserving and Elitism.

Fitness Assignment

Fitness Assignment allows to guide the search algorithm toward Pareto optimal so-
lutions for a better convergence. The fitness assignment procedure assigns to each
objective vector, a scalar-valued fitness that measures the quality of solution. Ac-
cording to the fitness assignment strategy, four different categories can be identified:

» Pareto-based assignment: based on the concept of dominance and Pareto opti-
mality to guide the search process. The objective vectors are scalarized using the
dominance relation.

* Scalar-based assignment: based on the MOP transformation into a mono-objective
problem by using for example aggregation methods and weighted metrics.

¢ Criterion-based assignment: based on the separate handling of various non com-
mensurable objectives by performing a sequential search according to a given
preference order of objectives or by handling the objectives in parallel.

* Indicator-based assignment: based on the use of performance quality indicators
to drive the search toward the Pareto front.
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Diversity Preserving

Diversity Preserving used to generate a diverse set of Pareto solutions. According to
the strategy of density estimation, three categories can be distinguished:

» Distance-based density assessment: based on the distance between individuals
in the feature space. Examples of techniques are, Niche sharing, Clustering, Kth
nearest neighbor and Crowding.

* Grid-based density assessment: based on the way in which a number of indi-
viduals residing within predetermined cells are located. Histogram method is an
example.

* Distribution-based density assessment: based on the probability density of indi-
viduals using for example probability density estimation functions.

Elitism

Elitism consists in archiving the best solutions found (e.g, Pareto optimal solutions)
in order to prevent the loss of good solutions during the search process. Archiving
process can be done using an archive (elite population) or an external population
and its strategy of update usually relies on size, convergence and diversity criteria.
Depending on the manner in which the archiving process is performed, MOEAs can
be classified into two categories, namely non-elitist and elitist MOEAs. Moreover,
almost all MOEAs follow the same basic steps in the search process [12], as outlined
in the following pseudo code:

Generic MOEA Framework

Initialize random population P
While (Stopping condition is not satisfied)
Fitness evaluation of solutions in P;
Environmental selection of “good” solutions;
Diversity preserving of candidate solutions;
Update and store elite solutions into an external population or archive;
Mating selection to create the mating pool for variation;
Variation by applying crossover and mutation operators;
End While

An MOEA begins its search with a population of solutions usually generated at
random. Thereafter, an iterative optimization process takes place by the use of six
search operators: evaluation of the population individuals, environmental selection
to choose better solutions based on their fitness, diversity preservation of candi-
date solutions, updating and archiving the solutions into an external population or
archive, mating selection operator in which solutions are picked from the updated
population to fill an intermediate mating pool and finally variation operator to gen-
erate new solutions. The process stops when one or more pre-specified stopping
conditions are met.
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All the above concepts and techniques of deterministic multi-objective optimiza-
tion are widely used and applied successfully to several combinatorial decision
problems in many interesting areas, but their application to real-life decision making
situations often faces some difficulties. Yet, most of real-world optimization prob-
lems are naturally subject to various types of uncertainties caused by many sources
such as missing information, forecasting, data approximation or noise in measure-
ments. These uncertainties are very difficult to avoid in practical applications and
so should be taken into account within the optimization process. Therefore, a va-
riety of methodologies and approaches for handling optimization problems under
uncertainty have been proposed in the last years. Unfortunately, almost all of them
have been devoted to solve such problems in the mono-objective context, while only
few studies have been performed in the multi-objective setting. A review of some
existing approaches for uncertain multi-objective optimization will be summarized
in the next section.

2.3 Existing Approaches for Uncertain Multi-Objective
Optimization

Uncertain multi-objective optimization has gained more and more attention in re-
cent years [17], since it closely reflects the reality of many real-world problems.
Such problems, known as multi-objective problems under uncertainty, are naturally
characterized by the necessity of optimizing simultaneously several objectives sub-
ject to a set of constraints and while considering that some input data are ill-known
and without knowing what their full effects will be. In these problems, the set of ob-
jectives and/or constraints to be satisfied can be affected by the uncertainty of input
data or uncontrollable problem parameters. Hence, the aim of optimization in this
case will be to find solutions of a multi-objective problem that are not only feasible
and optimal but also their objectives and/or constraints are allowed to have some
acceptable (or minimal) uncertainties. These uncertainties can take different forms
in terms of distribution, bounds, and central tendency.

Yet, considering the uncertainty in the objective functions seems to be very ap-
plicable but highly critical, since the propagation of input uncertainties to the ob-
jectives may have a major impact on the whole optimization process and conse-
quently on the problem solutions. In most of the existing approaches for dealing
with multi-objective problems under uncertainty, the objective functions to be opti-
mized are transformed into different forms in order to simplify their resolution by
eliminating one of the two basic characteristics of such problems: multi-objectivity
and uncertainty propagation. In fact, some of these approaches have been often lim-
ited to simply reduce the problem to mono-objective context by considering the
set of objectives as if there’s only one, using for example an aggregation function
(a weighted sum) of all the objectives [13] or preferring only one objective to be
optimized (based on a preference indicator) and fixing the remaining objectives as
constraints [24]. The considered single objective is then optimized using appropriate
mono-objective methods for uncertainty treatment.
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Some other approaches have been focused on treating the problem as multi-
objective but with ignoration of uncertainty propagation to the objective functions
by converting them into deterministic functions using statistical properties. For ex-
ample, in [30], expectation values are used to approximate the observed interval-
valued objectives and so the goal became to optimize the expected values of these
objectives. In [2], the average value per objective is firstly computed and then a
ranking method based on the average values of objectives is proposed. Similarly,
[9] suggested to consider the mean value for each objective vectors and then to ap-
ply classical deterministic multi-objective optimizers. Nevertheless, the uncertainty
of objective values must not be ignored during the optimization process, because
if the input data or parameters are highly uncertain, how can the optimizer simply
state that the uncertainty of outputs is completely certain? It may be feasible only
for simplicity or other practical reasons as long as the algorithm performance will
not be affected.

To this end, some distinct approaches have been suggested to handle the problem
as-is without erasing any of its multi-objective or uncertain characteristics by intro-
ducing a particular multi-objective optimizer for this purpose. Indeed, [21, 22, 1]
proposed to display uncertainty in objective functions through intervals of belief
functions and then introduced an extensions of Pareto dominance for ranking the
generated interval-valued objectives. Hughes [15, 16] suggested to express uncer-
tainty in the objectives via special types of probability distributions and then in-
dependently proposed a stochastic extension of Pareto dominance. Our interest in
this chapter will focus on handling multi-objective problems under uncertainty in
the possibilistic setting while considering the uncertainty propagation to the set of
objectives to be optimized.

2.4 Proposed Possibilistic Framework for Multi-Objective
Problems Under Uncertainty

This section provides firstly a brief background on possibility theory and then
presents in detail the proposed possibilistic framework for solving multi-objective
problems with uncertain data. The framework is composed of three main stages:
Adaptation of possibilistic setting, New Pareto optimality and Extension of some
optimization algorithms to our uncertain context.

2.4.1 Basics on Possibility Theory

Possibility theory, issued from Fuzzy Sets theory, was introduced by Zadeh [34] and
further developed by Dubois and Prade [10]. This theory offers a flexible tool for
representing uncertain information such as expressed by humans. Its basic build-
ing block is the notion of possibility distribution, denoted by 7 and defined as the
following:
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Let V = {Xj,..., X} be a set of state variables whose values are ill-known.
We denote by x; any instance of X; and by Dy, the domain associated with X;.
Q = Dy, x ---x Dy, denotes the universe of discourse, which is the cartesian prod-
uct of all variable domains V. Vectors @ € €2 are often called realizations or simply
“states” (of the world). The agent’s knowledge about the value of the x;’s can be
encoded by a possibility distribution 7 that corresponding to a mapping from the
universe of discourse Q to the scale [0,1],i.e. 7: Q — [0,1]; 7(®) = 1 means that
the realization @ is totally possible and 7(®) = 0 means that ® is an impossible
state. It is generally assumed that there exist at least one state @ which is totally
possible—r is said then to be normalized. Extreme cases of knowledge are pre-
sented by:

— complete knowledge i.e. Jay € Q, () = 1 and Vo # wyp, t(w) = 0.
— total ignorance i.e. Yo € Q,n(w) =1 (all values in  are possible).

From 7, one can describe the uncertainty about the occurrence of an event A C Q2
via two dual measures: the possibility IT(A) and the necessity N(A) expressed by:

M(A) = suppean(o). (2.6)

N(A) = 1—I1(=A) = 1 — supyga() (2.7)

Measure T1(A) corresponds to the possibility degree (i.e. the plausibility) of A and it
evaluates to what extent A is consistent (i.e. not contradictory) with the knowledge
represented by 7. Yet, the expression “it is possible that A is true” does not entail
anything about the possibility nor the impossibility of A. Thus, the description of
uncertainty about the occurrence of A needs its dual measure N(A) which corre-
sponds to the extent to which A is impossible and it evaluates at which level A is
certainly implied by the 7 (the certainty degree of A). Main properties of these two
dual measures are summarized in Table 2.1.

Table 2.1 Possibility measure IT and necessity measure N
M(A)=1and I1(A) =0 NA)=1and N(A)=0 A is certainly true
IT(A) =1 and IT(A) €]0,1] || N(A) €]0,1[and N(A) =0 | A is somewhat certain
INA)=1and II(A) =1 N(A)=0and N(A) =0 Total ignorance

The particularity of the possibilistic scale is that it can be interpreted in two man-
ners: in an ordinal manner, i.e. when the possibility degrees reflect only an ordering
between the possible values and in a numerical manner, i.e. when the handled values
make sense in the ranking scale.

Technically, a possibility distribution is a normal fuzzy set (at least one mem-
bership grade equals 1). Indeed, all fuzzy numbers can be interpreted as specific
possibility distributions. More precisely, given a variable X whose values are re-
stricted by a fuzzy set F' characterized by its membership function Ur, so that my
is taken as equal to the membership function ur(x). Thus, the possibility and ne-
cessity measures will be expressed in terms of supremum degrees of the U, i.e.
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I(X) = supxex pr (x) and N(X) = 1 — sup,gx fr (x). In this work, we are interested
in a particular form of possibility distributions, namely those represented by trian-
gular fuzzy numbers and commonly known as triangular possibility distributions.
A triangular possibility distribution 7y is defined by a triplet [x,X,x], as shown in
Fig.2.2, where [x, x| is the interval of possible values called its bounded support and
X denotes its kernel value (the most plausible value).

0.0

X

=) [
=

Fig. 2.2 Triangular possibility distribution

In the remaining, we use X = [x,X,x] C R to denote the triangular fuzzy number
X, meaning that X is represented by a triangular possibility distribution my. This
representation is characterized by a membership function ty which assigns a value
within [0, 1] to each element in x € X. Its mathematical definition is given by:

ta XSx<T

1, x=a
x (X) = - (2.8)
=Y x pcrex

0, otherwise.

However, in practical use of triangular fuzzy numbers, a ranking procedure needs
to be applied for decision-making. In other words, one triangular fuzzy number
needs to be evaluated and compared with the others in order to make a choice among
them. Indeed, all possible topological relations between two triangular fuzzy num-
bers A = [a,d,a] and B = [b,b,b] may be covered by only four different situations,
which are: Fuzzy disjoint, Fuzzy weak overlapping, Fuzzy overlapping and Fuzzy
inclusion [20]. These situations, illustrated in Fig. 2.3 should be taken into account
for ranking triangular fuzzy numbers.

e | e e w—
a a a a a a a a a
I T 11 —— —r—— —r—— —r——
a a ab b b b p b b b b b p b
Fuzzy Disjoint Fuzzy Weak-Overlapping | Fuzzy Overlapping Fuzzy Inclusion

Fig. 2.3 Possible topological situations for two TFNs
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2.4.2 Adaptation of Possibilistic Setting

In the following, we choose to express the uncertain data of multi-objective prob-
lems under uncertainty using triangular possibility distributions (i.e. triangular
fuzzy numbers) as defined in the previous subsection. Then, as a multi-objective
optimization problem under uncertainty involves the simultaneous satisfaction of
several objectives respecting a set of constraints and while considering some input
data uncertainties, we assume that the observed objectives and some constraints (es-
pecially those depends on uncertain variables) are affected by the used form of these
uncertainties.

Thus, as in our case, uncertainty is represented by a triangular form, the uncer-

tain constraints in such a problem may be disrupted by this fuzzy form and so will
be fuzzy constraints. Yet, the satisfaction of such constraints cannot be directly pre-
dicted since it is difficult to estimate directly that a fuzzy constraint is fully satisfied
or fully violated. At this level, we propose firstly to use the two measures of possi-
bility theory IT and N in order to express the satisfaction of a given fuzzy constraint,
as follows:
Let X = [x,X,x] C R be a triangular fuzzy variable, let x be any instance of X, let v
be a given fixed value and let C = (X < v) be a fuzzy constraint that depends only on
the value of X and whose membership function is {t(x), then we have the measures
(X <v)and N(X <v) =1—TII(X > v) are equal to:

1 ifv>Xx
(X <v)=sup tey(x) =4 & L ifx<v<x (2.9)
0 ifv<ax.

1 ifv>x
NX <v)=1—sup y(x) =4 " 2if¥<v<x (2.10)
0 ifv<x.
These formulas will be used to express the degrees that a solution satisfies the fuzzy
constraint.

Example 1 As an example of constraint satisfaction expressed by the possibility
and necessity measures, we have Q = [q,q,q] = [20,45,97] is a triangular fuzzy
quantity of objects, M = 50 is the maximum size of a package and C = (Q < M) is
the fuzzy constraint which imposes that the total quantity of objects must be less than
or equal to the package size. In this case, I1(Q < M) = 1 because M = 50 > g =45

and N(Q < M) = Y7 = 30743 = 0.096 because § =45 <M =50 < g = 97.

Note that, a constraint may fail even though its possibility achieves 1 and holds even
though its necessity is 0. In addition, an often used definition says that the possibility
measure I gives always the best case and shows the most optimist attitude, while
the necessity NV gives the worst case and shows the most pessimist attitude. Then, as
presented above, IT and N are related to each others by a dual relationship. There-
fore, a combination of these two measures allows the expression of both optimistic
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and pessimistic attitude of the decision maker. From these remarks, we can conclude
that it is more efficient at this step to use the linear combination of possibility and
necessity measures proposed by Brito et al. [4], rather than treating each measure
separately. This linear combination is defined as the following:

Given a constraint A, its weight denoted by W (A) which corresponds to the combi-
nation of the weighted possibility and necessity, is expressed by:

W(A) =L IT(A)+(1— 1) N(A) > a. (2.11)

where the parameter A € [0,1], measures the degree of optimism or confidence of
the decision maker such that:

1 Total optimistic case
A=< 0 Total pessimistic case (2.12)
0.5 Neither optimistic nor pessimistic.

and o € [0,1] is a given threshold of satisfaction fixed by the decision maker.
This formula indicates that the weight measure W(A) must be higher than a given
threshold . The higher it is, the greater the constraint will be satisfied.

Secondly, knowing that propagating the uncertainty of multi-objective problem’s
data through the resolution model leads often to uncertain formulation of objective
functions and as in our case the uncertain data are represented by triangular fuzzy
numbers, the objective functions will be consequently disrupted by this fuzzy form.
Let us assume that, a multi-objective triangular-valued function can be mathemati-
cally defined as:

F:X—YC(RxRxR)",

yi=[Dyn)
Fx)=79 = (2.13)

Y = [YnsVnsVn
Clearly, in this case, the classical multi-objective techniques cannot be applied
since they are only meant for deterministic case. Therefore, a need for special op-
timization methods techniques to handle the generated triangular-valued functions
is evident. To this end, we first introduce a new Pareto dominance over triangular

fuzzy numbers, in both mono-objective and multi-objective cases.

2.4.3 New Pareto Optimality over Triangular Fuzzy Numbers

In this section, we first present new mono-objective dominance relations between
two TFNs. Then, based on these mono-objective dominance, we define a new Pareto
dominance between vectors of TFNs, for multi-objective case. Note that, the mini-
mization sense is considered in all our definitions.
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2.4.3.1 Mono-Objective Dominance Relations

In the mono-objective case, three dominance relations over triangular fuzzy num-
bers are defined: Total dominance (<;), Partial strong-dominance (<) and Partial
weak-dominance (<,,).

Definition 1 Total Dominance
Lety=1[y,9,y] CRandy = [y,y,Y] C R be two triangular fuzzy numbers. y
dominates y' totally or certainly (denoted by y <;y') if: y < ¥'.

This dominance relation represents the fuzzy disjoint situation between two trian-
gular fuzzy numbers and it imposes that the upper bound of y is strictly inferior than
the lower bound of ¥’ as shown by case (1) in Fig. 2.4.

Yy 3 vy v’

<}
@

ke

<l

<

<|

Fig. 2.4 Total dominance and partial strong-dominance

Definition 2 Partial Strong-Dominance
Lety=[y,y,y] CRandy =[y,¥,Y'] CR be two triangular fuzzy numbers. y
strong dominates y' partially or uncertainly (denoted by y <, V') if:

Y>Y)IANG<Y)AYLT).

This dominance relation appears when there is a fuzzy weak-overlapping between
both triangles and it imposes that firstly there is at most one intersection between
them and secondly this intersection should not exceed the interval of their kernel
values [y,y'], as shown by case (2) in Fig. 2.4.

Definition 3 Partial Weak-Dominance
Lety=[y,y,y] CRandy =[y,¥,Y'] CR be two triangular fuzzy numbers. y
weak dominates y' partially or uncertainly (denoted by y <., y') if:

1. Fuzzy overlapping

Y)IA

(Y <Y)A(y <y
ANy <T)NOVIGT>Y)AG>T)).

(G<Y)AN>Y)VIT>Y)

2. Fuzzy Inclusion

<Y)A=Y).
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Y

Fig. 2.5 Partial weak-dominance

In this dominance relation, the two situations of fuzzy overlapping and inclusion
may occur. Figure 2.5 presents four examples of possible cases, where in (1) and (3)
y and y’ are overlapped, while, in (2) and (4) ¥’ is included in y.

Yet, the partial weak-dominance relation cannot discriminate all possible cases
and leads often to some incomparable situations as for cases (3) and (4) in Fig. 2.5.
These incomparable situations can be distinguished according to the kernel value
positions in fuzzy triangles. Thus, we propose to consider the kernel values configuration
as condition to identify the cases of incomparability, as follows:

o o [<0, y=w)Y
Y " | >0, yandy can be incomparable.

Subsequently, to handle the identified incomparable situations (with kernel condi-
tion y—3' > 0), we introduce another comparison criterion, which consists in com-
paring the discard between both fuzzy triangles as follows:

y=wy e -y <0 -y

Similarly, it is obvious that: y <,, y < () —y) > () — ).

It is easy to check that in the mono-objective case, we obtain a total pre-order
between two triangular fuzzy numbers, contrarily to the multi-objective case, where
the situation is more complex and it is common to have some cases of indifference.

2.4.3.2 Pareto Dominance Relations

In the multi-objective case, we propose to use the mono-objective dominance rela-
tions, defined previously, in order to rank separately the triangular fuzzy solutions of
each objective function. Then, depending on the types of mono-objective dominance
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founded for all the objectives, we define the Pareto dominance between the vectors
of triangular fuzzy solutions. In this context, two Pareto dominance relations: Strong
Pareto dominance (<sp) and Weak Pareto dominance (<wp) are introduced.
Definition 4 Strong Pareto Dominance.

Let 7 and 7' be two vectors of triangular fuzzy numbers. 7 strong Pareto
dominates Y’ (denoted by Y <sp ') if:

(@Vi€l,....n:yi = Y,V yi <5 Vi
(b)F€1,...,nyi = ViANVj# i1y <5,
(c)F€ L ni(yi =i YiVyj=<s V) AVj# ity <w .

(@) (b)

fa fa
— —
2 Y2
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Fig. 2.6 Strong Pareto dominance

The strong Pareto dominance holds if either y; total dominates or partial strong
dominates y; in all the objectives (Fig.2.6a: y; <, y| and y> <; y,), either y; total
dominates y; in one objective and partial strong dominates it in another (Fig. 2.6b:
Y1 <s Yy and y; <; ¥ ), or at least y; total or partial strong dominates y; in one
objective and weak dominates it in another (Fig. 2.6¢, d: y; <, ¥} and y2 < y5).

Definition 5 Weak Pareto dominance
Let 7 and 7’ be two vectors of triangular fuzzy numbers. 7 weak Pareto dom-
inates Y (denotedby Y <wp ¥')if: Vi€ 1,... .01y <y Y

The weak Pareto dominance holds if y; weak dominates y} in all the objectives
(Fig.2.7a). Yet, a case of indifference (defined below) can occur if there is a weak
dominance with inclusion type in all the objectives (Fig. 2.7b).



2 Possibilistic Framework for Multi-Objective Optimization Under Uncertainty 31

Definition 6 Case of Indifference
Two vectors of triangular fuzzy numbers are indifferent or incomparable (denoted

by VIV if:Viel,. .. ,n:y Cyl.

(a)
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Fig. 2.7 (a) Weak Pareto dominance and (b) Case of indifference

The proposed Pareto dominance in bi-dimensional objective space can easily be
generalized for ranking more than two objectives. Note that, if the considered tri-
angular objectives are non-independent, the estimation in a bi-dimensional space
can have different distributions (non-triangular) like linear shapes. Finally, the is-
sue now is how integrate this dominance in the research process of multi-objective
optimization algorithms.

2.4.4 Extended Optimization Algorithm

In the following, we present an extension of two well-known Pareto-based multi-
objective evolutionary algorithms: SPEA2 [36] and NSGAII [9], in order to enable
them handling a multi-objective problem with triangular-valued objectives. Both
algorithms have proved to be very powerful tools for multi-objective optimization.
Due to their population-based nature, they are able to generate multiple optimal
solutions in a single run with respect to the good convergence and diversification of
obtained solutions. We call our two extended algorithms respectively, ESPEA2—
Strength Pareto Evolutionary Algorithm2 and ENSGAII—Non-dominated Sorting
Genetic Algorithm II.
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2.4.4.1 ESPEA2

SPEAZ2 is an improved version of the Strength Pareto Evolutionary Algorithm SPEA
initially proposed by Zitzler and Thiele [35]. This evolutionary algorithm uses
mainly three techniques: a dominance based approach as fitness assignment strat-
egy, a nearest neighbor technique that allows a good diversity preservation and an
archive with fixed size that guarantees the elitist storage of optimal solutions. To
extend such techniques to triangular fuzzy context, we propose firstly to replace the
classical dominance approach by the new Pareto dominance approach proposed for
ranking triangular-valued objectives. Secondly, an adaptation of the nearest neigh-
bor technique is introduced. Indeed, in SPEAZ2, this technique is based on Euclidean
distance to estimate the density in its neighborhood and it consists in calculating
for each solution (objective vector) the distance to its k-nearest neighbor and then
adding the reciprocal value to the fitness vector. Yet, as in our case the solutions
are triangular objective vectors and knowing that the Euclidean distance should be
applied only between two exact vectors, we propose to use the expected value as a
defuzzification method [32] in order to approximate the considered triangular vec-
tors, such that for each triangular fuzzy number y; = [y;,y;,y:], the expected value is
defined by:

E(yi) = (vi+2xyi+yi)/4 (2.14)

Then, the Euclidean distance between two triangular vectors 7 = (¥1,...,yn) and
¥ = (¥},---,¥,) can be applied as follows:

D(Y, V) =DEM)ET)) = | X (E(:)—E()) (2.15)
i=1..

1 n

Finally, we adapt the SPEA?2 archive to triangular space in order to enable it keeping
the obtained triangular solutions. These extensions are integrated into the research
process of SPEA2 by modifying the following steps:

— Evaluation: Rank individuals using the new Pareto dominance <7p.

— Environmental selection:
1. Copy all non-dominated individuals having fitness values lower than one in
the triangular archive A with fixed size N.
2.if A is too large (size(A)>N) then, reduce A by means of truncation operator
based on Nearest neighbor method to keep only the non-dominated individuals
with good spread.
3. else if A is too small (size(A)<N) then, fill A with the best dominated individ-
uals.
4. otherwise (size(A) =N), the environmental selection is completed.

— Mating selection: Perform binary tournament selection with replacement on the
archive A in order to fill the mating pool.
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2.4.4.2 ENSGAII

NSGAII is an extension of an elitism PMOEA called Non-dominated Sorting Ge-
netic Algorithm NSGA, originally proposed by Deb and Srinivas [8]. Unlike the
SPEA?2 algorithm, NSGAII uses a crowded-comparison operator as diversity preser-
vation technique in order to maintain a uniformly spread front by front. In addition,
it does not use an explicit archive for the elitism operation, it only consider the
population as a repository to store both elitist and non-elitist solutions. To extend
NSGAII to triangular context, we propose at the first step to use the new Pareto
dominance between triangular-valued objectives in order to ensure the fitness as-
signment procedure, in which a dominance depth strategy is applied. At the sec-
ond stage, we provide an adaptation of the crowded-comparison operator. Indeed,
this operator uses the Crowding Distance that serves to get a density estimation of
individuals surrounding a particular individual in the population. More precisely,
the total Crowding Distance CD of an individual is the sum of its individual objec-
tives’ distances, that in turn are the differences between the individual and its closest
neighbors. For the ith objective function y;, this distance is expressed by:

D)= 3 (fuli+ 1)~ fyli— D)/ (1~ 1) 2.16)

i=1..n

Where fy, is the fitness value of its neighbors (i — 1) and (i + 1), f;"* and ;,:_”” are
respectively the maximum and minimum value of y;.

However, as in our case, the objective functions are represented by triangular fuzzy
values, we propose also to approximate these triangular numbers by calculating their
expected values (Eq.(2.14)) before applying the Crowding distance. Finally, it is
necessary to adapt both Evaluation and Selection steps in NSGAII, like in SPEA2
algorithm. The distinctive features of NSGAII lie in using the crowding compari-
son procedure as truncation operator to reduce the population in the environmental
selection step and also in considering it as a second selection criteria when two
solutions have the same rank in the tournament selection step.

2.5 Application on a Multi-Objective Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is an important combinatorial optimization
problem, widely used in a large number of real-life applications [31]. The classical
VRP consists in finding optimal routes used by a set of identical vehicles, stationed
at a central depot, to serve a given set of customers geographically distributed and
with known demands. Through the years, many variants and models derived from
the basic VRP have been discussed and examined in the literature. In this work, we
are interested in a well-known variant of VRP, the so-called Multi-objective VRP
with Time Windows and Uncertain Demands (MO-VRPTW-UD). This variant is
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based firstly on the principle of classical VRP, where all the data are determinis-
tic, excepting the customer demands which are uncertain, meaning that the actual
demand is only known when the vehicle arrives at the customer location. Several re-
searchers have tried to solve this problem and proposed to deal with the uncertainty
of demands using different ways such as probability distributions, dempster belief
functions and possibility distributions [1, 13, 28]. In our case, the uncertainty of
demands is represented via triangular fuzzy numbers (defined previously) and the
objectives to be optimized are respectively, the minimization of the total traveled
distance and the total tardiness time.
Formally, a MO-VRPTW-UD may be defined as follows:

Let G(N,A) be a weighted directed graph with an arc set A and a node set N; =
{No,...,N,} where the node Ny is the central depot and the other nodes N; # Ny
represent the customers. For each customer is associated an uncertain demand dm,;.
Only one vehicle k with a limited capacity Q, is allowed to visit each customer.
A feasible vehicle route R is represented by the set of served customers, starting
and ending at the central depot: Ry = (Ng,Ny,...,Ny,Np). Xi’; denotes the decision
variable which is equal to 1 if the vehicle k travels directly from node N; to node
N; and to O otherwise. d;; denotes the symmetric traveled distance between two
nodes (NV;,N;). This distance is proportional to the corresponding travel time #;.
Figure 2.8 illustrates an example of MO-VRPTW-UD, with a central depot, three
vehicles (V1,V2,V3) having a maximum capacity Q = 10 and a set of eight cus-
tomers represented by nodes. Each customer i = 1...8 has an uncertain demand
expressed in our case by a triangular fuzzy number dm = [dm,',@,dm] (Ex: the
fuzzy demand of the customer 1 is dm; = [2,7,11]).

dmy= [8, 10, 13] dmz=(3,7, 9] dmi=[2, 4, 7]

dme=[4, 6, 10]

dms=[6, 8, 12]

Fig. 2.8 Example of Mo-VRPTW-UD
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The main constraints of this problem are: Vehicle capacity constraint, Distance

constraint and Time windows constraint.

D

(@)

Vehicle capacity constraint

This constraint imposes that the sum of customer demands in each route must
not exceed the limited capacity of associated vehicle. It may be defined as:
Y dm, < Q. Yet, as in our case the customers demands are fuzzy values

dm = [dm,c?}%,dm], we cannot directly verify if the capacity constraint is sat-
isfied or not and so clearly the constraint satisfaction changes to fuzzy. For ex-
ample, consider the customer 7 with fuzzy demand dmy = [8, 10, 13] shown in
Fig.2.8, we cannot check if dmy is lower, equal or higher than Q = 10 in order
to estimate the transportation costs in terms of time spent and traveled distance.
Thus, to handle the satisfaction of this constraint, we propose to use firstly the
two measures Il and N of fuzzy constraint satisfaction defined previously. For
this example, we obtain IT(dm < Q) = 1 and N(dm < Q) = 0. Then, by apply-
ing the linear combination given by Eq. (2.11) (with for example A = 0.5 and
a = 0.2), we can conclude that the satisfaction of the fuzzy capacity constraint
is possible (W (dm < Q) =0.5 > 0.2).

Distance constraint

This constraint imposes that each vehicle with a limited capacity Q must de-
liver goods to the customers according to their uncertain demands dm, with the
minimum transportation costs in term of traveled distance. In other words, if
the capacity constraint of a vehicle is not satisfied, the delivery fails and causes
wasted costs. Therefore, to calculate the traveled distance on a route R defined
a priori, three different situations may be found:

— The demand of a customer is lower than the vehicle capacity ( 2{:1 dmNi <Q):
In this case, the vehicle will serve the current customer f and then move to
the next one (f +1).

— The demand of a customer is equal to the vehicle capacity (2‘};1 dmzv,» =Q):
In this case, the priori optimization strategy is used. In fact, the vehicle leaves
the depot to serve the first customer f with its total capacity. As it becomes
empty, this vehicle will return to the depot to load and serve the next customer
(f 4+ 1). Thus, the traveled distance will be: D(R) = d, ,, +3/}a, iy T

deNO +dN0Nf+1 zn f+1 NN+l +dNy,N0‘

— The demand of a customer is higher than the vehicle capacity (2{:1 dmNi >
Q): In this case, the vehicle will serve the customer f with its total capacity
(0- 2 dy;), go to the depot to load, return back to the same customer f
to dehver the remaining quantity and then move to the next customer (f +
1). Thus, the traveled distance will be: D(R) =d, , +XiZ; dy, Ny T deNO +

dNONf + dNnNO'
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Yet as in our case the demands are represented by a triplet of fuzzy values,
we propose to calculate separately the distance for each value of the triangular
fuzzy demand based on the three situations presented above. Consequently, the
traveled distance will be calculated three times and so obtained as triangular
number D = [D, D, D].
(3) Time windows constraint

This constraint imposes that each customer will be served within its time win-
dow that represents the interval of time planned for receiving the vehicle ser-
vice. This means that, if the vehicle arrives too soon, it should wait until the
arrival time of its time window to serve the customer, while if it arrives too late
(after the fixed departure time), wasted cost in term of tardiness time appears.
The time windows constraint uses the following notations:

— The central depot has a time window [0,/y], meaning that each vehicle that
leaves the depot at a time 0 goes back to the depot before the time /.

— Each customer i will be served within his time window [e;,/;] by exactly one
vehicle, where the lower bound e; represents the earliest arrival time and the
upper bound /; represents the latest arrival time for the visit of vehicles.

— A waiting time W; means that the vehicles must arrive before the lower bound
of the window e;.

— A, B, refers respectively to the arrival and the departure times to the customer i.

— Each customer imposes a service time S{-‘ that corresponds to the goods load-
ing/ unloading time used by the vehicle.

— t;; refers to the travel time from customer i to j.

Firstly, the time needed to serve two consecutive customers i and j is defined as
follows:
X (SF 41+ 85 <0 with A+ S; <B,.

Besides, a vehicle must arrive at a customer i between the time window [e;,;], but
if it arrives before the lower bound e;, it must wait a while W;. This waiting time is
calculated as follows:
0 if Ai Z €
W, =
e; — A; otherwise.
where, the arrival time at customer i is equal to: A; = B;_1 +1;;,_1 and the departure
time is equal to: B; = A; + W; + S;. While, if the vehicle arrives at a customer i
after the upper bound of its time window /;, a tardiness time must be calculated as
follows:
0 ifA; <1
T, =
A; — I; otherwise.

In the case of routes failure, wasted costs in term of tardiness time will appear.
Yet, knowing that the travel time depends mainly on the traveled distance and as in
our case the obtained distance is a triangular value, the time spent to serve customers
will be disrupted by this triangular form and consequently the tardiness time will be
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also obtained as triangular fuzzy number T = [T, T, T1]. Finally, all these constraints
combined with the constraints of classical VRP model the MO-VRPTW-UD prob-
lem (Fig.2.8).

To solve the MO-VRPTW-UD problem, the two extended SPEA2 and NSGAII
algorithms based on our new Pareto optimality are applied. These algorithms are
implemented with the version 1.3-beta of ParadisEO under Linux, especially with
the ParadisEO-MOEO module dedicated to multi-objective optimization [3]. Subse-
quently, to validate the proposed algorithms, we choose to test our VRP application
using the Solomon’s benchmark, which is considered as a basic reference for the
evaluation of several VRP resolution methods [27]. More precisely, six different
Solomon’s instances are used in our experimentation, namely, C101, C201, R101,
R201, RC101 and RC201. Yet, in these instances, all the input values are exact and
so the uncertainty of customer demands is not taken into account. At this level, we
propose to generate for each instance the triangular fuzzy version of crisp demands
in the following manner. Firstly, the kernel value (Jr\n) for each triangular fuzzy de-
mand dm is kept the same as the current crisp demand dm; of the instance. Then, the
lower (dm) and upper (dm) bounds of this triangular fuzzy demand are uniformly
sampled at random in the intervals [50%dm,95%dm] and [105%dm, 150%dm], re-
spectively. This fuzzy generation manner ensures the quality and reliability of gen-
erated fuzzy numbers. Finally, each of the six sampled fuzzy instances is tested
on the both algorithms executed 30 times. Since 30 runs have been performed on
each algorithm SPEA?2 and NSGALII, we obtained for each instance, 30 sets of opti-
mal solutions that represent the Pareto fronts of our problem. Each solution shows
the lowest traveled distance and tardiness time, which are represented by triangular
numbers. Examples of two Pareto fronts obtained for one execution of the instance
C101 using each algorithm are shown in Figs.2.10 and 2.11, where the illustrated
fronts are composed by a set of triangles, such that each triangle represents one
Pareto optimal solution. For instance, the bold triangular (in Fig. 2.10) represents an
optimal solution with minimal distance (the green side) equal to [2413,2515,2623]
and tardiness time (the red side) equal to [284,312,295,280,315,322]. Note that,
both algorithms converge to optimal fronts approximation in a very short run-time
(Approx. 0.91 min for SPEA?2 and 2.30 min for NSGAII). However, we cannot com-
pare results with the obtained results of other proposed approaches for solving MO-
VRPTW-UD because of incompatibilities between the objectives to be optimized.

To assess the performance of our both algorithms, we propose to use two well-
known unary quality indicators:

(1) Hypervolume Indicator (Iy) [38], considered one of the few indicators that
measures the approximation quality in terms of convergence and diversity simulta-
neously. This intuitive quality indicator needs the specification of a reference point
ZMax that denotes an upper bound over all the objectives and a reference set Zy of
non-dominated solutions. In our case, the quality of a given output set A in compar-
ison to Zy is measured using the Hypervolume difference metric /,;. As shown in
Fig. 2.9, this indicator computes the difference between these two sets by measuring
the portion of the objective space weakly dominated by Z3, and not by A.
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m Reference setZ *
@® Approximation set A

max

L Z

Fig. 2.9 Hypervolume difference indicator

(ii) Epsilon Indicator (1) [37], dedicated to the measure of approximations qual-
ity in term of convergence. More explicitly, this indicator is used to compare non-
dominated approximations and not the solutions. In our case, we use the additive
e-indicator (Iz4) which is a distance based indicator that gives the minimum factor
by which an approximation A has to be translated in the criterion space to weakly
dominate the reference set Z3,. This indicator can be defined as follows:

I}y (A) =1Ie1 (A, Zy) (2.17)

where
I+ (A,B) =min{Vz€B,37 €A:z,—e <z,V1<i<n} (2.18)

However, these two indicators are only meant to evaluate the quality of deter-
ministic Pareto front approximations. Thus, to enable them evaluating our uncertain
approximations (i.e., Triangular fuzzy solutions), we propose to consider the ex-
pected values of the triangular solutions (Function) as the sample of values to be
used for the qualification of our both algorithms. In other words, the both indicators
are simply applied on the samples of expected values computed for each instance.
Therefore, as in our case 30 runs per algorithm have been performed, we obtain 30
Hypervolume differences and 30 epsilon measures for each tested sample. Once all
these values are computed, we need to use statistical analysis to be able to compare
our two algorithms. To this end, we choose to use Wilcoxon statistical test described
in [37].

Table 2.2 gives a comparison of SPEA2 and NSGAII algorithms for the six tested
instances. This comparison based on the results of I;; and I, indicators, shows
that the SPEA?2 algorithm is significantly better than the NSGAII algorithm on all
the instances, excepting the instances R201 and RC201, where for Ij; there is no
significant difference between the approximations of both algorithms.
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Table 2.2 Algorithms comparison using Wilcoxon test with a P-value=0.5%

Instances | Algorithms SPEA2111{\ISGAII SPEAZIE;ISGAII
c0n | nsean | = | - |- | -
o [ -
o [ |
R0 | Nean | = | - | o | -
em | B0
RC20! | yeean | = | - | o | C

39

According to the metric under consideration (/; or /¢ ), either the algorithm located at a specific
row is significantly better (<) than the algorithm located at a specific column, either it is worse
(>) or there is no significant difference between both (=)

350000

340000

330000

320000

310000

300000

Tardiness Time

290000

280000

270000

260000

2100

I"JtestZ'l' using 1|:5:4:6 ——
".ftest2" using 2:4:1:3 <

2200 2300 2400

Fig. 2.10 Pareto front (C101-SPEA2)

2.6 Conclusion

2500 2600

2700 2800 2900 3000 3100

Traveled Distance

This chapter addresses the multi-objective problems with fuzzy data, in particu-

lar, with triangular-valued objective functions. To solve such problems, we have
proposed an extension of two multi-objective evolutionary algorithms: SPEA2 and

NSGAII by integrating a new triangular Pareto dominance. The implemented al-
gorithms have been applied on a multi-objective vehicle routing problem with un-
certain demands and then experimentally validated on the Solomon’s benchmark.
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Fig. 2.11 Pareto front (C101-NSGAII)

Subsequently, we have obtained an encouraging results. As a future work, we intend
to refine the algorithmic features by introducing for example a new fuzzy distance
for the density estimation techniques and to extend the proposed Pareto dominance
for ranking other fuzzy shapes like trapezoidal fuzzy numbers. Another perspective
will be the extension of multi-objective performance metrics to uncertain context
(i.e, fuzzy context).
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Chapter 3

Combining Neighborhoods into Local Search
Strategies

Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina,
and Christophe Ponsard

Abstract This paper presents a declarative framework for defining local search
procedures. It proceeds by combining neighborhoods by means of so-called com-
binators that specify when neighborhoods should be explored, and introduce other
aspects of the search procedures such as stop criteria, solution management, and var-
ious metaheuristics. Our approach introduces these higher-level concepts natively
in local search frameworks in contrast with the current practice which still often
relies on their ad-hoc implementation in imperative language. Our goal is to ease
the development, understanding, experimentation, communication and maintenance
of search procedures. This will also lead to better search procedures where lots of
efficiency gains can be made both for optimality and speed. We provide a compre-
hensive overview of our framework along with a number of examples illustrating
typical usage pattern and the ease of use of our framework. Our combinators are
available in the search component of the OscaR.cbls solver.

Keywords Local Search ¢ Metaheuristics * Search Strategies ® Neighborhoods ¢
Combinators

3.1 Introduction

Local search is a well-established approach for tackling large combinatorial prob-
lems within reasonable amounts of time. A local search solver is built on two main
components: a model, and a search strategy. The model represents the problem, and
includes the variables and constraints that constitute the problem. A search proce-
dure specifies how the search will find a proper solution to the problem. It is made
of several components such as [8, 23]:

* Neighborhoods, which represent sets of “close” solutions that can be reached
from the current solution in one move. Neighborhoods can be compared on their
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varying efficiency, optimality, and connectivity. They can also be composed to-
gether to reach new trade-offs around these aspects.

» Strategies to escape from local minima, also called metaheuristics, such as tabu
search, simulated annealing, random restart, etc. [9, 8].

* Solution managers, which allow us to store the best solution found during the
search, and restore it when needed.

» Stop criteria to identify when the search will not find any more relevant
solutions.

A good design of search procedures is critical because it influences both the
efficiency of the search, and the quality of the solution. Designing a local search
procedure is a tedious work, compared to the corresponding work required e.g.
for Constraint Programming (CP) solvers. Furthermore, local search strategies
are still often expressed in procedural programming style because of the host
programming language (Java, C++) or the habit to use such a paradigm. This
negatively impacts the ease of development, tuning and maintenance of search
procedures.

This paper presents a framework to facilitate the development of search proce-
dures. The approach relies on a library of so-called combinators that proposes the
features commonly found in search procedures as standard bricks. The goal of our
design is to define a Domain-Specific Language (DSL) capturing the right abstrac-
tions for easily specifying search strategies while keeping the relevant tuning knobs
available to the developer. Our approach can speed up the development and exper-
imentation of search procedures when developing a specific solver based on local
search, and hopefully, enable the developers to be more focused on the considered
problem. Besides, using such a high-level language for defining search procedures
also makes them easier to be understood, shared and maintained.

An implementation of these combinators is available in the search component
of the OscaR.cbls solver. OscaR.cbls is an open source solver for constraint-based
local search [23]. It features a powerful modeling framework including variables of
both integer and set of integer types and including roughly ninety invariants and con-
straints. Using these invariants and constraints, users can formulate their optimiza-
tion problem declaratively and benefit from generic and efficient model evaluation
methods such as partial propagation to efficiently explore neighborhoods [5, 17].
The topic of this paper being search strategies, it focuses on the search component
exclusively. Our implementation is written is the Scala language [20] as the rest or
OscaR. The Scala supports for DSL was used and enables its transposition to other
frameworks.

This paper is structured as follows: Sect. 3.2 explains how our contribution com-
pares to existing approaches. Section 3.3 presents the main principles of neighbor-
hood combinators and describes the neighborhoods available in our framework. Sec-
tion 3.4 shows the combinators in action on a detailed example of a search procedure
applied to the uncapacitated warehouse location problem. Section 3.5 presents an
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overview of the combinators currently available in our framework. Section 3.6 fur-
ther illustrates the use of our combinator framework on a routing problem. Finally
Sect. 3.7 summarizes the main benefits and current limitations of our framework.

3.2 Related Work

Developing high-level constructs to simplify the development of search strate-
gies is not a new idea. It has been proposed for CP engines as well as local
search approaches, with various trade-offs between expressiveness, ease of use, and
flexibility.

Generalised Local Search (GLS) Machines introduce the idea of organizing
neighborhoods in a state-machine fashion, each state corresponding to a neighbor-
hood, and transitions describing when the strategy should switch between neigh-
borhoods [12]. Our combinators compare to GLS machines in the same way as
structured code (if, while, etc.) compare to state machines, that is: they introduce
some hierarchical structure and do not allow representing any transitions easily. Our
combinators support all components of search procedures described in Sect. 3.1.

EasyLocal++ organizes search strategies around two concepts, namely runners,
and solvers [6]. Examples of runners are tabu search and simulated annealing.
Solvers control the search by generating the initial solutions, and deciding how,
and in which sequence, runners have to be activated. Example of solvers are round-
robin (a.k.a. token-ring strategy), and multi-start. Our framework unifies runners and
solvers into neighborhoods, which might exhibit very complex behavior including
executing a round-robin among several neighborhoods.

Localizer is a modeling language for local search that offers powerful constructs
for defining search procedures. These constructs are related to the accepting crite-
rion as well as simple neighborhoods [13]. Our framework supports some of the
neighborhoods proposed by localizer, and is also extendable to any kind of neigh-
borhood, provided it is represented as a class with the proper inheritance from our
framework. Also, Localizer proposes a standard language for defining accepting
criteria, which is also incorporated into our framework.

The Comet system includes two mechanisms to combine neighborhoods by rep-
resenting moves as closures, and attach some custom code variables by means of
events, triggered on value changes [23]. The gain of such high-level approach for
specifying search procedures has been demonstrated on concrete examples [22]. Our
approach generalizes this philosophy by proposing several standard ways of com-
bining neighborhoods, and extending to other aspects of search procedures such as
stop criterion and metaheuristics. The downside is that our approach might seem less
flexible, although custom code can be embedded into search procedures through the
dedicated combinator.

Some patterns of neighborhood combination tend to appear in scientific publica-
tions on local search, notably in the context of scheduling [21].
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Paradiseo supports mechanisms to easily specify tabu search, simulated anneal-
ing, and hill-climbing [3]. Our framework unifies searches and neighborhoods into
a single API, and lets us tune search procedures more precisely.

SPIDER [10] is a graphical language for representing search strategies, by means
of control networks. This approach focuses mainly on the definition of the neigh-
borhoods to be applied while we focus more on the overall strategy. Our approach
favors a textual DSL that can be expressed close to the model and maintained using
standard code revision tools.

ToOLS, OPL, and Search Combinators are frameworks that support the declara-
tion of search strategies for backtracking-based engines such as constraint program-
ming, with variants such as LDS [4, 7, 19]. Their approach is very similar to ours,
except that our framework is dedicated to local search. As such, our framework sup-
ports the declaration of metaheuristics influencing the acceptation function, tolerates
a degradation of the objective function (e.g. for tabu searches) and allows represent-
ing the cross-product of two neighborhoods as a single combined neighborhood.

In [24], a mechanism called Constraint combinators is proposed to combine sev-
eral constraints in the context of local search engines. Our approach is concerned
about combining neighborhoods, and not the constraints in the model.

Localsolver is a commercial solver that implements local search [1]. This solver
is a black-box because the search procedure is standard among all models and can-
not be customized by the user. We pursue a different goal, namely to ease people
defining their own search strategy, and possibly develop innovative ones, dedicated
to their own optimization problems.

3.3 Principle of Neighborhood Combinators

In our framework, a neighborhood is represented by a class instance that can be
queried for a move, given the current solution, an acceptance criterion, and an ob-
jective function. Neighborhood queries return either the message NoMoveFound or
the message MoveFound that carries a description of the move, and the value of the
objective function once the move will be committed. The returned move is expected
to be acceptable with respect to the given acceptance criterion and objective func-
tion. Querying a neighborhood for a move does not commit the move, although it
requires a computational exploration of the neighborhood. The global search loop
repeatedly queries moves and commits them until some stopping criterion is met, or
until no move can be found by the neighborhood.

The result of combining neighborhoods are still neighborhoods, offering this
same API. The most intuitive combination of neighborhoods is “Best”. Let a and b
be neighborhoods, the following statement is also a neighborhood (statements and
code fragments are written in Scala [20]):

new Best(a,b)
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When the combined neighborhood above is queried for a move, it queries both a
and b for a move. It then returns the move having the lowest value for the objective
function, according to the values carried by the returned moves. If a neighborhood
cannot find a move, the overall result is given by the other neighborhood. If no
neighborhood could find a move, the combined neighborhood does not find a move.
Combinators are implemented in our framework as a DSL, enabling the use of a
lighter infix notation. The above example can be rewritten as follows:

a best b

Besides combinators, our framework includes a set of neighborhoods that can be
used to develop custom search procedures. These include:

» Standard domain-independent neighborhoods on arrays of integer variables such
as assignNeighborhood that changes the value of a single decision variable in an
array, swapsNeighborhood that swaps the value of two decision variables in an
array, and RandomizeNeighborhood that randomizes the value of a fraction of
integer variables in an array, etc.

* Scheduling neighborhoods such as relaxing and flattening the critical path [14].

* Routing neighborhoods such as one-point-move, two-opt, etc. [11].

Domain-independent neighborhoods are most interesting because they are quite
flexible to be used in very different domains. They also include several features
including symmetry elimination, mechanisms to perform intensification or tabu
search, the possibility to specify whether the best or the first move is required, and
hot restarting. A hot restart is the possibility to start the neighborhood exploration
from the last explored point in the previous query instead of starting from the initial
position at each query. Other neighborhood offer similar features.

3.4 Six Shades of Warehouse Location

This section illustrates how a dedicated search procedure can be developed using
neighborhood combinators, for solving the uncapacitated warehouse location prob-
lem. The goal is to convince that this framework captures the right abstractions for
easily specifying search strategies while keeping the relevant tuning knobs available
to the developer. For a discussion on the best search procedures for this problem, see
e.g. [23].

The uncapacitated warehouse location problem takes as input a set of potential
warehouses W and a set of stores S. Each warehouse has a fixed cost f,, and the
transportation cost from warehouse w to store s is given by c,,s. The problem is to
find a subset of warehouses to open in order to minimize the sum of the fixed and
transportation costs. Each store is assigned to its nearest open warehouse.
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We consider the two following neighborhoods:

» Switching a single warehouse: either closing an open warehouse, or opening a
closed warehouse. This neighborhood is of size O(#W) and is connected, so each
point of the solution space can be reached by this neighborhood.

* Swapping two warehouses: simultaneously close an open warehouse and open a
closed warehouse. This neighborhood is of size O(#W?) and is not connected,
some points of the solution space cannot be reached by this neighborhood. How-
ever, this neighborhood has more neighbors than the first one.

The first neighborhood ensures that the whole solution space is reachable, and
the second enables us to reach a better solution than the first neighborhood would
reach alone. Let warehouseOpenArray be an array of Boolean variables. The neigh-
borhoods can be instantiated as follows:

val switchWarehouse = new AssignNeighborhood (warehouseOpenArray)
val swapWarehouses = new SwapsNeighborhood (warehouseOpenArray)

A first idea is to perform moves from switchWarehouse until it cannot find more
moves, then switch to swapWarehouses and look for moves there. Once swap Ware-
houses is exhausted, come back to switchWarehouse and so on. This behavior en-
ables us to use the same neighborhood as long as it can find a move because neigh-
borhoods are more efficient when started from their previous end, since they have
some ‘hot restart’ mechanism. Besides, switching back to the first neighborhood af-
ter the second one is exhausted makes the combined neighborhood connected. This
behavior is implemented in the ExhaustBack combinator. Through the infix nota-
tion, the combined neighborhood is built as follows:

val switchEBSwap = switchWarehouse
exhaustBack swapWarehouses

Let be obj an objective function, neighborhoods, including combined ones, sup-
port a standard outer search loop, which can be run through a call to the method
doAllMoves as follows:

switchEBSwap . doAllMoves (obj)

This method also inputs an optional stop criterion and an acceptation function.
They both have default values and are therefore not represented here above. The de-
fault stop criterion never stops the search, so search is stopped because the neighbor-
hood has no acceptable neighbor and the default acceptation function only accepts
moves that strictly reduce the objective function.

The neighborhood switchEBSwap might be trapped into some local minima. To
escape from them, we can use a neighborhood that performs a random move when
switchEBSwap cannot not find any improving move. It can be instantiated from our
standard library of neighborhoods as follows:

val randomize = new RandomizeNeighborhood (
warehouseOpenArray , W/5)
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This neighborhood receives two inputs, namely the array on which it operates
and the number of variables it has to randomize in this array of variables. Here, one
fifth of the array will be randomized.

We can incorporate it into our search strategy as follows:

val switchEBSwapORRandom = switchEBSwap
orElse randomize

On each query, the orElse combinator forwards the query to its left-hand side
neighborhood first, and queries the right-hand side neighborhood only if the left-
hand side one did not find any acceptable move.

An intuitive execution trace of switchEBSwapORRandom is illustrated in Fig. 3.1.
We represent a moveFound by a solid dot, and a noMoveFound by a hollow dot. The
two first neighborhoods are queried alternately until they are both exhausted. When
this occurs, the randomization is performed once and the search starts again. The
orElse combinator, when switching to its right-hand side neighborhood, resets the
internal state of its left-hand side neighborhood. As a consequence, switchWare-
house is always queried first after a randomization.

switchWarehouse swapWarehouses randomize
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Fig. 3.1 Illustrating the behavior of switchEBSwapORRandom

switchEBSwapORRandom has a termination issue since the search will always be
able to jump away and continue because of the random move. We therefore need to
bound it somehow. This is done by bounding the number of random moves. We use
the maxMoves combinator to this end. This leads us to switchEBSwapORRandom?2:

val switchEBSwapORRandom2 = switchEBSwap
orElse (randomize maxMoves 2)

An execution trace of switchEBSwapORRandom? is illustrated in Fig. 3.2, using
the same convention as above. The neighborhood on the right is the composite ran-
domize maxMoves 2. It returns NoMoveFound on the third query, and would do so
for all subsequent queries as well.

switchEBSwapORRandom?2 has one more issue: there is no guarantee that the fi-
nal solution will be the best one that has been found during the whole search. Indeed,
performing a search from a new point might deliver a solution of lower quality than
the one we are actually jumping from. We therefore need to save the best solution
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Fig. 3.2 Illustrating the behavior of switchEBSwapORRandom?2

found, and redtore it at some point. This is done by using the saveBestAndRestore-
OnExhaust combinator. This combinator receives a neighborhood, and an objective
function. It saves the model when its combined neighborhood finds a move that
might worsen the value of the objective function. This combinator also restores the
best found solution when the combined neighborhood is exhausted.

val switchEBSwap = switchWarehouse exhaustBack swapWarehouses

val fullSearch = switchEBSwap

orElse (randomize maxMoves 2)
saveBestAndRestoreOnExhaust obj

Based on this first working search strategy, we can proceeds with benchmarking
to assess the efficiency of the search strategy, and envision alternative searches, po-
tentially faster or more optimal. Thanks to their declarativeness, combinators make
it easy to express different search strategies, as illustrated here below.

One might question the usefulness of actually combining two neighborhoods in
this context, and revert to a simpler search strategy with only the switchWarehouse
neighborhood (beside the restart component). It suffices to replace switchEBSwap
with switchWarehouse in the global fullSearch search strategy presented above.

One can also consider other ways of combining swap and switch neighborhoods,
by selecting the neighborhood randomly, in a round-robin fashion, or by using a
learning combinator, or by selecting the best move from these two neighborhoods.
The learning combinator will randomly query its combined neighborhoods with a
bias that is adjusted gradually depending on their efficiency, quantified by the gain
on the objective function per time unit spent exploring them. These strategies are
respectively instantiated with combinators and must be placed within the fullSearch
presented here above:

val switchRandomSwap = switchWarehouse random swapWarehouses
val switchRRSwap = switchWarehouse roundRobin swapWarehouses
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val switchLearningSwap = new Learning (switchWarehouse ,
swapWarehouses)
val switchBestswap = bestSwitchWarehouse best bestSwapWarehouses

The last option might not make sense unless both switchWarehouse and swap-
Warehouses were instantiated so that they would return their best move instead of
their first move. In our framework, this setting is defined at the level of the neigh-
borhood, by specifying this in their respective constructor as shown below:

val bestSwitchWarehouse = new AssignNeighborhood (
warehouseOpenArray ,
best=true)

val bestSwapWarehouses = new SwapsNeighborhood (
warehouseOpenArray ,
best=true)

Yet another approach is to consider simulated annealing. It can be used on a com-
bination of neighborhoods, such as the search components declared here above. In
the search procedure here below, we use it over the switchWarehouse neighborhood
with a temperature function defined as max(0, 100 — “iteration number”) and the ex-
ponent base set to 2. Notice that the stop criterion is modified for the example; now
it automatically stops the search when no improving move has been taken for, say,
the last W /2 iterations.

val globalSimulatedAnnealing =
switchWarehouse
metropolis ((it:Int) => max(0,100—1it),2)
maxMoves W/2 withoutImprovementOver obj
saveBestAndRestoreOnExhaust obj

Different search strategies should of course be benchmarked against typical data
sets to select the most adequate one.

3.5 Building a Library of Combinators

This section presents the main combinators of our framework. These combinators
are accessible either directly, as Scala classes, or through a DSL in infix nota-
tion. The library covers the aspects involved in the search procedures described in
Sect. 3.1 plus additional features to compose neighborhood into atomic ones, and
embed native code into the strategy. This library can be extended easily, by provid-
ing additional implementations of the available Neighborhood base class.

3.5.1 Neighborhood and Move Selection Combinators

They select the neighborhood that is actually queried for a move, or the move that
is actually returned.
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OrElse (a: Neighborhood , b:Neighborhood)
If a finds a move, returns it, otherwise, returns the result of b.

RoundRobin(1: List[Neighborhood], steps:Int)

Performs a round robin of queries on the neighborhoods in /. Switches to the
next neighborhood in the list as soon as the current one is exhausted or has been
queried step number of times. It rolls back to the first neighborhood after the last
one.

Exhaust(a:Neighborhood , b:Neighborhood)
Returns the result of querying a until it cannot find more moves. It then switches
to b and never comes back to a except if an explicit reset is done.

ExhaustBack (a: Neighborhood , b:Neighborhood)
Returns the result of querying a until it cannot find more moves. It then switches
to b and comes back to a when b cannot find moves, and so on.

Random (a: Neighborhood , b: Neighborhood)
Randomly queries a or b. If the first neighborhood tried cannot find any move,
returns the result of the other one.

Learning (1: List[Neighborhood],n: Int)

Randomly queries a or b with a bias that is adjusted gradually depending on the
efficiency of the neighborhoods, quantified by the gain on the objective function
per time spent exploring the neighborhoods. The bias is updated every » iteration
as the mean between its previous value and the slope of the neighborhoods since
the last update of the bias.

Sequence (a: Neighborhood , b:Neighborhood)
Performs one query on a. All next queries are forwarded to b.

Best(a:Neighborhood , b:Neighborhood)
Selects the best move between the ones returned by querying a and b.

3.5.2 Acceptation Function Combinators

They influence the acceptation function that is actually used for move selection. The
acceptation function can be specified in the outer search loop, but these combinators
replace it by a specific one.

WithAcceptanceCriterion (a: Neighborhood ,
criterion :(Int,Int) => Boolean)

This combinator overrides the acceptance criterion given to the neighborhood a.

AcceptAll(a:Neighborhood)
This combinator forces any query on a to accept all moves.

Metropolis (a: Neighborhood ,
temperature: Int => Float,
base: Float)
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This combinator injects a metropolis acceptation function on a. Metropolis ac-
cepts all the moves that improve the objective function. Worsening moves are
accepted with probability

base (0oldObj—newObyj) /temperature(iterationNumber)

The iteration number starts at zero and is reset to zero when the combinator is
reset.

3.5.3 Solution Management Combinators

They ensure that the search does not forget the best encountered solution.

SaveBest (a: Neighborhood , obj:Objective)

Saves the found solution that reaches the lowest value for obj during the whole
search. Saving is performed on a lazy basis, it means that the solution is only
saved just before a move returned by a is committed, if this move might decrease
the quality of obj. This combinator assumes that the value for the objective func-
tion carried by the move refers to obj. To restore this best solution, we can either
call the method restoreSolution or use the additional combinator restoreOnEx-
haust.

RestoreBestOnExhaust (a: SaveBest)

Automatically restores the best solution saved by a when it cannot find any im-
proving moves. If the current solution is better than the saved one, the latter is
not restored.

3.5.4 Stop Criterion Combinators

They specify when search must be stopped. They can be used also to change the
search policy.

MaxMoves (a: Neighborhood , maxAllowedMove : Int)
Bounds the number of moves that can be done on neighborhood a. Additional
queries on a will always return NoMoveFound without exploring a.

MaxMovesWithoutImprovement (a: Neighborhood , nbMoves: Int ,
obj:Objective)

Bounds the number of moves that can be done on neighborhood a without im-

provements over the best value of the objective function 0b .

StopWhen(a: Neighborhood , cond:()=> Boolean)
Prevents any new query on a when cond evaluates to true.
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3.5.5 Code Embedding Combinators

They allow the execution of custom code at different times of the neighborhood
exploration.

®* OnMove (a:Neighborhood, proc:Move => Unit)
Attaches some custom code to the move of a, encapsulated in proc. This code is
executed when the move is committed.

®* OnQuery (a:Neighborhood , proc:() => Unit)
Executes some custom code, encapsulated in proc, when the neighborhood a is
queried for a move. The code is executed before the query is forwarded to the
neighborhood.

3.5.6 Neighborhood Aggregation Combinators

They make possible to propose new neighborhoods e.g. by taking the cross-product
of several existing neighborhoods.

* AndThen(a:Neighborhood , b:Neighborhood ,
maxIntermediaryDegradation: Int)

This combinator is the cross-product of a and b, that is: a move of andThen is a
succession of a move from a and a move from b. maxintermediaryDegradation
is the maximal degradation that is admitted for the intermediary step.

¢ Atomic(a:Neighborhood)
Specifies that the neighborhood a cannot be interrupted by any external stop
criterion. The exhaustion of this neighborhood is considered as a single move.

3.6 A Vehicle Routing Example with Combinators

This section shows that combinators prove equally expressive in another area,
namely vehicle routing problems. In this example, we suppose that the standard
routing neighborhoods (insertPoint, onePointMove, threeOpt, swaplnsert) are avail-
able with the proper API, as in the OscaR.cbls framework [18].

We consider a problem where a vehicle has a capacity and a depot, and serves
orders by delivering the quantity ordered at the delivery point. The vehicle can pass
several times by the depot to serve as many orders as possible within a restricted time
frame. The objective function considers both the distance and the number of served
orders. In the short run, injecting a depot point in a circuit is not a desirable move
as it increases the travel distance. A possible way of doing is to force the injection,
by accepting moves that worsen the objective. Another strategy, instantiated below,
is to inject a depot and one more customer at the same time, so that the couple
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is actually a desired move. We consider the cross-product of injecting a depot and
serving one more customer as a depot insertion strategy. To represent this strategy,
we use the andThen combinator. In the search procedure presented here below, we
consider two alternating phases: a phase where points and depots are injected into
the route, and a phase where the route is optimized by applying standard routing
neighborhoods (onePointMove,threeOpt, swaplInsert, etc.) combined by the learning
combinator that foster the most efficient neighborhood. Since depots are not often
needed, we insert customers as much as possible, and try inserting depots when no
more customers can be inserted.

val routingWithDepotSearch =
insertPoint
orElse (insertDepot andThen insertPoint)
exhaustBack new Learning (onePointMove, threeOpt,
swaplnsert, ...)

Again, modifying this search strategy is straightforward. For instance, we might
want to improve the quality of the routes before inserting a depot. This might help
because a depot is only needed if the capacity is the limiting factor for inserting
more customers. We can for instance move the onePointMove in an exhaustBack
fashion next to the insertPoint. By performing this one point move search, we have
more assurance that the depot insertion will be queried when the limiting factor for
inserting more point is the capacity, and not the overall time frame. Similar behavior
could also be implemented by using the stopWhen combinator on the andThen, or
by specifying in the andThen that the first move cannot violate any strong constraint,
through the maximallntermediaryDegradation parameter defined in Sect. 3.5.

val routingWithDepotSearch =
insertPoint exhaustBack onePointMove
orElse (insertDepot andThen insertPoint)
exhaustBack new Learning (threeOpt,swaplnsert ,...)

3.7 Conclusion

This paper presented a declarative framework for easing the development of search
procedures for local search solvers. This framework proposes standard building
bricks both for defining search procedures elements and for combining them in pow-
erful ways. It was implemented as DSL within the OscaR library on top of the Scala
language and experimented on a set of standard search problems.

Introducing such higher-level constructs will enable the search procedure de-
velopers to (1) focus on their specific problem instead of having to consider the
specifics of the search loop, (2) experiment more easily with different search proce-
dures, and (3) easily understand, maintain and communicate on search procedures,
so our framework might increase the chance of the developers to design better search
procedures.
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A possible drawbacks is that genericity often leads to some processing and mem-
ory overheads. Our framework is no exception to this: moves are explicitly instan-
tiated before being committed leading to some very small memory overhead, and
there are a few additional method calls per move. This run time overhead is negli-
gible, compared to the run time of neighborhood exploration, except for very small
neighborhoods that immediately find a proper move. Besides, some of our neigh-
borhoods also suffer from some run time overhead, due to their genericity.

Our framework also imposes some restrictions on the possible search strategies
because the whole library of combinators is not a Turing-complete language. Nev-
ertheless, this is not a critical issue because the library can be extended if needed.

Our combinators rely on neighborhoods as basic blocks. We have shown in our
example that standard neighborhoods can be used easily, but extending this library
will make the overall framework more useable. Potential extensions include neigh-
borhoods on set variables, larger neighborhoods such as ejection chains, constraint-
specific neighborhoods, and very large neighborhoods [1, 2, 15].

Our library of combinator itself can be improved. The AndThen combinator that
builds the cross-product of two neighborhoods could be modified to instantiate the
neighborhood on the right dynamically, based on the move explored on the left,
e.g. to implement some symmetry elimination in the cross-product.! The Learning
combinator could be given more efficient learning capabilities, etc.

We also hope that combinators might be a good candidate for standardizing how
local search procedures can be defined concisely, and be incorporated into stan-
dards such as MiniZinc [16]. We also want to propose profiling and benchmarking
tools on search strategies to further help developers fine tune their search strate-
gies, just like visualizing the search tree of a CP solver might help developers
fine tune the CP search heuristics. These tools will be integrated into the OscaR
framework.

To conclude, we want to present a simple, yet actual principle that justifies the
use of high-level, declarative, and productive approaches like ours, despite their in-
herent technical overhead due to their genericity. The principle is that nowadays, to
some extends, brain cycle is more expensive and valuable than CPU cycle. We con-
sider that development time is more profitably spent in high-level algorithmic tuning
than in the development overhead arising from the use of low-level constructs. The
same reasoning let us chose the Scala programming language for the whole OscaR
framework instead of, say the C programming language.

Acknowledgements This research was conducted under the SimQRi research project (ERANET
CORNET, grant nr 1318172).

! Credits to Luca Di Gaspero for the suggestion.
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Chapter 4

All-Terrain Tabu Search Approaches
for Production Management Problems

Nicolas Zufferey, Jean Respen, and Simon Thevenin

Abstract A metaheuristic is a refined solution method able to find a satisfying so-
lution to a difficult problem in a reasonable amount of time. A local search meta-
heuristic works on a single solution and tries to improve it iteratively. Tabu search is
one of the most famous local search, where at each iteration, a neighbor solution is
generated from the current solution by performing a specific modification (called a
move) on the latter. The goal of this chapter is to present tabu search approaches with
enhanced exploration and exploitation mechanisms. For this purpose, the following
ingredients are discussed: different neighborhood structures (i.e., different types of
moves), guided restarts based on a distance function, and deconstruction/reconstruc-
tion techniques. The resulting all-terrain tabu search approaches are illustrated for
various production problems: car sequencing, job scheduling, resource allocation,
and inventory management.

Keywords Tabu search ¢ Car sequencing * Job scheduling ¢ Resource
allocation * Inventory management

4.1 Introduction

As presented in [26], let f be an objective function which has to be minimized. A
solution s is optimal for f if there is no better solution than it, that is, there is no
solution s” such that f(s") < f(s). As mentioned in [28], an exact method guarantees
the optimality of the provided solution. However, for a large number of applications
and most real-life optimization problems, such methods need a prohibitive amount
of time to find an optimal solution, because such problems are NP-hard [7]. For these
difficult problems, one should prefer to quickly find a satisfying solution, which is
the goal of heuristic and metaheuristic solution methods. There mainly exist three
families of (meta)heuristics: constructive algorithms (a solution is built step by step
from scratch, like the greedy algorithm where at each step, the best element is added
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to the solution under construction), local search methods (a solution is iteratively
modified: this will be discussed below), and evolutionary metaheuristics (a popula-
tion of solutions is managed, like genetic algorithms and ant algorithms). The reader
is referred to [8, 24] for more information on metaheuristics and general guidelines
to adapt them.

Only the context of local search methods is considered in this work. A local
search algorithm starts with an initial solution and tries to improve it iteratively. At
each iteration, a modification, called a move, of the current solution s is performed
in order to generate a neighbor solution s'. Let N(s) denote the set of all neighbor
solutions of s. The definition of a move, that is the definition of the neighborhood
structure N, depends on the considered problem. Popular local search methods are
the descent local search, simulated annealing, tabu search and variable neighbor-
hood search. In a descent local search, the best move is performed at each iteration
and the process stops when a local optimum is found. Tabu search was first pro-
posed by Fred Glover in the 80’s and is nowadays still considered as one of the most
efficient local search method. To prevent tabu search from being stuck in a local op-
timum, when a move is performed, the reverse move is forbidden (i.e., set as tabu)
for tab (parameter) iterations. A basic pseudo-code for tabu search is presented in
Algorithm 1.

Algorithm 1 Tabu search

Generate an initial solution s and set s* =s.

While no stopping criterion is met, do

from the current solution s, generate the best non-tabu neighbor solution s;
forbid the reverse move for rab (parameter) iterations;

sets =s';

if f(s) < f(s¥), set s* =s;

Return the best solution s*.

L=

In most tabu search algorithms, only one neighborhood structure N is used, no
restarts are performed, and no major restructuring of the solution is observed. The
goal of this chapter is to present all-terrain tabu search approaches able to find: (1) a
good balance between exploitation (i.e., the ability to guide the search in the solution
space and to take advantage of the problem structure) and exploration (i.e., the abil-
ity to visit various zones of the solution space); (2) a good tradeoff between intensi-
fication and diversification. For this purpose, the three following ideas are discussed:
(a) the use of several neighborhood structures, as a local optimum for a neighbor-
hood structure is not necessarily a local optimum for another; (b) the management
of guided restarts relying on a distance function, as diversification actions should
be triggered if the potential of the current zone of the solution space becomes poor;
(c) the restructuring of a solution relying on deconstruction (for diversification) and
reconstruction (for intensification) phases, based on the sequential use of a pool of
solutions.
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Strongly relying on [12, 20, 23, 25], the above presented ingredients are il-
lustrated for various production problems, namely car sequencing (Sect. 4.2, us-
ing guided restarts), job scheduling (Sect. 4.3, using deconstruction/reconstruction
phases), resource allocation (Sect. 4.4, using moves of different amplitudes), and
inventory management (Sect. 4.5, using two neighborhood structures).

4.2 Smoothing the Production for Car Sequencing

4.2.1 Presentation of the Problem

Nowadays, new constraints known as smoothing constraints are attracting a growing
attention in the area of job scheduling [3] and in particular for car sequencing prob-
lems, where cars must be scheduled before production in an order respecting various
constraints (colors, optional equipment, due dates, etc.), while avoiding overloading
some important resources. For the car plant, balancing between optional equipment
and colors allows to respect customers deadlines and to prevent overloading some
resources (machines or employees).

In 2005, the car manufacturer Renault proposes a car sequencing problem
through the ROADEF 2005 Challenge [19], with real instances involving hundreds
of cars. Car families are defined so that two cars of the same family contain the
same optional equipment. Each optional equipment i is associated with a N;/P; ra-
tio constraint, meaning that at most N; cars with option i can be scheduled in any
subsequence of P; cars, otherwise a penalty occurs. The objective is to minimize
a weighted function involving ratio constraint violations and the number of color
changes. In [13], a variation of the Renault problem is studied, where non-identical
parallel machines (or production lines) and eligibility constraints are considered
(i.e., a job—or a car—can only be performed on some specific machines). The ob-
jective function involves three components: makespan, smoothing costs and setup
costs. Another variant of the car sequencing problem is studied here, where the vi-
olations of the 2/3 ratio constraint are penalized as smoothing costs in the objective
function, with eligibility and makespan constraints.

A set of n jobs, m non-identical machines and eligibility constraints are consid-
ered here. Each job j belongs to one of the g available families and has a processing
time p;; depending on the machine i. A solution s contains a production sequence
for each machine. The goal consists in minimizing the smoothing cost function £ (s),
which is the weighted number of times there are three consecutive jobs of the same
family in s. In addition, the overall makespan cannot exceed an upper bound UB
(but UB is set large enough to easily prevent the rejection of jobs). A small value of
U B usually indicates a high occupancy rate of the machines, and as a consequence,
the production system will be available sooner for future commands.
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4.2.2 Solution Methods

Three different methods are proposed: GR (a greedy heuristic), 7'S (a conventional
tabu search), and TSGR (a tabu search with guided restarts, managed with a distance
function). The time limit of each algorithm is 7 = 15 min (which is consistent from
a practical standpoint). Note that if an algorithm stops before 7', it is restarted and
the best generated solution is returned to the user.

GR starts from an empty solution s. At each step, it inserts the job j in s which
minimizes the augmentation of f, while respecting the eligibility and makespan
constraints. Each possible insertion is tested and ties are broken randomly. GR stops
when all jobs are scheduled.

TS starts from an initial solution given by GR, and tries to improve it iteratively
by performing the best possible non-tabu move. A move is defined as positioning
a job somewhere else in the solution (in the same sequence or in the sequence of
another machine). Each time a move is performed, it is forbidden (tabu) to move
it again for tab iterations, where rab is uniformly generated in interval [3,7] after
each move. Larger values of rab do not allow intensifying the search around the
encountered local optima.

In TSGR, guided restarts of 7'S are performed as follows, where a cycle is de-
fined as an execution of 7'S for I = 100 iterations. Larger values of I do not allow
enough restarts, whereas smaller values do not allow the method to intensify the
search around the given initial solution. In other words, a tradeoff has to be found
between diversification (associated with small values of /) and intensification (as-

sociated with large values of 7). Let sl@ (resp. sl(k)) be the best visited (resp. ini-
tial) solution in cycle k. The distance between two solutions s; and s, is defined
as dist(s1,52) = X;y;(s1,52), where y;(s1,52) = 1 if job j is has the same posi-
tion index in solutions s; and s, (for the sequence it belongs to, independently of
the machine), and y(s1,s2) = 0 otherwise. Note that the same sequence of jobs can
appear on two different machines for s; and sp, which is consistently measured
as equivalent situations by the distance function. Then, at the end of a cycle k, if

dist [sl()kfw,sl(,k)] < n/4 (which roughly corresponds to a structural difference below
+1)

25% between the two involved solutions), sl(k is generated by performing 10 ran-

dom swap moves on sf)k) (in order to slightly diversify the search from sgk>), other-

wise sl(kH) is generated with GR. Note that swap moves are defined as exchanging

the position index of two jobs on the same machine. This mechanism allows to in-
tensify the search if the two best solutions of two consecutive cycles have a similar
structure. Otherwise a diversification action is triggered with a restart.

4.2.3 Experiments

An exact linear formulation relying on CPLEX 12.4 has been tested with a time limit
of 10h on an Intel Quad-core i7 @ 3.4 GHz with 8 GB DDR3 of RAM memory.
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CPLEX is only able to solve instances with up to 30 jobs, for which the proposed
tabu search approaches are usually able to quickly find optimal solutions. For these
reasons, exact methods will not be discussed further.

The instances are derived from the ones presented in [13]. Methods GR, T'S and
TSGR are compared in Table 4.1. For each instance are first given n, m, UB and f*,
which is the best solution value found by any of the algorithm. The next column
indicates the percentage gap between f* and the best solution value found by GR
within 7 = 15 min. The last two columns present the same information for 7S and
TSGR (but the results are averages over 10 runs with 7 = 15 min). The last row
indicates the average gaps for the three methods. It can be observed that: (1) 7S
is much more efficient than GR, which shows the relevance of the used moves; (2)
TSGR significantly outperforms 7'S, which indicates that the proposed way to guide
the restarts is powerful, and should be investigated for other problems.

Table 4.1 Results on instances with 100 and 300 cars

n m UB fr GR (%) TS (%) TSGR (%)
100 4 3604 3005 4.49 5.39 0.00
100 4 3612 3005 4.49 2.70 0.00
100 4 3610 2980 5.37 0.39 0.00
100 4 3632 2850 10.18 4.02 0.70
300 5 9005 960 42.92 8.72 2.08
300 5 9038 895 47.82 7.31 4.02
300 5 9086 870 52.07 5.32 1.38
300 5 9143 730 81.23 12.77 0.68

Average 31.07 5.83 1.11

4.3 A Deconstruction-Reconstruction Method for Job Scheduling

4.3.1 Presentation of the Problem

In the considered job scheduling problem, the production environment consists in
a set of parallel and identical machines. Given a set J of n jobs, a subset J' C J
must be selected and scheduled before a global deadline D. The non-selected jobs
are rejected. With each job j is associated an integer processing time p; and a gain
gj (incurred if j is performed). Preemptions are allowed at integer points in time,
and some pairs of jobs are incompatible: it should be avoided to perform them at
common time slots. A conflict occurs if two incompatible jobs are processed during
a common time slot (there can be more than one conflict between two jobs). The
problem is to find a solution s where each performed job j is given p; time slots,
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and such that the number of conflicts C(s) does not exceed a given upper bound
K. Two objectives f; (to be maximized) and f, (to be minimized) are considered
in a lexicographical order (i.e., f is infinitely more important than f>): fi(s) is the
sum of the gains of completely performed jobs, and f>(s) is the number of parallel
machines used in s.

This problem has applications in continuous flow production where multiple re-
sources are required simultaneously to perform a job. Indeed, incompatibilities oc-
cur when scarce resources are involved in the production system [1]: two jobs which
necessitate a common scarce resource cannot be performed simultaneously (they are
incompatible). However, it is assumed here that some additional resources can be
mobilized up to a certain budget, and thus up to K conflicts are allowed. Papers on
scheduling with incompatibilities include [4, 6, 21] and are often related to the graph
multi-coloring problem. In particular, the considered problem is a generalization of
the well-known and NP-hard k-coloring problem (if K =0, D =k, and p; = 1 for
each j). Scheduling with rejections is growing field of research, where the decision
of acceptance or rejection of an order is integrated with scheduling (see [18] for a
comprehensive review). Finally, preemptions are used in practical situations where
setup times are negligible (e.g., in automated production).

4.3.2 Solution Methods

Five approaches are compared: GR (greedy algorithm), DLS (descent local search),
TS (tabu search), TSR (tabu search with restarts), and DRM (deconstruction/recon-
struction metaheuristic). The time limit of each method is 7 = 60 - n seconds. If an
algorithm stops before T, it is restarted and the best solution is returned to the user.

GR starts from an empty solution and selects the next job to schedule with the
largest gain g; (ties are broken randomly). A; denotes the set of feasible time slots
for job j (i.e., not used by any job incompatible with j). If p; —|A ;| > K —C(s), job
J is rejected. Otherwise, p; slots are sequentially assigned to j and two situations
can occur at each step: (1) if p; —|A;| < 0, the slot minimizing f> is chosen; (2)
if p; —]A;j| < K —C(s), the slot minimizing the number of additional conflicts is
selected (but j is rejected if more than K conflicts are created).

In DLS, a move consists in rescheduling a job j. The way to reassign p; slots to j
dependson A;. If A; > p;, p; slots are sequentially chosen in A; while minimizing
f>. Otherwise, the p; slots are given one by one, by assigning at each step the slot
minimizing the number of additional conflicts. Then, to maintain feasibility, some
conflicts are removed with the following Repair method: while C(s) > K, the job
involved in the largest number of conflicts is rejected (break ties with the gains). In
TS, when a job j is rescheduled, it cannot be rescheduled for rab = 10 iterations. In
TSR TS is restarted every I = 100 iterations.

DRM [27] relies on a pool of solutions on which tabu search works in turn. At
each generation, a solution of the pool is first deconstructed, then reconstructed,
and finally improved. A pool Pop of 10 solutions is handled. It is initialized by
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generating 10 random solutions as follows. First, all the jobs of J are scheduled
randomly, then, feasibility is reestablished with Repair, and finally the solution is
improved with 7S during I = 100 iterations. DRM uses a deconstruction parameter
g which is initially set to g,,;; = n/20 and cannot exceed guqx = n/3. These two
parameters were tuned based on the following ideas for controlling the diversifica-
tion ability of the overall method. On the one hand, if gy, is too small, the method
will not be able to escape from the current zone of the solution space. On the other
hand, if g, is too large, the deconstruction process will be similar to a restart. The
pseudo-code of DRM is presented in Algorithm 2, where s” and 5" respectively de-
notes the best and worst solution of Pop. On the one hand, DRM uses elements of
strategic oscillation methods (see steps (2) and (3)): it explores unfeasible solutions
but the distance from the feasibility border is controlled, as K + g conflicts are al-
lowed. On the other hand, DRM has features from variable neighborhood search
(see steps (2) and (7)): it generates a deconstructed solution at a certain distance ¢
from s, and ¢ is updated according to the improvement or not of the best encountered
solution.

Algorithm 2 DRM: Deconstruction-reconstruction algorithm

While T is not reached, do

1. Select the least frequently chosen solution s in the population Pop.

2. Deconstruction: reject g jobs in s, chosen randomly.

3. Reconstruction: schedule some jobs (chosen randomly) until C(s) = g+ K. The slots are as-
signed one by one to each job, while minimizing the number of conflicts (break ties with
f2). If ties occur again, they are broken with information from Pop: the slot  maximizing
Yies, Sim(i, j) is chosen, where J; is the set of jobs processed during slot ¢, and Sim(i, j) is the
number of slots where jobs i and j are performed simultaneously in the solutions of Pop.

4. Reestablish feasibility: while s has above K conflicts, reject the job j with the smallest ratio

8j/C;(s), where C;(s) is the number of conflicts involving j in s.

Local search: apply TS during [ iterations, and denote s’ the resulting solution.

Update Pop: if s’ is better than s", replace s* with s’ in Pop.

7. Update q: if ' is better than s, set g = g,nin; otherwise set ¢ = 1.05 - g (if allowed).

S

4.3.3 Experiments

An instance (n,7) is defined by its number n of jobs and its rate 7 of allowed con-
flicts, from which it is deduced that K = 7 -n. 15 instances were generated, with
n € {50,100,200} and 7 € {0,0.02,0.04,0.1,0.2}. Two jobs are incompatible with
probability 0.5. Each p; is randomly chosen in interval [1, 10]. The gain g; is related
to p; as follows: a random number 3 is first chosen in interval [1,20],and g; = B - p;
is set. Finally, the deadline D was set small enough to prevent the scheduling of
all jobs. The algorithms were implemented in C++ and executed on a computer
with a processor Intel Quad-core i7 2.93 GHz with 8 GB of DDR3 RAM memory.
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Ten runs per instance were performed with 7' = 60 - n seconds. The results are given
in Table 4.2, which shows for each method the average percentage gap according
to the best ever found value for each objective (fi, f2). TS outperforms GR, which
is slightly better than DLS: the obtained f; gaps are respectively 5.46%, 8.68% and
9.32%. The deconstruction and reconstruction steps in DRM are efficient, as the
DRM gap is 2.29% for fi versus 6.87% for TSRX. DRM obtained the best results on
13 instances. Note that the smaller is the f| gap, the larger is the f, gap, as f; and
/> are conflicting objectives.

Table 4.2 Results

n K Greedy DLS TS TSR DRM

50 0 (4.21,0) (3.65, 0) (4.62,0) (3.29, 8) (2.1,4)
50 1 (6.74, 0) (6.41, 4) (5.65, 20) (4.7, 20) (1.17, 20)
50 2 (8.33,0) (8.61,0) (3.78,0) (5.35,0) (0.82,3.33)
50 5 (5.63,0) (5.97,0) (4.62,0) (2.86, 0) (0.49, 0)
50 10 (2.17,0) (2.63, 10) (2.38,0) 0.92,0) (0.33,0)
100 0 (8.41, 16.67) (9.26, 16.67) (4.12,13.33) | (8.04,13.33) (2.17, 20)
100 2 (8.06, 0) (8.92, 10) (6.95,13.33) | (7.09, 16.67) (3.93, 20)
100 4 9.78, 0) (10.68, 0) (10.4,0) (7.99, 0) (2.25,0)
100 10 | (10.84,16.67) | (10.72,13.33) (8, 16.67) (7.1, 20) (2.56, 30)
100 | 20 (8.98,0) (9.52,0) (7.76, 8.57) (5.95, 8.57) (1.32,17.14)
200 0 (7.88, 14.29) (8.71, 11.43) (0.32,17.14) | (7.18,14.29) | (5.09, 14.29)
200 4 (5.61,0) (6.24, 0) (2.19,2.5) (4.51,0) (2,0)
200 8 (7.69, 0) (8.25,0) (3.92,5) (6.15,0) 0.97, 12.5)
200 | 20 (9.85,2.5) (1045, 0) (5.2,7.5) (7.53,2.5) (1.65, 12.5)
200 | 40 (9.65, 0) (1045, 0) (5.76, 12.5) (7.19, 5) (0.96, 22.5)

Average (8.68, 5.01) (9.32,5.14) (5.46, 9.65) (6.87, 8.04) (2.29, 14.89)

4.4 Tabu Search with Diversity Control and Simulation

4.4.1 Presentation of the Problem

In most inventory management problems, two types of decision have to be taken at
the manufacturer level: when and how much to order to suppliers [17]. It is assumed
that setup, carrying and shortage costs are encountered during the year. Usually, in-
ventory management models are characterized by stochastic demand and constant
lead times. In contrast, this study, which generalizes the approach proposed in [16],
deals with the situation where there is a constant known demand rate, but proba-
bilistic lead times whose probability distributions change seasonally. Moreover, the
lead times for different orders are assumed to be independent, thus crossovers can
occur. Therefore, the interactive effects between different cycles (a cycle is defined
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as the time between two consecutive orders) due to the occurrence of shortages are
difficult to model. Consequently, even if the annual approximated costs can be an-
alytically computed with a mathematical function f, simulation (of the lead times)
is the only way to compute the annual actual costs F of a solution. Such a context
is motivated by the management of raw material at a sawmill in North America.
Without loss of generality, consider a 52-weeks planning horizon (a time period is a
week). A solution (P,S) can be modeled by two vectors P and S defined as follows:
P =1 if an order occurs at the beginning of period ¢, and P, = 0 otherwise; S; is the
order-up-to-level of available inventory at the beginning of period ¢ if P, = 1, and
S; = 01if P, = 0. The following reasonable assumptions are made: (A1) it is possible
to analytically approximate the annual costs with a function f(P,S) relying only on
P, S and the probability distributions of the lead times; (A2) it is possible to compute
the F(P,S) (i.e., the annual actual costs) with a simulation tool; (A3) based on f, it
is possible to analytically compute S from P with a so-called Compute(S | P) pro-
cedure. It means that anytime P is modified, its associated S vector is immediately
updated with Compute(S | P).

4.4.2 Solution Methods

Due to the non-stationarity in the lead time distribution, the problem is combinato-
rial in nature (choice of the F;’s and the S;’s). Moreover, simulation is required to
compute the actual cost of a solution. Thus, it makes sense to use (meta)heuristics.
The solution space X(N) is defined as the set of all the solutions (P,S) with
Zzl P, = N. The general approach consists in providing good solutions for differ-
ent solutions spaces, starting with U (N) orders and ending with L(N) orders, where
U(N) <52 (resp. L(N) > 1) is an upper (resp. a lower) bound on N. At the end, the
best solution (over all the considered X (N)’s) is returned to the user.

For a fixed solution space X (N), the following steps are performed: (S1) gener-
ate an initial solution (P,S) with N orders as equi-spaced as possible; (S2) based on
f, try to reduce the approximate costs of (P,S) with a tabu search 7Sy(P,S) work-
ing on P; (S3) based on F and without changing P, apply a descent local search
DLSF(S | P) working on S (a move consists in augmenting or reducing one of the
S;’s, by one unit). In 7S f(P, S), a move consists in putting an order earlier or later,
but without changing the global sequence of orders. At each iteration, the best non-
tabu move is performed. If an order is moved, then it is forbidden (tabu) to move
it again for tab (parameter depending on N) iterations. The stopping condition is a
maximum number Iter (parameter) of iterations without improvement of the best
visited solution.

An extension of TS¢(P,S), denoted TS’}” (P,S), is now proposed for step (S2).
Instead of providing one solution, an idea is to provide a set M containing m (pa-
rameter) promising local optima (promising according to the quality function f and
a diversity function Div(M)). To achieve this, additional ingredients are defined.
The distance between P and P’ is defined as Dist(P,P') = Y2, | B, — P/ |. The
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average distance between P and a set M of solutions is defined as Dist(P,M) =
| Al/l‘ S prey Dist (P, P'). The diversity of a set M of solution is computed as Div(M) =

| A1/1\ S pey Dist(P,M — {P}). M is initialized with solutions randomly generated. Let
P be a solution found by tabu search at the end of an iteration. The key idea is
the following: P should replace a bad (according to f) solution of M which poorly
contributes to its diversity Div(M). More precisely, let M’ be the subset of M con-
taining the m’ (parameter) worst solutions of M, for which the worst value is f**.
Let P4") be the solution of M’ such that P{") = argminpyy Dist(P',M — {P'}).
Then, if f(P) > f**, M is not updated. Otherwise, if Dist(P{") M — {P\4")}) <
Dist(P,M — {P\?™)}), then P replaces P\").

The resulting metaheuristic is summarized in Algorithm 3. The returned solution
is (P*,S*) with an actual cost of F*, which is the best solution visited in all the
considered solution spaces.

Algorithm 3 General approach

Initialization: set F* = e and N = UB(N)
While N > LB(N), do

1. generate an initial solution P with N orders as equi-spaced as possible

2. apply T'S;(P,S) or TS%(P, S), and let M = {P() ..., P(")} be the resulting set of local optima
according to f (m = 1if TS(P,S) is used)

for i =1 to m, do: apply DLSF¢ (S EP) on (P, s()

set (Pv S) = argminie{l,...,m} F(P(l S(l))

if F(P,S) < F*, set (P*,S*) = (P,S), and F* = F(P,S)

reduce N by one unit

kW

4.4.3 Experiments

The experiments were performed on a PC Pentium 4 (1.6 GHz/1 Go RAM). The
parameters Iter, m and m’ were respectively tuned to 1000, 10, 3. As the proposed
method has to plan the orders for a whole year, the computing time is not an issue
(but all the proposed methods never exceed an hour of computation). Each instance
is characterized by its cost parameters (the fixed setup cost A per order, the inventory
cost & per unit per period, the shortage cost B per missing unit). For each period ¢ is
known the minimum (resp. most likely and maximum) lead time a, (resp. m; and b;).
From these three values, discrete triangular distributions can be easily constructed.
Two types T; and 75 of instances were generated according to two sets of lead time
distributions, with 24 instances per type (which differ according to A, & and B).
Set 77 is based on realistic data from the sawmill context, and is characterized by
ar €{2,5},m; € {3,7}, and b; € {6,13}. Set T», which represents a form of sensitiv-
ity analysis (the variation of the lead times is larger), is characterized by a, € {1,8},
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my € {2,10}, and b; € {5,16}. In Table 4.3 is provided a summary of the aver-
age percentage improvements (over a basic constructive heuristic based on an EOQ
analysis) provided by the general proposed approach relying on DLS¢(P,S) (where
a descent local search is performed at step (S2) instead of tabu search), TS¢(P,S)
and TS?I (P,S), respectively. Note that the percentage improvement computation is
based on the difference between the reference cost (based on EOQ) and the con-
sidered provided cost, and this difference is then divided by the reference cost. The
results are shown for three levels of B and for the two sets 77 and 7>. Unsurprisingly,
the potential benefits of the three methods augments as the seasonality is increased.
One can observe that TS?I (P,S) outperforms T'S¢(P,S), and both methods are better
than DLS¢(P,S).

Table 4.3 Results on two sets of instances

Set Ty Set T»
Method Small B Average B Large B Small B Average B Large B
DLS;(P,S) 1.39 1.52 1.61 375 3.58 3.47
TSy (PS) 1.72 1.82 2.01 4.15 4.05 3.74
TS’f”(P,S) 1.82 1.86 2.16 4.18 4.06 3.79

4.5 Dynamic Tabu Search for a Resource Allocation Problem

4.5.1 Presentation of Dynamic Tabu Search

LetX = (X Ix2...x ) be a solution of a problem which consists in maximizing
an objective function f. Each X' is a vector of size s(i) and can be denoted X' =
(%5, ,x’s(i)), where the x’j’s are real number. The following limitation constraint

has to be satisfied for each i: ), jx; = ¢!. As random events can occur, it is assumed
that the objective function f can only be evaluated with a simulation tool. In such
a context, within a local search framework, it is straightforward to define a move
in three steps: (A) select a decision variable type i; (B) augment (resp. reduce) an
xj'{ by an amount of w; (C) reduce (resp. augment) some other x;’s (with j # k)
by a total amount of w (in order to satisfy the limitation constraint). Within a tabu
search framework, if a decision variable x}'{ is augmented (resp. reduced), it is then
forbidden to reduce (resp. augment) it during rab’ (parameter) iterations. The three
key issues are now: (I1) which type of decision variable should be selected in (A);
(I2) what is the amplitude w of the move in (B); (I3) how should the solution be
adjusted in (C).
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According to issue (I1), it is proposed to consider u types of phase in the solution
method: each phase of type i works on X’ without modifying the other X*’s (I # i).
Each phase of type i can be performed during I, (parameter) uses of the simulator.
Working with phases (i.e., on one decision variable type at a time) allows to have a
better control on the search.

To tackle issue (I2), it is proposed to dynamically update the move amplitude
w during each phase of the search, within interval [wﬁnm,wimx] (parameters). Each
phase starts with w =w! , and anytime I’ (parameter) iterations without improve-
ment of the best encountered solution X* have been performed, w is reduced by
& (parameter), but never under wfnin. If a move leads to a solution better than X*,
the process restarts with w = wi, ., and so on. This strategy allows to progressively
focus on a promising region of the solution space. Such a technique has common
points with variable neighborhood search [11].

Issue (I3) depends on the two other issues: if x}‘C has been selected for a variation
of w, the search process should focus on that decision and not modify as much the
other decision variables (of the same type) in order to adjust the solution with re-
spect to the associated constraint ¢. Thus, if x;; was augmented (resp. reduced) by w,
the process should then equally reduce (resp. augment) the s(i) — 1 other variables

(of the same type) by a total amount of w, which means that each decision variable
is in average reduced (resp. augmented) by S(i‘lfl. The resulting DTS method (for
Dynamic Tabu Search) is summarized in Algorithm 4, which returns the best en-
countered solution X* with value f*. At each iteration, the neighbor solution can be
the best among a set of N (parameter) candidate neighbor solutions.

Algorithm 4 DTS: Dynamic tabu search

Initialization

1. Generate an initial solution X = (X', X?2,...,X").
2. Initialize the best encountered solution: set X* = X and f* = f(X).

3. Seti=1andw=w,,.

While the simulation software has not been used ¢ (parameter) times, do

1. generate a non-tabu neighbor solution X of X’ by modifying a decision variable xi of X by w;
2. update the current solution: set X' = X*;
3. update the move amplitude w:

+ if I' iterations without improving X* have been performed, set w = w — &';
o ifw<wl,, setw=wl :
o if f(X) > 5, set W= Wiar;
4. update the best encountered solution: if f(X) > f*, set X* =X and f* = f(X);
5. update the tabu tenures: it is forbidden to modify x}; in the reverse way for tab' iterations;
6. next phase: if I, . runs of the simulator have been performed, set i = (i mod u) + 1 and w =

i .
Wmax ’
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4.5.2 Application to a Resource Allocation Problem

DTS is an appropriate solution method to dimension assembly/disassembly produc-
tion systems. By dimensioning, one can refer to maximizing the production rate of a
machine without successors, with respect to limited resources (e.g., buffer capacity
between the machines, total cycle time of the machines). Relevant recent papers in
the field are [5, 15]. As random failures might occur on the machines, a professional
software is used to evaluate a solution [2].

Consider a production system with m machines and n buffer zones, modeled by
a graph G = (V,A) with vertex set V and arc set A. Vertex v represents machine v
and there is an arc (v,v') from v to V' if a piece processed on machine v has then to
be processed on machine v'. Moreover, each arc (v, v ) also represents a buffer (i.e.,
a limited zone where are stored the pieces between the associated machines). Two
types of decision variables (i.e., resource types) are considered: the designed cycle
time #, for machine v, and the buffer capacity b,,, allocated to arc (v,7'). A solution
for a production network with m = 9 and n = 8 is presented in Fig.4.1. The cycle
time associated with machine 1 is #; = 8, and the buffer capacity between machines
1 and 3 is by3 = 43. The considered limitations are 60 for the total cycle time (i.e.,
2y v = 60) and 320 for the buffer capacity (i.e, X,,,/)ea by = 320).

Fig. 4.1 Graph representation of a production system

The DTS approach showed a very good performance on such a production sys-
tem [26]. Indeed, it was tested on the production network associated with Fig. 4.1,
for which each machine has its own role: machines 1, 2, 4, 8 and 9 are classical
processing machines, machines 3 and 5 are assembling machines, and machines 6
and 7 are disassembling machines. The objective consists in maximizing the pro-
duction rate of machine 5. The breakdown probability is 5% (associated with each
time step) and its length is generated with a uniform distribution in interval [100,
800]. DTS was compared with a descent local search DLS (the same algorithm
as DTS, but without considering tabu tenures), and a classical tabu search TS for
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which at each iteration, a move consists in augmenting/reducing any decision vari-
able by any possible amount (followed by the adjustment of the other variables of
the same type in order to meet the upper bounds). In TS, a sample of all possible
amplitudes is considered at each iteration to modify the decision variable. A pool
of 50 initial solutions were generated, which have an average production rate of
1.31 (pieces/minute). DLS was able to reach an average production rate of 1.39, TS
obtained 1.37, and DTS reached 1.41. It was also observed that the quality of the re-
sulting solution negligibly depends on the initial solution, which indicates that DTS
is a robust approach.

4.6 Conclusion

In this chapter, enhanced tabu search approaches are discussed for four domains:
car sequencing, job scheduling, resource allocation and inventory management. Be-
cause of the specificities of each problem, classical tabu search procedure are likely
to be inefficient if its intensification and diversification abilities are not appropriately
handled. For this purpose, the success of three mechanisms is discussed, namely
the controlled use of various neighborhood structures, the tactical management of
restarts, and a strategic deconstruction and reconstruction technique. Such ingredi-
ents allows to design all-terrain tabu search metaheuristics, as it results in a good
balance between exploitation and exploration, allowing an efficient control on the
search process. Finally, we would like to mention that other all-terrain approaches
were also successfully adapted in other fields (e.g., [9, 10, 14, 22]).
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Chapter 5
A Re-characterization of Hyper-Heuristics

Jerry Swan, Patrick De Causmaecker, Simon Martin, and Ender Ozcan

Abstract Hyper-heuristics are an optimization methodology which ‘search the
space of heuristics’ rather than directly searching the space of the underlying
candidate-solution representation. Hyper-heuristic search has traditionally been di-
vided into two layers: a lower problem-domain layer (where domain-specific heuris-
tics are applied) and an upper hyper-heuristic layer, where heuristics are selected or
generated. The interface between the two layers is commonly termed the “domain
barrier”. Historically this interface has been defined to be highly restrictive, in the
belief that this is required for generality. We argue that this prevailing conception of
domain barrier is so limiting as to defeat the original motivation for hyper-heuristics.
We show how it is possible to make use of domain knowledge without loss of gen-
erality and describe generalized hyper-heuristics which can incorporate arbitrary
domain knowledge.
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5.1 Introduction

Sorensen and Glover [38] define a metaheuristic as “a high-level problem in-
dependent algorithmic framework that provides a set of guidelines or strategies to
develop heuristic optimization algorithms”. The goal of hyper-heuristics is to act
as effective cross-domain search methodologies, i.e. to be applicable not only to
instances with different characteristics from a single domain, but also across mul-
tiple problem domains. The definition of a hyper-heuristic varies considerably in
the literature: indeed, interpreting the notion of ‘searching the space of heuristics’
in full generality allows application to any heuristically-informed solution mecha-
nism (e.g. the choice of pivot function used in Quicksort [43]). In this article, we
concentrate on the application of hyper-heuristics to metaheuristic search. In the
following sections, we describe how the definition of hyper-heuristics has evolved
over time. We re-visit the underlying motivation in order to highlight some popular
misconceptions and the attendant need for re-characterization.

5.1.1 Historical Development of Hyper-Heuristics

One of the earliest studies in this area was an application to a job shop schedul-
ing problem due to Fisher and Thompson [16]. The use of scheduling (dispatching)
rules as heuristics is common in this area and the study was motivated by the idea
of “a combination of the two rules being superior to either one separately”. In the
early 1990s, Storer et al. [41, 42] proposed a general approach combining heuristic-
and solution- space methods for solving sequencing problems. The authors used job
shop scheduling as a case study and argued that the proposed approach can be “eas-
ily” applied to any scheduling objective. Fang et al. [14, 15] subsequently evolved
sequences of heuristics for constructing schedules, explaining how the proposed ap-
proach can be “simply amended” to deal with more complex industrial open shop
scheduling problems.

The term ‘hyperheuristics’ (in unhyphenated form) was first introduced by Cowl-
ing et al. [12] as a means of deciding which low level heuristic to apply during
the search process, depending on the nature of the region being explored. This
initial definition referred only to (what has become known as) ‘selective’ hyper-
heuristics, with generative hyper-heuristics being a later development [34]. The mo-
tivation for the use of the term ‘hyper’ comes from hypergraphs, where an edge
is an n-ary relation on vertices, the analogy being that hyper-heuristic selection is
performed on a collection of operators (i.e. functions with signature Op : S — S,
for some candidate solution representation S). Hyper-heuristic selection thus takes
a list of operators, together with a function for choosing an operator from this list
and applies the selected operator to an incumbent state. Mathematically, we can
represent this as:
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select : [Op] x ([Op] — Op) xS — S

select : (operators,choose,incumbent) — choose(operators)(incumbent)

If, as has invariably been the case, the list of operators and the function for choos-
ing from them are known in advance, then the signature for select can be considered
to be S — S, precisely that of an operator. This notion of ‘recursive composition via
selection’ [49] could equally be applied to other metaheuristic components (i.e. ac-
ceptance, termination etc.), though the authors are not aware of any such approaches
(e.g. the evolution of acceptance criteria by Hyde et al. [22] was obtained via a gen-
erative rather than selective approach).

Cowling et al. [12] stated that a hyper-heuristic approach operates at ‘a higher
abstraction level’ than a metaheuristic and in practice this has been translated as
‘operating independently of the underlying problem domain’. To this end, Cowling
et al. [12] introduced the notion of a domain barrier between the layers of hyper-
heuristic framework and problem-domain implementation. As we explicitly demon-
strate in Sect. 5.2, this notion of domain independence can be described purely in
terms of generic metaheuristics, avoiding the rather mixed collection of concepts
that has become associated with hyper-heuristics (see also Fig.5.1).

The widely-cited definition due to Burke et al. [8] of “(meta-)heuristics to choose
(meta-)heuristics” has the stated motivation of “raising the level of generality at
which optimisation systems can operate”. The authors contemplate that many busi-
nesses, particularly small ones, are interested in “good enough, soon enough, cheap
enough” solutions to their problems. Given the high cost of developing problem-
specific methods, this highlights the need for a general, easy-to-use, yet robust ap-
proach for ‘providing near optimal solutions’. The intention was that the domain
barrier represents the separation between different levels of expertise, i.e. practi-
tioners would be responsible for implementing only solution representations and
naive ‘knowledge-poor’ (and hence presumably often randomized) heuristics for
each new problem domain, with researchers tasked with devising hyper-heuristics
which work well across domains.

Ross et al. [35, 36] defined a hyper-heuristic as a search method which com-
bines simple heuristics to solve a range of problems satisfactorily. They evolved bin-
packing rules using a Learning Classifier System [35] which learns which low level
heuristic to use at a given decision point. Ross [34] provided a similar definition as
Soubeiga [39] introducing hyper-heuristics as “heuristics to choose heuristics” and
combining multiple heuristics to compensate for individual weaknesses. In a foun-
dational paper on generative hyper-heuristics, Ross [34] further proposed hyper-
heuristics as a special form of genetic programming, with a function set consisting
of existing heuristics. In this study, the aim in hyper-heuristic design is presented as
finding a “fast, reasonably comprehensible” approach, repeatedly able to produce
high quality solutions. Qu et al. [31] proposed a tabu search approach to examina-
tion timetabling and graph colouring problems, indirectly acting on the candidate
solutions via a mixture of graph-colouring heuristics. Two cross-domain heuristic
search competitions, CHeSC 2011 and 2014 were performed using the HyFlex se-
lective hyper-heuristics framework [28], which provided an implementation of six
problem domains.
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A recent definition of hyper-heuristic which is probably the most commonly-
used is provided by Burke et al. [10] as “a search method or learning mechanism for
selecting or generating heuristics to solve computational search problems”. A more
concrete definition adopts the terminology of the ‘Algorithm Selection Problem’
(ASP) [33] to describe hyper-heuristics as ‘a mapping from features to algorithms’.
A rich research area that has historically been more overtly influenced by the ASP
than hyper-heuristics is the field of algorithm portfolios [19, 21]. Recent work in this
field includes ‘Dynamic Algorithm Portfolios’ [17] which chooses from a subset of
available algorithms, applying them simultaneously to a problem instance until the
fastest algorithm solves it.

In principle, the adoption of the ASP would allow the gamut of machine learning
techniques to be applied to hyper-heuristics, but in practice the features made avail-
able for learning by selective hyper-heuristics have been limited. In contrast, the
input to generative hyper-heuristics is (necessarily) domain-specific, and the only
general framework supporting generative hyper-heuristics which we are aware of is
TEMPLAR [43]. Chakhlevitch and Cowling [11] specifically argue the importance
of limited problem domain information in achieving cross-domain generality for se-
lective hyper-heuristics. Moreover, they further state that a hyper-heuristic would
ideally be informed only of the number of low level heuristics for a given problem
domain and objective value of a given solution. A variant of the strict notion of do-
main barrier due to Woodward et al. [48] has been perpetuated via HyFlex as a de
facto standard.

As can be seen from the above, the definition of hyper-heuristic has evolved
considerably over time. As a result, there is relatively little clear consensus on what
the essential mechanisms of a hyper-heuristic actually are. Figure 5.1 is a feature
diagram of various concepts historically associated with (selective) hyper-heuristics.
The concepts which are non-obvious (or otherwise not covered above) are:

* Heterogeneous operators: The ability to treat different operators in a uniform
manner in the hyper-heuristic layer. For example, with a permutation representa-
tion, the ability to mix e.g. 2-opt with transpositions.

» Selection a posteriori versus a priori: whether or not an operator must be applied
(to the current incumbent solution) before it can be chosen. Metaheuristics are
traditionally, ‘apply then choose’, e.g. choose the first- or best- improving. The a
priori case is when an operator is chosen via some mapping based on its features
and the search trajectory.

| Selective Hyper-heuristic

|

O

Het Knowledge-poor Learnin Domain
Selection © engetneC)US (9 eraqtors eneralizastgion independent
operators P 9 hyper-layer

a priori ‘ | a posteriori | None | Within instance HCross instance| Cross domain

Fig. 5.1 Concepts historically associated with selective hyper-heuristics
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Despite the diversity of concepts associated with hyper-heuristics, the authors are
aware of only a few attempts to consolidate them. It is also interesting to note that
some conceptual and formal approaches that might reasonably be included under
the wider notion of ‘heuristics to select or generate heuristics’ (e.g. [24, 27]) have
not historically been considered to be part of the literature. As discussed above,
selective hyper-heuristics can be shown to be an instance of the well-known ‘Com-
posite’ design pattern [49], a mechanism used by the HYPERION framework [44, 7]
to allow the same source code to express both metaheuristics and hyper-heuristics.
The widely-cited classification scheme due to Burke et al. [9] is generalized by
Swan et al. [46] to allow any combination of selective/generative and online/offline
to co-exist and interoperate at runtime within the same architecture.

5.1.2 Effectiveness in New Domains

It has been observed that not only the design of a selective hyper-heuristic but also
the choice of predefined low level heuristics influences its performance [29]. To the
best of the authors’ knowledge, there are no applications of selective hyper-heuristic
for which the use of only ‘knowledge poor’ low-level heuristics is competitive with
the state-of-the-art. In practice, state-of-the-art low level heuristics have therefore
made their way into the domain implementations for improved performance, e.g. in
several of the problem domains implemented by HyFlex [28].

This indicates that (selective) hyper-heuristic research has become disconnected
from the original motivation, failing to provide solutions which are ‘good enough,
cheap enough’ (and in general certainly not the ‘near optimal’ solutions which were
originally hoped for). Due to the artificially-restricted notion of the domain barrier,
devising and using selective hyper-heuristics is currently no less labour-intensive
than simply using some generic metaheuristic framework (detailed reasons for this
are given in Sect. 5.2). For researchers, it surely is clear that the application of ma-
chine learning (e.g. [4]) is necessary to avoid cross-domain generalization being
obtained via laborious manual ‘generate and test’. However, the de facto domain
barrier restrictions mean that even the elaborate machine learning techniques that
have been employed in selective hyper-heuristics tend to make use of limited in-
formation. There is therefore a need to move from this restrictive interface to one
which:

* Enables more expressive (i.e. feature-rich) hyper-heuristics.
* Allows state-of-the art knowledge to be easily incorporated into a new problem
domain model by less-experienced practitioners.

To achieve this, it is necessary to disentangle approaches which have become
prevalent from the goals they sought to achieve. This is particularly important since
none of the concepts of Fig. 5.1 suffice to fully-characterize the many publications
with ‘hyper-heuristic’ in the title. To reiterate: applying hyper-heuristics would be
of interest to practitioners (e.g. in industry) if this avoids the need for labour-
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intensive modelling of a specific problem domain. However, metaheuristic search
is already a computational intelligence success story in this respect: approaches
such as simulated annealing, tabu search, genetic algorithms and swarm optimiza-
tion yield good (and often state-of-the-art) results in a wide range of problem do-
mains. The minimal requirement for domain modelling using these techniques is
very small, needing only a choice of solution representation, solution quality mea-
sure and one or more operators for perturbing/recombining solutions.

Depending on the available modelling budget, the sophistication of domain
knowledge can range from the very naive (e.g. potentially infeasible solutions; ran-
domized operators, quality measure that does not yield a search gradient) through to
a highly-informed combination of state-of-the-art techniques. The important point
relative to selective hyper-heuristics is that, in this case, practitioners retain the op-
tion to increase the competence of the framework layer as required. In the next
section, we show how the popular conception of selective hyper-heuristics can be
viewed as a (somewhat uninformed) special case of generic metaheuristics.

5.2 Popular Notion of the Domain Barrier

The de facto conception of selective hyper-heuristics (e.g. as exemplified by Hyflex
[28]) is shown in Fig. 5.2. Here the notion of ‘heuristic’ is restricted to that of ‘op-
erator’, i.e. a perturbation of a candidate solution. Hyflex operates as follows: the
hyper-heuristic solver maintains a list of heuristics [0y, ... ,0,] and a list of solutions
[$1,-..,8m]. The heuristic value of a solution s is given by e(sy). At each iteration,

Methodologies to decide which low level heuristic
(o) to apply to which solution (s;) and at which
location to store the new solution (si) in the list of
solutions based on the history of visited solutions
and their objective values.

Hyper-heuristic Layer

efsk) Domain Barrier (i, j, k)

-r

Domain Layer
e Set of low level heuristics {o4,..., 0y..., 0n}
e List of solutions {s,..., Sk,..es Sjyees S}
¢ Evaluation/objective function (e)
* Problem instance, ...

Fig. 5.2 A popular conception of selective hyper-heuristics



5 A Re-characterization of Hyper-Heuristics 81

the solver chooses three integers i, j, k such that the solution in slot k is replaced by
the result of applying operator i to solution j. This is the characterisation given by
Woodward et al. [48] as:

Sel : NxNxN—=R 5.1

Sel : (i, j,k) — e(0i(sk)) (5.2)

with solution k having first being replaced by o0;(s;) as a side-effect. The only in-
formation available to the solver in making this choice is the fitness value/execution
time resulting from operator application (and any memorization of such informa-
tion from previous iterations). Problem-specific information is hidden in the belief
that the generality of the hyper-heuristic will be lost. This can be considered as a
‘lowest-common-denominator’ approach to generality.

It should be immediately clear that this formulation is too restrictive to allow
many popular metaheuristics to operate hyper-heuristically (not least) because of
the following common requirements:

1. The ability to compare solutions for domain-specific equality. This arises since
solution representations are only visible to the hyper-layer as integer indices. The
result is that even such elementary techniques as ‘breadth-first search’ cannot be
expressed.

2. The ability to determine those parts of a solution that have been changed by a
heuristic. This is a common requirement in tabu-style approaches (e.g. making
recently-perturbed permutation indices tabu in the TSP).

3. The ability to detect and react to constraint violations (e.g. infeasible solutions)
at the framework level.

The inability to test for equality also precludes approaches such as reactive tabu
or breakout local search [5, 6], which explicitly maintain equality-based solution
histograms in order to determine when a diversification strategy should be triggered.

For clarity, we now make explicit the difference between metaheuristics and se-
lective hyper-heuristics (as defined by the ‘traditional’ Hyflex-style domain barrier).
Consider a generic framework for a local search metaheuristic shown in Listing 5.1.
The framework is parameterized by the type S of solution representation and the
type F denoting the features to be memorized in the search history. [T] denotes a
list of elements of type T and operators Op are functions S — S. The memorized
features are used for decision-making during the selection process and are obtained
via a mapping features: Op x S xS — F.

To instantiate this framework as a metaheuristic (e.g. simulated annealing for the
TSP), we put:

* S as a permutation.

* |Op] as any desired perturbations e.g. transpositions, 2-opt etc.
e selectOp as uniform random selection.

* accept as Metropolis-Hastings.

* Feature type F to be the empty set (in this particular case).



82 J. Swan et al.

S search(incumbent: S, operators: [Op], history: [F]) {
while (not finished (incumbent, history)) {

Op op = selectOp (incumbent, operators, history);
S incoming = op(incumbent);
incumbent = accept(incumbent,incoming)

history .update ( features(op, incumbent, incoming) );

}

return incumbent ;

}

Listing 5.1 Generic local search meta- or hyper-heuristic

To instantiate this framework as a Hyflex-style hyper-heuristic, we put:

S as an integer in the range [0,m).

* Op as an integer in the range [0,n).

» selectOp as e.g. choice function [23].

* Feature type F to be (Op,S,S,R), given by (i, j,k,e(sx)) from Eq. (5.1), above.

It should be clear that the same arguments as given above apply to any other meta-
heuristic, population-based or otherwise. Hyflex-style selective hyper-heuristics can
therefore be seen as a special case of a metaheuristic in which solutions and oper-
ators are mapped onto opaque integer indices at the framework level. It should be
clear from the fact that the framework level is already generic in terms of solution
representation, that there is absolutely no requirement for this degree of opacity: we
can instantiate the hyper-heuristic framework with arbitrary solution and operator
types, thereby eliminating the above issues (equality of states etc.) associated with
the opaque handles of Hyflex. In addition, such types can provide much greater util-
ity without loss of generality, e.g. the ability to decompose a solution into parts to
act as finer-grained tabu attributes.

5.3 The Need for ‘Domain-Independent Domain Knowledge’

As explained in the previous section, if one adopts the prevailing notion of the do-
main barrier, then the minimal responsibilities of a practitioner in implementing
some new domain are precisely the same irrespective of whether they wish to use
metaheuristics or hyper-heuristics. In fact, they are considerably worse off with the
latter approach: if search quality is unsatisfactory, then there is no means of ‘in-
jecting further domain knowledge’ at the framework level as can be done with a
metaheuristic. What is therefore needed is a hyper-heuristic approach which can
operate on much richer domain knowledge.

To illustrate the extent to which this is possible, it is useful to consider the dis-
tinction between ‘analytic’ and ‘empirical’ knowledge. We define the former to be
information which is given a priori (or otherwise formally derived from) the prob-
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lem description and the latter to be that derived from the solution trajectory. The
de facto conception of hyper-heuristics is that they can only make use of empirical
knowledge at the framework level. The empirical features exposed by HYFLEX are:

* Objective value arising from applying o;(s ).
» Execution time for operator application.
* Integer handle of an operator.

Given this limited set of features, it is difficult to learn useful information even
within a domain. Handles denoting operators have no persistent meaning across
problem domains and the possibilities for cross-domain learning are therefore even
more limited. While it is encouraging to see that extensions to the de facto con-
ception of the domain barrier have recently been proposed [30], it is possible to go
much further than this, as we now demonstrate.

A recent machine learning approach of Asta and Ozcan [4] (in which linkage
between operators is estimated via tensor factorization) is perhaps representative of
the limits of what might be learned from the kind of empirical information described
above. In contrast, in many cases we do not need to mine information of this form
from the solution trajectory: we already have it as prior knowledge. Consider the
ability to reason algebraically about operators. For example, it is well known that
transpositions of permutations are self-inverse, so it is wasteful to apply the same
transposition in succession. This is of course an extremely simple example: there
is no limit to the kinds of exploitable analytic information we might devise. As a
more general example, any sequence of operators (of any sort, as long as they have
signature S — S) forms an algebraic structure known as a monoid under concatena-
tion. This monoid structure can be represented by equations between operators that
describe which sequences always lead back to their starting state (irrespective of the
specific start state). As shown by Swan et al. [45], it is often possible to use this al-
gebraic relationship between operators to derive a set of rewrite rules. These rewrite
rules allow any sequence of operators to be reduced a priori to its minimal-length
equivalent, thereby eliminating redundancy (i.e. cycles) in the state-space graph.
In particular, this is an example of cross-domain analytic knowledge: Swan et al.
apply this to the Quadratic Assignment Problem, but the equational description of
the associated monoid structure could be used in any problem which operates on
permutations.

While this cannot be achieved hyper-heuristically with a HYFLEX-style formula-
tion, making the additional information (in this case the monoid equations) available
to a hyper-heuristic solver has absolutely no cost in terms of generality: a solver
which is incapable of acting on such information can simply ignore it. The chal-
lenge is therefore to exploit such information without loss of generality as ‘domain-
independent domain knowledge’. Although the notion of being able to operate on
arbitrary features has always been implicit in the ASP,! the vast majority of work in
selective hyper-heuristics has been concerned with the limited feature set described
above.

! And to a less overt degree implied in early work on hyper-heuristics (e.g. [8]).
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The need to move away from such unnecessary restrictions then leads immedi-
ately to considerations of knowledge-representation, which have fortunately been
well-studied in the wider AI community for many years. Two examples of existing
hyper-heuristic systems which can (in terms of their architectural principles) incor-
porate arbitrary domain knowledge are the blackboard system of Swan et al. [46]
and the multi-agent system of Martin et al. [25]. Although aspects of their architec-
tures differ, they both have the ability to associate competent, representation-aware
algorithms (known as ‘knowledge sources’ or ‘agents’, respectively) with heteroge-
neous sources of information, and it is this which allows these frameworks to op-
erate across domains. The actual association process (which is precisely a mapping
from features to algorithms) might range from the relatively trivial (e.g. a dictionary
of key-value pairs indicating that a particular algorithm is competent to operate on
permutation representations) to more specialized condition-action patterns induced
from any source of information (analytic or empirical) that the agent is able to rec-
ognize. In the next section, we discuss the use of constraint satisfaction as a generic
vocabulary for expressing domain-independent domain knowledge.

5.4 Cross-Domain Knowledge Representation

We now elaborate on the desired nature of knowledge representation for use in a
hyper-heuristic framework capable of generalized cross-domain learning. Such a
generalized representation should ideally allow for the expression of problem spec-
ifications and the description of low-level heuristics, together with formal proper-
ties of those problems and heuristics. What we therefore require is a description in
a problem-independent vocabulary: such a representation would explicitly support
cross domain learning. We may then rely on analytic knowledge of widely-used
problem representations such as graphs and tensors, or reductions to well-known
problems. In principle the hyper-heuristic could access such a specification in any
detail. In this respect, a hyper-heuristic need not differ from a metaheuristic spe-
cialized to some problem domain. As discussed above, the main goal of hyper-
heuristic research is to act effectively in a newly-specified domain without rely-
ing on the presence of optimization experts. Analytic knowledge allows us to bet-
ter achieve this by injecting richer domain knowledge into the search process. In
particular, it can contain rules about operator applications which are known a pri-
ori to result in improvement. An well-known example is the uncrossing of edges
in the TSP:

detect : findcross
Jsegment (A,,A,;1) and (Ap4i,Aptir1) incycle {AjJi=1...n}
s ApAp 1|+ ApriAprivt| > [ApApril + [Ap+1Aptivi ]

action : uncross
replace (Ap,Ap+1) = (Ap,Ap+i), (ApsisAprivt) = (Apr1,Aptiv)
and reverse {Ap1...Ap4i}.



5 A Re-characterization of Hyper-Heuristics 85

Such representations could also contain statements about certain relationships
or constraints which are (nearly) always satisfied. A domain expert may wish to
express his experience that certain patterns never contribute to good solutions. A
suitable knowledge representation formalism will permit efficient handling of such
expressions.

One possible means of expressing cross-domain knowledge is constraint pro-
gramming, which provides a well-established means for describing such generalised
problems. Constraint satisfaction problems have the advantage of being declarative,
i.e. allow the statement of constraints in an implementation-independent manner.
Specifying patterns (in various forms) is common to many constraint languages and
properties of low level operators and the relationships between them can readily be
formulated in this manner. The detailed description of the workings of those oper-
ators may still proceed in any language. This implementation may moreover differ
from one domain to another. Given an ontology of domain-independent concepts, it
is very natural to express the transferable knowledge in terms of constraints.

To make these issues concrete, we proceed to discuss the features of a specific
knowledge representation format. XCSP [2, 37, 50] allows expression of constraint
satisfaction problems (CSP), weighted constraint satisfaction problems (WCSP) and
quantified constraint satisfaction problems (QCSP). It allows the description of in-
stances according to characteristics such as real-world; patterned; random instances
with/without a structure or involving only boolean variables. The authors further-
more distinguish instances based on whether they are defining all constraints in
extension, partly in intension or use global constraints. Designed for expression of
general decision and optimization problems, it supports two notations: a full XML
notation compromising between human and machine readability and an abridged
notation which is much more human readable. Both notations are equivalent and
translation in both directions is possible.

The XCSP specification of a problem domain for a hyper-heuristic can therefore
contain information about problem properties and low level heuristics. Information
on low level heuristics in present hyper-heuristic frameworks include categoriza-
tions such as ‘hill climber’ and ‘population based’ [30]. As argued elsewhere in this
paper, it is possible to extend this much further: since XCSP allows for the intro-
duction of arbitrary problem and data descriptions, then in principle any information
about a low level heuristic that has been acquired should be expressible, in principle
to any detail. For example, current hyper-heuristic practice requires that determining
when it might be appropriate to call one heuristic immediately following another is
achieved empirically. In many cases, this information is already available analyti-
cally, e.g. in the manner which is exploited in the ‘Reverse Elimination Method’ of
tabu search [18].

Presently, tools are available for solving, parsing, checking of instances and so-
lutions and shuffling variables (to check robustness of solvers). Since the format
is open and has systematic parsers available, other tools may be conceived: one
might think of discovering patterns in instances or history, item set mining and con-
straint learning, which could serve to summarize XCSP descriptions and keep them
fit for use by on-line hyper-heuristics. Links between data mining and constraint
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programming have been suggested before [13], and ongoing integration between
the two could support a fundamental move from pure model-based problem solving
algorithms to an integrated, data-driven approach. In this extended representation,
instances and algorithm components (low level heuristics) would be described to-
gether with the conventional model. In a sense, this is a natural evolution, given the
decades of algorithm design guided by tests on benchmark instances. This combined
representation would describe problem, instances and history in one comprehensive
format.

All this may change our vision of how combinatorial problems are described,
with constraint languages providing models for the problem in the conventional
sense, together with information on how such problems could be solved. This
information, in the conventional hyper-heuristics paradigm, is specified in terms
of low level heuristics, but predominantly provided declaratively by the research
community.

5.5 Future Directions: The Role of Ontologies

Ontologies codify knowledge in order to drive (traditionally formalized) reasoning
processes. Their first recorded use dates back to Aristotle [40]. In computer sci-
ence, the graph-based semantic nets of Quillan and Simmons [32] and Minsky’s
frame systems provided a foundational definition of entities in terms of specializa-
tion and part/whole relations [26]. These approaches subsequently spawned a mul-
tiplicity of variants (e.g. [20]). The previous section framed knowledge representa-
tion for hyper-heuristics in the vocabulary of constraint satisfaction. By expressing
constraints as relations, such representations clearly have an equivalent representa-
tion as graphs, hypergraphs or RDF-triples. The use of an ontology for scheduling
and routing problems can be seen in Martin et al. [25]. Recently, the Resource De-
scription Framework (RDF) of the Semantic Web [3] has emerged as a common
ontological basis for knowledge exchange. One important feature of web ontologies
is that knowledge can be hierarchically constructed by referencing (the definitions
for) other knowledge elements through a web-hosted URI.

What makes this relevant for hyper-heuristics is the associated support for the dis-
covery, aggregation and substitution of uniquely-identifiable knowledge elements in
the form of problem and algorithm descriptions. The goal then is that practitioner ac-
tivity moves from ‘under-the-hood’ software development to the use of tools to hy-
bridize pre-existing declarative specifications or else tweak constraints. Ontologies
provide further support for the large-scale vision of hyper-heuristics, consisting of
online data repositories containing discovered rules, patterns and constraints which
describe good solution approaches. A suitable choice of knowledge representation
elements (e.g. based on XCSP as above and/or other interoperability standards such
as OpenMath [1]) can form the basis of community investment in such cross-domain
learning tools. This is to be contrasted with the more isolated and domain-specific
development that typically takes place in today’s research settings.
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5.6 Conclusion

We have traced the historical development of hyper-heuristics and highlighted the
motivating division of responsibility: hyper-heuristic researchers are responsible for
devising methods which work well across domains, with the goal of allowing prac-
titioners to invest minimal effort in modelling a new domain. A requirement for
‘lifelong, cross-domain learning’ is strongly implied by this division of responsi-
bility: when provided with the definition of a new domain, a hyper-heuristic must
be able to produce effective solutions in this domain without significant practitioner
expertise or intervention.

As part of a wider community initiative, we therefore argue for a polar stance to
that of the prevailing view of hyper-heuristics: instead of imposing a ‘maximally re-
strictive’ interface between problem-domain and hyper-heuristic solver, we propose
that it is vital to make problem domain (‘analytic’) and solution trajectory (‘empir-
ical’) information available to the solver via some ‘universal’ knowledge exchange
format. The wider possibilities then include:

* The extension of the algorithm selection problem to include ‘analytic’ informa-
tion as part of the mapping process.

* The availability of arbitrarily rich features for machine learning approaches.

* The creation of a library of declarative descriptions of domains via a constraint
language, more easily customized for a new domain than program code.

To coordinate these varied activities, a wider community initiative is in progress to
promote an architectural vision of ‘Metaheuristics in the Large’ [47].
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Chapter 6
POSL: A Parallel-Oriented Metaheuristic-Based
Solver Language

Alejandro REYES-Amaro, Eric Monfroy, and Florian Richoux

Abstract For a couple of years, all processors in modern machines are multi-core.
Massively parallel architectures, so far reserved for super-computers, become now
available to a broad public through hardware like the Xeon Phi or GPU cards. This
architecture strategy has been commonly adopted by processor manufacturers, al-
lowing them to stick with Moore’s law. However, this new architecture implies new
ways to design and implement algorithms to exploit its full potential. This is in
particular true for constraint-based solvers dealing with combinatorial optimiza-
tion problems. Here we propose a Parallel-Oriented Solver Language (POSL, pro-
nounced “puzzle”), a new framework to build interconnected meta-heuristic based
solvers working in parallel. The novelty of this approach lies in looking at solver
as a set of components with specific goals, written in a parallel-oriented language
based on operators. A major feature in POSL is the possibility to share not only
information, but also behaviors, allowing solver modifications during runtime. Our
framework has been designed to easily build constraint-based solvers and reduce
the developing effort in the context of parallel architecture. POSL’s main advantage
is to allow solver designers to quickly test different heuristics and parallel com-
munication strategies to solve combinatorial optimization problems, usually time-
consuming and very complex technically, requiring a lot of engineering.

Keywords CSP e« Meta-heuristic ¢ Parallel ¢ Inter-process communication
* Language

6.1 Introduction

Combinatorial Optimization has strong applications in several fields, including ma-
chine learning, artificial intelligence, and software engineering. In some cases, the
main goal is only to find a solution, like for Constraint Satisfaction Problems (CSP).
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A solution will be an assignment of variables satisfying the constraints set. In other
words: finding one feasible solution.

CSPs find a lot of applications in the industry, implying the development of
many methods to solve them. Meta-heuristics techniques have shown themselves
to be effective for solving CSPs, but in most industrial cases the search space is
huge enough to be intractable. However, recent advances in computer architec-
ture are leading us toward massively multi/many-core computers, opening a new
way to find solutions for these problems in a more feasible manner, reducing
search time. Adaptive Search [5] is an efficient methods showing very good per-
formances scaling to hundreds or even thousands of cores, using a multi-walk lo-
cal search method. For this algorithm, an implementation of a cooperative multi-
walks strategy has been published in [9]. These works have shown the efficiency
of multi-walk strategy, that is why we have oriented POSL towards this parallel
scheme.

In the last years, a lot of efforts have been made in parallel constraint program-
ming. In this field, the inter-process communication for solver cooperation is one
of the most critical issues. Pajot and Monfroy [11] presents a paradigm that en-
ables the user to properly separate strategies combining solver applications in or-
der to find the desired result, from the way the search space is explored. Meta-
S is an implementation of a theoretical framework proposed in [6], which allows
to tackle problems, through the cooperation of arbitrary domain-specific constraint
solvers. POSL provides a mechanism of creating solver-independent communica-
tion strategies, making easy the study of solving processes and results. Creating
solvers implementing different solution strategies can be complex and tedious. In
that sense POSL gives the possibility of prototyping communicating solvers with
few efforts.

In Constraint Programming, many researches focus on fitting and improving ex-
isting algorithms for specific problems. However, it requires a deep study to find
the right algorithm for the right problem. HYPERION [3] is a Java framework for
meta- and hyper-heuristics built with the principle of interoperability, generality by
providing generic templates for a variety of local search and evolutionary compu-
tation algorithms and efficiency, allowing rapid prototyping with the possibility of
reusing source code. POSL aims to offer the same advantages, but provides also a
mechanism to define communication protocols between solvers.

In this chapter we present POSL, a framework for easily building many and
different cooperating solvers based on coupling four fundamental and independent
components: operation modules, open channels, the computation strategy and com-
munication channels or subscriptions. Recently, the hybridization approach leads to
very good results in constraint satisfaction [14]. ParadisEO is a framework to de-
sign parallel and distributed hybrid meta-heuristics showing very good results [4].
It includes a broad range of reusable features to easily design evolutionary algo-
rithms and local search methods. Our framework POSL focuses only in local search
methods, but is designed to execute in parallel sets of different solvers, with and/or
without communication, since the solver’s components can be combined by using
operators.
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POSL provides, through a simple operator-based language, a way to create a
computation strategy, combining already defined components (operation modules
and open channels). A similar idea was proposed in [7] without communication,
introducing an evolutionary approach that uses a simple composition operator to
automatically discover new local search heuristics for SAT and to visualize them
as combinations of a set of building blocks. Another interesting idea is proposed
in TEMPLAR, a framework to generate algorithms changing predefined components
using hyper-heuristics methods [13]. In the last phase of the coding process with
POSL, solvers can be connected each others, depending on the structure of their
open channels, and this way, they can share not only information, but also their
behavior, by sharing their operation modules. This approach makes the solvers able
to evolve during the execution.

Before ending this chapter with a brief conclusion and future works, we present
some results obtained by using POSL to solve some instances of the Social Golfers
Problem.

6.2 POSL Parallel Solvers

POSL proposes a solver construction platform following different stages. First of
all, the solver algorithm is modeled by decomposing it into small pieces/modules
of computation. After that, they are implemented as separated functions. We name
them operation module. The next step is to decide what information is interesting to
receive from other solvers. This information is encapsulated into other objects called
open channels, allowing data transmission among solvers. In a third stage, a generic
strategy is coded through POSL, using the mentioned components in the previous
stages, allowing not only the information exchange, but also to execute the com-
ponents in parallel. This will be the solver’s backbone. Finally, solvers are defined
by instantiating and connecting the strategy, operation modules and open channels,
and by connecting them each others. The next subsections explain in details each of
these steps.

6.2.1 Operation Module

An operation module is the most basic and abstract way to define a piece of compu-
tation. It can be dynamically replaced by or combined with other operation modules,
since they can be sheared among solvers working in parallel. This way, the solver
can mutate its behavior during execution.

An operation module receives an input, executes an internal algorithm and gives
an output. They are joined through computation strategies.

Definition 6.1. Operation Module An operation module Om is a mapping defined
by:
Om:D—1 6.1)
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D and I can be either a set of configurations, or set of sets of configurations, or a
set of values of some data type, etc.

Consider a local search meta-heuristic solver. One of its operation modules can
be the function returning the set of configurations composing the neighborhood of a
given configuration:

Omrwighborhood : Dl X D2 X oo X Dn — 2D1><D2><---><D,,

where D; represents the definition domains of each variable of the input configura-
tion.

6.2.2 Open Channels

Open Channels are the solver’s components in charge of the information reception
in the communication between solvers. They can interact with operation modules,
depending on the computation strategy. Open Channels play the role of outlets,
allowing solvers to be connected and to share information.

An open channel can receive two types of information, always coming from an
external solver: data or operation modules. It is important to notice that when we
are talking about sending/receiving operation modules, we mean sending/receiving
only required information to identify it and being able to instantiate it.

In order to distinguish between the two different types of open channels, we
will call Data Open Channel the open channel responsible for the data reception,
and Object Open Channel the one responsible for the reception and instantiation of
operation modules.

Definition 6.2. Data Open Channel A Data Open Channel Ch is a component that
produces a mapping defined as follows:

Ch:U—1 6.2)

It returns the information / coming from an external solver, no matter what the input
U is.

Definition 6.3. Object Open Channel If we denote by M the space of all the op-
eration modules defined by Definition 6.1, then an Object Open Channel Ch is a
component that produces an operation module coming from an external solver as

follows:
Ch:M—M (6.3)

Due to the fact that open channels receive information coming from outside and
have no control on them, it is necessary to define the NULL information, to denote
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the absence of any information. If a Data Open Channel receives a piece of infor-
mation, it is returned automatically. If a Object Open Channel receives an operation
module, the latter is instantiated and executed with the open channel’s input, and its
result is returned. In both cases, if no available information exists (no communica-
tions are performed), the open channel returns the NULL object.

6.2.3 Computation Strategy

The computation strategy is the solver’s backbone: it joins operation modules and
open channels in a coherent way, while remaining independent from them. Through
the computation strategy we can decide also what information to sent to other
solvers.

The computation strategy is an operator-based language, that we define as a free-
context grammar as follows:

Definition 6.4. POSL’s Grammar Gpos;, = (V,X,S,R), where:
1. V= {CM,OP} is the set of variables,

2.3 = {om,och,be, LLED, G4 G)m)e '—>v©=@’®’@’@’®}

is the set of terminals,
. S = {CM} is the set of start variables,
4. and the set of rules R =

(O8]

CM — om|och|(om)°|(om)™| [OP]| [OP],,
OP — CM — CM

OP — CM — (be) {CM;CM}

OP — CM © (be) {CM}

OP CM@CM|CM®CM|CM@CM|CM@CM|CM@CM

We would like to explain some of the concepts presented in Definition 6.4:

» The variable CM, as well as OP are two entities very important in the language,
as can be seen in the grammar. We name them compound module and operator
respectively.

» The terminals om and och represent an operation module and an open channel
respectively,

* The terminal be is a boolean expression.

* The terminals [],[ ], are symbols for grouping and defining the way of how
the involved compound modules are executed. Depending on the nature of the
operator, they can be executed sequentially or in parallel:
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1. [OP]: The involved operator is executed sequentially.
2. [OP] - The involved operator is executed in parallel if and only if OP supports
parallelism. Otherwise, an exception is threw.

 The terminals ( and ) are symbols for grouping the boolean expression in some
operators.

* The terminals { and } are symbols for grouping compound modules in some op-
erators.

 The terminals (.)™, (.)°, are operators to send information to other solvers (ex-
plained bellow).

» The rest of terminals are POSL operators.

6.2.3.1 POSL Operators

In this section we briefly present operators provided by POSL to code the computa-
tion strategy. A formal presentation of POSL’s specification is available in [12].

‘ Op.1: ‘ Operator Sequential Execution: the operation M; — M, represents

a compound module as result of the execution of M| followed by M;. This op-
erator is an example of an operator that does not support the execution of its
involved compound modules in parallel, because the input of the second com-
pound module is the output of the first one.

‘ Op. 2: | Operator Conditional Sequential Execution: the operation
M) — (< cond >){M,,Ms} represents a compound module as result of the
sequential execution of M, followed by M, if < cond > is true or by M3 other-
wise.

‘ Op.3: ‘ Operator Cyclic Execution: the operation O (< cond >){I, } repre-
sents a compound module as result of the sequential execution of /; repeated
while < cond > remains true.

‘ Op. 4: ‘ Operator Random Choice: the operation M; » represents a
compound module that executes and returns the output of M; depending on
the probability p, or M; following (1 — p)

‘ Op.5: ‘ Operator Not NULL Execution: the operation M1®M2 represents
a compound module that executes M| if it is not NULL or M, otherwise.

‘ Op.6: ‘ Operator MAX: the operation M| @Mz represents a compound
module that returns the maximum between the outputs of modules M; and M,
(tacking into account some order criteria).

‘ Op.7: ‘ Operator MIN: the operation M @M2 represents a compound mod-
ule that returns the minimum between the outputs of modules M; and M, (tack-
ing into account some order criteria).

‘ Op. 8: ‘ Operator Speed: the operation M ®M2 represents a compound
module that returns the output of the module ending first.
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In Fig. 6.1 we present a simple example of how to combine modules using POSL
operators introduced above. Algorithm 1 shows the corresponding code. In this ex-
ample we show four operation modules being part of a compound module represent-
ing a dummy local search method. In this example:

* M;: generates a random configuration.

* M;: computes a neighborhood of a given configuration by selecting a random
variable and changing its value.

* Mj;: computes a neighborhood of a given configuration by selecting K random
variables and changing theirs values.

* Mjy: selects, from a set of configurations, the one with the smallest cost, and stores
it.

Here, the operation module M, is executed with probability p, and M3 is ex-
ecuted with probability (1 — p). This operation is repeated a number N of times
(< stop_cond »>).

|M1|—>|M2|®|M3|H|M4|

<stop_cond> ‘

Fig. 6.1 Un example of a basic solver using POSL

Algorithm 1 POSL code for Fig. 6.1
My — [0 (loops < N){[M, @ M3 — My}

In Algorithm 1, loops represent the number of iterations performed by the oper-
ator.
+2

‘ Op.—8: ‘ Operator Sending: allows us to send two types of information to
other solvers:

1. The operation (M))° represents a compound module that executes the com-
pound module M and sends its output

2. The operation (M)™ represents a compound module that executes the com-
pound module M and sends M itself

Algorithm 2 POSL code for Fig. 6.2 case (1)
My —> GMDO — M>
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M1 M2

v
<
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Fig. 6.2 Sending Information Operator

Algorithm 3 POSL code for Fig. 6.2 case (2)
M1 — qM[)m — M2

Algorithms 2 and 3 show POSL’s code corresponding to Fig. 6.2 for both cases:
(a) sending the result of the execution of the operation module M, or (b) sending the
operation module M itself.

This operation is very useful in terms of sharing behaviors between solvers. Fig-
ure 6.3 shows another example, where we can combine an open channel with the
operation module M, through the operator @ In this case, the operation mod-
ule M, will be executed as long as the open channel remains NULL, i.e. there is
no operation module coming from outside. This behavior is represented in Fig. 6.3
by red lines. If some operation module has been received by the open chan-
nel, it is executed instead of the operation module M;, represented in Fig. 6.3 by
blue lines.

( a) <stop_cond> (b) <stop_cond>

b J%

h

FlofE

Fig. 6.3 Two different behaviors in the same solver. (a) The solver executes his own operation
module if no information is received through the open channel. (b) The solver executes the opera-
tion module coming from an external solver

In this stage, and using these operators, we can create the algorithm managing
different components to find the solution of a given problem. These algorithms are
fixed, but generic w.r.t. their components (operation modules and open channels). It
means that we can build different solvers using the same strategy, but instantiating
it with different components, as long as they have the right input/output signature.
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To define a computation strategy we use the environment presented in Algo-
rithm 6, where M; and Ch; represent the types of the operation modules and the
types of the open channels used by the computation strategy St. Between brackets,
the field < ...computation strategy... > corresponds to POSL code
based on operators combining already declared modules.

Algorithm 4 Computation strategy definition
St +— strategy

oModule M|, M,, ..., M,
oChannel Chy,Ch,,...,Ch,

{

< ...computation strategy... >

}

Algorithm 5 Solver definition
solvery < solver

{

cStrategy St

oModule m;,my,...,m,
oChannel chy,chy,...,chy,

}

6.2.4 Solver Definition

With operation modules, open channels and computation strategy defined, we can
create solvers by instantiating the declared components. POSL provides an environ-
ment to this end, presented in Algorithm 6, where m; and ch; represent the instances
of the operation modules and the instances of the open channels to be passed by
parameters to the computation strategy St.

6.2.5 Communication Definition

Once we have defined our solver strategy, the next step is to declare communication
channels, i.e. connecting the solvers each others. Up to here, solvers are discon-
nected, but they have everything to establish the communication. In this last stage,
POSL provides to the user a platform to easily define cooperative meta-strategies
that solvers must follow.
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The communication is established by following the next rules guideline:

1. Each time a solver sends any kind of information by using the operator (.)? or
()™, it creates a communication jack

2. Each time a solver uses an open channel into its definition, it creates a communi-
cation outlet

3. Solvers can be connected each others by creating subscriptions, connecting com-
munication jacks with communication outlet (see Fig. 6.4).

With the operator (-) we have access to operation modules sending information
and to the open channel’s names in a solver. For example: Solver| - M| provides
access to the operation module M| in Solver; if and only if it is affected by the
operator (.)° (or (.)"™), and Solver, - Ch; provides access to the open channel Ch; in
Solver,. Tacking this into account, we can define the subscriptions.

Definition 6.5. Let two different solvers Solver; and Solver, be. Then, we can con-
nect them through the following operation:

Solver| - My ~ Solvery - Chy

The connection can be defined if and only if:

1. Solver; has an operation module called M, encapsulated into an operator (.)° or
(-

2. Solver, has an open channel called Ch; receiving the same type of information
sent by M.

Definition 6.5 only gives the possibility to define static communication strategies.
However, our goal is to develop this subject until obtaining operators more expres-
sive in terms of communication between solvers, to allow dynamic modifications of
communication strategies, that is, having such strategies adapting themselves during
runtime.

6.3 A POSL Solver

In this section we explain the structure of a POSL solver created by using the
operators-based language provided, to solve some instances of the Social Golfers
Problem (SGP). It consists to schedule n = g X p golfers into g groups of p players
every week for w weeks, such that two players play in the same group at most once.
An instance of this problem can be represented by the triple g — p — w.

We choose one of the more classic solution methods for combinatorial problems:
local search meta-heuristics algorithms. These algorithms have a common structure:
they start by initializing some data structures (e.g. a tabu list for Tabu Search [8], a
temperature for Simulated Annealing [10], etc.). Then, an initial configuration s is
generated (either randomly or by using heuristic). After that, a new configuration s*
is selected from the neighborhood V (s). If s* is a solution for the problem P, then
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the process stops, and s* is returned. If not, the data structures are updated, and s* is
accepted or not for the next iteration, depending on some criterion (e.g. penalizing
features of local optimums, like in Guided Local Search [2]).

Restarts are classic mechanisms to avoid becoming trapped in local minimum.
They are trigged if no improvements are done or by a timeout.

Operation Modules composing each solver of the POSL-solver are described
bellow:

1. Generate a configuration s.

2. Define the neighborhood V (s)

3. Select s* € V (s). In every case for this experiment the selection criteria is to
choose the first configuration improving the cost.

4. Evaluate an acceptance criteria for s*. In every case for this experiment the ac-
ceptance criteria is to choose always the configuration with less cost.

For this particular experiment we have created three different solvers (see Fig. 6.4):

1. Solver 1: A solver sending the best configuration every K iterations (sender
solver). It sends the found configuration to the solver it is connected with. Al-
gorithm 5 shows its computation strategy.

2. Solver 2: A solver receiving the configuration coming from a sender solver
(Solver 1). It takes the received configuration, if its current configuration’s cost is
not better than the received configuration’s cost, and takes a decision. This solver
receives the configuration through an open channel joined to the operation mod-
ule M3 with the operator @ Algorithm 7 shows its computation strategy.

3. Solver 3: A simple solver without communication at all. This solver does not
communicate with any other solver, i.e. it searches the solution into an indepen-
dent walk though the search space. Algorithm 5 shows its computation strategy.

[m1]a
v

] «<El-{&] <

Solver 1 Solver 2 Solver 3

(sender) (receiver)

Fig. 6.4 Three solvers composing the POSL-solver
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6.3.1 Connecting Solvers

After the instantiation of each operation module, the next step is to connect the
solvers (sender with receiver), by using the proper operator. If one solver X,
(sender) sends some information and some other solver X (receiver) is able to re-
ceive it though an open channel, then they can be connected as the Algorithm 1
shows.

Algorithm 6 POSL code for solver 1 in Fig. 6.4

St| < strategy /* ITR — number of iterations */
oModule : M, My, M>, M,

[ (ITR%30){M; — [ (ITR%300){ M, — M3 —> (M4)°}]}]
{

Algorithm 7 POSL code for solver 2 in Fig. 6.4
Sty < strategy /* ITR — number of iterations */
oModule : M, My, M>, My
oChannel : Ch;

[ (ITR%30){M; —> [ (ITR%300)
(M — [Cm(m)s] — Ma})]

Algorithm 8 POSL code for solver 3 in Fig. 6.4

St3 < strategy /* ITR — number of iterations */
oModule : M, My, M>, M,

[ (ITR%30){M; — [ (ITR%300){M — M3 — My }]}]

Algorithm 9 Inter-solvers communication definition
XMy~ % -Chy
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6.4 Results

We ran experiments to study the behavior of POSL’s solvers in different scenarios
solving instances of the Social Golfers Problem. For that reason we classified runs
taking into account the composition of POSL' solvers:

¢ Without communication: we use a set of solvers 3 without communication.

¢ Some communicating solvers: some of the solvers are solvers 3 without commu-
nication, the others are couples of connected solvers (solver 1 and solver 2)

* All communicating solvers: we use a set of couples of connected solvers (solver 1
and solver 2).

Our first experiment uses our desktop computer (Intel ® Core ™i7 (2.20 GHz)
with 16 Gb RAM), for solving instances of SGP with 1 (sequential), 4 and 8 cores.
Results can be found in Table 6.1. In this table, as well as in Table 6.2, C are the
numbers of used cores, T indicates the runtime in milliseconds, and It. the number
of iterations. Values are the mean of 25 runs for each setup.

The other set of runs were performed on the server of our laboratory (Intel
®Xeon TMES-2680 v2 (10x4 cores, 2.80GHz)). Table 6.2 shows obtained results.

Table 6.1 Intel Core i7

No comm. |50% comm.| All comm.
T It. |T It. |T It.
6089 159 |- - -
1500 109 {1354 97 |3512 181
1980 83 (2049 78 |5323 113
17,243 831 |- - |- -
6082 208 |5850 170 (13,094 270
6125 136 |5975 124 (13,864 219
32,042 428 |- - |- -
23,358 270 |22,512 222 |56,740 340
19,309 126 |19,925 121 |28,036 144
198,450 1516|— - |- -
94,867 662 91,556 517 |102,974 596
102,629 394 98,060 335 | 126,799 466

Bold values: Best (lowest) result considering the number of processors used in the experiment

@)

Inst

6-6-3

7-7-3

8-8-3

9-9-3

00 A =0 &~ =0 &~ —=|00 &~ —

Results show how the parallel multi-walk strategy increases the probability of
finding the solution within a reasonable time, when compared to the sequential
scheme. Thanks to POSL it was possible to test different solution strategies eas-
ily and quickly. With the Intel Xeon server we were able to test seven strategies,
and with the desktop machine only 3, due to the limitation in the number of cores.
Results suggest that strategies where there exist a lot of communication between
solvers (sending or receiving information) are not good (sometimes is even worse
than sequential). That is not only because their runtimes are higher, but also due to

! POSL source code is available in https://github.com/alejandro-reyesamaro/POSL.
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Table 6.2 Intel Xeon

C No comm. |[15% comm.|25% comm.|30% comm. |50% comm. |75% comm. | All comm.
T Tt. [T It. [T It. [T It. [T It. [T It. [T Tt.

Inst

1 [2684 229 |- - |- - - - |- -
6-6-3(10(1810 131 |1636 107 |1479 99 |1634 107 (1406 79 (1532 91 |3410 182
20[1199 82 |1094 75 (964 70 (1096 76 |1124 78 |1299 87 (1769 101
30[1214 75 |1092 64 |1010 68 (1101 68 |766 52 |1366 85 (1984 73
40(1043 50 (1063 49 |1104 54 [1299 58 |[1186 49 |1462 63 |1824 69
1 {11,070 533 |- - |- - |- - - |- - |-
7-7-3[10(6636 245 5992 189 |5139 179 |5456 177 (6055 205 (6398 197 (8450 221
20(2734 104 |2880 1102|2517 90 (3028 1111|2970 111 (3465 124 (4153 143
30(3141 100 |2864 91 |1972 69 (2312 79 |2907 97 (3028 82 (3236 &9
4012615 68 (2810 70 |[2111 55 |2984 71 |2981 74 |3636 79 |3934 86
1 {24,829 315 |- - |- - |- - - -
8-8-3(10]17,652 193 |17,067 168 (16,008 163 | 16,167 161 {16,624 147 21,244 185 |27,248 226
20[8430 102 |8218 92 |6197 77 (7950 93 |7962 92 |8550 91 (12,958 125
30[7424 81 |6439 66 |6268 71 (7413 80 |7407 75 |9806 89 (10,420 90
4019700 75 [10,068 76 [9377 72 |8983 68 |9360 72 |11,805 84 |12,859 91
1 {190,965 1315|— - |- - |- - |- - |- - |-
9-9-3110[47,300 331 |45,946 293 {43,682 276 (45,433 286 |47,820 327 |67,113 439 79,938 506
20(28,193 200 |25,370 178 {24,936 161 (24,786 169 |28,369 194 {30,147 203 (33,610 232
30(22,035 123 |21,792 127 (19,518 125 {23,426 133 25,989 163 |31,904 172 |32,982 203
40]27,669 125 (26,030 116 {24,196 112 |28,284 125 |26,405 118 |32,464 149 34,316 140

Bold values: Best (lowest) result considering the number of processors used in the experiment

the fact that only a low percentage of the receivers solvers were able to find the so-
lution before the others did. This result is not surprising, because inter-process com-
munications imply overheads in the computation process, even with asynchronous
communications. This phenomenon can be seen in Fig. 6.5, where it is analyzed the
percentage mentioned above versus the numbers of running solvers.

—
ot
T

Communication rate

10 15 20 25 30 35 40

Number of cores

Fig. 6.5 Communication rate: % of solutions found by communicating solvers
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Fig. 6.6 Runtime means of instances 7-7-3, 8-8-3 and 9-9-3

When we face the problem of building a parallel strategy, it is necessary to find
an equilibrium between the numbers of communicating solvers and the number of
independent solvers. Indeed the communication cost is not negligible: it implies data
reception, information interpretation, making decisions, etc.

Slightly better results were obtained with the strategy 25% Comm when com-
pared to those obtained with the rest, suggesting that the solvers cooperation can
be a good strategy. In general, the results obtained using any of the afore men-
tioned strategies were significantly better than when using the All Comm strategy.
Figure 6.6 shows for each instance, the runtime means using different numbers of
cores.

The fact we send the best configuration found to other solvers has an impact on
communication evaluations. If the percentage of communicating solvers is high and
the communication manage to be effective, i.e. the receiver solver accepts the con-
figuration for the next iteration, then we are losing a bit the independent multi-walk
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effect in our solver, that is, most of the solvers are looking for a solution in the same
search space area. However, this is not a problem: if a solver is trapped, a restart is
performed. Determining what information to share and to not share among solvers
has been few investigated and deserves a deep study.

In many cases, using all cores available did not improves the results. This phe-
nomenon can be observed clearly in runs with communication, and one explanation
can be the resulting overhead, which is way bigger. Another reason why we ob-
tain these results can be the characteristic of the architecture, that is, in many cases,
not uniform in terms of reachability between cores [1]. We can observe that, even
if runtimes are not following a strict decreasing pattern when the number of cores
increases, iterations do, suggesting once again that the parallel approach is effective.

With communications, the larger the problem, the more likely effective coopera-
tions between processors are, although sometimes a decreasing pattern occurs while
approaching the maximum number of cores, due to communication overheads and
architecture limitations.

Before we perform these experiments, we compared runtimes between two
solvers: one using an operation module to select a configuration from a computed
neighborhood that selects the first configuration improving the current configura-
tion’s cost, and other selecting the best configuration among all configurations in the
neighborhood. Smallest runtimes were obtained by the one selecting the first best
configuration, and that is way we used this operation module in our experiments. It
explains the fact that some solvers need more time to perform less iterations.

6.5 Conclusions

In this chapter we have presented POSL, a framework for building cooperating
solvers. It provides an effective way to build solvers which exchange any kind of in-
formation, including other solver’s behavior, sharing their operation modules. Using
POSL, many different solvers can be created and ran in parallel, using only one
generic strategy, but instantiating different operation modules and open channels
for each of them.

It is possible to implement different communication strategies, since POSL pro-
vides a layer to define communication channels connecting solvers dynamically us-
ing subscriptions.

At this point, the implementation of POSL remains in progress, in which our
principal task is creating a design as general as possible, allowing to add new fea-
tures. Our goal is obtaining a rich library of operation modules and open channels to
be used by the user, based on a deep study of the classical meta-heuristics algorithms
for solving combinatorial problems, in order to cover them as much as possible. In
such a way, building new algorithms by using POSL will be easier.

At the same time we pretend to develop new operators, depending on the new
needs and requirements. It is necessary, for example, to improve the solver defini-
tion language, allowing the process to build sets of many new solvers to be faster
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and easier. Furthermore, we are aiming to expand the communication definition
language, in order to create versatile and more complex communication strategies,
useful to study the solvers behavior.

As a medium term future work, we plan to include machine learning techniques,

to allow solvers to change automatically, depending for instance on results of their
neighbor solvers.
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Chapter 7

An Extended Neighborhood Vision
for Hill-Climbing Move Strategy Design

Sara Tari, Matthieu Basseur, and Adrien Goéffon

Abstract Many combinatorial optimization problem solvers are based on stochastic
local search algorithms, which mainly differ by their move selection strategies, also
called pivoting rules. In this chapter, we aim at determining pivoting rules that allow
hill-climbing to reach good local optima. We propose here to use additional informa-
tion provided by an extended neighborhood for an accurate selection of neighbors.
In particular, we introduce the maximum expansion pivoting rule which consists
in selecting a solution which maximizes the improvement possibilities at the next
step. Empirical experiments on permutation-based problem instances indicate that
the expansion score is a relevant criterion to attain good local optima.

Keywords Combinatorial optimization * Neighborhood search ¢ Permutation
problems

7.1 Introduction

Metaheuristics constitute a conceptual answer to tackle combinatorial problem in-
stances that cannot be solved by complete methods using reasonable computational
resources. In this work, we focus on neighborhood-based search techniques, which
constitute a central component of most metaheuristics (e.g. simulating annealing,
tabu search, iterated local search, memetic search) [20].

Neighborhood searches explore the search space by applying iteratively local
modifications to a current solution thanks to a neighborhood relation. Strategies
mainly differ by their selection criterion which determines the search trajectory and
consequently the solutions reached.

In general, metaheuristic behaviors remain hard to analyze hence the difficulty
to predict the comparative relevance of different selection criterions, also called
pivoting rule. In order to enhance the understanding of neighborhood searches,
and also to reduce the complexity of their behavior analysis, we focus here on
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hill-climbing techniques. In such strategies, only non-deteriorating moves are
allowed to constitute possible trajectories. Traditionally, best improvement and first
improvement strategies are two alternatives while designing a hill-climbing search.

In previous studies, we observed that best improvement is often preferred if the
complete neighborhood evaluation does not increase significantly computational
costs. However, we showed in [2, 5] that in many cases, best improvement is not
the appropriate strategy to reach better solutions. We also investigated other pivot-
ing rules as alternatives to best and first improvement. In particular, the behavior of
the worst improvement was introduced in [3] to climb NK landscapes and presented
in a more general context in the META 2014 conference [4].

As an extension of this work, this chapter focuses on determining advanced hill-
climbing strategies which allow the attainment of higher local optima. Indeed, in
[6], we pointed out that a hill-climbing process is often able to reach the best local
optima provided that adequate moves are selected by the pivoting rule. Since meta-
heuristic studies regularly emphasize that the behavior of their components strongly
depends on the search space structure considered, we choose here to focus the study
on two permutation problems: Flowshop and QAP.

The advanced pivoting rules investigated in this chapter consider an extended
neighborhood as additional information for choosing the move within the neigh-
borhood originally defined. We are mainly interested on the maximum expansion
strategy, which consists in moving towards solutions maximizing the number of
move possibilities for the next iteration. We include to experimental comparisons
several hill-climbing strategies which use or not such an extended vision of the
search space.

In the next section, we recall main notions and definitions related to combina-
torial optimization and local search. Section 7.3 describes hill-climbing variants
as well as experimental comparisons. In the light of these results, we propose in
Sect. 7.4 possible ways to enhance search processes by multiobjectivization. We fi-
nally conclude by a discussion and point out some perspectives.

7.2 Combinatorial Optimization, Local Search, Hill-Climbing

A combinatorial instance problem can be defined as a pair (£, f), where 2" is
a discrete set of feasible solutions called search space, and f : 2~ — R, a scalar
objective function which has to be maximized or minimized. Solving an optimiza-
tion problem (%', f) consists in finding x* € argmax,c 9 f(x). Note that here f
has to be maximized, but minimization problems can be considered without loss of
generality.

A local search algorithm (Algorithm 1) consists in navigating through the search
space thanks to a neighborhood function .4 : 2~ — 2% which assigns to each
x € Z a set of neighboring solutions, and an evaluation function which allows a
partial order relation between solutions. In the following, we will use the objective
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function f as evaluation function. A solution x’ € 4" is a neighbor of x. If f(x') >
f(x) (resp. =, <), then the transition x — x’ is an improving (resp. neutral, de-
teriorating) move. x’ is then an improving (resp. neutral, deteriorating) neighbor.
A global optimum is a solution x* € argmaxcx f(x), i.e. an optimal solution of
the combinatorial problem (£, f). A local optimum is a solution x such that
Vx' e A (x),f(X) < f(x). A strict local optimum have only deteriorating neigh-
bors. We call neutral perturbation a neutral move x — x’ such that x is a local
optimum.

Given (£, f) and ./, the quality of a local search algorithm resides in its ability
to reach good solutions (thanks to the pivoting rule used, exploiting f) in reasonable
computational costs. A local search process can be seen as a particular sampling
of £ using A4 and f. Triplets (Z,.4, f) are called fitness landscapes [10] when
abstracted from problem-oriented issues. Their particular analysis sheds light on
possible links between structural properties and local searches behavior.

Algorithm 1 Local search

Choose x € 2 (initialization)
Xp < x (save the best solution found)
repeat
Choose X' € A (x) w.r.t. a piv. rule
x+x
if f(x) > f(x;) then
Xp X
end if
until stop criterion
Return x;

Algorithm 2 Hill-climbing

Choose x € 2 (initialization)
repeat
Hx) = {y € N (), £0) > F()}
if A (x) # 0 then
Choose X' € A, (x) w.r.t. a piv. rule
x < x
end if
until A (x) =0 /*xis alocal opt. */
Return x

A local search algorithm is called hill-climbing, or climber, if the pivoting rule
does not allow deteriorating moves (see Algorithm 2). Thus, it is not necessary to
save the best solution encountered during the search (x; in Algorithm 1). A strict
hill-climbing allows only improving moves, while a stochastic hill-climbing allows
also neutral moves. If no neutral move is permitted during the search (including
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neutral perturbations), then reaching a local optimum is a natural stop criterion.
Otherwise, the search stops when a strict local optimum is reached, or if a maximal
number of iterations or evaluated solutions is attained.

A best improvement strict hill-climbing selects at each iteration the best improv-
ing neighbor, while a (random) first improvement strict hill-climbing selects any
improving neighbor. Note that the entire neighborhood of a current solution has not
to be evaluated in a first improvement climber. Different pivoting rules can be de-
fined by combining first or best improvement strategy with a stochastic hill-climbing
process. Other strategies will be discussed in the next section.

The difficulty of solving a problem (£, f) with a local search using a neighbor-
hood .4 greatly depends on the characteristics of its associated fitness landscape
[14]. In particular, the ruggedness of (27,4, f) express its amount of epistasis
phenomenon [7] and the number of local optima which constitute the main obstacle
to climbers (see [17, 5] for more details). Neutrality, which refers to the amount of
neutral transitions and plateaus, affects also the capacity of local searches to explore
landscapes efficiently.

Previous works [5] showed that some hill-climbing pivoting rules are generally
more appropriate and their efficiency could differ according to landscape properties.
In particular, when the landscape is sufficiently rugged, a best improvement strategy
leads often prematurely to local optima, while pivoting rules which favor small im-
provements lead to longer searches which often drive to better solutions. Based on
these observations, it seems relevant to develop pivoting rules dedicated to preserve
as much as possible improvement options. This leads us to propose the maximum ex-
pansion strategy which uses information of additional degree of neighborhood. The
next section is dedicated on maximum expansion which is experimentally compared
with other climbing strategies.

7.3 Hill-Climbing Moving Strategies: Description and
Evaluation

7.3.1 Context

In this work, we investigate specific pivoting rules which aim to enhance hill-
climbing performance by exploiting the knowledge of a wider area than the con-
sidered neighborhood. We call k-th level neighborhood of a configuration x the
set of solutions <% (x) = {x¥ € Z,d v (x,x') < k}, where d_y (x,x") refers to the
minimal number of moves to link x to x' with respect to .4#". As a consequence,
) (x) = A (x) U{x}. In the following, we will distinguish (1) the moving area and
(2) the vision area of alocal search algorithm. The moving area is the set of solutions
reachable in a single step of the search (independently of any selection criterion).
The vision area is composed of solutions which may be used by the pivoting rule to
choose a solution from the moving area (see Fig.7.1).
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Fig. 7.1 Hypercube of dimension 5 where vertices are placed in order to respect the relation be-
tween hamming distance and Euclidian distance to the solution “00000”. We aim at moving effi-
ciently in the moving area thanks to the information provided by the vision area

Classical pivoting rules such as first and best improvement use the first level
neighborhood 27| as vision area. At each step of the search, this vision area provides
only information of the current solution and its neighbors. The maximum expansion
hill-climbing pivoting rule (ME-. ), which selects the improving neighbor maximiz-
ing its own number of improving neighbors, uses an extended vision area (2%). Let
us notice that such a pivoting rule has been considered in a complexity study for the
p-median problem [1].

This section is dedicated to assess the efficiency of ME~ in comparison to other
hill-climbing strategies. In a first study (Sect.7.3.2) ME., is compared to first level
hill-climbing strategies (best, first and worst improvement). Climbers based on
vision area %, including ME-, are presented and competed in a specific study
(Sect.7.3.3).

7.3.2 Experimental Protocol

Despite the generic aspects of metaheuristics, their efficiency generally depends on
problem specificities. In particular, different solution representations (bit strings,
permutations, assignments) lead to different search space structures. Through the
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study of NK landscapes and MAXSAT problems [5], we already have an effective
understanding of the behavior of local searches on bit string landscapes. Here we
focus on permutation-based problems. Experiments are conduct on Flow-shop and
QAP instances.

The Flow-shop Scheduling Problem (FSP) [19] consists in scheduling n jobs on
m machines. A machine cannot be assigned to two jobs simultaneously. Each job is
composed of m consecutive tasks with specific processing times. In the permutation
variant under consideration, jobs must be scheduled in the same order on all ma-
chines, and the objective value to be minimized is the total completion time called
makespan (see [5] for a more formal description). Note that this problem has been
proved to be NP-hard for more than two machines [13].

The Quadratic Assignment Problem (QAP) [12] is an other NP-hard permutation
problem [18, 16] which aims at assigning a set of n facilities to a set of n locations
with given distances between locations and given flows between facilities. The ob-
jective value to be minimized corresponds to the sum of the products between flows
and distances, relatively to a permutation describing the assignment.

FSP and QAP are both permutation problems and thus involve common search
spaces. However, neighborhoods traditionally used for tackling these two problems
differ (insertion for FSP and swap for QAP). Then two main features distinguish
instance characteristics: the problem under consideration and the permutation size.
117 Flow-shop and 93 QAP instances, with various size and ruggedness level, were
used for experimentations. '

The experimental comparison of hill-climbing strategies follows a specific exper-
imental protocol. For each couple (instance, climber), 100 executions are performed
from identical sets of 100 randomly generated solutions, in order to reduce stochas-
tic bias. Two criteria are used for comparing two strategies A and B: the global
success ratio> of A against B from identical starting solutions, and the ratio of in-
stances where A statistically dominates B. The statistical dominance of a strategy
over an other is assessed from the number of successes on a particular instance with
respect to a binomial test (p-value 0.95). More precisely, if . denotes the number of
successes of method A over method B after 100 confrontations, then A statistically

outperforms B when 21100 Zio (1;0) >0.95,ie. . > 58.

7.3.3 Maximum Expansion vs. <7, Vision Area Climbers

The first empirical comparison proposed in this section focuses on competing ME
with three basic hill-climbing strategies. The four variants under consideration are
the following ones:

1 FSP instances are taken from [19]. Their sizes vary from 20 to 50 jobs and 5 to 20 machines. QAP
Instances can be found on opt.math.tu-graz.ac.at/gaplib/inst.html. Instances
used for tests involve permutations of size ranging from 12 to 64.

2 We call success the event ’A reaches a strictly better solution than B from the same starting
solution’.
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* BEST selects at each step the best improving neighbor.

e FIRST selects at each step an improving neighbor.

* WORST selects at each step the least improving neighbor.

* ME. selects at each step the improving neighbor with the best expansion score.
The expansion score of a solution denotes its number of improving neighbors. If
the best expansion score is equal to 0, meaning that all improving neighbors are
local optima, then ME. selects the best one thanks to f (see Algorithm 3).

Algorithm 3 ME., hill-climbing
: Choose x € 2 (initialization)

P NL () ={y e N (x), () > f(x)}
: for each y; € N, (x) do
E(y;) =#{z€Ni), f(2) > f(3)}
end for
. if max; E(y;) > 0 then
X xj, j € argmax;E(y;)
Goto2
else
X xj, j € argmaxyNy (x)
: end if
: Return x

AR A ol e

—— =
N2

When several neighbors satisfy the moving criterion, one of them is chosen ran-
domly. Algorithms stop when a local optimum is attained. Let us recall that all these
variants never accept neutral or deteriorating moves. Figure 7.2 depicts the three
most determinist strategies.

Al

Fig. 7.2 Illustration of climber variants behavior starting from solution x. Only improving moves
are represented

Naturally these different pivoting rules involve a different behavior during the
search. Tables 7.1 and 7.2 summarize the experiments realized through performance
features described previously and allow the visualization of their relative capacity
to reach high local optima.
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Table 7.1 Pairwise comparisons of pivoting rules on QAP instances

: | E— N | o
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Bars indicate proportions of instances leading to the three possible statistical conclusions. Black
areas represent the number of instances where strategy A (in line) statistically dominates strategy
B (in column), w.r.t. a binomial test (with a p-value of 0.95). Grey areas represent instances
where no statistical conclusion is obtained. White areas represent instances where strategy A
is statistically dominated by strategy B. Finally, the value below each bar corresponds to the
proportion of successes considering all executions on all instances

Table 7.2 Pairwise comparisons of pivoting rules on FSP instances
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The main result here concerns ME-,, which clearly outperforms the 3 other meth-
ods. Indeed, ME- statistically dominates WORST, FIRST and BEST on more than
90% of instances and is never statistically dominated. In the light of this observa-
tion, we assume that the efficiency of climbers is directly induced by the expansion
score of the solutions selected during the search.

Let us recall that we focus here on the capacity of a hill-climbing pivoting rule
to reach local optima as highest as possible. In terms of computational costs, ME- is
clearly slower than other variants since it considers the second neighborhood level
at each step of the search.

Experiments show that generally WORST is better than classical BEST and
FIRST climbers on the considered permutation instances, and more particularly
on FSP instances (see Tables 7.1 and 7.2). BEST is more efficient than WORST on
some QAP instances with specific properties, but globally FIRST often leads to
better local optima than BEST. This confirms the general observation (FIRST >
BEST) < (WORST > FIRST) [3].

Since WORST outperforms the other first level pivoting rules studied, we wonder
if its relative efficiency comes from its tendency to select neighbors with a high
expansion score. To emphasize a possible link between WORST and ME-. behaviors,
we collected average ranks of selected solutions among improving neighbors as
follow.
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Let r = [{¥ € A5 (1), f(") > F(¥)} + L € A, () > £()}] the rank
of X' within the set of improving neighbors .44 (x) of size n. Provided that k is the
number of ranking classes, x’ belong to a class C; with a ratio max (0, min(r/n,i/k) —
max(r—1/n,i—1/n))/n.

EERRLBEERLETTT

1st quartile

2nd quartile

3rd quartile

4th quartile

I
HEmy §

-

»
steps

Fig. 7.3 Evolution of rank classes of selected neighbor during ME~. processes

Figure 7.3 reports the average values of C; ratios considering k = 4 classes. One
can observe that most of the selected neighbors of ME-, belong in the class C4, which
is constituted of the 25% least improving neighbors. It indicates that there exists a
certain level of similitude between ME~. and WORST behaviors.

Although ME- clearly outperforms the first level pivoting rules, it takes advan-
tage of additional information provided by its extended vision. To achieve a more
accurate evaluation of the expansion score criterion relevance, we proceeded to a
second study which includes other second level pivoting rules.

7.3.4 Maximum Expansion vs. </, Vision Area Climbers

We note %, a climber based on pivoting rule %, using o7, as vision area and .27,
as moving area. In this section, we introduce additional climbers involving the sec-
ond level neighborhood as vision area (v = 2). Pivoting rules best (B) and first (F)
improvement are used to provide two variants of extended vision hill-climbings:
climbers whose moves are restricted to the original neighborhood .#” (m = 1) and
climbers which use the large neighborhood .«%. This leads to the following variants:

 B? and F? use the same moving and vision areas as ME-. At each step of the
search, B% starts by identifying the best solution x; among the vision area. x
is selected if it belongs to the moving area, otherwise B% selects the improving
neighboring solution which leads to x;. The first improvement variant is similar
to the basic climber FIRST, except that no local optimum can be selected if other
alternatives exist. Despite B% and F% are directly derived from classical pivoting



118 S. Tari et al.

rules, some local optima can be avoided by using .o as vision area. Let us notice
that B% corresponds to the two steps hill-climbing proposed in [8].

. B% and F% represent best and first strict improvement hill-climbings employing
the large neighborhood .#”" = .o, commonly denoted as .4 U .42, Note that
B% and F% allow more search paths than all other variants studied (including
ME- ) since they involve a larger neighborhood. Although these strategies remain
climbers (with respect to their extended neighborhood), they navigate through a
search space having less local optima than when considering neighborhood . 4.

Worst improvement variants W? and W3 were also considered for experiments, but
related tests were dropped on account of too high computation times.

In a first set of experiments, we compete the maximum expansion strategy ME-
against B% and F% Figures 7.4 and 7.5 reports results of pairwise comparisons be-
tween these three strategies. Note that here all climbers use the same moving and
vision areas (m = 1, v = 2), which constitutes the fairest comparison for evaluating
ME... One can observe that both B% and F% are largely dominated by ME~ despite
the use of 7. There is neither QAP nor FSP instance where ME- is statistically
dominated here. These results show that the maximum expansion pivoting rule ef-
ficiency cannot only be explained by its immediate capacity to avoid local optima,
common to all variants sharing the knowledge of a larger neighborhood. Globally,
this comparison indicates that the expansion score is a relevant criterion for guiding
the search to good local optima.

The comparison of ME.. with other %7’ climbers showed that maximum expansion
is a relevant pivoting rule for hill-climbing. In order to measure its efficiency in a
more general way, we propose to compare ME~. with less restrictive strategies which

Fig. 7.4 Pairwise comparisons of pivoting rules on QAP instances: ME~ vs. first level pivoting
rules
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o
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Fig. 7.5 Pairwise comparisons of pivoting rules on FSP instances: ME, vs. first level pivoting rules
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allow the selection of improving neighbors belonging to the second level neighbor-
hood. The aforementioned B% and F% are large neighborhood hill-climbings which
use the vision area of ME> as moving area. Figures 7.6 and 7.7 report comparison
results proceeded in this second set of experiments. We note that the global effi-
ciencies of ME~, B% and F% are relatively homogeneous. This observation indicates
that even with the constraint of choosing solutions within a smaller neighborhood,
ME- reaches equivalent local optima than large neighborhood hill-climbings. Thus,
it is possible to define hill-climbing pivoting rules able to bypass the barrier of low-
quality local optima usually encountered by traditional climbers. A potential issue
resulting from this analysis is how to reduce the quantity of knowledge (here the
vision area) while maintaining a similar level of performance.

F B ME
F -—] o : -—I— |
o | (R [ I J

Fig. 7.6 Pairwise comparisons of pivoting rules on QAP instances: ME- vs. second level pivoting
rules
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Fig. 7.7 Pairwise comparisons of pivoting rules on FSP instances: ME~ vs. second level pivoting
rules

7.4 Maximum Expansion Sophistication: A Multiobjectivized
Approach

Expansion score has been shown to be a pertinent indicator for guiding the search
towards high local optima on landscapes derived from permutation problems. Nat-
urally, a local search algorithm which uses exclusively this selection criterion could
not be able to reach good solutions since deteriorating moves will be mostly per-
formed. As hill-climbing requires to select non-deteriorating neighbors only, the
evaluation score constitutes then an essential information which determines the



120 S. Tari et al.

behavior of every climber, including ME~. Intuitively, it seems interesting to con-
sider tradeoffs between reaching good solutions and preserving their expansion
score. In this section, we propose multiobjectivized approaches to define climbers
handling expansion and evaluation functions. In the following, we first introduce
multiobjectivization and provide briefly a few definitions. Then we propose biob-
jectivized pivoting rules. These pivoting rules are then evaluated as in the previous
section.

7.4.1 Multiobjectivization

The multiobjectivization of a single objective optimization problem (.27, f) is to
consider a multiobjective problem (27, (fi, ..., fu)) in order to ease the resolution
of (27, f) [11]. Multiobjectivizing a problem can be achieved either by adding ob-
jective functions to the original one f, or by replacing f with a set of new ob-
jectives. We propose to adapt the multiobjectivization principle, by using pivoting
rules which involve a biobjective evaluation function F for climbing single objective
landscapes.

Here, we use a function F = (fi, f») which considers evaluation and expansion
scores such that:

filx) = f(x) (original evaluation score)
Hx)=#{x € & (x),f(x') > f(x)} (expansion score)

Note that even if it is not required by the principle of multiobjectivization, here f is
a component of F (f] = f).

In multiobjective optimization, we usually seek for a set of solutions which offer
good compromises of the objective functions. Recall that there exists only a par-
tial order relation between solutions (Pareto dominance). A solution x; is said to
dominate x; with respect to F' (x; = x;) if and only if:

{Vk € [L.n], fi(x) = fi(x))
Jk € [1..n] s.t. fi(xi) > ful(x))

A solution x is non-dominated by a set of solutions § with respect to F if and
only if Vy € S,y /r x. We note x £ S.

Here, we still focus on climbing single-objective landscapes (thanks to the orig-
inal evaluation function f), but with pivoting rules which involve the biobjective
evaluation function F'. We next propose pivoting rules which consider only moves
x — x' satisfying the two following constraints: (1) f(x') > f(x), and (2) ¥’ is not
dominated by .4 (x) w.r.t. F.
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7.4.2 Biobjectivized Pivoting Rules

We defined three biobjectivized pivoting rules (BO,) in order to observe the effect of
different compromises between improving the solution evaluation and maximizing
the expansion score.

Let A5 (x) = {x' € A (x),f(x') > f(x)} be the set of strictly improving neigh-
bors of a solution x w.r.t. an evaluation function f. We note (- 1(x) = {x' €
N (x),x A A (x)} the set of non-dominated improving neighbors of x w.r.t. f and
a multiobjectivized function F.

At each step of the search, the three climbers proposed in this section consists
in choosing a solution within the restricted neighborhood (-, 4(x) of a solution x.
These variants work as follow (see also Fig. 7.8):

* BOpud selects randomly a solution within A 4)(x).

* BOHexp) selects the solution which maximizes the evaluation score among the
top half solutions of 4% (x) of higher expansion score.

* BOHgeval) Selects the solution which maximizes the expansion score among the
top half solutions of 4% (x) of higher evaluation score.

~

Evaluation

| Expansion
A

>

Fig. 7.8 Biobjectivized pivoting rules. BOyexp) and BOHevaly S€lection strategies are determinists,
whereas BO,,q selects randomly a non-dominated solution (circled crosses)

Figure 7.9 reports the analysis of the empirical comparison realized on QAP
instances, considering climbers with biobjectivized pivoting rules as well as ME,.
BOpang appears to be clearly outperformed by other variants.

Although there is no statistical difference between ME-. and both BOy,) climbers
on a significant number of instances, ME~ is almost never dominated by any other
variant. Among the three biobjectivized climbers experimented, BOpeyaly, Which is
the most efficient one, is not frequently dominated by ME-.. Recall that BOgevar)
restricts the possible selected neighbors according to their evaluation score, but the
expansion score is at last the criterion being maximized. These observations lead us
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to believe that the expansion score is the only criterion which directly affects the
overall capacity of a climber to reach high local optima. Thus, BEST and WORST
efficiencies would ensue from their respective ability to select solutions with high
expansion scores.

I I I I
— L]
Fig. 7.9 Pairwise comparisons of pivoting rules on QAP instances: ME~. vs. biobjectivized second
level pivoting rules

7.5 Discussion

In this chapter, we were interested in studying the ability of different climber vari-
ants to reach good local optima. In particular, we investigated how to take advan-
tage of the use of a second level neighborhood for deciding which move to select in
the first level neighborhood. This led us to propose the maximum expansion strat-
egy (ME) which consists in moving towards solutions maximizing the number of
improvement possibilities. The comparison of ME with other pivoting rules empha-
sizes its effectiveness. Notably, ME is often competitive against large neighborhood
climbers which have the advantage of working on landscapes containing fewer local
optima.

Previous studies already compared the efficiency of classical (first level) pivoting
rules on specific problems [9, 15, 21, 2] and pointed out that the relative efficiency of
climbers can be strongly dependent of instances characteristics, e.g. their associated
landscape size, ruggedness and neutrality. In particular, first and worst improvement
seems more adapted for climbing Flowshop landscapes, whereas climber efficiency
is more instance-dependent while considering QAP. ME is efficient on permutation
instances and does not seem to be significantly affected by their characteristics,
despite we pointed out some similarities between ME and WORST behaviors. More
experiments should be realized on a large scale of various optimization problem
instances to corroborate these aspects.

Let us recall that our aim was here to determine ways to reach good local
optima without considering computational costs issues. Obviously, ME is more
time-consuming than classical climbers which do not require the knowledge of
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an extended neighborhood. An interesting perspective consists in defining pivoting
rules that approximate the behavior of ME in a reduced computational effort.

Finally, ongoing work includes the extension to expansion-based local searches
by investigating ways to design less restrictive pivoting rules. Since the incorpora-
tion of neutral moves within hill-climbing strategies leads to more efficient searches,
we experimented a neutral version of ME. It appears that such a strategy is able to
outperform other neutral versions of climbers. The ways to extend ME to other types
of local searches (i.e. allowing deteriorating moves) still can be improved since it
brings out some difficulties, notably cycling issues. Nevertheless, advanced meta-
heuristics could be enhanced by considering the expansion criterion in their neigh-
borhood search components.

Acknowledgements The work is partially supported by the PGMO project from the Fondation
Math/’ematique Jacques Hadamard.
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Chapter 8

Theory Driven Design of Efficient Genetic
Algorithms for a Classical Graph Problem

Dogan Corus and Per Kristian Lehre

Abstract This paper presents a principled way of designing a genetic algorithm
which can guarantee a rigorously proven upper bound on its optimization time. The
shortest path problem is selected to demonstrate how level-based analysis, a general
purpose analytical tool, can be used as a design guide. We show that level-based
analysis can also ease the experimental burden of finding appropriate parameter
settings. Apart from providing an example of theory-driven algorithmic design, we
also provide the first runtime analysis of a non-elitist population-based evolutionary
algorithm for both the single-source and all-pairs shortest path problems.

Keywords Runtime analysis ¢ Genetic algorithms ¢ Level-based analysis * Short-
est path problems

8.1 Introduction

Evolutionary algorithms (EAs) have been a popular class of heuristic optimization
techniques since the 1960s. They are inspired by natural evolution where limited re-
sources allow only the fittest individuals to reproduce and drive progress over gen-
erations. Evolutionary algorithms generate new solutions from existing ones with
small random changes and select solutions with higher fitness function values to
survive in the next generation. The generality of the described process makes EAs
general purpose methods which can be applied to any optimization problem defined
on any search space. All that is required is a way to represent candidate solutions as
individuals of the population (i.e. the representation) and some measure of solution
quality (i.e. the fitness function). As a result, EAs do not require any information
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about the problem structure apart from the fitness value of candidate solutions (i.e.
they are black-box optimization algorithms [13]). Although they are widely used by
practitioners [14], the theory behind how EAs work was not established until much
later. While the scope of early theoretical work was limited to toy problems and sim-
ple algorithms, the gap between what practitioners and theoreticians are interested
in gradually closes.

Runtime analysis of evolutionary algorithms has been a rapidly growing research
field for almost two decades [21, 15, 1]. The shortest path problems is one of the
first examples of the runtime analysis of EAs on a practically relevant problem.
For practitioners, it is common to use variation and selection operators which are
tailored to the problem at hand. Still, previous works on runtime analysis of EAs
seldom digressed from elementary operators. Because, first of all, the tailored op-
erators both complicated the analysis and undermined the generality of the runtime
results. Even negative results for elementary algorithms, i.e. that the elementary al-
gorithm requires exponential time to reach a desired solution quality, served the
purpose of pointing out a potential weakness of EAs in general. Moreover, early
runtime analysis results considered problems which were either too simple or too
artificial to justify tailoring operators to fit the problem. When a negative result was
proven for a non-artificial combinatorial optimization problem like the shortest path
problem [22], then designing the simplest EA which can solve it efficiently became
admissible. A series of works provided positive results by adapting the problem rep-
resentation, the objective function, the variation and selection operators and adding
auxiliary mechanisms that improve solution quality. Eventually, the requirement for
more complex operators made the all-pairs shortest path problem (APSP) the first
non-artificial problem where an EA with crossover is proven to perform asymptoti-
cally better than an EA without [10].

Extending the scope of runtime analysis to non-artificial problems motivated the
analyzes of more complex EAs but did not provide the means to do such analysis.
Introduction of new analytical tools like drift analysis that allow obtaining results
that are otherwise beyond the reach of older approaches responded to this need.
A new tool for runtime analysis of evolutionary algorithms that builds on top of
drift analysis is the level-based method proposed in [3]. This general tool covers
a wide range of problems and algorithms including those with a complex solution
space and complex operators. The theorem provides conditions that are sufficient
to guarantee a polynomial runtime, and often these conditions are also necessary.
The necessary conditions include a sufficient selective pressure, upgrade probabil-
ity and population size. While it might be hard to determine whether an existing
algorithm satisfies these conditions, it is easier to design an algorithm that does sat-
isfy the conditions. In this paper we will use the well known shortest path problem
to demonstrate how to construct an algorithm guided by the conditions of this the-
orem. We will go through how the design choices allow us to rigorously prove the
performance with a very brief and simple analysis at the end. By doing that, we
will also provide the first runtime analysis of a non-elitist genetic algorithm for the
single-source shortest path problem and all-pairs shortest path problem.
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This paper is structured as follows: In the following chapter the shortest path
problem will be formally defined and relevant research will be summarized. Level-
based analysis will be briefly introduced in Sect. 8.3. In Sect. 8.4, the algorithm will
be explained component by component and the rationale behind the selection of
components will be related to the conditions of the level-based theorem. At the end
of Sect. 8.4, the runtime will be proven using a corollary to the level-based theorem
and the last section will draw the conclusions.

Throughout this paper we will use the notation [n] to represent {1,2,...,n}, the
set of natural numbers up to n and the notation X ~ D which denotes that X is a
random element sampled from the distribution D.

8.2 Analysis of EAs on Shortest Path Problems

An instance of a shortest path problem is given as an input graph, G = (V, E), with
edge weights (wy,wy,... ,W‘E‘) and a set S C V2 of pairs of vertices. The objective is
to find a subset P C E of edges that connect all the vertex pairs, (u,v) € S while min-
imizing the total weight Y,cp w.. The Single Source Shortest Paths Problem (SSSP)
and the All-Pairs Shortest Paths Problem (APSP) are the most studied versions of
the problem in the context of EAs. In SSSP, the set of vertex pairs to be connected is
S=Uev\{s) (s,v) for a source vertex s € V which is given as part of the input. For

the all-pairs version, the set of vertex pairs is S = {(«,v) € V?|u # v}, which means
that all the vertex pairs should be connected.

We chose the shortest path problem not only because it is a classical graph prob-
lem, but also because its different variations (all-pairs and single source) have been
analyzed in the context of evolutionary algorithms. The first result for the single-
source shortest path problem in the literature was presented by Scharnow et al. [22].
The prior analysis was later ramified to cover different evolutionary algorithms and
variations of the shortest path problem [2, 11, 10, 8].

Scharnow, Tinnefeld and Wegener proved that the single source shortest path
problem (SSSP) is not solvable in polynomial time by an EA, if infeasible solutions
are penalized by infinitely large weights [22]. The infeasible solutions constituted
a large subset of the search space in which an EA cannot navigate. The authors
proposed to divide the objective function into separate functions each evaluating
the path to a different destination vertex. For a graph with n vertices, the result-
ing landscape with n — 1 objectives (one for each non-source vertex) provided the
algorithm with the required gradient towards better solutions even when some of
the vertices are not connected to the source. This so-called “multi-objectivized”
function allowed an EA to solve the SSSP in expected &'(n?) time. Baswana et al.
complemented the negative result for the single-objective function later by showing
that if the penalty of an unfeasible path is set to 7wy, then the (14 1) EA solves
the single objective version of the problem in expected &'(n*log(n + wyay)) time
[2]. For the multi-objectivized function, Doerr et al. established a tight run time of
O (n* max (log(n),£)) where / is the largest number of edges in a shortest path that
connects the source to any vertex [9]. In order to reflect the effect of graph density
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on expected optimization time, Doerr and Johannsen introduced an edge-based solu-
tion representation and variation operator in contrast to vertex-based representation
which was used in previous works. Consequently, the performance of edge-based
EAs in sparse graphs, where the number of edges is m = o(n?), was proved to be
asymptotically better than the vertex-based EA [7].

The first run time analysis of an EA on the APSP problem was presented with the
main contribution that this problem is the first non-artificial problem where an algo-
rithm with a crossover operator can optimize asymptotically faster than a simple EA
without crossover [10]. At the time of this result the genetic algorithms (EAs with
crossover operators) were proved to be essential only on artificial pseudo-Boolean
problems [17, 18, 16]. In their work on the APSP problem, the authors proved a
Q(n*) lower bound on the optimization time of the EA without crossover while the
EA that uses crossover has an optimization time of &' (n*>,/logn). This run time
analysis considered an initial phase where the mutation operator finds the shortest
paths of smaller number of edges, and a second phase where crossover takes over
and produces longer paths by combining the smaller shortest paths provided by
the mutation operator. Doerr and Theile contributed the tight run time of expected
O (n*?log!/*(n)) by demonstrating that crossover coarsely populates the set of op-
timal paths and mutation fills the gaps [8]. Further work on the ASPS problem intro-
duced changes in the crossover operators, either by repairing the offspring solution,
or by selecting parents in order to ensure a feasible solution [11]. With these assist-
ing mechanisms, the runtimes reduced to & (n>2log!/>(n)) and &' (n®log(n)) for the
algorithms with repair mechanism and parent selection respectively.

The transition from the analysis of pseudo-Boolean problems to analysis of clas-
sical combinatorial optimization problems was an important milestone in the run
time analysis of evolutionary algorithms. The polynomially solvable shortest path
problems were one of the initial stepping stones for this transition. In order to han-
dle these more complex combinatorial optimization problem, the field of run time
analysis diverted from its conventional approach of using the simplest possible al-
gorithms. This convention was a by-product of keeping the scope of the field on toy
problems whose optimization are not a real challenge to the practical applications
of evolutionary algorithms. However, when more relevant combinatorial optimiza-
tion problems are analyzed like shortest path problem, the convention of analyzing
simple algorithms was left behind. Whenever the simple algorithms had difficulties
in solving a problem, the algorithmic components in problem specific algorithms
were incorporated into EAs piece by piece. However certain related problems re-
main open. Since the previous results were dependent on the monotonic increase
in objective function, the performance of non-elitist algorithms with stochastic se-
lection was unknown. While in [10, 8] and [11] a population based algorithm with
a crossover operator was used, neither the population nor the crossover operator
was conventional in the sense that the population consisted of a single complete
solution divided into independent components and the crossover operator recom-
bined these components to create a new offspring. Therefore, the performance of an
algorithm with a “population”—in the sense that a set of self-contained solutions
and a crossover operator that recombines information from multiple solutions—has
never been analyzed in terms of running time.
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8.3 Method: Level-Based Analysis

The level-based theorem was proposed as a generalization of the theorem provided
by Lehre [19] and later refined by Dang and Lehre [5] for the purpose of analyzing
non-elitist population based algorithms. The theorem considers the progress of a
search process through a given partitioning of the search space, 2~ with the optimal
solutions set 2™* C 27, into m level sets (2", Az,...,Ap—1,.Z*) which are nested
in the sense that 2" D Ay D A3 D ... DAy, DO Z*. The results in prior works
were limited to algorithms with unary variation operators and the solution space
partitioning had to be fitness-based i.e. f(a) < f(b) forall a € (A;\ A;y1) and b €
Ait1 [19, 5]. In the generalized version of the theorem presented by Corus et al.
[3], the unary variation operator in the former theorem is replaced with a mapping
D, which maps a population of size A to a probability distribution over the search
space 2. For a standard genetic algorithm the mapping D is the combined effect
of a sequence of stochastic selection, recombination and variation operators but it
can also incorporate the stochasticity of noisy or partially evaluated fitness functions
[6, 4]. Nevertheless, the distribution D allows the level-based theorem to be valid for
all population based algorithms which independently samples each individual in the
population P, from the same distribution D(P,).

Algorithm 1 Population-based algorithm with independent sampling

: Finite state space .2, and population size A € N,

: Mapping D from 2% to the space of probability distributions over 2.
C Py~ Unif(2°%)

: fort=0,1,2,... until termination condition met do

Sample P, (i) ~ D(P,) independently for each i € [A]

: end for

The termination condition for the Algorithm 1 is unspecified since the runtime is
defined as the time until the optimal solution is sampled for the first time assuming
that the algorithm runs forever. A more realistic termination condition can be set by
limiting the number of iterations with a value larger than the expected run time.The
following theorem considers population-based algorithms at a very abstract level
outlined in Algorithm 1, such that all the components like fitness evaluations, varia-
tions and selection mechanisms are replaced by a single distribution D(P,) over the
solution space 2. As shown in earlier work leading to the level-based theorem [20],
the identical independent sampling of solutions from this distribution D(F,) allows
the use of concentration of measure results from probability theory.

Theorem 8.1 (Theorem 1 in [3]). Given a partition (Ay,...,Ami1) of 2, define
T :=min{tA | | NAmt1| > 0} to be the first point in time that elements of A1
appear in P, of Algorithm 1. If there exist parameters z1,...,Zm, 2« € (0,1}, § >0, a
constant Y € (0,1) and a function zo : (0,7) — R such that for all j € [m], P € 2,
vy~ D(P) and y € (0,7) we have
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(G1) Pr (y €A [|PNAL | > yo)L) >z >z
(G2) Pr(yeaf [IPNAT,| =04, PNASI 2 72) 2 20(2) = (1+8)y
2 16m 62’}/()
3 > ith a = = min{§/2,1/2 =
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then E[T) < 2 (mA(1+1n(1+ )+ 35, | )

The first two conditions require some guarantee of progress and selective pres-
sure from the distribution D. The first condition requires a certain probability z; of
creating an individual at level j+4 1 when some fixed fraction } of the population is
already at level j or higher, and the second condition requires that the high quality
solutions will increase in number with a multiplicative factor of (1+ &). The final
condition is the minimum population size for the theorem to be valid in terms of the
lower bounds achieved in previous conditions.

Algorithm 2 Non-elitist genetic algorithm

Initialize Py

t:=0
while Termination conditions are not met do
fori=1to A do

p1 ~ selection(F;)
p2 ~ selection(F;)
P,+1(i) := mutation(crossover (pi, p2))
end for
t:=t+1
end while

In order to simplify the use of the theorem, a corollary is provided in [3] that
translates the above requirements to the context of genetic algorithms. Since the
scope is narrowed, the distribution D(F;) is divided into selection, crossover and
mutation operators but the details of these operators were not specified so that any
algorithm in the form of Algorithm 2 can be analyzed with the following corollary.

Corollary 8.1 (Corollary 1 in [3]). Given a function f: Z — R and a partition
(A1, ., Aps1) of 2, let T := min{tA | |, NApt1| > 0} be the runtime of the non-
elitist Genetic Algorithm, as described in Algorithm 2, on f. If there exist parameters
STy ySmy Sk, PO, €1 € (0,1], 8 >0, and a constant ¥y € (0,1) such that for all j € [m,
Pec 2t andye (0,%)

(Cl) pmut(y€A7|x€Ajtl)2sj2s*
(C2) pmu(y €AJ [x€A]) > po
(C3) Proar(x €EAT u€ AT | ,veAT) > ¢

(c4) B(rP) =1/ 113
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Here, 3(y, P) is the probability that the selection mechanism chooses an individ-
ual from P that is at least as good as the individual with rank [yA] in terms of level.
The conditions (C1) and (C4) on the mutation and selection operators satisfy the
first condition (G1) in the main theorem as the responsibility of improving solutions
is delegated to mutation while the fourth condition on selection mechanism implies
that having sufficient number of solutions at level j leads to a high probability of
one of them being selected for mutation. A similar breakdown is possible for con-
ditions (C2)—(C4) since they together satisfy the second condition (G2) in the main
theorem. The lower bound ¢ is the probability that the crossover operator produces
an offspring solution in a level which is strictly higher than its worst parent. The
lower bound py is the probability of not worsening the solution quality. The final
condition gives the required population size similarly to the main theorem.

Moreover, in the following Lemma 8.1 from [3], the parameter settings that sat-
isfy condition (C4) for k-tournament-, exponential ranking-, and (i, 2 )-selection
are provided.

Lemma 8.1 ([3]). For any constant § > 0, there exists a constant Y € (0,1) such
that

1. k-tournament selection with k > 4(1+ 0)/(&1po) satisfies (C4)
2. (U, A)-selection with A/ > (1 + 8) /(€1 po) satisfies (C4)
3. exponential ranking selection with 1 > 4(1+ 8)/(€1po), satisfies (C4).

8.4 Design of a Genetic Algorithm

The corollary to the level-based theorem for genetic algorithms produces an up-
per bound on the expected runtime (Algorithm 2) if the algorithm satisfies certain
requirements when optimizing a problem. However, when an arbitrary pair of al-
gorithm and problem is analyzed, often some of these conflicting requirements are
not satisfied. Here we will show that when the theory is leading the design of the
algorithm, it is easy to meet the requirements while keeping some flexibility for the
algorithm.

As a general rule, we aim to keep the term Y} | 1/s; in the expected optimization
time as small as possible when establishing the level structure. The levels should be
few in numbers and close enough in terms of improvement probability. Further-
more, two probabilities are significant for the performance of genetic algorithms:
the probability pg that the output of mutation operator will preserve or improve the
level of the parent solution (C2), and the probability €; that crossover operator will
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generate a solution at a higher level than its worst parent (C3). Since the corollary
holds for any algorithm of the form in Algorithm 2, the degree of freedom during the
design of the algorithm includes the choices of mutation and crossover operators,
the selection mechanism and even the objective function.

While we propose operators for each role in Algorithm 2, the algorithm will still
have some flexibility. Because when the goal is an asymptotic runtime result for
the algorithm then Corollary 8.1 only requires asymptotic bounds on the parameters
{s;} jem]> Po> and €. This allows the algorithm designer to hybridize the necessary
operators proposed in this section with any other operator with constant probability
(i.e. using the necessary operator with probability p and the other operator with
1 — p for any constant p € (0, 1)) without changing asymptotically the upper bound
on the expected runtime. Such a hybridization can be used to tackle extraordinary
situations in which the main operator has a very small probability of improving the
current solution.

In this section we will first design an algorithm for the single-source version of
the shortest path problem and later discuss the necessary alteration for tackling the
all-pairs version.

8.4.1 Representation of Solutions

We represent a candidate solution for the single-source shortest path problem as
n— 1 sequences composed of elements of V' \ {s}. In the literature mentioned above
different representations that use preceding vertices and sets of edges were used.
In our representation which is a sequence of vertices, the source and destination
vertices are omitted A path from the source vertex s to a target vertex v, that visits
vertex vy just after the source and vertex v, just before the destination is represented
as P = (v, ..., vp).

We can initialize the population by setting each path P’ := @ which means the
only edge in the path is (s,v;). This initial solution is not only easy to build but
also helps skipping the time until the algorithm finds the shortest paths with single
edges. Since we will still need to consider these levels during analysis the initial
population plays no role design-wise. Any other initialization procedure can replace
the suggested one as long as it is constituted of feasible solutions.

8.4.2 The Objective Function and Level Structure

The single-source shortest path problem has a natural objective function which sim-
ply sums the weights of all the edges in all the paths. However, the level structure
used in the theorem do not have to correlate with the objective function values and
a more complex objective function that will guide the algorithm can be designed
without further complicating the runtime analysis.
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The first step is to convert the sequence of vertices to a set of edges. This conver-
sion is straightforward, for the sequence P/ = (vﬂ(l),v,r(z),v,r@), ...) the edge set is
EV ={(s5,vz(1)), (Vz(1),Vx(2)), - -} and the total weight is W/ =3,z we.

If we were able to check whether the current total weight W/ of the path to vertex
vj is optimal, we could count the number of optimal Wi°s for j € {0,1,...,n—1}as
a coarse way to quantify the quality of solutions. However, we can not tell whether
W/ is optimal or not during the run of the algorithm. Instead, whenever we want
to compare two solutions x; and xp, we first sort the vectors of total weights W
and W, in ascending order. Then we compare the total weights of the first (shortest)
paths in each vector in sorted vectors W/* and W2¢. Whichever weight is smaller, the
corresponding solution is considered a better solution when the algorithm ranks the
individuals in the population. We will refer to the weights of the second shortest
paths W2¢ @ and Wlﬂ @ only if Wlﬂ M and W2¢ M are equal and to the third short-
est paths only if the tie can not be broken by the second shortest paths either. The
index i of comparison (Wlﬂ('),WZq’ @Y is increased at each tie until w/ @ wy ®
i.e. the tie is broken. The solutions are considered to be of equal quality if all the
comparisons result in a tie. This objective function, although complicated, requires
only O(nlogn) basic operations to sort the vector and it will allow the genetic al-
gorithm to simulate the well known Djisktra’s algorithm for the shortest path prob-
lem. Djisktra’s algorithm fixes the smallest shortest path in each iteration and with
the help of this objective function we will force the population to converge on the
shortest paths in the same order. Since the sub-paths of optimal paths are also op-
timal, we will use the converged optimal paths to build other paths that requires
more edges.

At this point we design a partition of the search space into levels. In order to
achieve a good bound we need levels large enough to keep the number of levels
small and small enough to ensure that even the worst solutions in any level has
a certain probability of being improved to the next one. When shaping the levels
of the search space we will make use of the optimality of sub-paths as we did
in the objective function. However, during analysis we can use the information
that is not normally available to the algorithm, like the optimal paths in a candi-
date solution. W.l.o.g. consider a unique optimal solution P, = {P}! P2 ... P' !}
and PF = (Pf(l),wa, . ,Pf(wl)) where P, is sorted such that W*n(i) < W*”(iﬂ)
Vi € [n—1]. So, we divide the solution space .2 into n levels, where for all j €
{0}U[n— 1], the level A; consists of all the solutions that contains {P;" ® [1<i<j},
the smallest j shortest paths of the optimal solution. This partitioning of the search
space ignores the total length of the edges in the candidate solution and focuses
only on the paths that are optimal. Moreover, adding an optimal path contributes
to the level of the solution only if all of the shorter optimal paths are already
set correctly.
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8.4.3 The Mutation Operator

With a fixed level structure, the choice of mutation operator will determine the up-
grade probabilities s;, j € [n] required by condition (C1) and pg required by con-
dition (C2), the probability that the mutation operator increases or maintains the
quality of the input solution.

Operator 3 Mutation(x)

Input: A solution x consisting of k sequences of vertices x!,x2,...,x%

Pick s ~ Pois(1)
fori=1tosdo
For m ~ Unif([k])
if with probability 1/k then
Set X" :=0
else
Set x™ := (x/,v;) for j ~ Unif([k])
end if
end for
Return: x

Consider the mutation operator presented in Operator 3, which as a local oper-
ation selects a path x/, uniformly at random, to be modified either by removing all
the vertices in the path with probability 1/n or with probability 1 — 1/n replaced
by another randomly selected path x* with the destination vertex v appended at the
end. First of all, since the number of local operations S is distributed according to
Pois(1), the probability that S is equal to zero is 1/e. Since S = 0 implies that the
solution is not changed at all, we have py > 1/e, which satisfies the (C2). For con-
dition (C1), we need to prove that this operator can improve any solution from level
Jj tolevel j+1 at least with some probability s;. Note that if a solution is in level j,
the smallest j paths in the optimal solution are already set correctly. For improving
to level (j 4 1) it is sufficient to set the (j 4 1)th smallest optimal path, P’ U cor-
rectly, without tempering with any of the first correctly set j paths. If this path has
more than one edge, i.e. it visits at least one more vertex v, before the destination
of P! Y H), consider the path P to vertex v, in the optimal solution. The path P
is shorter than the path P)° U pecause the edge weights are positive. Then if our
solution is on level j, it has the optimal sub-path up to any vertex v, that needs to
be visited before the destination of P U The mutation operator picks S = 1 with
probability 1/e, then with probability 1/(n— 1), ¥**1) in the current solution is
picked for modification. If x™ () s replaced instead of being erased and the cor-
rect subpath of P’ U1 is chosen to replace the path U+ then in the offspring
solution mut (x)"U+1) = PP with probability 1/(n — 1)2(1 — 1/n) = Q(1/n?).
Since mut (x)*U+1) = PrUTUAs =1 implies that mut(x) € Ajy;, we can bound
sj > e(nll)Z(l - =Q(L) When PFUY hag a single edge (s,Vz(j41)) the mu-

n n
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tation operator has to remove all the vertices in KD If k70D s selected for
modification with probability 1/(n — 1) then with probability 1/n the mutation op-
erator removes all the vertices in the path. In total the probability that mur(x) € Aj 1

is similarly s; > en(,:,l) = Q(nlz)

8.4.4 The Crossover Operator

It is shown in some of the earlier works on EAs and the all-pairs shortest path prob-
lem that the crossover operator helps creating paths that involve more edges and
allows a multiplicative growth in the number of optimal paths discovered. However,
in the context of Corollary 8.1, the contribution from the crossover operator is to
ensure that individuals with average quality in the solution will be improved if they
are recombined with one of the high quality solutions. The lower bound € in con-
dition (C3) of Corollary 8.1 is the guiding value when deciding how our crossover
will work. Consider two solutions x!' € A j and K eA j+ls1e., x! and x? share the j
shortest paths in the optimal solution and x? alone has the (j + 1)-th shortest path.
Our condition implies that the offspring solution should have all these j paths and
the (j+ 1)-th path, so that it will be on a level strictly higher than its worse parent,
x!. Therefore, the crossover operator should keep all the shared j paths and pick
the (j + 1)-th path from parent x> with a reasonable probability. This cannot be ac-
complished by the crossover operators that concatenates the paths as in [12] since
even though they allow large improvements they also have a large probability of
worsening the solution. A simpler crossover on the other hand, which picks each
path from either one of the parents with probability 1/2 will result in a constant &;.
This is because the shared paths will be copied to the offspring and the extra path
that makes the difference between the parents will be selected from the better parent
with probability 1/2.

Operator 4 Crossover(x', x%)
Input: Two solutions x and y each consisting of k sequences of vertices
fori=1tokdo
if with probability 1/2 then

Set 7' :=x'
else
Set7 ==y
end if
end for

Return: z
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8.4.5 Other Parameter Settings

In the context of Algorithm 2, fixing the mutation and the crossover operators mostly
concludes the design of the algorithm. The remaining parameters like the selection
mechanism and the population size can be directly set according to the result of the
Corollary 8.1 and Lemma 8.1.

The selection mechanism for our algorithm can be chosen among some of the
widely used non-elitist selection mechanisms, such as k-tournament selection, ex-
ponential ranking selection, and (i, A )-selection. The required parameters for each
of these selection mechanisms are given in Lemma 8.1. Since the parameters pg and
€ are both constant, we can conclude that the required parameters k, ) and (1 /A are
also constant.

By condition (C5), the population size must satisfy A > 21In ( ( 5%’;’5? 11/)' This

means that the minimum population size depends logarithmically on the inverse
of smallest improvement probability, the number of levels m, pg and ;. Since the
latter two are constant and the smallest improvement probability is in Q(1/n?) we
conclude that a population size of A € & (logn) satisfies condition (C5).

8.4.6 All-Pairs Shortest Path Problem

In this section we will adapt the genetic algorithm we designed for SSSP to the all-
pairs version of the shortest path problem. The obvious change is in the problem
representation necessary for SSSP’s algorithm to be applied to the APSP. The com-
plete solution of APSP problem consists of n(n — 1) sequence of vertices between
n(n— 1) pairs of vertices. The source and the destination vertices are omitted from
the sequence and the sequence of vertices are converted to a set of edges in a similar
fashion as in SSSP. For the sequence P/ = (vn(l), .. ,vﬂ(@) of length ¢, the edge set
is Elj: {(V,‘,Vﬂ(l)), (v,r(l),vﬂ(z)), ceey (V”(g,l),vn-(g)), (vﬂ([),\)j) and the total weight
is WY =3 cgij we. Similar changes in level structure of the search space necessary
for the purpose of analysis. We divide the solution space 2 intom =n(n—1)+1
levels, where for all j € {0} U[n(n—1)+ 1], the level A; consists of all the solutions
that contains the smallest j shortest paths of the optimal solution.

The solution comparison procedure, mutation operator, and crossover operators
are identical to the ones used for SSSP. The identical operators maintain the same
values for parameters py and g;. For APSP, the lower bound on the improvement
probabilities s; are Q(1/n?) since the correct mutation step involves picking the
right path among n(n — 1) + 1 alternatives (rather than n) and picking the correct
vertex to append among &'(n) alternatives.
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8.5 Expected Running Time

As promised above, we provide the runtime of our algorithm on the single-source
shortest path problem.

Theorem 8.2. The non-elitist GA in Algorithm 2 using the crossover operator given
in Operator 4, and the mutation operator given in Operator 3, and either k-
tournament selection with k > 8e(1+ 06), or (i, A)-selection with A /11 > 2e(1+ 0)
or exponential ranking selection with 1 > 8¢(1+ 8), for a constant 6 > 0, and pop-
ulation size A > clnn for some constant ¢ > 0, has expected runtime O(n*) on the
single-source shortest path problem.

Proof. We show that the algorithm satisfies the conditions of Corollary 8.1. Condi-
tion (C1) is satisfied for s, € (1/n%). Condition (C2) is satisfied for py > 1/e by
the Operator 3. Condition (C3) is satisfied for £ > 1/2 by the Operator 4. Condi-
tion (C4) is satisfied for some constant yy by the given parameters in Theorem 8.2
due to Lemma 8.1. Finally, condition (C5) is satisfied since m = n, s, € Q(1/ nz),
po € O(1) and g € O(1). The expected runtime ¢ (n?) is obtained by plugging in
the parameters m, s, po and €; to the expression in the Corollary 8.1.

The same result also holds for the all-pairs version with the modification to im-
provement probabilities and the number of levels.

Theorem 8.3. The non-elitist GA in Algorithm 2 using the crossover operator given
in Operator 4, and the mutation operator given in Operator 3, and either k-
tournament selection with k > 8e(1+ 6), or (i, A)-selection with A /11 > 2e(1+ 0)
or exponential ranking selection with 1 > 8¢(1+ 8), for a constant 6 > 0, and pop-
ulation size A > clnn for some constant ¢ > 0, has expected runtime O(n°) on the
all-pairs shortest path problem.

Proof. We show that the algorithm satisfies the conditions of Corollary 8.1. Condi-
tion (C1) is satisfied for s, € (1/n*). Condition (C2) is satisfied for py > 1/e by
the Operator 3. Condition (C3) is satisfied for £, > 1/2 by the Operator 4. Condition
(C4) is satisfied for some constant ¥ by the given parameters in Theorem 8.3 due to
Lemma 8.1. Finally, condition (C5) is satisfied since m = n(n— 1)+ 1, s, € Q(1/n%),
po € O(1) and g € O(1). The expected runtime ¢'(n’) is obtained by plugging in
the parameters m, s, po and €; to the expression in the Corollary 8.1.

We may want to compare our result with the performance of EA without
crossover since the elementary crossover operator we use is fundamentally different
than the crossover operators used. The upper bound of & (n?) is close to the perfor-
mance of elitist EA. Still, we note that it does not reflect the exact optimization time
in terms of elementary operations. There is a missing © (Inn) factor when we only
count the number of function evaluations since the comparison mechanism relies on
sorting the paths in the solution. Since this sorting procedure is not used in the elitist
algorithms that solves the problem, we can conclude that our upper bound is worse
by a logarithmic factor.
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Even with the alteration to the algorithm, the discrepancy between the upper
bounds on expected runtime of the elitist EA and non-elitist GA’s is larger for APSP
than it is for SSSP. The expected runtime is @ (n*) for EA’s without crossover on
APSP [10]. If we were to compare this result with the tight runtime of ©(n®) for
SSSP, we see a multiplicative factor of n which is admissible since the all-pairs
shortest path problem can be divided into n SSSP problems with n different source
vertices. However, we will observe a looser upper bound of &' (1n°) for APSP while
the upper bound we provided in the previous chapter is &'(n?).

In the EA proposed for solving APSP, only a single path is altered between two
objective function evaluations. This allows an objective function to distinguish be-
tween improvements and deterioration even when the objective function aggregates
the weights of all paths. However, when two arbitrary solutions are compared the
aggregate objective function value can be deceptive. This loss of precision is critical
for the non-elitist algorithm since unless higher level solutions are favored by the
objective function, the progress over levels cannot be sustained.

The underlying idea of the ¢'(n*) upper bound for the elitist EA is that the mu-
tation operator can improve any path at most n times before that path becomes
optimal. A corresponding level structure for the non-elitist case would be the to-
tal number of improvements required for reaching the optimal solution. With this
level structure it is not guaranteed that a solution at a better level will always be
favored by the objective function. A similar obstacle was present for the level struc-
ture used in the previous section for SSSP. However, for the proposed level structure
of SSSP, being on level j required having “all” the j optimal paths with smallest to-
tal weights, not having a total of j optimal paths. The comparison procedure which
sorts the paths in order of increasing total weight and comparing the shortest paths
first guaranteed that solutions of higher level are preferred. For the aggregate num-
ber of necessary improvements how such a method might work is not apparent. So
we restrict ourselves to the same level structure used in previous section for the
analysis of APSP as well, even though the number of levels is liable for the increase
in the upper bound on expected optimization time.

8.6 Conclusion

In this paper we reversed conventional runtime analysis and designed an algorithm
which fits the analytical tool, in this case level-based analysis [3]. By doing so, we
obtained a rigorously proven performance result by simply plugging in the parame-
ters of the resulting algorithm. We hope that this work will set an example for how
practitioners can apply theoretical methods to design provably efficient algorithms
without going through tedious analysis. Moreover, we showed that using a high
level runtime tool as a design guide can ease the experimental burden, not only for
evaluating performance but also for setting parameters since the theorem provides
the required population size and specific parameters for selection mechanism.
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We saw that the essential design decisions were the addition of a subroutine
that allows bulk deletion of vertices in a path and the choice of a simple and sta-
ble crossover. We exploited the strength of our analysis tool and incorporated the
problem specific information into our objective function that allowed us to simu-
late a well-known deterministic algorithm without making the runtime analysis any
harder. We also kept some degrees of freedom for the algorithm by allowing the use
of hybridized operator and a variety of selection mechanisms.

On the theoretical side, this paper considers a non-elitist population based algo-
rithm, which was hard to analyze before the introduction of the level-based theorem
and previously not considered for many popular problems, including the single-
source and all-pairs shortest path problems. Moreover, we provided the first results
that uses a binary crossover operator on the shortest path problem, which is an im-
portant result since the all-pairs version of this problem is known to be the first
non-artificial problem that asymptotically benefited from the use of crossover op-
erator. The next step in this research is to extend this procedural construction to
other combinatorial optimization problems. On the higher level, the corollary for
genetic algorithms could be improved to take the contribution of the crossover into
consideration when lower bounding the improvement probability.
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Chapter 9

On the Impact of Representation and Algorithm
Selection for Optimisation in Process Design:
Motivating a Meta-Heuristic Framework

Eric S. Fraga, Abdellah Salhi, and El-Ghazali Talbi

Abstract In an ideal world, it would be straightforward to identify the most suit-
able optimisation method to use in the solution of a given optimisation problem.
However, although some methods may be more widely applicable than others, it is
impossible a priori to know which method will work best. This may be due to the
particular mathematical properties of the mathematical model, i.e. the formulation.
It may also be due to the representation of the variables in the model. This com-
bination of choices of method, representation and formulation makes it difficult to
predict which combination may be best.

This paper presents an example from process engineering, the design of heat ex-
changer networks, for which two different representations for the same formulation
are available. Two different heuristic optimisation procedures are considered. The
results demonstrate that any given combination will not lead to the best outcome
across a range of case studies. This motivates the need for a multi-algorithm, multi-
representation approach to optimisation, at least for process design.
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9.1 Introduction

It is well known that some algorithms perform better than others on a given prob-
lem. The performance of algorithms may even be affected by the instance of the
problem solved. For instance, an unstable algorithm which otherwise is suitable
for some problem, may perform poorly on an instance that involves ill-conditioned
data. What is less known is that different mathematical problem formulations of the
same problem affect differently the solution process, too. Hall and McKinnon [10]
present some examples for the Simplex method. It is, therefore, important to choose
not only the most suitable algorithm for a given problem, but one that is most suit-
able for a given formulation of the problem and the particular instance being solved.
The issue of different instances can be dealt with via tailoring, as illustrated recently
for the flexible flow-shop problem [20]. In the presence of alternate formulations of
the same problem and a variety of possible algorithms, the match making problem
is as hard as the original optimization problem. In fact, it is potentially much harder
as it reduces to the Halting Problem and hence is not computable. Nevertheless, in
practice, it is a problem that must be addressed and the solution of it is beneficial.

9.2 Representation

As well as algorithms and formulations, there is also the issue of representation: the
mapping of a data structure, in a form suitable for encoding on a computer, to a state
in the given mathematical formulation. The representation may often be defined in
the context of a particular algorithm yet the encoding is generally independent of the
algorithm. Given an optimisation or search problem, with a specified mathematical
formulation, a representation is a finite description of an element in the solution
space of the problem and a data structure to hold it. An element could be complex:
e.g. it might consist of sub-elements in a hierarchical structure. For instance, in
genetic algorithm, a particular optimisation variable x may be represented using
a real-valued allele or by a binary representation which discretises the domain of x
more coarsely; in a genetic program, the encoding could be a tree, represented using
linked lists, which maps to a mathematical expression.

A representation defines a search space implicitly. This space is independent of
the solution algorithm used. The representation may therefore have a significant im-
pact on the efficacy of the search and the efficiency of the algorithm for the specific
problem as formulated. Often, the difference in the quality of solution obtained and
in the computational performance between two representations for a genetic algo-
rithm, for instance, will depend on the closeness of match between the space defined
by the representation and the behaviour of any objective function in the space de-
fined by the mathematical formulation. In optimisation based computer aided pro-
cess design, an example is the use of string encodings to represent mixtures in a
process instead of a vector of real numbers, leading to significant improvements in
search performance [3].
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Furthermore, for the particular combination of an algorithm and a representation,
there may be associated a number of operations used by the algorithm that manip-
ulate representations, e.g. mutation and crossover operators in a genetic algorithm
and the definition of a neighborhood for simulation annealing. A given represen-
tation will support, or at the very least encourage, certain operators but not others.
These operators will affect how a search space is traversed and whether, in fact, all
possible solutions can be reached from any starting point.

9.3 Motivating Example

The premise is that given a problem formulation, whether known in closed form or

not, and one or more algorithms, the representation of potential solutions will af-

fect the performance of each algorithm, potentially in different and not necessarily

predictable ways. This section presents a motivating example of alternative repre-

sentations to illustrate the impact of representations on a search algorithm.
Consider the optimisation problem

max f(x) = - ((x— 0.9)2)0'1 ©.1)

with x € [0,1]. The objective function, f(x), shown in Fig. 9.1, is non-smooth and
has a maximum value to the right of the centre of the domain. The figure is some-
what misrepresentative as the maximum value is 0 at x = 0.9 but the gradient is such
that a plotting algorithm has difficulty resolving points near the maximum.
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-0.3

0.4 |
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1(x)
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09 +
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Fig. 9.1 Objective function, Eq. (9.1) for illustrating importance of representation
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Although it may be possible to formulate this problem differently, it is the rep-
resentation of the formulation’s decision variable, x, that we will concentrate on. In
the representations below, we will use a € [0, 1] to be the decision variable. This
variable must be mapped to the decision variable in the formulation, x € [0, 1], for
the evaluation of the objective function.

We define two mappings m; : a — a, specifically x < a and m; : a — a®2. Both
map a € [0,1] — x € [0,1]. One mapping, my, is linear and the other is nonlinear.
The latter has a shape shown in the following Fig. 9.2.
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=
0.4 |:
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a

Fig. 9.2 Nonlinear mapping of decision variables from representation a to formulation
x:my tav— a%?

If a random search algorithm is applied to the search domain a € [0,1], we get
the results shown in Table 9.1. The results are from 1000 attempts at solving the
problem with each representation. For each attempt, the random search procedure
generates 100 random points, based on a uniform random number generator, for
a € [0, 1]. The table shows that the nonlinear representation, in this case, finds better
solutions on average.

Table 9.1 Comparison of linear and nonlinear representations for simple objective function

Representation Best  Average Standard deviation
Linear —0.072622 —0.316067 0.075118
Nonlinear —0.067555 —0.250395 0.057662

Although this example may appear contrived, in chemical process modelling
there are many situations where different representations such as illustrated here
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may be appropriate. For instance, key physical properties, such as vapour pres-
sure, have log based behaviour resulting from the integration of an inverse function.
Knowledge of this behaviour has been used previously in the representation of the
relationship between vapour pressure and temperature in the discretisation based
dynamic programming method for optimal process design [5].

9.4 The Match-Making Problem

The problem of matching algorithms (aka methods) to formulations has been de-
scribed previously [19]. The combination of a single algorithm with a single formu-
lation (SASF) was extended to the cases of a single algorithm with multiple formu-
lations (SAMF) and for multiple algorithms with multiple formulations (MAMF).
An argument was made for the development of procedures which could address the
MAMF case so as to identify the best combination of algorithm and formulation for
a given problem. This paper argues for the further need to incorporate representation
as well as formulation in this matching process.

With this in mind, and since a heuristic can be seen as an algorithm that does
not guarantee optimality in finite time, it is easy to see how equivalent solution
paradigms to the above can be introduced: MAMR, for instance, would be the most
general and powerful paradigm which will take all available algorithms and all avail-
able representations and solve both the original problem and the match making prob-
lem since, here also, a given representation may not be ideal for a given algorithm.
This assumes a single fixed problem formulation.

For the scope of this paper, we have limited the optimisation algorithms to simple
implementations of two traditional stochastic methods: simulation annealing (SA)
and genetic algorithms (GA). These have both been implemented in the Jacaranda
system [7]. We use these to show the need for a MAMR paradigm for process design
through a problem of industrial interest.

9.5 Heat Exchanger Network Design

In large chemical processes, from food processing through to bulk chemical pro-
duction and refining, there is often the potential to use excess heat in one part of the
process to meet heating demands in another part. The task of designing the network
of heat exchangers which can transfer heat from one part of the process to another
is a challenging optimisation task.

A heat exchanger network synthesis (HENS) design problem is defined by set of
hot streams, those which have excess heat, and a set of cold streams, those which
need heating. Each stream is defined by an inlet temperature, a target temperature,
and a heat flux which specifies the rate at which the heat must be removed or ob-
tained from the inlet temperature to the target temperature. The result of the design
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is a network which consists of exchangers, each of which transfer heat from a hot
stream to a cold stream. Each stream may have more than one exchange. The order
of exchanges affects the network as does the size of each exchanger.

The core of the heat exchanger network model is the estimation of the heat ex-
change area for each exchanger based on the relationship between the heat flux, ¢,
the overall heat transfer coefficient, U, the area, A and the temperature driving force,

ATLMTD!
q= UAA TLMTD (9.2)

AT MTD i the log-mean temperature difference and represents the effective driv-
ing force across the whole exchanger based on the inlet and target temperatures of
both streams, hot and cold. This driving force temperature is often defined by

AT _ AB-ATy ©3)
LMTD = |y A7, —nAT, '

The objective function for design is typically an annualised cost which includes
the capital cost of the exchangers and the cost of utilities to meet any leftover de-
mands after heat integration. The capital cost is typically a function of area:

C.= o+ BAY 9.4)

with y € [0, 1] but usually on the order of y = 0.65 and with ¢ > 0. The utility costs
are a function of the heat fluxes and the temperatures and there is often a set of
utilities at different temperatures available.

The end result is a mixed-integer nonlinear programme (MINLP) which is com-
putationally challenging: the search space is combinatorial in nature and the ob-
jective function is non-convex. Although attempts have been made to solve such
problems using deterministic solution algorithms [9, 15, 11], scalability and con-
vexity issues have led to the use of stochastic or meta-heuristic methods for solving
these problems [2, 4, 13, 14, 16, 17, 18]. There are many forms of meta-heuristic
methods proposed for heat exchanger network synthesis; they all share the need to
define a problem specific representation for the efficient and effective search of the
solution space.

9.6 Representations and Algorithms for HENS

We have developed two representations for heat exchanger network synthesis prob-
lems:

SGA is a simple chromosome encoding, i.e. representation, for HENS intended
for use by a genetic algorithm suitable for embedding within a large optimisation
problem and solution procedure [6]. The aim was simplicity of the encoding. A
solution is represented by a fixed number, n, of possible exchanges between hot
and cold streams. The representation is a vector of integer values, y;,i = 1,...,n,
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where y; € [0,n, X ny], n. is the number of cold streams and 7y, is the number of
hot streams. A value y; = ¢ X h indicates the specific match between cold stream
¢ € [1,n.] and hot stream 4 € [1,n,]. A value of y; = 0 indicates no match.

i fya]+ [

The algorithm for evaluating a given solution is greedy: each possible exchange
is evaluated in turn along the chromosome, from left to right, and, if the exchange
is feasible, an exchanger is designed to transfer as much heat as possible from
hot stream to cold stream in the match identified.

dfHEN s a discrete fixed representation for heat exchanger networks. The sim-
ple representation above uses a greedy algorithm to evaluate a design. This may
lead to sub-optimal results. A different representation, derived from the method
proposed by Lewin [12], covers the space of possible designs more fully. The
representation includes the possible matches, grouped in levels, and the amount
of exchange to undertake for any given match. There is some redundancy of in-
formation in the encoding: a match amount may be 0 which is equivalent to that
match not being considered. Each level consists of n. integer values indicating
the hot stream from which to get heat, with a 0 value indicating no exchange
at this level. For each match, there is also an integer value which represents the
amount of heat to exchange: ¢ = y;8¢q. The potential is there for identifying better
solutions but the space represented is larger and has redundancy so there can be
a loss of efficiency in the search.

The two representations are generic and independent of the optimisation method,
or algorithm, which uses them. To investigate the MAMR situation, we have con-
sidered two stochastic optimisation procedures: GA, a simple genetic algorithm [6],
and SA, a simulated annealing approach [8]. The details of these methods are not
critical as the point is to investigate whether the combinations of algorithm and
representation can lead to different results for different problems. Tuning parame-
ters for these methods is also not relevant as such tuning typically depends on the
specific optimisation problem, further emphasising the need for matching between
methods and representations.

9.7 Results

A broad selection of heat exchanger network design problems has been assembled
from the literature: CS1 is the 4 SP problem from [16], CS2 is example 6 from [1],
CS3-CSS5 are problems A through C from [12], CS6 is the example from [15] and
CS7 the example from [21]. All of these problems were solved using both represen-
tations (SGA and dfHEN) and with two simple methods, GA and SA, implemented
in the Jacaranda system [7], leading to four different combinations.

Table 9.2 summarises the results obtained. The four combinations for each case
study are allowed the same amount of computational resource. For each row, the re-
source allocated, in terms of objective function evaluations, is that amount sufficient
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to allow at least one of the combinations to achieve the best known solution for the
design problem.

The first observation is that the simulated annealing procedure performs as well
as or better than the genetic algorithm in almost all cases. The second observation,
and arguably the more important one, is that no single representation is best overall.
The SGA representation performs best for case studies 1-3 and 7 but the dfHEN
representation wins out for case studies 4-6. There is nothing immediately obvious
in the problem formulations that would allow one to predict which representation
would be most appropriate. It is also worth noting that GA + dfHEN combination
has the least worst relative performance (1.57); all other combinations have at least
one case which performs worse relatively.

Table 9.2 Summary of performance of two optimisation methods with two different representa-
tions for the seven case studies

Case study GA GA SA SA

dfHEN SGA dfHEN SGA
1.57 1.03 1.75 1.00
1.01 1.00 1.02  1.00
1.09 1.01 1.02 1.00
1.52 2.471.02 223
1.55 248 1.01 2.30
1.06 1.20 1.01  1.20
1.16 1.16 1.16  1.00

NN R W N~

Each entry is the average value of the best objective function value obtained over 10 runs relative
to the value of the best solution obtained overall. The best average result for each case study is
emboldened

9.8 Conclusions

The possibility of multiple formulations for an optimisation problem, the choice of
representations for the degrees of freedom and the range of solvers available leads
to the difficult task of choosing the correct combination. This paper has demon-
strated that the choice does matter. For a set of problems, all in the same domain
of heat exchanger network synthesis, different combinations of method and repre-
sentation work best for individual problems. This motivates the development of an
over-arching method which could identify the best combination and solve the prob-
lem most effectively. We propose a Multiple Heuristics, Multiple Representation
(MHMR) paradigm which mirrors the Multiple Algorithm, Multiple Formulation
(MAMF) model for the exact solution [19]. Exploring this paradigm, say through
the design and implementation of prototype software frameworks will be the focus
for future work in our respective research groups.
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Chapter 10

Manufacturing Cell Formation Problem Using
Hybrid Cuckoo Search Algorithm

Bouchra Karoum, Bouazza Elbenani, Noussaima El Khattabi,
and Abdelhakim A. El Imrani

Abstract Cellular manufacturing, as one of the most important applications of
Group Technology, has gained popularity in both academic research and industrial
applications. The cell formation problem is considered the first and the foremost
issue faced in the designing of cellular manufacturing systems that attempts to min-
imize the inter-cell movement of the products while maximize the machines uti-
lization. This paper presents an adapted optimization algorithm entitled the cuckoo
search algorithm for solving this kind of problems. The proposed method is tested
on different benchmark problems; the obtained results are then compared to oth-
ers available in the literature. The comparison result reveals that on 31 out of 35
problems (88.57%) the results of the introduced method are among the best results.

Keywords Cell formation problem ¢ Lévy flight ¢ Cuckoo search
* Metaheuristic * Cellular manufacturing

10.1 Introduction

Cellular manufacturing (CM) is one of the most important applications of the Group
Technology that aims to convert a production system into several mutually separa-
ble production cells. Where dissimilar machines are aggregated into machine groups
(also known as manufacturing cells) and similar parts into part families so that one
or more part families can be processed within a single machine group. The main ob-
jective is minimizing the intercellular and intracellular movements. Many significant
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benefits have been reported for CM, including reducing setup and throughput times,
minimizing the material handling costs, improving the quality and the production
control, etc.

The cell formation problem (CFP), which is a non-polynomial hard optimization
problem [3], is the first issue in the designing of cellular manufacturing systems. It
involves the identification of machine cells and part families with the objective of
minimizing the intercellular and intracellular part movements.

In the last decades, many solution methods have been proposed to solve this
problem. Chandrasekharan and Rajagopalan [1] developed an algorithm entitled
ZODIAC (zero-one data: ideal seed algorithm for clustering) for solving the CFP
and used a new concept called relative efficiency as a stopping rule for the itera-
tions. Srinivasan and Narendran [14] proposed an efficient non-hierarchical cluster-
ing algorithm, based on initial seeds obtained from the assignment method, named
GRAFICS for the rearrangement of parts and machines. Elbenani and Ferland [4]
suggested an exact method for solving the manufacturing cell formation problem.
A good survey paper which review briefly the different methodologies used to solve
the problem until 2008 is presented in [10].

Recently, several authors have adopted the use of the metaheuristic algorithms
for the cell formation problem, because of its efficiency in solving combinato-
rial optimization problems. Goncalves and Resende [6] presented a new algo-
rithm that combines a local search heuristic with a genetic algorithm for ob-
taining machine cells and part families. James et al. [8] employed a standard
grouping genetic algorithm with a local search mechanism to form machine-part
cells. Diaz et al. [2] suggested a greedy randomized adaptive search procedure
(GRASP) heuristic to obtain lower bounds for the optimal solution of the CFP.
Sayadi et al. [11] recommended a new solution based on a discrete firefly algo-
rithm for solving the problem. Solimanpur and Elmi [13] presented a nested ap-
plication of tabu search approach to solve the problem heuristically. Husseinzadeh
Kashan et al. [7] introduced a new solution approach based on the particle swarm
optimization (PSO) algorithm for solving the CFP. Ying et al. [16] developed a
simulated annealing based metaheuristic with variable neighbourhood to form part-
machine cells. Elbenani et al. [5] hybrided a genetic algorithm with a local search
procedure that applies sequentially an intensification strategy to improve locally a
current solution and a diversification strategy destroying more extensively a cur-
rent solution to recover a new one. A grouping version of league championship
algorithm has been proposed by Seyedhosseini et al. [12] for solving the CFP,
and so on.

In this paper, a recently developed cuckoo search (CS) algorithm is adopted for
solving the CFP with the aim of maximizing the grouping efficacy. The CS algo-
rithm is combined with a local search method in order to intensify the search towards
promising regions. The experimental results show that the proposed algorithm gen-
erates good results in reasonable computational time.
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The remainder of this article is organized as follows: Sect. 10.2 describes the
CFP; Sect. 10.3 gives an overview of the standard cuckoo search algorithm and in-
troduces the improvement carried out on the algorithm to solve the CFP. The results
of numerical experiments on a set of benchmark problems are reported in Sect. 10.4,
and concluding remarks are given in Sect. 10.5.

10.2 Problem Formulation

The input parameter of the CF problem is a machine-part incidence matrix A where
each row represents a machine and each column represents a part. The objective is
to determine a rearrangement so that machine utilization within a cell is maximized
and the inter-cellular movement is minimized. Figure 10.1 shows a 5 x 5 machine
part incidence matrix to a problem with five machines and five parts. The second
matrix indicates a solution of the problem by partition into 3 different cells illus-
trated in the gray blocks. The 1 outside the diagonal blocks are called exceptional
elements, while the O inside the diagonal blocks are called voids.

Different measures have appeared in the literature to compare the efficiency of
the methods. The most used is the grouping efficacy (Eff) [9] where the closer the
grouping efficacy is to 1, the better will be the solution obtained (see Eq. (10.1)).

_ (a—af")
Eff = (s alt) (10.1)

Where:
a: Total number of entries equal to 1 in the matrix A;
alo”’ : Number of exceptional elements;
al’ : Number of voids.
To formulate this problem, a mathematical model similar to the one used in [4]
is adopted.
Parameters:
i, j,k: Index of machines, parts and cells, respectively.
M, P,C: Number of machines, parts and cells, respectively.
A: Machine-part incidence matrix A = |a;;].
a: Total number of entries equal to 1 in the matrix A.
a;j = 1 if machine i process part j; 0 otherwise.
xir = 1 if machine i belongs to cell k; O otherwise.
yjx = L if part j belongs to cell k; O otherwise.
The objective function of the CFP can be presented as follow:

a+ 3 IM SR (1= 2a))xiy i

min ComEff(x,y) =
a+ zg:l 2?11 2?:1 (1 —aij)xiy ji

(10.2)
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Parts 1 2 3 4 5 Parts 2 5 1 4 3
1 0 1 0 0 1 1 1 1 0 0 0
v v
] 2 1 0 1 0 0 ] 4 1 0 0 0 0
= =
g 3 1 0 0 1 0 g 3 0 0 1 1 0
=2 4 0 1 0 0 0 =2 5 0 0 1 1 0
5 1 0 0 1 0 2 0 0 1 0 1
Initial incidence matrix Matrix solution
Fig. 10.1 Incidence matrix solution
Subject to:
C
Yxp=1 i=1,..M (10.3)
k=1
C
Yyx=1 j=1,...P (10.4)
k=1
M
Nxu>1 k=1,...C (10.5)
i=1
P
Nyp>1 k=1,...C (10.6)
j=1
xpg=0o0rl i=1,..M;k=1,...,.C (10.7)
yix=00rl j=1,.,Pik=1,..,C (10.8)

Constraint (10.3) ensures that each machine is assigned to exactly one cell. Con-
straint (10.4) guarantees that each part must be assigned to only one cell. Inequalities
(10.5) and (10.6) ensure that each cell includes at least one machine and one part.
Finally, constraints (10.7) and (10.8) denote that the decision variables are binary.

10.3 Improved Cuckoo Search Algorithm

10.3.1 Basic Cuckoo Search

Cuckoo search algorithm is a new nature-inspired metaheuristic algorithm devel-
oped by Yang and Deb in 2009 [15]. It was inspired by the special lifestyle and the
aggressive brood parasitic behavior of some species of a bird family called cuckoo.
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This algorithm is initially designed for solving multimodal functions and can be
summarized around the following three ideal rules [15]:

* Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest.

* The best nests with high quality of eggs (solutions) will carry over to the next
generations.

* The number of host nests is fixed, and a host can discover an alien egg with a
probability p, € [0,1].

The last assumption can be approximated by a fraction p, of the n nests are
replaced by new ones.

In the standard cuckoo search algorithm, the behavior of cuckoo is associated
with Lévy flight to search a new nest. Lévy flights, named by the French mathe-
matician Paul Lévy, represent a model of random walks characterized by their step
lengths that obey a power-law distribution.

When generating a new solution x}tﬂ)
is performed using Eq. (10.9).

for a cuckoo /, in iteration t + 1, a Lévy flight

A =0 1 o 1evy(B) (10.9)
Where o > 0 is the step size parameter that should be chosen according to the
scales of the problem. In most cases, o¢ = 1. The product ¢ means entry-wise mul-
tiplications. The Lévy flight is a random walk where the step length follows a Lévy
distribution that has an infinite variance with an infinite mean. It allows the explo-
ration of the search space more efficiently as its step length is much longer in the
long run. A simple scheme discussed in detail by Yang [15] can be approximated
(~) by Eq. (10.10):

1évy(B) ~ 0.01 IVﬁ/ﬁ W =) 1< p<3 (10.10)

Where u and v are drawn from normal distribution:
1 ~N(0,0;), v~N(0,0y) (10.11)
With

(1 in("1
oy = ( :ﬁﬁ)“n&}j)) o =1 (10.12)
I'( 2 )B2 2

Where T is the standard Gamma function.

10.3.2 The Proposed Cuckoo Search Algorithm

This section introduces the modification made on the standard CS algorithm in order
to solve the cell formation problem which is discrete in nature. The algorithm begins
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with an initialization phase, where the number of machines M, the number of parts
P, the number of cells C, the population size and the fraction p, of abandoned
nests are defined. Then, an initial population of feasible solutions is created. After
initialization, the proposed method iterates until a specific number of loops are met
as shown in Algorithm 1.

Algorithm 1 The proposed cuckoo search algorithm

Generate an initial population of n host nests x; (i = 1,...,n)
while (t < MaxGeneration) or (stop criterion) do
Get a cuckoo / randomly by Lévy flights;
Evaluate its quality according to its grouping efficacy Eff;;
Apply a local search to the generated solution x;;
Choose a nest r among n randomly;
if (Eff\, > Eff,,) then
Replace x, by the new solution;
end if
Abandon a fraction p, of worse nests and build new ones by Lévy flights
Rank the solutions and find the current best
end while

10.3.2.1 Solution Representation

The encoding adapted in this paper is similar to the one used by Elbenani et al.
[5]. Where the problem variable is represented as a vector with length of P+ M:
(Pl, ...,PP| Ml, ...,MM). Where:

* P;is the index of the cell including part ;.
* M, is the index of the cell including machine i.

To understand better, consider the following solution of a problem with 7 parts
and 5 machines: (2,1,3,2,3,1,3]2,1,2,3,1). This solution includes three cells: cell
1 contains parts {2, 6} and machines {2, 5}, cell 2 contains parts {1, 4} and ma-
chines {1, 3} and cell 3 contains parts {3, 5, 7} and machine {4}.

10.3.2.2 Population Initialization

The initial solutions are generated randomly. Each machine i and part j are assigned
randomly to a cell k. each cell must contain at least one machine and one part. To
fix infeasibilities that may arise from an empty cell (cell without parts/machines),
a repair process is activated. This process involves removing a part/ machine from
the cell, including the most to the empty cell, which induces the smallest decrease
of the grouping efficacy.
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10.3.2.3 Nests

In the CS algorithm, the number of nests is fixed and equal to the population size.
A nest is an individual of the population and an abandoned one entails replacing an
individual in the population with a new one. Assuming that a cuckoo lays a single
egg in one nest; each egg in a nest will be a solution represented by one individual
in the population; and an egg of the cuckoo represents a new possible solution.

10.3.2.4 Lévy Flights

Lévy flights represent a model of random walks characterized by their step lengths
which obey a power-law distribution as depicted in Eq. (10.10). In this paper, the
difference between the two positions (x,(:) — xgt)) represent the necessary movements
to change from the actual solution given by the second, subtracting term, to the best
obtained solution given by the first, subtracted term.

For each of the necessary movements, a random number between 0 and 1 is

generated and if its value is less than the correspondent coefficient Coef = M’f /B>

the movement is applied to the solution. A part movement coded as (4, 1) represents
changing part 4 to cell 1. Similarly for a machine movement.
To understand better, we take the following example, let:

e Coef =0.7,
¢ The current solution: x; = (3,2,1,2,3,1,3, | ,2,3,1);
 The best solution obtained: x, = (2,3, 1,1, 3,2|1,2,3,3).

The necessary part movements, in this case, are (1,2),(2,3),(4,1),(8,2) while
the necessary machine movement is (4,3). Five random values are generated and
compared with Coef : 0.8,0.3,0.9,0.6 and 0.4. Therefore, the only part movements
that would be applied in the current solution are (2,3) and (8,2), besides the ma-
chine movement (4, 3). The resulting solution will be: x; = (3,3,1,2,3,1,3,2|1,2,3,
3) If the produced solution is unfeasible, the repair process described above is em-
ployed.

10.3.2.5 Local Search

In order to improve the quality of the solutions, the CS algorithm is combined with
a search mechanism. The local search approach adopted is based on the one intro-
duced by Goncalves and Resende [6]. Since it is simple, uses the same measure to
compare the efficiency of the methods and generates good results.

Based on the initial set of machine groups of the incoming solution, each part is
assigned to the cell that maximizes the grouping efficacy calculated by Eq. (10.1).
If the modified 