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Preface

This book aims to give the reader some of the most recent research dealing with the
development of metaheuristics.

The document gathers 28 chapters. These chapters could be divided into two
main sets. The first one, Chaps. 1–10, is dedicated specifically to present some new
optimization and modeling techniques based on metaheuristics. The goal of the sec-
ond set, Chaps. 11–28, is to develop some advanced metaheuristic approaches to
solve real-life applications issue such as scheduling, vehicle routing problem, mul-
timedia sensor network, supplier selection, bin packing, objects tracking, radio fre-
quency identification.

All the results proposed in the present document were accepted and presented
during the conferences MIC’15, the eleventh edition of the Metaheuristics Interna-
tional Conference, which was held from June 7 to 10, 2015, in Agadir, Morocco,
and META’14, the fourth edition of the International Conference on Metaheuristics
and Nature Inspired Computing, which was held from October 27 to 31, 2014 in
Marrakech, Morocco.

The first chapter, entitled “Hidden Markov Model Classifier for the Adaptive
Particle Swarm Optimization,” by Oussama Aoun, Malek Sarhani, and Abdellatif
El Afia, presents an integration of hidden Markov Model (HMM) particle swarm
optimization (HMM) in APSO (adaptive particle swarm optimization) to have a
stochastic state classification at each iteration. To tackle the problem of the dynamic
environment during iterations, an additional online learning for HMM parameters
is integrated into the algorithm using online expectation-maximization algorithm.
The authors performed evaluations on ten benchmark functions to test the HMM
integration inside APSO.

The second chapter, by Oumayma Bahri, Nahla Ben Amor, and El-Ghazali
Talbi, is dedicated to deal with the possibilistic framework for multi-objective op-
timization under uncertainty. This chapter addresses the multi-objective problems
with fuzzy data, in particular, with triangular-valued objective functions. To solve
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such problems, the authors have proposed an extension of two multi-objective
evolutionary algorithms SPEA2 and NSGA-II, by integrating a new triangular
Pareto dominance.

The third chapter, “Combining Neighborhoods into Local Search Strategies,” by
Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina, and Christophe Ponsard,
develops a declarative framework for defining local search procedures. It proceeds
by combining neighborhoods by means of so-called combinators that specify when
neighborhoods should be explored and introduce other aspects of the search proce-
dures such as stop criteria, solution management, and various metaheuristics. The
approach proposed by the authors introduces these higher-level concepts natively in
local search frameworks in contrast with the current practice which still often relies
on their adhoc implementation in imperative language.

The fourth chapter, “All-Terrain Tabu Search Approaches for Production Man-
agement Problems,” by Nicolas Zufferey, Jean Respen, and Simon Thevenin, is ded-
icated to the presentation of tabu search approaches with enhanced exploration and
exploitation mechanisms. For this purpose, some specific ingredients are discussed:
different neighborhood structures (i.e., different types of moves), guided restarts
based on a distance function, and deconstruction/reconstruction techniques.

The fifth chapter, “A Re-characterization of Hyper-heuristics,” by Jerry Swan,
Patrick De Causmaecker, Simon Martin, and Ender Özcan, tackles with hyper-
heuristic optimization methodology. Hyper-heuristic search has traditionally been
divided into two layers: a lower problem-domain layer (where domain-specific
heuristics are applied) and an upper hyper-heuristic layer (where heuristics are se-
lected or generated). The interface between the two layers is commonly termed the
“domain barrier”. The authors show how it is possible to make use of domain knowl-
edge without loss of generality and describe generalized hyper-heuristics which can
incorporate arbitrary domain knowledge.

The sixth chapter, “POSL: A Parallel-Oriented Metaheuristic-Based Solver Lan-
guage,” by Alejandro Reyes Amaro, Eric Monfroy, and Florian Richoux, proposes a
parallel-oriented solver language (POSL, pronounced “puzzle”), a new framework
to build interconnected metaheuristic-based solvers working in parallel. The novelty
of this approach lies in looking at solver as a set of components with specific goals,
written in a parallel-oriented language based on operators. A major feature in POSL
is the possibility to share not only information, but also behaviors, allowing solver
modifications during runtime. POSL’s main advantage is to allow solver designers
to quickly test different heuristics and parallel communication strategies to solve
combinatorial optimization problems, which are usually time-consuming and very
complex technically, requiring a lot of engineering.

The seventh chapter, “An Extended Neighborhood Vision for Hill-Climbing
Move Strategy Design,” by Sara Tari, Matthieu Basseur, and Adrien Goëffon, aims
at determining pivoting rules that allow hill-climbing to reach good local optima.
The authors propose to use additional information provided by an extended neigh-
borhood for an accurate selection of neighbors and introduce the maximum expan-
sion pivoting rule which consists in selecting a solution which maximizes the im-
provement possibilities at the next step.
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The eighth chapter, “Theory Driven Design of Efficient Genetic Algorithms for
a Classical Graph Problem,” by Dogan Corus and Per Kristian Lehre, presents a
principled way of designing a genetic algorithm which can guarantee a rigorously
proven upper bound on its optimization time. The shortest path problem is selected
to demonstrate how level-based analysis, a general-purpose analytical tool, can be
used as a design guide. We show that level-based analysis can also ease the experi-
mental burden of finding appropriate parameter settings.

The ninth chapter, “On the Impact of Representation and Algorithm Selection
for Optimisation in Process Design: Motivating a Metaheuristic Framework,” by
Eric S. Fraga, Abdellah Salhi, and El-Ghazali Talbi, aims at demonstrating that the
method choice does matter. For a set of problems, all in the same domain of heat
exchanger network synthesis, different combinations of method and representation
work best for individual problems. This motivates the development of an over-
arching method which could identify the best combination and solve the problem
most effectively. The authors propose a Multiple Heuristics, Multiple Representa-
tion (MHMR) paradigm which mirrors the Multiple Algorithm, Multiple Formula-
tion (MAMF) model for the exact solution. Exploring this paradigm, say through
the design and implementation of prototype software frameworks will be the focus
for future work in our respective research groups.

The tenth chapter, “Manufacturing Cell Formation Problem Using Hybrid Cuckoo
Search Algorithm,” by Bouchra Karoum, Bouazza Elbenani, Noussaima El
Khattabi, and Abdelhakim A. El Imrani, presents an adapted optimization algo-
rithm entitled the cuckoo search algorithm for solving this kind of problems. The
proposed method is tested on different benchmark problems; the obtained results
are then compared to others available in the literature.

Chapter 11, “Hybridization of Branch-and-Bound Algorithm with Metaheuris-
tics for Designing Reliable Wireless Multimedia Sensor Network,” by Omer Ozkan,
Murat Ermis, and Ilker Bekmezci, contributes to deploy sensor nodes to maximize
the WMSN reliability under a given budget constraint by considering terrain and de-
vice specifications. The reliable WMSN design with deployment, connectivity, and
coverage has NP-hard complexity, therefore a new hybridization of an exact algo-
rithm with metaheuristics is proposed. A branch-and-bound approach is embedded
into hybrid simulated annealing (HSA) and hybrid genetic algorithm (HGA) to ori-
ent the cameras exactly. Since the complexity of the network reliability problem is
NP-complete, a Monte Carlo simulation is used to estimate the network reliability.

Chapter 12, “A Hybrid MCDM Approach for Supplier Selection with a Case
Study,” by Hanane Asselaou, Brahim Ouhbi, and Bouchra Frikh, considers the sup-
plier selection problem where one of the strategic decisions that have a significant
impact on the performance of the supply chain. In this chapter, the supplier selec-
tion problem of a well-known refining company in Africa is investigated, and an
integrated DEMATEL-ANP-TOPSIS methodology is used to select the best sup-
plier providing the most customer satisfaction for the criteria determined.

Chapter 13, “A Multi-objective Optimization via Simulation Framework for Re-
structuring Traffic Networks,” subject to increases in population by Enrique Gabriel
Baquela, and Ana Carolina Olivera, studies a nonlinear and stochastic problem
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which is the traffic network design problem. The origin-destiny traffic assignment
problem is a particular case of this problem. The authors propose the use of a multi-
objective particle swamp optimization together with traffic simulations in order to
generate restructuring alternatives that optimize both, traffic flow and cost associ-
ated to this restructure.

Chapter 14, by S. Chaimatanan and D. Delahaye and M. Mongeau, deals with
hybrid metaheuristic for air traffic management with uncertainty, the 4D trajectory
optimization of each aircraft so as to minimize the probability of potential conflicts
between trajectories. A hybrid-metaheuristic optimization algorithm has been devel-
oped to solve this large-scale mixed-variable optimization problem. The algorithm
is implemented and tested with real air traffic data, taking into account uncertainty
over the French airspace for which a conflict-free and robust 4D trajectory plan is
produced.

Chapter 15, by Michaela Zehetner and Walter J. Gutjahr, considers the sampling-
based genetic algorithms for the bi-objective stochastic covering tour problem. The
authors presented different approaches for solving an extended version of the cov-
ering tour problem (CTP), namely, the bi-objective stochastic.

Chapter 16, “A Metaheuristic Framework for Dynamic Network Flow Problems,”
by M. Hajjem, H. Bouziri, and E.G. Talbi, considers the definition of a metaheuris-
tic framework for the NP-hard flow over time problems. A specific case study of
dynamic flow problem is treated, precisely the evacuation problem from a building.
Therefore, the authors have supposed that the dynamic maximum flow model with
flow-dependent transit time could handle the dynamic property and the crowded-
ness on nodes and arcs. The genetic algorithm as a population-based evolutionary
method to treat this NP-hard problem is proposed.

In Chap. 17, “A Greedy Randomized Adaptive Search for the Surveillance Patrol
Vehicle Routing Problem,” by Simona Mancini, a new rich vehicle routing prob-
lem is introduced, the surveillance patrol vehicle routing problem (SPVRP). This
problem came out from a real need of a surveillance company to create fairer rout-
ing plans for its security patrols. The problem consists into routing a set of patrols
in order to visit a set of checkpoints. Each checkpoint requires one or more visits,
each one of which is to be performed within a fixed time window. Minimum time
spacing between two consecutive visits should be observed. The goal is to mini-
mize cost while minimizing, at the same time, time windows and minimum spacing
constraint violations. To address this problem, a greedy randomized adaptive search
algorithm is used to provide good solutions, and a further GRASP algorithm is used
to generate pools of good solutions.

Chapter 18, “Strip Algorithms as an Efficient Way to Initialize Population-
Based Metaheuristics,” by Birsen İrem Selamoğlu, Abdellah Salhi, and Muhammad
Sulaiman, presents the strip algorithm (SA) which is a constructive heuristic. This
method has been tried on the Euclidean travelling salesman problem (TSP) and other
planar network problems with some success. The authors set out to investigate new
variants such as the 2-part strip algorithm (2-PSA), the spiral strip algorithm (SSA)
and the adaptive strip algorithm (ASA).
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Chapter 19, “Matheuristics for the Temporal Bin Packing Problem,” by Fabio
Furini and Xueying Shen, develops an extension of the bin packing problem, where
items consume the bin capacity during a time window only. The problem asks for
finding the minimum number of bins to pack all the items respecting the bin ca-
pacity at any instant of time. Both a polynomial-size formulation and an extensive
formulation are studied. Various heuristic algorithms are developed and compared,
including greedy heuristics and a column generation-based heuristic.

Chapter 20, “A Fast Reoptimization Approach for the Dynamic Technician Rout-
ing and Scheduling Problem,” by V. Pillac, C. Guéret, and A.L. Medaglia, the tech-
nician routing and scheduling problem (TRSP) consists in routing staff to serve
requests for service, taking into account time windows, skills, tools, and spare parts.
The authors tackle the dynamic TRSP (D-TRSP) with new requests appear over
time. They propose a fast reoptimization approach based on a parallel adaptive large
neighborhood search (RpALNS) able to achieve state-of-the-art results on the dy-
namic vehicle routing problem with time windows. In addition, the authors solve a
set of randomly generated D-TRSP instances and discuss the potential gains with
respect to a heuristic modeling a human dispatcher solution.

Chapter 21, “Optimized Air Routes Connections for Real Hub Schedule Using
SMPSO Algorithm,” by H. Rahil, B. Abou El Majd, and M. Bouchoum, presents
study dealing with the choice to open new routes for air carriers, airports and re-
gional governments have some tools to promote desirable connections to be offered
toward specific destinations. With a given flight program, the air carrier decision to
open new routes faces several constraints and affects the flight schedules in a re-
markable way. This chapter is the first to introduce the problem of connectivity in
the network of an airline whose main activity is based on air hub structure, opti-
mizing the insertion of new airline routes while ensuring the best fill rate seats and
avoiding significant delays during correspondence. Quality of service index (QSI)
will be considered as a dual parameter for the profit of a newly opened market. The
experimental tests are based on real instance of Royal Air Maroc flights schedule on
the hub of Casablanca.

Chapter 22, “Solving the P/Prec,pj;Ci j/Cmax Using an Evolutionary Algorithm,”
by Dalila Tayachi, tackles the problem of scheduling a set of related tasks on a set
of identical processors, taking into account the communication delays with the ob-
jective of minimizing the maximal completion time. As the problem is well known
as NP-hard, a particle swarm optimization (PSO) is proposed to solve it. The pro-
posed approach HEA-LS is a hybrid algorithm involving particle swarm optimiza-
tion (PSO) and local search algorithm (LSA). Experiments conducted on several
benchmarks known in the literature prove the effectiveness of the proposed approach
and show that it compares very well to the state-of-the-art methods.

Chapter 23, “A User Experiment on Interactive Reoptimization Using Iterated
Local Search,” by David Meignan, presents an experimental study conducted with
subjects on an interactive reoptimization method applied to a shift scheduling prob-
lem. The studied task is the adjustment, by a user, of candidate solutions provided
by an optimization system in order to introduce a missing constraint. Two proce-
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dures are compared on this task. The first one is a manual adjustment of solutions
assisted by software that dynamically computes the cost of the current solution. The
second procedure is based on reoptimization. For this procedure, the user defines
some desired changes on a solution, and then a reoptimization method is applied to
integrate the changes and re-optimize the rest of the solution.

Chapter 24, “Surrogate-Assisted Multi-objective Evolutionary Algorithm for
Fuzzy Job Shop Problems,” by Juan José Palacios, Jorge Puente, and Camino R.
Vela, Inés González-Rodrı́guez and El-Ghazali Talbi, considers a job shop schedul-
ing problem with uncertain processing times modeled as triangular fuzzy numbers
and propose a multi-objective surrogate-assisted evolutionary algorithm to optimize
not only the schedules’ fuzzy makespan but also the robustness of schedules with
respect to different perturbations in the durations. The surrogate model is defined
to avoid evaluating the robustness measure for some individuals and estimate it in-
stead based on the robustness values of neighboring individuals, where neighbor
proximity is evaluated based on the similarity of fuzzy makespan values.

In Chap. 25, “Toward a Novel Reidentification Method Using Metaheuristics,”
by Tarik Ljouad, Aouatif Amine, and Ayoub Al-Hamadi, and Mohammed Rziza,
tracking multiple moving objects in a video sequence can be formulated as a profile
matching problem. The authors introduce a novel modified cuckoo search (MCS)
based reidentification algorithm. A complex descriptor representing each moving
person is built from different low-level visual features such as the color and the
texture components. The authors make use of a database that involves all previously
detected descriptors, forming therefore a discrete search space where the sought
solution is a descriptor and its quality is represented by its similarity to the query
profile.

Chapter 26, “Facing the Feature Selection Problem with a Binary PSO-GSA Ap-
proach,” by Malek Sarhani, Abdellatif El Afia, and Rdouan Faizi, considers feature
selection. The latter has become the focus of much research in many areas where
we can face the problem of big data or complex relationship among features. Meta-
heuristics have gained much attention in solving many practical problems, includ-
ing feature selection. The contribution of the authors is to propose a binary hybrid
metaheuristic to minimize a fitness function representing a trade-off between the
classification error of selecting the feature subset and the corresponding number of
features. This algorithm combines particle swarm optimization (PSO) and gravita-
tional search algorithm (GSA).

Chapter 27, “An Optimal Deployment of Readers for RFID Network Plan-
ning Using NSGA-II,” by Abdelkader Raghib, Badr Abou El Majd, and Brahim
Aghezzaf, considers radio frequency identification (RFID). RFID process depends
on radio frequency waves to transfer data between a reader and an electronic tag at-
tached to an item, in order to identify objects or persons, which allows an automated
traceability. In order to optimize the deployment of RFID reader problem, the au-
thors propose a new approach based on multi-level strategy using as main objectives
the coverage, the number of deployed readers and the interference. Non-dominated
sorting genetic algorithm II (NSGA-II) is adopted in order to minimize the total
quantity of readers required to identify all tags in a given area.
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Chapter 28, “An Enhanced Bat Echolocation Approach for Security Audit Trails
Analysis Using Manhattan Distance,” by Guendouzi Wassila and Boukra Abdel-
madjid, deals with the security audit trail analysis problem. This problem is clas-
sified as an NP-hard combinatorial optimization problem. The authors propose to
use the bat echolocation approach to solve such a problem. The proposed approach,
named an enhanced binary bat algorithm (EBBA), is an improvement of bat algo-
rithm (BA). The fitness function is defined as the global attack risks.

Troyes, France Lionel Amodeo
Villeneuve d’Ascq, France El-Ghazali Talbi
Troyes, France Farouk Yalaoui
December 2016



Contents

1 Hidden Markov Model Classifier for the Adaptive Particle Swarm
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Oussama Aoun, Malek Sarhani, and Abdellatif El Afia
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Classification of APSO States by HMM . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Adaptive PSO Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 HMM Classification of Particle States . . . . . . . . . . . . . . . . . 6

1.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.1 Parameters Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Comparison on the Solution Accuracy . . . . . . . . . . . . . . . . 11
1.4.3 Comparison on the Convergence Speed . . . . . . . . . . . . . . . 12

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Possibilistic Framework for Multi-Objective Optimization Under
Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Oumayma Bahri, Nahla Ben Amor, and El-Ghazali Talbi
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Background on Deterministic Multi-Objective Optimization . . . . . . 18
2.3 Existing Approaches for Uncertain Multi-Objective

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Proposed Possibilistic Framework for Multi-Objective Problems

Under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Basics on Possibility Theory . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Adaptation of Possibilistic Setting . . . . . . . . . . . . . . . . . . . . 26
2.4.3 New Pareto Optimality over Triangular Fuzzy Numbers . . 27
2.4.4 Extended Optimization Algorithm . . . . . . . . . . . . . . . . . . . . 31

2.5 Application on a Multi-Objective Vehicle Routing Problem . . . . . . 33
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xiii



xiv Contents

3 Combining Neighborhoods into Local Search Strategies . . . . . . . . . . . 43
Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina,
and Christophe Ponsard
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Principle of Neighborhood Combinators . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Six Shades of Warehouse Location . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Building a Library of Combinators . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Neighborhood and Move Selection Combinators . . . . . . . . 51
3.5.2 Acceptation Function Combinators . . . . . . . . . . . . . . . . . . . 52
3.5.3 Solution Management Combinators . . . . . . . . . . . . . . . . . . . 53
3.5.4 Stop Criterion Combinators . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.5 Code Embedding Combinators . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.6 Neighborhood Aggregation Combinators . . . . . . . . . . . . . . 54

3.6 A Vehicle Routing Example with Combinators . . . . . . . . . . . . . . . . . 54
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 All-Terrain Tabu Search Approaches for Production Management
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Nicolas Zufferey, Jean Respen, and Simon Thevenin
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Smoothing the Production for Car Sequencing . . . . . . . . . . . . . . . . . 61

4.2.1 Presentation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 A Deconstruction-Reconstruction Method for Job Scheduling . . . . 63
4.3.1 Presentation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Tabu Search with Diversity Control and Simulation . . . . . . . . . . . . . 66
4.4.1 Presentation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Dynamic Tabu Search for a Resource Allocation Problem . . . . . . . . 69
4.5.1 Presentation of Dynamic Tabu Search . . . . . . . . . . . . . . . . . 69
4.5.2 Application to a Resource Allocation Problem . . . . . . . . . . 71

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 A Re-characterization of Hyper-Heuristics . . . . . . . . . . . . . . . . . . . . . . 75
Jerry Swan, Patrick De Causmaecker, Simon Martin, and Ender Özcan
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Inés González-Rodrı́guez, and El-Ghazali Talbi
24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
24.2 Job Shop Scheduling with Uncertain Durations. . . . . . . . . . . . . . . . . 417

24.2.1 Uncertain Durations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
24.2.2 Robust Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
24.2.3 The Multiobjective Approach . . . . . . . . . . . . . . . . . . . . . . . . 419

24.3 Multiobjective Evolutionary Algorithm . . . . . . . . . . . . . . . . . . . . . . . 420
24.3.1 The Surrogate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
24.3.2 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

24.4 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
24.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

25 Towards a Novel Reidentification Method Using Metaheuristics . . . . 429
Tarik Ljouad, Aouatif Amine, Ayoub Al-Hamadi, and Mohammed Rziza
25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
25.2 Object Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
25.3 Projection of the Modified Cuckoo Search on the Multiple

Object Tracking Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
25.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
25.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

26 Facing the Feature Selection Problem with a Binary PSO-GSA
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Malek Sarhani, Abdellatif El Afia, and Rdouan Faizi
26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
26.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
26.3 The Proposed Binary PSOGSA Approach . . . . . . . . . . . . . . . . . . . . . 450

26.3.1 The Canonical BPSO Algorithm . . . . . . . . . . . . . . . . . . . . . 450
26.3.2 The Classical BGSA Algorithm . . . . . . . . . . . . . . . . . . . . . . 451
26.3.3 The Aggregative Multi-Objective Fitness Function

of FS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
26.3.4 The Proposed Hybrid Algorithm for FS . . . . . . . . . . . . . . . 452



Contents xxiii

26.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
26.4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
26.4.2 Examination of BMPSOGSA for FS . . . . . . . . . . . . . . . . . . 456
26.4.3 Comparison with Well-Known FS Techniques . . . . . . . . . . 460

26.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

27 An Optimal Deployment of Readers for RFID Network Planning
Using NSGA-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
Abdelkader Raghib, Badr Abou El Majd, and Brahim Aghezzaf
27.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
27.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

27.2.1 Number of Deployed Readers . . . . . . . . . . . . . . . . . . . . . . . 466
27.2.2 Full Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
27.2.3 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

27.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
27.3.1 NSGA-II Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
27.3.2 The Proposed Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 469

27.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
27.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

28 An Enhanced Bat Echolocation Approach for Security Audit Trails
Analysis Using Manhattan Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Wassila Guendouzi and Abdelmadjid Boukra
28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
28.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
28.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
28.4 Bat Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
28.5 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

28.5.1 Solution Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
28.5.2 Initialization of Algorithm Parameters and Bat

Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
28.5.3 Fitness Function and Manhattan Distance . . . . . . . . . . . . . 482
28.5.4 Proposed Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
28.5.5 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

28.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
28.6.1 Performance Validation Using Random Data . . . . . . . . . . . 488
28.6.2 Comparisons of EBBA with BBO, GA and HS

Algorithms Using Real Data . . . . . . . . . . . . . . . . . . . . . . . . . 490
28.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495



Chapter 1
Hidden Markov Model Classifier for the
Adaptive Particle Swarm Optimization

Oussama Aoun, Malek Sarhani, and Abdellatif El Afia

Abstract Particle swarm optimization (PSO) is a stochastic algorithm based popula-
tion that integrates social interactions of animals in nature. Adaptive Particle swarm
optimization (APSO) as an amelioration of the original one, improve the perfor-
mance of global search and gives better efficiency. The APSO defines four evolu-
tionary states: exploration, exploitation, convergence, and jumping out. According
to the state, the inertia weight and acceleration coefficients are controlled. In this
paper, we integrate Hidden Markov Model Particle swarm optimization (HMM)
in APSO to have a stochastic state classification at each iteration. Furthermore,
to tackle the problem of the dynamic environment during iterations, an additional
online learning for HMM parameters is integrated into the algorithm using online
Expectation-Maximization algorithm. We performed evaluations on ten benchmark
functions to test the HMM integration inside APSO. Experimental results show that
our proposed scheme outperforms other PSO variants in major cases regarding so-
lution accuracy and specially convergence speed.

Keywords Particle swarm optimization • Swarm intelligence • Hidden Markov
model • Machine learning • Parameters adaptation • Metaheuristics control

1.1 Introduction

Nowadays, several approaches have been proposed to improve the performance and
the convergence of particle swarm optimization (PSO) algorithm. One of the main
challenges within PSO is to improve its capability of both global exploration and
local exploitation abilities. To achieve these goals, a number of variants of PSO
have been proposed. For example, PSO have been hybridized with several intelligent
algorithms such as genetic algorithm, local search, artificial immune system and
so on, in order to fix the problem of premature convergence. But, at the expense
of rapid convergence. Therefore, it is important to control the PSO parameters to
achieve the trade-off between the diversity and the convergence speed. That is, it is
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known that the accuracy of PSO depends on the selection of the appropriates values
of parameters and their values through the search process. See for instance [15].

There are three main strategies which can be used to categorize PSO parameters,
the first one is to affect this parameter randomly as a constant value, and the second
one is that the parameter depends on the iteration number. In the third one, the
value of this parameter at each iteration varies according to the results obtained
by the particles until this iteration [34]. The third approach enables the PSO to be
adaptive (adaptive PSO or APSO), another way to enhance the adaptivity of to PSO
is to vary the population size [4]. This problem can be formulated as a learning
process in which each particle learns from the obtained data and predict the values
of the parameters in accordance with the history of its values and the values of other
particles.

Several approaches have been used to improve PSO adaptivity including the
APSO approach. In this paper, we use the probabilistic machine learning method
by Hidden Markov Chain (HMM). That is, HMM is used to have stochastic state
control of APSO at each iteration. The main idea is to assign state selection inside
the adaptive particle swarm optimization to HMM. This process is performed by the
Viterbi algorithm that gives the most probable path of states in each PSO iteration.
Also, HMM parameters are calculated and updated at each iteration according to
the change in particle environment. An online Expectation-Maximization algorithm
gives a continuous parameter update for the HMM. At the best of our knowledge,
the Hidden Markov Model (HMM) has not been used yet for this type of learning
of PSO behavior.

The remainder of the paper is organized as follows. Section 1.2 provides a liter-
ature review. Section 1.3 describes the manner of integration of HMM in PSO. Sec-
tion 1.4 describes the experimental results and Sect. 1.5 is dedicated to a conclusion.

1.2 Literature Review

In the last few years, the use of the learning concept has become promising to en-
hance PSO adaptivity and then to improve its performance. That is, various meth-
ods have been proposed to improve the learning capability of the particles in PSO.
The learning process has been used in literature in different forms. van den Bergh
and Engelbrecht [27] used the concept of cooperative learning which consists of
using multiple swarms to optimize the various components of the solution vector
cooperatively. This idea is similar to the multi-agent approach which consists on
dividing the particles into agents. Another commonly used algorithm is the compre-
hensive learning [31]. In this case, each particle learns from another particle which
is chosen according to a learning probability. The basic idea behind the orthogonal
learning PSO proposed by Zhan et al. [33] is to determine the best combination of
historical values of the particle itself and other particles. Another approach is the
feedback learning which has been introduced by Tang et al. [26]. In the mentioned
work, the feedback fitness information of each particle (described especially by each
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particle’s history best fitness) is used to determine the learning probabilities. These
probabilities affect the acceleration parameters of PSO. In [9], the learning has been
done by different examples instead of one. The convergence has been analyzed the-
oretically by considering a Markov process of the PSO algorithm.

In particular, some papers have adapted the learning concept to adjust PSO pa-
rameters. The parameters that have to be defined are the velocity clamping, the
inertia weight (w) and the acceleration factors (cognitive attraction and social at-
traction). Thus, a number of methods have been proposed to learn the best values
of these factors. For instance, Ding et al. [6] employed a stochastic local search to
adjust the inertia weight in terms of keeping a balance between the diversity and the
convergence speed. Also, Zhang et al. [34] proposed a Bayesian PSO in which the
inertia weight vector is calculated by maximizing the posterior probability density
function of the weight.

Furthermore, in [1], the inertia weight was also dynamically adjusted at each
time step by taking into account the distance between the particles and gBest. The
classical way to define the inertia weight was proposed by Shi and Eberhart [23], it
consists on linearly decreasing w with the iterative generations. However, some pa-
pers proposed other variants ofω . For instance, Tang et al. [26] proposed a quadratic
decreasing and Zhan et al. [32] chosen a sigmoid decreasing of this parameter. These
time-varying method of the inertia weight is chosen in order to control the exploita-
tion and exploration of PSO.

Concerning the acceleration parameters, according to [19], the particle swarm
can be stable if the following conditions are satisfied:

0 < c1 + c2 < 4

(c1 + c2)/2 < w < 1 (1.1)

The most used adaptive strategy of c1 and c2 has been formulated by Zhan
et al. [32], it consists in updating its values according to four defined states which
are: exploration, exploitation, convergence and jumping out. Other papers interested
in the relation between the learning behavior of PSO and acceleration parameters.
For instance, Kamalapur and Patil [13] examined the link between these parameters
and the topology of PSO. Moreover, Subbaraj et al. [24] interested in choosing the
best values of these parameters.

Epitropakis et al. [7] studied the effect of the social and cognitive parameters on
PSO convergence and used differential evolution to enhance it. In [10], the learning
process of fitness information is used to control the parameters of PSO. Therefore,
we can conclude that the learning ability of PSO is related to the choice of the
acceleration parameters.

On the other hand, machine learning methods have gained much attention and
wide application in several fields due to its ability of prediction with accurate pre-
cision. The configuration of metaheuristics by machine learning can be done in two
ways. The off-line configuration involves the adjustment of parameters before run-
ning the algorithm while the online configuration consists on adjusting the algorithm
parameters while solving the problem. In this paper, we interest on the online con-
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figuration of metaheuristics. In particular, to learn and predict the PSO behavior,
some papers applied machine learning for this task. For instance, a variant of rein-
forcement learning approach (learning automata) has been used in [8] to enhance
the convergence of the comprehensive learning PSO. Also, the integration of classi-
fication algorithms for APSO has just been proposed by Liang et al. [16], their work
consists on adjusting the inertia weight based on the evaluation results of the states
of clusters and the swarm.

In terms of Hybridization between PSO and HMM, this has been done in most
cases for the aim of improving HMM performance by PSO. Phon-Amnuaisuk [20]
investigated the potential of the Particle Swarm Optimization (PSO) as an alterna-
tive method for HMM parameters instead of Baum-Welch algorithm. Furthermore,
Sun and Liu [25] proposed hybrid algorithm combining Viterbi and PSO to exploit
the randomness of HMMs parameters’ training. Yang and Zhang [30] proposed a
combination of Baum-Welch and PSO to train HMM parameters to deal with the
time sequence classification problem. Moreover, some improvements of PSO have
been proposed in some papers based on Markov chains. For instance, in [18], a def-
inition of the state sequence of a single particle and the swarm state based on the
proposed PSO difference model, then obtains the transition probability of the swarm
transferring to the optimal set.

On the other hand, HMM is a statistical learning tool used for modeling gener-
ative sequences characterized by a set of observations [22]. HMM capacity is re-
lated to statistical learning and classification. This framework can be used to model
stochastic processes where we have unobservable states of the system presented by
a Markov process and observations related to states by probabilistic dependencies.
HMM has been applied in many fields like speech recognition and engineering do-
mains [22].

Considering Online HMM training, it was defined by Di Mauro et al. [5] and
Polikar et al. [21], The main feature of an HMM which uses online learning is that
it can independently learn from new block of data at a time. So, HMM parameters
should be efficiently updated from new data without requiring access to all training
data. In addition, parameters are re-estimated online upon observing each new sub-
sequence [3]. The online EM algorithm for HMM allows continuous adaptation of
HMM parameters along a potentially infinite observation stream.

In our approach, we use Online HMM at each iteration of the adaptive PSO
(APSO) to classify particles states. This online classification of PSO particles enable
to improve its performances by an online machine learning technique.



1 Hidden Markov Model Classifier for the Adaptive Particle Swarm Optimization 5

1.3 Classification of APSO States by HMM

1.3.1 Adaptive PSO Framework

First, PSO is a metaheuristic algorithm which was introduced by Kennedy and Eber-
hart [14]. The PSO concept consists of, at each time step, changing the velocity (ac-
celerating) of each particle toward its pBest and gBest locations. Finally, the results
are completed. Each particle i has two vectors: the velocity vector and the position
vector according to Eqs. (1.2) and (1.3):

vi = wvi + c1r1(pBest− xi)+ c2r2(gBest− xi) (1.2)

xi = xi + vi (1.3)

Where: r1 and r2 are two independently uniformly distributed random variables in
the interval [0,1]. w is the inertia weight; it varies linearly from 1 to near 0 during
iterations. c1 and c2 are acceleration factors; c1 is the cognitive component that mea-
sured the degree of self-confidence of a particle and measured the degree at which
it trusts its performance. c2 is the social component that relied in the capability of
the swarm to find better candidate solutions.

Our approach is based on adaptive particle swarm optimization (APSO) which
features better search efficiency than standard classical PSO. First, the APSO evalu-
ate the population distribution and particle fitness, a real-time state estimation proce-
dure is performed to identify one of four evolutionary states: exploration, exploita-
tion, convergence, and jumping out. It permits to have automatic control of inertia
weight, acceleration coefficients, and other PSO parameters. Then, an elitist learn-
ing strategy is performed when the evolutionary state is classified as convergence
state. APSO improves either the search efficiency and convergence speed [32].

As regards the update of the inertia weight, it is done as follows in order to
balance the global and local search capabilities as in the following equation:

omega( f ) =
1

1+ 1.5e−2.6 f ∈[0.4,0.9]∀ f∈[0,1] (1.4)

The APSO gives the following major modifications:

• Evolutionary state estimation (ESE) technique and adaptive control according to
the state.

• Elitist learning strategy (ELS): in the case of convergence state.

Special interest is given to ESE technique in our approach. In APSO, an evolution-
ary factor f is calculated at each iteration and state is given by a defuzzification
technique [32]. Our method consists of replacing the defuzzification in APSO by
online HMM classification as described in the next paragraph.
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1.3.2 HMM Classification of Particle States

Our main contribution concerns the hybridization of HMM and APSO. That is, we
use of classification and learning capabilities of HMM to enhance APSO. On the
one hand, HMM is a stochastic method where we need to associate several proba-
bilities in the model definition; transitions between states are governed by a set of
probabilities named transition probabilities. In a particular state, observation is gen-
erated according to the related probability distribution. It is only the observation, not
the state is visible that is why the state is hidden. After model parameters definition,
a resolution algorithm is used to build HMM classification process.

We follow a similar approach than the one proposed by Zhan et al. [32] which
is also used by Ardizzon et al. [1] to enhance PSO adaptivity. It consists of iden-
tifying one of four evolutionary states: exploration, exploitation, convergence, and
jumping out in order to enable the automatic control of acceleration coefficients.
Our contribution to these works is to use HMM to identify the proper state (class) at
each iteration. So, we can generate the Markov Chain as described in Fig. 1.1. PSO
parameters are updated according to the classified state at every iteration. Then, the
same as Zhan et al. [32], an elitist learning strategy is performed when the evolu-
tionary state is classified as a convergence state.

Exploration Exploitation Convergence Jumping out

Fig. 1.1 Markov chain of APSO states

1.3.2.1 HMM Definition

We define the Hidden Markov Model by a triple λ = (Π ,A,B) , all processes are
defined on a probability space (Ω ,F,P):

• Π = (πi) The vector of the initial state probabilities;
• A = (ai j) The state transition matrix, P(Xt = i|Xt−1 = j), i, j ∈ [1,N];
• B = (b jk) The emission matrix also called the confusion matrix,

P(Yt = k|Xt = j), j ∈ [0,N],k ∈ [0,M].

The state {Xt}t∈N takes values from the set S = {si}i∈[1,4] what references respec-
tively: exploration, exploitation, convergence, and jumping out. The change of state
is reflected by the PSO sequence s1 ⇒ s2 ⇒ s3 ⇒ s4 ⇒ s1 . . ., as deduced by Zhan
et al. [32], corresponding to the Markov Chain in Fig. 1.1.
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Furthermore, we define corresponding initial transition probabilities as:
P(Xt = i∨Xt−1 = j), i, j∈[1,4].

This probability controls all behavior of transition between states of APSO reso-
lution. We take for all possible i and j transitions as mentioned in Fig. 1.1 a proba-
bility of 0.5.

The initial state probability corresponds to deterministic start in exploration state:

Π = (πi) = [1 0 0 0] (1.5)

The observed parameter of this hidden chain is the evolutionary factor f of the
APSO. Observation will be belonging f to subintervals of [0,1] ([0,0.2], [0.2,0.3],
[0.3,0.4], [0.4,0.6], [0.6,0.7], [0.7,0.8], [0.8,1]). We divide [0,1] to seven subinter-
vals as mentioned by Zhan et al. [32], so the observation will be number of subin-
tervals witch belong f . Initial observation probabilities are deduced from the di-
fuzzification process defined in by Zhan et al. [32], we define coefficients values in
intervals as emissions and we dress the matrix of membership corresponding to the
difuzzification. It represents the emission probabilities follow:

P =

⎡
⎢⎢⎢⎣

0 0 0 0.5 0.25 0.25 0

0 0.25 0.25 0.5 0 0 0

2/3 1/3 0 0 0 0 0

0 0 0 0 0 1/3 2/3

⎤
⎥⎥⎥⎦ (1.6)

1.3.2.2 Online HMM Learning

An online EM learning is first performed at each iteration to calculate and update
HMM parameters that are re-estimated upon observing each new sub-sequence.

Particles positions and velocities vary over iterations, impacting also the evolu-
tionary factor. Then, the classification environment for HMM changes during oper-
ations. Online learning of new data sequences allows adapting HMM parameters as
new data become available as shown if Fig. 1.2, where (oi)i∈[0,n] are data observa-
tions and (λi)i∈[0,n] parameters values update.

Fig. 1.2 HMM online classifications

At each iteration t, a new classifier rt is performed with new updated parameters.
We choose online learning EM algorithm [3] instead of Bach learning (classical
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Baum-Welch algorithm [2], because this last one needs to run on all observation
sequence which this is not our case.

The online Expectation-Maximization algorithm used for HMM parameters
learning can be summarized as follows:

Algorithm 1 Expectations-maximization algorithm
Observation sequence O = (o1o2. . .oN)
Initialization: initial parameters set λ0;
for i = 1 to Nstep : do

E-step: find conditionally optimal hidden trace Si :
Si = argmaxs P(O|S,λi−1) ;
Compute likelihood
Li−1(λ ) = P(O|Si,λi−1) ;
if ( i ≤ Nstep & likelihood not yet converged) then

M-step - find conditionally optimal parameter set λ :
λi = argmaxs P(O|S,λ )

end if
end for
Results Estimated parameters λNstep

1.3.2.3 HMM Classification

The Viterbi Algorithm is used with online parameters setting to find the most prob-
able sequence of hidden states with a given sequence of observed states. The Viterbi
algorithm does not simply accept the most likely state at a particular time instant,
but also takes a decision based on the whole observation sequence. The algorithm
will find the max Q(state sequence Q = q1q2. . .qT ) for a given observation sequence
by the means of induction. An array ψt( j) is used to store the highest probability
paths [22].

HMM parameters, HMM classification is done by the Viterbi algorithm as de-
fined in the next algorithm:

1.3.2.4 Our Algorithm

Therefore, we delegate choosing states of APSO iterations to online HMM classifi-
cation, transitions between states is represented by online probabilities transitions.
At each iteration transition and observation probabilities are updated according to
the online EM algorithm. The Viterbi Algorithm is then used for state classification
of APSO iteration. Then, we update positions and velocities according to the classi-
fied state. The complete hybrid APSO with HMM is depicted below (Algorithm 3).
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Algorithm 2 Viterbi algorithm
Data: Observations of length T, state-graph of length N
Initialization: Observations of length T, state-graph of length N
Create a path probability matrix viterbi [N+2,T ]
Create a path backpointer matrix backpointer [N+2,T ]
for s = 1 to N do

f orward[s,1]−→ ao,s x bs(o1)
backpointer[s,1] −→ 0

end for
for time step t from 2 to T do

for state s from 1 to N do
viterbi[s, t]−→ maxN

s=1 viterbi[s′, t −1] x as′ ,s x bs(ot)

backpointer[s,1] −→ argmaxN
s=1 viterbi[s′, t −1] x as′ ,s

end for
end for
t −→ t +1
Result: Best-path of states: the classified current state

Algorithm 3 HMM-APSO algorithm
Data: The objective function
Initialization: positions, velocities of particles, accelerations factors and HMM parameters
Set t value to 0
while (number of iterations t ≤ tmax not met) do

Update HMM parameters by online EM process (algorithm 1)
Classification of PSO state by HMM classifier (algorithm 2)
Update c1 , c2 and w values according to the corresponding state
for i = 1 to number of particles do

compute f
Update velocities and positions according to Eqs. (2) and (3)
if f ≤ fbest then

fbest −→ f
pbest −→ X

end if
if f (pbest)≤ f (gbest) then

f (gbest)−→ fbest
gbest −→ Xbest

end if
if state = convergence then

Elistic learning
end if

end for
t −→ t +1

end while
Result: The solution based on the best particle in the population and corresponding fitness value
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1.4 Experiment

In this part, tests and validations of the proposed hybrid approach HMM-APSO
are performed. Experimentations are done with several benchmark functions and
compared with other PSO’s variants of literature.

1.4.1 Parameters Setting

For each of benchmark functions shown in Table 1.1, we perform ten executions,
and compare for each function the best and the average value.

Table 1.1 Description of Benchmark functions

Test functions Name Type

f1 = ∑D
i=1[100(xi+1 − x2

i )
2 +(xi −1)2] Rosenbrock Unimodal

f2 = ∑D
i=1(|xi +0.5|)2 Step Unimodal

f3 = ∑D
i=1 x2

i Sphere Unimodal

f4 = 106x2
1 +∑D

i=2 x2
i Tablet Unimodal

f5 = ∑D
i=1(∑

D
i=1 xi)

2 Quadric Unimodal

f6 = ∑D
i=1[x

2
i −10cos(2πxi)+10] Rastrigrin Multimodal

f7 =−20exp(−0.2
√

1
D x2

i Ackley Multimodal

f8 =
1

4000 ∑
D
i=1 x2

i −Π cos(xi/
√

i)+1 Griewang Multimodal

f9 = ∑D
i=1 xi sin(

√
xi) Schwefel Multimodal

f10 =− (1+cos(12
√

x2
i +x2

2)
1
2 (x

2
i +x2

2)+2
Drop wave Multimodal

Table 1.2 shows ten improved variants of PSO found in the literature. Tests are
executed with the same value of acceleration factors and inertia weight coefficients
which are:

c1 = c2 = 2,ω = 0.9

The used swarm population size is 30 with a dimension of 30. Each run contains
1000 generations of the optimization process. Performance is qualified following
two main measured observations: comparison on the solution accuracy and compar-
ison on the convergence speed.
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Table 1.2 Compared variants of PSO

Algorithm Name Specific parameters Reference
YSPSO PSO with compressibility factor – [17]
SELPSO Natural selection based PSO – [11]
SecVibratPSO Order oscillating PSO – [12]
SecPSO Swarm-core evolutionary PSO – [28]
SAPSO Self-adaptive PSO ωmin = 0.01 [11]
RandWPSO Random inertia weight PSO meanmax = 1,meanmin = 0 [29]
LinWPSO Linear decreasing weights PSO ωmin = 0.0001,ωmax = 0.1 [29]
CLSPSO Cooperative line search PSO – [28]
AsyLnCPSO Asynchrous PSO c1min = c2min = 0.01, [11]

c1max = c2max = 2
SimuAPSO PSO with simulated annealing λ = 0.0001, [28]

1.4.2 Comparison on the Solution Accuracy

To examine our HMM-APSO approach, we compared results obtained for the
benchmark test functions with APSO. For every benchmark function, executions
are performed for all variants of PSO. Mean and best values are calculated to evalu-
ate the solution accuracy among other PSO variants from literature (Table 1.2). We
depict the obtained results in Table 1.3.

Table 1.3 Results comparisons with the variants of PSO

Functions APSO PSO SimuA-PSO Sec-PSO RandWPSO YSPSO SelPSO SecVibratPSO SAPSO LinWPSO AsyLnCPSO HMM-APSO
f1 Best 49 13566 115719 4689 9843 1420 16382 275 5095 7067 3765 44

Mean 150 24618 288102 10930 33384 2726 27998 32132 14850 20280 11045 171
f2 Best 0 5.1e−09 5.8e−06 1.9e−31 2.1e−12 0 8.6e−10 7.3e−10 0 0 0 0

Mean 0 6.5e−05 0.04 9.8e−12 3.6e−05 0 1.8e−05 0.03 0 0 3.1e−30 0
f3 Best 0.01 26.55 93.19 20.58 37.7 6.77 36.01 0.8 18.20 17.66 22.89 4.6e−3

Mean 0.05 50.15 188.56 38.79 64.09 13.77 63.59 71.05 31.96 40.53 34.58 0.04
f4 Best 0.02 94.97 251.36 71.4 110.48 23.72 30.47 17.42 37.21 51.24 21.73 0.02

Mean 0.05 135.82 396.21 110.48 246.78 42.31 77.51 199.04 84.79 95.74 44.32 0.07
f5 Best 16435 629e+5 587e+6 421e+5 102e+6 127e+4 839e+5 107e+6 459e+5 165e+5 131e+5 7644

Mean 67851 196e+6 210e+7 978e+5 434e+6 843e+4 210e+6 562e+6 166e+6 155e+6 384e+5 49205
f6 Best 8.24 266.20 358.22 208.54 293.88 142.44 285.16 221.93 165.66 170.64 193.83 4.31

Mean 16.14 307.24 462.02 262.89 322.35 175.84 315.60 344.76 273.31 261.77 291.54 12.41
f7 Best 0.03 4.79 6.9436 4.8963 5.403 3.1785 5.665 1.2753 3.8279 4.7261 5.8372 0.03

Mean 0.31 5.61 8.6336 5.2716 6.5613 4.2219 6.1951 4.4528 5.2531 5.6829 6.8189 0.33
f8 Best 7.50e−5 0.17 0.52 0.15 0.25 0.05 0.27 0.05 0.13 0.14 0.08 1.1e−5

Mean 0.01 0.39 0.87 0.25 0.45 0.12 0.41 0.42 0.25 0.31 0.23 0.07
f9 Best −118.3 −3e+28 −7.2+4 −4+158 − −3+34 −1e+3 − −1+231 −1e+22 −3e+47 −118.3

Mean −118.3 −3e+28 −1e+47 −9e+15 – −3e+33 − − −1e+23 −1e+21 −3e+46 −118.3
f10 Best −1 −1 −0.92 −1 −0.94 −1 −0.99 −0.93 −1 −1 −1 −1

Mean −1 −0.95 −0.74 −0.96 −0.93 −0.98 −0.95 −0.82 −0.97 −0.96 −0.98 −1

Results obtained from the mean of all executions shows that for these benchmark
functions ( f1, f2, f5, f6, f7, f8, f9, f10) HMM-APSO gives almost the best results
among others used PSO variants. In general HMM-APSO gives good accuracy.
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1.4.3 Comparison on the Convergence Speed

In this section, we display in the following figures the obtained values at each itera-
tion:

Fig. 1.3 Comparison on Rosenbrock and Step functions

Fig. 1.4 Comparison on sphere and tablet functions

HMM-APSO gives frequently the best solution. When we interest on the conver-
gence rate, we can notice from Figs. 1.3, 1.4, 1.5, 1.6, and 1.7, that HMM-APSO
has faster convergence rate than other PSO.

We can conclude from experimentation that HMM-APSO can improve APSO
when comparing to others PSO with a number of benchmark functions. However,
those results improve the online HMM classification methodology. HMM coupled
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Fig. 1.5 Comparison on quadric and Rastrigrin functions

Fig. 1.6 Comparison on Ackley and Griewang functions

Fig. 1.7 Comparison on Schwefel and drop wave functions

with unsupervised learning EM, gives more state adaptation to the APSO algorithm.
So, HMM-APSO outperforms significantly the original APSO algorithm.
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1.5 Conclusion

In this paper, we have integrated online HMM classifier inside the APSO. This looks
advantageous from the view that HMM is a robust stochastic classification tool. The
HMM can include stochastic information on transitions between states and also ob-
servations to give the most likely state for the APSO. The online EM process gives
more adaptive capacity to environment change during iteration which gives more
quality to the HMM classifier. We benefit from this feature of HMM classification
to integrate it inside APSO. On the other hand, we build an unsupervised state con-
trol of APSO iteration will be provided by online HMM. This approach gives better
results than the majority of the state of art of PSO improvement in terms of both
solution accuracy and convergence speed. Future research should attempt to pro-
vide more control to HMM inside the PSO algorithm in order to describe more the
stochastic PSO behavior through iterations. That is, by using Online learning HMM
in the convergence state instead of ELS procedure, it may further enhance APSO
more performance, or even constitute a new all based HMM learning for PSO, not
only for classification process.
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Chapter 2
Possibilistic Framework for Multi-Objective
Optimization Under Uncertainty

Oumayma Bahri, Nahla Ben Amor, and El-Ghazali Talbi

Abstract Optimization under uncertainty is an important line of research having to-
day many successful real applications in different areas. Despite its importance, few
works on multi-objective optimization under uncertainty exist today. In our study,
we address combinatorial multi-objective problem under uncertainty using the pos-
sibilistic framework. To this end, we firstly propose new Pareto relations for ranking
the generated uncertain solutions in both mono-objective and multi-objective cases.
Secondly, we suggest an extension of two well-known Pareto-base evolutionary al-
gorithms namely, SPEA2 and NSGAII. Finally, the extended algorithms are applied
to solve a multi-objective Vehicle Routing Problem (VRP) with uncertain demands.

Keywords Multi-objective optimization • Uncertainty • Possibilty theory • Evo-
lutionary algorithms • Vehicle routing problem

2.1 Introduction

Most real-world decision problems are multi-objective in nature as they require
the simultaneous optimization of multiple and usually conflicting objectives. These
multi-objective problems are a very important and widely discussed research topic.
Yet, despite the massive number of existing resolution methods and techniques for
multi-objective optimization, there still many open questions in this area. In fact,
there is no consideration of uncertainty in the classical multi-objective concepts and
techniques, which makes their application to real-life optimization problems impos-
sible.
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Moreover, uncertainty characterizes almost all practical applications, in which
the big amount of data provides certainly some unavoidable imperfections. This
imperfection might result from using unreliable information sources caused by in-
putting data incorrectly, faulty reading instruments or bad analysis of some training
data. It may also be the result of poor decision-maker opinions due to any lack of
its background knowledge or even due to the difficulty of giving a perfect qualifi-
cation for some costly situations. The classical way to deal with uncertainty is the
probabilistic reasoning, originated from the middle of the seventeenth century [19].
However, probability theory was considered for a long time as a very good quantita-
tive tool for uncertainty treatment, but as good as it is, this theory is only appropriate
when all numerical data are available, which is not always the case. Indeed, there
are some situations such as the case of total ignorance, which are not well handled
and which can make the probabilistic reasoning unsound [26]. Therefore, a panoply
of non-classical theories of uncertainty have recently emerged such as fuzzy sets
theory [33], possibility theory [34] and evidence theory [25]. Among the aforemen-
tioned theories of uncertainty, our interest will focus on possibility theory which
offers a natural and simple model to handle uncertain data and presents an appropri-
ate framework for experts to express their partial beliefs numerically or qualitatively.
Nevertheless, while the field of optimization under uncertainty has gained consid-
erable attention during several years in the mono-objective context, only few stud-
ies have been focused on treating uncertain optimization problems within a multi-
objective setting. This chapter addresses the multi-objective optimization problems
under uncertainty in the possibilistic setting [23].

The remainder of the chapter is organized as follows. Section 2.2 recalls the
main concepts of deterministic multi-objective optimization. Section 2.3 gives an
overview of existing approaches for multi-objective optimization under uncertainty.
Section 2.4 presents in detail our proposed possibilistic framework after briefly re-
calling the basics of possibility theory. Finally, Sect. 2.5 describes an illustrative
example on a multi-objective vehicle routing problem with uncertain demands and
summarizes the obtained results.

2.2 Background on Deterministic Multi-Objective Optimization

Deterministic multi-objective optimization is the process of optimizing systemati-
cally and simultaneously two or more conflicting objectives subject to certain con-
straints. In contrast to mono-objective optimization, a multi-objective optimization
problem does not restrict to find a unique global solution but it aims to find the most
preferred exact solutions among the best ones.

Formally, a basic multi-objective optimization problem (MOP), defined in the
sense of minimization of all the objectives, consists of solving a mathematical pro-
gram of the form:
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MOP =

{
Min F(x) = ( f1(x), f2(x), . . . , fn(x))
s.t. x ∈ S

(2.1)

where n (n ≥ 2) is the number of objectives and x = {x1, . . . ,xk} is the set of decision
variables from the decision space S, which represents the set of feasible solutions
associated with equality and inequality constraints. F(x) is the vector of independent
objectives to be minimized. This vector F can be defined as a cost function in the
objective space by assigning an objective vector −→y which represents the quality of
the solution (or fitness).

F : X → Y ⊆ Rn, F(x) =−→y =

⎛
⎝

y1

. . .
yn

⎞
⎠ (2.2)

In order to identify better solutions of a given MOP, other concepts of optimality
should be applied such as Pareto dominance, Pareto optimality, Pareto optimal set
and Pareto front. Without loss of generality, we assume that the sense of minimiza-
tion of all the objectives is considered in the following concepts definition:

An objective vector x = (x1, . . . ,xn) is said to Pareto dominate another objective
vector y = (y1, . . . ,yn) (denoted by x ≺p y) if and only if no component of y is
smaller than the corresponding component of x and at least one component of x is
strictly smaller:

∀i ∈ 1, . . . ,n : xi ≤ yi ∧∃i ∈ 1, . . . ,n : xi < yi. (2.3)

For a minimization MOP(F,S), a solution x∗ ∈ X is Pareto optimal (also known
as efficient, non-dominated or non-inferior) if for every x ∈ X, F(x) does not domi-
nate F(x∗), that is, F(x)⊀p F(x∗).

A Pareto optimal set P∗ is defined as:

P∗ = {x ∈ X/∃x′ ∈ X ,F(x′)⊀p F(x)}. (2.4)

The image of this Pareto optimal set P∗ in the objective space is called Pareto
front PF∗ defined as:

PF∗ = {F(x),x ∈ P∗}. (2.5)

Yet, finding the true Pareto front of a general MOP is NP-hard. Thus, the main
goal of multi-objective optimization is to identify a good approximation of the
Pareto front, from which the decision maker can select an optimal solution based
on the current situation. The approximated front should satisfy two properties: (1)
convergence or closeness to the exact Pareto front and (2) uniform diversity of the
obtained solutions around the Pareto front. Figure 2.1 illustrates an example of ap-
proximated front having a very good spread of solutions (uniform diversity) but a
bad convergence, since the solutions are far from the true Pareto front.
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Approximated front
True Pareto front

f2

f1

Fig. 2.1 Example of Pareto front with uniform diversity and bad convergence

There are several deterministic optimization methods to deal with multi-objective
combinatorial problems, such as the metaheuristics, which mark a great revolution
in the field of optimization. A review of various metaheuristics can be found in
[29]. Among the well-know metaheuristics, evolutionary algorithms seem partic-
ularly suitable for both theoretical and practical MOPs, since they have the abil-
ity to search partially ordered spaces for several alternative trade-offs [6, 5, 7].
Some of the most popular multi-objective evolutionary algorithms (MOEAs) are:
Multi-Objective Genetic Algorithm (MOGA) [11], Niched-Pareto Genetic Algo-
rithm (NPGA) [14], Pareto-Archived Evolutionary Strategy (PAES) [18], Strength
Pareto Evolutionary Algorithms (SPEA, SPEA2) [35, 36] and Non-dominated Sort-
ing Genetic Algorithms (NSGA, NSGAII) [8, 9].
Such algorithms are based on three main components namely, Fitness assignment,
Diversity preserving and Elitism.

Fitness Assignment

Fitness Assignment allows to guide the search algorithm toward Pareto optimal so-
lutions for a better convergence. The fitness assignment procedure assigns to each
objective vector, a scalar-valued fitness that measures the quality of solution. Ac-
cording to the fitness assignment strategy, four different categories can be identified:

• Pareto-based assignment: based on the concept of dominance and Pareto opti-
mality to guide the search process. The objective vectors are scalarized using the
dominance relation.

• Scalar-based assignment: based on the MOP transformation into a mono-objective
problem by using for example aggregation methods and weighted metrics.

• Criterion-based assignment: based on the separate handling of various non com-
mensurable objectives by performing a sequential search according to a given
preference order of objectives or by handling the objectives in parallel.

• Indicator-based assignment: based on the use of performance quality indicators
to drive the search toward the Pareto front.
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Diversity Preserving

Diversity Preserving used to generate a diverse set of Pareto solutions. According to
the strategy of density estimation, three categories can be distinguished:

• Distance-based density assessment: based on the distance between individuals
in the feature space. Examples of techniques are, Niche sharing, Clustering, Kth
nearest neighbor and Crowding.

• Grid-based density assessment: based on the way in which a number of indi-
viduals residing within predetermined cells are located. Histogram method is an
example.

• Distribution-based density assessment: based on the probability density of indi-
viduals using for example probability density estimation functions.

Elitism

Elitism consists in archiving the best solutions found (e.g, Pareto optimal solutions)
in order to prevent the loss of good solutions during the search process. Archiving
process can be done using an archive (elite population) or an external population
and its strategy of update usually relies on size, convergence and diversity criteria.
Depending on the manner in which the archiving process is performed, MOEAs can
be classified into two categories, namely non-elitist and elitist MOEAs. Moreover,
almost all MOEAs follow the same basic steps in the search process [12], as outlined
in the following pseudo code:

Generic MOEA Framework

Initialize random population P
While (Stopping condition is not satisfied)

Fitness evaluation of solutions in P;
Environmental selection of “good” solutions;
Diversity preserving of candidate solutions;
Update and store elite solutions into an external population or archive;
Mating selection to create the mating pool for variation;
Variation by applying crossover and mutation operators;

End While

An MOEA begins its search with a population of solutions usually generated at
random. Thereafter, an iterative optimization process takes place by the use of six
search operators: evaluation of the population individuals, environmental selection
to choose better solutions based on their fitness, diversity preservation of candi-
date solutions, updating and archiving the solutions into an external population or
archive, mating selection operator in which solutions are picked from the updated
population to fill an intermediate mating pool and finally variation operator to gen-
erate new solutions. The process stops when one or more pre-specified stopping
conditions are met.
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All the above concepts and techniques of deterministic multi-objective optimiza-
tion are widely used and applied successfully to several combinatorial decision
problems in many interesting areas, but their application to real-life decision making
situations often faces some difficulties. Yet, most of real-world optimization prob-
lems are naturally subject to various types of uncertainties caused by many sources
such as missing information, forecasting, data approximation or noise in measure-
ments. These uncertainties are very difficult to avoid in practical applications and
so should be taken into account within the optimization process. Therefore, a va-
riety of methodologies and approaches for handling optimization problems under
uncertainty have been proposed in the last years. Unfortunately, almost all of them
have been devoted to solve such problems in the mono-objective context, while only
few studies have been performed in the multi-objective setting. A review of some
existing approaches for uncertain multi-objective optimization will be summarized
in the next section.

2.3 Existing Approaches for Uncertain Multi-Objective
Optimization

Uncertain multi-objective optimization has gained more and more attention in re-
cent years [17], since it closely reflects the reality of many real-world problems.
Such problems, known as multi-objective problems under uncertainty, are naturally
characterized by the necessity of optimizing simultaneously several objectives sub-
ject to a set of constraints and while considering that some input data are ill-known
and without knowing what their full effects will be. In these problems, the set of ob-
jectives and/or constraints to be satisfied can be affected by the uncertainty of input
data or uncontrollable problem parameters. Hence, the aim of optimization in this
case will be to find solutions of a multi-objective problem that are not only feasible
and optimal but also their objectives and/or constraints are allowed to have some
acceptable (or minimal) uncertainties. These uncertainties can take different forms
in terms of distribution, bounds, and central tendency.

Yet, considering the uncertainty in the objective functions seems to be very ap-
plicable but highly critical, since the propagation of input uncertainties to the ob-
jectives may have a major impact on the whole optimization process and conse-
quently on the problem solutions. In most of the existing approaches for dealing
with multi-objective problems under uncertainty, the objective functions to be opti-
mized are transformed into different forms in order to simplify their resolution by
eliminating one of the two basic characteristics of such problems: multi-objectivity
and uncertainty propagation. In fact, some of these approaches have been often lim-
ited to simply reduce the problem to mono-objective context by considering the
set of objectives as if there’s only one, using for example an aggregation function
(a weighted sum) of all the objectives [13] or preferring only one objective to be
optimized (based on a preference indicator) and fixing the remaining objectives as
constraints [24]. The considered single objective is then optimized using appropriate
mono-objective methods for uncertainty treatment.
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Some other approaches have been focused on treating the problem as multi-
objective but with ignoration of uncertainty propagation to the objective functions
by converting them into deterministic functions using statistical properties. For ex-
ample, in [30], expectation values are used to approximate the observed interval-
valued objectives and so the goal became to optimize the expected values of these
objectives. In [2], the average value per objective is firstly computed and then a
ranking method based on the average values of objectives is proposed. Similarly,
[9] suggested to consider the mean value for each objective vectors and then to ap-
ply classical deterministic multi-objective optimizers. Nevertheless, the uncertainty
of objective values must not be ignored during the optimization process, because
if the input data or parameters are highly uncertain, how can the optimizer simply
state that the uncertainty of outputs is completely certain? It may be feasible only
for simplicity or other practical reasons as long as the algorithm performance will
not be affected.

To this end, some distinct approaches have been suggested to handle the problem
as-is without erasing any of its multi-objective or uncertain characteristics by intro-
ducing a particular multi-objective optimizer for this purpose. Indeed, [21, 22, 1]
proposed to display uncertainty in objective functions through intervals of belief
functions and then introduced an extensions of Pareto dominance for ranking the
generated interval-valued objectives. Hughes [15, 16] suggested to express uncer-
tainty in the objectives via special types of probability distributions and then in-
dependently proposed a stochastic extension of Pareto dominance. Our interest in
this chapter will focus on handling multi-objective problems under uncertainty in
the possibilistic setting while considering the uncertainty propagation to the set of
objectives to be optimized.

2.4 Proposed Possibilistic Framework for Multi-Objective
Problems Under Uncertainty

This section provides firstly a brief background on possibility theory and then
presents in detail the proposed possibilistic framework for solving multi-objective
problems with uncertain data. The framework is composed of three main stages:
Adaptation of possibilistic setting, New Pareto optimality and Extension of some
optimization algorithms to our uncertain context.

2.4.1 Basics on Possibility Theory

Possibility theory, issued from Fuzzy Sets theory, was introduced by Zadeh [34] and
further developed by Dubois and Prade [10]. This theory offers a flexible tool for
representing uncertain information such as expressed by humans. Its basic build-
ing block is the notion of possibility distribution, denoted by π and defined as the
following:
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Let V = {X1, . . . ,Xn} be a set of state variables whose values are ill-known.
We denote by xi any instance of Xi and by DXi the domain associated with Xi.
Ω = DX1 ×·· ·×DXn denotes the universe of discourse, which is the cartesian prod-
uct of all variable domains V . Vectors ω ∈Ω are often called realizations or simply
“states” (of the world). The agent’s knowledge about the value of the xi’s can be
encoded by a possibility distribution π that corresponding to a mapping from the
universe of discourse Ω to the scale [0,1], i.e. π : Ω → [0,1]; π(ω) = 1 means that
the realization ω is totally possible and π(ω) = 0 means that ω is an impossible
state. It is generally assumed that there exist at least one state ω which is totally
possible—π is said then to be normalized. Extreme cases of knowledge are pre-
sented by:

– complete knowledge i.e. ∃ω0 ∈Ω , π(ω0) = 1 and ∀ω �= ω0,π(ω) = 0.
– total ignorance i.e. ∀ω ∈Ω ,π(ω) = 1 (all values in Ω are possible).

From π , one can describe the uncertainty about the occurrence of an event A ⊆Ω
via two dual measures: the possibility Π(A) and the necessity N(A) expressed by:

Π(A) = supω∈Aπ(ω). (2.6)

N(A) = 1−Π(¬A) = 1− supω/∈Aπ(ω) (2.7)

Measure Π(A) corresponds to the possibility degree (i.e. the plausibility) of A and it
evaluates to what extent A is consistent (i.e. not contradictory) with the knowledge
represented by π . Yet, the expression “it is possible that A is true” does not entail
anything about the possibility nor the impossibility of A. Thus, the description of
uncertainty about the occurrence of A needs its dual measure N(A) which corre-
sponds to the extent to which � A is impossible and it evaluates at which level A is
certainly implied by the π (the certainty degree of A). Main properties of these two
dual measures are summarized in Table 2.1.

Table 2.1 Possibility measure Π and necessity measure N

Π(A) = 1 and Π(A) = 0 N(A) = 1 and N(A) = 0 A is certainly true
Π(A) = 1 and Π(A) ∈]0,1[ N(A) ∈]0,1[ and N(A) = 0 A is somewhat certain
Π(A) = 1 and Π(A) = 1 N(A) = 0 and N(A) = 0 Total ignorance

The particularity of the possibilistic scale is that it can be interpreted in two man-
ners: in an ordinal manner, i.e. when the possibility degrees reflect only an ordering
between the possible values and in a numerical manner, i.e. when the handled values
make sense in the ranking scale.

Technically, a possibility distribution is a normal fuzzy set (at least one mem-
bership grade equals 1). Indeed, all fuzzy numbers can be interpreted as specific
possibility distributions. More precisely, given a variable X whose values are re-
stricted by a fuzzy set F characterized by its membership function μF , so that πX

is taken as equal to the membership function μF(x). Thus, the possibility and ne-
cessity measures will be expressed in terms of supremum degrees of the μF , i.e.
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Π(X) = supx∈XμF(x) and N(X) = 1− supx/∈XμF(x). In this work, we are interested
in a particular form of possibility distributions, namely those represented by trian-
gular fuzzy numbers and commonly known as triangular possibility distributions.
A triangular possibility distribution πX is defined by a triplet [x, x̂,x], as shown in
Fig. 2.2, where [x, x] is the interval of possible values called its bounded support and
x̂ denotes its kernel value (the most plausible value).

1.0

0.0
x x

pX

x
〈

Fig. 2.2 Triangular possibility distribution

In the remaining, we use X = [x, x̂,x] ⊆ R to denote the triangular fuzzy number
X , meaning that X is represented by a triangular possibility distribution πX . This
representation is characterized by a membership function μX which assigns a value
within [0,1] to each element in x ∈ X . Its mathematical definition is given by:

μX (x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x−x
x̂−x , x ≤ x ≤ x̂

1, x = â
x−x
x−x̂ , x̂ ≤ x ≤ x

0, otherwise.

(2.8)

However, in practical use of triangular fuzzy numbers, a ranking procedure needs
to be applied for decision-making. In other words, one triangular fuzzy number
needs to be evaluated and compared with the others in order to make a choice among
them. Indeed, all possible topological relations between two triangular fuzzy num-
bers A = [a, â,a] and B = [b, b̂,b] may be covered by only four different situations,
which are: Fuzzy disjoint, Fuzzy weak overlapping, Fuzzy overlapping and Fuzzy
inclusion [20]. These situations, illustrated in Fig. 2.3 should be taken into account
for ranking triangular fuzzy numbers.

Fuzzy Disjoint Fuzzy Weak-Overlapping Fuzzy Overlapping Fuzzy Inclusion

a a a b b b

a a

b b bb b b

a a aa aa a

b b b

Fig. 2.3 Possible topological situations for two TFNs
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2.4.2 Adaptation of Possibilistic Setting

In the following, we choose to express the uncertain data of multi-objective prob-
lems under uncertainty using triangular possibility distributions (i.e. triangular
fuzzy numbers) as defined in the previous subsection. Then, as a multi-objective
optimization problem under uncertainty involves the simultaneous satisfaction of
several objectives respecting a set of constraints and while considering some input
data uncertainties, we assume that the observed objectives and some constraints (es-
pecially those depends on uncertain variables) are affected by the used form of these
uncertainties.

Thus, as in our case, uncertainty is represented by a triangular form, the uncer-
tain constraints in such a problem may be disrupted by this fuzzy form and so will
be fuzzy constraints. Yet, the satisfaction of such constraints cannot be directly pre-
dicted since it is difficult to estimate directly that a fuzzy constraint is fully satisfied
or fully violated. At this level, we propose firstly to use the two measures of possi-
bility theory Π and N in order to express the satisfaction of a given fuzzy constraint,
as follows:
Let X = [x, x̂,x] ⊆ R be a triangular fuzzy variable, let x be any instance of X , let v
be a given fixed value and let C = (X ≤ v) be a fuzzy constraint that depends only on
the value of X and whose membership function is μ(x), then we have the measures
Π(X ≤ v) and N(X ≤ v) = 1−Π(X > v) are equal to:

Π(X̃ ≤ v) = sup μx≤v(x) =

⎧
⎨
⎩

1 if v > x̂
v−x
x̂−x if x ≤ v ≤ x̂
0 if v < x.

(2.9)

N(X̃ ≤ v) = 1− sup μx>v(x) =

⎧⎨
⎩

1 if v > x
v−x̂
x−x̂ if x̂ ≤ v ≤ x
0 if v < x̂.

(2.10)

These formulas will be used to express the degrees that a solution satisfies the fuzzy
constraint.

Example 1 As an example of constraint satisfaction expressed by the possibility
and necessity measures, we have Q = [q, q̂,q] = [20,45,97] is a triangular fuzzy
quantity of objects, M = 50 is the maximum size of a package and C = (Q ≤ M) is
the fuzzy constraint which imposes that the total quantity of objects must be less than
or equal to the package size. In this case, Π(Q ≤ M) = 1 because M = 50 > q̂ = 45
and N(Q ≤ M) = M−q̂

q−q̂ = 50−45
97−45 = 0.096 because q̂ = 45 ≤ M = 50 ≤ q = 97.

Note that, a constraint may fail even though its possibility achieves 1 and holds even
though its necessity is 0. In addition, an often used definition says that the possibility
measure Π gives always the best case and shows the most optimist attitude, while
the necessity N gives the worst case and shows the most pessimist attitude. Then, as
presented above, Π and N are related to each others by a dual relationship. There-
fore, a combination of these two measures allows the expression of both optimistic
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and pessimistic attitude of the decision maker. From these remarks, we can conclude
that it is more efficient at this step to use the linear combination of possibility and
necessity measures proposed by Brito et al. [4], rather than treating each measure
separately. This linear combination is defined as the following:
Given a constraint A, its weight denoted by W (A) which corresponds to the combi-
nation of the weighted possibility and necessity, is expressed by:

W (A) = λ Π(A)+ (1−λ ) N(A)≥ α. (2.11)

where the parameter λ ∈ [0,1], measures the degree of optimism or confidence of
the decision maker such that:

λ =

⎧
⎨
⎩

1 Total optimistic case
0 Total pessimistic case
0.5 Neither optimistic nor pessimistic.

(2.12)

and α ∈ [0,1] is a given threshold of satisfaction fixed by the decision maker.
This formula indicates that the weight measure W(A) must be higher than a given
threshold α . The higher it is, the greater the constraint will be satisfied.

Secondly, knowing that propagating the uncertainty of multi-objective problem’s
data through the resolution model leads often to uncertain formulation of objective
functions and as in our case the uncertain data are represented by triangular fuzzy
numbers, the objective functions will be consequently disrupted by this fuzzy form.
Let us assume that, a multi-objective triangular-valued function can be mathemati-
cally defined as:

F : X → Y ⊆ (R×R×R)n,

F(x) =−→y =

⎛
⎝

y1 = [y1, ŷ1,y1]
. . .

yn = [yn, ŷn,yn]

⎞
⎠ (2.13)

Clearly, in this case, the classical multi-objective techniques cannot be applied
since they are only meant for deterministic case. Therefore, a need for special op-
timization methods techniques to handle the generated triangular-valued functions
is evident. To this end, we first introduce a new Pareto dominance over triangular
fuzzy numbers, in both mono-objective and multi-objective cases.

2.4.3 New Pareto Optimality over Triangular Fuzzy Numbers

In this section, we first present new mono-objective dominance relations between
two TFNs. Then, based on these mono-objective dominance, we define a new Pareto
dominance between vectors of TFNs, for multi-objective case. Note that, the mini-
mization sense is considered in all our definitions.
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2.4.3.1 Mono-Objective Dominance Relations

In the mono-objective case, three dominance relations over triangular fuzzy num-
bers are defined: Total dominance (≺t), Partial strong-dominance (≺s) and Partial
weak-dominance (≺w).

Definition 1 Total Dominance
Let y = [y, ŷ,y] ⊆ R and y′ = [y′, ŷ′,y′] ⊆ R be two triangular fuzzy numbers. y

dominates y′ totally or certainly (denoted by y ≺t y′) if: y < y′.

This dominance relation represents the fuzzy disjoint situation between two trian-
gular fuzzy numbers and it imposes that the upper bound of y is strictly inferior than
the lower bound of y′ as shown by case (1) in Fig. 2.4.

1
μ 1

1
μ 2

y

y y

y y� y� y�

y� y�

y y yy� y�y y�

Fig. 2.4 Total dominance and partial strong-dominance

Definition 2 Partial Strong-Dominance
Let y = [y, ŷ,y] ⊆ R and y′ = [y′, ŷ′,y′] ⊆ R be two triangular fuzzy numbers. y

strong dominates y′ partially or uncertainly (denoted by y ≺s y′) if:

(y ≥ y′)∧ (ŷ ≤ y′)∧ (y ≤ ŷ′).

This dominance relation appears when there is a fuzzy weak-overlapping between
both triangles and it imposes that firstly there is at most one intersection between
them and secondly this intersection should not exceed the interval of their kernel
values [ŷ, ŷ′], as shown by case (2) in Fig. 2.4.

Definition 3 Partial Weak-Dominance
Let y = [y, ŷ,y] ⊆ R and y′ = [y′, ŷ′,y′] ⊆ R be two triangular fuzzy numbers. y

weak dominates y′ partially or uncertainly (denoted by y ≺w y′) if:

1. Fuzzy overlapping

[(y < y′)∧ (y < y′)]∧
[((ŷ ≤ y′)∧ (y > ŷ′))∨ ((ŷ > y′)∧ (y ≤ ŷ′))∨ ((ŷ > y′)∧ (y > ŷ′))].

2. Fuzzy Inclusion

(y < y′)∧ (y ≥ y′).
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Fig. 2.5 Partial weak-dominance

In this dominance relation, the two situations of fuzzy overlapping and inclusion
may occur. Figure 2.5 presents four examples of possible cases, where in (1) and (3)
y and y′ are overlapped, while, in (2) and (4) y′ is included in y.

Yet, the partial weak-dominance relation cannot discriminate all possible cases
and leads often to some incomparable situations as for cases (3) and (4) in Fig. 2.5.
These incomparable situations can be distinguished according to the kernel value
positions in fuzzy triangles. Thus, we propose to consider the kernel values configuration
as condition to identify the cases of incomparability, as follows:

ŷ− ŷ′ =

{
< 0, y ≺w y′

≥ 0, y and y′ can be incomparable.

Subsequently, to handle the identified incomparable situations (with kernel condi-
tion ŷ− ŷ′ ≥ 0), we introduce another comparison criterion, which consists in com-
paring the discard between both fuzzy triangles as follows:

y ≺w y′ ⇔ (y′ − y)≤ (y′ − y)

Similarly, it is obvious that: y′ ≺w y ⇔ (y′ − y)> (y′ − y).
It is easy to check that in the mono-objective case, we obtain a total pre-order

between two triangular fuzzy numbers, contrarily to the multi-objective case, where
the situation is more complex and it is common to have some cases of indifference.

2.4.3.2 Pareto Dominance Relations

In the multi-objective case, we propose to use the mono-objective dominance rela-
tions, defined previously, in order to rank separately the triangular fuzzy solutions of
each objective function. Then, depending on the types of mono-objective dominance
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founded for all the objectives, we define the Pareto dominance between the vectors
of triangular fuzzy solutions. In this context, two Pareto dominance relations: Strong
Pareto dominance (≺SP) and Weak Pareto dominance (≺WP) are introduced.

Definition 4 Strong Pareto Dominance.
Let −→y and −→y ′ be two vectors of triangular fuzzy numbers. −→y strong Pareto

dominates −→y ′ (denoted by −→y ≺SP
−→y ′) if:

(a) ∀i ∈ 1, . . . ,n : yi ≺t y′i ∨ yi ≺s y′i.

(b) ∃i ∈ 1, . . . ,n : yi ≺t y′i ∧∀ j �= i : y j ≺s y′j
(c) ∃i ∈ 1, . . . ,n : (yi ≺t y′i ∨ y j ≺s y′j)∧∀ j �= i : y j ≺w y′j .
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Fig. 2.6 Strong Pareto dominance

The strong Pareto dominance holds if either yi total dominates or partial strong
dominates y′i in all the objectives (Fig. 2.6a: y1 ≺t y′1 and y2 ≺t y′2), either yi total
dominates y′i in one objective and partial strong dominates it in another (Fig. 2.6b:
y1 ≺s y′1 and y2 ≺t y′2 ), or at least yi total or partial strong dominates y′i in one
objective and weak dominates it in another (Fig. 2.6c, d: y1 ≺s y′1 and y2 ≺w y′2).

Definition 5 Weak Pareto dominance
Let −→y and −→y ′ be two vectors of triangular fuzzy numbers. −→y weak Pareto dom-

inates −→y ′ (denoted by −→y ≺W P
−→y ′) if: ∀i ∈ 1, . . . ,n : yi ≺w y′i.

The weak Pareto dominance holds if yi weak dominates y′i in all the objectives
(Fig. 2.7a). Yet, a case of indifference (defined below) can occur if there is a weak
dominance with inclusion type in all the objectives (Fig. 2.7b).
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Definition 6 Case of Indifference
Two vectors of triangular fuzzy numbers are indifferent or incomparable (denoted

by −→y ‖−→y ′) if: ∀i ∈ 1, . . . ,n : yi ⊆ y′i.
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Fig. 2.7 (a) Weak Pareto dominance and (b) Case of indifference

The proposed Pareto dominance in bi-dimensional objective space can easily be
generalized for ranking more than two objectives. Note that, if the considered tri-
angular objectives are non-independent, the estimation in a bi-dimensional space
can have different distributions (non-triangular) like linear shapes. Finally, the is-
sue now is how integrate this dominance in the research process of multi-objective
optimization algorithms.

2.4.4 Extended Optimization Algorithm

In the following, we present an extension of two well-known Pareto-based multi-
objective evolutionary algorithms: SPEA2 [36] and NSGAII [9], in order to enable
them handling a multi-objective problem with triangular-valued objectives. Both
algorithms have proved to be very powerful tools for multi-objective optimization.
Due to their population-based nature, they are able to generate multiple optimal
solutions in a single run with respect to the good convergence and diversification of
obtained solutions. We call our two extended algorithms respectively, ESPEA2—
Strength Pareto Evolutionary Algorithm2 and ENSGAII—Non-dominated Sorting
Genetic Algorithm II.
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2.4.4.1 ESPEA2

SPEA2 is an improved version of the Strength Pareto Evolutionary Algorithm SPEA
initially proposed by Zitzler and Thiele [35]. This evolutionary algorithm uses
mainly three techniques: a dominance based approach as fitness assignment strat-
egy, a nearest neighbor technique that allows a good diversity preservation and an
archive with fixed size that guarantees the elitist storage of optimal solutions. To
extend such techniques to triangular fuzzy context, we propose firstly to replace the
classical dominance approach by the new Pareto dominance approach proposed for
ranking triangular-valued objectives. Secondly, an adaptation of the nearest neigh-
bor technique is introduced. Indeed, in SPEA2, this technique is based on Euclidean
distance to estimate the density in its neighborhood and it consists in calculating
for each solution (objective vector) the distance to its k-nearest neighbor and then
adding the reciprocal value to the fitness vector. Yet, as in our case the solutions
are triangular objective vectors and knowing that the Euclidean distance should be
applied only between two exact vectors, we propose to use the expected value as a
defuzzification method [32] in order to approximate the considered triangular vec-
tors, such that for each triangular fuzzy number yi = [yi, ŷi,yi], the expected value is
defined by:

E(yi) = (yi + 2× ŷi+ yi)/4 (2.14)

Then, the Euclidean distance between two triangular vectors −→y = (y1, . . . ,yn) and
−→y ′ = (y′1, . . . ,y

′
n) can be applied as follows:

D(−→y ,−→y ′) = D(E(−→y ),E(−→y ′)) =
√
∑

i=1..n

(E(yi)−E(y′i))
2 (2.15)

Finally, we adapt the SPEA2 archive to triangular space in order to enable it keeping
the obtained triangular solutions. These extensions are integrated into the research
process of SPEA2 by modifying the following steps:

– Evaluation: Rank individuals using the new Pareto dominance ≺T P.
– Environmental selection:

1. Copy all non-dominated individuals having fitness values lower than one in
the triangular archive A with fixed size N.
2. if A is too large (size(A)>N) then, reduce A by means of truncation operator
based on Nearest neighbor method to keep only the non-dominated individuals
with good spread.
3. else if A is too small (size(A)<N) then, fill A with the best dominated individ-
uals.
4. otherwise (size(A) =N), the environmental selection is completed.

– Mating selection: Perform binary tournament selection with replacement on the
archive A in order to fill the mating pool.
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2.4.4.2 ENSGAII

NSGAII is an extension of an elitism PMOEA called Non-dominated Sorting Ge-
netic Algorithm NSGA, originally proposed by Deb and Srinivas [8]. Unlike the
SPEA2 algorithm, NSGAII uses a crowded-comparison operator as diversity preser-
vation technique in order to maintain a uniformly spread front by front. In addition,
it does not use an explicit archive for the elitism operation, it only consider the
population as a repository to store both elitist and non-elitist solutions. To extend
NSGAII to triangular context, we propose at the first step to use the new Pareto
dominance between triangular-valued objectives in order to ensure the fitness as-
signment procedure, in which a dominance depth strategy is applied. At the sec-
ond stage, we provide an adaptation of the crowded-comparison operator. Indeed,
this operator uses the Crowding Distance that serves to get a density estimation of
individuals surrounding a particular individual in the population. More precisely,
the total Crowding Distance CD of an individual is the sum of its individual objec-
tives’ distances, that in turn are the differences between the individual and its closest
neighbors. For the ith objective function yi, this distance is expressed by:

CD(i) = ∑
i=1..n

( fyi (i+ 1)− fyi(i− 1))/( f max
yi

− f min
yi

) (2.16)

Where fyi is the fitness value of its neighbors (i− 1) and (i+ 1), f max
yi

and f min
yi

are
respectively the maximum and minimum value of yi.
However, as in our case, the objective functions are represented by triangular fuzzy
values, we propose also to approximate these triangular numbers by calculating their
expected values (Eq. (2.14)) before applying the Crowding distance. Finally, it is
necessary to adapt both Evaluation and Selection steps in NSGAII, like in SPEA2
algorithm. The distinctive features of NSGAII lie in using the crowding compari-
son procedure as truncation operator to reduce the population in the environmental
selection step and also in considering it as a second selection criteria when two
solutions have the same rank in the tournament selection step.

2.5 Application on a Multi-Objective Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is an important combinatorial optimization
problem, widely used in a large number of real-life applications [31]. The classical
VRP consists in finding optimal routes used by a set of identical vehicles, stationed
at a central depot, to serve a given set of customers geographically distributed and
with known demands. Through the years, many variants and models derived from
the basic VRP have been discussed and examined in the literature. In this work, we
are interested in a well-known variant of VRP, the so-called Multi-objective VRP
with Time Windows and Uncertain Demands (MO-VRPTW-UD). This variant is
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based firstly on the principle of classical VRP, where all the data are determinis-
tic, excepting the customer demands which are uncertain, meaning that the actual
demand is only known when the vehicle arrives at the customer location. Several re-
searchers have tried to solve this problem and proposed to deal with the uncertainty
of demands using different ways such as probability distributions, dempster belief
functions and possibility distributions [1, 13, 28]. In our case, the uncertainty of
demands is represented via triangular fuzzy numbers (defined previously) and the
objectives to be optimized are respectively, the minimization of the total traveled
distance and the total tardiness time.

Formally, a MO-VRPTW-UD may be defined as follows:
Let G(N,A) be a weighted directed graph with an arc set A and a node set Ni =
{N0, . . . ,Nn} where the node N0 is the central depot and the other nodes Ni �= N0

represent the customers. For each customer is associated an uncertain demand dmi.
Only one vehicle k with a limited capacity Q, is allowed to visit each customer.
A feasible vehicle route R is represented by the set of served customers, starting
and ending at the central depot: Rk = (N0,N1, . . . ,Nn,N0). Xk

i j denotes the decision
variable which is equal to 1 if the vehicle k travels directly from node Ni to node
Nj and to 0 otherwise. di j denotes the symmetric traveled distance between two
nodes (Ni,Nj). This distance is proportional to the corresponding travel time ti j.
Figure 2.8 illustrates an example of MO-VRPTW-UD, with a central depot, three
vehicles (V 1,V2,V3) having a maximum capacity Q = 10 and a set of eight cus-
tomers represented by nodes. Each customer i = 1 . . .8 has an uncertain demand
expressed in our case by a triangular fuzzy number dm = [dmi, d̂m,dm] (Ex: the
fuzzy demand of the customer 1 is dm1 = [2,7,11]).

Depot

5

V1

dm1= [2, 7, 11]

4
2

8

6

7

3

1

V2

V3

dm5= [6, 8, 12]

dm8= [4, 6, 10]

dm6= [3, 5, 8]

dm4= [2, 4, 7]dm2= [3, 7, 9]dm7= [8, 10, 13]

dm3= [1, 6, 8]

Fig. 2.8 Example of Mo-VRPTW-UD
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The main constraints of this problem are: Vehicle capacity constraint, Distance
constraint and Time windows constraint.

(1) Vehicle capacity constraint

This constraint imposes that the sum of customer demands in each route must
not exceed the limited capacity of associated vehicle. It may be defined as:
∑n

i=1 dmNi
≤ Q. Yet, as in our case the customers demands are fuzzy values

d̃m = [dm, d̂m,dm], we cannot directly verify if the capacity constraint is sat-
isfied or not and so clearly the constraint satisfaction changes to fuzzy. For ex-
ample, consider the customer 7 with fuzzy demand dm7 = [8,10,13] shown in
Fig. 2.8, we cannot check if dm7 is lower, equal or higher than Q = 10 in order
to estimate the transportation costs in terms of time spent and traveled distance.
Thus, to handle the satisfaction of this constraint, we propose to use firstly the
two measures Π and N of fuzzy constraint satisfaction defined previously. For
this example, we obtain Π(dm ≤ Q) = 1 and N(dm ≤ Q) = 0. Then, by apply-
ing the linear combination given by Eq. (2.11) (with for example λ = 0.5 and
α = 0.2), we can conclude that the satisfaction of the fuzzy capacity constraint
is possible (W (dm ≤ Q) = 0.5 > 0.2).

(2) Distance constraint

This constraint imposes that each vehicle with a limited capacity Q must de-
liver goods to the customers according to their uncertain demands dm, with the
minimum transportation costs in term of traveled distance. In other words, if
the capacity constraint of a vehicle is not satisfied, the delivery fails and causes
wasted costs. Therefore, to calculate the traveled distance on a route R defined
a priori, three different situations may be found:

– The demand of a customer is lower than the vehicle capacity (∑ f
i=1 dmNi

<Q):
In this case, the vehicle will serve the current customer f and then move to
the next one ( f + 1).

– The demand of a customer is equal to the vehicle capacity (∑ f
i=1 dmNi

= Q):
In this case, the priori optimization strategy is used. In fact, the vehicle leaves
the depot to serve the first customer f with its total capacity. As it becomes
empty, this vehicle will return to the depot to load and serve the next customer
( f + 1). Thus, the traveled distance will be: D(R) = dN0N1

+∑ f−1
i=1 dNiNi+1

+

dNf N0
+ dN0Nf+1

+∑n−1
i= f+1 dNiNi+1

+ dNnN0
.

– The demand of a customer is higher than the vehicle capacity (∑ f
i=1 dmNi

>
Q): In this case, the vehicle will serve the customer f with its total capacity
(Q−∑ f−1

i=1 dNi), go to the depot to load, return back to the same customer f
to deliver the remaining quantity and then move to the next customer ( f +
1). Thus, the traveled distance will be: D(R) = dN0N1

+∑n−1
i=1 dNiNi+1

+dNf N0
+

dN0Nf
+ dNnN0

.
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Yet as in our case the demands are represented by a triplet of fuzzy values,
we propose to calculate separately the distance for each value of the triangular
fuzzy demand based on the three situations presented above. Consequently, the
traveled distance will be calculated three times and so obtained as triangular
number D = [D, D̂,D].

(3) Time windows constraint
This constraint imposes that each customer will be served within its time win-
dow that represents the interval of time planned for receiving the vehicle ser-
vice. This means that, if the vehicle arrives too soon, it should wait until the
arrival time of its time window to serve the customer, while if it arrives too late
(after the fixed departure time), wasted cost in term of tardiness time appears.
The time windows constraint uses the following notations:

– The central depot has a time window [0, l0], meaning that each vehicle that
leaves the depot at a time 0 goes back to the depot before the time l0.

– Each customer i will be served within his time window [ei, li] by exactly one
vehicle, where the lower bound ei represents the earliest arrival time and the
upper bound li represents the latest arrival time for the visit of vehicles.

– A waiting time Wi means that the vehicles must arrive before the lower bound
of the window ei.

– Ai, Bi refers respectively to the arrival and the departure times to the customer i.
– Each customer imposes a service time Sk

i that corresponds to the goods load-
ing/ unloading time used by the vehicle.

– ti j refers to the travel time from customer i to j.

Firstly, the time needed to serve two consecutive customers i and j is defined as
follows:

xk
i j(S

k
i + ti j + Sk

j)≤ 0 with Ai + Sk
i ≤ Bi.

Besides, a vehicle must arrive at a customer i between the time window [ei, li], but
if it arrives before the lower bound ei, it must wait a while Wi. This waiting time is
calculated as follows:

Wi =

{
0 if Ai ≥ ei

ei −Ai otherwise.

where, the arrival time at customer i is equal to: Ai = Bi−1 + ti,i−1 and the departure
time is equal to: Bi = Ai +Wi + Si. While, if the vehicle arrives at a customer i
after the upper bound of its time window li, a tardiness time must be calculated as
follows:

Ti =

{
0 if Ai ≤ li

Ai − li otherwise.

In the case of routes failure, wasted costs in term of tardiness time will appear.
Yet, knowing that the travel time depends mainly on the traveled distance and as in
our case the obtained distance is a triangular value, the time spent to serve customers
will be disrupted by this triangular form and consequently the tardiness time will be
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also obtained as triangular fuzzy number T = [T , T̂ ,T ]. Finally, all these constraints
combined with the constraints of classical VRP model the MO-VRPTW-UD prob-
lem (Fig. 2.8).

To solve the MO-VRPTW-UD problem, the two extended SPEA2 and NSGAII
algorithms based on our new Pareto optimality are applied. These algorithms are
implemented with the version 1.3-beta of ParadisEO under Linux, especially with
the ParadisEO-MOEO module dedicated to multi-objective optimization [3]. Subse-
quently, to validate the proposed algorithms, we choose to test our VRP application
using the Solomon’s benchmark, which is considered as a basic reference for the
evaluation of several VRP resolution methods [27]. More precisely, six different
Solomon’s instances are used in our experimentation, namely, C101, C201, R101,
R201, RC101 and RC201. Yet, in these instances, all the input values are exact and
so the uncertainty of customer demands is not taken into account. At this level, we
propose to generate for each instance the triangular fuzzy version of crisp demands
in the following manner. Firstly, the kernel value (d̂m) for each triangular fuzzy de-
mand dm is kept the same as the current crisp demand dmi of the instance. Then, the
lower (dm) and upper (dm) bounds of this triangular fuzzy demand are uniformly
sampled at random in the intervals [50%dm,95%dm] and [105%dm,150%dm], re-
spectively. This fuzzy generation manner ensures the quality and reliability of gen-
erated fuzzy numbers. Finally, each of the six sampled fuzzy instances is tested
on the both algorithms executed 30 times. Since 30 runs have been performed on
each algorithm SPEA2 and NSGAII, we obtained for each instance, 30 sets of opti-
mal solutions that represent the Pareto fronts of our problem. Each solution shows
the lowest traveled distance and tardiness time, which are represented by triangular
numbers. Examples of two Pareto fronts obtained for one execution of the instance
C101 using each algorithm are shown in Figs. 2.10 and 2.11, where the illustrated
fronts are composed by a set of triangles, such that each triangle represents one
Pareto optimal solution. For instance, the bold triangular (in Fig. 2.10) represents an
optimal solution with minimal distance (the green side) equal to [2413,2515,2623]
and tardiness time (the red side) equal to [284,312,295,280,315,322]. Note that,
both algorithms converge to optimal fronts approximation in a very short run-time
(Approx. 0.91 min for SPEA2 and 2.30 min for NSGAII). However, we cannot com-
pare results with the obtained results of other proposed approaches for solving MO-
VRPTW-UD because of incompatibilities between the objectives to be optimized.

To assess the performance of our both algorithms, we propose to use two well-
known unary quality indicators:

(i) Hypervolume Indicator (IH) [38], considered one of the few indicators that
measures the approximation quality in terms of convergence and diversity simulta-
neously. This intuitive quality indicator needs the specification of a reference point
ZMax that denotes an upper bound over all the objectives and a reference set Z∗

N of
non-dominated solutions. In our case, the quality of a given output set A in compar-
ison to Z∗

N is measured using the Hypervolume difference metric I−H . As shown in
Fig. 2.9, this indicator computes the difference between these two sets by measuring
the portion of the objective space weakly dominated by Z∗

N and not by A.
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Fig. 2.9 Hypervolume difference indicator

(ii) Epsilon Indicator (Iε) [37], dedicated to the measure of approximations qual-
ity in term of convergence. More explicitly, this indicator is used to compare non-
dominated approximations and not the solutions. In our case, we use the additive
ε-indicator (Iε+) which is a distance based indicator that gives the minimum factor
by which an approximation A has to be translated in the criterion space to weakly
dominate the reference set Z∗

N . This indicator can be defined as follows:

I1
ε+(A) = Iε+(A,Z

∗
N) (2.17)

where
Iε+(A,B) = min{∀z ∈ B,∃z′ ∈ A : z′i − ε ≤ zi,∀ 1 ≤ i ≤ n} (2.18)

However, these two indicators are only meant to evaluate the quality of deter-
ministic Pareto front approximations. Thus, to enable them evaluating our uncertain
approximations (i.e., Triangular fuzzy solutions), we propose to consider the ex-
pected values of the triangular solutions (Function) as the sample of values to be
used for the qualification of our both algorithms. In other words, the both indicators
are simply applied on the samples of expected values computed for each instance.
Therefore, as in our case 30 runs per algorithm have been performed, we obtain 30
Hypervolume differences and 30 epsilon measures for each tested sample. Once all
these values are computed, we need to use statistical analysis to be able to compare
our two algorithms. To this end, we choose to use Wilcoxon statistical test described
in [37].

Table 2.2 gives a comparison of SPEA2 and NSGAII algorithms for the six tested
instances. This comparison based on the results of I−H and Iε+ indicators, shows
that the SPEA2 algorithm is significantly better than the NSGAII algorithm on all
the instances, excepting the instances R201 and RC201, where for I−H there is no
significant difference between the approximations of both algorithms.
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Table 2.2 Algorithms comparison using Wilcoxon test with a P-value=0.5%

I−H Iε+
Instances Algorithms SPEA2 NSGAII SPEA2 NSGAII

C101
SPEA2 – ≺ – ≺
NSGAII � – � –

C201
SPEA2 – ≺ – ≺
NSGAII � – � –

R101
SPEA2 – ≺ – ≺
NSGAII � – � –

R201
SPEA2 – ≡ – ≺
NSGAII ≡ – � –

RC101
SPEA2 – ≺ – ≺
NSGAII � – � –

RC201
SPEA2 – ≡ – ≺
NSGAII ≡ – � –

According to the metric under consideration (I−H or Iε+), either the algorithm located at a specific
row is significantly better (≺) than the algorithm located at a specific column, either it is worse

(�) or there is no significant difference between both (≡)

Fig. 2.10 Pareto front (C101-SPEA2)

2.6 Conclusion

This chapter addresses the multi-objective problems with fuzzy data, in particu-
lar, with triangular-valued objective functions. To solve such problems, we have
proposed an extension of two multi-objective evolutionary algorithms: SPEA2 and
NSGAII by integrating a new triangular Pareto dominance. The implemented al-
gorithms have been applied on a multi-objective vehicle routing problem with un-
certain demands and then experimentally validated on the Solomon’s benchmark.
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Fig. 2.11 Pareto front (C101-NSGAII)

Subsequently, we have obtained an encouraging results. As a future work, we intend
to refine the algorithmic features by introducing for example a new fuzzy distance
for the density estimation techniques and to extend the proposed Pareto dominance
for ranking other fuzzy shapes like trapezoidal fuzzy numbers. Another perspective
will be the extension of multi-objective performance metrics to uncertain context
(i.e, fuzzy context).
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Chapter 3
Combining Neighborhoods into Local Search
Strategies

Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina,
and Christophe Ponsard

Abstract This paper presents a declarative framework for defining local search
procedures. It proceeds by combining neighborhoods by means of so-called com-
binators that specify when neighborhoods should be explored, and introduce other
aspects of the search procedures such as stop criteria, solution management, and var-
ious metaheuristics. Our approach introduces these higher-level concepts natively
in local search frameworks in contrast with the current practice which still often
relies on their ad-hoc implementation in imperative language. Our goal is to ease
the development, understanding, experimentation, communication and maintenance
of search procedures. This will also lead to better search procedures where lots of
efficiency gains can be made both for optimality and speed. We provide a compre-
hensive overview of our framework along with a number of examples illustrating
typical usage pattern and the ease of use of our framework. Our combinators are
available in the search component of the OscaR.cbls solver.

Keywords Local Search • Metaheuristics • Search Strategies • Neighborhoods •
Combinators

3.1 Introduction

Local search is a well-established approach for tackling large combinatorial prob-
lems within reasonable amounts of time. A local search solver is built on two main
components: a model, and a search strategy. The model represents the problem, and
includes the variables and constraints that constitute the problem. A search proce-
dure specifies how the search will find a proper solution to the problem. It is made
of several components such as [8, 23]:

• Neighborhoods, which represent sets of “close” solutions that can be reached
from the current solution in one move. Neighborhoods can be compared on their
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varying efficiency, optimality, and connectivity. They can also be composed to-
gether to reach new trade-offs around these aspects.

• Strategies to escape from local minima, also called metaheuristics, such as tabu
search, simulated annealing, random restart, etc. [9, 8].

• Solution managers, which allow us to store the best solution found during the
search, and restore it when needed.

• Stop criteria to identify when the search will not find any more relevant
solutions.

A good design of search procedures is critical because it influences both the
efficiency of the search, and the quality of the solution. Designing a local search
procedure is a tedious work, compared to the corresponding work required e.g.
for Constraint Programming (CP) solvers. Furthermore, local search strategies
are still often expressed in procedural programming style because of the host
programming language (Java, C++) or the habit to use such a paradigm. This
negatively impacts the ease of development, tuning and maintenance of search
procedures.

This paper presents a framework to facilitate the development of search proce-
dures. The approach relies on a library of so-called combinators that proposes the
features commonly found in search procedures as standard bricks. The goal of our
design is to define a Domain-Specific Language (DSL) capturing the right abstrac-
tions for easily specifying search strategies while keeping the relevant tuning knobs
available to the developer. Our approach can speed up the development and exper-
imentation of search procedures when developing a specific solver based on local
search, and hopefully, enable the developers to be more focused on the considered
problem. Besides, using such a high-level language for defining search procedures
also makes them easier to be understood, shared and maintained.

An implementation of these combinators is available in the search component
of the OscaR.cbls solver. OscaR.cbls is an open source solver for constraint-based
local search [23]. It features a powerful modeling framework including variables of
both integer and set of integer types and including roughly ninety invariants and con-
straints. Using these invariants and constraints, users can formulate their optimiza-
tion problem declaratively and benefit from generic and efficient model evaluation
methods such as partial propagation to efficiently explore neighborhoods [5, 17].
The topic of this paper being search strategies, it focuses on the search component
exclusively. Our implementation is written is the Scala language [20] as the rest or
OscaR. The Scala supports for DSL was used and enables its transposition to other
frameworks.

This paper is structured as follows: Sect. 3.2 explains how our contribution com-
pares to existing approaches. Section 3.3 presents the main principles of neighbor-
hood combinators and describes the neighborhoods available in our framework. Sec-
tion 3.4 shows the combinators in action on a detailed example of a search procedure
applied to the uncapacitated warehouse location problem. Section 3.5 presents an
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overview of the combinators currently available in our framework. Section 3.6 fur-
ther illustrates the use of our combinator framework on a routing problem. Finally
Sect. 3.7 summarizes the main benefits and current limitations of our framework.

3.2 Related Work

Developing high-level constructs to simplify the development of search strate-
gies is not a new idea. It has been proposed for CP engines as well as local
search approaches, with various trade-offs between expressiveness, ease of use, and
flexibility.

Generalised Local Search (GLS) Machines introduce the idea of organizing
neighborhoods in a state-machine fashion, each state corresponding to a neighbor-
hood, and transitions describing when the strategy should switch between neigh-
borhoods [12]. Our combinators compare to GLS machines in the same way as
structured code (if, while, etc.) compare to state machines, that is: they introduce
some hierarchical structure and do not allow representing any transitions easily. Our
combinators support all components of search procedures described in Sect. 3.1.

EasyLocal++ organizes search strategies around two concepts, namely runners,
and solvers [6]. Examples of runners are tabu search and simulated annealing.
Solvers control the search by generating the initial solutions, and deciding how,
and in which sequence, runners have to be activated. Example of solvers are round-
robin (a.k.a. token-ring strategy), and multi-start. Our framework unifies runners and
solvers into neighborhoods, which might exhibit very complex behavior including
executing a round-robin among several neighborhoods.

Localizer is a modeling language for local search that offers powerful constructs
for defining search procedures. These constructs are related to the accepting crite-
rion as well as simple neighborhoods [13]. Our framework supports some of the
neighborhoods proposed by localizer, and is also extendable to any kind of neigh-
borhood, provided it is represented as a class with the proper inheritance from our
framework. Also, Localizer proposes a standard language for defining accepting
criteria, which is also incorporated into our framework.

The Comet system includes two mechanisms to combine neighborhoods by rep-
resenting moves as closures, and attach some custom code variables by means of
events, triggered on value changes [23]. The gain of such high-level approach for
specifying search procedures has been demonstrated on concrete examples [22]. Our
approach generalizes this philosophy by proposing several standard ways of com-
bining neighborhoods, and extending to other aspects of search procedures such as
stop criterion and metaheuristics. The downside is that our approach might seem less
flexible, although custom code can be embedded into search procedures through the
dedicated combinator.

Some patterns of neighborhood combination tend to appear in scientific publica-
tions on local search, notably in the context of scheduling [21].
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Paradiseo supports mechanisms to easily specify tabu search, simulated anneal-
ing, and hill-climbing [3]. Our framework unifies searches and neighborhoods into
a single API, and lets us tune search procedures more precisely.

SPIDER [10] is a graphical language for representing search strategies, by means
of control networks. This approach focuses mainly on the definition of the neigh-
borhoods to be applied while we focus more on the overall strategy. Our approach
favors a textual DSL that can be expressed close to the model and maintained using
standard code revision tools.

ToOLS, OPL, and Search Combinators are frameworks that support the declara-
tion of search strategies for backtracking-based engines such as constraint program-
ming, with variants such as LDS [4, 7, 19]. Their approach is very similar to ours,
except that our framework is dedicated to local search. As such, our framework sup-
ports the declaration of metaheuristics influencing the acceptation function, tolerates
a degradation of the objective function (e.g. for tabu searches) and allows represent-
ing the cross-product of two neighborhoods as a single combined neighborhood.

In [24], a mechanism called Constraint combinators is proposed to combine sev-
eral constraints in the context of local search engines. Our approach is concerned
about combining neighborhoods, and not the constraints in the model.

Localsolver is a commercial solver that implements local search [1]. This solver
is a black-box because the search procedure is standard among all models and can-
not be customized by the user. We pursue a different goal, namely to ease people
defining their own search strategy, and possibly develop innovative ones, dedicated
to their own optimization problems.

3.3 Principle of Neighborhood Combinators

In our framework, a neighborhood is represented by a class instance that can be
queried for a move, given the current solution, an acceptance criterion, and an ob-
jective function. Neighborhood queries return either the message NoMoveFound or
the message MoveFound that carries a description of the move, and the value of the
objective function once the move will be committed. The returned move is expected
to be acceptable with respect to the given acceptance criterion and objective func-
tion. Querying a neighborhood for a move does not commit the move, although it
requires a computational exploration of the neighborhood. The global search loop
repeatedly queries moves and commits them until some stopping criterion is met, or
until no move can be found by the neighborhood.

The result of combining neighborhoods are still neighborhoods, offering this
same API. The most intuitive combination of neighborhoods is “Best”. Let a and b
be neighborhoods, the following statement is also a neighborhood (statements and
code fragments are written in Scala [20]):

new Bes t ( a , b )
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When the combined neighborhood above is queried for a move, it queries both a
and b for a move. It then returns the move having the lowest value for the objective
function, according to the values carried by the returned moves. If a neighborhood
cannot find a move, the overall result is given by the other neighborhood. If no
neighborhood could find a move, the combined neighborhood does not find a move.
Combinators are implemented in our framework as a DSL, enabling the use of a
lighter infix notation. The above example can be rewritten as follows:

a b e s t b

Besides combinators, our framework includes a set of neighborhoods that can be
used to develop custom search procedures. These include:

• Standard domain-independent neighborhoods on arrays of integer variables such
as assignNeighborhood that changes the value of a single decision variable in an
array, swapsNeighborhood that swaps the value of two decision variables in an
array, and RandomizeNeighborhood that randomizes the value of a fraction of
integer variables in an array, etc.

• Scheduling neighborhoods such as relaxing and flattening the critical path [14].
• Routing neighborhoods such as one-point-move, two-opt, etc. [11].

Domain-independent neighborhoods are most interesting because they are quite
flexible to be used in very different domains. They also include several features
including symmetry elimination, mechanisms to perform intensification or tabu
search, the possibility to specify whether the best or the first move is required, and
hot restarting. A hot restart is the possibility to start the neighborhood exploration
from the last explored point in the previous query instead of starting from the initial
position at each query. Other neighborhood offer similar features.

3.4 Six Shades of Warehouse Location

This section illustrates how a dedicated search procedure can be developed using
neighborhood combinators, for solving the uncapacitated warehouse location prob-
lem. The goal is to convince that this framework captures the right abstractions for
easily specifying search strategies while keeping the relevant tuning knobs available
to the developer. For a discussion on the best search procedures for this problem, see
e.g. [23].

The uncapacitated warehouse location problem takes as input a set of potential
warehouses W and a set of stores S. Each warehouse has a fixed cost fw and the
transportation cost from warehouse w to store s is given by cws. The problem is to
find a subset of warehouses to open in order to minimize the sum of the fixed and
transportation costs. Each store is assigned to its nearest open warehouse.
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We consider the two following neighborhoods:

• Switching a single warehouse: either closing an open warehouse, or opening a
closed warehouse. This neighborhood is of size O(#W ) and is connected, so each
point of the solution space can be reached by this neighborhood.

• Swapping two warehouses: simultaneously close an open warehouse and open a
closed warehouse. This neighborhood is of size O(#W 2) and is not connected,
some points of the solution space cannot be reached by this neighborhood. How-
ever, this neighborhood has more neighbors than the first one.

The first neighborhood ensures that the whole solution space is reachable, and
the second enables us to reach a better solution than the first neighborhood would
reach alone. Let warehouseOpenArray be an array of Boolean variables. The neigh-
borhoods can be instantiated as follows:

v a l swi t chWarehouse = new AssignNeighborhood ( warehouseOpenArray )
v a l swapWarehouses = new SwapsNeighborhood ( warehouseOpenArray )

A first idea is to perform moves from switchWarehouse until it cannot find more
moves, then switch to swapWarehouses and look for moves there. Once swapWare-
houses is exhausted, come back to switchWarehouse and so on. This behavior en-
ables us to use the same neighborhood as long as it can find a move because neigh-
borhoods are more efficient when started from their previous end, since they have
some ‘hot restart’ mechanism. Besides, switching back to the first neighborhood af-
ter the second one is exhausted makes the combined neighborhood connected. This
behavior is implemented in the ExhaustBack combinator. Through the infix nota-
tion, the combined neighborhood is built as follows:

v a l switchEBSwap = swi tchWarehouse
exhaus t B ack swapWarehouses

Let be obj an objective function, neighborhoods, including combined ones, sup-
port a standard outer search loop, which can be run through a call to the method
doAllMoves as follows:

switchEBSwap . doAllMoves ( ob j )

This method also inputs an optional stop criterion and an acceptation function.
They both have default values and are therefore not represented here above. The de-
fault stop criterion never stops the search, so search is stopped because the neighbor-
hood has no acceptable neighbor and the default acceptation function only accepts
moves that strictly reduce the objective function.

The neighborhood switchEBSwap might be trapped into some local minima. To
escape from them, we can use a neighborhood that performs a random move when
switchEBSwap cannot not find any improving move. It can be instantiated from our
standard library of neighborhoods as follows:

v a l randomize = new RandomizeNeighborhood (
warehouseOpenArray , W/ 5 )
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This neighborhood receives two inputs, namely the array on which it operates
and the number of variables it has to randomize in this array of variables. Here, one
fifth of the array will be randomized.

We can incorporate it into our search strategy as follows:

v a l switchEBSwapORRandom = switchEBSwap
o r E l s e randomize

On each query, the orElse combinator forwards the query to its left-hand side
neighborhood first, and queries the right-hand side neighborhood only if the left-
hand side one did not find any acceptable move.

An intuitive execution trace of switchEBSwapORRandom is illustrated in Fig. 3.1.
We represent a moveFound by a solid dot, and a noMoveFound by a hollow dot. The
two first neighborhoods are queried alternately until they are both exhausted. When
this occurs, the randomization is performed once and the search starts again. The
orElse combinator, when switching to its right-hand side neighborhood, resets the
internal state of its left-hand side neighborhood. As a consequence, switchWare-
house is always queried first after a randomization.

switchWarehouse swapWarehouses randomize

Fig. 3.1 Illustrating the behavior of switchEBSwapORRandom

switchEBSwapORRandom has a termination issue since the search will always be
able to jump away and continue because of the random move. We therefore need to
bound it somehow. This is done by bounding the number of random moves. We use
the maxMoves combinator to this end. This leads us to switchEBSwapORRandom2:

v a l switchEBSwapORRandom2 = switchEBSwap
o r E l s e ( randomize maxMoves 2 )

An execution trace of switchEBSwapORRandom2 is illustrated in Fig. 3.2, using
the same convention as above. The neighborhood on the right is the composite ran-
domize maxMoves 2. It returns NoMoveFound on the third query, and would do so
for all subsequent queries as well.

switchEBSwapORRandom2 has one more issue: there is no guarantee that the fi-
nal solution will be the best one that has been found during the whole search. Indeed,
performing a search from a new point might deliver a solution of lower quality than
the one we are actually jumping from. We therefore need to save the best solution
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switchWarehouse swapWarehouses
randomize

maxMoves 2

Fig. 3.2 Illustrating the behavior of switchEBSwapORRandom2

found, and redtore it at some point. This is done by using the saveBestAndRestore-
OnExhaust combinator. This combinator receives a neighborhood, and an objective
function. It saves the model when its combined neighborhood finds a move that
might worsen the value of the objective function. This combinator also restores the
best found solution when the combined neighborhood is exhausted.

v a l switchEBSwap = swi tchWarehouse exhaus t B ack swapWarehouses
v a l f u l l S e a r c h = switchEBSwap

o r E l s e ( randomize maxMoves 2 )
saveBes t AndRes t o reOnExhaus t ob j

Based on this first working search strategy, we can proceeds with benchmarking
to assess the efficiency of the search strategy, and envision alternative searches, po-
tentially faster or more optimal. Thanks to their declarativeness, combinators make
it easy to express different search strategies, as illustrated here below.

One might question the usefulness of actually combining two neighborhoods in
this context, and revert to a simpler search strategy with only the switchWarehouse
neighborhood (beside the restart component). It suffices to replace switchEBSwap
with switchWarehouse in the global fullSearch search strategy presented above.

One can also consider other ways of combining swap and switch neighborhoods,
by selecting the neighborhood randomly, in a round-robin fashion, or by using a
learning combinator, or by selecting the best move from these two neighborhoods.
The learning combinator will randomly query its combined neighborhoods with a
bias that is adjusted gradually depending on their efficiency, quantified by the gain
on the objective function per time unit spent exploring them. These strategies are
respectively instantiated with combinators and must be placed within the fullSearch
presented here above:

v a l switchRandomSwap = swi tchWarehouse random swapWarehouses
v a l switchRRSwap = swi tchWarehouse roundRobin swapWarehouses
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v a l sw i t chL ea rn i ngSw ap = new L ea rn i ng ( swi tchWarehouse ,
swapWarehouses )

v a l swi t chBes t swap = bes t Swi t chW arehouse b e s t bes tSwapWarehouses

The last option might not make sense unless both switchWarehouse and swap-
Warehouses were instantiated so that they would return their best move instead of
their first move. In our framework, this setting is defined at the level of the neigh-
borhood, by specifying this in their respective constructor as shown below:

v a l bes t Swi t chW arehouse = new AssignNeighborhood (
warehouseOpenArray ,
b e s t = t r u e )

v a l bes tSwapWarehouses = new SwapsNeighborhood (
warehouseOpenArray ,
b e s t = t r u e )

Yet another approach is to consider simulated annealing. It can be used on a com-
bination of neighborhoods, such as the search components declared here above. In
the search procedure here below, we use it over the switchWarehouse neighborhood
with a temperature function defined as max(0,100−“iteration number”) and the ex-
ponent base set to 2. Notice that the stop criterion is modified for the example; now
it automatically stops the search when no improving move has been taken for, say,
the last W/2 iterations.

v a l g l o b a l S i m u l a t e d A n n e a l i n g =
swi tchWarehouse
m e t r o p o l i s ( ( i t : I n t ) => max(0 ,100− i t ) , 2 )
maxMoves W/ 2 wi thout Improvemen tOver ob j
saveBes t AndRes t o reOnExhaus t ob j

Different search strategies should of course be benchmarked against typical data
sets to select the most adequate one.

3.5 Building a Library of Combinators

This section presents the main combinators of our framework. These combinators
are accessible either directly, as Scala classes, or through a DSL in infix nota-
tion. The library covers the aspects involved in the search procedures described in
Sect. 3.1 plus additional features to compose neighborhood into atomic ones, and
embed native code into the strategy. This library can be extended easily, by provid-
ing additional implementations of the available Neighborhood base class.

3.5.1 Neighborhood and Move Selection Combinators

They select the neighborhood that is actually queried for a move, or the move that
is actually returned.
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• OrEl se ( a : Neighborhood , b : Neighborhood )
If a finds a move, returns it, otherwise, returns the result of b.

• RoundRobin ( l : L i s t [ Neighborhood ] , s t e p s : I n t )
Performs a round robin of queries on the neighborhoods in l. Switches to the
next neighborhood in the list as soon as the current one is exhausted or has been
queried step number of times. It rolls back to the first neighborhood after the last
one.

• E xhaus t ( a : Neighborhood , b : Neighborhood )
Returns the result of querying a until it cannot find more moves. It then switches
to b and never comes back to a except if an explicit reset is done.

• ExhaustBack ( a : Neighborhood , b : Neighborhood )
Returns the result of querying a until it cannot find more moves. It then switches
to b and comes back to a when b cannot find moves, and so on.

• Random ( a : Neighborhood , b : Neighborhood )
Randomly queries a or b. If the first neighborhood tried cannot find any move,
returns the result of the other one.

• L ea rn i ng ( l : L i s t [ Neighborhood ] , n : I n t )
Randomly queries a or b with a bias that is adjusted gradually depending on the
efficiency of the neighborhoods, quantified by the gain on the objective function
per time spent exploring the neighborhoods. The bias is updated every n iteration
as the mean between its previous value and the slope of the neighborhoods since
the last update of the bias.

• Sequence ( a : Neighborhood , b : Neighborhood )
Performs one query on a. All next queries are forwarded to b.

• B es t ( a : Neighborhood , b : Neighborhood )
Selects the best move between the ones returned by querying a and b.

3.5.2 Acceptation Function Combinators

They influence the acceptation function that is actually used for move selection. The
acceptation function can be specified in the outer search loop, but these combinators
replace it by a specific one.

• W i t h A c c e p t a n c e C r i t e r i o n ( a : Neighborhood ,
c r i t e r i o n : ( I n t , I n t ) => Boolean )

This combinator overrides the acceptance criterion given to the neighborhood a.

• A ccep t A l l ( a : Neighborhood )
This combinator forces any query on a to accept all moves.

• M e t r o p o l i s ( a : Neighborhood ,
t e m p e r a t u r e : I n t => F l o a t ,
ba se : F l o a t )



3 Combining Neighborhoods into Local Search Strategies 53

This combinator injects a metropolis acceptation function on a. Metropolis ac-
cepts all the moves that improve the objective function. Worsening moves are
accepted with probability

base(oldObj−newObj)/temperature(iterationNumber)

The iteration number starts at zero and is reset to zero when the combinator is
reset.

3.5.3 Solution Management Combinators

They ensure that the search does not forget the best encountered solution.

• SaveBest ( a : Neighborhood , ob j : O b j e c t i v e )

Saves the found solution that reaches the lowest value for ob j during the whole
search. Saving is performed on a lazy basis, it means that the solution is only
saved just before a move returned by a is committed, if this move might decrease
the quality of ob j. This combinator assumes that the value for the objective func-
tion carried by the move refers to ob j. To restore this best solution, we can either
call the method restoreSolution or use the additional combinator restoreOnEx-
haust.

• Res t o reBes t O nExhau s t ( a : SaveBest )

Automatically restores the best solution saved by a when it cannot find any im-
proving moves. If the current solution is better than the saved one, the latter is
not restored.

3.5.4 Stop Criterion Combinators

They specify when search must be stopped. They can be used also to change the
search policy.

• MaxMoves ( a : Neighborhood , maxAllowedMove : I n t )

Bounds the number of moves that can be done on neighborhood a. Additional
queries on a will always return NoMoveFound without exploring a.

• MaxMovesWithoutImprovement ( a : Neighborhood , nbMoves : I n t ,
ob j : O b j e c t i v e )

Bounds the number of moves that can be done on neighborhood a without im-
provements over the best value of the objective function ob j.

• StopWhen ( a : Neighborhood , cond :()= > Boolean )

Prevents any new query on a when cond evaluates to true.
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3.5.5 Code Embedding Combinators

They allow the execution of custom code at different times of the neighborhood
exploration.

• OnMove ( a : Neighborhood , p roc : Move => U n i t )
Attaches some custom code to the move of a, encapsulated in proc. This code is
executed when the move is committed.

• OnQuery ( a : Neighborhood , p roc : ( ) => U n i t )
Executes some custom code, encapsulated in proc, when the neighborhood a is
queried for a move. The code is executed before the query is forwarded to the
neighborhood.

3.5.6 Neighborhood Aggregation Combinators

They make possible to propose new neighborhoods e.g. by taking the cross-product
of several existing neighborhoods.

• AndThen ( a : Neighborhood , b : Neighborhood ,
m a x I n t e r m e d i a r y D e g r a d a t i o n : I n t )

This combinator is the cross-product of a and b, that is: a move of andThen is a
succession of a move from a and a move from b. maxIntermediaryDegradation
is the maximal degradation that is admitted for the intermediary step.

• Atomic ( a : Neighborhood )
Specifies that the neighborhood a cannot be interrupted by any external stop
criterion. The exhaustion of this neighborhood is considered as a single move.

3.6 A Vehicle Routing Example with Combinators

This section shows that combinators prove equally expressive in another area,
namely vehicle routing problems. In this example, we suppose that the standard
routing neighborhoods (insertPoint, onePointMove, threeOpt, swapInsert) are avail-
able with the proper API, as in the OscaR.cbls framework [18].

We consider a problem where a vehicle has a capacity and a depot, and serves
orders by delivering the quantity ordered at the delivery point. The vehicle can pass
several times by the depot to serve as many orders as possible within a restricted time
frame. The objective function considers both the distance and the number of served
orders. In the short run, injecting a depot point in a circuit is not a desirable move
as it increases the travel distance. A possible way of doing is to force the injection,
by accepting moves that worsen the objective. Another strategy, instantiated below,
is to inject a depot and one more customer at the same time, so that the couple
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is actually a desired move. We consider the cross-product of injecting a depot and
serving one more customer as a depot insertion strategy. To represent this strategy,
we use the andThen combinator. In the search procedure presented here below, we
consider two alternating phases: a phase where points and depots are injected into
the route, and a phase where the route is optimized by applying standard routing
neighborhoods (onePointMove,threeOpt, swapInsert, etc.) combined by the learning
combinator that foster the most efficient neighborhood. Since depots are not often
needed, we insert customers as much as possible, and try inserting depots when no
more customers can be inserted.

v a l r o u t i n g W i t h D e p o t S e a r c h =
i n s e r t P o i n t
o r E l s e ( i n s e r t D e p o t andThen i n s e r t P o i n t )
exhaus t B ack new L ea rn i ng ( onePointMove , t h r eeOp t ,

s w a p I n s e r t , . . . )

Again, modifying this search strategy is straightforward. For instance, we might
want to improve the quality of the routes before inserting a depot. This might help
because a depot is only needed if the capacity is the limiting factor for inserting
more customers. We can for instance move the onePointMove in an exhaustBack
fashion next to the insertPoint. By performing this one point move search, we have
more assurance that the depot insertion will be queried when the limiting factor for
inserting more point is the capacity, and not the overall time frame. Similar behavior
could also be implemented by using the stopWhen combinator on the andThen, or
by specifying in the andThen that the first move cannot violate any strong constraint,
through the maximalIntermediaryDegradation parameter defined in Sect. 3.5.

v a l r o u t i n g W i t h D e p o t S e a r c h =
i n s e r t P o i n t exhaus t B ack onePointMove
o r E l s e ( i n s e r t D e p o t andThen i n s e r t P o i n t )
exhaus t B ack new L ea rn i ng ( t h r eeOp t , s w a p I n s e r t , . . . )

3.7 Conclusion

This paper presented a declarative framework for easing the development of search
procedures for local search solvers. This framework proposes standard building
bricks both for defining search procedures elements and for combining them in pow-
erful ways. It was implemented as DSL within the OscaR library on top of the Scala
language and experimented on a set of standard search problems.

Introducing such higher-level constructs will enable the search procedure de-
velopers to (1) focus on their specific problem instead of having to consider the
specifics of the search loop, (2) experiment more easily with different search proce-
dures, and (3) easily understand, maintain and communicate on search procedures,
so our framework might increase the chance of the developers to design better search
procedures.



56 R. De Landtsheer et al.

A possible drawbacks is that genericity often leads to some processing and mem-
ory overheads. Our framework is no exception to this: moves are explicitly instan-
tiated before being committed leading to some very small memory overhead, and
there are a few additional method calls per move. This run time overhead is negli-
gible, compared to the run time of neighborhood exploration, except for very small
neighborhoods that immediately find a proper move. Besides, some of our neigh-
borhoods also suffer from some run time overhead, due to their genericity.

Our framework also imposes some restrictions on the possible search strategies
because the whole library of combinators is not a Turing-complete language. Nev-
ertheless, this is not a critical issue because the library can be extended if needed.

Our combinators rely on neighborhoods as basic blocks. We have shown in our
example that standard neighborhoods can be used easily, but extending this library
will make the overall framework more useable. Potential extensions include neigh-
borhoods on set variables, larger neighborhoods such as ejection chains, constraint-
specific neighborhoods, and very large neighborhoods [1, 2, 15].

Our library of combinator itself can be improved. The AndThen combinator that
builds the cross-product of two neighborhoods could be modified to instantiate the
neighborhood on the right dynamically, based on the move explored on the left,
e.g. to implement some symmetry elimination in the cross-product.1 The Learning
combinator could be given more efficient learning capabilities, etc.

We also hope that combinators might be a good candidate for standardizing how
local search procedures can be defined concisely, and be incorporated into stan-
dards such as MiniZinc [16]. We also want to propose profiling and benchmarking
tools on search strategies to further help developers fine tune their search strate-
gies, just like visualizing the search tree of a CP solver might help developers
fine tune the CP search heuristics. These tools will be integrated into the OscaR
framework.

To conclude, we want to present a simple, yet actual principle that justifies the
use of high-level, declarative, and productive approaches like ours, despite their in-
herent technical overhead due to their genericity. The principle is that nowadays, to
some extends, brain cycle is more expensive and valuable than CPU cycle. We con-
sider that development time is more profitably spent in high-level algorithmic tuning
than in the development overhead arising from the use of low-level constructs. The
same reasoning let us chose the Scala programming language for the whole OscaR
framework instead of, say the C programming language.

Acknowledgements This research was conducted under the SimQRi research project (ERANET
CORNET, grant nr 1318172).

1 Credits to Luca Di Gaspero for the suggestion.
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Chapter 4
All-Terrain Tabu Search Approaches
for Production Management Problems

Nicolas Zufferey, Jean Respen, and Simon Thevenin

Abstract A metaheuristic is a refined solution method able to find a satisfying so-
lution to a difficult problem in a reasonable amount of time. A local search meta-
heuristic works on a single solution and tries to improve it iteratively. Tabu search is
one of the most famous local search, where at each iteration, a neighbor solution is
generated from the current solution by performing a specific modification (called a
move) on the latter. The goal of this chapter is to present tabu search approaches with
enhanced exploration and exploitation mechanisms. For this purpose, the following
ingredients are discussed: different neighborhood structures (i.e., different types of
moves), guided restarts based on a distance function, and deconstruction/reconstruc-
tion techniques. The resulting all-terrain tabu search approaches are illustrated for
various production problems: car sequencing, job scheduling, resource allocation,
and inventory management.

Keywords Tabu search • Car sequencing • Job scheduling • Resource
allocation • Inventory management

4.1 Introduction

As presented in [26], let f be an objective function which has to be minimized. A
solution s is optimal for f if there is no better solution than it, that is, there is no
solution s′ such that f (s′)< f (s). As mentioned in [28], an exact method guarantees
the optimality of the provided solution. However, for a large number of applications
and most real-life optimization problems, such methods need a prohibitive amount
of time to find an optimal solution, because such problems are NP-hard [7]. For these
difficult problems, one should prefer to quickly find a satisfying solution, which is
the goal of heuristic and metaheuristic solution methods. There mainly exist three
families of (meta)heuristics: constructive algorithms (a solution is built step by step
from scratch, like the greedy algorithm where at each step, the best element is added
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to the solution under construction), local search methods (a solution is iteratively
modified: this will be discussed below), and evolutionary metaheuristics (a popula-
tion of solutions is managed, like genetic algorithms and ant algorithms). The reader
is referred to [8, 24] for more information on metaheuristics and general guidelines
to adapt them.

Only the context of local search methods is considered in this work. A local
search algorithm starts with an initial solution and tries to improve it iteratively. At
each iteration, a modification, called a move, of the current solution s is performed
in order to generate a neighbor solution s′. Let N(s) denote the set of all neighbor
solutions of s. The definition of a move, that is the definition of the neighborhood
structure N, depends on the considered problem. Popular local search methods are
the descent local search, simulated annealing, tabu search and variable neighbor-
hood search. In a descent local search, the best move is performed at each iteration
and the process stops when a local optimum is found. Tabu search was first pro-
posed by Fred Glover in the 80’s and is nowadays still considered as one of the most
efficient local search method. To prevent tabu search from being stuck in a local op-
timum, when a move is performed, the reverse move is forbidden (i.e., set as tabu)
for tab (parameter) iterations. A basic pseudo-code for tabu search is presented in
Algorithm 1.

Algorithm 1 Tabu search

Generate an initial solution s and set s� = s.

While no stopping criterion is met, do

1. from the current solution s, generate the best non-tabu neighbor solution s′;
2. forbid the reverse move for tab (parameter) iterations;
3. set s = s′;
4. if f (s)< f (s�), set s� = s;

Return the best solution s�.

In most tabu search algorithms, only one neighborhood structure N is used, no
restarts are performed, and no major restructuring of the solution is observed. The
goal of this chapter is to present all-terrain tabu search approaches able to find: (1) a
good balance between exploitation (i.e., the ability to guide the search in the solution
space and to take advantage of the problem structure) and exploration (i.e., the abil-
ity to visit various zones of the solution space); (2) a good tradeoff between intensi-
fication and diversification. For this purpose, the three following ideas are discussed:
(a) the use of several neighborhood structures, as a local optimum for a neighbor-
hood structure is not necessarily a local optimum for another; (b) the management
of guided restarts relying on a distance function, as diversification actions should
be triggered if the potential of the current zone of the solution space becomes poor;
(c) the restructuring of a solution relying on deconstruction (for diversification) and
reconstruction (for intensification) phases, based on the sequential use of a pool of
solutions.
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Strongly relying on [12, 20, 23, 25], the above presented ingredients are il-
lustrated for various production problems, namely car sequencing (Sect. 4.2, us-
ing guided restarts), job scheduling (Sect. 4.3, using deconstruction/reconstruction
phases), resource allocation (Sect. 4.4, using moves of different amplitudes), and
inventory management (Sect. 4.5, using two neighborhood structures).

4.2 Smoothing the Production for Car Sequencing

4.2.1 Presentation of the Problem

Nowadays, new constraints known as smoothing constraints are attracting a growing
attention in the area of job scheduling [3] and in particular for car sequencing prob-
lems, where cars must be scheduled before production in an order respecting various
constraints (colors, optional equipment, due dates, etc.), while avoiding overloading
some important resources. For the car plant, balancing between optional equipment
and colors allows to respect customers deadlines and to prevent overloading some
resources (machines or employees).

In 2005, the car manufacturer Renault proposes a car sequencing problem
through the ROADEF 2005 Challenge [19], with real instances involving hundreds
of cars. Car families are defined so that two cars of the same family contain the
same optional equipment. Each optional equipment i is associated with a Ni/Pi ra-
tio constraint, meaning that at most Ni cars with option i can be scheduled in any
subsequence of Pi cars, otherwise a penalty occurs. The objective is to minimize
a weighted function involving ratio constraint violations and the number of color
changes. In [13], a variation of the Renault problem is studied, where non-identical
parallel machines (or production lines) and eligibility constraints are considered
(i.e., a job—or a car—can only be performed on some specific machines). The ob-
jective function involves three components: makespan, smoothing costs and setup
costs. Another variant of the car sequencing problem is studied here, where the vi-
olations of the 2/3 ratio constraint are penalized as smoothing costs in the objective
function, with eligibility and makespan constraints.

A set of n jobs, m non-identical machines and eligibility constraints are consid-
ered here. Each job j belongs to one of the g available families and has a processing
time pi j depending on the machine i. A solution s contains a production sequence
for each machine. The goal consists in minimizing the smoothing cost function f (s),
which is the weighted number of times there are three consecutive jobs of the same
family in s. In addition, the overall makespan cannot exceed an upper bound UB
(but UB is set large enough to easily prevent the rejection of jobs). A small value of
UB usually indicates a high occupancy rate of the machines, and as a consequence,
the production system will be available sooner for future commands.



62 N. Zufferey et al.

4.2.2 Solution Methods

Three different methods are proposed: GR (a greedy heuristic), T S (a conventional
tabu search), and TSGR (a tabu search with guided restarts, managed with a distance
function). The time limit of each algorithm is T = 15 min (which is consistent from
a practical standpoint). Note that if an algorithm stops before T , it is restarted and
the best generated solution is returned to the user.

GR starts from an empty solution s. At each step, it inserts the job j in s which
minimizes the augmentation of f , while respecting the eligibility and makespan
constraints. Each possible insertion is tested and ties are broken randomly. GR stops
when all jobs are scheduled.

T S starts from an initial solution given by GR, and tries to improve it iteratively
by performing the best possible non-tabu move. A move is defined as positioning
a job somewhere else in the solution (in the same sequence or in the sequence of
another machine). Each time a move is performed, it is forbidden (tabu) to move
it again for tab iterations, where tab is uniformly generated in interval [3,7] after
each move. Larger values of tab do not allow intensifying the search around the
encountered local optima.

In T SGR, guided restarts of T S are performed as follows, where a cycle is de-
fined as an execution of T S for I = 100 iterations. Larger values of I do not allow
enough restarts, whereas smaller values do not allow the method to intensify the
search around the given initial solution. In other words, a tradeoff has to be found
between diversification (associated with small values of I) and intensification (as-
sociated with large values of I). Let s(k)b (resp. s(k)i ) be the best visited (resp. ini-
tial) solution in cycle k. The distance between two solutions s1 and s2 is defined
as dist(s1,s2) = ∑ j y j(s1,s2), where y j(s1,s2) = 1 if job j is has the same posi-
tion index in solutions s1 and s2 (for the sequence it belongs to, independently of
the machine), and y(s1,s2) = 0 otherwise. Note that the same sequence of jobs can
appear on two different machines for s1 and s2, which is consistently measured
as equivalent situations by the distance function. Then, at the end of a cycle k, if

dist[s(k−1)
b ,s(k)b ] < n/4 (which roughly corresponds to a structural difference below

25% between the two involved solutions), s(k+1)
i is generated by performing 10 ran-

dom swap moves on s(k)b (in order to slightly diversify the search from s(k)b ), other-

wise s(k+1)
i is generated with GR. Note that swap moves are defined as exchanging

the position index of two jobs on the same machine. This mechanism allows to in-
tensify the search if the two best solutions of two consecutive cycles have a similar
structure. Otherwise a diversification action is triggered with a restart.

4.2.3 Experiments

An exact linear formulation relying on CPLEX 12.4 has been tested with a time limit
of 10 h on an Intel Quad-core i7 @ 3.4 GHz with 8 GB DDR3 of RAM memory.
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CPLEX is only able to solve instances with up to 30 jobs, for which the proposed
tabu search approaches are usually able to quickly find optimal solutions. For these
reasons, exact methods will not be discussed further.

The instances are derived from the ones presented in [13]. Methods GR, T S and
T SGR are compared in Table 4.1. For each instance are first given n, m, UB and f �,
which is the best solution value found by any of the algorithm. The next column
indicates the percentage gap between f � and the best solution value found by GR
within T = 15 min. The last two columns present the same information for T S and
T SGR (but the results are averages over 10 runs with T = 15 min). The last row
indicates the average gaps for the three methods. It can be observed that: (1) TS
is much more efficient than GR, which shows the relevance of the used moves; (2)
T SGR significantly outperforms T S, which indicates that the proposed way to guide
the restarts is powerful, and should be investigated for other problems.

Table 4.1 Results on instances with 100 and 300 cars

n m UB f � GR (%) T S (%) T SGR (%)

100 4 3604 3005 4.49 5.39 0.00

100 4 3612 3005 4.49 2.70 0.00

100 4 3610 2980 5.37 0.39 0.00

100 4 3632 2850 10.18 4.02 0.70

300 5 9005 960 42.92 8.72 2.08

300 5 9038 895 47.82 7.31 4.02

300 5 9086 870 52.07 5.32 1.38

300 5 9143 730 81.23 12.77 0.68

Average 31.07 5.83 1.11

4.3 A Deconstruction-Reconstruction Method for Job Scheduling

4.3.1 Presentation of the Problem

In the considered job scheduling problem, the production environment consists in
a set of parallel and identical machines. Given a set J of n jobs, a subset J′ ⊆ J
must be selected and scheduled before a global deadline D. The non-selected jobs
are rejected. With each job j is associated an integer processing time p j and a gain
g j (incurred if j is performed). Preemptions are allowed at integer points in time,
and some pairs of jobs are incompatible: it should be avoided to perform them at
common time slots. A conflict occurs if two incompatible jobs are processed during
a common time slot (there can be more than one conflict between two jobs). The
problem is to find a solution s where each performed job j is given p j time slots,
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and such that the number of conflicts C(s) does not exceed a given upper bound
K. Two objectives f1 (to be maximized) and f2 (to be minimized) are considered
in a lexicographical order (i.e., f1 is infinitely more important than f2): f1(s) is the
sum of the gains of completely performed jobs, and f2(s) is the number of parallel
machines used in s.

This problem has applications in continuous flow production where multiple re-
sources are required simultaneously to perform a job. Indeed, incompatibilities oc-
cur when scarce resources are involved in the production system [1]: two jobs which
necessitate a common scarce resource cannot be performed simultaneously (they are
incompatible). However, it is assumed here that some additional resources can be
mobilized up to a certain budget, and thus up to K conflicts are allowed. Papers on
scheduling with incompatibilities include [4, 6, 21] and are often related to the graph
multi-coloring problem. In particular, the considered problem is a generalization of
the well-known and NP-hard k-coloring problem (if K = 0, D = k, and p j = 1 for
each j). Scheduling with rejections is growing field of research, where the decision
of acceptance or rejection of an order is integrated with scheduling (see [18] for a
comprehensive review). Finally, preemptions are used in practical situations where
setup times are negligible (e.g., in automated production).

4.3.2 Solution Methods

Five approaches are compared: GR (greedy algorithm), DLS (descent local search),
T S (tabu search), T SR (tabu search with restarts), and DRM (deconstruction/recon-
struction metaheuristic). The time limit of each method is T = 60 ·n seconds. If an
algorithm stops before T , it is restarted and the best solution is returned to the user.

GR starts from an empty solution and selects the next job to schedule with the
largest gain g j (ties are broken randomly). A j denotes the set of feasible time slots
for job j (i.e., not used by any job incompatible with j). If p j −|A j|> K −C(s), job
j is rejected. Otherwise, p j slots are sequentially assigned to j and two situations
can occur at each step: (1) if p j − |A j| < 0, the slot minimizing f2 is chosen; (2)
if p j − |A j| ≤ K −C(s), the slot minimizing the number of additional conflicts is
selected (but j is rejected if more than K conflicts are created).

In DLS, a move consists in rescheduling a job j. The way to reassign p j slots to j
depends on A j. If A j ≥ p j, p j slots are sequentially chosen in A j while minimizing
f2. Otherwise, the p j slots are given one by one, by assigning at each step the slot
minimizing the number of additional conflicts. Then, to maintain feasibility, some
conflicts are removed with the following Repair method: while C(s) > K, the job
involved in the largest number of conflicts is rejected (break ties with the gains). In
T S, when a job j is rescheduled, it cannot be rescheduled for tab = 10 iterations. In
T SR, T S is restarted every I = 100 iterations.

DRM [27] relies on a pool of solutions on which tabu search works in turn. At
each generation, a solution of the pool is first deconstructed, then reconstructed,
and finally improved. A pool Pop of 10 solutions is handled. It is initialized by
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generating 10 random solutions as follows. First, all the jobs of J are scheduled
randomly, then, feasibility is reestablished with Repair, and finally the solution is
improved with TS during I = 100 iterations. DRM uses a deconstruction parameter
q which is initially set to qmin = n/20 and cannot exceed qmax = n/3. These two
parameters were tuned based on the following ideas for controlling the diversifica-
tion ability of the overall method. On the one hand, if qmin is too small, the method
will not be able to escape from the current zone of the solution space. On the other
hand, if qmax is too large, the deconstruction process will be similar to a restart. The
pseudo-code of DRM is presented in Algorithm 2, where sb and sw respectively de-
notes the best and worst solution of Pop. On the one hand, DRM uses elements of
strategic oscillation methods (see steps (2) and (3)): it explores unfeasible solutions
but the distance from the feasibility border is controlled, as K + q conflicts are al-
lowed. On the other hand, DRM has features from variable neighborhood search
(see steps (2) and (7)): it generates a deconstructed solution at a certain distance q
from s, and q is updated according to the improvement or not of the best encountered
solution.

Algorithm 2 DRM: Deconstruction-reconstruction algorithm

While T is not reached, do

1. Select the least frequently chosen solution s in the population Pop.
2. Deconstruction: reject q jobs in s, chosen randomly.
3. Reconstruction: schedule some jobs (chosen randomly) until C(s) = q+K. The slots are as-

signed one by one to each job, while minimizing the number of conflicts (break ties with
f2). If ties occur again, they are broken with information from Pop: the slot t maximizing
∑i∈Jt Sim(i, j) is chosen, where Jt is the set of jobs processed during slot t , and Sim(i, j) is the
number of slots where jobs i and j are performed simultaneously in the solutions of Pop.

4. Reestablish feasibility: while s has above K conflicts, reject the job j with the smallest ratio
g j/Cj(s), where Cj(s) is the number of conflicts involving j in s.

5. Local search: apply TS during I iterations, and denote s′ the resulting solution.
6. Update Pop: if s′ is better than sw, replace sw with s′ in Pop.
7. Update q: if s′ is better than sb, set q = qmin; otherwise set q = 1.05 ·q (if allowed).

4.3.3 Experiments

An instance (n,τ) is defined by its number n of jobs and its rate τ of allowed con-
flicts, from which it is deduced that K = τ · n. 15 instances were generated, with
n ∈ {50,100,200} and τ ∈ {0,0.02,0.04,0.1,0.2}. Two jobs are incompatible with
probability 0.5. Each p j is randomly chosen in interval [1,10]. The gain g j is related
to p j as follows: a random number β is first chosen in interval [1,20], and g j = β · p j

is set. Finally, the deadline D was set small enough to prevent the scheduling of
all jobs. The algorithms were implemented in C++ and executed on a computer
with a processor Intel Quad-core i7 2.93 GHz with 8 GB of DDR3 RAM memory.
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Ten runs per instance were performed with T = 60 ·n seconds. The results are given
in Table 4.2, which shows for each method the average percentage gap according
to the best ever found value for each objective ( f1, f2). T S outperforms GR, which
is slightly better than DLS: the obtained f1 gaps are respectively 5.46%, 8.68% and
9.32%. The deconstruction and reconstruction steps in DRM are efficient, as the
DRM gap is 2.29% for f1 versus 6.87% for T SR. DRM obtained the best results on
13 instances. Note that the smaller is the f1 gap, the larger is the f2 gap, as f1 and
f2 are conflicting objectives.

Table 4.2 Results

n K Greedy DLS T S T SR DRM

50 0 (4.21, 0) (3.65, 0) (4.62, 0) (3.29, 8) (2.1, 4)

50 1 (6.74, 0) (6.41, 4) (5.65, 20) (4.7, 20) (1.17, 20)

50 2 (8.33, 0) (8.61, 0) (3.78, 0) (5.35, 0) (0.82, 3.33)

50 5 (5.63, 0) (5.97, 0) (4.62, 0) (2.86, 0) (0.49, 0)

50 10 (2.17, 0) (2.63, 10) (2.38, 0) (0.92, 0) (0.33, 0)

100 0 (8.41, 16.67) (9.26, 16.67) (4.12, 13.33) (8.04, 13.33) (2.17, 20)

100 2 (8.06, 0) (8.92, 10) (6.95, 13.33) (7.09, 16.67) (3.93, 20)

100 4 (9.78, 0) (10.68, 0) (10.4, 0) (7.99, 0) (2.25, 0)

100 10 (10.84, 16.67) (10.72, 13.33) (8, 16.67) (7.1, 20) (2.56, 30)

100 20 (8.98, 0) (9.52, 0) (7.76, 8.57) (5.95, 8.57) (1.32, 17.14)

200 0 (7.88, 14.29) (8.71, 11.43) (0.32, 17.14) (7.18, 14.29) (5.09, 14.29)

200 4 (5.61, 0) (6.24, 0) (2.19, 2.5) (4.51, 0) (2, 0)

200 8 (7.69, 0) (8.25, 0) (3.92, 5) (6.15, 0) (0.97, 12.5)

200 20 (9.85, 2.5) (10.45, 0) (5.2, 7.5) (7.53, 2.5) (1.65, 12.5)

200 40 (9.65, 0) (10.45, 0) (5.76, 12.5) (7.19, 5) (0.96, 22.5)

Average (8.68, 5.01) (9.32, 5.14) (5.46, 9.65) (6.87, 8.04) (2.29, 14.89)

4.4 Tabu Search with Diversity Control and Simulation

4.4.1 Presentation of the Problem

In most inventory management problems, two types of decision have to be taken at
the manufacturer level: when and how much to order to suppliers [17]. It is assumed
that setup, carrying and shortage costs are encountered during the year. Usually, in-
ventory management models are characterized by stochastic demand and constant
lead times. In contrast, this study, which generalizes the approach proposed in [16],
deals with the situation where there is a constant known demand rate, but proba-
bilistic lead times whose probability distributions change seasonally. Moreover, the
lead times for different orders are assumed to be independent, thus crossovers can
occur. Therefore, the interactive effects between different cycles (a cycle is defined
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as the time between two consecutive orders) due to the occurrence of shortages are
difficult to model. Consequently, even if the annual approximated costs can be an-
alytically computed with a mathematical function f , simulation (of the lead times)
is the only way to compute the annual actual costs F of a solution. Such a context
is motivated by the management of raw material at a sawmill in North America.
Without loss of generality, consider a 52-weeks planning horizon (a time period is a
week). A solution (P,S) can be modeled by two vectors P and S defined as follows:
Pt = 1 if an order occurs at the beginning of period t, and Pt = 0 otherwise; St is the
order-up-to-level of available inventory at the beginning of period t if Pt = 1, and
St = 0 if Pt = 0. The following reasonable assumptions are made: (A1) it is possible
to analytically approximate the annual costs with a function f (P,S) relying only on
P, S and the probability distributions of the lead times; (A2) it is possible to compute
the F(P,S) (i.e., the annual actual costs) with a simulation tool; (A3) based on f , it
is possible to analytically compute S from P with a so-called Compute(S | P) pro-
cedure. It means that anytime P is modified, its associated S vector is immediately
updated with Compute(S | P).

4.4.2 Solution Methods

Due to the non-stationarity in the lead time distribution, the problem is combinato-
rial in nature (choice of the Pt’s and the St’s). Moreover, simulation is required to
compute the actual cost of a solution. Thus, it makes sense to use (meta)heuristics.
The solution space X(N) is defined as the set of all the solutions (P,S) with
∑52

t=1 Pt = N. The general approach consists in providing good solutions for differ-
ent solutions spaces, starting with U(N) orders and ending with L(N) orders, where
U(N)≤ 52 (resp. L(N)≥ 1) is an upper (resp. a lower) bound on N. At the end, the
best solution (over all the considered X(N)’s) is returned to the user.

For a fixed solution space X(N), the following steps are performed: (S1) gener-
ate an initial solution (P,S) with N orders as equi-spaced as possible; (S2) based on
f , try to reduce the approximate costs of (P,S) with a tabu search T S f (P,S) work-
ing on P; (S3) based on F and without changing P, apply a descent local search
DLSF(S | P) working on S (a move consists in augmenting or reducing one of the
St’s, by one unit). In T S f (P,S), a move consists in putting an order earlier or later,
but without changing the global sequence of orders. At each iteration, the best non-
tabu move is performed. If an order is moved, then it is forbidden (tabu) to move
it again for tab (parameter depending on N) iterations. The stopping condition is a
maximum number Iter (parameter) of iterations without improvement of the best
visited solution.

An extension of T S f (P,S), denoted T SM
f (P,S), is now proposed for step (S2).

Instead of providing one solution, an idea is to provide a set M containing m (pa-
rameter) promising local optima (promising according to the quality function f and
a diversity function Div(M)). To achieve this, additional ingredients are defined.
The distance between P and P′ is defined as Dist(P,P′) = ∑52

t=1 | Pt − P′
t |. The
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average distance between P and a set M of solutions is defined as Dist(P,M) =
1

|M| ∑P′∈M Dist(P,P′). The diversity of a set M of solution is computed as Div(M) =
1

|M| ∑P∈M Dist(P,M −{P}). M is initialized with solutions randomly generated. Let
P be a solution found by tabu search at the end of an iteration. The key idea is
the following: P should replace a bad (according to f ) solution of M which poorly
contributes to its diversity Div(M). More precisely, let M′ be the subset of M con-
taining the m′ (parameter) worst solutions of M, for which the worst value is f ∗∗.
Let P(div) be the solution of M′ such that P(div) = argminP′∈M′ Dist(P′,M −{P′}).
Then, if f (P) > f ∗∗, M is not updated. Otherwise, if Dist(P(div),M −{P(div)}) <
Dist(P,M −{P(div)}), then P replaces P(div).

The resulting metaheuristic is summarized in Algorithm 3. The returned solution
is (P�,S�) with an actual cost of F�, which is the best solution visited in all the
considered solution spaces.

Algorithm 3 General approach

Initialization: set F� = ∞ and N =UB(N)
While N ≥ LB(N), do

1. generate an initial solution P with N orders as equi-spaced as possible
2. apply TS f (P,S) or TSM

f (P,S), and let M = {P(1), . . . ,P(m)} be the resulting set of local optima
according to f (m = 1 if T S f (P,S) is used)

3. for i = 1 to m, do: apply DLSF (S | P) on (P(i),S(i))
4. set (P,S) = argmini∈{1,...,m} F(P(i),S(i))
5. if F(P,S) < F�, set (P�,S�) = (P,S), and F� = F(P,S)
6. reduce N by one unit

4.4.3 Experiments

The experiments were performed on a PC Pentium 4 (1.6 GHz/1 Go RAM). The
parameters Iter, m and m′ were respectively tuned to 1000, 10, 3. As the proposed
method has to plan the orders for a whole year, the computing time is not an issue
(but all the proposed methods never exceed an hour of computation). Each instance
is characterized by its cost parameters (the fixed setup cost A per order, the inventory
cost h per unit per period, the shortage cost B per missing unit). For each period t is
known the minimum (resp. most likely and maximum) lead time at (resp. mt and bt).
From these three values, discrete triangular distributions can be easily constructed.
Two types T1 and T2 of instances were generated according to two sets of lead time
distributions, with 24 instances per type (which differ according to A, h and B).
Set T1 is based on realistic data from the sawmill context, and is characterized by
at ∈ {2,5}, mt ∈ {3,7}, and bt ∈ {6,13}. Set T2, which represents a form of sensitiv-
ity analysis (the variation of the lead times is larger), is characterized by at ∈ {1,8},
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mt ∈ {2,10}, and bt ∈ {5,16}. In Table 4.3 is provided a summary of the aver-
age percentage improvements (over a basic constructive heuristic based on an EOQ
analysis) provided by the general proposed approach relying on DLS f (P,S) (where
a descent local search is performed at step (S2) instead of tabu search), TS f (P,S)
and T SM

f (P,S), respectively. Note that the percentage improvement computation is
based on the difference between the reference cost (based on EOQ) and the con-
sidered provided cost, and this difference is then divided by the reference cost. The
results are shown for three levels of B and for the two sets T1 and T2. Unsurprisingly,
the potential benefits of the three methods augments as the seasonality is increased.
One can observe that T SM

f (P,S) outperforms T S f (P,S), and both methods are better
than DLS f (P,S).

Table 4.3 Results on two sets of instances

Set T1 Set T2

Method Small B Average B Large B Small B Average B Large B

DLSf (P,S) 1.39 1.52 1.61 3.75 3.58 3.47

T Sf (P,S) 1.72 1.82 2.01 4.15 4.05 3.74

T SM
f (P,S) 1.82 1.86 2.16 4.18 4.06 3.79

4.5 Dynamic Tabu Search for a Resource Allocation Problem

4.5.1 Presentation of Dynamic Tabu Search

Let X = (X1,X2, . . . ,Xu) be a solution of a problem which consists in maximizing
an objective function f . Each Xi is a vector of size s(i) and can be denoted Xi =
(xi

1,x
i
2, . . . ,x

i
s(i)), where the xi

j’s are real number. The following limitation constraint

has to be satisfied for each i: ∑ j xi
j = ci. As random events can occur, it is assumed

that the objective function f can only be evaluated with a simulation tool. In such
a context, within a local search framework, it is straightforward to define a move
in three steps: (A) select a decision variable type i; (B) augment (resp. reduce) an
xi

k by an amount of w; (C) reduce (resp. augment) some other xi
j’s (with j �= k)

by a total amount of w (in order to satisfy the limitation constraint). Within a tabu
search framework, if a decision variable xi

k is augmented (resp. reduced), it is then
forbidden to reduce (resp. augment) it during tabi (parameter) iterations. The three
key issues are now: (I1) which type of decision variable should be selected in (A);
(I2) what is the amplitude w of the move in (B); (I3) how should the solution be
adjusted in (C).
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According to issue (I1), it is proposed to consider u types of phase in the solution
method: each phase of type i works on Xi without modifying the other Xl’s (l �= i).
Each phase of type i can be performed during Ii

max (parameter) uses of the simulator.
Working with phases (i.e., on one decision variable type at a time) allows to have a
better control on the search.

To tackle issue (I2), it is proposed to dynamically update the move amplitude
w during each phase of the search, within interval [wi

min,w
i
max] (parameters). Each

phase starts with w = wi
max, and anytime Ii (parameter) iterations without improve-

ment of the best encountered solution X� have been performed, w is reduced by
δ i (parameter), but never under wi

min. If a move leads to a solution better than X�,
the process restarts with w = wi

max, and so on. This strategy allows to progressively
focus on a promising region of the solution space. Such a technique has common
points with variable neighborhood search [11].

Issue (I3) depends on the two other issues: if xi
k has been selected for a variation

of w, the search process should focus on that decision and not modify as much the
other decision variables (of the same type) in order to adjust the solution with re-
spect to the associated constraint ci. Thus, if xi

k was augmented (resp. reduced) by w,
the process should then equally reduce (resp. augment) the s(i)− 1 other variables
(of the same type) by a total amount of w, which means that each decision variable
is in average reduced (resp. augmented) by s(i)−1

w . The resulting DTS method (for
Dynamic Tabu Search) is summarized in Algorithm 4, which returns the best en-
countered solution X� with value f �. At each iteration, the neighbor solution can be
the best among a set of N (parameter) candidate neighbor solutions.

Algorithm 4 DTS: Dynamic tabu search

Initialization

1. Generate an initial solution X = (X1 ,X2, . . . ,Xu).
2. Initialize the best encountered solution: set X� = X and f � = f (X).
3. Set i = 1 and w = wi

max.

While the simulation software has not been used q (parameter) times, do

1. generate a non-tabu neighbor solution X̂ i of Xi by modifying a decision variable xi
k of Xi by w;

2. update the current solution: set Xi = X̂ i;
3. update the move amplitude w:

• if Ii iterations without improving X� have been performed, set w = w−δ i;
• if w < wi

min, set w = wi
min;

• if f (X)> f �, set w = wmax;

4. update the best encountered solution: if f (X)> f �, set X� = X and f � = f (X);
5. update the tabu tenures: it is forbidden to modify xi

k in the reverse way for tabi iterations;
6. next phase: if Ii

max runs of the simulator have been performed, set i = (i mod u)+ 1 and w =
wi

max;
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4.5.2 Application to a Resource Allocation Problem

DTS is an appropriate solution method to dimension assembly/disassembly produc-
tion systems. By dimensioning, one can refer to maximizing the production rate of a
machine without successors, with respect to limited resources (e.g., buffer capacity
between the machines, total cycle time of the machines). Relevant recent papers in
the field are [5, 15]. As random failures might occur on the machines, a professional
software is used to evaluate a solution [2].

Consider a production system with m machines and n buffer zones, modeled by
a graph G = (V,A) with vertex set V and arc set A. Vertex v represents machine v
and there is an arc (v,v′) from v to v′ if a piece processed on machine v has then to
be processed on machine v′. Moreover, each arc (v,v′) also represents a buffer (i.e.,
a limited zone where are stored the pieces between the associated machines). Two
types of decision variables (i.e., resource types) are considered: the designed cycle
time tv for machine v, and the buffer capacity bvv′ allocated to arc (v,v′). A solution
for a production network with m = 9 and n = 8 is presented in Fig. 4.1. The cycle
time associated with machine 1 is t1 = 8, and the buffer capacity between machines
1 and 3 is b13 = 43. The considered limitations are 60 for the total cycle time (i.e.,
∑v∈V tv = 60) and 320 for the buffer capacity (i.e, ∑(v,v′)∈A bvv′ = 320).
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Fig. 4.1 Graph representation of a production system

The DTS approach showed a very good performance on such a production sys-
tem [26]. Indeed, it was tested on the production network associated with Fig. 4.1,
for which each machine has its own role: machines 1, 2, 4, 8 and 9 are classical
processing machines, machines 3 and 5 are assembling machines, and machines 6
and 7 are disassembling machines. The objective consists in maximizing the pro-
duction rate of machine 5. The breakdown probability is 5% (associated with each
time step) and its length is generated with a uniform distribution in interval [100,
800]. DTS was compared with a descent local search DLS (the same algorithm
as DTS, but without considering tabu tenures), and a classical tabu search TS for
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which at each iteration, a move consists in augmenting/reducing any decision vari-
able by any possible amount (followed by the adjustment of the other variables of
the same type in order to meet the upper bounds). In TS, a sample of all possible
amplitudes is considered at each iteration to modify the decision variable. A pool
of 50 initial solutions were generated, which have an average production rate of
1.31 (pieces/minute). DLS was able to reach an average production rate of 1.39, TS
obtained 1.37, and DTS reached 1.41. It was also observed that the quality of the re-
sulting solution negligibly depends on the initial solution, which indicates that DTS
is a robust approach.

4.6 Conclusion

In this chapter, enhanced tabu search approaches are discussed for four domains:
car sequencing, job scheduling, resource allocation and inventory management. Be-
cause of the specificities of each problem, classical tabu search procedure are likely
to be inefficient if its intensification and diversification abilities are not appropriately
handled. For this purpose, the success of three mechanisms is discussed, namely
the controlled use of various neighborhood structures, the tactical management of
restarts, and a strategic deconstruction and reconstruction technique. Such ingredi-
ents allows to design all-terrain tabu search metaheuristics, as it results in a good
balance between exploitation and exploration, allowing an efficient control on the
search process. Finally, we would like to mention that other all-terrain approaches
were also successfully adapted in other fields (e.g., [9, 10, 14, 22]).
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Chapter 5
A Re-characterization of Hyper-Heuristics

Jerry Swan, Patrick De Causmaecker, Simon Martin, and Ender Özcan

Abstract Hyper-heuristics are an optimization methodology which ‘search the
space of heuristics’ rather than directly searching the space of the underlying
candidate-solution representation. Hyper-heuristic search has traditionally been di-
vided into two layers: a lower problem-domain layer (where domain-specific heuris-
tics are applied) and an upper hyper-heuristic layer, where heuristics are selected or
generated. The interface between the two layers is commonly termed the “domain
barrier”. Historically this interface has been defined to be highly restrictive, in the
belief that this is required for generality. We argue that this prevailing conception of
domain barrier is so limiting as to defeat the original motivation for hyper-heuristics.
We show how it is possible to make use of domain knowledge without loss of gen-
erality and describe generalized hyper-heuristics which can incorporate arbitrary
domain knowledge.
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5.1 Introduction

Sörensen and Glover [38] define a metaheuristic as “a high-level problem in-
dependent algorithmic framework that provides a set of guidelines or strategies to
develop heuristic optimization algorithms”. The goal of hyper-heuristics is to act
as effective cross-domain search methodologies, i.e. to be applicable not only to
instances with different characteristics from a single domain, but also across mul-
tiple problem domains. The definition of a hyper-heuristic varies considerably in
the literature: indeed, interpreting the notion of ‘searching the space of heuristics’
in full generality allows application to any heuristically-informed solution mecha-
nism (e.g. the choice of pivot function used in Quicksort [43]). In this article, we
concentrate on the application of hyper-heuristics to metaheuristic search. In the
following sections, we describe how the definition of hyper-heuristics has evolved
over time. We re-visit the underlying motivation in order to highlight some popular
misconceptions and the attendant need for re-characterization.

5.1.1 Historical Development of Hyper-Heuristics

One of the earliest studies in this area was an application to a job shop schedul-
ing problem due to Fisher and Thompson [16]. The use of scheduling (dispatching)
rules as heuristics is common in this area and the study was motivated by the idea
of “a combination of the two rules being superior to either one separately”. In the
early 1990s, Storer et al. [41, 42] proposed a general approach combining heuristic-
and solution- space methods for solving sequencing problems. The authors used job
shop scheduling as a case study and argued that the proposed approach can be “eas-
ily” applied to any scheduling objective. Fang et al. [14, 15] subsequently evolved
sequences of heuristics for constructing schedules, explaining how the proposed ap-
proach can be “simply amended” to deal with more complex industrial open shop
scheduling problems.

The term ‘hyperheuristics’ (in unhyphenated form) was first introduced by Cowl-
ing et al. [12] as a means of deciding which low level heuristic to apply during
the search process, depending on the nature of the region being explored. This
initial definition referred only to (what has become known as) ‘selective’ hyper-
heuristics, with generative hyper-heuristics being a later development [34]. The mo-
tivation for the use of the term ‘hyper’ comes from hypergraphs, where an edge
is an n-ary relation on vertices, the analogy being that hyper-heuristic selection is
performed on a collection of operators (i.e. functions with signature Op : S → S,
for some candidate solution representation S). Hyper-heuristic selection thus takes
a list of operators, together with a function for choosing an operator from this list
and applies the selected operator to an incumbent state. Mathematically, we can
represent this as:
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select : [Op]× ([Op]→ Op)× S → S

select : (operators,choose, incumbent) �→ choose(operators)(incumbent)

If, as has invariably been the case, the list of operators and the function for choos-
ing from them are known in advance, then the signature for select can be considered
to be S → S, precisely that of an operator. This notion of ‘recursive composition via
selection’ [49] could equally be applied to other metaheuristic components (i.e. ac-
ceptance, termination etc.), though the authors are not aware of any such approaches
(e.g. the evolution of acceptance criteria by Hyde et al. [22] was obtained via a gen-
erative rather than selective approach).

Cowling et al. [12] stated that a hyper-heuristic approach operates at ‘a higher
abstraction level’ than a metaheuristic and in practice this has been translated as
‘operating independently of the underlying problem domain’. To this end, Cowling
et al. [12] introduced the notion of a domain barrier between the layers of hyper-
heuristic framework and problem-domain implementation. As we explicitly demon-
strate in Sect. 5.2, this notion of domain independence can be described purely in
terms of generic metaheuristics, avoiding the rather mixed collection of concepts
that has become associated with hyper-heuristics (see also Fig. 5.1).

The widely-cited definition due to Burke et al. [8] of “(meta-)heuristics to choose
(meta-)heuristics” has the stated motivation of “raising the level of generality at
which optimisation systems can operate”. The authors contemplate that many busi-
nesses, particularly small ones, are interested in “good enough, soon enough, cheap
enough” solutions to their problems. Given the high cost of developing problem-
specific methods, this highlights the need for a general, easy-to-use, yet robust ap-
proach for ‘providing near optimal solutions’. The intention was that the domain
barrier represents the separation between different levels of expertise, i.e. practi-
tioners would be responsible for implementing only solution representations and
naı̈ve ‘knowledge-poor’ (and hence presumably often randomized) heuristics for
each new problem domain, with researchers tasked with devising hyper-heuristics
which work well across domains.

Ross et al. [35, 36] defined a hyper-heuristic as a search method which com-
bines simple heuristics to solve a range of problems satisfactorily. They evolved bin-
packing rules using a Learning Classifier System [35] which learns which low level
heuristic to use at a given decision point. Ross [34] provided a similar definition as
Soubeiga [39] introducing hyper-heuristics as “heuristics to choose heuristics” and
combining multiple heuristics to compensate for individual weaknesses. In a foun-
dational paper on generative hyper-heuristics, Ross [34] further proposed hyper-
heuristics as a special form of genetic programming, with a function set consisting
of existing heuristics. In this study, the aim in hyper-heuristic design is presented as
finding a “fast, reasonably comprehensible” approach, repeatedly able to produce
high quality solutions. Qu et al. [31] proposed a tabu search approach to examina-
tion timetabling and graph colouring problems, indirectly acting on the candidate
solutions via a mixture of graph-colouring heuristics. Two cross-domain heuristic
search competitions, CHeSC 2011 and 2014 were performed using the HyFlex se-
lective hyper-heuristics framework [28], which provided an implementation of six
problem domains.
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A recent definition of hyper-heuristic which is probably the most commonly-
used is provided by Burke et al. [10] as “a search method or learning mechanism for
selecting or generating heuristics to solve computational search problems”. A more
concrete definition adopts the terminology of the ‘Algorithm Selection Problem’
(ASP) [33] to describe hyper-heuristics as ‘a mapping from features to algorithms’.
A rich research area that has historically been more overtly influenced by the ASP
than hyper-heuristics is the field of algorithm portfolios [19, 21]. Recent work in this
field includes ‘Dynamic Algorithm Portfolios’ [17] which chooses from a subset of
available algorithms, applying them simultaneously to a problem instance until the
fastest algorithm solves it.

In principle, the adoption of the ASP would allow the gamut of machine learning
techniques to be applied to hyper-heuristics, but in practice the features made avail-
able for learning by selective hyper-heuristics have been limited. In contrast, the
input to generative hyper-heuristics is (necessarily) domain-specific, and the only
general framework supporting generative hyper-heuristics which we are aware of is
TEMPLAR [43]. Chakhlevitch and Cowling [11] specifically argue the importance
of limited problem domain information in achieving cross-domain generality for se-
lective hyper-heuristics. Moreover, they further state that a hyper-heuristic would
ideally be informed only of the number of low level heuristics for a given problem
domain and objective value of a given solution. A variant of the strict notion of do-
main barrier due to Woodward et al. [48] has been perpetuated via HyFlex as a de
facto standard.

As can be seen from the above, the definition of hyper-heuristic has evolved
considerably over time. As a result, there is relatively little clear consensus on what
the essential mechanisms of a hyper-heuristic actually are. Figure 5.1 is a feature
diagram of various concepts historically associated with (selective) hyper-heuristics.
The concepts which are non-obvious (or otherwise not covered above) are:

• Heterogeneous operators: The ability to treat different operators in a uniform
manner in the hyper-heuristic layer. For example, with a permutation representa-
tion, the ability to mix e.g. 2-opt with transpositions.

• Selection a posteriori versus a priori: whether or not an operator must be applied
(to the current incumbent solution) before it can be chosen. Metaheuristics are
traditionally, ‘apply then choose’, e.g. choose the first- or best- improving. The a
priori case is when an operator is chosen via some mapping based on its features
and the search trajectory.

Selection
Heterogeneous

operators
Knowledge-poor

operators
Learning

generalization

Domain
independent
hyper-layer

a priori Within instancea posteriori None Cross instance Cross domain

Selective Hyper-heuristic

Fig. 5.1 Concepts historically associated with selective hyper-heuristics
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Despite the diversity of concepts associated with hyper-heuristics, the authors are
aware of only a few attempts to consolidate them. It is also interesting to note that
some conceptual and formal approaches that might reasonably be included under
the wider notion of ‘heuristics to select or generate heuristics’ (e.g. [24, 27]) have
not historically been considered to be part of the literature. As discussed above,
selective hyper-heuristics can be shown to be an instance of the well-known ‘Com-
posite’ design pattern [49], a mechanism used by the HYPERION framework [44, 7]
to allow the same source code to express both metaheuristics and hyper-heuristics.
The widely-cited classification scheme due to Burke et al. [9] is generalized by
Swan et al. [46] to allow any combination of selective/generative and online/offline
to co-exist and interoperate at runtime within the same architecture.

5.1.2 Effectiveness in New Domains

It has been observed that not only the design of a selective hyper-heuristic but also
the choice of predefined low level heuristics influences its performance [29]. To the
best of the authors’ knowledge, there are no applications of selective hyper-heuristic
for which the use of only ‘knowledge poor’ low-level heuristics is competitive with
the state-of-the-art. In practice, state-of-the-art low level heuristics have therefore
made their way into the domain implementations for improved performance, e.g. in
several of the problem domains implemented by HyFlex [28].

This indicates that (selective) hyper-heuristic research has become disconnected
from the original motivation, failing to provide solutions which are ‘good enough,
cheap enough’ (and in general certainly not the ‘near optimal’ solutions which were
originally hoped for). Due to the artificially-restricted notion of the domain barrier,
devising and using selective hyper-heuristics is currently no less labour-intensive
than simply using some generic metaheuristic framework (detailed reasons for this
are given in Sect. 5.2). For researchers, it surely is clear that the application of ma-
chine learning (e.g. [4]) is necessary to avoid cross-domain generalization being
obtained via laborious manual ‘generate and test’. However, the de facto domain
barrier restrictions mean that even the elaborate machine learning techniques that
have been employed in selective hyper-heuristics tend to make use of limited in-
formation. There is therefore a need to move from this restrictive interface to one
which:

• Enables more expressive (i.e. feature-rich) hyper-heuristics.
• Allows state-of-the art knowledge to be easily incorporated into a new problem

domain model by less-experienced practitioners.

To achieve this, it is necessary to disentangle approaches which have become
prevalent from the goals they sought to achieve. This is particularly important since
none of the concepts of Fig. 5.1 suffice to fully-characterize the many publications
with ‘hyper-heuristic’ in the title. To reiterate: applying hyper-heuristics would be
of interest to practitioners (e.g. in industry) if this avoids the need for labour-
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intensive modelling of a specific problem domain. However, metaheuristic search
is already a computational intelligence success story in this respect: approaches
such as simulated annealing, tabu search, genetic algorithms and swarm optimiza-
tion yield good (and often state-of-the-art) results in a wide range of problem do-
mains. The minimal requirement for domain modelling using these techniques is
very small, needing only a choice of solution representation, solution quality mea-
sure and one or more operators for perturbing/recombining solutions.

Depending on the available modelling budget, the sophistication of domain
knowledge can range from the very naı̈ve (e.g. potentially infeasible solutions; ran-
domized operators, quality measure that does not yield a search gradient) through to
a highly-informed combination of state-of-the-art techniques. The important point
relative to selective hyper-heuristics is that, in this case, practitioners retain the op-
tion to increase the competence of the framework layer as required. In the next
section, we show how the popular conception of selective hyper-heuristics can be
viewed as a (somewhat uninformed) special case of generic metaheuristics.

5.2 Popular Notion of the Domain Barrier

The de facto conception of selective hyper-heuristics (e.g. as exemplified by Hyflex
[28]) is shown in Fig. 5.2. Here the notion of ‘heuristic’ is restricted to that of ‘op-
erator’, i.e. a perturbation of a candidate solution. Hyflex operates as follows: the
hyper-heuristic solver maintains a list of heuristics [o1, . . . ,on] and a list of solutions
[s1, . . . ,sm]. The heuristic value of a solution sk is given by e(sk). At each iteration,

Fig. 5.2 A popular conception of selective hyper-heuristics
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the solver chooses three integers i, j,k such that the solution in slot k is replaced by
the result of applying operator i to solution j. This is the characterisation given by
Woodward et al. [48] as:

Sel : N×N×N→R (5.1)

Sel : (i, j,k) �→ e(oi(sk)) (5.2)

with solution k having first being replaced by oi(s j) as a side-effect. The only in-
formation available to the solver in making this choice is the fitness value/execution
time resulting from operator application (and any memorization of such informa-
tion from previous iterations). Problem-specific information is hidden in the belief
that the generality of the hyper-heuristic will be lost. This can be considered as a
‘lowest-common-denominator’ approach to generality.

It should be immediately clear that this formulation is too restrictive to allow
many popular metaheuristics to operate hyper-heuristically (not least) because of
the following common requirements:

1. The ability to compare solutions for domain-specific equality. This arises since
solution representations are only visible to the hyper-layer as integer indices. The
result is that even such elementary techniques as ‘breadth-first search’ cannot be
expressed.

2. The ability to determine those parts of a solution that have been changed by a
heuristic. This is a common requirement in tabu-style approaches (e.g. making
recently-perturbed permutation indices tabu in the TSP).

3. The ability to detect and react to constraint violations (e.g. infeasible solutions)
at the framework level.

The inability to test for equality also precludes approaches such as reactive tabu
or breakout local search [5, 6], which explicitly maintain equality-based solution
histograms in order to determine when a diversification strategy should be triggered.

For clarity, we now make explicit the difference between metaheuristics and se-
lective hyper-heuristics (as defined by the ‘traditional’ Hyflex-style domain barrier).
Consider a generic framework for a local search metaheuristic shown in Listing 5.1.
The framework is parameterized by the type S of solution representation and the
type F denoting the features to be memorized in the search history. [T ] denotes a
list of elements of type T and operators Op are functions S → S. The memorized
features are used for decision-making during the selection process and are obtained
via a mapping f eatures : Op× S× S → F .
To instantiate this framework as a metaheuristic (e.g. simulated annealing for the
TSP), we put:

• S as a permutation.
• [Op] as any desired perturbations e.g. transpositions, 2-opt etc.
• selectOp as uniform random selection.
• accept as Metropolis-Hastings.
• Feature type F to be the empty set (in this particular case).



82 J. Swan et al.

S s e a r c h ( incumbent : S , o p e r a t o r s : [Op ] , h i s t o r y : [ F ] ) {
whi le ( no t f i n i s h e d ( incumbent , h i s t o r y ) ) {

Op op = s e l e c t O p ( incumbent , o p e r a t o r s , h i s t o r y ) ;
S incoming = op ( incumbent ) ;
incumbent = a c c e p t ( incumbent , incoming )
h i s t o r y . upda t e ( f e a t u r e s ( op , incumbent , incoming ) ) ;

}
return i ncumbent ;

}

Listing 5.1 Generic local search meta- or hyper-heuristic

To instantiate this framework as a Hyflex-style hyper-heuristic, we put:

• S as an integer in the range [0,m).
• Op as an integer in the range [0,n).
• selectOp as e.g. choice function [23].
• Feature type F to be (Op,S,S,R), given by (i, j,k,e(sk)) from Eq. (5.1), above.

It should be clear that the same arguments as given above apply to any other meta-
heuristic, population-based or otherwise. Hyflex-style selective hyper-heuristics can
therefore be seen as a special case of a metaheuristic in which solutions and oper-
ators are mapped onto opaque integer indices at the framework level. It should be
clear from the fact that the framework level is already generic in terms of solution
representation, that there is absolutely no requirement for this degree of opacity: we
can instantiate the hyper-heuristic framework with arbitrary solution and operator
types, thereby eliminating the above issues (equality of states etc.) associated with
the opaque handles of Hyflex. In addition, such types can provide much greater util-
ity without loss of generality, e.g. the ability to decompose a solution into parts to
act as finer-grained tabu attributes.

5.3 The Need for ‘Domain-Independent Domain Knowledge’

As explained in the previous section, if one adopts the prevailing notion of the do-
main barrier, then the minimal responsibilities of a practitioner in implementing
some new domain are precisely the same irrespective of whether they wish to use
metaheuristics or hyper-heuristics. In fact, they are considerably worse off with the
latter approach: if search quality is unsatisfactory, then there is no means of ‘in-
jecting further domain knowledge’ at the framework level as can be done with a
metaheuristic. What is therefore needed is a hyper-heuristic approach which can
operate on much richer domain knowledge.

To illustrate the extent to which this is possible, it is useful to consider the dis-
tinction between ‘analytic’ and ‘empirical’ knowledge. We define the former to be
information which is given a priori (or otherwise formally derived from) the prob-
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lem description and the latter to be that derived from the solution trajectory. The
de facto conception of hyper-heuristics is that they can only make use of empirical
knowledge at the framework level. The empirical features exposed by HYFLEX are:

• Objective value arising from applying oi(sk).
• Execution time for operator application.
• Integer handle of an operator.

Given this limited set of features, it is difficult to learn useful information even
within a domain. Handles denoting operators have no persistent meaning across
problem domains and the possibilities for cross-domain learning are therefore even
more limited. While it is encouraging to see that extensions to the de facto con-
ception of the domain barrier have recently been proposed [30], it is possible to go
much further than this, as we now demonstrate.

A recent machine learning approach of Asta and Özcan [4] (in which linkage
between operators is estimated via tensor factorization) is perhaps representative of
the limits of what might be learned from the kind of empirical information described
above. In contrast, in many cases we do not need to mine information of this form
from the solution trajectory: we already have it as prior knowledge. Consider the
ability to reason algebraically about operators. For example, it is well known that
transpositions of permutations are self-inverse, so it is wasteful to apply the same
transposition in succession. This is of course an extremely simple example: there
is no limit to the kinds of exploitable analytic information we might devise. As a
more general example, any sequence of operators (of any sort, as long as they have
signature S → S) forms an algebraic structure known as a monoid under concatena-
tion. This monoid structure can be represented by equations between operators that
describe which sequences always lead back to their starting state (irrespective of the
specific start state). As shown by Swan et al. [45], it is often possible to use this al-
gebraic relationship between operators to derive a set of rewrite rules. These rewrite
rules allow any sequence of operators to be reduced a priori to its minimal-length
equivalent, thereby eliminating redundancy (i.e. cycles) in the state-space graph.
In particular, this is an example of cross-domain analytic knowledge: Swan et al.
apply this to the Quadratic Assignment Problem, but the equational description of
the associated monoid structure could be used in any problem which operates on
permutations.

While this cannot be achieved hyper-heuristically with a HYFLEX-style formula-
tion, making the additional information (in this case the monoid equations) available
to a hyper-heuristic solver has absolutely no cost in terms of generality: a solver
which is incapable of acting on such information can simply ignore it. The chal-
lenge is therefore to exploit such information without loss of generality as ‘domain-
independent domain knowledge’. Although the notion of being able to operate on
arbitrary features has always been implicit in the ASP,1 the vast majority of work in
selective hyper-heuristics has been concerned with the limited feature set described
above.

1 And to a less overt degree implied in early work on hyper-heuristics (e.g. [8]).
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The need to move away from such unnecessary restrictions then leads immedi-
ately to considerations of knowledge-representation, which have fortunately been
well-studied in the wider AI community for many years. Two examples of existing
hyper-heuristic systems which can (in terms of their architectural principles) incor-
porate arbitrary domain knowledge are the blackboard system of Swan et al. [46]
and the multi-agent system of Martin et al. [25]. Although aspects of their architec-
tures differ, they both have the ability to associate competent, representation-aware
algorithms (known as ‘knowledge sources’ or ‘agents’, respectively) with heteroge-
neous sources of information, and it is this which allows these frameworks to op-
erate across domains. The actual association process (which is precisely a mapping
from features to algorithms) might range from the relatively trivial (e.g. a dictionary
of key-value pairs indicating that a particular algorithm is competent to operate on
permutation representations) to more specialized condition-action patterns induced
from any source of information (analytic or empirical) that the agent is able to rec-
ognize. In the next section, we discuss the use of constraint satisfaction as a generic
vocabulary for expressing domain-independent domain knowledge.

5.4 Cross-Domain Knowledge Representation

We now elaborate on the desired nature of knowledge representation for use in a
hyper-heuristic framework capable of generalized cross-domain learning. Such a
generalized representation should ideally allow for the expression of problem spec-
ifications and the description of low-level heuristics, together with formal proper-
ties of those problems and heuristics. What we therefore require is a description in
a problem-independent vocabulary: such a representation would explicitly support
cross domain learning. We may then rely on analytic knowledge of widely-used
problem representations such as graphs and tensors, or reductions to well-known
problems. In principle the hyper-heuristic could access such a specification in any
detail. In this respect, a hyper-heuristic need not differ from a metaheuristic spe-
cialized to some problem domain. As discussed above, the main goal of hyper-
heuristic research is to act effectively in a newly-specified domain without rely-
ing on the presence of optimization experts. Analytic knowledge allows us to bet-
ter achieve this by injecting richer domain knowledge into the search process. In
particular, it can contain rules about operator applications which are known a pri-
ori to result in improvement. An well-known example is the uncrossing of edges
in the TSP:

detect : f indcross

∃ segment (Ap,Ap+1) and (Ap+i,Ap+i+1) in cycle {Ai|i = 1 . . .n}
s.t.|ApAp+1|+ |Ap+iAp+i+1|> |ApAp+i|+ |Ap+1Ap+i+1|

action : uncross

replace (Ap,Ap+1)→ (Ap,Ap+i),(Ap+i,Ap+i+1)→ (Ap+1,Ap+i+1)

and reverse {Ap+1 . . .Ap+i}.
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Such representations could also contain statements about certain relationships
or constraints which are (nearly) always satisfied. A domain expert may wish to
express his experience that certain patterns never contribute to good solutions. A
suitable knowledge representation formalism will permit efficient handling of such
expressions.

One possible means of expressing cross-domain knowledge is constraint pro-
gramming, which provides a well-established means for describing such generalised
problems. Constraint satisfaction problems have the advantage of being declarative,
i.e. allow the statement of constraints in an implementation-independent manner.
Specifying patterns (in various forms) is common to many constraint languages and
properties of low level operators and the relationships between them can readily be
formulated in this manner. The detailed description of the workings of those oper-
ators may still proceed in any language. This implementation may moreover differ
from one domain to another. Given an ontology of domain-independent concepts, it
is very natural to express the transferable knowledge in terms of constraints.

To make these issues concrete, we proceed to discuss the features of a specific
knowledge representation format. XCSP [2, 37, 50] allows expression of constraint
satisfaction problems (CSP), weighted constraint satisfaction problems (WCSP) and
quantified constraint satisfaction problems (QCSP). It allows the description of in-
stances according to characteristics such as real-world; patterned; random instances
with/without a structure or involving only boolean variables. The authors further-
more distinguish instances based on whether they are defining all constraints in
extension, partly in intension or use global constraints. Designed for expression of
general decision and optimization problems, it supports two notations: a full XML
notation compromising between human and machine readability and an abridged
notation which is much more human readable. Both notations are equivalent and
translation in both directions is possible.

The XCSP specification of a problem domain for a hyper-heuristic can therefore
contain information about problem properties and low level heuristics. Information
on low level heuristics in present hyper-heuristic frameworks include categoriza-
tions such as ‘hill climber’ and ‘population based’ [30]. As argued elsewhere in this
paper, it is possible to extend this much further: since XCSP allows for the intro-
duction of arbitrary problem and data descriptions, then in principle any information
about a low level heuristic that has been acquired should be expressible, in principle
to any detail. For example, current hyper-heuristic practice requires that determining
when it might be appropriate to call one heuristic immediately following another is
achieved empirically. In many cases, this information is already available analyti-
cally, e.g. in the manner which is exploited in the ‘Reverse Elimination Method’ of
tabu search [18].

Presently, tools are available for solving, parsing, checking of instances and so-
lutions and shuffling variables (to check robustness of solvers). Since the format
is open and has systematic parsers available, other tools may be conceived: one
might think of discovering patterns in instances or history, item set mining and con-
straint learning, which could serve to summarize XCSP descriptions and keep them
fit for use by on-line hyper-heuristics. Links between data mining and constraint
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programming have been suggested before [13], and ongoing integration between
the two could support a fundamental move from pure model-based problem solving
algorithms to an integrated, data-driven approach. In this extended representation,
instances and algorithm components (low level heuristics) would be described to-
gether with the conventional model. In a sense, this is a natural evolution, given the
decades of algorithm design guided by tests on benchmark instances. This combined
representation would describe problem, instances and history in one comprehensive
format.

All this may change our vision of how combinatorial problems are described,
with constraint languages providing models for the problem in the conventional
sense, together with information on how such problems could be solved. This
information, in the conventional hyper-heuristics paradigm, is specified in terms
of low level heuristics, but predominantly provided declaratively by the research
community.

5.5 Future Directions: The Role of Ontologies

Ontologies codify knowledge in order to drive (traditionally formalized) reasoning
processes. Their first recorded use dates back to Aristotle [40]. In computer sci-
ence, the graph-based semantic nets of Quillan and Simmons [32] and Minsky’s
frame systems provided a foundational definition of entities in terms of specializa-
tion and part/whole relations [26]. These approaches subsequently spawned a mul-
tiplicity of variants (e.g. [20]). The previous section framed knowledge representa-
tion for hyper-heuristics in the vocabulary of constraint satisfaction. By expressing
constraints as relations, such representations clearly have an equivalent representa-
tion as graphs, hypergraphs or RDF-triples. The use of an ontology for scheduling
and routing problems can be seen in Martin et al. [25]. Recently, the Resource De-
scription Framework (RDF) of the Semantic Web [3] has emerged as a common
ontological basis for knowledge exchange. One important feature of web ontologies
is that knowledge can be hierarchically constructed by referencing (the definitions
for) other knowledge elements through a web-hosted URI.

What makes this relevant for hyper-heuristics is the associated support for the dis-
covery, aggregation and substitution of uniquely-identifiable knowledge elements in
the form of problem and algorithm descriptions. The goal then is that practitioner ac-
tivity moves from ‘under-the-hood’ software development to the use of tools to hy-
bridize pre-existing declarative specifications or else tweak constraints. Ontologies
provide further support for the large-scale vision of hyper-heuristics, consisting of
online data repositories containing discovered rules, patterns and constraints which
describe good solution approaches. A suitable choice of knowledge representation
elements (e.g. based on XCSP as above and/or other interoperability standards such
as OpenMath [1]) can form the basis of community investment in such cross-domain
learning tools. This is to be contrasted with the more isolated and domain-specific
development that typically takes place in today’s research settings.
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5.6 Conclusion

We have traced the historical development of hyper-heuristics and highlighted the
motivating division of responsibility: hyper-heuristic researchers are responsible for
devising methods which work well across domains, with the goal of allowing prac-
titioners to invest minimal effort in modelling a new domain. A requirement for
‘lifelong, cross-domain learning’ is strongly implied by this division of responsi-
bility: when provided with the definition of a new domain, a hyper-heuristic must
be able to produce effective solutions in this domain without significant practitioner
expertise or intervention.

As part of a wider community initiative, we therefore argue for a polar stance to
that of the prevailing view of hyper-heuristics: instead of imposing a ‘maximally re-
strictive’ interface between problem-domain and hyper-heuristic solver, we propose
that it is vital to make problem domain (‘analytic’) and solution trajectory (‘empir-
ical’) information available to the solver via some ‘universal’ knowledge exchange
format. The wider possibilities then include:

• The extension of the algorithm selection problem to include ‘analytic’ informa-
tion as part of the mapping process.

• The availability of arbitrarily rich features for machine learning approaches.
• The creation of a library of declarative descriptions of domains via a constraint

language, more easily customized for a new domain than program code.

To coordinate these varied activities, a wider community initiative is in progress to
promote an architectural vision of ‘Metaheuristics in the Large’ [47].
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Intelligence (Springer, Berlin, 2008), pp. 3–29

12. P. Cowling, G. Kendall, E. Soubeiga, A hyperheuristic approach to scheduling a sales summit,
in Practice and Theory of Automated Timetabling III. Lecture Notes in Computer Science, vol.
2079, ed. by E. Burke, W. Erben (Springer, Berlin, Heidelberg, 2001), pp. 176–190

13. L. De Raedt, T. Guns, S. Nijssen, Constraint programming for data mining and machine
learning, in Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence
(AAAI-10) (2010)

14. H.L. Fang, P. Ross, D. Corne, A promising genetic algorithm approach to job-shop scheduling,
rescheduling, and open-shop scheduling problems, in Proceedings of the Fifth International
Conference on Genetic Algorithms (Morgan Kaufmann, San Mateo, CA, 1993), pp. 375–382

15. H.L. Fang, P. Ross, D. Corne, A promising hybrid GA/heuristic approach for open-shop
scheduling problems, in Proceedings of the 11th Conference on Artificial Intelligence (1994),
pp. 590–594

16. H. Fisher, G.L. Thompson, Probabilistic learning combinations of local job-shop scheduling
rules, in Industrial Scheduling, ed. by J.F. Muth, G.L. Thompson (Prentice-Hall, Upper Saddle
River, NJ, 1963), pp. 225–251

17. M. Gagliolo, J. Schmidhuber, Learning dynamic algorithm portfolios. Ann. Math. Artif. Intell.
47(3–4), 295–328 (2006)

18. F. Glover, M. Laguna, Tabu Search (Kluwer, Norwell, MA, 1997)
19. C.P. Gomes, B. Selman, Algorithm portfolios. Artif. Intell. 126(1–2), 43–62 (2001)
20. T.R. Gruber, Toward principles for the design of ontologies used for knowledge sharing? Int.

J. Hum. Comput. Stud. 43(5), 907–928 (1995)
21. B.A. Huberman, R.M. Lukose, T. Hogg, An economics approach to hard computational prob-

lems. Science 275(5296), 51–54 (1997)
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Chapter 6
POSL: A Parallel-Oriented Metaheuristic-Based
Solver Language

Alejandro REYES-Amaro, Eric Monfroy, and Florian Richoux

Abstract For a couple of years, all processors in modern machines are multi-core.
Massively parallel architectures, so far reserved for super-computers, become now
available to a broad public through hardware like the Xeon Phi or GPU cards. This
architecture strategy has been commonly adopted by processor manufacturers, al-
lowing them to stick with Moore’s law. However, this new architecture implies new
ways to design and implement algorithms to exploit its full potential. This is in
particular true for constraint-based solvers dealing with combinatorial optimiza-
tion problems. Here we propose a Parallel-Oriented Solver Language (POSL, pro-
nounced “puzzle”), a new framework to build interconnected meta-heuristic based
solvers working in parallel. The novelty of this approach lies in looking at solver
as a set of components with specific goals, written in a parallel-oriented language
based on operators. A major feature in POSL is the possibility to share not only
information, but also behaviors, allowing solver modifications during runtime. Our
framework has been designed to easily build constraint-based solvers and reduce
the developing effort in the context of parallel architecture. POSL’s main advantage
is to allow solver designers to quickly test different heuristics and parallel com-
munication strategies to solve combinatorial optimization problems, usually time-
consuming and very complex technically, requiring a lot of engineering.

Keywords CSP • Meta-heuristic • Parallel • Inter-process communication
• Language

6.1 Introduction

Combinatorial Optimization has strong applications in several fields, including ma-
chine learning, artificial intelligence, and software engineering. In some cases, the
main goal is only to find a solution, like for Constraint Satisfaction Problems (CSP).
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A solution will be an assignment of variables satisfying the constraints set. In other
words: finding one feasible solution.

CSPs find a lot of applications in the industry, implying the development of
many methods to solve them. Meta-heuristics techniques have shown themselves
to be effective for solving CSPs, but in most industrial cases the search space is
huge enough to be intractable. However, recent advances in computer architec-
ture are leading us toward massively multi/many-core computers, opening a new
way to find solutions for these problems in a more feasible manner, reducing
search time. Adaptive Search [5] is an efficient methods showing very good per-
formances scaling to hundreds or even thousands of cores, using a multi-walk lo-
cal search method. For this algorithm, an implementation of a cooperative multi-
walks strategy has been published in [9]. These works have shown the efficiency
of multi-walk strategy, that is why we have oriented POSL towards this parallel
scheme.

In the last years, a lot of efforts have been made in parallel constraint program-
ming. In this field, the inter-process communication for solver cooperation is one
of the most critical issues. Pajot and Monfroy [11] presents a paradigm that en-
ables the user to properly separate strategies combining solver applications in or-
der to find the desired result, from the way the search space is explored. Meta-
S is an implementation of a theoretical framework proposed in [6], which allows
to tackle problems, through the cooperation of arbitrary domain-specific constraint
solvers. POSL provides a mechanism of creating solver-independent communica-
tion strategies, making easy the study of solving processes and results. Creating
solvers implementing different solution strategies can be complex and tedious. In
that sense POSL gives the possibility of prototyping communicating solvers with
few efforts.

In Constraint Programming, many researches focus on fitting and improving ex-
isting algorithms for specific problems. However, it requires a deep study to find
the right algorithm for the right problem. HYPERION [3] is a Java framework for
meta- and hyper-heuristics built with the principle of interoperability, generality by
providing generic templates for a variety of local search and evolutionary compu-
tation algorithms and efficiency, allowing rapid prototyping with the possibility of
reusing source code. POSL aims to offer the same advantages, but provides also a
mechanism to define communication protocols between solvers.

In this chapter we present POSL, a framework for easily building many and
different cooperating solvers based on coupling four fundamental and independent
components: operation modules, open channels, the computation strategy and com-
munication channels or subscriptions. Recently, the hybridization approach leads to
very good results in constraint satisfaction [14]. ParadisEO is a framework to de-
sign parallel and distributed hybrid meta-heuristics showing very good results [4].
It includes a broad range of reusable features to easily design evolutionary algo-
rithms and local search methods. Our framework POSL focuses only in local search
methods, but is designed to execute in parallel sets of different solvers, with and/or
without communication, since the solver’s components can be combined by using
operators.
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POSL provides, through a simple operator-based language, a way to create a
computation strategy, combining already defined components (operation modules
and open channels). A similar idea was proposed in [7] without communication,
introducing an evolutionary approach that uses a simple composition operator to
automatically discover new local search heuristics for SAT and to visualize them
as combinations of a set of building blocks. Another interesting idea is proposed
in TEMPLAR, a framework to generate algorithms changing predefined components
using hyper-heuristics methods [13]. In the last phase of the coding process with
POSL, solvers can be connected each others, depending on the structure of their
open channels, and this way, they can share not only information, but also their
behavior, by sharing their operation modules. This approach makes the solvers able
to evolve during the execution.

Before ending this chapter with a brief conclusion and future works, we present
some results obtained by using POSL to solve some instances of the Social Golfers
Problem.

6.2 POSL Parallel Solvers

POSL proposes a solver construction platform following different stages. First of
all, the solver algorithm is modeled by decomposing it into small pieces/modules
of computation. After that, they are implemented as separated functions. We name
them operation module. The next step is to decide what information is interesting to
receive from other solvers. This information is encapsulated into other objects called
open channels, allowing data transmission among solvers. In a third stage, a generic
strategy is coded through POSL, using the mentioned components in the previous
stages, allowing not only the information exchange, but also to execute the com-
ponents in parallel. This will be the solver’s backbone. Finally, solvers are defined
by instantiating and connecting the strategy, operation modules and open channels,
and by connecting them each others. The next subsections explain in details each of
these steps.

6.2.1 Operation Module

An operation module is the most basic and abstract way to define a piece of compu-
tation. It can be dynamically replaced by or combined with other operation modules,
since they can be sheared among solvers working in parallel. This way, the solver
can mutate its behavior during execution.

An operation module receives an input, executes an internal algorithm and gives
an output. They are joined through computation strategies.

Definition 6.1. Operation Module An operation module Om is a mapping defined
by:

Om : D → I (6.1)
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D and I can be either a set of configurations, or set of sets of configurations, or a
set of values of some data type, etc.

Consider a local search meta-heuristic solver. One of its operation modules can
be the function returning the set of configurations composing the neighborhood of a
given configuration:

Omneighborhood : D1 ×D2 ×·· ·×Dn → 2D1×D2×···×Dn

where Di represents the definition domains of each variable of the input configura-
tion.

6.2.2 Open Channels

Open Channels are the solver’s components in charge of the information reception
in the communication between solvers. They can interact with operation modules,
depending on the computation strategy. Open Channels play the role of outlets,
allowing solvers to be connected and to share information.

An open channel can receive two types of information, always coming from an
external solver: data or operation modules. It is important to notice that when we
are talking about sending/receiving operation modules, we mean sending/receiving
only required information to identify it and being able to instantiate it.

In order to distinguish between the two different types of open channels, we
will call Data Open Channel the open channel responsible for the data reception,
and Object Open Channel the one responsible for the reception and instantiation of
operation modules.

Definition 6.2. Data Open Channel A Data Open Channel Ch is a component that
produces a mapping defined as follows:

Ch : U → I (6.2)

It returns the information I coming from an external solver, no matter what the input
U is.

Definition 6.3. Object Open Channel If we denote by M the space of all the op-
eration modules defined by Definition 6.1, then an Object Open Channel Ch is a
component that produces an operation module coming from an external solver as
follows:

Ch : M→M (6.3)

Due to the fact that open channels receive information coming from outside and
have no control on them, it is necessary to define the NULL information, to denote
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the absence of any information. If a Data Open Channel receives a piece of infor-
mation, it is returned automatically. If a Object Open Channel receives an operation
module, the latter is instantiated and executed with the open channel’s input, and its
result is returned. In both cases, if no available information exists (no communica-
tions are performed), the open channel returns the NULL object.

6.2.3 Computation Strategy

The computation strategy is the solver’s backbone: it joins operation modules and
open channels in a coherent way, while remaining independent from them. Through
the computation strategy we can decide also what information to sent to other
solvers.

The computation strategy is an operator-based language, that we define as a free-
context grammar as follows:

Definition 6.4. POSL’s Grammar GPOSL = (V,Σ ,S,R), where:

1. V = {CM,OP} is the set of variables,

2. Σ =
{

om,och,be, [, ],�,�p ,(,),{,},�,�m,�o �−→,�, ρ , ∨ , M , m , �
}

is the set of terminals,
3. S = {CM} is the set of start variables,
4. and the set of rules R =

CM → om|och|�om�o|�om�m| [OP] |�OP�p

OP → CM �−→CM

OP → CM �−→ (be){CM;CM}

OP → CM � (be){CM}

OP → CM ρ CM|CM ∨ CM|CM M CM|CM m CM|CM � CM

We would like to explain some of the concepts presented in Definition 6.4:

• The variable CM, as well as OP are two entities very important in the language,
as can be seen in the grammar. We name them compound module and operator
respectively.

• The terminals om and och represent an operation module and an open channel
respectively,

• The terminal be is a boolean expression.
• The terminals [ ],� �p are symbols for grouping and defining the way of how

the involved compound modules are executed. Depending on the nature of the
operator, they can be executed sequentially or in parallel:
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1. [OP]: The involved operator is executed sequentially.
2. �OP�p: The involved operator is executed in parallel if and only if OP supports

parallelism. Otherwise, an exception is threw.

• The terminals ( and ) are symbols for grouping the boolean expression in some
operators.

• The terminals { and } are symbols for grouping compound modules in some op-
erators.

• The terminals �.�m,�.�o, are operators to send information to other solvers (ex-
plained bellow).

• The rest of terminals are POSL operators.

6.2.3.1 POSL Operators

In this section we briefly present operators provided by POSL to code the computa-
tion strategy. A formal presentation of POSL’s specification is available in [12].

Op. 1 : Operator Sequential Execution: the operation M1 �−→M2 represents
a compound module as result of the execution of M1 followed by M2. This op-
erator is an example of an operator that does not support the execution of its
involved compound modules in parallel, because the input of the second com-
pound module is the output of the first one.
Op. 2 : Operator Conditional Sequential Execution: the operation

M1 �−→ (< cond >){M2,M3} represents a compound module as result of the
sequential execution of M1 followed by M2 if < cond > is true or by M3 other-
wise.
Op. 3 : Operator Cyclic Execution: the operation � (< cond >){I1} repre-
sents a compound module as result of the sequential execution of I1 repeated
while < cond > remains true.
Op. 4 : Operator Random Choice: the operation M1 ρ M2 represents a

compound module that executes and returns the output of M1 depending on
the probability ρ , or M2 following (1−ρ)
Op. 5 : Operator Not NULL Execution: the operation M1 ∨ M2 represents
a compound module that executes M1 if it is not NULL or M2 otherwise.

Op. 6 : Operator MAX: the operation M1 M M2 represents a compound
module that returns the maximum between the outputs of modules M1 and M2

(tacking into account some order criteria).
Op. 7 : Operator MIN: the operation M1 m M2 represents a compound mod-
ule that returns the minimum between the outputs of modules M1 and M2 (tack-
ing into account some order criteria).
Op. 8 : Operator Speed: the operation M1 � M2 represents a compound
module that returns the output of the module ending first.
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In Fig. 6.1 we present a simple example of how to combine modules using POSL
operators introduced above. Algorithm 1 shows the corresponding code. In this ex-
ample we show four operation modules being part of a compound module represent-
ing a dummy local search method. In this example:

• M1: generates a random configuration.
• M2: computes a neighborhood of a given configuration by selecting a random

variable and changing its value.
• M3: computes a neighborhood of a given configuration by selecting K random

variables and changing theirs values.
• M4: selects, from a set of configurations, the one with the smallest cost, and stores

it.

Here, the operation module M2 is executed with probability ρ , and M3 is ex-
ecuted with probability (1 − ρ). This operation is repeated a number N of times
(< stop_cond >).

M1 M2 M3 M4

<stop_cond>

ρ

Fig. 6.1 Un example of a basic solver using POSL

Algorithm 1 POSL code for Fig. 6.1

M1 �−→ [� (loops < N){[M2 ρ M3] �−→ M4}]

In Algorithm 1, loops represent the number of iterations performed by the oper-
ator.

+2

Op.− 8 : Operator Sending: allows us to send two types of information to
other solvers:

1. The operation �M�o represents a compound module that executes the com-
pound module M and sends its output

2. The operation �M�m represents a compound module that executes the com-
pound module M and sends M itself

Algorithm 2 POSL code for Fig. 6.2 case (1)
M1 �−→ �M�o �−→ M2
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M1 M2

O

M

Fig. 6.2 Sending Information Operator

Algorithm 3 POSL code for Fig. 6.2 case (2)
M1 �−→ �M�m �−→ M2

Algorithms 2 and 3 show POSL’s code corresponding to Fig. 6.2 for both cases:
(a) sending the result of the execution of the operation module M, or (b) sending the
operation module M itself.

This operation is very useful in terms of sharing behaviors between solvers. Fig-
ure 6.3 shows another example, where we can combine an open channel with the
operation module M2 through the operator ∨ . In this case, the operation mod-
ule M2 will be executed as long as the open channel remains NULL, i.e. there is
no operation module coming from outside. This behavior is represented in Fig. 6.3
by red lines. If some operation module has been received by the open chan-
nel, it is executed instead of the operation module M2, represented in Fig. 6.3 by
blue lines.

(a) (b)<stop_cond>

M1 M1

M2 M2

M3 M3M4 M4

Ch Ch

v v

<stop_cond>

Fig. 6.3 Two different behaviors in the same solver. (a) The solver executes his own operation
module if no information is received through the open channel. (b) The solver executes the opera-
tion module coming from an external solver

In this stage, and using these operators, we can create the algorithm managing
different components to find the solution of a given problem. These algorithms are
fixed, but generic w.r.t. their components (operation modules and open channels). It
means that we can build different solvers using the same strategy, but instantiating
it with different components, as long as they have the right input/output signature.
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To define a computation strategy we use the environment presented in Algo-
rithm 6, where Mi and Chi represent the types of the operation modules and the
types of the open channels used by the computation strategy St. Between brackets,
the field < ...computation strategy... > corresponds to POSL code
based on operators combining already declared modules.

Algorithm 4 Computation strategy definition
St ← strategy
oModule M1,M2, . . .,Mn

oChannel Ch1 ,Ch2, . . .,Chm

{
< ...computation strategy... >
}

Algorithm 5 Solver definition
solverk ← solver
{
cStrategy St
oModule m1,m2, . . . ,mn

oChannel ch1,ch2, . . . ,chm

}

6.2.4 Solver Definition

With operation modules, open channels and computation strategy defined, we can
create solvers by instantiating the declared components. POSL provides an environ-
ment to this end, presented in Algorithm 6, where mi and chi represent the instances
of the operation modules and the instances of the open channels to be passed by
parameters to the computation strategy St.

6.2.5 Communication Definition

Once we have defined our solver strategy, the next step is to declare communication
channels, i.e. connecting the solvers each others. Up to here, solvers are discon-
nected, but they have everything to establish the communication. In this last stage,
POSL provides to the user a platform to easily define cooperative meta-strategies
that solvers must follow.
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The communication is established by following the next rules guideline:

1. Each time a solver sends any kind of information by using the operator �.�o or
�.�m, it creates a communication jack

2. Each time a solver uses an open channel into its definition, it creates a communi-
cation outlet

3. Solvers can be connected each others by creating subscriptions, connecting com-
munication jacks with communication outlet (see Fig. 6.4).

With the operator (·) we have access to operation modules sending information
and to the open channel’s names in a solver. For example: Solver1 · M1 provides
access to the operation module M1 in Solver1 if and only if it is affected by the
operator �.�o (or �.�m), and Solver2 ·Ch2 provides access to the open channel Ch2 in
Solver2. Tacking this into account, we can define the subscriptions.

Definition 6.5. Let two different solvers Solver1 and Solver2 be. Then, we can con-
nect them through the following operation:

Solver1 ·M1 � Solver2 ·Ch2

The connection can be defined if and only if:

1. Solver1 has an operation module called M1 encapsulated into an operator �.�o or
�.�m.

2. Solver2 has an open channel called Ch2 receiving the same type of information
sent by M1.

Definition 6.5 only gives the possibility to define static communication strategies.
However, our goal is to develop this subject until obtaining operators more expres-
sive in terms of communication between solvers, to allow dynamic modifications of
communication strategies, that is, having such strategies adapting themselves during
runtime.

6.3 A POSL Solver

In this section we explain the structure of a POSL solver created by using the
operators-based language provided, to solve some instances of the Social Golfers
Problem (SGP). It consists to schedule n = g× p golfers into g groups of p players
every week for w weeks, such that two players play in the same group at most once.
An instance of this problem can be represented by the triple g− p−w.

We choose one of the more classic solution methods for combinatorial problems:
local search meta-heuristics algorithms. These algorithms have a common structure:
they start by initializing some data structures (e.g. a tabu list for Tabu Search [8], a
temperature for Simulated Annealing [10], etc.). Then, an initial configuration s is
generated (either randomly or by using heuristic). After that, a new configuration s∗

is selected from the neighborhood V (s). If s∗ is a solution for the problem P, then
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the process stops, and s∗ is returned. If not, the data structures are updated, and s∗ is
accepted or not for the next iteration, depending on some criterion (e.g. penalizing
features of local optimums, like in Guided Local Search [2]).

Restarts are classic mechanisms to avoid becoming trapped in local minimum.
They are trigged if no improvements are done or by a timeout.

Operation Modules composing each solver of the POSL-solver are described
bellow:

1. Generate a configuration s.
2. Define the neighborhood V (s)
3. Select s∗ ∈ V (s). In every case for this experiment the selection criteria is to

choose the first configuration improving the cost.
4. Evaluate an acceptance criteria for s∗. In every case for this experiment the ac-

ceptance criteria is to choose always the configuration with less cost.

For this particular experiment we have created three different solvers (see Fig. 6.4):

1. Solver 1: A solver sending the best configuration every K iterations (sender
solver). It sends the found configuration to the solver it is connected with. Al-
gorithm 5 shows its computation strategy.

2. Solver 2: A solver receiving the configuration coming from a sender solver
(Solver 1). It takes the received configuration, if its current configuration’s cost is
not better than the received configuration’s cost, and takes a decision. This solver
receives the configuration through an open channel joined to the operation mod-
ule M3 with the operator m . Algorithm 7 shows its computation strategy.

3. Solver 3: A simple solver without communication at all. This solver does not
communicate with any other solver, i.e. it searches the solution into an indepen-
dent walk though the search space. Algorithm 5 shows its computation strategy.

Fig. 6.4 Three solvers composing the POSL-solver
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6.3.1 Connecting Solvers

After the instantiation of each operation module, the next step is to connect the
solvers (sender with receiver), by using the proper operator. If one solver Σ1

(sender) sends some information and some other solver Σ1 (receiver) is able to re-
ceive it though an open channel, then they can be connected as the Algorithm 1
shows.

Algorithm 6 POSL code for solver 1 in Fig. 6.4
St1 ← strategy /* ITR → number of iterations */
oModule : M1,M2,M2,M4
{
[� (ITR%30){M1 �−→ [� (ITR%300){M2 �−→ M3 �−→ �M4�o}]}]
{

Algorithm 7 POSL code for solver 2 in Fig. 6.4
St2 ← strategy /* ITR → number of iterations */
oModule : M1,M2,M2,M4
oChannel : Ch1
{

[� (ITR%30){M1 �−→ [� (ITR%300)

{M2 �−→
[
Ch1 m M3

]
�−→ M4}]}]

}

Algorithm 8 POSL code for solver 3 in Fig. 6.4
St3 ← strategy /* ITR → number of iterations */
oModule : M1,M2,M2,M4
{

[� (ITR%30){M1 �−→ [� (ITR%300){M2 �−→ M3 �−→ M4}]}]
}

Algorithm 9 Inter-solvers communication definition
Σ1 ·M4 � Σ2 ·Ch1
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6.4 Results

We ran experiments to study the behavior of POSL’s solvers in different scenarios
solving instances of the Social Golfers Problem. For that reason we classified runs
taking into account the composition of POSL1 solvers:

• Without communication: we use a set of solvers 3 without communication.
• Some communicating solvers: some of the solvers are solvers 3 without commu-

nication, the others are couples of connected solvers (solver 1 and solver 2)
• All communicating solvers: we use a set of couples of connected solvers (solver 1

and solver 2).

Our first experiment uses our desktop computer (Intel R©Core TMi7 (2.20 GHz)
with 16 Gb RAM), for solving instances of SGP with 1 (sequential), 4 and 8 cores.
Results can be found in Table 6.1. In this table, as well as in Table 6.2, C are the
numbers of used cores, T indicates the runtime in milliseconds, and It. the number
of iterations. Values are the mean of 25 runs for each setup.

The other set of runs were performed on the server of our laboratory (Intel
R©Xeon TME5-2680 v2 (10×4 cores, 2.80GHz)). Table 6.2 shows obtained results.

Table 6.1 Intel Core i7

Inst C
No comm. 50% comm. All comm.

T It. T It. T It.

6-6-3
1 6089 159 – – – –
4 1500 109 1354 97 3512 181
8 1980 83 2049 78 5323 113

7-7-3
1 17,243 831 – – – –
4 6082 208 5850 170 13,094 270
8 6125 136 5975 124 13,864 219

8-8-3
1 32,042 428 – – – –
4 23,358 270 22,512 222 56,740 340
8 19,309 126 19,925 121 28,036 144

9-9-3
1 198,450 1516 – – – –
4 94,867 662 91,556 517 102,974 596
8 102,629 394 98,060 335 126,799 466

Bold values: Best (lowest) result considering the number of processors used in the experiment

Results show how the parallel multi-walk strategy increases the probability of
finding the solution within a reasonable time, when compared to the sequential
scheme. Thanks to POSL it was possible to test different solution strategies eas-
ily and quickly. With the Intel Xeon server we were able to test seven strategies,
and with the desktop machine only 3, due to the limitation in the number of cores.
Results suggest that strategies where there exist a lot of communication between
solvers (sending or receiving information) are not good (sometimes is even worse
than sequential). That is not only because their runtimes are higher, but also due to

1 POSL source code is available in https://github.com/alejandro-reyesamaro/POSL.
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Table 6.2 Intel Xeon

Inst C No comm. 15% comm. 25% comm. 30% comm. 50% comm. 75% comm. All comm.
T It. T It. T It. T It. T It. T It. T It.

6-6-3
1 2684 229 – – – – – – – – – – –
10 1810 131 1636 107 1479 99 1634 107 1406 79 1532 91 3410 182
20 1199 82 1094 75 964 70 1096 76 1124 78 1299 87 1769 101
30 1214 75 1092 64 1010 68 1101 68 766 52 1366 85 1984 73
40 1043 50 1063 49 1104 54 1299 58 1186 49 1462 63 1824 69

7-7-3
1 11,070 533 – – – – – – – – – – –
10 6636 245 5992 189 5139 179 5456 177 6055 205 6398 197 8450 221
20 2734 104 2880 102 2517 90 3028 111 2970 111 3465 124 4153 143
30 3141 100 2864 91 1972 69 2312 79 2907 97 3028 82 3236 89
40 2615 68 2810 70 2111 55 2984 71 2981 74 3636 79 3934 86

8-8-3
1 24,829 315 – – – – – – – – – – –
10 17,652 193 17,067 168 16,008 163 16,167 161 16,624 147 21,244 185 27,248 226
20 8430 102 8218 92 6197 77 7950 93 7962 92 8550 91 12,958 125
30 7424 81 6439 66 6268 71 7413 80 7407 75 9806 89 10,420 90
40 9700 75 10,068 76 9377 72 8983 68 9360 72 11,805 84 12,859 91

9-9-3
1 190,965 1315 – – – – – – – – – – –
10 47,300 331 45,946 293 43,682 276 45,433 286 47,820 327 67,113 439 79,938 506
20 28,193 200 25,370 178 24,936 161 24,786 169 28,369 194 30,147 203 33,610 232
30 22,035 123 21,792 127 19,518 125 23,426 133 25,989 163 31,904 172 32,982 203
40 27,669 125 26,030 116 24,196 112 28,284 125 26,405 118 32,464 149 34,316 140

Bold values: Best (lowest) result considering the number of processors used in the experiment

the fact that only a low percentage of the receivers solvers were able to find the so-
lution before the others did. This result is not surprising, because inter-process com-
munications imply overheads in the computation process, even with asynchronous
communications. This phenomenon can be seen in Fig. 6.5, where it is analyzed the
percentage mentioned above versus the numbers of running solvers.
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Fig. 6.5 Communication rate: % of solutions found by communicating solvers
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When we face the problem of building a parallel strategy, it is necessary to find
an equilibrium between the numbers of communicating solvers and the number of
independent solvers. Indeed the communication cost is not negligible: it implies data
reception, information interpretation, making decisions, etc.

Slightly better results were obtained with the strategy 25% Comm when com-
pared to those obtained with the rest, suggesting that the solvers cooperation can
be a good strategy. In general, the results obtained using any of the afore men-
tioned strategies were significantly better than when using the All Comm strategy.
Figure 6.6 shows for each instance, the runtime means using different numbers of
cores.

The fact we send the best configuration found to other solvers has an impact on
communication evaluations. If the percentage of communicating solvers is high and
the communication manage to be effective, i.e. the receiver solver accepts the con-
figuration for the next iteration, then we are losing a bit the independent multi-walk
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effect in our solver, that is, most of the solvers are looking for a solution in the same
search space area. However, this is not a problem: if a solver is trapped, a restart is
performed. Determining what information to share and to not share among solvers
has been few investigated and deserves a deep study.

In many cases, using all cores available did not improves the results. This phe-
nomenon can be observed clearly in runs with communication, and one explanation
can be the resulting overhead, which is way bigger. Another reason why we ob-
tain these results can be the characteristic of the architecture, that is, in many cases,
not uniform in terms of reachability between cores [1]. We can observe that, even
if runtimes are not following a strict decreasing pattern when the number of cores
increases, iterations do, suggesting once again that the parallel approach is effective.

With communications, the larger the problem, the more likely effective coopera-
tions between processors are, although sometimes a decreasing pattern occurs while
approaching the maximum number of cores, due to communication overheads and
architecture limitations.

Before we perform these experiments, we compared runtimes between two
solvers: one using an operation module to select a configuration from a computed
neighborhood that selects the first configuration improving the current configura-
tion’s cost, and other selecting the best configuration among all configurations in the
neighborhood. Smallest runtimes were obtained by the one selecting the first best
configuration, and that is way we used this operation module in our experiments. It
explains the fact that some solvers need more time to perform less iterations.

6.5 Conclusions

In this chapter we have presented POSL, a framework for building cooperating
solvers. It provides an effective way to build solvers which exchange any kind of in-
formation, including other solver’s behavior, sharing their operation modules. Using
POSL, many different solvers can be created and ran in parallel, using only one
generic strategy, but instantiating different operation modules and open channels
for each of them.

It is possible to implement different communication strategies, since POSL pro-
vides a layer to define communication channels connecting solvers dynamically us-
ing subscriptions.

At this point, the implementation of POSL remains in progress, in which our
principal task is creating a design as general as possible, allowing to add new fea-
tures. Our goal is obtaining a rich library of operation modules and open channels to
be used by the user, based on a deep study of the classical meta-heuristics algorithms
for solving combinatorial problems, in order to cover them as much as possible. In
such a way, building new algorithms by using POSL will be easier.

At the same time we pretend to develop new operators, depending on the new
needs and requirements. It is necessary, for example, to improve the solver defini-
tion language, allowing the process to build sets of many new solvers to be faster
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and easier. Furthermore, we are aiming to expand the communication definition
language, in order to create versatile and more complex communication strategies,
useful to study the solvers behavior.

As a medium term future work, we plan to include machine learning techniques,
to allow solvers to change automatically, depending for instance on results of their
neighbor solvers.
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Chapter 7
An Extended Neighborhood Vision
for Hill-Climbing Move Strategy Design

Sara Tari, Matthieu Basseur, and Adrien Goëffon

Abstract Many combinatorial optimization problem solvers are based on stochastic
local search algorithms, which mainly differ by their move selection strategies, also
called pivoting rules. In this chapter, we aim at determining pivoting rules that allow
hill-climbing to reach good local optima. We propose here to use additional informa-
tion provided by an extended neighborhood for an accurate selection of neighbors.
In particular, we introduce the maximum expansion pivoting rule which consists
in selecting a solution which maximizes the improvement possibilities at the next
step. Empirical experiments on permutation-based problem instances indicate that
the expansion score is a relevant criterion to attain good local optima.

Keywords Combinatorial optimization • Neighborhood search • Permutation
problems

7.1 Introduction

Metaheuristics constitute a conceptual answer to tackle combinatorial problem in-
stances that cannot be solved by complete methods using reasonable computational
resources. In this work, we focus on neighborhood-based search techniques, which
constitute a central component of most metaheuristics (e.g. simulating annealing,
tabu search, iterated local search, memetic search) [20].

Neighborhood searches explore the search space by applying iteratively local
modifications to a current solution thanks to a neighborhood relation. Strategies
mainly differ by their selection criterion which determines the search trajectory and
consequently the solutions reached.

In general, metaheuristic behaviors remain hard to analyze hence the difficulty
to predict the comparative relevance of different selection criterions, also called
pivoting rule. In order to enhance the understanding of neighborhood searches,
and also to reduce the complexity of their behavior analysis, we focus here on

S. Tari • M. Basseur (�) • A. Goëffon
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hill-climbing techniques. In such strategies, only non-deteriorating moves are
allowed to constitute possible trajectories. Traditionally, best improvement and first
improvement strategies are two alternatives while designing a hill-climbing search.

In previous studies, we observed that best improvement is often preferred if the
complete neighborhood evaluation does not increase significantly computational
costs. However, we showed in [2, 5] that in many cases, best improvement is not
the appropriate strategy to reach better solutions. We also investigated other pivot-
ing rules as alternatives to best and first improvement. In particular, the behavior of
the worst improvement was introduced in [3] to climb NK landscapes and presented
in a more general context in the META 2014 conference [4].

As an extension of this work, this chapter focuses on determining advanced hill-
climbing strategies which allow the attainment of higher local optima. Indeed, in
[6], we pointed out that a hill-climbing process is often able to reach the best local
optima provided that adequate moves are selected by the pivoting rule. Since meta-
heuristic studies regularly emphasize that the behavior of their components strongly
depends on the search space structure considered, we choose here to focus the study
on two permutation problems: Flowshop and QAP.

The advanced pivoting rules investigated in this chapter consider an extended
neighborhood as additional information for choosing the move within the neigh-
borhood originally defined. We are mainly interested on the maximum expansion
strategy, which consists in moving towards solutions maximizing the number of
move possibilities for the next iteration. We include to experimental comparisons
several hill-climbing strategies which use or not such an extended vision of the
search space.

In the next section, we recall main notions and definitions related to combina-
torial optimization and local search. Section 7.3 describes hill-climbing variants
as well as experimental comparisons. In the light of these results, we propose in
Sect. 7.4 possible ways to enhance search processes by multiobjectivization. We fi-
nally conclude by a discussion and point out some perspectives.

7.2 Combinatorial Optimization, Local Search, Hill-Climbing

A combinatorial instance problem can be defined as a pair (X , f ), where X is
a discrete set of feasible solutions called search space, and f : X → R, a scalar
objective function which has to be maximized or minimized. Solving an optimiza-
tion problem (X , f ) consists in finding x∗ ∈ argmaxx∈X f (x). Note that here f
has to be maximized, but minimization problems can be considered without loss of
generality.

A local search algorithm (Algorithm 1) consists in navigating through the search
space thanks to a neighborhood function N : X → 2X which assigns to each
x ∈ X a set of neighboring solutions, and an evaluation function which allows a
partial order relation between solutions. In the following, we will use the objective
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function f as evaluation function. A solution x′ ∈ N is a neighbor of x. If f (x′) >
f (x) (resp. =, <), then the transition x → x′ is an improving (resp. neutral, de-
teriorating) move. x′ is then an improving (resp. neutral, deteriorating) neighbor.
A global optimum is a solution x∗ ∈ argmaxx∈X f (x), i.e. an optimal solution of
the combinatorial problem (X , f ). A local optimum is a solution x such that
∀x′ ∈ N (x), f (x′) � f (x). A strict local optimum have only deteriorating neigh-
bors. We call neutral perturbation a neutral move x → x′ such that x is a local
optimum.

Given (X , f ) and N , the quality of a local search algorithm resides in its ability
to reach good solutions (thanks to the pivoting rule used, exploiting f ) in reasonable
computational costs. A local search process can be seen as a particular sampling
of X using N and f . Triplets (X ,N , f ) are called fitness landscapes [10] when
abstracted from problem-oriented issues. Their particular analysis sheds light on
possible links between structural properties and local searches behavior.

Algorithm 1 Local search
Choose x ∈ X (initialization)
xb ← x (save the best solution found)
repeat

Choose x′ ∈ N (x) w.r.t. a piv. rule
x ← x′

if f (x)> f (xb) then
xb ← x

end if
until stop criterion
Return xb

Algorithm 2 Hill-climbing
Choose x ∈ X (initialization)
repeat

N+(x) = {y ∈ N (x), f (y)> f (x)}
if N+(x) �= /0 then

Choose x′ ∈ N+(x) w.r.t. a piv. rule
x ← x′

end if
until N+(x) = /0 /* x is a local opt. */
Return x

A local search algorithm is called hill-climbing, or climber, if the pivoting rule
does not allow deteriorating moves (see Algorithm 2). Thus, it is not necessary to
save the best solution encountered during the search (xb in Algorithm 1). A strict
hill-climbing allows only improving moves, while a stochastic hill-climbing allows
also neutral moves. If no neutral move is permitted during the search (including



112 S. Tari et al.

neutral perturbations), then reaching a local optimum is a natural stop criterion.
Otherwise, the search stops when a strict local optimum is reached, or if a maximal
number of iterations or evaluated solutions is attained.

A best improvement strict hill-climbing selects at each iteration the best improv-
ing neighbor, while a (random) first improvement strict hill-climbing selects any
improving neighbor. Note that the entire neighborhood of a current solution has not
to be evaluated in a first improvement climber. Different pivoting rules can be de-
fined by combining first or best improvement strategy with a stochastic hill-climbing
process. Other strategies will be discussed in the next section.

The difficulty of solving a problem (X , f ) with a local search using a neighbor-
hood N greatly depends on the characteristics of its associated fitness landscape
[14]. In particular, the ruggedness of (X ,N , f ) express its amount of epistasis
phenomenon [7] and the number of local optima which constitute the main obstacle
to climbers (see [17, 5] for more details). Neutrality, which refers to the amount of
neutral transitions and plateaus, affects also the capacity of local searches to explore
landscapes efficiently.

Previous works [5] showed that some hill-climbing pivoting rules are generally
more appropriate and their efficiency could differ according to landscape properties.
In particular, when the landscape is sufficiently rugged, a best improvement strategy
leads often prematurely to local optima, while pivoting rules which favor small im-
provements lead to longer searches which often drive to better solutions. Based on
these observations, it seems relevant to develop pivoting rules dedicated to preserve
as much as possible improvement options. This leads us to propose the maximum ex-
pansion strategy which uses information of additional degree of neighborhood. The
next section is dedicated on maximum expansion which is experimentally compared
with other climbing strategies.

7.3 Hill-Climbing Moving Strategies: Description and
Evaluation

7.3.1 Context

In this work, we investigate specific pivoting rules which aim to enhance hill-
climbing performance by exploiting the knowledge of a wider area than the con-
sidered neighborhood. We call k-th level neighborhood of a configuration x the
set of solutions Ak(x) = {x′ ∈ X ,dN (x,x′) ≤ k}, where dN (x,x′) refers to the
minimal number of moves to link x to x′ with respect to N . As a consequence,
A1(x) = N (x)∪{x}. In the following, we will distinguish (1) the moving area and
(2) the vision area of a local search algorithm. The moving area is the set of solutions
reachable in a single step of the search (independently of any selection criterion).
The vision area is composed of solutions which may be used by the pivoting rule to
choose a solution from the moving area (see Fig. 7.1).
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Fig. 7.1 Hypercube of dimension 5 where vertices are placed in order to respect the relation be-
tween hamming distance and Euclidian distance to the solution “00000”. We aim at moving effi-
ciently in the moving area thanks to the information provided by the vision area

Classical pivoting rules such as first and best improvement use the first level
neighborhood A1 as vision area. At each step of the search, this vision area provides
only information of the current solution and its neighbors. The maximum expansion
hill-climbing pivoting rule (ME>), which selects the improving neighbor maximiz-
ing its own number of improving neighbors, uses an extended vision area (A2). Let
us notice that such a pivoting rule has been considered in a complexity study for the
p-median problem [1].

This section is dedicated to assess the efficiency of ME> in comparison to other
hill-climbing strategies. In a first study (Sect. 7.3.2) ME> is compared to first level
hill-climbing strategies (best, first and worst improvement). Climbers based on
vision area A2, including ME>, are presented and competed in a specific study
(Sect. 7.3.3).

7.3.2 Experimental Protocol

Despite the generic aspects of metaheuristics, their efficiency generally depends on
problem specificities. In particular, different solution representations (bit strings,
permutations, assignments) lead to different search space structures. Through the
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study of NK landscapes and MAXSAT problems [5], we already have an effective
understanding of the behavior of local searches on bit string landscapes. Here we
focus on permutation-based problems. Experiments are conduct on Flow-shop and
QAP instances.

The Flow-shop Scheduling Problem (FSP) [19] consists in scheduling n jobs on
m machines. A machine cannot be assigned to two jobs simultaneously. Each job is
composed of m consecutive tasks with specific processing times. In the permutation
variant under consideration, jobs must be scheduled in the same order on all ma-
chines, and the objective value to be minimized is the total completion time called
makespan (see [5] for a more formal description). Note that this problem has been
proved to be NP-hard for more than two machines [13].

The Quadratic Assignment Problem (QAP) [12] is an other NP-hard permutation
problem [18, 16] which aims at assigning a set of n facilities to a set of n locations
with given distances between locations and given flows between facilities. The ob-
jective value to be minimized corresponds to the sum of the products between flows
and distances, relatively to a permutation describing the assignment.

FSP and QAP are both permutation problems and thus involve common search
spaces. However, neighborhoods traditionally used for tackling these two problems
differ (insertion for FSP and swap for QAP). Then two main features distinguish
instance characteristics: the problem under consideration and the permutation size.
117 Flow-shop and 93 QAP instances, with various size and ruggedness level, were
used for experimentations.1

The experimental comparison of hill-climbing strategies follows a specific exper-
imental protocol. For each couple (instance, climber), 100 executions are performed
from identical sets of 100 randomly generated solutions, in order to reduce stochas-
tic bias. Two criteria are used for comparing two strategies A and B: the global
success ratio2 of A against B from identical starting solutions, and the ratio of in-
stances where A statistically dominates B. The statistical dominance of a strategy
over an other is assessed from the number of successes on a particular instance with
respect to a binomial test (p-value 0.95). More precisely, if S denotes the number of
successes of method A over method B after 100 confrontations, then A statistically
outperforms B when 1

2100 ∑S
i=0

(100
S

)
� 0.95, i.e. S � 58.

7.3.3 Maximum Expansion vs. A1 Vision Area Climbers

The first empirical comparison proposed in this section focuses on competing ME>
with three basic hill-climbing strategies. The four variants under consideration are
the following ones:

1 FSP instances are taken from [19]. Their sizes vary from 20 to 50 jobs and 5 to 20 machines. QAP
Instances can be found on opt.math.tu-graz.ac.at/qaplib/inst.html. Instances
used for tests involve permutations of size ranging from 12 to 64.
2 We call success the event ’A reaches a strictly better solution than B from the same starting
solution’.

http://opt.math.tu-graz.ac.at/qaplib/inst.html
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• BEST selects at each step the best improving neighbor.
• FIRST selects at each step an improving neighbor.
• WORST selects at each step the least improving neighbor.
• ME> selects at each step the improving neighbor with the best expansion score.

The expansion score of a solution denotes its number of improving neighbors. If
the best expansion score is equal to 0, meaning that all improving neighbors are
local optima, then ME> selects the best one thanks to f (see Algorithm 3).

Algorithm 3 ME> hill-climbing
1: Choose x ∈ X (initialization)
2: N+(x) = {y ∈ N (x), f (y)> f (x)}
3: for each yi ∈ N+(x) do
4: E(yi) = #{z ∈ N(yi), f (z)> f (yi)}
5: end for
6: if maxi E(yi)> 0 then
7: x ← x j, j ∈ argmaxiE(yi)
8: Go to 2
9: else

10: x ← x j, j ∈ argmax f N+(x)
11: end if
12: Return x

When several neighbors satisfy the moving criterion, one of them is chosen ran-
domly. Algorithms stop when a local optimum is attained. Let us recall that all these
variants never accept neutral or deteriorating moves. Figure 7.2 depicts the three
most determinist strategies.

Fig. 7.2 Illustration of climber variants behavior starting from solution x. Only improving moves
are represented

Naturally these different pivoting rules involve a different behavior during the
search. Tables 7.1 and 7.2 summarize the experiments realized through performance
features described previously and allow the visualization of their relative capacity
to reach high local optima.
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Table 7.1 Pairwise comparisons of pivoting rules on QAP instances

Bars indicate proportions of instances leading to the three possible statistical conclusions. Black
areas represent the number of instances where strategy A (in line) statistically dominates strategy
B (in column), w.r.t. a binomial test (with a p-value of 0.95). Grey areas represent instances
where no statistical conclusion is obtained. White areas represent instances where strategy A
is statistically dominated by strategy B. Finally, the value below each bar corresponds to the
proportion of successes considering all executions on all instances

Table 7.2 Pairwise comparisons of pivoting rules on FSP instances

The main result here concerns ME>, which clearly outperforms the 3 other meth-
ods. Indeed, ME> statistically dominates WORST, FIRST and BEST on more than
90% of instances and is never statistically dominated. In the light of this observa-
tion, we assume that the efficiency of climbers is directly induced by the expansion
score of the solutions selected during the search.

Let us recall that we focus here on the capacity of a hill-climbing pivoting rule
to reach local optima as highest as possible. In terms of computational costs, ME> is
clearly slower than other variants since it considers the second neighborhood level
at each step of the search.

Experiments show that generally WORST is better than classical BEST and
FIRST climbers on the considered permutation instances, and more particularly
on FSP instances (see Tables 7.1 and 7.2). BEST is more efficient than WORST on
some QAP instances with specific properties, but globally FIRST often leads to
better local optima than BEST. This confirms the general observation (FIRST �
BEST)⇔ (WORST� FIRST) [3].

Since WORST outperforms the other first level pivoting rules studied, we wonder
if its relative efficiency comes from its tendency to select neighbors with a high
expansion score. To emphasize a possible link between WORST and ME> behaviors,
we collected average ranks of selected solutions among improving neighbors as
follow.
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Let r = |{x′′ ∈ N+(x), f (x′′)> f (x′)}|+ 1
2 |{x′′ ∈ N+x, f (x′′)> f (x′)}| the rank

of x′ within the set of improving neighbors N+(x) of size n. Provided that k is the
number of ranking classes, x′ belong to a class Ci with a ratio max(0,min(r/n, i/k)−
max(r− 1/n, i− 1/n))/n.

Fig. 7.3 Evolution of rank classes of selected neighbor during ME> processes

Figure 7.3 reports the average values of Ci ratios considering k = 4 classes. One
can observe that most of the selected neighbors of ME> belong in the class C4, which
is constituted of the 25% least improving neighbors. It indicates that there exists a
certain level of similitude between ME> and WORST behaviors.

Although ME> clearly outperforms the first level pivoting rules, it takes advan-
tage of additional information provided by its extended vision. To achieve a more
accurate evaluation of the expansion score criterion relevance, we proceeded to a
second study which includes other second level pivoting rules.

7.3.4 Maximum Expansion vs. A2 Vision Area Climbers

We note C v
m a climber based on pivoting rule C , using Av as vision area and Am

as moving area. In this section, we introduce additional climbers involving the sec-
ond level neighborhood as vision area (v = 2). Pivoting rules best (B) and first (F)
improvement are used to provide two variants of extended vision hill-climbings:
climbers whose moves are restricted to the original neighborhood N (m = 1) and
climbers which use the large neighborhood A2. This leads to the following variants:

• B2
1 and F2

1 use the same moving and vision areas as ME>. At each step of the
search, B2

1 starts by identifying the best solution xb among the vision area. xb

is selected if it belongs to the moving area, otherwise B2
1 selects the improving

neighboring solution which leads to xb. The first improvement variant is similar
to the basic climber FIRST, except that no local optimum can be selected if other
alternatives exist. Despite B2

1 and F2
1 are directly derived from classical pivoting
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rules, some local optima can be avoided by using A2 as vision area. Let us notice
that B2

1 corresponds to the two steps hill-climbing proposed in [8].
• B2

2 and F2
2 represent best and first strict improvement hill-climbings employing

the large neighborhood N ′ = A2, commonly denoted as N ∪N 2. Note that
B2

2 and F2
2 allow more search paths than all other variants studied (including

ME>) since they involve a larger neighborhood. Although these strategies remain
climbers (with respect to their extended neighborhood), they navigate through a
search space having less local optima than when considering neighborhood N .

Worst improvement variants W2
1 and W2

2 were also considered for experiments, but
related tests were dropped on account of too high computation times.

In a first set of experiments, we compete the maximum expansion strategy ME>
against B2

1 and F2
1. Figures 7.4 and 7.5 reports results of pairwise comparisons be-

tween these three strategies. Note that here all climbers use the same moving and
vision areas (m = 1, v = 2), which constitutes the fairest comparison for evaluating
ME>. One can observe that both B2

1 and F2
1 are largely dominated by ME> despite

the use of A2. There is neither QAP nor FSP instance where ME> is statistically
dominated here. These results show that the maximum expansion pivoting rule ef-
ficiency cannot only be explained by its immediate capacity to avoid local optima,
common to all variants sharing the knowledge of a larger neighborhood. Globally,
this comparison indicates that the expansion score is a relevant criterion for guiding
the search to good local optima.

The comparison of ME> with other C v
1 climbers showed that maximum expansion

is a relevant pivoting rule for hill-climbing. In order to measure its efficiency in a
more general way, we propose to compare ME> with less restrictive strategies which

Fig. 7.4 Pairwise comparisons of pivoting rules on QAP instances: ME> vs. first level pivoting
rules

Fig. 7.5 Pairwise comparisons of pivoting rules on FSP instances: ME> vs. first level pivoting rules
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allow the selection of improving neighbors belonging to the second level neighbor-
hood. The aforementioned B2

2 and F2
2 are large neighborhood hill-climbings which

use the vision area of ME> as moving area. Figures 7.6 and 7.7 report comparison
results proceeded in this second set of experiments. We note that the global effi-
ciencies of ME>, B2

2 and F2
2 are relatively homogeneous. This observation indicates

that even with the constraint of choosing solutions within a smaller neighborhood,
ME> reaches equivalent local optima than large neighborhood hill-climbings. Thus,
it is possible to define hill-climbing pivoting rules able to bypass the barrier of low-
quality local optima usually encountered by traditional climbers. A potential issue
resulting from this analysis is how to reduce the quantity of knowledge (here the
vision area) while maintaining a similar level of performance.

Fig. 7.6 Pairwise comparisons of pivoting rules on QAP instances: ME> vs. second level pivoting
rules

Fig. 7.7 Pairwise comparisons of pivoting rules on FSP instances: ME> vs. second level pivoting
rules

7.4 Maximum Expansion Sophistication: A Multiobjectivized
Approach

Expansion score has been shown to be a pertinent indicator for guiding the search
towards high local optima on landscapes derived from permutation problems. Nat-
urally, a local search algorithm which uses exclusively this selection criterion could
not be able to reach good solutions since deteriorating moves will be mostly per-
formed. As hill-climbing requires to select non-deteriorating neighbors only, the
evaluation score constitutes then an essential information which determines the
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behavior of every climber, including ME>. Intuitively, it seems interesting to con-
sider tradeoffs between reaching good solutions and preserving their expansion
score. In this section, we propose multiobjectivized approaches to define climbers
handling expansion and evaluation functions. In the following, we first introduce
multiobjectivization and provide briefly a few definitions. Then we propose biob-
jectivized pivoting rules. These pivoting rules are then evaluated as in the previous
section.

7.4.1 Multiobjectivization

The multiobjectivization of a single objective optimization problem (X , f ) is to
consider a multiobjective problem (X ,( f1, . . . , fn)) in order to ease the resolution
of (X , f ) [11]. Multiobjectivizing a problem can be achieved either by adding ob-
jective functions to the original one f , or by replacing f with a set of new ob-
jectives. We propose to adapt the multiobjectivization principle, by using pivoting
rules which involve a biobjective evaluation function F for climbing single objective
landscapes.

Here, we use a function F = ( f1, f2) which considers evaluation and expansion
scores such that:

{
f1(x) = f (x) (original evaluation score)
f2(x) = #{x′ ∈ N (x), f (x′)> f (x)} (expansion score)

Note that even if it is not required by the principle of multiobjectivization, here f is
a component of F ( f1 = f ).

In multiobjective optimization, we usually seek for a set of solutions which offer
good compromises of the objective functions. Recall that there exists only a par-
tial order relation between solutions (Pareto dominance). A solution xi is said to
dominate x j with respect to F (xi �F x j) if and only if:

{
∀k ∈ [1..n], fk(xi)� fk(x j)
∃k ∈ [1..n] s.t. fk(xi)> fk(x j)

A solution x is non-dominated by a set of solutions S with respect to F if and
only if ∀y ∈ S,y ��F x. We note x �� S.

Here, we still focus on climbing single-objective landscapes (thanks to the orig-
inal evaluation function f ), but with pivoting rules which involve the biobjective
evaluation function F . We next propose pivoting rules which consider only moves
x → x′ satisfying the two following constraints: (1) f (x′) > f (x), and (2) x′ is not
dominated by N (x) w.r.t. F .
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7.4.2 Biobjectivized Pivoting Rules

We defined three biobjectivized pivoting rules (BO�) in order to observe the effect of
different compromises between improving the solution evaluation and maximizing
the expansion score.

Let N>(x) = {x′ ∈ N (x), f (x′) > f (x)} be the set of strictly improving neigh-
bors of a solution x w.r.t. an evaluation function f . We note N(>,��)(x) = {x′ ∈
N>(x),x′ �� N>(x)} the set of non-dominated improving neighbors of x w.r.t. f and
a multiobjectivized function F .

At each step of the search, the three climbers proposed in this section consists
in choosing a solution within the restricted neighborhood N(>,��)(x) of a solution x.
These variants work as follow (see also Fig. 7.8):

• BOrand selects randomly a solution within N(>,��)(x).
• BOH(exp) selects the solution which maximizes the evaluation score among the

top half solutions of N>(x) of higher expansion score.
• BOH(eval) selects the solution which maximizes the expansion score among the

top half solutions of N>(x) of higher evaluation score.

Evaluation

Expansion

BOH(exp)

BOH(eval)

Fig. 7.8 Biobjectivized pivoting rules. BOH(exp) and BOH(eval) selection strategies are determinists,
whereas BOrand selects randomly a non-dominated solution (circled crosses)

Figure 7.9 reports the analysis of the empirical comparison realized on QAP
instances, considering climbers with biobjectivized pivoting rules as well as ME>.
BOrand appears to be clearly outperformed by other variants.

Although there is no statistical difference between ME> and both BOH(�) climbers
on a significant number of instances, ME> is almost never dominated by any other
variant. Among the three biobjectivized climbers experimented, BOH(eval) , which is
the most efficient one, is not frequently dominated by ME>. Recall that BOH(eval)

restricts the possible selected neighbors according to their evaluation score, but the
expansion score is at last the criterion being maximized. These observations lead us
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to believe that the expansion score is the only criterion which directly affects the
overall capacity of a climber to reach high local optima. Thus, BEST and WORST
efficiencies would ensue from their respective ability to select solutions with high
expansion scores.

Fig. 7.9 Pairwise comparisons of pivoting rules on QAP instances: ME> vs. biobjectivized second
level pivoting rules

7.5 Discussion

In this chapter, we were interested in studying the ability of different climber vari-
ants to reach good local optima. In particular, we investigated how to take advan-
tage of the use of a second level neighborhood for deciding which move to select in
the first level neighborhood. This led us to propose the maximum expansion strat-
egy (ME) which consists in moving towards solutions maximizing the number of
improvement possibilities. The comparison of ME with other pivoting rules empha-
sizes its effectiveness. Notably, ME is often competitive against large neighborhood
climbers which have the advantage of working on landscapes containing fewer local
optima.

Previous studies already compared the efficiency of classical (first level) pivoting
rules on specific problems [9, 15, 21, 2] and pointed out that the relative efficiency of
climbers can be strongly dependent of instances characteristics, e.g. their associated
landscape size, ruggedness and neutrality. In particular, first and worst improvement
seems more adapted for climbing Flowshop landscapes, whereas climber efficiency
is more instance-dependent while considering QAP. ME is efficient on permutation
instances and does not seem to be significantly affected by their characteristics,
despite we pointed out some similarities between ME and WORST behaviors. More
experiments should be realized on a large scale of various optimization problem
instances to corroborate these aspects.

Let us recall that our aim was here to determine ways to reach good local
optima without considering computational costs issues. Obviously, ME is more
time-consuming than classical climbers which do not require the knowledge of
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an extended neighborhood. An interesting perspective consists in defining pivoting
rules that approximate the behavior of ME in a reduced computational effort.

Finally, ongoing work includes the extension to expansion-based local searches
by investigating ways to design less restrictive pivoting rules. Since the incorpora-
tion of neutral moves within hill-climbing strategies leads to more efficient searches,
we experimented a neutral version of ME. It appears that such a strategy is able to
outperform other neutral versions of climbers. The ways to extend ME to other types
of local searches (i.e. allowing deteriorating moves) still can be improved since it
brings out some difficulties, notably cycling issues. Nevertheless, advanced meta-
heuristics could be enhanced by considering the expansion criterion in their neigh-
borhood search components.
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Chapter 8
Theory Driven Design of Efficient Genetic
Algorithms for a Classical Graph Problem

Dogan Corus and Per Kristian Lehre

Abstract This paper presents a principled way of designing a genetic algorithm
which can guarantee a rigorously proven upper bound on its optimization time. The
shortest path problem is selected to demonstrate how level-based analysis, a general
purpose analytical tool, can be used as a design guide. We show that level-based
analysis can also ease the experimental burden of finding appropriate parameter
settings. Apart from providing an example of theory-driven algorithmic design, we
also provide the first runtime analysis of a non-elitist population-based evolutionary
algorithm for both the single-source and all-pairs shortest path problems.

Keywords Runtime analysis • Genetic algorithms • Level-based analysis • Short-
est path problems

8.1 Introduction

Evolutionary algorithms (EAs) have been a popular class of heuristic optimization
techniques since the 1960s. They are inspired by natural evolution where limited re-
sources allow only the fittest individuals to reproduce and drive progress over gen-
erations. Evolutionary algorithms generate new solutions from existing ones with
small random changes and select solutions with higher fitness function values to
survive in the next generation. The generality of the described process makes EAs
general purpose methods which can be applied to any optimization problem defined
on any search space. All that is required is a way to represent candidate solutions as
individuals of the population (i.e. the representation) and some measure of solution
quality (i.e. the fitness function). As a result, EAs do not require any information
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about the problem structure apart from the fitness value of candidate solutions (i.e.
they are black-box optimization algorithms [13]). Although they are widely used by
practitioners [14], the theory behind how EAs work was not established until much
later. While the scope of early theoretical work was limited to toy problems and sim-
ple algorithms, the gap between what practitioners and theoreticians are interested
in gradually closes.

Runtime analysis of evolutionary algorithms has been a rapidly growing research
field for almost two decades [21, 15, 1]. The shortest path problems is one of the
first examples of the runtime analysis of EAs on a practically relevant problem.
For practitioners, it is common to use variation and selection operators which are
tailored to the problem at hand. Still, previous works on runtime analysis of EAs
seldom digressed from elementary operators. Because, first of all, the tailored op-
erators both complicated the analysis and undermined the generality of the runtime
results. Even negative results for elementary algorithms, i.e. that the elementary al-
gorithm requires exponential time to reach a desired solution quality, served the
purpose of pointing out a potential weakness of EAs in general. Moreover, early
runtime analysis results considered problems which were either too simple or too
artificial to justify tailoring operators to fit the problem. When a negative result was
proven for a non-artificial combinatorial optimization problem like the shortest path
problem [22], then designing the simplest EA which can solve it efficiently became
admissible. A series of works provided positive results by adapting the problem rep-
resentation, the objective function, the variation and selection operators and adding
auxiliary mechanisms that improve solution quality. Eventually, the requirement for
more complex operators made the all-pairs shortest path problem (APSP) the first
non-artificial problem where an EA with crossover is proven to perform asymptoti-
cally better than an EA without [10].

Extending the scope of runtime analysis to non-artificial problems motivated the
analyzes of more complex EAs but did not provide the means to do such analysis.
Introduction of new analytical tools like drift analysis that allow obtaining results
that are otherwise beyond the reach of older approaches responded to this need.
A new tool for runtime analysis of evolutionary algorithms that builds on top of
drift analysis is the level-based method proposed in [3]. This general tool covers
a wide range of problems and algorithms including those with a complex solution
space and complex operators. The theorem provides conditions that are sufficient
to guarantee a polynomial runtime, and often these conditions are also necessary.
The necessary conditions include a sufficient selective pressure, upgrade probabil-
ity and population size. While it might be hard to determine whether an existing
algorithm satisfies these conditions, it is easier to design an algorithm that does sat-
isfy the conditions. In this paper we will use the well known shortest path problem
to demonstrate how to construct an algorithm guided by the conditions of this the-
orem. We will go through how the design choices allow us to rigorously prove the
performance with a very brief and simple analysis at the end. By doing that, we
will also provide the first runtime analysis of a non-elitist genetic algorithm for the
single-source shortest path problem and all-pairs shortest path problem.
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This paper is structured as follows: In the following chapter the shortest path
problem will be formally defined and relevant research will be summarized. Level-
based analysis will be briefly introduced in Sect. 8.3. In Sect. 8.4, the algorithm will
be explained component by component and the rationale behind the selection of
components will be related to the conditions of the level-based theorem. At the end
of Sect. 8.4, the runtime will be proven using a corollary to the level-based theorem
and the last section will draw the conclusions.

Throughout this paper we will use the notation [n] to represent {1,2, . . . ,n}, the
set of natural numbers up to n and the notation X ∼ D which denotes that X is a
random element sampled from the distribution D.

8.2 Analysis of EAs on Shortest Path Problems

An instance of a shortest path problem is given as an input graph, G = (V,E), with
edge weights (w1,w2, . . . ,w|E|) and a set S ⊆V 2 of pairs of vertices. The objective is
to find a subset P ⊆ E of edges that connect all the vertex pairs, (u,v)∈ S while min-
imizing the total weight ∑e∈P we. The Single Source Shortest Paths Problem (SSSP)
and the All-Pairs Shortest Paths Problem (APSP) are the most studied versions of
the problem in the context of EAs. In SSSP, the set of vertex pairs to be connected is
S =

⋃
v∈V\{s}(s,v) for a source vertex s ∈ V which is given as part of the input. For

the all-pairs version, the set of vertex pairs is S = {(u,v) ∈ V 2|u �= v}, which means
that all the vertex pairs should be connected.

We chose the shortest path problem not only because it is a classical graph prob-
lem, but also because its different variations (all-pairs and single source) have been
analyzed in the context of evolutionary algorithms. The first result for the single-
source shortest path problem in the literature was presented by Scharnow et al. [22].
The prior analysis was later ramified to cover different evolutionary algorithms and
variations of the shortest path problem [2, 11, 10, 8].

Scharnow, Tinnefeld and Wegener proved that the single source shortest path
problem (SSSP) is not solvable in polynomial time by an EA, if infeasible solutions
are penalized by infinitely large weights [22]. The infeasible solutions constituted
a large subset of the search space in which an EA cannot navigate. The authors
proposed to divide the objective function into separate functions each evaluating
the path to a different destination vertex. For a graph with n vertices, the result-
ing landscape with n− 1 objectives (one for each non-source vertex) provided the
algorithm with the required gradient towards better solutions even when some of
the vertices are not connected to the source. This so-called ”multi-objectivized”
function allowed an EA to solve the SSSP in expected O(n3) time. Baswana et al.
complemented the negative result for the single-objective function later by showing
that if the penalty of an unfeasible path is set to nwmax, then the (1+ 1) EA solves
the single objective version of the problem in expected O(n3 log(n+wmax)) time
[2]. For the multi-objectivized function, Doerr et al. established a tight run time of
Θ(n2 max(log(n), �)) where � is the largest number of edges in a shortest path that
connects the source to any vertex [9]. In order to reflect the effect of graph density
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on expected optimization time, Doerr and Johannsen introduced an edge-based solu-
tion representation and variation operator in contrast to vertex-based representation
which was used in previous works. Consequently, the performance of edge-based
EAs in sparse graphs, where the number of edges is m = o(n2), was proved to be
asymptotically better than the vertex-based EA [7].

The first run time analysis of an EA on the APSP problem was presented with the
main contribution that this problem is the first non-artificial problem where an algo-
rithm with a crossover operator can optimize asymptotically faster than a simple EA
without crossover [10]. At the time of this result the genetic algorithms (EAs with
crossover operators) were proved to be essential only on artificial pseudo-Boolean
problems [17, 18, 16]. In their work on the APSP problem, the authors proved a
Ω(n4) lower bound on the optimization time of the EA without crossover while the
EA that uses crossover has an optimization time of O(n3.5√logn). This run time
analysis considered an initial phase where the mutation operator finds the shortest
paths of smaller number of edges, and a second phase where crossover takes over
and produces longer paths by combining the smaller shortest paths provided by
the mutation operator. Doerr and Theile contributed the tight run time of expected
Θ(n3.25 log1/4(n)) by demonstrating that crossover coarsely populates the set of op-
timal paths and mutation fills the gaps [8]. Further work on the ASPS problem intro-
duced changes in the crossover operators, either by repairing the offspring solution,
or by selecting parents in order to ensure a feasible solution [11]. With these assist-
ing mechanisms, the runtimes reduced to O(n3.2 log1/5(n)) and O(n3 log(n)) for the
algorithms with repair mechanism and parent selection respectively.

The transition from the analysis of pseudo-Boolean problems to analysis of clas-
sical combinatorial optimization problems was an important milestone in the run
time analysis of evolutionary algorithms. The polynomially solvable shortest path
problems were one of the initial stepping stones for this transition. In order to han-
dle these more complex combinatorial optimization problem, the field of run time
analysis diverted from its conventional approach of using the simplest possible al-
gorithms. This convention was a by-product of keeping the scope of the field on toy
problems whose optimization are not a real challenge to the practical applications
of evolutionary algorithms. However, when more relevant combinatorial optimiza-
tion problems are analyzed like shortest path problem, the convention of analyzing
simple algorithms was left behind. Whenever the simple algorithms had difficulties
in solving a problem, the algorithmic components in problem specific algorithms
were incorporated into EAs piece by piece. However certain related problems re-
main open. Since the previous results were dependent on the monotonic increase
in objective function, the performance of non-elitist algorithms with stochastic se-
lection was unknown. While in [10, 8] and [11] a population based algorithm with
a crossover operator was used, neither the population nor the crossover operator
was conventional in the sense that the population consisted of a single complete
solution divided into independent components and the crossover operator recom-
bined these components to create a new offspring. Therefore, the performance of an
algorithm with a “population”—in the sense that a set of self-contained solutions
and a crossover operator that recombines information from multiple solutions—has
never been analyzed in terms of running time.
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8.3 Method: Level-Based Analysis

The level-based theorem was proposed as a generalization of the theorem provided
by Lehre [19] and later refined by Dang and Lehre [5] for the purpose of analyzing
non-elitist population based algorithms. The theorem considers the progress of a
search process through a given partitioning of the search space, X with the optimal
solutions set X ∗ ⊂ X , into m level sets (X ,A2, . . . ,Am−1,X

∗) which are nested
in the sense that X ⊃ A2 ⊃ A3 ⊃ . . . ⊃ Am−1 ⊃ X ∗. The results in prior works
were limited to algorithms with unary variation operators and the solution space
partitioning had to be fitness-based i.e. f (a) ≤ f (b) for all a ∈ (Ai \Ai+1) and b ∈
Ai+1 [19, 5]. In the generalized version of the theorem presented by Corus et al.
[3], the unary variation operator in the former theorem is replaced with a mapping
D, which maps a population of size λ to a probability distribution over the search
space X . For a standard genetic algorithm the mapping D is the combined effect
of a sequence of stochastic selection, recombination and variation operators but it
can also incorporate the stochasticity of noisy or partially evaluated fitness functions
[6, 4]. Nevertheless, the distribution D allows the level-based theorem to be valid for
all population based algorithms which independently samples each individual in the
population Pt+1 from the same distribution D(Pt).

Algorithm 1 Population-based algorithm with independent sampling
1: Finite state space X , and population size λ ∈ N,
2: Mapping D from X λ to the space of probability distributions over X .
3: P0 ∼Uni f (X λ )
4: for t = 0,1,2, . . . until termination condition met do
5: Sample Pt+1(i)∼ D(Pt) independently for each i ∈ [λ ]
6: end for

The termination condition for the Algorithm 1 is unspecified since the runtime is
defined as the time until the optimal solution is sampled for the first time assuming
that the algorithm runs forever. A more realistic termination condition can be set by
limiting the number of iterations with a value larger than the expected run time.The
following theorem considers population-based algorithms at a very abstract level
outlined in Algorithm 1, such that all the components like fitness evaluations, varia-
tions and selection mechanisms are replaced by a single distribution D(Pt) over the
solution space X . As shown in earlier work leading to the level-based theorem [20],
the identical independent sampling of solutions from this distribution D(Pt) allows
the use of concentration of measure results from probability theory.

Theorem 8.1 (Theorem 1 in [3]). Given a partition (A1, . . . ,Am+1) of X , define
T := min{tλ | |Pt ∩Am+1| > 0} to be the first point in time that elements of Am+1

appear in Pt of Algorithm 1. If there exist parameters z1, . . . ,zm,z∗ ∈ (0,1], δ > 0, a
constant γ0 ∈ (0,1) and a function z0 : (0,γ0)→R such that for all j ∈ [m], P ∈X λ ,
y ∼ D(P) and γ ∈ (0,γ0) we have



130 D. Corus and P.K. Lehre

(G1) Pr
(

y ∈ A+
j | |P∩A+

j−1| ≥ γ0λ
)
≥ z j ≥ z∗

(G2) Pr
(

y ∈ A+
j | |P∩A+

j−1| ≥ γ0λ , |P∩A+
j | ≥ γλ

)
≥ z0(γ)≥ (1+ δ )γ

(G3) λ ≥ 2
a

ln

(
16m

acεz∗

)
with a =

δ 2γ0

2(1+ δ )
, ε = min{δ/2,1/2} and c =

ε4/24

then E [T ]≤ 2
cε

(
mλ (1+ ln(1+ cλ ))+∑m

j=1
1
z j

)

The first two conditions require some guarantee of progress and selective pres-
sure from the distribution D. The first condition requires a certain probability z j of
creating an individual at level j+1 when some fixed fraction γ0 of the population is
already at level j or higher, and the second condition requires that the high quality
solutions will increase in number with a multiplicative factor of (1+ δ ). The final
condition is the minimum population size for the theorem to be valid in terms of the
lower bounds achieved in previous conditions.

Algorithm 2 Non-elitist genetic algorithm
Initialize P0
t := 0
while Termination conditions are not met do

for i = 1 to λ do
p1 ∼ selection(Pt )
p2 ∼ selection(Pt )
Pt+1(i) := mutation(crossover(p1, p2))

end for
t := t +1

end while

In order to simplify the use of the theorem, a corollary is provided in [3] that
translates the above requirements to the context of genetic algorithms. Since the
scope is narrowed, the distribution D(Pt) is divided into selection, crossover and
mutation operators but the details of these operators were not specified so that any
algorithm in the form of Algorithm 2 can be analyzed with the following corollary.

Corollary 8.1 (Corollary 1 in [3]). Given a function f : X → R and a partition
(A1, . . . ,Am+1) of X , let T := min{tλ | |Pt ∩Am+1|> 0} be the runtime of the non-
elitist Genetic Algorithm, as described in Algorithm 2, on f . If there exist parameters
s1, . . . ,sm,s∗, p0,ε1 ∈ (0,1], δ > 0, and a constant γ0 ∈ (0,1) such that for all j ∈ [m],
P ∈ X λ , and γ ∈ (0,γ0)

(C1) pmut(y ∈ A+
j | x ∈ A+

j−1)≥ s j ≥ s∗
(C2) pmut(y ∈ A+

j | x ∈ A+
j )≥ p0

(C3) pxor(x ∈ A+
j | u ∈ A+

j−1,v ∈ A+
j )≥ ε1

(C4) β (γ,P)≥ γ
√

1+δ
p0ε1γ0



8 Theory Driven Design of Efficient Genetic Algorithms. . . 131

(C5) λ ≥ 2
a

ln

(
32mp0

(δγ0)2cs∗ψ

)
with a :=

δ 2γ0

2(1+ δ )
,ψ :=min{ δ

2 ,
1
2} and c :=

ψ4

24

then E [T ]≤ 2
cψ

(
mλ (1+ ln(1+ cλ ))+ p0

(1+δ )γ0
∑m

j=1
1
s j

)
.

Here, β (γ,P) is the probability that the selection mechanism chooses an individ-
ual from P that is at least as good as the individual with rank �γλ in terms of level.
The conditions (C1) and (C4) on the mutation and selection operators satisfy the
first condition (G1) in the main theorem as the responsibility of improving solutions
is delegated to mutation while the fourth condition on selection mechanism implies
that having sufficient number of solutions at level j leads to a high probability of
one of them being selected for mutation. A similar breakdown is possible for con-
ditions (C2)–(C4) since they together satisfy the second condition (G2) in the main
theorem. The lower bound ε1 is the probability that the crossover operator produces
an offspring solution in a level which is strictly higher than its worst parent. The
lower bound p0 is the probability of not worsening the solution quality. The final
condition gives the required population size similarly to the main theorem.

Moreover, in the following Lemma 8.1 from [3], the parameter settings that sat-
isfy condition (C4) for k-tournament-, exponential ranking-, and (μ ,λ )-selection
are provided.

Lemma 8.1 ([3]). For any constant δ > 0, there exists a constant γ0 ∈ (0,1) such
that

1. k-tournament selection with k ≥ 4(1+ δ )/(ε1 p0) satisfies (C4)
2. (μ ,λ )-selection with λ/μ ≥ (1+ δ )/(ε1p0) satisfies (C4)
3. exponential ranking selection with η ≥ 4(1+ δ )/(ε1p0), satisfies (C4).

8.4 Design of a Genetic Algorithm

The corollary to the level-based theorem for genetic algorithms produces an up-
per bound on the expected runtime (Algorithm 2) if the algorithm satisfies certain
requirements when optimizing a problem. However, when an arbitrary pair of al-
gorithm and problem is analyzed, often some of these conflicting requirements are
not satisfied. Here we will show that when the theory is leading the design of the
algorithm, it is easy to meet the requirements while keeping some flexibility for the
algorithm.

As a general rule, we aim to keep the term ∑m
i=1 1/s j in the expected optimization

time as small as possible when establishing the level structure. The levels should be
few in numbers and close enough in terms of improvement probability. Further-
more, two probabilities are significant for the performance of genetic algorithms:
the probability p0 that the output of mutation operator will preserve or improve the
level of the parent solution (C2), and the probability ε1 that crossover operator will
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generate a solution at a higher level than its worst parent (C3). Since the corollary
holds for any algorithm of the form in Algorithm 2, the degree of freedom during the
design of the algorithm includes the choices of mutation and crossover operators,
the selection mechanism and even the objective function.

While we propose operators for each role in Algorithm 2, the algorithm will still
have some flexibility. Because when the goal is an asymptotic runtime result for
the algorithm then Corollary 8.1 only requires asymptotic bounds on the parameters
{s j} j∈[m], p0, and ε1. This allows the algorithm designer to hybridize the necessary
operators proposed in this section with any other operator with constant probability
(i.e. using the necessary operator with probability p and the other operator with
1− p for any constant p ∈ (0,1)) without changing asymptotically the upper bound
on the expected runtime. Such a hybridization can be used to tackle extraordinary
situations in which the main operator has a very small probability of improving the
current solution.

In this section we will first design an algorithm for the single-source version of
the shortest path problem and later discuss the necessary alteration for tackling the
all-pairs version.

8.4.1 Representation of Solutions

We represent a candidate solution for the single-source shortest path problem as
n−1 sequences composed of elements of V \{s}. In the literature mentioned above
different representations that use preceding vertices and sets of edges were used.
In our representation which is a sequence of vertices, the source and destination
vertices are omitted A path from the source vertex s to a target vertex vu that visits
vertex vk just after the source and vertex vr just before the destination is represented
as Pu = (vk, . . . ,vr).

We can initialize the population by setting each path Pi := /0 which means the
only edge in the path is (s,vi). This initial solution is not only easy to build but
also helps skipping the time until the algorithm finds the shortest paths with single
edges. Since we will still need to consider these levels during analysis the initial
population plays no role design-wise. Any other initialization procedure can replace
the suggested one as long as it is constituted of feasible solutions.

8.4.2 The Objective Function and Level Structure

The single-source shortest path problem has a natural objective function which sim-
ply sums the weights of all the edges in all the paths. However, the level structure
used in the theorem do not have to correlate with the objective function values and
a more complex objective function that will guide the algorithm can be designed
without further complicating the runtime analysis.
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The first step is to convert the sequence of vertices to a set of edges. This conver-
sion is straightforward, for the sequence P j = (vπ(1),vπ(2),vπ(3), . . .) the edge set is
E j = {(s,vπ(1)),(vπ(1),vπ(2)), . . .} and the total weight is W j = ∑e∈E j we.

If we were able to check whether the current total weight W j of the path to vertex
v j is optimal, we could count the number of optimal W j’s for j ∈ {0,1, . . . ,n−1} as
a coarse way to quantify the quality of solutions. However, we can not tell whether
W j is optimal or not during the run of the algorithm. Instead, whenever we want
to compare two solutions x1 and x2, we first sort the vectors of total weights W1

and W2 in ascending order. Then we compare the total weights of the first (shortest)
paths in each vector in sorted vectors Wπ

1 and W φ
2 . Whichever weight is smaller, the

corresponding solution is considered a better solution when the algorithm ranks the
individuals in the population. We will refer to the weights of the second shortest

paths W φ(2)
2 and Wπ(2)

1 only if Wπ(1)
1 and W φ(1)

2 are equal and to the third short-
est paths only if the tie can not be broken by the second shortest paths either. The

index i of comparison (Wπ(i)
1 ,W φ(i)

2 ) is increased at each tie until Wπ(i)
1 �= W φ(i)

2
i.e. the tie is broken. The solutions are considered to be of equal quality if all the
comparisons result in a tie. This objective function, although complicated, requires
only O(n logn) basic operations to sort the vector and it will allow the genetic al-
gorithm to simulate the well known Djisktra’s algorithm for the shortest path prob-
lem. Djisktra’s algorithm fixes the smallest shortest path in each iteration and with
the help of this objective function we will force the population to converge on the
shortest paths in the same order. Since the sub-paths of optimal paths are also op-
timal, we will use the converged optimal paths to build other paths that requires
more edges.

At this point we design a partition of the search space into levels. In order to
achieve a good bound we need levels large enough to keep the number of levels
small and small enough to ensure that even the worst solutions in any level has
a certain probability of being improved to the next one. When shaping the levels
of the search space we will make use of the optimality of sub-paths as we did
in the objective function. However, during analysis we can use the information
that is not normally available to the algorithm, like the optimal paths in a candi-
date solution. W.l.o.g. consider a unique optimal solution P∗ = {P1

∗ ,P
2
∗ , . . . ,P

n−1
∗ }

and Pπ
∗ = (Pπ(1)

∗ ,Pπ(2)
∗ , . . . ,Pπ(n−1)

∗ ) where P∗ is sorted such that Wπ(i)
∗ ≤ W π(i+1)

∗
∀i ∈ [n − 1]. So, we divide the solution space X into n levels, where for all j ∈
{0}∪ [n−1], the level A j consists of all the solutions that contains {Pπ(i)

∗ |1 ≤ i ≤ j},
the smallest j shortest paths of the optimal solution. This partitioning of the search
space ignores the total length of the edges in the candidate solution and focuses
only on the paths that are optimal. Moreover, adding an optimal path contributes
to the level of the solution only if all of the shorter optimal paths are already
set correctly.
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8.4.3 The Mutation Operator

With a fixed level structure, the choice of mutation operator will determine the up-
grade probabilities s j, j ∈ [n] required by condition (C1) and p0 required by con-
dition (C2), the probability that the mutation operator increases or maintains the
quality of the input solution.

Operator 3 Mutation(x)
Input: A solution x consisting of k sequences of vertices x1,x2, . . .,xk

Pick s ∼ Pois(1)
for i = 1 to s do

For m ∼ Unif([k])
if with probability 1/k then

Set xm := /0
else

Set xm := (x j ,v j) for j ∼ Unif([k])
end if

end for
Return: x

Consider the mutation operator presented in Operator 3, which as a local oper-
ation selects a path x j, uniformly at random, to be modified either by removing all
the vertices in the path with probability 1/n or with probability 1 − 1/n replaced
by another randomly selected path xk with the destination vertex vk appended at the
end. First of all, since the number of local operations S is distributed according to
Pois(1), the probability that S is equal to zero is 1/e. Since S = 0 implies that the
solution is not changed at all, we have p0 ≥ 1/e, which satisfies the (C2). For con-
dition (C1), we need to prove that this operator can improve any solution from level
j to level j+ 1 at least with some probability s j. Note that if a solution is in level j,
the smallest j paths in the optimal solution are already set correctly. For improving

to level ( j+1) it is sufficient to set the ( j+1)th smallest optimal path, Pπ( j+1)
∗ , cor-

rectly, without tempering with any of the first correctly set j paths. If this path has
more than one edge, i.e. it visits at least one more vertex vr before the destination

of Pπ( j+1)
∗ , consider the path Pr

∗ to vertex vr in the optimal solution. The path Pr
∗

is shorter than the path Pπ( j+1)
∗ because the edge weights are positive. Then if our

solution is on level j, it has the optimal sub-path up to any vertex vr that needs to

be visited before the destination of Pπ( j+1)
∗ . The mutation operator picks S = 1 with

probability 1/e, then with probability 1/(n− 1), xπ( j+1) in the current solution is
picked for modification. If xπ( j+1) is replaced instead of being erased and the cor-

rect subpath of Pπ( j+1)
∗ is chosen to replace the path xπ( j+1), then in the offspring

solution mut(x)π( j+1) = Pπ( j+1)
∗ with probability 1/(n− 1)2(1− 1/n) = Ω(1/n2).

Since mut(x)π( j+1) = Pπ( j+1)
∗ ∧ S = 1 implies that mut(x) ∈ A j+1, we can bound

s j ≥ 1
e(n−1)2 (1 − 1

n) = Ω( 1
n2 ) When Pπ( j+1)

∗ has a single edge (s,vπ( j+1)) the mu-
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tation operator has to remove all the vertices in xπ( j+1). If xπ( j+1) is selected for
modification with probability 1/(n− 1) then with probability 1/n the mutation op-
erator removes all the vertices in the path. In total the probability that mut(x)∈ A j+1

is similarly s j ≥ 1
en(n−1) =Ω( 1

n2 )

8.4.4 The Crossover Operator

It is shown in some of the earlier works on EAs and the all-pairs shortest path prob-
lem that the crossover operator helps creating paths that involve more edges and
allows a multiplicative growth in the number of optimal paths discovered. However,
in the context of Corollary 8.1, the contribution from the crossover operator is to
ensure that individuals with average quality in the solution will be improved if they
are recombined with one of the high quality solutions. The lower bound ε1 in con-
dition (C3) of Corollary 8.1 is the guiding value when deciding how our crossover
will work. Consider two solutions x1 ∈ A j and x2 ∈ A j+1, i.e., x1 and x2 share the j
shortest paths in the optimal solution and x2 alone has the ( j + 1)-th shortest path.
Our condition implies that the offspring solution should have all these j paths and
the ( j+ 1)-th path, so that it will be on a level strictly higher than its worse parent,
x1. Therefore, the crossover operator should keep all the shared j paths and pick
the ( j+ 1)-th path from parent x2 with a reasonable probability. This cannot be ac-
complished by the crossover operators that concatenates the paths as in [12] since
even though they allow large improvements they also have a large probability of
worsening the solution. A simpler crossover on the other hand, which picks each
path from either one of the parents with probability 1/2 will result in a constant ε1.
This is because the shared paths will be copied to the offspring and the extra path
that makes the difference between the parents will be selected from the better parent
with probability 1/2.

Operator 4 Crossover(x1,x2)
Input: Two solutions x and y each consisting of k sequences of vertices
for i = 1 to k do

if with probability 1/2 then
Set zi := xi

else
Set zi := yi

end if
end for
Return: z
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8.4.5 Other Parameter Settings

In the context of Algorithm 2, fixing the mutation and the crossover operators mostly
concludes the design of the algorithm. The remaining parameters like the selection
mechanism and the population size can be directly set according to the result of the
Corollary 8.1 and Lemma 8.1.

The selection mechanism for our algorithm can be chosen among some of the
widely used non-elitist selection mechanisms, such as k-tournament selection, ex-
ponential ranking selection, and (μ ,λ )-selection. The required parameters for each
of these selection mechanisms are given in Lemma 8.1. Since the parameters p0 and
ε1 are both constant, we can conclude that the required parameters k, η and μ/λ are
also constant.

By condition (C5), the population size must satisfy λ ≥ 2
a ln

(
32mp0

(δγ0)2cs∗ψ

)
. This

means that the minimum population size depends logarithmically on the inverse
of smallest improvement probability, the number of levels m, p0 and ε1. Since the
latter two are constant and the smallest improvement probability is in Ω(1/n2) we
conclude that a population size of λ ∈ O(logn) satisfies condition (C5).

8.4.6 All-Pairs Shortest Path Problem

In this section we will adapt the genetic algorithm we designed for SSSP to the all-
pairs version of the shortest path problem. The obvious change is in the problem
representation necessary for SSSP’s algorithm to be applied to the APSP. The com-
plete solution of APSP problem consists of n(n− 1) sequence of vertices between
n(n− 1) pairs of vertices. The source and the destination vertices are omitted from
the sequence and the sequence of vertices are converted to a set of edges in a similar
fashion as in SSSP. For the sequence Pi j = (vπ(1), . . . ,vπ(�)) of length �, the edge set
is Ei j = {(vi,vπ(1)),(vπ(1),vπ(2)), . . . ,(vπ(�−1),vπ(�)),(vπ(�),v j) and the total weight
is W i j = ∑e∈Ei j we. Similar changes in level structure of the search space necessary
for the purpose of analysis. We divide the solution space X into m = n(n− 1)+ 1
levels, where for all j ∈ {0}∪ [n(n−1)+1], the level A j consists of all the solutions
that contains the smallest j shortest paths of the optimal solution.

The solution comparison procedure, mutation operator, and crossover operators
are identical to the ones used for SSSP. The identical operators maintain the same
values for parameters p0 and ε1. For APSP, the lower bound on the improvement
probabilities si are Ω(1/n3) since the correct mutation step involves picking the
right path among n(n− 1)+ 1 alternatives (rather than n) and picking the correct
vertex to append among O(n) alternatives.
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8.5 Expected Running Time

As promised above, we provide the runtime of our algorithm on the single-source
shortest path problem.

Theorem 8.2. The non-elitist GA in Algorithm 2 using the crossover operator given
in Operator 4, and the mutation operator given in Operator 3, and either k-
tournament selection with k ≥ 8e(1+δ ), or (μ ,λ )-selection with λ/μ ≥ 2e(1+δ )
or exponential ranking selection with η ≥ 8e(1+δ ), for a constant δ > 0, and pop-
ulation size λ ≥ c lnn for some constant c > 0, has expected runtime O(n3) on the
single-source shortest path problem.

Proof. We show that the algorithm satisfies the conditions of Corollary 8.1. Condi-
tion (C1) is satisfied for s∗ ∈ Ω(1/n2). Condition (C2) is satisfied for p0 ≥ 1/e by
the Operator 3. Condition (C3) is satisfied for ε1 ≥ 1/2 by the Operator 4. Condi-
tion (C4) is satisfied for some constant γ0 by the given parameters in Theorem 8.2
due to Lemma 8.1. Finally, condition (C5) is satisfied since m = n, s∗ ∈ Ω(1/n2),
po ∈ O(1) and ε1 ∈ O(1). The expected runtime O(n3) is obtained by plugging in
the parameters m, s j , p0 and ε1 to the expression in the Corollary 8.1.

The same result also holds for the all-pairs version with the modification to im-
provement probabilities and the number of levels.

Theorem 8.3. The non-elitist GA in Algorithm 2 using the crossover operator given
in Operator 4, and the mutation operator given in Operator 3, and either k-
tournament selection with k ≥ 8e(1+δ ), or (μ ,λ )-selection with λ/μ ≥ 2e(1+δ )
or exponential ranking selection with η ≥ 8e(1+δ ), for a constant δ > 0, and pop-
ulation size λ ≥ c lnn for some constant c > 0, has expected runtime O(n5) on the
all-pairs shortest path problem.

Proof. We show that the algorithm satisfies the conditions of Corollary 8.1. Condi-
tion (C1) is satisfied for s∗ ∈ Ω(1/n3). Condition (C2) is satisfied for p0 ≥ 1/e by
the Operator 3. Condition (C3) is satisfied for ε1 ≥ 1/2 by the Operator 4. Condition
(C4) is satisfied for some constant γ0 by the given parameters in Theorem 8.3 due to
Lemma 8.1. Finally, condition (C5) is satisfied since m= n(n−1)+1, s∗ ∈Ω(1/n3),
po ∈ O(1) and ε1 ∈ O(1). The expected runtime O(n5) is obtained by plugging in
the parameters m, s j , p0 and ε1 to the expression in the Corollary 8.1.

We may want to compare our result with the performance of EA without
crossover since the elementary crossover operator we use is fundamentally different
than the crossover operators used. The upper bound of O(n3) is close to the perfor-
mance of elitist EA. Still, we note that it does not reflect the exact optimization time
in terms of elementary operations. There is a missing Θ(lnn) factor when we only
count the number of function evaluations since the comparison mechanism relies on
sorting the paths in the solution. Since this sorting procedure is not used in the elitist
algorithms that solves the problem, we can conclude that our upper bound is worse
by a logarithmic factor.
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Even with the alteration to the algorithm, the discrepancy between the upper
bounds on expected runtime of the elitist EA and non-elitist GA’s is larger for APSP
than it is for SSSP. The expected runtime is Θ(n4) for EA’s without crossover on
APSP [10]. If we were to compare this result with the tight runtime of Θ(n3) for
SSSP, we see a multiplicative factor of n which is admissible since the all-pairs
shortest path problem can be divided into n SSSP problems with n different source
vertices. However, we will observe a looser upper bound of O(n5) for APSP while
the upper bound we provided in the previous chapter is O(n3).

In the EA proposed for solving APSP, only a single path is altered between two
objective function evaluations. This allows an objective function to distinguish be-
tween improvements and deterioration even when the objective function aggregates
the weights of all paths. However, when two arbitrary solutions are compared the
aggregate objective function value can be deceptive. This loss of precision is critical
for the non-elitist algorithm since unless higher level solutions are favored by the
objective function, the progress over levels cannot be sustained.

The underlying idea of the O(n4) upper bound for the elitist EA is that the mu-
tation operator can improve any path at most n times before that path becomes
optimal. A corresponding level structure for the non-elitist case would be the to-
tal number of improvements required for reaching the optimal solution. With this
level structure it is not guaranteed that a solution at a better level will always be
favored by the objective function. A similar obstacle was present for the level struc-
ture used in the previous section for SSSP. However, for the proposed level structure
of SSSP, being on level j required having “all” the j optimal paths with smallest to-
tal weights, not having a total of j optimal paths. The comparison procedure which
sorts the paths in order of increasing total weight and comparing the shortest paths
first guaranteed that solutions of higher level are preferred. For the aggregate num-
ber of necessary improvements how such a method might work is not apparent. So
we restrict ourselves to the same level structure used in previous section for the
analysis of APSP as well, even though the number of levels is liable for the increase
in the upper bound on expected optimization time.

8.6 Conclusion

In this paper we reversed conventional runtime analysis and designed an algorithm
which fits the analytical tool, in this case level-based analysis [3]. By doing so, we
obtained a rigorously proven performance result by simply plugging in the parame-
ters of the resulting algorithm. We hope that this work will set an example for how
practitioners can apply theoretical methods to design provably efficient algorithms
without going through tedious analysis. Moreover, we showed that using a high
level runtime tool as a design guide can ease the experimental burden, not only for
evaluating performance but also for setting parameters since the theorem provides
the required population size and specific parameters for selection mechanism.
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We saw that the essential design decisions were the addition of a subroutine
that allows bulk deletion of vertices in a path and the choice of a simple and sta-
ble crossover. We exploited the strength of our analysis tool and incorporated the
problem specific information into our objective function that allowed us to simu-
late a well-known deterministic algorithm without making the runtime analysis any
harder. We also kept some degrees of freedom for the algorithm by allowing the use
of hybridized operator and a variety of selection mechanisms.

On the theoretical side, this paper considers a non-elitist population based algo-
rithm, which was hard to analyze before the introduction of the level-based theorem
and previously not considered for many popular problems, including the single-
source and all-pairs shortest path problems. Moreover, we provided the first results
that uses a binary crossover operator on the shortest path problem, which is an im-
portant result since the all-pairs version of this problem is known to be the first
non-artificial problem that asymptotically benefited from the use of crossover op-
erator. The next step in this research is to extend this procedural construction to
other combinatorial optimization problems. On the higher level, the corollary for
genetic algorithms could be improved to take the contribution of the crossover into
consideration when lower bounding the improvement probability.
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Chapter 9
On the Impact of Representation and Algorithm
Selection for Optimisation in Process Design:
Motivating a Meta-Heuristic Framework

Eric S. Fraga, Abdellah Salhi, and El-Ghazali Talbi

Abstract In an ideal world, it would be straightforward to identify the most suit-
able optimisation method to use in the solution of a given optimisation problem.
However, although some methods may be more widely applicable than others, it is
impossible a priori to know which method will work best. This may be due to the
particular mathematical properties of the mathematical model, i.e. the formulation.
It may also be due to the representation of the variables in the model. This com-
bination of choices of method, representation and formulation makes it difficult to
predict which combination may be best.

This paper presents an example from process engineering, the design of heat ex-
changer networks, for which two different representations for the same formulation
are available. Two different heuristic optimisation procedures are considered. The
results demonstrate that any given combination will not lead to the best outcome
across a range of case studies. This motivates the need for a multi-algorithm, multi-
representation approach to optimisation, at least for process design.
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9.1 Introduction

It is well known that some algorithms perform better than others on a given prob-
lem. The performance of algorithms may even be affected by the instance of the
problem solved. For instance, an unstable algorithm which otherwise is suitable
for some problem, may perform poorly on an instance that involves ill-conditioned
data. What is less known is that different mathematical problem formulations of the
same problem affect differently the solution process, too. Hall and McKinnon [10]
present some examples for the Simplex method. It is, therefore, important to choose
not only the most suitable algorithm for a given problem, but one that is most suit-
able for a given formulation of the problem and the particular instance being solved.
The issue of different instances can be dealt with via tailoring, as illustrated recently
for the flexible flow-shop problem [20]. In the presence of alternate formulations of
the same problem and a variety of possible algorithms, the match making problem
is as hard as the original optimization problem. In fact, it is potentially much harder
as it reduces to the Halting Problem and hence is not computable. Nevertheless, in
practice, it is a problem that must be addressed and the solution of it is beneficial.

9.2 Representation

As well as algorithms and formulations, there is also the issue of representation: the
mapping of a data structure, in a form suitable for encoding on a computer, to a state
in the given mathematical formulation. The representation may often be defined in
the context of a particular algorithm yet the encoding is generally independent of the
algorithm. Given an optimisation or search problem, with a specified mathematical
formulation, a representation is a finite description of an element in the solution
space of the problem and a data structure to hold it. An element could be complex:
e.g. it might consist of sub-elements in a hierarchical structure. For instance, in
genetic algorithm, a particular optimisation variable x may be represented using
a real-valued allele or by a binary representation which discretises the domain of x
more coarsely; in a genetic program, the encoding could be a tree, represented using
linked lists, which maps to a mathematical expression.

A representation defines a search space implicitly. This space is independent of
the solution algorithm used. The representation may therefore have a significant im-
pact on the efficacy of the search and the efficiency of the algorithm for the specific
problem as formulated. Often, the difference in the quality of solution obtained and
in the computational performance between two representations for a genetic algo-
rithm, for instance, will depend on the closeness of match between the space defined
by the representation and the behaviour of any objective function in the space de-
fined by the mathematical formulation. In optimisation based computer aided pro-
cess design, an example is the use of string encodings to represent mixtures in a
process instead of a vector of real numbers, leading to significant improvements in
search performance [3].
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Furthermore, for the particular combination of an algorithm and a representation,
there may be associated a number of operations used by the algorithm that manip-
ulate representations, e.g. mutation and crossover operators in a genetic algorithm
and the definition of a neighborhood for simulation annealing. A given represen-
tation will support, or at the very least encourage, certain operators but not others.
These operators will affect how a search space is traversed and whether, in fact, all
possible solutions can be reached from any starting point.

9.3 Motivating Example

The premise is that given a problem formulation, whether known in closed form or
not, and one or more algorithms, the representation of potential solutions will af-
fect the performance of each algorithm, potentially in different and not necessarily
predictable ways. This section presents a motivating example of alternative repre-
sentations to illustrate the impact of representations on a search algorithm.

Consider the optimisation problem

max
x

f (x) =−
(
(x− 0.9)2

)0.1
(9.1)

with x ∈ [0,1]. The objective function, f (x), shown in Fig. 9.1, is non-smooth and
has a maximum value to the right of the centre of the domain. The figure is some-
what misrepresentative as the maximum value is 0 at x = 0.9 but the gradient is such
that a plotting algorithm has difficulty resolving points near the maximum.

Fig. 9.1 Objective function, Eq. (9.1) for illustrating importance of representation
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Although it may be possible to formulate this problem differently, it is the rep-
resentation of the formulation’s decision variable, x, that we will concentrate on. In
the representations below, we will use a ∈ [0,1] to be the decision variable. This
variable must be mapped to the decision variable in the formulation, x ∈ [0,1], for
the evaluation of the objective function.

We define two mappings m1 : a �→ a, specifically x ← a and m2 : a �→ a0.2. Both
map a ∈ [0,1] → x ∈ [0,1]. One mapping, m1, is linear and the other is nonlinear.
The latter has a shape shown in the following Fig. 9.2.

Fig. 9.2 Nonlinear mapping of decision variables from representation a to formulation
x: m2 : a �→ a0.2

If a random search algorithm is applied to the search domain a ∈ [0,1], we get
the results shown in Table 9.1. The results are from 1000 attempts at solving the
problem with each representation. For each attempt, the random search procedure
generates 100 random points, based on a uniform random number generator, for
a ∈ [0,1]. The table shows that the nonlinear representation, in this case, finds better
solutions on average.

Table 9.1 Comparison of linear and nonlinear representations for simple objective function

Representation Best Average Standard deviation
Linear −0.072622 −0.316067 0.075118
Nonlinear −0.067555 −0.250395 0.057662

Although this example may appear contrived, in chemical process modelling
there are many situations where different representations such as illustrated here
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may be appropriate. For instance, key physical properties, such as vapour pres-
sure, have log based behaviour resulting from the integration of an inverse function.
Knowledge of this behaviour has been used previously in the representation of the
relationship between vapour pressure and temperature in the discretisation based
dynamic programming method for optimal process design [5].

9.4 The Match-Making Problem

The problem of matching algorithms (aka methods) to formulations has been de-
scribed previously [19]. The combination of a single algorithm with a single formu-
lation (SASF) was extended to the cases of a single algorithm with multiple formu-
lations (SAMF) and for multiple algorithms with multiple formulations (MAMF).
An argument was made for the development of procedures which could address the
MAMF case so as to identify the best combination of algorithm and formulation for
a given problem. This paper argues for the further need to incorporate representation
as well as formulation in this matching process.

With this in mind, and since a heuristic can be seen as an algorithm that does
not guarantee optimality in finite time, it is easy to see how equivalent solution
paradigms to the above can be introduced: MAMR, for instance, would be the most
general and powerful paradigm which will take all available algorithms and all avail-
able representations and solve both the original problem and the match making prob-
lem since, here also, a given representation may not be ideal for a given algorithm.
This assumes a single fixed problem formulation.

For the scope of this paper, we have limited the optimisation algorithms to simple
implementations of two traditional stochastic methods: simulation annealing (SA)
and genetic algorithms (GA). These have both been implemented in the Jacaranda
system [7]. We use these to show the need for a MAMR paradigm for process design
through a problem of industrial interest.

9.5 Heat Exchanger Network Design

In large chemical processes, from food processing through to bulk chemical pro-
duction and refining, there is often the potential to use excess heat in one part of the
process to meet heating demands in another part. The task of designing the network
of heat exchangers which can transfer heat from one part of the process to another
is a challenging optimisation task.

A heat exchanger network synthesis (HENS) design problem is defined by set of
hot streams, those which have excess heat, and a set of cold streams, those which
need heating. Each stream is defined by an inlet temperature, a target temperature,
and a heat flux which specifies the rate at which the heat must be removed or ob-
tained from the inlet temperature to the target temperature. The result of the design
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is a network which consists of exchangers, each of which transfer heat from a hot
stream to a cold stream. Each stream may have more than one exchange. The order
of exchanges affects the network as does the size of each exchanger.

The core of the heat exchanger network model is the estimation of the heat ex-
change area for each exchanger based on the relationship between the heat flux, q,
the overall heat transfer coefficient, U , the area, A and the temperature driving force,
ΔTLMTD:

q =UAΔTLMTD (9.2)

ΔTLMTD is the log-mean temperature difference and represents the effective driv-
ing force across the whole exchanger based on the inlet and target temperatures of
both streams, hot and cold. This driving force temperature is often defined by

ΔTLMTD =
ΔT2 −ΔT1

lnΔT2 − lnΔT1
(9.3)

The objective function for design is typically an annualised cost which includes
the capital cost of the exchangers and the cost of utilities to meet any leftover de-
mands after heat integration. The capital cost is typically a function of area:

Cc = α+βAγ (9.4)

with γ ∈ [0,1] but usually on the order of γ = 0.65 and with α > 0. The utility costs
are a function of the heat fluxes and the temperatures and there is often a set of
utilities at different temperatures available.

The end result is a mixed-integer nonlinear programme (MINLP) which is com-
putationally challenging: the search space is combinatorial in nature and the ob-
jective function is non-convex. Although attempts have been made to solve such
problems using deterministic solution algorithms [9, 15, 11], scalability and con-
vexity issues have led to the use of stochastic or meta-heuristic methods for solving
these problems [2, 4, 13, 14, 16, 17, 18]. There are many forms of meta-heuristic
methods proposed for heat exchanger network synthesis; they all share the need to
define a problem specific representation for the efficient and effective search of the
solution space.

9.6 Representations and Algorithms for HENS

We have developed two representations for heat exchanger network synthesis prob-
lems:

SGA is a simple chromosome encoding, i.e. representation, for HENS intended
for use by a genetic algorithm suitable for embedding within a large optimisation
problem and solution procedure [6]. The aim was simplicity of the encoding. A
solution is represented by a fixed number, n, of possible exchanges between hot
and cold streams. The representation is a vector of integer values, yi, i = 1, . . . ,n,
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where yi ∈ [0,nc × nh], nc is the number of cold streams and nh is the number of
hot streams. A value yi = c×h indicates the specific match between cold stream
c ∈ [1,nc] and hot stream h ∈ [1,nh]. A value of yi = 0 indicates no match.

y1 y2 · · · yn

The algorithm for evaluating a given solution is greedy: each possible exchange
is evaluated in turn along the chromosome, from left to right, and, if the exchange
is feasible, an exchanger is designed to transfer as much heat as possible from
hot stream to cold stream in the match identified.

dfHEN is a discrete fixed representation for heat exchanger networks. The sim-
ple representation above uses a greedy algorithm to evaluate a design. This may
lead to sub-optimal results. A different representation, derived from the method
proposed by Lewin [12], covers the space of possible designs more fully. The
representation includes the possible matches, grouped in levels, and the amount
of exchange to undertake for any given match. There is some redundancy of in-
formation in the encoding: a match amount may be 0 which is equivalent to that
match not being considered. Each level consists of nc integer values indicating
the hot stream from which to get heat, with a 0 value indicating no exchange
at this level. For each match, there is also an integer value which represents the
amount of heat to exchange: q= yiδq. The potential is there for identifying better
solutions but the space represented is larger and has redundancy so there can be
a loss of efficiency in the search.

The two representations are generic and independent of the optimisation method,
or algorithm, which uses them. To investigate the MAMR situation, we have con-
sidered two stochastic optimisation procedures: GA, a simple genetic algorithm [6],
and SA, a simulated annealing approach [8]. The details of these methods are not
critical as the point is to investigate whether the combinations of algorithm and
representation can lead to different results for different problems. Tuning parame-
ters for these methods is also not relevant as such tuning typically depends on the
specific optimisation problem, further emphasising the need for matching between
methods and representations.

9.7 Results

A broad selection of heat exchanger network design problems has been assembled
from the literature: CS1 is the 4SP problem from [16], CS2 is example 6 from [1],
CS3-CS5 are problems A through C from [12], CS6 is the example from [15] and
CS7 the example from [21]. All of these problems were solved using both represen-
tations (SGA and dfHEN) and with two simple methods, GA and SA, implemented
in the Jacaranda system [7], leading to four different combinations.

Table 9.2 summarises the results obtained. The four combinations for each case
study are allowed the same amount of computational resource. For each row, the re-
source allocated, in terms of objective function evaluations, is that amount sufficient
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to allow at least one of the combinations to achieve the best known solution for the
design problem.

The first observation is that the simulated annealing procedure performs as well
as or better than the genetic algorithm in almost all cases. The second observation,
and arguably the more important one, is that no single representation is best overall.
The SGA representation performs best for case studies 1–3 and 7 but the dfHEN
representation wins out for case studies 4–6. There is nothing immediately obvious
in the problem formulations that would allow one to predict which representation
would be most appropriate. It is also worth noting that GA + dfHEN combination
has the least worst relative performance (1.57); all other combinations have at least
one case which performs worse relatively.

Table 9.2 Summary of performance of two optimisation methods with two different representa-
tions for the seven case studies

Case study GA GA SA SA
dfHEN SGA dfHEN SGA

1 1.57 1.03 1.75 1.00
2 1.01 1.00 1.02 1.00
3 1.09 1.01 1.02 1.00
4 1.52 2.47 1.02 2.23
5 1.55 2.48 1.01 2.30
6 1.06 1.20 1.01 1.20
7 1.16 1.16 1.16 1.00

Each entry is the average value of the best objective function value obtained over 10 runs relative
to the value of the best solution obtained overall. The best average result for each case study is
emboldened

9.8 Conclusions

The possibility of multiple formulations for an optimisation problem, the choice of
representations for the degrees of freedom and the range of solvers available leads
to the difficult task of choosing the correct combination. This paper has demon-
strated that the choice does matter. For a set of problems, all in the same domain
of heat exchanger network synthesis, different combinations of method and repre-
sentation work best for individual problems. This motivates the development of an
over-arching method which could identify the best combination and solve the prob-
lem most effectively. We propose a Multiple Heuristics, Multiple Representation
(MHMR) paradigm which mirrors the Multiple Algorithm, Multiple Formulation
(MAMF) model for the exact solution [19]. Exploring this paradigm, say through
the design and implementation of prototype software frameworks will be the focus
for future work in our respective research groups.
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Chapter 10
Manufacturing Cell Formation Problem Using
Hybrid Cuckoo Search Algorithm

Bouchra Karoum, Bouazza Elbenani, Noussaima El Khattabi,
and Abdelhakim A. El Imrani

Abstract Cellular manufacturing, as one of the most important applications of
Group Technology, has gained popularity in both academic research and industrial
applications. The cell formation problem is considered the first and the foremost
issue faced in the designing of cellular manufacturing systems that attempts to min-
imize the inter-cell movement of the products while maximize the machines uti-
lization. This paper presents an adapted optimization algorithm entitled the cuckoo
search algorithm for solving this kind of problems. The proposed method is tested
on different benchmark problems; the obtained results are then compared to oth-
ers available in the literature. The comparison result reveals that on 31 out of 35
problems (88.57%) the results of the introduced method are among the best results.

Keywords Cell formation problem • Lévy flight • Cuckoo search
• Metaheuristic • Cellular manufacturing

10.1 Introduction

Cellular manufacturing (CM) is one of the most important applications of the Group
Technology that aims to convert a production system into several mutually separa-
ble production cells. Where dissimilar machines are aggregated into machine groups
(also known as manufacturing cells) and similar parts into part families so that one
or more part families can be processed within a single machine group. The main ob-
jective is minimizing the intercellular and intracellular movements. Many significant
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benefits have been reported for CM, including reducing setup and throughput times,
minimizing the material handling costs, improving the quality and the production
control, etc.

The cell formation problem (CFP), which is a non-polynomial hard optimization
problem [3], is the first issue in the designing of cellular manufacturing systems. It
involves the identification of machine cells and part families with the objective of
minimizing the intercellular and intracellular part movements.

In the last decades, many solution methods have been proposed to solve this
problem. Chandrasekharan and Rajagopalan [1] developed an algorithm entitled
ZODIAC (zero-one data: ideal seed algorithm for clustering) for solving the CFP
and used a new concept called relative efficiency as a stopping rule for the itera-
tions. Srinivasan and Narendran [14] proposed an efficient non-hierarchical cluster-
ing algorithm, based on initial seeds obtained from the assignment method, named
GRAFICS for the rearrangement of parts and machines. Elbenani and Ferland [4]
suggested an exact method for solving the manufacturing cell formation problem.
A good survey paper which review briefly the different methodologies used to solve
the problem until 2008 is presented in [10].

Recently, several authors have adopted the use of the metaheuristic algorithms
for the cell formation problem, because of its efficiency in solving combinato-
rial optimization problems. Goncalves and Resende [6] presented a new algo-
rithm that combines a local search heuristic with a genetic algorithm for ob-
taining machine cells and part families. James et al. [8] employed a standard
grouping genetic algorithm with a local search mechanism to form machine-part
cells. Diaz et al. [2] suggested a greedy randomized adaptive search procedure
(GRASP) heuristic to obtain lower bounds for the optimal solution of the CFP.
Sayadi et al. [11] recommended a new solution based on a discrete firefly algo-
rithm for solving the problem. Solimanpur and Elmi [13] presented a nested ap-
plication of tabu search approach to solve the problem heuristically. Husseinzadeh
Kashan et al. [7] introduced a new solution approach based on the particle swarm
optimization (PSO) algorithm for solving the CFP. Ying et al. [16] developed a
simulated annealing based metaheuristic with variable neighbourhood to form part-
machine cells. Elbenani et al. [5] hybrided a genetic algorithm with a local search
procedure that applies sequentially an intensification strategy to improve locally a
current solution and a diversification strategy destroying more extensively a cur-
rent solution to recover a new one. A grouping version of league championship
algorithm has been proposed by Seyedhosseini et al. [12] for solving the CFP,
and so on.

In this paper, a recently developed cuckoo search (CS) algorithm is adopted for
solving the CFP with the aim of maximizing the grouping efficacy. The CS algo-
rithm is combined with a local search method in order to intensify the search towards
promising regions. The experimental results show that the proposed algorithm gen-
erates good results in reasonable computational time.
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The remainder of this article is organized as follows: Sect. 10.2 describes the
CFP; Sect. 10.3 gives an overview of the standard cuckoo search algorithm and in-
troduces the improvement carried out on the algorithm to solve the CFP. The results
of numerical experiments on a set of benchmark problems are reported in Sect. 10.4,
and concluding remarks are given in Sect. 10.5.

10.2 Problem Formulation

The input parameter of the CF problem is a machine-part incidence matrix A where
each row represents a machine and each column represents a part. The objective is
to determine a rearrangement so that machine utilization within a cell is maximized
and the inter-cellular movement is minimized. Figure 10.1 shows a 5× 5 machine
part incidence matrix to a problem with five machines and five parts. The second
matrix indicates a solution of the problem by partition into 3 different cells illus-
trated in the gray blocks. The 1 outside the diagonal blocks are called exceptional
elements, while the 0 inside the diagonal blocks are called voids.

Different measures have appeared in the literature to compare the efficiency of
the methods. The most used is the grouping efficacy (Eff ) [9] where the closer the
grouping efficacy is to 1, the better will be the solution obtained (see Eq. (10.1)).

Eff =
(a− aOut

1 )

(a+ aIn
0 )

(10.1)

Where:
a: Total number of entries equal to 1 in the matrix A;
aOut

1 : Number of exceptional elements;
aIn

0 : Number of voids.
To formulate this problem, a mathematical model similar to the one used in [4]

is adopted.
Parameters:
i, j,k: Index of machines, parts and cells, respectively.
M,P,C: Number of machines, parts and cells, respectively.
A: Machine-part incidence matrix A = !ai j".
a: Total number of entries equal to 1 in the matrix A.
ai j = 1 if machine i process part j; 0 otherwise.
xik = 1 if machine i belongs to cell k; 0 otherwise.
y jk = 1 if part j belongs to cell k; 0 otherwise.

The objective function of the CFP can be presented as follow:

minComEff (x,y) =
a+∑C

k=1∑
M
i=1∑P

j=1(1− 2ai j)xiky jk

a+∑C
k=1∑

M
i=1∑P

j=1(1− ai j)xiky jk
(10.2)
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Subject to:
C

∑
k=1

xik = 1 i = 1, ...,M (10.3)

C

∑
k=1

y jk = 1 j = 1, ...,P (10.4)

M

∑
i=1

xik ≥ 1 k = 1, ...,C (10.5)

P

∑
j=1

y jk ≥ 1 k = 1, ...,C (10.6)

xik = 0 or 1 i = 1, ...,M;k = 1, ...,C (10.7)

y jk = 0 or 1 j = 1, ...,P;k = 1, ...,C (10.8)

Constraint (10.3) ensures that each machine is assigned to exactly one cell. Con-
straint (10.4) guarantees that each part must be assigned to only one cell. Inequalities
(10.5) and (10.6) ensure that each cell includes at least one machine and one part.
Finally, constraints (10.7) and (10.8) denote that the decision variables are binary.

10.3 Improved Cuckoo Search Algorithm

10.3.1 Basic Cuckoo Search

Cuckoo search algorithm is a new nature-inspired metaheuristic algorithm devel-
oped by Yang and Deb in 2009 [15]. It was inspired by the special lifestyle and the
aggressive brood parasitic behavior of some species of a bird family called cuckoo.
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This algorithm is initially designed for solving multimodal functions and can be
summarized around the following three ideal rules [15]:

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest.
• The best nests with high quality of eggs (solutions) will carry over to the next

generations.
• The number of host nests is fixed, and a host can discover an alien egg with a

probability pa ∈ [0,1].

The last assumption can be approximated by a fraction pa of the n nests are
replaced by new ones.

In the standard cuckoo search algorithm, the behavior of cuckoo is associated
with Lévy flight to search a new nest. Lévy flights, named by the French mathe-
matician Paul Lévy, represent a model of random walks characterized by their step
lengths that obey a power-law distribution.

When generating a new solution x(t+1)
l for a cuckoo l, in iteration t+1, a Lévy flight

is performed using Eq. (10.9).

x(t+1)
l = x(t)l +α⊕ lévy(β ) (10.9)

Where α > 0 is the step size parameter that should be chosen according to the
scales of the problem. In most cases, α = 1. The product ⊕ means entry-wise mul-
tiplications. The Lévy flight is a random walk where the step length follows a Lévy
distribution that has an infinite variance with an infinite mean. It allows the explo-
ration of the search space more efficiently as its step length is much longer in the
long run. A simple scheme discussed in detail by Yang [15] can be approximated
(∼) by Eq. (10.10):

lévy(β )∼ 0.01
μ

|ν|1/β
(x(t)b − x(t)l ), 1 < β ≤ 3 (10.10)

Where μ and ν are drawn from normal distribution:

μ ∼ N(0,σ2
μ), ν ∼ N(0,σ2

ν ) (10.11)

With

σμ =

⎛
⎝Γ(1+β )sin(Πβ2 )

Γ( 1+β
2 )β2

(β−1)
2

⎞
⎠

1
β

,σν = 1 (10.12)

Where Γ is the standard Gamma function.

10.3.2 The Proposed Cuckoo Search Algorithm

This section introduces the modification made on the standard CS algorithm in order
to solve the cell formation problem which is discrete in nature. The algorithm begins
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with an initialization phase, where the number of machines M, the number of parts
P, the number of cells C, the population size and the fraction pa of abandoned
nests are defined. Then, an initial population of feasible solutions is created. After
initialization, the proposed method iterates until a specific number of loops are met
as shown in Algorithm 1.

Algorithm 1 The proposed cuckoo search algorithm
Generate an initial population of n host nests xi (i = 1, ...,n)
while (t < MaxGeneration) or (stop criterion) do

Get a cuckoo l randomly by Lévy flights;
Evaluate its quality according to its grouping efficacy Eff l ;
Apply a local search to the generated solution xl ;
Choose a nest r among n randomly;
if (Eff xl

> Eff xr
) then

Replace xr by the new solution;
end if
Abandon a fraction pa of worse nests and build new ones by Lévy flights
Rank the solutions and find the current best

end while

10.3.2.1 Solution Representation

The encoding adapted in this paper is similar to the one used by Elbenani et al.
[5]. Where the problem variable is represented as a vector with length of P+M:
(P1, ...,PP| M1, ...,MM). Where:

• Pj is the index of the cell including part j.
• Mi is the index of the cell including machine i.

To understand better, consider the following solution of a problem with 7 parts
and 5 machines: (2,1,3,2,3,1,3| 2,1,2,3,1). This solution includes three cells: cell
1 contains parts {2, 6} and machines {2, 5}, cell 2 contains parts {1, 4} and ma-
chines {1, 3} and cell 3 contains parts {3, 5, 7} and machine {4}.

10.3.2.2 Population Initialization

The initial solutions are generated randomly. Each machine i and part j are assigned
randomly to a cell k. each cell must contain at least one machine and one part. To
fix infeasibilities that may arise from an empty cell (cell without parts/machines),
a repair process is activated. This process involves removing a part/ machine from
the cell, including the most to the empty cell, which induces the smallest decrease
of the grouping efficacy.
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10.3.2.3 Nests

In the CS algorithm, the number of nests is fixed and equal to the population size.
A nest is an individual of the population and an abandoned one entails replacing an
individual in the population with a new one. Assuming that a cuckoo lays a single
egg in one nest; each egg in a nest will be a solution represented by one individual
in the population; and an egg of the cuckoo represents a new possible solution.

10.3.2.4 Lévy Flights

Lévy flights represent a model of random walks characterized by their step lengths
which obey a power-law distribution as depicted in Eq. (10.10). In this paper, the

difference between the two positions (x(t)k −x(t)l ) represent the necessary movements
to change from the actual solution given by the second, subtracting term, to the best
obtained solution given by the first, subtracted term.

For each of the necessary movements, a random number between 0 and 1 is
generated and if its value is less than the correspondent coefficient Coe f = μ

|ν|1/β ,

the movement is applied to the solution. A part movement coded as (4,1) represents
changing part 4 to cell 1. Similarly for a machine movement.

To understand better, we take the following example, let:

• Coe f = 0.7;
• The current solution: xl = (3,2,1,2,3,1,3,1|1,2,3,1);
• The best solution obtained: xb = (2,3,1,1,3,1,3,2|1,2,3,3).

The necessary part movements, in this case, are (1,2),(2,3),(4,1),(8,2) while
the necessary machine movement is (4,3). Five random values are generated and
compared with Coe f : 0.8,0.3,0.9,0.6 and 0.4. Therefore, the only part movements
that would be applied in the current solution are (2,3) and (8,2), besides the ma-
chine movement (4,3). The resulting solution will be: xl = (3,3,1,2,3,1,3,2|1,2,3,
3) If the produced solution is unfeasible, the repair process described above is em-
ployed.

10.3.2.5 Local Search

In order to improve the quality of the solutions, the CS algorithm is combined with
a search mechanism. The local search approach adopted is based on the one intro-
duced by Goncalves and Resende [6]. Since it is simple, uses the same measure to
compare the efficiency of the methods and generates good results.

Based on the initial set of machine groups of the incoming solution, each part is
assigned to the cell that maximizes the grouping efficacy calculated by Eq. (10.1).
If the modified solution is better than the current solution, the modified solution
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replaces the current one. Afterwards, the process will restart by the assignment of
the machines. This approach iterates by reassignment of parts, then reassignment of
machines until the quality of the new solution does not exceed the quality of the last
solution.

10.4 Computational Results

The proposed algorithm is tested on a set of 35 benchmark problems collected from
the literature [5]. For each test problem, the number of machines (M), parts (P) and
cells (C) are shown in Table 10.1. Besides, the minimum (Min. Sol.), the average
(Ave. Sol.) and the maximum (Max. Sol.) solutions obtained, and the Best-Known
solution (Best Known Sol.). Also, the computational time in seconds (CPU. Time(s))
required and the percentage of the gap (Gap(%)) are reported in Table 10.1, respec-
tively. Preliminary tests showed that the following values are suitable to find best
solutions:

• Population size n = 50;
• Portion of abandoned nests pa = 0.25;
• Maximum number of iterations = 200.

For each benchmark problem, 10 independent runs of the algorithm with these
parameters are performed. Table 10.1 summarizes the obtained results. The de-
scribed algorithm is coded using Java, and running on a Personal Computer equipped
with Pentium (R) Dual Core CPU T4500 clock at 2.30 GHz and 2 GB of RAM.

As shown in Table 10.1, the proposed method generates very good solutions in
a reasonable computational time. Since the proposed method can reach the Best-
Known solution of 31 benchmark problems. Among these problems, our method
attains the Best-Known solution of 17 test problems throughout the 10 runs of the al-
gorithm (Min. Sol. = Ave. Sol. = Max. Sol.), which prove the performance of the pro-
jected method. Regarding the remaining problems, the average solutions obtained
are very close to the Best-Known solutions.

In order to confirm the effectiveness of the proposed method, the percentage of
gap is calculated with respect to the Best-Known solution of each test problem,
using Eq. (10.13). The results shows that the proposed approach has gaps in 4 prob-
lems only with the highest one is in problem P27 with 2.22% gap, as demonstrated
in Table 10.1.

Gap =
(Best Known Solution−Max. Sol.)

Best Known Solution
× 100 (10.13)

To exhibit potentials of the proposed method, the obtained results are compared
with the results of several algorithms developed in the literature for the CFP. Ta-
ble 10.2 presents the results reported from these algorithms and the best solutions
obtained for each problem.
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Table 10.1 The numerical results of the proposed algorithm

No. M P C Min. Sol. Ave. Sol. Max. Sol. BestKnown Sol. Gap(%) Time(s)

P1 5 7 2 82.35 82.35 82.35 82.35 0 0.32
P2 5 7 2 69.57 69.57 69.57 69.57 0 0.33
P3 5 18 2 79.59 79.59 79.59 79.59 0 0.35
P4 6 8 2 76.92 76.92 76.92 76.92 0 0.32
P5 7 11 5 60.87 60.87 60.87 60.87 0 0.57
P6 7 11 4 70.83 70.83 70.83 70.83 0 0.46
P7 8 12 4 69.44 69.44 69.44 69.44 0 0.48
P8 8 20 3 85.25 85.25 85.25 85.25 0 0.52
P9 8 20 2 58.72 58.72 58.72 58.72 0 0.40
P10 10 10 5 75.00 75.00 75.00 75.00 0 0.65
P11 10 15 3 92.00 92.00 92.00 92.00 0 0.51
P12 14 24 7 71.64 72.02 72.06 72.06 0 3.70
P13 14 24 7 69.44 71.51 71.83 71.83 0 4.30
P14 16 24 8 53.26 53.26 53.26 53.26 0 5.79
P15 16 30 6 69.53 67.42 68.92 69.53 0 5.20
P16 16 43 8 56.25 56.80 57.53 57.53 0 14.26
P17 18 24 9 55.67 57.21 57.73 57.73 0 8.45
P18 20 20 5 41.61 42.59 43.45 43.45 0 2.89
P19 20 23 7 48.09 50.25 50.81 50.81 0 6.38
P20 20 35 5 77.91 77.91 77.91 77.91 0 5.04
P21 20 35 5 57.14 57.89 57.98 57.98 0 5.12
P22 24 40 7 100.0 100.0 100.0 100.0 0 14.35
P23 24 40 7 85.11 85.11 85.11 85.11 0 14.19
P24 24 40 7 73.51 73.51 73.51 73.51 0 14.65
P25 24 40 11 52.74 53.13 53.29 53.29 0 38.39
P26 24 40 12 47.95 48.19 48.61 48.95 0.69 44.32
P27 24 40 12 43.84 45.49 46.21 47.26 2.22 43.86
P28 27 27 5 54.82 54.82 54.82 54.82 0 5.23
P29 28 46 10 44.87 46.45 47.06 47.23 0.36 50.68
P30 30 41 14 62.42 62.92 63.31 63.31 0 83.68
P31 30 50 13 58.29 59.31 59.77 60.12 0.58 93.43
P32 30 50 14 49.72 50.46 50.83 50.83 0 85.97
P33 36 90 17 45.66 47.08 47.75 47.75 0 532.59
P34 37 53 3 59.26 59.97 60.64 60.64 0 9.58
P35 40 100 10 84.03 84.03 84.03 84.03 0 248.31

The comparator algorithms are ZODIAC method [1], GRAFICS method [14],
evolutionary algorithm (EA) [6], simulated annealing (SA) [16], GRASP heuris-
tic [2], genetic algorithm and large neighbourhood search (GA-LNS) [5].

The approaches: ZODIAC, GRAFICS, EA and GRASP do not allow for sin-
gletons (cells having less than two machines or two parts) which may affected the
quality of the solutions in comparison with other approaches.

As can be seen, the proposed method achieves the best known solutions in 31
test problems out of the existing 35 test problems being 88.57%. The remaining
problems in which the method performs a little bit worse than its comparator are 26,
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Table 10.2 Performance of the proposed method compared to other approaches

No. ZODIAC GRAFICS EA SA GRASP GA-LNS Proposed
method

Bestknown
Sol.

P1 73.68 73.68 73.68 82.35 73.68 82.35 82.35 82.35
P2 56.22 60.87 62.50 69.57 62.50 69.57 69.57 69.57
P3 – – 79.59 79.59 79.59 79.59 79.59 79.59
P4 – – 76.92 76.92 76.92 76.92 76.92 76.92
P5 39.13 53.12 53.13 60.87 53.13 60.87 60.87 60.87
P6 – – 70.37 70.83 70.37 70.83 70.83 70.83
P7 68.30 68.30 68.29 69.44 69.44 69.44 69.44 69.44
P8 85.24 85.24 85.25 85.25 85.25 85.25 85.25 85.25
P9 58.33 58.33 58.72 58.72 58.72 58.72 58.72 58.72
P10 70.59 70.59 70.59 75.00 70.59 75.00 75.00 75.00
P11 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00
P12 64.36 64.36 69.86 72.06 69.86 72.06 72.06 72.06
P13 65.55 65.55 69.33 71.83 69.33 71.83 71.83 71.83
P14 32.09 45.52 52.58 53.26 51.96 53.26 53.26 53.26
P15 67.83 67.83 67.83 68.99 67.83 69.53 69.53 69.53
P16 53.76 54.39 54.86 57.53 56.52 57.53 57.53 57.53
P17 41.84 48.91 54.46 57.73 54.46 57.73 57.73 57.73
P18 21.63 38.26 42.94 43.45 42.96 43.45 43.45 43.45
P19 38.96 49.36 49.65 50.81 49.65 50.81 50.81 50.81
P20 75.14 75.14 76.22 77.91 76.54 77.91 77.91 77.91
P21 – – 58.07 57.98 58.15 57.98 57.98 57.98
P22 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
P23 85.11 85.11 85.11 85.11 85.11 85.11 85.11 85.11
P24 37.85 73.51 73.51 73.51 73.51 73.51 73.51 73.51
P25 20.42 43.27 51.88 53.29 51.97 53.29 53.29 53.29
P26 18.23 44.51 46.69 48.95 47.37 48.95 48.61 48.95
P27 17.61 41.67 44.75 47.26 44.87 46.58 46.21 47.26
P28 52.14 47.37 54.27 54.82 54.27 54.82 54.82 54.82
P29 33.01 32.86 44.37 47.23 46.06 47.06 47.06 47.23
P30 33.46 55.43 58.11 63.31 59.52 63.12 63.31 63.31
P31 46.06 56.32 59.21 59.77 60.00 60.12 59.77 60.12
P32 21.11 47.96 50.48 50.83 50.51 50.83 50.83 50.83
P33 32.73 39.41 42.12 47.14 45.93 47.75 47.75 47.75
P34 52.21 52.21 56.42 60.64 59.85 60.63 60.64 60.64
P35 83.92 83.92 84.03 84.03 84.03 84.03 84.03 84.03

The bold values indicate the solutions equal to the best-known solutions.

27, 29 and 31. For problem 21, data reported in EA and GRASP are inconsistent
with the original data in the literature.

The numerical results indicate that the proposed method generates good results
for the 35 problems, and that the performance of this method is rather constant on
all types of problems ranging from small to large.
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10.5 Conclusion

This paper presents in detail how a recently developed heuristic entitled cuckoo
search algorithm is operating for solving the manufacturing cell formation prob-
lem. A remarkable contribution of the paper is the novelty of applying CS algo-
rithm to this type of combinatorial optimization problems which require adapting
its elements appropriately. The proposed method is combined with a local search
mechanism in order to intensify the search and improve the quality of the solutions.

The results obtained in the computational experiments carried out show that on
31 out of 35 problems (88.57%) the results of the introduced method are among the
best results. These results justify the superior performance of the method compared
to other methods collected from the literature.

For future research, the extension of this approach could be applied to other vari-
ants of the cell formation problem having additional factors such as the real time
manufacturing data, number of routings for each part, etc. Moreover, the proposed
problem can be used in various similar clustering problems that involve the assign-
ment of distinct objects in indistinguishable group.

References

1. M.P. Chandrasekharan, R. Rajagopalon, ZODIAC-an algorithm for concurrent formation of
part-families and machine-cells. Int. J. Prod. Res. 25, 835–850 (1987)

2. J.A. Diaz, D. Luna, R. Luna, A GRASP heuristic for the manufacturing cell. Top. 20, 679–706
(2012)

3. C. Dimopoulos, A.M.S. Zalzala, Recent developments in evolutionary computation for manu-
facturing optimization: problems, solutions, and comparisons. IEEE Trans. Evol. Comput. 4,
93–113 (2000)

4. B. Elbenani, J.A. Ferland, CIRRELT: Cell Formation Problem Solved Exactly with the Dinkel-
bach Algorithm (CIRRELT, Montreal, 2012), pp. 1–14

5. B. Elbenani, J.A. Ferland, J. Bellemare, Genetic algorithm and large neighbourhood search to
solve the cell formation problem. Expert Syst. Appl. 39, 2408–2414 (2012)

6. J.F. Goncalves, M.G.C. Resende, An evolutionary algorithm for manufacturing cell formation.
Comput. Ind. Eng. 47, 247–273 (2004)

7. A. Husseinzadeh Kashan, B. Karimi, A. Noktehdan, A novel discrete particle swarm opti-
mization algorithm for the manufacturing cell formation problem. Int. J. Adv. Manuf. Tech.
73, 1543–1556 (2014)

8. T.L. James, E.C. Brown, K.B. Keeling, A hybrid grouping genetic algorithm for the cell for-
mation problem. Comput. Oper. Res. 34, 2059–2079 (2007)

9. C.S. Kumar, M.P. Chandrasekharan, Grouping efficacy: a quantitative criterion for goodness
of block diagonal forms of binary matrices in group technology. Int. J. Protein Res. 28,
233–243 (1990)

10. G. Papaioannou, J.M. Wilson, The evolution of cell formation problem methodologies based
on recent studies (1997–2008): review and directions for future research. Eur. J. Oper. Res.
206, 509–521 (2010)

11. M.K. Sayadi, A. Hafezalkotob, S.G.J. Naini, Firefly-inspired algorithm for discrete optimiza-
tion problems: an application to manufacturing cell formation. J. Manuf. Syst. 32, 78–84
(2013)



162 B. Karoum et al.

12. S.M. Seyedhosseini, H. Badkoobehi, A. Noktehdan, Machine-part cell formation problem us-
ing a group based league championship algorithm. J. Promot. Manag. 21, 55–63 (2015)

13. M. Solimanpur, A. Elmi, A tabu search approach for cell scheduling problem with makespan
criterion. Int. J. Prod. Econ. 141, 639–645 (2013)

14. G. Srinivasan, T.T. Narendran, GRAFICS- A nonhierarchical clustering algorithm for group
technology. Int. J. Prod. Res. 29, 463–478 (1991)
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Chapter 11
Hybridization of Branch and Bound Algorithm
with Metaheuristics for Designing Reliable
Wireless Multimedia Sensor Network

Omer Ozkan, Murat Ermis, and Ilker Bekmezci

Abstract Reliability is a key topic for Wireless Multimedia Sensor Networks (WM-
SNs) design which involves connectivity and coverage issues with node placement.
The main contribution of this chapter is to deploy sensor nodes to maximize the
WMSN reliability under a given budget constraint by considering terrain and device
specifications. The reliable WMSN design with deployment, connectivity and cov-
erage has NP-hard complexity, therefore a new hybridization of an exact algorithm
with metaheuristics is proposed. A Branch&Bound (B&B) approach is embedded
into Hybrid Simulated Annealing (HSA) and Hybrid Genetic Algorithm (HGA) to
orient the cameras exactly. Since the complexity of the network reliability problem
is NP-complete, a Monte Carlo (MC) simulation is used to estimate the network reli-
ability . Experimental study is done on synthetically generated terrains with different
scenarios. The results show that HGA outperforms the other approaches especially
in large-sized sets.

Keywords Wireless multimedia sensor network • Network reliability • Reliable
network design • Hybrid metaheuristics • Branch and bound • Simulated
annealing • Genetic algorithm

11.1 Introduction

The sensors in a WMSN have the ability to retrieve, process, relay and store video
and audio streams, still images, and scalar sensor data. There are different civil and
military applications about WMSNs over the last few years in the literature such as;
multimedia surveillance sensor networks, storage of potentially relevant activities,
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traffic avoidance, enforcement and control systems, advanced health care delivery,
automated assistance for the elderly and family monitors, environmental monitor-
ing, person locator services and industrial process control [1]. Providing security on
country borders, operating early warning systems, monitoring and observation sys-
tems and determining the routes according to a given mission are vitally important
particularly for military operations. In this chapter, a new sensor node deployment
plan that includes the hybridization of an exact algorithm with metaheuristics is
proposed for WMSN reliability maximization.

Deployment of sensor and relay nodes can severely affect the performance of net-
work lifetime, reliability or cost. Multimedia sensor deployment problem includes
locating a set of sensor or relay nodes, and setting their parameters (such as heading
angle, tilt etc.). The problem is closely related to the Art Gallery Problem, which
purposes to guard an art gallery with the minimum number of guards who together
can observe the whole gallery. Although 2-D Art Gallery Problem can be solved
optimally, it is proved that it is NP-hard in 3-D space [7].

The approximate methods and Genetic Algorithms (GAs) are applicable for re-
stricted versions of this problem [2, 5]. A binary integer program that solves the
best camera deployment given in a determined number of cameras is proposed by
Zhao et al. [11]. A cost efficient wireless camera sensor deployment strategy for en-
vironment monitoring is also studied [10]. Topcuoglu et al. suggested a new GA to
locate and utilize the multimedia network for maximizing coverage and minimizing
cost [10]. The first efforts on video sensor location problem were only related with
the coverage, however after the understanding of WMSN structure, the connectivity
and the other vital network related issues are also studied. One of the works about
connected coverage for WMSN is proposed by Han [6].

The reliability of sensor networks combines the reliability of connectivity related
data distribution and coverage related data acquisition. Along with the connectiv-
ity issues, coverage also must be integrated in Wireless Sensor Network (WSN) or
WMSN reliability models. Even though, in many works, connected coverage is in-
troduced as Quality of Service (QoS) for WSN [6], it is also considered as a WSN
reliability issue. A reliability model that integrates the traditional connectivity based
network reliability with the coverage is proposed by Shrestha et al. [9]. Shrestha et
al. investigate the WSN reliability as a hierarchical structure [8], which does not
cover all WSNs. In [4], the coverage problem for WSN is studied from the relia-
bility point of view so that a series of sensor placement strategies are proposed for
maximum reliability and fault tolerance.

Countries that have their own reconnaissance satellite network can easily detect
crime or terrorist activities. The intelligence satellites are used to produce very de-
tailed radar images or photographs of small, strategically important locations. How-
ever, due to lack of relevant technology, the other countries must either pay a fee or
enter into an exclusive information-sharing agreement (or both) if they want to get
access to satellite networks. As an alternative and practical solution, those govern-
ments fighting crime or terrorism uses reconnaissance aircrafts, UAVs and WMSN
to detect illegal activities or terrorist camps. But, technology advances are now en-
abling far more accurate and reliable imagery using tiny, low battery powered and
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inexpensive sensors that can communicate with each other and monitor the terrain
to gather information. In this chapter, we propose a new WMSN reliability metric,
that is total information gathered, a model for deploying and configuring a set of
given sensors on a synthetically generated 2-D terrain for the maximization of over-
all network reliability and a novel hybrid solution methodology for surveillance of
a terrorist camp or region.

In real surveillance applications, 3-D structure of the terrain must be considered
for optimal sensor deployment problems. Although our work is based on 2-D ter-
rains, it can be easily extended for 3-D terrains. But, commercial solvers are not
efficient in solving realistic size 3-D terrain problem instances due to the reliability
calculations for each sensor. In order to find solutions to realistic size problem in-
stances in a reasonable amount of time, we devise hybrid heuristics on 2-D terrains.

The main problem in this chapter is to maximize WMSN reliability under a lim-
ited budget. Instead of dealing with the connectivity and coverage based reliability
separately, an information gathering concept is introduced by considering connec-
tivity and coverage issues with a deployment plan. In order to produce the solution
of the problem, a new hybridization approach, which integrates an exact algorithm
with metaheuristics, is proposed. A B&B approach embedded into SA and GA are
employed to find the exact orientations of the cameras (i.e. HSA and HGA). Because
of the NP-complete structure of network reliability problem, a Monte Carlo simu-
lation is implemented. The proposed method also considers the importance map of
the 2-D terrain, node deployment safety, artificial and natural occlusions in order to
model a more realistic reliability approach for surveillance missions.

The rest of the chapter is organized as follows. The next section describes the
problem formulation including terrain, target, sensor node and relay node fea-
tures, information gathering reliability calculation and the mathematical model. In
Sect. 11.3, the implementation details of the HSA and HGA approaches for the prob-
lem are presented. Section 11.4 summarizes the results of the experimental study
with respect to terrain, node and target specifications. Finally, Sect. 11.5 concludes
this chapter.

11.2 The Problem Definition

The designed WSMN consists of base station (b) placed near by the border points
of the terrain (Ter). The b is linked to the command center via a satellite. There
are predefined target points (T ) on the Ter and the WMSN operates to get reli-
able data from the T . The Ter is displayed as a 2-D grid based surface, since it is
sufficiently realistic and adequately simple for computational tractability. Although
there are several different applications that require mobile targeting, there are also
some scenarios that can be realized with fixed targeting. In real terrorist camps, the
terrorists can be classified as mobile targets. However, there can be some other fixed
targets like logistics buildings, communication centers, ammunition store, armory
or artilleries. In this paper, we aim to surveillance only fixed targets.
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Fig. 11.1 The Ter and WMSN properties. (a) A sample Ter. (b) A sample WMSN

Table 11.1 The parameters of the problem definition

Component Notation Value Definition

Ter i ∈ I Candidate point to deploy devices
Ter xi Positive integer x coordinate of point i
Ter yi Positive integer y coordinate of point i
Ter swi [0-1] Safety weight of point i
Ter nowi [0-1] Natural occlusion weight of point i
Ter aowi [0-1] Artificial occlusion weight of point i
T k ∈ T Target
T iwk [0-1] Importance weight of target k
S j ∈ S Sensor
S p j Positive integer Deployment point of sensor j
S d j Real Depth of view of sensor j
S v j [0-359◦] Viewing angle of sensor j
S h j [0-359◦] Heading angle of sensor j
S c j Real Cost of sensor j
S r j Real Communication range of sensor j
S rel j [0-1] Hardware reliability of sensor j
R l ∈ R Relay node
R cl Real Cost of relay l
R rl Real Communication range of relay l
R rell [0-1] Hardware reliability of relay l
– TB Real Total budget

The properties of the Ter and T are depicted in Fig. 11.1. The WMSN has sensor
(S) and relay (R) nodes connected to the b to obtain the data. The S collect video
data from the covered T on the Ter and deliver the data to the b via other connected
S and R. The R do not have any camera attribution and so their only function is
to deliver the received data to the neighbour nodes. A designed WMSN example
is presented in Fig. 11.1. The properties of the Ter, T , S and R are summarized in
Table 11.1.

The iwk represents the importance weight of a k and if it is 1, it means the k has
top influence for the surveillance. Therefore, it has more chance to be covered. If
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the iwk is close to 0, then the k has few importance. The overall of the iwk on the
Ter is the total surveillance data that can be gathered.

Some of the polygons on Ter may have different safety levels. The opponent
patrols or soldiers on duty may recognize the sensor or relay node devices easily on
some i. In some occasions, the devices can not be placed in to some i because of the
geographical structure of the i. The swi indicates the safety level of i, and it can be
defined as the probability of operating a node safely, when the node is placed on a
certain point i.

The occlusion weights (aowi and nowi) symbolize the occlusion types on the
point i. There can be two types of objects located on synthetically generated Ter,
which are artificial and natural objects. When an object is located on a polygon,
the density value of the object is added to the polygon. These occlusions effects the
coverage values of the sensors on targets. The aowi refers to artificial structures such
as buildings, walls, etc. When aowi is 0, there is no artificial occlusion on i. When
aowi is close to 1, the transparency level of i decreases. Similarly, the nowi involves
the natural flora on Ter such as bushes, woodland and forest. The flora decreases
the coverage in a rate between upper and lower bounds special to plant density. The
decreasing rates are constants and they affect the all points on Ter. The effects of the
natural occlusions on the coverage values and the view cone of a sensor j deployed
on i are presented in Fig. 11.2.

Fig. 11.2 The coverage properties. (a) The effects of natural occlusions. (b) View cone of a sensor

The coverage on a target k by a sensor j is formulated in Eq. (11.1). The maxoccik

is the maximum of the nowi or the aowi on the line between the node i and target
k. Conei jk is 1, if i is in the view cone of sensor j; otherwise, it is 0. The node
connectivity is based on the Euclidean distances between the nodes. If the distance
is less than a certain communication range (r j or rl) the nodes are supposed to be
connected. Although the obstacles or 3-D structure of the terrain may affect the
communication of the nodes, for the simplicity of the calculations, two nodes are
assumed as connected if the distance between than is less than a certain communi-
cation threshold.

Covi jk = (1 - maxoccik) * Conei jk (11.1)
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Moreover, two reliability definitions are made for the reliability functions of
the sensor and relay nodes in WMSNs, respectively. The first reliability definition
includes the operation probability of a sensor j on i that collects data from the target
k defined in Eq. (11.2).

Reli jk = rel j * swi * Covi jk (11.2)

The second definition presented in Eq. (11.3) refers the operation probability of a
relay node l on i. Equations (11.2) and (11.3) are used for the information gathering
reliability estimation of the designed WMSN. Equation (11.2) is the information
gathering reliability and (11.3) is the transmitting reliability of the nodes.

Relil = rell * swi (11.3)

Ultimately, the WMSN reliability is calculated as the information gathered from
the Ter via the deployed S and R over the total information on the Ter. The WMSN
reliability is formulated as below in Eq. (11.4). The reliability is represented as
RelIG(S,R,Ter) and it involves the gathered information from every covered target
k by S and delivered via R and S to the b on Ter over the total information (∑k∈T iwk)
on Ter.

maxRelIG(S,R,Ter) =
∑k∈T R̂el(s′,r′,b,k)∗ iwk

∑k∈T iwk
(11.4)

s.t.

∑
i∈I

(
c j ∗∑

j∈S
∑

m∈O

xi jm + cl ∗∑
l∈R

xil

)
≤ T B (11.5)

∑
j∈S
∑

m∈O

xi jm +∑
l∈R

xil ≤ 1, ∀i ∈ I (11.6)

xi jm,xil ∈ {0,1}; ∀i ∈ I; ∀ j ∈ S; ∀m ∈ O; ∀l ∈ R (11.7)

For each target k covered by s′, the r′ and s′ are connecting s′ to the b on the Ter.
The s′ is a subset of S and the r′ is a subset of R. There are network reliability cal-
culations [∑k∈T R̂el(s′,r′,b,k) in Eq. (11.4)] of each covered target k by s′. At this
point, the exact calculation of network reliability is NP-complete [3]. Hence, a MC
simulation method is employed to estimate (R̂el). The working nodes in WMSN
are determined by random numbers according to Reli jk and Relil values in MC sim-

ulation. The R̂el estimation is done by repeating the simulation 3000 times and
calculating the gathered information from the covered targets as the failed nodes are
removed from network.

The mathematical model has a budget (TB) constraint given in Eq. (11.5). The
other two equations (11.6) and (11.7) are network related design constraints. Equa-
tion (11.6) prevents deployment on more than one device on the same polygon i.
The xi jm is 1, if camera j has orientation m on polygon i, else it is 0. Also, the xil is
1, if relay node l is on polygon i, else it is 0 in Eq. (11.7).
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11.3 Hybridization of Branch and Bound Algorithm
with Metaheuristics

The sensor and relay node deployment, node connectivity, coverage of targets and
reliable WMSN design has NP-hard complexity, therefore four metaheuristics are
proposed. The algorithms are SA, GA, HSA and HGA. The flow charts of the algo-
rithms are depicted in Fig. 11.3.

Fig. 11.3 Flowcharts of the proposed algorithms

As figured out from the flow charts, the SA and GA algorithms have the same
functions and operators with the hybrid versions except B&B algorithm. The B&B
is serial coded and embedded into the hybrid algorithms. Hybridization of meta-
heuristics with an exact method is preferred to derive benefit from the exact method.
Because, the exact methods have capability to advance the solutions for this prob-
lem. Thereby, the strong sides of the algorithms are incorporated to eliminate the
weak sides of them. The B&B helps the SA and GA to find better solutions for the
predefined WMSN problem. The proposed algorithms are described in next subsec-
tions below in detail.
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11.3.1 Hybridization of Branch and Bound with Simulated
Annealing

The SA is an algorithm inspired from the annealing in metallurgy. The SA is chosen
because it has effective single solution based searching strategy based on a tempera-
ture cooling schedule. The cooling schedule of SA allows for finding better solutions
and escaping from local optimum points of the problems.

The proposed SA&HSA has 2-D array type representation and has three division
provided in Fig. 11.4. The first division is a row that indicates the randomly selected
T and the second division is also a row that covers the I deployed S to get surveil-
lance from T . The last division has multiple rows presenting the connection paths
of the selected S to the b via other instruments. T B is a constraint that puts a limit to
the sizes of the representation. The representation of the sample WMSN in Fig. 11.1
is also depicted in Fig. 11.4. In the representation sample, the S5 and S7 sensors are
observing two targets simultaneously.

Fig. 11.4 Representation type and the representation of the sample WMSN in Fig. 11.1

The objective function ( f ) of the SA&HSA is the information gathering reliabil-
ity estimations of the designed candidate WMSN topologies. The initial solutions of
SA&HSA are generated by a heuristic. First of all, a target k and a candidate point i
covering that k is selected randomly. The selection chances of k and i are influenced
by their selection possibilities. If any k has a higher iwk, then it has more chance to be
selected. Similarly, if an i has a higher Reli jk value, it has much more probability to
be chosen than the other points. Then, a sensor j is deployed to the selected point i. A
shortest path heuristic is used to find the placement points of the R nodes to connect
that j to the b. Adding S and R nodes process proceeds until satisfying TB constraint.

The initial temperature (T0) is a key parameter for SA based algorithms. There-
fore, the T0 value for the proposed algorithms is assessed by a Markov chain. The
cooling schedule parameters are also important for algorithm performance. The de-
crease in the temperature parameter is archived by “Tt+1 = α * Tt , (t=0,1,2,...)” for-
mulation. The stopping condition of the SA&HSA is the maximum iteration num-
ber (maxitr). The algorithms stop when the iterations reach to the maxitr number.
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The maxitr number is divided into β number of divisions and in every division the
cooling formulation is executed. T0, α , β , and maxitr parameters are tuned in ex-
perimental study.

The neighbourhood function of the algorithms is simply deleting-adding (replac-
ing) a randomly selected sensor j and its connections to the b procedure. The process
continues until spending all T B.

After the traditional SA functions, a combinatorial B&B method is inserted seri-
ally into HSA to find the exact orientations of the sensors. It is assumed that in the
definition of the algorithms, one sensor is watching just one target. The h j is fixed
to an angle that the sensors are observing the selected one target directly. Even so,
a camera can cover more than one target simultaneously if the targets are in its cov-
erage zone as depicted in Fig. 11.5. The B&B method is providing new orientations
for the sensors by adapting their h j and aiming to increase the information gathering
reliability of the candidate network.

Before orientation adjusting
via B&B Algorithm

T4 T4

S5

S5

S7 S7

T1 T1

After orientation adjusting
via B&B Algorithm

Fig. 11.5 B&B algorithm implementation sample

11.3.2 Hybridization of Branch and Bound with Genetic Algorithm

The GA is an effective algorithm for combinatorial optimization problems. It has
population based search strategy that the solutions (individuals) are evolving to bet-
ter solutions. The algorithms are chosen for designing more reliable WMSN topolo-
gies. The GA&HGA have same fitness function ( f ), representation type and B&B
algorithm implementation with SA&HSA. It is obvious that in the representation,
the gene of an individual is a sensor covering a target and its links to the b. The
initial solution generating heuristic of the SA&HSA is also used for creating initial
population for the GA based algorithms.

The proposed GA&HGA includes a tournament selection strategy for parental
selection. A reliability-based crossover operator is implemented to choose two par-
ents via selection strategy. The predefined f integrates connectivity and coverage
simultaneously. Therefore, the proposed reliability-based crossover preserves con-
nectivity of the children and trying to increase the coverage of more targets. The
operator creates a gene pool from the genes of the parents and gives more chance
to the more reliable sensors in the pool to be selected. Then a randomly selected
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gene transfers to the child. The gene adding process continues until spending all
T B. A crossover example is presented with a mutation example in Fig. 11.6. The
neighbourhood function of the SA&HSA is established as the mutation operator of
the GA&HGA.

Fig. 11.6 Crossover and mutation operators

In the environmental selection, the new generation is replaced with the old gen-
eration. The population size (μ) does not change while creating new generations.
Elitism strategy is also set into the algorithms and the selected best topologies of
old generation is transferred automatically to the following generation. The stop-
ping of the algorithm is to reach to the maximum number of generations (maxgen).

The sample size in tournament selection (tk), crossover probability (Pc), mutation
probability (Pm), elitism rate (e), number of generated offsprings (λ ), μ and maxgen
are tuned in experimental study.

11.4 Experimental Study

The details of the experiments are covered in this section. MATLAB 8.1 is used to
code the algorithms. The experiments are performed on a Intel Core i7-3630QM
computer which has 2.4 GHz CPU and 32 GB RAM. In the beginning, different
scenarios and problem sets are created to test the performances of the algorithms.
The sets are depicted in Table 11.2, which have different Ter, T , S and R properties.
The sets are designed to examine the effects on the solutions of sensor types, relay
node types, occlusions, Ter sizes, and T B amounts.
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11.4.1 Parameter Tuning

The parameters of SA and GA based algorithms are tuned with a small-sized
problem set. The tuned parameters and the assigned values for the parameters of
SA&HSA and GA&HGA are presented in Table 11.3.

Table 11.3 Tuned parameters of algorithms

SA&HSA parameter Value

Initial temperature (T0) 0.63◦

Cooling parameters (α , β ) (0.8, 200)
Maximum iteration number (maxitr) 1000

GA&HGA parameter Value

Population size (μ) 40
Sample size parameter in tournament selection (tk) 7
Crossover probability (Pc) 1
Mutation probability (Pm) 0.3
Elitism rate (e) 0.1
Number of generated offsprings (λ ) 36
Maximum generation number (maxgen) 30

11.4.2 Performance Results

All problem sets are solved 10 times by the algorithms. Because the small and
moderate-sized sets do not have any circumstances to use the B&B algorithm, the
hybrid algorithms are run only for the large-sized sets. The results for the small and
moderate-sized sets are summarized in Table 11.4 (highest results are bold). The
CPU times of the algorithms change between 37 and 627 s. According to results,
the GA has up to 6% better solutions than SA. Except problem set #13, the mean
and the best results of GA are higher.

The performances of the proposed simple and hybrid algorithms on large-sized
sets are provided in Table 11.5. The HGA outperforms the other algorithms in all
cases and has up to 6% better solutions than the other algorithms. The CPU times
of the algorithms increase in a range between 8 and 35 min.

For a reliability based problem, these improvements are enough to display the
effectiveness of GA based algorithms to solve the predefined problem. Especially
HGA shows good performance on large-sized sets with its hybrid content. It can be
interpreted that the B&B algorithm can help to develop better algorithms to maintain
better results for larger sized sets with increasing number of targets.

In Fig. 11.7, the effects of changing the S and R node types are depicted. The best
results of the algorithms range up to 17%. The difference in the rel j and c j values
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Table 11.4 Results for small and moderate-sized problem sets

SA GA SA GA
# Best Mean Worst Best Mean Worst # Best Mean Worst Best Mean Worst

1 0.762 0.736 0.700 0.774 0.745 0.700 11 0.862 0.835 0.759 0.875 0.860 0.852
2 0.612 0.586 0.457 0.637 0.620 0.604 12 0.863 0.841 0.818 0.866 0.851 0.832
3 0.768 0.709 0.608 0.787 0.737 0.707 13 0.817 0.767 0.743 0.812 0.783 0.740
4 0.763 0.718 0.672 0.767 0.735 0.685 14 0.534 0.509 0.497 0.573 0.540 0.518
5 0.772 0.723 0.677 0.792 0.769 0.738 15 0.333 0.294 0.227 0.342 0.321 0.299
6 0.704 0.609 0.566 0.711 0.694 0.679 16 0.783 0.750 0.674 0.792 0.771 0.747
7 0.696 0.638 0.519 0.759 0.680 0.646 17 0.515 0.478 0.442 0.528 0.509 0.487
8 0.745 0.707 0.581 0.755 0.739 0.724 18 0.328 0.311 0.291 0.339 0.316 0.299
9 0.806 0.794 0.767 0.845 0.810 0.787 19 0.888 0.861 0.847 0.889 0.872 0.854

10 0.845 0.818 0.786 0.856 0.842 0.819 20 0.887 0.868 0.841 0.889 0.886 0.882

Table 11.5 Results for large-sized problem sets

SA GA HSA HGA
# Best Mean Worst Best Mean Worst Best Mean Worst Best Mean Worst

21 0.816 0.791 0.737 0.821 0.804 0.748 0.832 0.806 0.751 0.843 0.826 0.811
22 0.828 0.786 0.724 0.821 0.804 0.777 0.840 0.808 0.711 0.847 0.822 0.791
23 0.739 0.695 0.654 0.760 0.715 0.678 0.780 0.731 0.672 0.793 0.762 0.736
24 0.512 0.465 0.403 0.504 0.493 0.484 0.527 0.494 0.447 0.530 0.514 0.498
25 0.296 0.279 0.249 0.324 0.296 0.278 0.339 0.313 0.285 0.345 0.324 0.304
26 0.723 0.697 0.652 0.720 0.682 0.662 0.782 0.729 0.683 0.784 0.743 0.710
27 0.516 0.479 0.444 0.516 0.491 0.471 0.547 0.506 0.431 0.549 0.522 0.499
28 0.293 0.268 0.228 0.309 0.297 0.283 0.337 0.311 0.268 0.338 0.319 0.303
29 0.826 0.805 0.762 0.850 0.824 0.790 0.850 0.835 0.814 0.863 0.836 0.820
30 0.848 0.817 0.753 0.855 0.844 0.816 0.849 0.840 0.829 0.880 0.858 0.840

effected the results much more than the decrease of the other S properties (i.e. r j

and d j). The rel j is reduced from 0.9 to 0.8 and c j is reduced from 10 to 8 in S type
#2. Nonetheless, the gap in the cl and rl values in R types #4 and #5 also decreased
the results.
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Fig. 11.7 The effects of S & R types. (a) The effects of S types. (b) The effects of R types
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Fig. 11.10 The effects of TB amounts on Ter sizes. (a) Ter size = 6× 6. (b) Ter size = 8× 8. (c)
Ter size = 10×10

In Fig. 11.8, the effects of adding ao to the scenarios are presented. The results
of the algorithms decrease up to 4% when ao are placed on the Ter. In Fig. 11.9,
the effects of considering three types of no to the results are displayed. The results
decrease up to 8% when the Ter consists of bushes, 35% for woodland and 53%
for the forest on the Ter, respectively. In Fig. 11.10, the effects of increasing the
T B amounts are presented according to the Ter sizes. The results in 6× 6 sized
Ter increase roughly 10%, similarly the results in 8× 8 approximately 10% and in
10× 10 approximately 4% when 20 unit money is added to the T B amounts.
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11.5 Conclusion

This chapter proposes novel hybridization methods, which involves an exact method
and metaheuristics, to deploy sensor nodes for the maximization of WMSN relia-
bility under a given budget constraint. A new reliability related metric, information
gathering, is introduced to integrate connectivity and coverage issues in WMSN. In
order to support more realistic scenarios, the proposed method considers the com-
munication range, hardware reliability and cost of the nodes and terrain specific
characteristics like occlusions, threat zones, and importance of the targets. Our hy-
bridization methods combine B&B method with metaheuristics (SA and GA) so
that HSA and HGA are employed to find the sensor node locations and the B&B
approach is used to find the exact orientations of the cameras. Experimental study
reveals that the hybrid methods can produce better results when it is compared to
pure metaheuristics especially for large size problem sets.
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Chapter 12
A Hybrid MCDM Approach for Supplier
Selection with a Case Study

Hanane Assellaou, Brahim Ouhbi, and Bouchra Frikh

Abstract The supplier selection problem is one of the strategic decisions that have
a significant impact on the performance of the supply chain. In this study, supplier
selection problem of a well-known refining company in Africa is investigated and
an integrated DEMATEL-ANP-TOPSIS methodology is used to select the best sup-
plier providing the most customer satisfaction for the criteria determined. DEMA-
TEL method is used in order to detect the cause and effect interaction among main
criteria. The weights of criteria are calculated using Analytic Network Process ap-
proach and then the modified TOPSIS has been applied for the final selection. The
supplier which is closest to the ideal solution and farthest from the negative ideal
solution is selected as the best supplier.

Keywords Supplier selection • MCDM • DEMATEL • ANP • TOPSIS

12.1 Introduction

Since 1960s, supplier selection problem have been a focal point for many re-
searchers. It is nowadays one of the critical topics in supply chain management.
Besides, selection of suppliers is a complicated process by the facts that numerous
criteria must be considered in the decision making process. Supplier selection and
evaluation continues to be a key element in the industrial buying process and appears
to be one of the major activities of the professional industrial [26].
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It is a complex process to select a suitable supplier. Many factors should be taken
into consideration when evaluating and selecting suppliers. In the literature, re-
searchers have examined different criteria for the supplier selection problem. Dick-
son [7] identified 23 criteria based on a survey of 170 purchasing managers involved
in various supplier selection problems, the study showed that supplier selection is a
multi-criteria decision often involves the simultaneous consideration of several cri-
teria such as price, delivery time and quality, and it is extremely difficult to find a
perfect supplier. Weber et al. [28] analyzed 74 articles published between 1966 and
1990 dealing with this problem. Zhang et al. [30] compared Dickson and Weber
study, and summarized new supplier selection criteria from the study of 49 articles
from 1992 to 2003.

Extensive multi-criteria decision making approaches have been proposed for sup-
plier selection, such as the Analytic Hierarchy Process (AHP), Analytic Network
Process (ANP), Case-Based Reasoning (CBR), Data Envelopment Analysis (DEA),
Genetic Algorithm (GA) and other methods. According to the review of 170 articles
published during 2008–2012 about supplier selection which is presented by Chai
et al. [3], there are about 40% of the papers use hybrid methods.

The combination of two methods provides pleasingly surprising results where an
optimal mapping between the needs/ wants and the possible system alternatives can
be achieved [13]. Furthermore, it helps to reduce complexity, increase the correct-
ness, accuracy, and easiness of obtained results. In this study, in order to deal with
the ranking abnormality and to reduce the number of handoffs, we conduct a hybrid
method that combines DEMATEL, ANP and TOPSIS, this study can make better
decisions in supplier selection.

Although Analytic Hierarchy Process (AHP) [20] is one of the most widely used
Multi-criteria Decision Making (MCDM) methods which decomposes a problem
into several levels that make up a hierarchy in which each decision element is sup-
posed to be independent. AHP can only be employed in hierarchical decision mod-
els, however, many decision problems cannot be structured hierarchically and real
world problems usually consist of dependence or feedback between elements. An-
alytic Network Process (ANP) (Saaty [21]) is a generalization of the AHP; it con-
siders the dependence between the elements of the hierarchy. The ANP feedback
approach replaces hierarchies with networks, and emphasizes interdependent rela-
tionships among various decision-making [17], also interdependencies among the
decision criteria and permit more systematic analysis.

ANP is used very often in combination with other methods. ANP is used in com-
bination with goal programming approach [12], and DEMATEL (Decision- Making
Trial and Evaluation Laboratory) approach [29]. Lin et al. [16] used ANP and the
Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) to es-
tablish real time purchasing environment. ANP and TOPSIS are used to calculate
weight of criteria and rank suppliers. Demirtas and Üstün [5] applied ANP and
Multi-Objective Programming (MOP) to a refrigerator manufacturing unit.

DEMATEL method was developed by Gabus and Fontela [8]. In recent years,
the DEMATEL method that converts the mutual relationship between the criteria
causes and effects from a complex system to an understandable structural model
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has become very popular because it can visualize the structure of complicated causal
relationships. DEMATEL method is introduced to build the structure of relationship
map for clarifying the interrelations among criteria, as well as to visualize the causal
relationship of criteria.

The TOPSIS (technique for order performance by similarity to ideal solution)
method was originally proposed by Hwang and Yoon [10], some years later an
improved version of this method, called the revised (or modified) TOPSIS, was
proposed by Deng et al. [6] and has been widely used in the literature. TOPSIS
simultaneously considers the distances to the ideal solution and negative ideal so-
lution regarding each alternative and selects the most relative closeness to the ideal
solution as the best alternative.

Petroleum refineries are very large industrial complexes that involve many differ-
ent processing units and auxiliary facilities designed to produce physical and chem-
ical changes in crude oil to convert it into everyday products like petrol, diesel,
lubricating oil, fuel oil and bitumen. The dynamic development of the petroleum
industry faces new challenges and directions such as increasing and more volatile
energy prices. Petroleum refineries must select and maintain core suppliers to sur-
vive and succeed. This paper represents the case study of a refining company; we
have identified some effective criteria which affect the process of supplier selection.
DEMATEL method is used in order to detect the cause and effect interaction among
main criteria. Then ANP method is implemented for calculating the weights of each
criterion. Finally, TOPSIS method is applied for ranking suppliers based on data
provided by the company. The result of this study gives the best possible solution of
the supplier selection for the refining company.

This paper is organized as follows: Sect. 12.2 is a literature review that presents
papers about supplier selection. Section 12.3 introduces the methodology used to
select the best supplier. Section 12.4 describes the proposal model and an application
case. Finally, Sect. 12.5 presents conclusions.

12.2 Related Works

There are several keywords associated with the supplier selection. The terms sup-
plier selection and vendor selection are frequently used in the literature. Supplier
selection and evaluation is one of the important stages in supply chain management
which regards all the activities from the purchasing of raw material to final delivery
of the product. It has received considerable attention for its significant effect toward
successful logistic and supply chain management. Supplier selection problem is a
kind of multiple criteria decision making problem which requires MCDM methods
for solutions with high accuracy and numerous individual and integrated approaches
were proposed to solve it.

Based on the literature reviews, a quick review of supplier selection models
shows that many researches proposed methods based on ANP: Sarkis and Talluri
[23] applied ANP to evaluate and select the best supplier with respect to organi-
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zational factors and strategic performance metrics, which consist of 7 evaluating
criteria. Sarkis [22] explored the applicability of ANP for decision making within
the green supply chain. The author focused on the components and elements of
green supply chain management and how they serve as a foundation for the decision
framework. Gencer and Gurpinar [9] used ANP for the supplier selection problem,
they implemented an ANP model in an electronic company to evaluate and select
the best supplier with respect to various supplier evaluating criteria. Bayazit [1]
proposed an ANP model to tackle the supplier selection problem with respect to ten
evaluating criteria, which were classified into supplier performance and capability
clusters.

However, ANP have two major disadvantages: the first one; it is difficult to pro-
vide the exact network structure among criteria, and different structures lead to dif-
ferent results. The second one is the formation of supermatrix; all criteria have to
be pairwise compared with regard to all other criteria, which is difficult. Further-
more, the complexity increases exponentially with the number of criteria and their
interdependencies, due both to the numbers of pairwise comparisons and to the di-
mensions of questionnaires sent to experts. However, by combining the ANP with
the DEMATEL method the complexity of the problem can be reduced. The DEMA-
TEL method does not require comparison of all pairs of criteria with respect to each
individual criterion when establishing the inner dependencies of the criteria. Thus,
the comparisons that need to be done are significantly reduced. The aim of DEMA-
TEL is to convert the relation between elements, causal dimensions from a complex
system to an understandable structural model.

The TOPSIS method developed by Hwang and Yoon [10] is a distance-based
MCDM method that can be used for ranking alternatives, it has also found broad
use in decision-making applications over the past few decades. On the other hand,
TOPSIS method can reduce the difficulties of ANP in terms of presentation of inter-
dependence between criteria and alternatives. It has been proved as one of the best
methods in addressing the rank reversal issue.

In the literature, the DEMATEL, ANP and TOPSIS methodologies have been
combined for some realized applications. Chen and Chen [4] applied decision-
making trial and evaluation laboratory (DEMATEL), fuzzy ANP, and TOPSIS to de-
velop a new innovation support system for Taiwanese higher education. Buyukozkan
and Cifci [2] proposed a hybrid fuzzy MCDM model which combines the DEMA-
TEL, ANP, and TOPSIS in a fuzzy context for green supplier evaluation. Lin et al.
[15] evaluated vehicle telematics system by using DEMATEL, ANP, and TOPSIS
techniques with dependence and feedback. Ju and Wang [11] proposed a frame-
work combining the ANP method, the DEMATEL technique, and 2-tuple linguistic
TOPSIS (TL-TOPSIS) method to solve the emergency alternative evaluation and
selection problem for a practical example of urban fire emergency alternative selec-
tion. Vinodh et al. [27] used the combination of DEMATEL, ANP and TOPSIS in
order to enhance the effectiveness of agile concept selection. The study is aimed at
selecting the best concept design of an automobile component.

These three approaches used by several authors are workable. Because by apply-
ing these theories, it can be easy to discover things inside the complex problem.
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However, although these kinds of combined works have increased in the recent
years, there are a very few studies that combined DEMATEL, ANP, and TOPSIS
for supplier selection.

The selection of supplier problem is still challenging, selecting the right supplier
becomes a critical activity within a company and consequently affects its efficiency
and profitability. Since supplier evaluation and selection is a current topic and due to
his strategic importance, important research is being done to cope with this problem.

12.3 Methodology

In the literature, many techniques have been developed to solve the supplier se-
lection problem, and all techniques have to use criteria to rate suppliers. Most of
them are based on the additive concept along with the independence assumption,
but each individual criterion is not always completely independent [29]. Applicabil-
ity of the DEMATEL, ANP and TOPSIS methods for solving various problems is
already proven. In the literature there are papers using these methods, but there is
only few studies that combines these three methods together to solve the problem
of supplier selection. Thereby, this paper proposes the integrated DEMATEL-ANP-
TOPSIS approach that can solve complex problems and adequately consider all the
relationships between the factors, criteria and alternatives

To take into account the interactions among elements, the ANP and DEMA-
TEL were proposed. ANP, widely applied in decision making, is more accurate and
feasible under interdependent situations. This method allows assessing the consis-
tency of the judgments and facilitates the process of assigning weights by split-
ting up the problem into smaller parts, appropriate for more detailed analysis. On
the other hand, DEMATEL method employed as a supportive tool for ANP is in-
troduced to build the structure of relationship map for clarifying the interrelations
among criteria, as well as to visualize the causal relationship of criteria through a
causal diagram. ANP method is a mathematical theory that can solve all kinds of
dependencies, but it doesn’t solve the problem completely because using ANP to
solve MCDM problems has different influence levels among criteria based on Net-
work Relationship Maps (NRM) [24]. To avoid calculation and additional pairwise
comparisons of ANP, TOPSIS is used to rank the alternatives. It can reduce the dif-
ficulties of ANP in terms of presentation of interdependence between criteria and
alternatives.

In this paper, DEMATEL is employed to identify the relationship network among
the criteria, then ANP method is used to derive weights that account for component
interaction. Finally, the TOPSIS method (Technique for Order of Preference by Sim-
ilarity to Ideal Solution) is introduced to rank alternatives; it is based on the relative
similarity to the ideal solution, which avoids from the situation of having same sim-
ilarity to both ideal and negative ideal solutions. Combining three MCDM methods
(DEMATEL, ANP, and TOPSIS) helps to determine the final score of each supplier.
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The choice for an integrated DEMATEL-ANP-TOPSIS based framework pro-
posed in this paper is justified by several reasons:

• DEMATEL helps researchers better understand the nature of the problem.
• DEMATEL involves indirect relations into a compromised cause and effect

model.
• It is an effective approach to identify key factor criteria.
• It can prioritize the criteria based on the type of relationships and severity of

influences they have on one another.
• The ANP model provides a looser network structure that makes possible the rep-

resentation of any decision problem.
• ANP is capable of handling feedback and interdependencies.
• ANP depicts the dependence and influences of the factors involved to the goal or

higher-level performance objective.
• TOPSIS has also found broad use in decision-making applications over the past

few decades.
• TOPSIS method provides a sound logic that represents the rationale of human

choice [25], a scalar value that accounts for the best and worst alternative choices
simultaneously, and a simple computation process that can easily be programmed
into a spreadsheet.

• The concept of TOPSIS is understandable, and the computation involved is un-
complicated.

• TOPSIS can rank the alternative locations based on their overall performance,
since it may identify the best solution that is closest to the positive ideal solution
and farthest from negative ideal solution.

• A relative advantage of TOPSIS is the ability to identify the best alternative
quickly [19], it is not so complicated for the managers as some other methods
which demand additional knowledge.

In the next, we present a brief introduction on the DEMATEL, ANP, and TOPSIS
methods.

12.3.1 DEMATEL Method

The DEMATEL method [8] is especially pragmatic to visualize the structure of com-
plicated causal relationships with matrices or diagraphs. The aim of DEMATEL is
to convert the relation between elements, causal dimensions from a complex system
to an understandable structural model [14]. The steps of DEMATEL technique are
explained below:

Step 1 Generating the direct-relation matrix: An evaluation scale of 0, 1, 2, 3,
and 4 is used for influential comparison where 0 represents an influence while
4 represents every high influence. A group of experts is asked to make pairwise
comparisons between criteria. To compound all opinions from K experts, the
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direct-relation matrix A is calculated using Eq. (12.1) by averaging each expert
scores.

ai j =
1
K

K

∑
k=1

xk
i j (12.1)

where xk
i j is the score given by the kth expert indicating the influential level that

the factor i has on factor j.
Step 2 Normalizing the direct-relation matrix: The normalized direct-relation ma-

trix M can be obtained by normalizing A using Eqs. (12.2) and (12.3).

M =p.A (12.2)

p =min(
1

max
1≤i≤n

∑n
j=1 ai j

,
1

max
1≤ j≤n

∑n
i=1 ai j

) (12.3)

Step 3 Calculating the total-relation matrix: The total-relation matrix T can be
obtained by using Eq. (12.4), where I denotes the identity matrix.

T = M(I −M)−1 (12.4)

where T = [ti j]n×n, i, j = 1,2..,n
Step 4 Compute the dispatcher group and receiver group: The vectors c = [ci]n×1

and d = [d j]
′
1×n represent respectively the sum of rows and the sum of columns

of matrix T respectively (Eqs. (12.5) and (12.6)). c+d value indicates the degree
of importance that the corresponding criterion plays in the entire system. The
criterion having greater value of c + d has more interrelationships with other
criteria. On the other hand, criteria having positive values of c − d are on the
cause group and dispatches effects to the other criteria. On the contrary, criteria
having negative values of c− d are on the effect group and receive effects from
the other criteria.

ci =
n

∑
j=1

ti j, ∀ i ∈ {1, ..,n} (12.5)

d j =
n

∑
i=1

ti j, ∀ j ∈ {1, ..,n} (12.6)

Step 5 Set up a threshold value.

12.3.2 ANP Method

The Analytic Network Process (ANP) was developed by Thomas Saaty [21], in
his work on multi criteria decision making. The ANP has its own advantages
and has produced ideal results in various fields. It applies network structures with
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dependence and feedback, among the criteria, to complex decision making. Pairwise
comparisons are made based on Saaty [20] 1–9 scale. In the application of ANP,
software like, Ecnet, Super Decision or mathematical programs like Excel, Maple,
Mathematica can be used. ANP has four stages; the first stage is network structure
formation. The relationships captured in this step constitute both within clusters and
between clusters. The second stage is the formation of pairwise comparisons and
obtaining local priority values. Without assuming the interdependence between cri-
teria, pairwise comparisons are performed and the priority value of each criterion
in the network structure is obtained. After assigning the values of pairwise compar-
isons in the comparison matrix, local priority vector is calculated from eigenvec-
tor, which is calculated using Eq. (12.7). All responses are gathered based on Saaty
scale.

Let A, W1 and λmax be respectively a pairwise comparison matrix, eigenvector
and eigenvalue, respectively in Eq. (12.7),

λmax.W1 = A.W1 (12.7)

All obtained vectors are further normalized to represent the local priority vector
W2 Indeed the normalized pairwise comparison matrix B is obtained. The matrix B
consists of bi j values, which are calculated using Eq. (12.8).

bi j =
ai j

∑n
i=1 ai j

(12.8)

The eigenvector (W2) is obtained by using Eq. (12.9)

W2 =

⎡
⎢⎢⎢⎣

w1

w2
...

wn

⎤
⎥⎥⎥⎦ ,wi =

∑n
i=1 bi j

n
for i = 1,3, · · · ,n (12.9)

After that, λmax is obtained using Eq. (12.10) and the consistency property is
checked after performing the Eqs. (12.11) and (12.12). Let CI, RI and CR denote
consistency indicator, random indicator and consistency ratio, respectively. RI is
obtained from a standard random index table showing the random index values
for different number of criteria regarded. Consistency ratio must be smaller than
0.10 [20].

W ′ = A.W2 =

⎡
⎢⎢⎢⎣

w′
1

w′
2
...

w′
n

⎤
⎥⎥⎥⎦ , and λmax =

1
n

(w′
1

w1
+

w′
2

w2
+ · · ·+ w′

n

wn

)
for i = 1,3, · · · ,n

(12.10)
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CI =
λmax − n

n− 1
(12.11)

CR =
CI
RI

(12.12)

In the next stage, the interdependence between the criteria is considered. The
super matrix is obtained by locating the local priority vectors, generated by the pair-
wise comparison matrix, on convenient columns. In general, the sum of one column
in super matrix is greater than 1. Unless a stochastic super matrix is obtained, the
cluster is weighted and normalization is performed to obtain a stochastic matrix
where the sum of column values is 1. This newly obtained super matrix C is of-
ten called as weighted super matrix. The last stage is to obtain the interdependence
priorities of the criteria by synthesizing the results from the previous step as follows:

Wc =CW T
2 (12.13)

12.3.3 TOPSIS Method

TOPSIS method is a multiple criteria method to identify solutions from a finite set
of alternatives, it was originally proposed by Hwang and Yoon [10], some years
later an improved version of this method, called the revised TOPSIS, was proposed
by Deng et al. [6]. TOPSIS is a widely used MCDM technique because of its logic
and its programmable computation procedure [18]. The concept of TOPSIS is that
an alternative which is closest to the ideal solution and farthest from the negative
ideal solution in a multi-dimensional computing space is the optimal choice. There-
fore, the preference order of alternatives is yielded through comparing Euclidean
distances. Supposed that there are m (m > 1) alternatives A1, ...,Am , the TOPSIS
process is carried out as follows [26]:

Step 1 Build a decision matrix (D) with values of criteria

D =

⎡
⎢⎣

X11 · · ·X1 j X1n
...

. . .
...

Xm1 · · ·Xm j Xmn

⎤
⎥⎦

Step 2 Normalize the decision matrix (D) through the following equation:

ri j =
Xi j√
∑n

i=1 X2
i j

i = 1, · · · ,m; j = 1, · · · ,n (12.14)

Step 3 Determine the ideal solution and negative solution through the following
equation:
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R+ =
{

r+1 · · · r+n
}
=
{

max
i

{ri j | j ∈ J},min
i
{ri j | j ∈ J′}

}
(12.15)

R− =
{

r−1 · · · r−n
}
=
{

min
i
{ri j | j ∈ J},max

i
{ri j | j ∈ J′}

}
(12.16)

where J is associated with the benefit criteria and J′ is associated with the cost
criteria.

Step 4 Compute the distance between each alternative and the ideal solution, and
each alternative and negative solution: The separation measure D+

i of each alter-
native from the ideal solution is given as,

D+
i =

√
n

∑
j=1

wj(ri j − r+j )
2 (12.17)

Where wj represents the weight of the jth criterion. Similarly, the separation
measure D−

i of each alternative from the negative solution is given as follows:

D−
i =

√
n

∑
j=1

wj(ri j − r−j )
2 (12.18)

Step 5 Calculate the relative closeness to the ideal solution of each alternative:

C∗
i =

D−
i

D−
i +D+

i

(12.19)

Step 6 Rank the order of alternatives and choose the best supplier.

12.4 Proposed Methodology and Application Case

The contribution of the current study lies in the practical implementation of the inte-
gration of the DEMATEL, ANP, and TOPSIS methods that will enable the proposed
framework to be used by experts in a real industry for determining the appropriate
suppliers.

The proposed methodology for the supplier selection problem consists of four
basic stages: (1) identify the criteria, (2) application of DEMATEL method (3) ANP
computations, (4) evaluation of alternatives with TOPSIS and determination of the
final rank. The proposed model is applied to a real problem; the industrial data is
collected from one of top most refining company. The case pertains to decision re-
lated to supplier selection in Moroccan corporation of the refining industry (Société
Anonyme Marocaine de l’Industrie du Raffinage) (SAMIR). The case company
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specialized in the refining of petroleum products, is located in the city of Mohamme-
dia. It is considered one of the giants in the field of refining in Africa. In this study,
there are three products and nine suppliers proposed by the company for selection,
the aim of our specific study is to assess possible alternative supplier solutions and
to help the decision-makers accordingly in terms of user requirements.

12.4.1 Identification of Necessary Criteria for Supplier Selection

The first step of our proposed methodology is the formulation of necessary criteria
for supplier selection. Supplier selection decisions are complicated by the fact that
various criteria must be considered in decisions making process. The analysis of
such criteria for the selection, measuring the performances of potential suppliers
and the introduction of new categories of selection criteria following the market
evolutions have been the focus of many researchers and purchasing practitioners
since 1960s. Based on expert opinions as well as the result of previous studies, past
experience and the background of the expert team, this study selects 7 important
criteria for selection of best supplier. The list of criteria determined are listed and
briefly described as below:

Quality: it is the most important requirement of an organization to succeed in a
competitive market place. It refers to a supplier product quality.

Flexibility: The ability of a supplier to accommodate changes in the enterprise
production plans such as the ability to adjust product volume, the ability to cus-
tomize product as demanded by the buyer, the ability to adjust manufacturing pro-
cess, and the ability to fill emergency orders with required amount in a required
time.

Price: it is related to the acquisition such as the purchase cost of materials, the
transportation cost, and handling and package cost.

Technology: it refers to the presence of a technological system that can facilitate
technology development of products and involvement to formulating new products.
This criterion is related also to the improvement effort in products and processes,
and the problem solving capability.

Delivery: The ability of the supplier to follow the predefined delivery schedule,
so how well a supplier succeeds in delivering goods according to schedule?

Responsiveness: referring to all communication efforts from supplier towards
the buyer, the after sales service, and support provided by a supplier.

Credit risk: refers to the probability of loss due to a borrower failure to make
payments on any type of debt. Given the implications and probabilities of supplier
defaults, the need to integrate a systematic assessment of credit risk into the supplier-
selection process is clear.
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12.4.2 Applying DEMATEL for Constructing the Interdependence
Relationship Network

The questionnaires from three experts are used to determine the level of relationship
among criteria. The specific calculation processes are described as follows. The
evaluations of the experts are obtained and then averages of numbers are calculated
using Eq. (12.1) in order to form initial direct-relation matrix (see Table 12.1).

Table 12.1 The average initial direct-relation matrix A

Criteria Quality Delivery Flexility Responsiveness Technology Credit risk Price
Quality 0 1 1667 2667 3667 1667 4
Delivery 1667 0 2 2333 1667 1667 3333
flexibility 2 2 0 2667 2667 1667 2667

responsiveness 3667 2333 2667 0 2333 2333 3
Technology 3667 2667 1333 3 0 1667 4
Credit risk 2333 2667 3 3 2667 0 3

Price 4 2667 2333 3 2667 3667 0

The normalized direct-relation matrix is obtained using Eqs. (12.2) and (12.3).
After calculating the normalized direct-relation matrix, the total-relation matrix is
obtained using Eq. (12.4). The total-relation matrix is shown in Table 12.2. The
threshold value is determined as 0.5 by the experts.

Table 12.2 The total-relation matrix
Criteria Quality Delivery Flexility Responsiveness Technology Credit risk Price
Quality 0.794 0.656 0.668 0.855 0.875 0.682 1.050
Delivery 0.762 0.518 0.605 0.738 0.689 0.599 0.9

Flexibility 0.820 0.649 0.536 0.793 0.771 0.629 0.921
responsiveness 1.007 0.751 0.752 0.776 0.867 0.747 1.068

Technology 1.022 0.774 0.703 0.927 0.763 0.730 1.122
Credit risk 0.949 0.768 0.768 0.902 0.877 0.633 1.065

Price 1.109 0.835 0.807 1.001 0.962 0.870 1.027

The total influences given to and received by each criterion are given in
Table 12.3. The factor having greater value of c+d has more interrelationships with
other criteria. On the other hand, criteria having positive values of c− d are on the
cause group and dispatches effects to the other criteria. On the contrary, criteria hav-
ing negative values of c−d are on the effect group and receive effects from the other
criteria. If ci−di > 0, it means that the degree of affect on the others is stronger than
the degree it is affected.



12 A Hybrid MCDM Approach for Supplier Selection with a Case Study 191

Table 12.3 The sum of influences given and received on criteria

Criteria ci di ci −di ci +di

Quality 5.3534 5.5814 −0.228 10.9348
Delivery 4.1156 4.8098 −0.6942 8.9254

Flexibility 4.0321 5.1186 −1.0865 9.1507
responsiveness 4.991 5.9675 −0.9765 10.9585

Technology 4.8426 6.0406 −1.198 10.8832
Credit risk 4.0191 5.961 −1.9419 9.9801

Price 6.1251 6.6101 −0.485 12.7352
α = 0.5

The resulting NRM is given in Fig. 12.1 from which the interrelationship among
the seven criteria can be determined. According to experts opinions through DEMA-
TEL analysis, almost all criteria are mutually interrelated. This can be seen from the
double-sided arrows among the seven criteria in Fig. 12.1.

Quality Delivery
Flexibility

Price

Credit risk

Technology

responsivenes

Fig. 12.1 Network relationship map of criteria for the supplier selection problem

12.4.3 The Weights of Criteria Calculation

After forming the decision network for the problem, the weights of the criteria to
be used in evaluation process are calculated by using ANP method. Firstly, the de-
cision makers are asked to evaluate all proposed criteria pairwise without assuming
the interdependence between criteria. The result is presented in Table 12.4. The nor-
malized eigenvector is W2 = (0.264,0.134,0.168,0.137,0.111,0.032,0.150)which
presents the related local priority of these criteria.

In addition, we considered the dependence among the selection criteria. The de-
cision makers examined the impact of all criteria on each other by using pairwise
comparisons. Various pairwise comparison matrices are constructed for each of the
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Table 12.4 The pairwise comparison matrix for criteria

Criteria Quality Flex. Price Technology Delivery Resp. Credit risk e-vectors
Quality 1 4 3 3 3 5 3 0.264

Flexibility 1/4 1 1/3 5 2 3 1/5 0.134
Price 1/3 3 1 1/2 1/3 5 7 0.168

Technology 1/3 1/5 2 1 3 3 3 0.137
Delivery 1/3 1/2 3 1/3 1 5 1/5 0.111

Responsiveness 1/5 1/3 1/5 1/3 1/5 1 1/3 0.032
Credit risk 1/3 5 1/7 1/3 5 3 1 0.150

criterion. These pairwise comparison matrices are needed to identify the relative
impacts of criteria interdependent relationships. In total, seven pairwise compari-
son matrices were developed. The normalized eigenvectors for these matrices are
calculated and shown as seven columns in Table 12.5.

Table 12.5 The degree of relative impact for evaluation criteria

Criteria Quality Delivery Flexility Responsiveness Technology Credit risk Price
Quality 1 0.327 0.351 0.310 0.372 0.298 0.322
Delivery 0.245 1 0.272 0.219 0.219 0.211 0.209

Flexibility 0.160 0.257 1 0.181 0.142 0.181 0.224
Responsiveness 0.110 0.170 0.131 1 0.115 0.149 0.113

Technology 0.096 0.116 0.095 0.127 1 0.088 0.078
Credit risk 0.038 0.077 0.110 0.098 0.083 1 0.051

Price 0.348 0.051 0.039 0.063 0.067 0.070 1

To get relative importance weights, we first normalize the weights in each column
to sum up to one (i.e. make the matrix column stochastic). Then we complete this
task by dividing every element in a column by the sum of that column. To obtain the
converged set of weights, we raise the super-matrix C to a large power. In our case,
convergence of C occurred when we raised the super-matrix to the 32nd power (see
Table 12.6).

Table 12.6 The degree of relative impact for evaluation criteria

Quality Delivery Flexibility Responsiveness Technology Credit risk Price
Quality 0.248 0.248 0.248 0.248 0.248 0.248 0.248
Delivery 0.190 0.190 0.190 0.190 0.190 0.190 0.190

Flexibility 0.162 0.162 0.162 0.162 0.162 0.162 0.162
Responsiveness 0.115 0.115 0.115 0.115 0.115 0.115 0.115

Technology 0.091 0.091 0.091 0.091 0.091 0.091 0.091
Credit risk 0.067 0.067 0.067 0.067 0.067 0.067 0.067

Price 0.120 0.120 0.120 0.120 0.120 0.120 0.120

Then, we obtain the interdependence priorities of the criteria by synthesizing the
results from the previous step as follows:

Wc =CW T
2 .
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Thus, the weights of the evaluation criteria can be determined

Wc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.248 0.248 0.248 0.248 0.248 0.248 0.248
0.190 0.190 0.190 0.190 0.190 0.190 0.190
0.162 0.162 0.162 0.162 0.162 0.162 0.162
0.115 0.115 0.115 0.115 0.115 0.115 0.115
0.091 0.091 0.091 0.091 0.091 0.091 0.091
0.067 0.067 0.067 0.067 0.067 0.067 0.067
0.120 0.120 0.120 0.120 0.120 0.120 0.120

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.264
0.111
0.134
0.032
0.137
0.150
0.168

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Wc = (0.248,0.190,0.162,0.115,0.091,0.067,0.120)

Wc (Quality (C1), delivery (C2), flexibility (C3), responsiveness (C4), technology
(C5), credit risk (C6), Price (C7)) According to the vector Wc , quality, delivery and
flexibility are three of the most important factors related to the evaluation supplier
selection process.

12.4.4 Application of TOPSIS in Alternatives Ranking

By contacting the company, the warehouse manager and a production engineer sug-
gested us three different products, each product has three suppliers. Process chem-
icals are the basis of chemical mixtures and chemical solution (acid, base, alcohol,
ester...) and are used in the refining industry to prevent corrosion, fouling and dam-
age of equipment. Mechanical seals are mechanical parts manufactured according
to planes and unique to each equipment (pump or compressor), and are used for
pumps and allow a safely operation of rotating machines. Protective equipment are
the set of personal protective equipment i.e. (helmet, blue, shoes, goggles, gloves...)
and are binding in the enclosure of the refinery for any individual. In order to protect
respondent confidentiality, supplier names used throughout the article are given in
the form of letters X, Y, Z respectively for the three products (see Table 12.7).

Table 12.7 The degree of relative impact for evaluation criteria

Product Suppliers
P1: Process chemicals used for refining processes X1

X2
X3

P2: mechanical seals (spares) used for rotating machines (pumps) Y1
Y2
Y3

P3: protective equipments used for industrial safety Z1
Z2
Z3

At this stage of the decision procedure, the team members were asked to establish
the decision matrix by comparing alternatives under each of the criteria separately.
In addition, the evaluators were asked to provide a set of crisp values within a range
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from 1 to 10 that represents the performance of each supplier with respect to each
criterion. In this study, we have 3 alternatives for each product. D1 , D2 and D3 are
respectively the decision matrix of the products P1, P2 and P3:

D1 =

⎛
⎝

C1 C2 C3 C4 C5 C6 C7

X1 7 7 6 8 8 7 8
X2 7 5 5 6 7 5 8
X3 7 7 6 6 7 6 6

⎞
⎠, D2 =

⎛
⎝

C1 C2 C3 C4 C5 C6 C7

Y1 8 7 7 6 6 5 4
Y2 8 2 3 4 6 1 2
Y3 8 5 6 5 6 3 6

⎞
⎠,

D3 =

⎛
⎝

C1 C2 C3 C4 C5 C6 C7

Z1 4 3 3 5 7 4 2
Z2 5 6 5 5 7 5 5
Z3 8 7 6 7 7 6 7

⎞
⎠,

where the weights of selected criteria (quality (C1), delivery (C2), flexibility (C3),
responsiveness (C4), technology (C5), credit risk (C6), Price (C7)) are respectively
(0.248, 0.190, 0.162, 0.115, 0.091, 0.067, 0.120) as obtained in the ANP analysis.
By using Eqs. (12.17) and (12.18), the computed distances of each supplier from
ideal solution (D+

i ) and negative solution (D−
i ) are presented in Table 12.8 respec-

tively. Based on their relative closeness to the ideal solution (Table 12.9) obtained by
using Eq. (12.19), the final step of the TOPSIS method consists of ranking supplier
alternatives. In this case, the results show that, for product P1, X1 is the best choice
among alternatives, with a performance value of 0.608; X3 and X2 have been ranked
second and third, with 0.584 and 0.281 as the performance values, respectively. For
product P2, Y1 is the best choice among alternatives, with a performance value of
0.620; Y3 and Y2 have been ranked second and third, with 0.479 and 0.450 as the
performance values, respectively and finally for product P3, Z3 is the best choice,
with a performance value of 0.603; Z2 and Z1 have been ranked second and third,
with 0.470 and 0.396 as the performance values respectively.

Table 12.8 The separation measure D+
i and D−

i of each alternative from the ideal and the negative
solution respectively

D+
1 D+

2 D+
3 D−

1 D−
2 D−

3
P1 0.073 0.126 0.126 0.113 0.049 0.106
P2 0.197 0.310 0.235 0.324 0.254 0.217
P3 0.311 0.215 0.204 0.204 0.191 0.311

Table 12.9 The relative closeness to the ideal solution of each alternative
Alternatives (P1) C∗

i Alternatives (P2) C∗
i Alternatives (P3) C∗

i
X1 0.608 Y1 0.620 Z1 0.396
X2 0.281 Y2 0.450 Z2 0.470
X3 0.584 Y3 0.479 Z3 0.603
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In this empirical study, we compared the results obtained by the used approach
with the choice of the company; we found perfect concordance which shows the
effectiveness of the combination of DEMATEL, ANP and TOPSIS methods.

12.5 Conclusion

Supplier selection is difficult given the qualitative and quantitative criteria. Since
selecting the best supplier involves complex decision variables, it is considered to
be a multi criteria decision problem. In this context, a case study was performed
to decide the best supplier for three products for a Moroccan company of refining
industry. The DEMATEL method, ANP, and TOPSIS are integrated in this paper to
help a refining company to effectively select the best suppliers.

In this paper, nine suppliers are evaluated with regard to seven criteria; the criteria
used for the evaluation were quality, delivery, flexibility, responsiveness, technology,
credit risk and Price.

According to the closeness coefficient, one can determine not only the ranking
order but also the assessment status of all possible suppliers. It has been shown that
X1 is the suitable supplier among the given alternatives for process chemicals, Y1 for
mechanical seals and finally Z3 for protective equipments.

As a result of the empirical study, we found that the DEMATEL-ANP-TOPSIS
methodology was a practical and efficient tool for ranking candidate suppliers in
terms of their overall performance with respect to multiple criteria. Using an inte-
grated DEMATEL, ANP TOPSIS for supplier selection and evaluation problem can
reduce ambiguities and vagueness that are inherent in the field of supplier selection
management decision problems.

The case company takes this result for comparison. After interviewing the man-
agers, they point out that the selected supplier for each product is better based on
their survey and annual performance evaluation data. Another important finding is
that the proposed approach is more reflecting the relation of how the selection crite-
ria affect the selected suppliers and at the same time what is more important for the
suppliers among the selection criteria.

This paper moves us one step closer to the usage of the integrated DEMATEL,
ANP, and TOPSIS in real world situations. In this study, DEMATEL, ANP and
TOPSIS work well together if there are no random (random demand, variable cost..).
Recently, much attention has been given to stochastic demand due to uncertainty in
the real world. The main objective of the future work is to propose an approach for
supplier selection when the buyer is faced with random demands and variable cost.
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5. E.A. Demirtas, Ö. Üstün, An integrated multi objective decision making process for supplier
selection and order allocation. Omega 36, 76–90 (2008)

6. H. Deng, J.W. Robert, C.H. Yeh, Inter-company comparison using modified TOPSIS with
objective weight. Comput. Oper. Res. 27(10), 963–973 (2000)

7. G.W. Dickson, An analysis of supplier selection system and decision. J. Purch. 2(1), 5–17
(1966)

8. A. Gabus, E. Fontela, World Problems an Invitation to Further Thought Within the Framework
of DEMATEL (Battelle Geneva Research Centre, Geneva, 1972)

9. C. Gencer, D. Gurpinar, Analytical network process in supplier selection: a case study in an
electronic firm. Appl. Math. Model. 31, 2475–2486 (2007)

10. C.L. Hwang, K. Yoon, Multiple Attribute Decision Making Methods and Applications
(Springer, Berlin, 1981)

11. Y. Ju, A. Wang, T. You, Emergency Alternative Evaluation and Selection Based on ANP, DE-
MATEL, and TL-TOPSIS (Springer Science+Business Media, Dordrecht, 2014)

12. E.E. Karsak, S. Sozer, S.E. Alpteki, Product planning in quality function deployment using a
combined analytic network process and goal programming approach. Comput. Ind. Eng. 44,
171–190 (2002)

13. H.S. Kilic, S. Zaim, D. Delen, Selecting the best ERP system for SMEs using a combination
of ANP and PROMETHEE methods. Expert Syst. Appl. 42, 2343–2352 (2015)

14. C.L. Lin, W.W. Wu, A fuzzy extension of the DEMATEL method for group decision making.
Eur. J. Oper. Res. 156, 445–455 (2004)

15. C.-L. Lin, M.-S. Hsieh, G.-H. Tzeng, Evaluating vehicle telematics system by using a novel
MCDM techniques with dependence and feedback. Expert Syst. Appl. 37(10), 6723–6736
(2010)

16. C.T. Lin, C.B. Chen, Y.C. Ting, An ERP model for supplier selection in electronics industry.
Expert Syst. Appl. 38, 1760–1765 (2011)

17. A. Marasco, Third-party logistics: a literature review. Int. J. Prod. Econ. 113(1), 127–147
(2008)

18. S. Onut, S.S. Kara, E. Isik, Long term supplier selection using a combined fuzzy MCDM
approach: a case study for a telecommunication company. Expert Syst. Appl. 36(2), 3887–
3895 (2009)

19. C. Parkan, M.L. Wu, On the equivalence of operational performance measurement and multi-
ple attribute decision making. Int. J. Prod. Res. 35(11), 2963–2988 (1997)

20. T.L. Saaty, The Analytic Hierarchy Process (McGraw-Hill International, New York, 1980)
21. T.J. Saaty, Decision Making in Complex Environments, The Analytical Hierarchy Process for

Decision Making with Dependence and Dependence and Feedback (RWS Publications, Pitts-
burgh, 1996)

22. J. Sarkis, A strategic decision framework for green supply chain management. J. Clean. Prod.
11, 397–409 (2003)



12 A Hybrid MCDM Approach for Supplier Selection with a Case Study 197

23. J. Sarkis, S. Talluri, A model for strategic supplier selection, in Proceedings of the 9th Inter-
national IPSERA Conference, ed. by M. Leenders (Richard Ivey Business School, London,
2000), pp. 652–661

24. J.-L. Shen, Y.-M. Liu, Y.-L. Tzeng, The cluster-weighted DEMATEL with ANP method for
supplier selection in food industry. J. Adv. Comput. Intell. Intell. Informat. 16(5), 256–266
(2012)

25. H.S. Shih, H.J. Syur, E.S. Lee, An extension of TOPSIS for group decision making. Math.
Comput. Model. 45, 801–813 (2007)

26. H.J. Shyur, H.S. Shih, A hybrid MCDM model for strategic supplier selection. Math. Comput.
Model. 44(8), 749–761 (2006)

27. S. Vinodh, S.S. Balagi, A. Patil, A Hybrid MCDM Approach for Agile Concept Selection Using
Fuzzy DEMATEL, Fuzzy ANP and Fuzzy TOPSIS (Springer, London, 2015)

28. C.A. Weber, J.R. Current, W.C. Benton, Vendor selection criteria and methods. Eur. J. Oper.
Res. 50, 2–18 (1991)

29. W.W. Wu, Choosing knowledge management strategies by using a combined ANP and DE-
MATEL approach. Expert Syst. Appl. 35(3), 828–35 (2008)

30. Z. Zhang, J. Lei, N. Cao, K. To, K. Ng, Evolution of supplier selection criteria and meth-
ods, in The Second Globelics Conference Innovation Systems and Development: Emerging
Opportunities and Challenges, Beijing (2004)



Chapter 13
A Multi-Objective Optimization via Simulation
Framework for Restructuring Traffic Networks
Subject to Increases in Population

Enrique Gabriel Baquela and Ana Carolina Olivera

Abstract Traffic network design is a complex problem due to its nonlinear and
stochastic nature. The Origin-Destiny Traffic Assignment Problem is particular case
of this problem. In it, we are faced with an increase in the system vehicle popula-
tion; and, we want to determine where to set the generating nodes and the traffic
consumers, minimizing the current system and trying to reduce necessary invest-
ment. Performing optimizations in an analytical way in this kind of problems tends
to be really complicated and a bit impractical, since it is difficult to estimate vehi-
cle flows. In this chapter, we propose the use of a Multi-Objective Particle Swamp
Optimization together with Traffic Simulations in order to generate restructuring
alternatives that optimize both, traffic flow and cost associated to this restructure.
This approach allows to obtain a very good approximation of the Pareto Frontier of
the problem, with a fast convergence to the low infrastructure cost solutions and a
total coverage of the frontier when the number of iterations is high.

Keywords Traffic net design • Particle swarm optimization • Metaheuristics •
Traffic simulation • Simulated optimization

13.1 Introduction

Nowadays, population growth seems to have a direct impact on daily life due mainly
to society progress. Traffic jams, pollution and parking problems are some of the
most common problems in relation to traffic networks. In this chapter, we present a
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methodology based on Optimization via Simulation (OvS) to select, from a group
of nodes of a traffic network, the best alternative to increase the capacity of that
network in the “Origin-Destiny Traffic Assignment Problem” (ODTAP), a subtype
of the “Facility Location Problem” (FLP) and the “Network Traffic Design Prob-
lem” (NTDP) [17, 16]. Given a specific traffic network, which will suffer an increase
in population, the main goal is to decide where to foment the installation of new ur-
ban infrastructure in order to minimize the cost of this and minimize the impact
over the traffic system itself. In this context, we consider that the network already
has a certain structure and a dynamic flow restricting possible configurations. To
deal with the resolution of ODTAP, a Multi-Objective Particle Swamp Optimization
Algorithm (MOPSO) was used together with Traffic Simulations (TS) in OvS based
formalism.

The structure of this chapter goes as follow: in Sect. 13.1.1, a review of related
works in the literature is presented; Sect. 13.2 explains the origin-destiny assign-
ment problem and its formulation such as the optimisation problem; then, Sect. 13.3
shows an introduction to traffic simulation; Sect. 25.4 introduces the PSO algorithms
for single and multi-objective problem; in Sect. 13.5, our optimisation approach is
described; experiments and analysis of results are detailed in Sects. 16.6 and 16.7;
finally, concluding remarks and future work are given in Sect. 16.8.

13.1.1 Literature Review

City growth reflects a progressive dynamic that is hardly ever planned, resulting in
a decrease in the general performance of its sub-systems [41, 58]. In the case of the
traffic sub-system, a population growth means more vehicles in the system, possible
traffic jams, longer travel times, etc. [30, 41]. Even though this is not easy to control,
it is possible to establish policies related to urbanization permits, to create industrial
centers and to encourage activities in strategic zones, which will allow us to control
the way the city grows and its associated traffic sub-system [18, 17, 28, 58]. In this
line, the simulation [45, 40] revels itself as a useful tool to quantify the impact of a
certain traffic network topology and the corresponding population assignment and,
also, other problems related to traffic systems [56, 9, 29, 53, 26].

In this work, we present the problem of deciding where to foment the installation
of urban, industrial and/or commercial complexes so that it has a minimum effect
over the total traffic system with the minimum possible cost in infrastructure. We
take into account that the network already has a certain structure and a dynamic
flow restricting possible configurations. We name this proposed decision problem
restatement of the traffic network and the underlying problem Origin-Destiny Traf-
fic Assignment Problem (ODTAP). The ODTAP is an underlying problem of the
“Network Traffic Design Problem” (NTDP). The NTDP is the NP-Hard problem
[16] of building a traffic network in such a way that it minimizes the performing
function of the system, i.e. the mean travel time in general [57]. In this context, sev-
eral literature works exist in relation to NTDP, some of them related to the ODTAP
issue and urban planning.
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The metaheuristic approach has proven to be useful for different optimization
problems [43, 6, 33, 42, 47, 25, 54, 1, 32, 36, 59, 27]. For the NTDP, there are some
works for which the solution is obtained by heuristics and bio-inspired algorithms
[24, 7, 19, 20, 10, 13, 44].

In this chapter, we explore the Optimization via Simulation (OvS) capacity to
obtain good solutions for ODTAP considering that this tool has proved to be use-
ful to solve a lot of problems that, due to their complexity, are difficult to mold
analytically.

In [26] the authors apply OvS optimizing with Particle Swarm Optimization
(PSO) and simulating with the SUMO- Simulated of Urban Mobility tool [5] to
solve the scheduling of traffic lights cycle. Kalganova et al. [34] uses genetic algo-
rithms in an OvS to solve the traffic lights synchronization problem. Finally, Horvat
and Tosic [31] utilize OvS together with genetic algorithms for the design of non-
restrictive traffic networks in pre-existing networks.

Regarding what we have said, our work considers land use in the suburbs and
cities in order to plan the urban expansion and predicts its growth considering its
final impact on the traffic organization. The proposed methodology combines a
popular traffic simulator SUMO [5] with “Speed-constrained Multi-objective Par-
ticle Swamp Optimization” (SMPSO) in a Optimization via Simulation context [22]
in order to improve the traffic network. The propose methodology take advantage
of the infrastructure in the urban sprawl. Our objectives are minimizes the impact
on the landscape to obtain accessibility and mobility facilities. The experiments
and comparisons with other techniques reveal that our proposed OvS approach ob-
tains significant profits in terms of traffic network improvement. By its own nature,
the OVS algorithm presented here can be easily adapted to solve different multi-
objective problems [23, 21].

13.2 Origin-Destiny Traffic Assignment Problem

In this section, we define our case of study (traffic systems) and the ODTAP. Then,
we expose the characteristics of the problem to be optimized.

13.2.1 Traffic Systems

A traffic system is a complex system made up of at least two elements: a traffic
network and a traffic demand.

A traffic network is an oriented graph in which the edges represent the streets,
and the nodes, the changing points of those streets. In Fig. 13.1, we can see a simple
traffic network, composed of two one-way streets at each intersected at the corner.
It is represented by a graph with 4 edges and 5 nodes, in which nodes “O” are traffic
origins, nodes “D” are traffic destinations and nodes “I” are corners. As it can be
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observed in the previous figure, there are different types of nodes and edges in one
traffic network. Each edge is anathematized by a group of parameters: its length, the
number of tracks of the traffic route, maximum circulating speed, and so on. The
nodes are also defined by certain features which determine their participation in the
model: kind of node (origin, destiny, lane extension, corner, etc.) and spatial coordi-
nates, and so on. In our case, we are interested in identifying origin nodes or demand
destiny nodes, as they generate or receive traffic flow. This kind of nodes needs to
have associated information about maximum capacity and its rate of emitting and
receiving vehicles.

O

O I D

D

Fig. 13.1 Representation of streets intersection

Traffic demand, on the other hand, is the set of all circulating vehicles in the sys-
tem (taking into account the routes they follow and their starting time). In a practical
way, traffic demand is more difficult to deal with than the network structure. As it
is, in a real implementation it is highly difficult not to say impossible to know the
routes and starting points of the total number of vehicles of the system. Besides,
generally, traffic studies normally imply having to determine how routes configu-
ration can vary against changes in the system, turning the previous group useless.
That is the reason why the demand tends to be characterized by a generating group,
like traffic flows (which is the characterization used in this work). A traffic flow is
a group of vehicles that in a specific time window circulating from a node i to a
node j. The previous definition does not include the routes followed by the vehi-
cles; so, flows tend to be invariable to most of the changes to be done in a traffic
system. Changes which imply an alteration in the flows (as it is the case of ODTAP)
turn to be easier to handle, because one only has to vary the number of vehicles
associated to each flow. In order to evaluate a traffic system, it is necessary to gener-
ate the routes for the involved vehicles taking into account the flows, for which
you have several mechanisms: proportional assignment, shorter paths, balancing
assignments.
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13.2.2 Origin-Destiny Traffic Assignment Problem

“Origin-Destiny Traffic Assignment Problem” (ODTAP) [4] tries to absorb the
impact of a variation in the traffic demand (by increasing or redistributing flows)
through a restructuration of the origin nodes and destinations of traffic flows. For
instance, if you want to determine where to set a new shopping mall in the city.
In this situation, it will not necessarily increase the number of vehicles, but it will
modify the routes followed by the same vehicles at some particular times. The de-
cision of where to set the new mall (regulated by the city hall through permits and
authorizations) can be assimilated to vehicle reassignment to new traffic flows that
have as one of their extremes the shopping mall (either the destiny or the origin,
depending on the time frame). Another example can be the installation of an indus-
trial depot (in this the city hall directly controls the location). Apart from redirecting
vehicle routes already existing in the system, the installation of the industrial depot
will probably generate new vehicle flows from an to other cities (increased by the
total number of vehicles circulating). Once again, from a traffic point of view, this is
translated in a restructuration of existing traffic flows and in the generation of new
ones having the depot as origin and destiny. As a final example we can name the set-
ting off a new neighborhood in town, which will have a similar effect as the previous
of producing new traffic flows arriving and departing from and to the neighbor.

The three examples stated in the previous paragraph become new traffic origins
and destinies. In general, if the change in the system is carried out in an organized
way, it is possible to establish areas in which this new origins and destinies can
establish themselves, either through regulations or plans encouraging its reside).
This tend to have a meaningfully high infrastructure cost, since they demand zone
paving, basic service supply, an improvement in the entrance, and so on. Therefore,
the problem is now how to do this assignment (i.e. selecting the nodes of a traffic
network which will function as the new origins and destinies) with the minor possi-
ble effect on current traffic, on the one hand, and using the less possible amount of
money for infrastructure. Measuring the cost impact is quite simple, but evaluating
the impact on the traffic system is much more complicated. It normally uses a mean
time metric, thus, the size of the impact on traffic is estimated by time variations of
mean time of all the system vehicles.

Formally, the ODTAP is defined on n nodes belonging to the set N = {1, . . . ,n},
with arc (edges) set E , and weight costs wk with k = 1, . . . ,m; associated with the
arcs, then, the ODTAP can be resumed as follow:

minZ1 =∑(ti jp · (Popi jp+Xi jp)) (13.1)

minZ2 =∑(ci ·Xi) (13.2)
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subject to

∑(Xi +Popi)≤ Max Population at Origin i (13.3)

∑(Xj +Pop j)≤ Max Population at Destination j (13.4)

∑(Xi jp) = Increase in Population (13.5)

Where, i ∈ N are the origins, j ∈ N are the destinies, p are the paths that connect
i with j, Popi jp is the current population that needs to travel from i to j through
the path p, Xi jp is the new assignment of population that will need to travel from
i to j through the path p, ti jp is the travel time from i to j in the path p of the
population and ci infrastructure cost necessary to support a population growth Xi

in node i. It is important to note that this characterization of the ODTAP should be
enough for small instances in simple models. However, there is not always accurate
information available about traffic travel times associated with the land use in ur-
banization planning. The genuine function of traffic travel time depends on many
uncontrollable factors such as the shape of the roads, the amount of the street, the
velocity of the vehicles, etc. Moreover, traffic congestion can be an important factor
in the total journey of the population. For these reasons, the total travel time can be
reformulated in Eq. (13.6).

minZ1 =∑(ti jp((Pop11 +X11), . . . ,(Popnn +Xnn)) · (Popi jp+Xi jp)) (13.6)

Hence, it is considered the impact between the origin-destiny assignments into the
traffic network and how it affects the Land Use planning

13.3 Traffic Simulations

Because we want to represent correctly the effect of variations in vehicle flows have
on mean travel time, we will test that assignation by doing a simulation of the traf-
fic flow. There are several ways in which you can simulate traffic flow in a traffic
network, but in this work we choose to use continuum microscopic simulations.

A microscopic traffic simulation is a type of simulation of discrete time in which
each vehicle behavior is modeled and simulated individually. Each vehicle in the
traffic system is characterized with an identification code (“id”), a group of constant
parameters regulating the route to follow, the moment in which the trip starts, max-
imum speed and the rest of the vehicle circulation criteria, and a group of variables
with vehicle and speed information (they are updated in every interval t). The be-
havior of each vehicle follows simple laws, represented in an equation of the type
stimuli-response where the main factor that determines the behavior of vehicles is
the vehicle situated in front. These kinds of logics are known as “Car-Following”
[40]. An example of this logic for a vehicle i is the following:

• If there is no car in front (from the vehicle position of vehicle i to a critical
distance), accelerate until reaching maximum speed.
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• If there is one car in front and its speed is lower than that of vehicle i, slow down
to equal the speed of that vehicle.

• If there is a car front and its speed is higher or the same as that of vehicle i,
accelerate to reach the same speed or to reach the maximum speed of vehicle i,
whatever is lower.

Apart from interactions with other vehicles, interactions with the rest of the sys-
tem elements are added, like the traffic lights system.

Taking into account each vehicle information, it is possible to obtain after-
wards variables aggregated to the system, as average speed, maximum waiting time
[11, 37].

The main advantage this type of simulations offers is that modeling all its ele-
ments is comparatively easier than in the rest of the simulations, without the need of
making assumptions about global system behavior. In fact, global behavior emerges
as a consequence of interactions between each of its components.

13.4 Multiobjective Particle Swamp Optimization

As it was previously mentioned, with the objective of optimizing the ODTAP we
use a multi-objective version of the “Particle Swamp Optimization” (PSO). In this
section, we make an introduction to this metaheuristic and its adaptation to solve
multi-objective problems.

13.4.1 Particle Swamp Optimization

The PSO algorithm first appeared in 1995 [35] and since then it has been used in
a high number of problems [15, 2, 52, 3, 51]. PSO is based on bird flock behav-
ior when they go searching for their food. In a flock, you can observe individual
and group behavior. PSO algorithm is a population optimization algorithm where
in each iteration we have a group of potential solutions (particles expressed in PSO
terminology) that function as the birds of the flock. Every particle is defined based
on their position p and its speed v in a space n− dimensional. Interaction after in-
teraction, each one of them evolve according to the historic individual information
recollected and to global historic information of the whole flock, updating its posi-
tion and speed. This evolution is regulated by Eqs. (13.7) and (13.8):

vi, j(t + 1) = w · vi, j(t)+ c1 · r1 · (pi, j(t)− xi, j(t))+ c2 · r2 · (pg, j(t)− xi, j(t)) (13.7)

xi, j(t + 1) = xi, j(t)+ vi, j(t + 1) (13.8)
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Where w is the inertia factor (which regulates the updating parameters speed),
vi, j is the component of particle i in dimension j, c1 and c2 are the importance of
individual and global information in each update, r1 y r2 ∼ U(0,1) represent the
differential acceleration of each particle, pi is the best value found by particle i
(pbest) and pg is the best solution found in the neighborhood (gbest). During each
interaction, the speed value is updated first, and then the position value of each
particle.

Even though it is a kind of evolutionary algorithm, PSO presents the distinctive
feature that the individuals belonging to the population do not compete with each
other to monopolize the following interactions, but they even cooperate to find the
global optimum.

13.4.2 Multi-Objective Particle Swamp Optimization

The original definition of PSO was thought to deal with mono-objective problems.
However, there are several adaptations to deal with problems in which it is required
to optimize several objectives simultaneously [50, 48, 38, 46].

In a multi-objective problem, the focus is no longer finding the global optimum
but to obtain the best approximation to the Pareto Frontier of the system. For each
point in the “Decision Space” there is an associated point in the “Objective Space”,
being the latter a m-dimensional space with m equal to the number of objectives of
the problem. Given that it exists several “Trade-Off” possible among the different
objectives, the function of the optimization algorithm is finding the section in the
frontier of the “Objective Space” where these “Trade-Off” are better than any other
belonging to that space. In multi-objective optimization terminology, a solution i
dominates a solution j if it is at least better in one of their objectives and better or
the same in the rest. The aim of a multi-objective optimization algorithm is, then,
to find the group of all solutions that are not dominated by any other solution of the
space (thus, they are better than the rest) [38].

In this work, we decided to use the “Speed-constrained Multi-objective PSO”
(SMPSO). This algorithm was presented in [14] and it is an adaptation of “Opti-
mized Multi-Objective PSO” (OMOPSO) presented in [49]. Both have proven to
have a good performance in comparison to other versions of the multi-objective
PSO, and even compared to NSGA-II [14, 8]. The main problem in any multi-
objective alteration based on Pareto Frontiers of the PSO consists in how to select
the leader of each interaction (gbest). Both algorithms handle the leader selection
with a fix size list of leader solutions, selected from the group of non-dominated so-
lutions. In each interaction, solutions are added or eliminated from the list following
the non-dominating criteria. To all the leaders, a “Crowding Factor”is calculated. In
case the size of the list increases, the solutions with the worst “Crowding Factor”
value are eliminated; this value performing as second classificatory factor of solu-
tions. To estimate the speed vt of each swarm particle, a leader is chosen through a
binary tournament based on the crowding value of the leaders.
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Apart from this leader selection mechanism, the OMOPSO and the SMPSO have
other features. The calculation of non-dominance follows non-strict dominance cri-
teria o ε-dominance. is considered to be dominant with respect to a solution s if for
all objectives f (q)/(1+ε)≤ f (s) and to at least one objective f (q)/(1+ε)< f (s).
Also, to avoid bias, the parameters c1 and c2 are selected randomly. Finally, muta-
tion process of solutions is incorporated, taken from the namesake process used in
Genetic Algorithms.

Unlike OMOPSO, SMPSO also adds a speed calculation restriction; with the
goal of avoiding particles positioning varies from its feasible extremes without
evaluating intermediate points. To do this, speeds are restricted according to the
Eqs. (13.9) and (13.10).

− delta j ≤ vi, j(t)≤ delta j (13.9)

delta j =
upperLimit j − lowerLimit j

2
(13.10)

13.5 Optimization Framework

In this section we explain the OvS Procedure developed to solve the Multi-Objective
version of ODTAP.

13.5.1 General Procedure

In order to solve the ODTAP, we have chosen a formalism based on OvS [23]. In
the OvS, the evaluation of the goodness of solutions is done by the execution of
a simulator, which functions as the generator of necessary values to calculate the
objective function. Both the optimizer and the simulator are independent from each
other, connecting themselves in a black box way, having a system functioning as a
controller between the two (Fig. 13.2). Apart from regulating the process, the con-
troller has the function of translating the resulting solutions brought by the optimiz-
ers to configuration parameters for the simulator, at the same time it converts this
last one outputs (data samples) into a value the optimizer can accept as an aptitude
or fitness function. In this context, SUMO is used for simulation purpose [5] and
the SMPSO to the optimization part. This framework is adapted from a framework
used to solve the mono-objective version of the ODTAP, presented in [4], in which
it replaces the use of Genetic Algorithms by the PSO. The OvS procedure was im-
plemented in the popular software R [39, 55] with the library RSUMO (http:
www.modelizandosistemas.com.ar/p/rsumo).

http:www.modelizandosistemas.com.ar/p/rsumo
http:www.modelizandosistemas.com.ar/p/rsumo
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Simulation

Optimization

Translation of
solutions to
parameters

Summary of
results

Fig. 13.2 OvS procedure as black box

Figure 13.3 shows the interrelations between the R language, SUMO package
and the PSO Procedure. Defined current traffic net and current traffic density, in
order to absorb population growth and restrictions on the capacity increase in the
nodes, the procedure generates SMPSO solutions to assess, in the form of increases
in capacity per node. These solutions are translated into traffic flows and used to run
the simulation. When the simulation process ends, the travel time statistics are con-
solidated in an average value of travel time and reentered the SMPSO to determine
the quality of each solution and generate new solutions in the next iteration.

Fig. 13.3 OvS procedure

13.5.2 Solution Evaluation

In our model, SMPSO algorithm only assigns values to variables Xi, j. That is to
say, it defines the population growth (or decrease) in each origin-destiny pair of the
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potential origin-destiny pair group in which to invest on infrastructure. Based on this
assignation, we can calculate each traffic flow Popi, j+Xi, j (keeping Popi, j constante
durante todas las evaluaciones). constant during all evaluation). With the group of
traffic flows, SUMO con estimate the distribution of that flow among every path p
that link i with j, and then assign starting moments to each of the vehicles involved
in the routes. Once each vehicle is programmed, simulations starts and statistics are
recollected about mean travel time.

The evaluation of the objective cost is much simpler. You only have to compute
the number of vehicles assigned to each node and multiply it with the infrastructure
cost. In case it is requested, you can modify the calculation by assuming the non-
linearity of these costs, making them vary step by step with respect to the number
of assigned vehicles, without altering the optimization model.

13.6 Experiments

In this section, we detail the experiments carried out to evaluate the quality of the
solutions of the proposed optimization algorithm.

13.6.1 Scenarios

Building scenarios can be divided in two stages: construction of traffic networks
and generation of initial traffic flows. To test the quality of the algorithm, a group
of ten scenarios was designed based on traffic network like the “grid” type. Its net-
work presents the peculiarity of having a great number of possible routes between
two nodes, whichever they are. Doing small variations in this network, you can get
traffic networks similar to those of various urbanization types. Summarizing, the
transformation operations carried out were:

1. Given a grid network of size m ·n, we determined a number of changes equals to√
min(m,n).

2. For each change to be done, we set their type: “edge change” or “node change”.
If the kind of change is “edge change”, we select a random edge from the

network and we eliminate it.
If the king of change is a “node change”, we select a random node from the

network and we eliminate it and all the edges attached to it.

An example of a network construction can be seen in Fig. 13.4.
On the other hand, once it is defined the traffic network, it is necessary to generate

the traffic demand associated to the situation previous to the population increase to
be dealt with (every Popi jp). To do that, starting from the traffic networks previously
created, an initial number of vehicles circulating during an hour of a simulated time
in a random value between 100 ·max(m,n) and 10 ·m ·n was fixed. Having the total
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number of vehicles, the origin and destiny of each one are randomly raffled from
the network nodes through a non-repository sampling

Regarding the maximum capacity and cost of each node, the first one was fixes
in a value similar to its current population assignation increased by a random fac-
tor contained between 1.01 and 2.00. The unitary costs of increased capacity were
randomly fixed too, taking some range value [10 : 100].

In total, we worked with 3 initial traffic networks, sized 10 ·10, 25 ·50 and 50 ·75,
from which we generated 3 other daughter networks, according to the previously de-
scribed technique. Afterwards, for each of these 9 networks, 3 random flows were
created, leaving a total of 27 traffic scenarios. To every scenario a maximum capac-
ity of every node and increase costs were randomly assigned. Every traffic scenario
was evaluated with a population growth of 1.05 and 1.15, leaving 54 cases of study
defined in total.

Fig. 13.4 (a) Grid net. (b) Elimination of one arc. (c) Elimination of one node

13.6.2 Tests

To evaluate how well our algorithm approximates to the problem Pareto frontier,
for each scenario 10 runs were carried out. To create the Pareto frontier associated
to the scenario, all generated solutions by each 10 run were consolidates and the
Pareto frontier of this new data was calculated. This gave us a Global Estimated
Pareto frontier for the total scenario, made up by the non-dominance solutions found
in every run. That global estimated Pareto frontier is the one used as a pattern to
measure the quality of the found solutions en each individual run.

Two solution quality indicators were measured: “Convergence” and “Unifor-
mity” “Convergence” is calculated by averaging the minimum Euclidean distance
of each point of the Pareto frontier obtained in one run of the algorithm with the
Global Estimated Pareto frontier. This method of estimating the convergence is
called “Generational Distance”. The complete index is shown in Eq. (13.11):
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generational distance =

√
∑N

i=1 d2
i

N
(13.11)

Where N is the number of solutions to be compared with the Pareto Frontier and
di is the minimum distance from solution i to the Pareto Frontier.

Moreover, the “uniformity” is calculated by Eq. (13.12).

uni f ormity =
d f + dl +∑N−1

i=1 |di − d̄|
d f + dl + d̄(N − 1)

(13.12)

Where d f and dl are the minimum Euclidean distances between the ends of the
Global Estimated Pareto Frontier and the estimated Pareto Frontier in current run,
di is the distance between the solution i and the solution i+ 1 from the estimated
Pareto Frontier in current run, d̄ is the average of N − 1 distances di and N is the
number of points in the estimated Pareto Frontier in current run.

For a further comparison, we have studied the performance of the NSGA-II [12]
for the same experimental procedure as our proposal.

13.6.3 Algorithm Parameters

The parameters under which the SMPSO was executed are the following:

• Probability o f Mutation = 0.5
• w = 0.4
• ε = 0.05
• Swarm Size = 50
• Max Number o f Generations= 100

On the other hand, the simulation time to evaluate each solution was set in
1.200 s.

13.7 Results

In this section, we present the results of the experiments done.

13.7.1 Convergence

The average of generational distance between found solutions by the algorithm and
the global estimated Pareto frontier is kept in low values, with a deviation coefficient
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oscillating between 0.27 and 0.41. In Table 13.1 it can be observe convergence val-
ues for one of the scenarios of size 10 · 10 with an increase in vehicle population
of 1.15. The convergence average of this group is of 0.40384 and the desviation
coefficient is 0.38759. It can be noticed that the majority of the runs were kept
in the same generational distance range, except two atypical observations in one
of which we can see the effect of the presence of local optimum (item 4). The
lower generational distance in item 3 is because a group of solutions kept a low
mean travel time with a low infrastructure cost. For this specific scenario, the al-
gorithm was run once more with a swarm size of 250 individuals. The conver-
gence results are shown in Table 13.2. An improvement in the indicators can be
noticed.

Table 13.1 Convergence and Uniformity of grid 10 ·10 and population increase of 1.15

Run Convergence Uniformity

1 0.3533009 0.2291444
2 0.4108350 0.4742433
3 0.0837602 0.4537517
4 0.7143926 0.3012058
5 0.3307537 0.1526166
6 0.4584290 0.1768969
7 0.3969564 0.2108491
8 0.4987557 0.3343977
9 0.4229219 0.2606873
10 0.3682840 0.1414944

Table 13.2 Convergence and Uniformity of grid 10 · 10 and population increase of 1.15 (swarm
size = 250)

Run Convergence Uniformity

1 0.2106560 0.1374553
2 0.3108199 0.3622892
3 0.1789973 0.2721308
4 0.2022944 0.2191117
5 0.2454660 0.1283510
6 0.3290329 0.3134578
7 0.4945728 0.2041503
8 0.0927502 0.3940818
9 0.2933584 0.1594452
10 0.0771648 0.3538501
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13.7.2 Uniformity

Uniformity finds its average in low values, but with a higher desviation coefficient
than in convergence (oscillates between 0.33 and 0.46). Table 13.1 shows uniformity
values for the presented case in Sect. 13.7.1. It can be observed that the behavior here
is different, with a significant number of solutions with good uniformity values, and
some solutions with a high uniformity. Once it was run again the algorithm with a
swarm size of 250, it was impossible to observe significant improvements in this
indicator.

13.7.3 Evolution of the Solutions Generated by the Algorithm

In Figs. 13.5 and 13.6 you can see the solutions from iterations 25 and 100 for one
run of the algorithm, compared with the Pareto Frontier. The adjustment in the iter-
ation 100 is very good, with almost all solutions belonging to the Pareto Frontier. It
further notes that while there is not a great diversity of solutions, the Pareto frontier
is swept almost entirely. At iteration 25 can see that while convergence of the solu-
tions is very low, the algorithm found several individuals who belong to the frontier.
Moreover, in Figs. 13.7 and 13.8 you can see the evolution of the population and the
Estimated Pareto Frontier in iterations 25, 50, 75 and 100. In the earlier iterations,
the dispersion of solutions is big and there are few solution in the estimated Pareto
Frontier. In the last iterations, the dispersion is lesser and the majority of solutions
are near to the estimated Pareto Frontier.
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Fig. 13.5 Iteration 25. The line is the Pareto Frontier, points are the individual of the iteration
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Fig. 13.6 Iteration 100. The line is the Pareto Frontier, points are the individual of the iteration
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It’s interesting see that the convergence to the Pareto Frontier is faster for the
combination of “low cost-high travel time” than the “high cost-low travel time”.
This is a consequence of the structure of the problem: the infrastructure costs are
constant, but the mean speed is a dynamic function of the vehicles assignation in the
origins and destination of traffic flows.

13.7.4 Comparison with NSGA-II Metaheuristic

The same set of experiments were running under a NSGA-II metaheuristics, in order
to check the quality of SMPSO solution. In Table 13.3 are shown the result of 10
runs for the same scenario that is shown in Table 13.2.

Table 13.3 Convergence and Uniformity of grid 10 · 10 and population increase of 1.15 (swarm
size = 250)

Run Convergence Uniformity

1 0.2451904 0.2159275
2 0.4593215 0.3635322
3 0.4765746 0.1010504
4 0.2518910 0.3037142
5 0.2027211 0.3484107
6 0.4149186 0.1499699
7 0.1445920 0.1737689
8 0.1791007 0.2756582
9 0.3145456 0.4711506
10 0.3351634 0.3871142

According to the “Wilcoxon Signed Rank” the convergence of solution founded
by the SMPSO algorithm are better than the NSGA-II, but for a low margin
(p-value ∼= 0.03). The uniformity is similar for both algorithms.

13.8 Conclusions

In this chapter, we presented an algorithm that combines SMPSO with a traffic sim-
ulation to solve a multi-objective version of the ODTAP. The obtained results show
a good performance, being able to find a great approximation to the problem Pareto
frontier with a swarm size not so big. The results get better when the swarm size
increases, scarifying an increase in the computation time. The SMPSO also showed
a slightly better performance than the NGSA-II for this problem.

Using simulation as an evaluating function of the optimization algorithm lets us
faithfully represent the effect of policies to be implemented in the system, without
the distorting effects of an analytical simplification. The algorithm has showed a
fast convergence rate for the “low cost-high travel time” side of the Pareto Frontier.
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This is consequence of the dynamic nature of the speed of cars in the system, which
varies in function of the assignments in the origins and destinations. The use of
simulations allows us to evaluate this dynamic in a easy way.
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Chapter 14
Hybrid Metaheuristic for Air Traffic
Management with Uncertainty

S. Chaimatanan, D. Delahaye, and M. Mongeau

Abstract To sustain the rapidly increasing air traffic demand, the future air traf-
fic management system will rely on a concept, called Trajectory-Based Opera-
tions (TBO), that will require aircraft to follow an assigned 4D trajectory (time-
constrained trajectory) with high precision. TBO involves separating aircraft via
strategic (long-term) trajectory deconfliction rather than the currently-practicing
tactical (short-term) conflict resolution. In this context, this chapter presents a strate-
gic trajectory planning approach aiming at minimizing the number of conflicts be-
tween aircraft trajectories for a given day. The proposed methodology allocates an
alternative departure time, a horizontal flight path, and a flight level to each aircraft
at a nation-wide scale.

In real-life situations, aircraft may arrive at a given position with some uncer-
tainties on its curvilinear abscissa due to external events. To ensure robustness of
the strategic trajectory plan, the aircraft arrival time to any given position will be
represented here by a probabilistic distribution over its nominal assigned arrival
time.

The proposed approach optimizes the 4D trajectory of each aircraft so as to
minimize the probability of potential conflicts between trajectories. A hybrid-
metaheuristic optimization algorithm has been developed to solve this large-scale
mixed-variable optimization problem. The algorithm is implemented and tested
with real air traffic data taking into account uncertainty over the French airspace
for which a conflict-free and robust 4D trajectory plan is produced

Keywords Hybrid metaheuristic • Air traffic management • Optimization under
uncertainty

14.1 Introduction

This section provides a brief overview of the air traffic management system and the
strategic trajectory planning problem.
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14.1.1 Air Traffic Management: A Brief Review

Air traffic management (ATM) is a system that assists and guides aircraft from a
departure aerodrome to a destination aerodrome in order to ensure its safety, while
minimizing delays and airspace congestion. It manages the air traffic through the
management of the three following complementary systems: airspace management
(ASM), air traffic flow management (ATFM), and air traffic control (ATC).

The ASM organizes the usage of airspace. Its primary objective is to maxi-
mize the utilization of available airspace by segregating the airspace among various
airspace user’s needs in order to prevent interference from all users and to facilitates
the flow of air traffic.

The ATFM manages the air traffic flow in order to minimize delays and prevent
congestion. In Europe, this system is the concern of the Central Flow Management
Unit (CFMU) of Eurocontrol. Every (non-military) operation flight performing un-
der Instrument Flight Rules (IFR) in Europe must submit a flight plan to the CFMU.
The CFMU then analyzes the compatibility of the request with the overall demand.
If a request is not compatible with the airspace structure or the capacity limit, the
CFMU will suggest alternative flight plan. It then distributes the accepted flight plan
to all local air traffic control centers in Europe overflown by that particular flight.

The ATC then controls the air traffic in real time to ensure separation between
aircraft. For this purpose, the airspace is partitioned into different airspace sectors,
each of which is assigned to a specific group of controllers monitoring air traffic.
Within each sector, a few minutes before the aircraft enters into the sector, the con-
trollers are responsible for predicting conflicts. Then, the controllers are in charge
of monitoring the traffic, maintaining aircraft separation by issuing instructions to
pilots, and ensuring coordination with the neighboring sectors.

As mentioned above, in the current air traffic management system, an aircraft
traveling between airports must register a flight plan in order to inform the relevant
air navigation services. This flight plan includes the following information:

• Aircraft identification number, aircraft type, and navigation equipment installed
on board;

• Departure airport;
• Proposed time of departure;
• Requested cruising altitude (flight level1);
• Requested route of flight;
• Cruising airspeed, climb and descent profiles, and speed schedules;
• Destination airport.

1 Flight level (FL) is a pressure altitude expressed in hundreds of feet, e.g. an altitude of 32,000 ft
is referred to as FL 320.



14 Hybrid Metaheuristic for Air Traffic Management with Uncertainty 221

The ATC uses this information to predict the traffic situation. It issues necessary
changes to the flight plan in order to ensure aircraft separation, and to maintain the
order of air traffic flow, while satisfying as much as possible the pilot’s request.

Current air traffic control regulations require aircraft that operate in the en-route
environment up to FL (see footnote 1) 410 to be vertically separated by at least Nv =
1,000 feet (ft), and to be horizontally separated by a minimum of Nh = 5 nautical
miles (Nm). For aircraft operating above FL 410, the required minimum vertical
separation is increased to Nv = 2,000 ft. Aircraft are considered to be in conflict
when such a minimum separation requirement is violated. This conflict situation
does not necessary leads to a collision; however, it is a situation that controllers
must avoid. One can consider that at any given time, each aircraft has a bounded
and closed reserved block of airspace defined by a three-dimensional cylinder, as
shown on Fig. 14.1, in which other aircraft are not allowed to enter.

2 Nv

Nh

Fig. 14.1 The cylindrical protection volume

Because airspace, aircraft, ground systems, and human operators are limited re-
sources which are very costly to extend, the usage of these resources has to be
optimized through an effective planning. A good planning allows the ATM process
to conform with the airspace user’s requirements, and to be robust against unex-
pected events. Currently, the ATM process is performed through the following three
planning phases:

• Strategic planning. This phase is performed from 1 year down to 1 week before
real-time operations of the flights. This process aims at predicting the air traffic
load, and at designing the air-route structure in order to balance capacity and
demand. During this long-term and medium-term planning phase, the air traffic
is macroscopically organized.

• Pre-tactical planning. This phase takes place from 6 days down to 1 day before
the real-time operations. The objectives are to optimize the overall ATM network
performance, minimizing delay and cost by fine-tuning the strategic plan using
more up-to-date information of expected traffic conditions, traffic demand, avail-
able capacity and weather forecast. During this phase, the air traffic flow is not
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only organized at macroscopic level, but also on each airplane. The takeoff slots2

of each airplane is also managed.
• Tactical planning. This phase is carried out on the day of operations. Adjust-

ments to the flight plans are performed based on the most up-to-date knowledge
of the traffic situation and of the weather conditions. In this phase, individual
aircraft departure slots are re-adjusted. Re-routings and alternative flight profiles
can also be issued in order to avoid bottlenecks (congested sector) and to maxi-
mize airspace capacity according to real-time traffic demand. During this phase,
the controller deals with the traffic inside a sector, and applies local changes to
the aircraft trajectory in order to ensure aircraft separation within the correspond-
ing sector.

14.1.2 Strategic Aircraft Trajectory Planning

In order to accommodate the increasing air traffic demand in an already saturated
airspace, the world’s major ATM systems (e.g. European and U.S. ATM systems)
are being modernized. The Next Generation air transportation system (NextGen) is
a project aiming to transform the National Airspace System (NAS) of the United
States towards a satellite-based air traffic management and control system. The Sin-
gle European Sky ATM Research (SESAR) project is a major collaborative project
aiming at modernizing the European air traffic management system. With the soon-
coming technologies that will enable more powerful communication systems, more
precise surveillance systems, and more reliance automated support tools, these new
ATM systems will improve safety, reduce delay and aviation pollution emissions,
while maximizing the use of airspace capacity.

The new ATM systems will rely on the concept of Trajectory Based Operations
(TBO) which will focus more on adapting the airspace user’s demand to the cur-
rent airspace capacity. The conflict detection and resolution task load will be re-
distributed to the strategic planning phase. In this new ATM paradigm, an aircraft
flying through the airspace will be required to follow a negotiated conflict-free tra-
jectory, accurately defined in four dimensions (three spatial dimensions and time).
This will significantly reduce recourse to controller’s intervention during the tactical
phase, thereby enabling the controllers to manage a significant increase in traffic at
any given time.

In this future ATM context, the aims of the strategic aircraft trajectory planning
is to reduce the number of potential conflicts between trajectories. The objective
of this chapter is to present a methodology to address such a strategic planning
problem given a set of flight plans for a given day at a nation-wide scale. In real-life
situations, aircraft may not be able to comply with the time constraint due to external
events (wind, passenger delay, etc.). Moreover, imposing hard time constraints on

2 A takeoff slot is an interval of time in which the take-off has to take place.
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the 4D trajectory may results in an increase of fuel consumption and aircraft engine
workload, since the aircraft may have to adjust constantly its velocity. In order to
improve robustness of the strategic trajectory plans and to relax the time constraints,
uncertainties of aircraft arrival time to a given position is also taken into account in
the trajectory optimization process.

More precisely, the given input of the strategic trajectory planning problem under
consideration can be presented as follows:

• We consider a flight plan for a given day associated with a nation-wide scale
airspace.

• The characteristics of the uncertainty of aircraft arrival time to any given position
are given.

• For each flight, i, we suppose that the following elements are given:

– a set of candidate routes;
– a set of candidate flight levels;
– a set of candidate departure times;

In the sequel, we shall often refer to flight i as trajectory i, or even aircraft
i. The proposed strategic planning methodology consists of four main modules: a
4D-trajectory generator, a conflict-detection module, an interaction evaluation mod-
ule, and a hybrid-metaheuristic optimization module (Fig. 14.2). The 4D-trajectory
generator is used to provide a 4D trajectory given an alternative route, an alterna-
tive flight level, and an alternative departure time. Then, the probabilistic conflict-
detection module computes the probability of conflict involving a given 4D trajec-
tory. After that, the interaction evaluation module will compute the level of interac-
tion between trajectories at a nation-wide scale. The hybrid-metaheuristic optimiza-
tion algorithm manages the search of an optimal set of alternative routes, alternative
flight levels, and alternative departure times that minimize the potential conflicts (or
the interaction-defined later) between trajectories.

The optimal solution obtained is based on the following assumptions and simpli-
fications:

• The airspace is considered as a Euclidean space. Latitudes and longitudes on the
Earth’s surface are transformed into (x,y) coordinates.

• The altitude, in feet, will be represented by the z coordinate.
• Each given initial route is a straight line from the departure airport to the desti-

nation airport.
• Aircraft speed is assumed to be changing only linearly between two consecutive

sampling time steps.
• Uncertainty of aircraft arrival time does not grow with time.
• Wind conditions and weather forecast are not taken into account in the trajectory

optimization process.

The remaining parts of this chapter are organized as follows. In Sect. 14.2, pre-
vious works related to air traffic management problems are discussed. Section 14.3
presents the mathematical model of the strategic trajectory planning problem. Sec-
tion 14.4 presents a methodology to detect conflicts, and to compute conflict proba-
bility between aircraft trajectories. A hybrid-metaheuristic method designed to solve
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Initial flight plan

Interaction
evaluation

Probabilistic conflict
detection module

Optimization
module

Best flight plan

Possible alternative
flight plans

4D trajectory
generator

Fig. 14.2 Strategic trajectory planning procedure

the strategic trajectory planning problem aiming at minimizing the total interac-
tion between aircraft trajectories is presented in Sect. 14.5. Computational experi-
ments with the proposed strategic trajectory planning methodology are presented in
Sect. 14.6. Conclusions and perspectives are discussed in Sect. 14.7.

14.2 Previous Related Works

Over the last decades, numerous researches on the air traffic management problem
have been conducted. We refer the reader interested by a survey on modeling and
optimization in air traffic to the recent book [12]. A survey on mathematical opti-
mization models for air traffic management problems based on different air traffic
management strategies is provided in [1]. A comparison of different optimization
methods (deterministic and metaheuristic optimization approaches) used for air traf-
fic management is provided in [18].

In the strategic planning framework, aircraft trajectories can be separated in many
different ways. One of the simplest and the most used method is to modify the
departure time of aircraft. This is commonly referred to as ground delay or ground
holding. The main idea of the ground holding strategy is to limit the number of
airborne aircraft at any given time. Examples of works related to ground holding
are [3, 19], and [24]. Delaying aircraft on the ground is effective since it prevents
aircraft from flying extra distance to avoid congested areas or flying in a holding
pattern around congested airport, which induce extra fuel consumption. However,
with increasing air traffic demand, significant delays still have to be assigned to a
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large number of aircraft in order to meet all airspace-sector and airport capacity
constraints. Besides, the ground holding strategy is more effective for the situation
where congestion is likely to occur at the airports, which is not the case in Europe
where most congestion occurs in the airspace sectors.

In [8] and [11], another idea to separate trajectories is presented based on speed
regulations. Speed regulations introduce additional degrees of freedom to manage
the flow of air traffic. However, it is effective at the fine-grain level which is irrele-
vant in the strategic trajectory planning context where there remain a high level of
uncertainty. Furthermore, it requires numerous extensive and fine-tuned computa-
tions, which is not viable for a large-scale problem.

Other commonly-used strategies consider diverting the flight (re-routing), or
modifying the flight levels, or a combination of the above-mentioned methods. To
simplify the problem, several works rely on a flow-based air traffic model, where air-
craft trajectories are grouped into several flows. For instance, [15] addresses large-
scale (1 day traffic over France) air traffic flow problems via a flow-based trajectory
allocation, where the optimal separated 3D trajectory are obtained using an A* al-
gorithm or using a genetic algorithm (GA) global search strategy. In [4], a ground
holding is assigned to each aircraft and an optimal flight level is subsequently allo-
cated to each flow of aircraft using constraint programming. Their results show that
such rerouting and flight level re-allocation yield decrease in delays. In spite of the
fact that the flow-based air traffic model has advantages in terms of reduced compu-
tation time, it cannot separate aircraft that belong to the same flow of trajectories.

To consider now each flight individually, air traffic flow models can rely on a
collection of subgraphs, whose the nodes represent the airports and waypoints over-
flown by each flight, and whose arcs connect the nodes for each flight. For instance,
in [5], the authors show that the departure-time and alternative-route allocation prob-
lem is NP hard. Their optimal ground-holding times and alternative routes are ob-
tained by solving a 0-1 integer model taking into account airspace sector capac-
ity. Their models were implemented and tested with realistic datasets consisting of
2–6 airports. In [6, 7], integer optimization approaches are used in order to allocate
ground delays and rerouting options to trajectories taking into account airspace sec-
tor capacity constraints. Thus, [6, 7, 5] propose improvements of air traffic at the
airspace sector level but do not manage conflicts.

The authors of [2], introduce a mixed-integer programming model to minimize
traveling time, operating/fuel cost, air/sound pollutions under separation and tech-
nical constraints. The optimal arcs and nodes (in a 3D-mesh network), speeds, and
departure/arrival times for each flight are obtained by an exact deterministic method.
However, the approach was tested on instances limited to problems involving ten
flights.

Reference [21, 20], the authors focus on managing each individual trajectory in
large problems. Congestion in the airspace sectors is minimized by allocating to
each flight optimal departure times and alternative routes (based on route-beacons
navigation) using genetic algorithms (GA). Their results show that GA is very ef-
ficient in solving highly complex problems. Nevertheless, GA is not well adapted
for the large-scale 4D trajectory planning problems that we are considering, due
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to excessive memory requirement intrinsic to population-based optimization algo-
rithms whose performance depends on the size of population.

In the future ATM context, aircraft trajectory can be represented by a time se-
quence of 4D coordinates. In [9, 10], preliminary studies on the optimization of in-
dividual 4D trajectories are presented. In these papers, optimal (conflict-free) 4D tra-
jectories for individual flights are allocated by solving a combinatorial optimization
problem using a non-population-based hybrid-metaheuristic optimization method.
The numerical results presented in [10] show advantages of the hybrid-metaheuristic
optimization approach on ATFM problems. However, the discretization of the search
domain (candidate departure times and trajectories) induces high combinatorics.

Uncertainties of aircraft position were taken into account in the conflict de-
tection and resolution problem addressed in the work presented, for example, in
[14, 16, 22]. Aircraft positions are modeled as a probabilistic distribution, then the
predicted aircraft positions are computed over a certain time window using a dy-
namic model of aircraft, and conflict probabilities are evaluated. These methods
are suitable for mid-term and short-term conflict-detection and resolution problems
involving a small number of aircraft. However, they are not suitable for the large-
scale problems that we are attempting to address in this work, due to the heavy
computational burden implicated in predicting aircraft positions using aircraft dy-
namic models. We refer the reader interested by a review of conflict-detection and
resolution modeling methods to [17].

In this chapter, we put forward the work presented in [10], by relaxing the so-
lution space and proposing an alternative, mixed-integer programming formulation
of the problem. Moreover, we introduce a methodology to take into account uncer-
tainty of aircraft trajectories in the strategic trajectory planning problem. We also
propose new intensification local-search steps, and we describe a computationally-
efficient hash-table based method for detecting and evaluating probabilities of con-
flict between trajectories. Finally, we prove the viability of the overall methodology
on large-scale air traffic data on the French airspace.

14.3 Mathematical Model

This section set the mathematical framework of the proposed strategic trajectory
planning methodology. First, the assumed uncertainty on aircraft trajectory is char-
acterized. Then, methods that are used to separate the aircraft trajectories are de-
scribed. Finally, a concept of interaction between trajectories, and a mathematical
formulation of the strategic trajectory planning problem under the form of a mixed-
integer optimization problem are presented.
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14.3.1 Uncertainty

Conflict detection methods can be roughly classified into three categories [16]: nom-
inal, worst-case, and probabilistic conflict detections, according to the assumptions
made on the predicted aircraft trajectory. The nominal conflict detection does not
take into account deviation of aircraft from its assigned (nominal) trajectory. The
worst-case conflict detection identifies the conflict as a situation in which the dis-
tance between the envelopes of the predicted trajectories (the set of all possible
trajectories) is less than the minimum separation requirements. The probabilistic
conflict detection method involves computing probability of conflict between air-
craft whose trajectories are described with probability density functions. In other
words, it computes the probability that two aircraft will penetrate into the (cylin-
drical) protection volume of one another. It is suitable for assessing the air traffic
condition in a large-scale traffic scenario with high level of uncertainties, for exam-
ple in strategic trajectory planning.

We shall use in the remaining of this chapter the notation Pi = (xPi ,yPi ,zPi , tPi)
to designate a 4D point on trajectory i. We shall call its forth coordinate, tPi , the
assigned arrival time of aircraft i at the point (xPi ,yPi ,zPi). Let us consider two tra-
jectories, A and B, and let us first consider the case where time uncertainty in not
taken into account. In the absence of time uncertainty, when the horizontal sepa-
ration, dh =

√
(xPA − xPB)

2 +(yPA − yPB)
2, is less than 5 Nm, and when the vertical

separation, dv = |zPA − zPB |, is less than 1,000 ft, the arrival times of both aircraft
must be separated in time, i.e. dt = |tPA − tPB|, strictly greater than zero.

In general, an aircraft is able to follow a given flight profile with very high ac-
curacy thanks to the flight management system (FMS3). The residue uncertainty of
aircraft position is more likely to occur in the time domain. The aircraft may arrive
at a given position with a time error due to, for example, wind conditions, external
temperature, aircraft weight estimation errors, passenger delay, etc.

Consider now the case with time uncertainty: let tε be the maximum time error
(defined by the user). The predicted arrival time of an aircraft at a position P under
uncertainty therefore lies in the interval:

[tP − tε , tP + tε ].

For the purpose of potential conflict detection, we assume that the predicted aircraft
arrival time can be modeled as a random variable with the following triangular dis-
tribution defined over the interval [tP − tε , tP + tε ]. Given a lower limit tP − tε , an
upper limit tP + tε , the predicted arrival time, t̂P, to the position P is given by the
probability density function:

t̂P(t) = TP,tε (t),

where TP,tε (t) denotes the triangular distribution:

3 Flight management system (FMS) is an on-board computer system that determines the aircraft
exact position and calculates the lateral and horizontal guidance for the aircraft.
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TP,tε (t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for t < tP − tε ,
(t−tP+tε )

t2
ε

for tP − tε ≤ t ≤ tP,
(tP+tε−t)

t2
ε

for tP < t ≤ tP + tε ,

0 for tP + tε < t.

To explain the process to detect conflicts between two aircraft trajectories in our
triangular distribution case, let us first consider two trajectories A and B illustrated
in Fig. 14.3. For simplicity, let us first assume that trajectories A and B are defined
by continuous functions, and let PA and PB be a pair of any points on the trajectories
A and B respectively. To identify conflict between these two trajectories, we must
check the minimum separation between all possible pairs of points PA and PB (pair-
wise comparison). The predicted arrival time, t̂PA , of aircraft A to the given point PA,

A

B
PB

PA

tPA (t)

tPB (t)

Fig. 14.3 Measuring conflict between two continuous trajectories A and B

and the predicted arrival time, t̂PB , to the given point PB are given by:

t̂PA(t) = TtPA
,tε (t),

and
t̂PB(t) = TtPB ,tε

(t).

A potential conflict between trajectories A and B occurs when there exists a pair
of points, PA and PB, from each trajectory such that

dh =
√
(xPA − xPB)

2 +(yPA − yPB)
2

is less than 5 Nm, dv = |zPA − zPB | is less than 1,000 ft, and the intersection between
intervals [tPA −tε , tPA +tε ] and [tPB −tε , tPB +tε ] is not empty. The conflict probability,
denoted PC(PA,PB), between the point PA and point PB can be computed from:

PC(PA,PB) =

∫ tend

tstart

t̂PA t̂PBdt, (14.1)

where tstart and tend are respectively the lower and upper bounds of the interval
[tPA − tε , tPA + tε ]∩ [tPB − tε , tPB + tε ].
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To implement our conflict detection algorithm, we discretize the 4D trajectories.
The sampling time step, ts, must be set (by the user) sufficiently small to guar-
antee that any conflict occurring between two consecutive sampling steps will be
detected. Doing so, trajectories A and B can be represented respectively, by the time
sequences of 4D coordinates {PA,kA}

KA
kA=1, and {PB,kB}

KB
kB=1, where KA and KB are

the number of sampling points corresponding to trajectories A and B respectively
(see Fig. 14.4). In order to detect the conflicts between the two trajectories, we must
verify the minimum separation constraint between every possible pair of sampled
points PA,kA and PB,kB .

tPA,2 (t)

tPB,3 (t)

PA,2

PB, 1

PB, 2

PB, 3

PB, 4

PB, 5

PB, 6

PB, 7

PB, 8

B

A

Fig. 14.4 Measuring conflict between two discretized trajectories A and B

The conflict probability, PC(PA,kA ,PB,kB), associated to every pair of sample
points PA,kA and PB,kB of trajectories A and B. This can be computed using Eq. (14.1).
However, this pair-wise comparison is time consuming. It requires prohibitive time
in a large-scale application context as the one considered in this study. A fast algo-
rithm to detect such a probabilistic violation of the minimum separation require-
ments (i.e. to compute the conflict probabilities associated to all pairs of sam-
pled trajectory points between large-scale aircraft trajectories) will be presented in
Sect. 14.4.

14.3.2 Trajectory Separation Methods

In this subsection, we describe the three possible trajectory separation methods we
are considering in order to avoid conflicts:

• shifting the departure time,
• changing the flight level,
• modifying the route (horizontal flight profile).

The alternative departure time, alternative flight level, and alternative route to be
allocated to each flight are modeled as follows.
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14.3.2.1 Alternative Departure Time

The departure time of each flight, i, can be shifted by a positive (delay) or a negative
(advance) time shift denote δi. The departure time, ti, of flight i is therefore

ti = ti,0 + δi,

where ti,0 is the initially-planned departure time of flight i. Following common prac-
tice in airports, the set of possible values for δi will be discrete.

14.3.2.2 Alternative Flight Level

To separate the trajectories in the vertical plane, we define another decision variable
associated to each flight i: a flight level shift li ∈ Z. Therefore, the flight level of
each flight i is given by:

FLi = FLi,0 + li,

where FLi,0 is the initially-planned flight level of flight i. Figure 14.5 shows a tra-
jectory with two alternative flight levels.

z (ft)

FL 340

initial trajectory

alternative trajectory

time (seconds)

FL 320

FL 300

Fig. 14.5 Two alternative vertical profiles of a trajectory (two alternative flight levels)

14.3.2.3 Alternative Route Design

An alternative route should not deviate too much from the nominal route. It should
also be computed in a short computation time. To generate an alternative route, we
modify the given initial horizontal flight profile of a trajectory, i, by placing a set
of virtual waypoints near the initial horizontal flight profile of flight i, and then by
reconnecting the successive waypoints with straight-line segments.
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We call longitudinal axis (x′) the axis that is tangent to the initial en-route seg-
ment, and the lateral axis (y′) is the axis that is perpendicular to the longitudi-
nal axis. The position of each waypoint will be defined using these relative x′y′-
reference axes.

We define, for each flight i, a vector, wi, of virtual waypoints (optimization vari-
ables) used to control the trajectory shape of flight i: wi = (w1

i ,w
2
i , . . . ,w

m
i ), where

M denotes the number of virtual waypoints that the user is allowed to introduce,
and where wm

i = (wm
ix′ ,w

m
iy′) is the mth virtual waypoint of trajectory i, where wm

ix′
and wm

iy′ are the longitudinal and lateral components of wm
i respectively. Figure 14.6,

illustrates possible alternative horizontal profiles for a given trajectory constructed
with M = 2 virtual waypoints.

!
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destination
airport
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2

en-route

y’
x’

0

departure
airport

initial trajectory

alternative trajectory

virtual waypoint

y (Nm)

x (Nm)

Fig. 14.6 An alternative horizontal profiles for a given trajectory, i, constructed with M = 2 virtual
waypoints

Remark that such an alternative trajectory is likely to yield an increase in flight
duration when compared with the initial trajectory. To compensate this increased
flight duration, the altitude profile will be updated to avoid a premature descent. Let
Text be the increased flight duration of flight i. In the case of a regional flight, whose
flight phases are all carried out in the same (current) airspace sector, the altitude
profile is updated by extending the cruise phase at the top of descent for a duration
of Text as illustrated in Fig. 14.7.

On the other hand, for a flight whose origin or destination airports are outside
of the current airspace, the top of descent of such flight may not be in the current
airspace sector. Therefore, we update the altitude profile by extending the flight
at maximum altitude (in the current airspace) for a duration Text . In this case, the
vertical profile is updated according to six possible cases according to whether the
origin/destination airports are in the current airspace or not and to whether the initial
trajectory has a cruise (constant-level) phase or not, as illustrated in Fig. 14.8.
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Fig. 14.7 Altitude-profile update: extending cruise phase at the top of descent (TOD)
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Fig. 14.8 Altitude profile update: six possible ways to extend the trajectory at maximum altitude

14.3.3 Optimization Formulation

In this subsection, we present an optimization formulation of the strategic 4D tra-
jectory planning problem. The strategic 4D trajectory planning methodology us-
ing route/flight-level/departure-time allocation can be formulated as an optimization
problem attempting at minimizing the interaction between trajectories.

14.3.3.1 Given Data

A problem instance is given by:

• A set of N initial (nominal) discretized 4D trajectories;
• The maximal time error, tε ;
• The sampling time step: ts;
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• The interpolation sampling time step: tinterp;
• The number of allowed virtual waypoints: M;
• The discretization time step for the possible delay/advance departure-time shift

interval: δs;
• For each flight i, for i = 1, . . . ,N:

– The initial planned departure time: ti,0;
– The maximum allowed advance departure time shift: δ i

a < 0;
– The maximum allowed delay departure time shift: δ i

d > 0;
– The initial planned flight level: FLi,0;
– The maximum allowed flight level shift: li,max;
– The length of the initial planned route: Li,0;
– The maximum allowed route length extension coefficient: 0 ≤ di ≤ 1;
– The user-defined parameters controlling the dimensions of the feasible do-

mains for placing the virtual waypoints: ai and bi.

14.3.3.2 Decision Variables

As mentioned above, we consider three ways to separate trajectories. In the time
domain, one can use a departure-time shift δi is associated to each flight, i. In
the 3D space, one can relay on a vector, wi, of virtual waypoint locations, wi =
(w1

i ,w
2
i , . . . ,w

M
i ) associated to each flight, i, where M is the number of virtual way-

points. Finally, in the vertical plane, a flight-level shift, li may be applied to each
flight i.

Let us set the compact vector notation:

δ = (δ1,δ2, . . . ,δN),

l = (l1, l2, . . . , lN).

and
w = (w1,w2, . . . ,wN).

Therefore, the decision variables of our route/departure-time allocation problem can
be represented by the vector:

u := (δ , l,w).

We shall denote by ui the components of u. It is a vector whose components are
related to the modification of the ith trajectory, thereby:

ui := (δi, li,wi)

14.3.3.3 Constraints

The above optimization variables must satisfy the following constraints:
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Allowed departure time shift. The departure time of flight i is given by an auxil-
iary optimization variable, ti, which is directly linked to the above decision variables
as follows:

ti = ti,0 + δi,

where ti,0 is the initial planned departure time of flight i.
In practical problems, passengers may have to transfer from one flight to another

in order to get to their final destination. This generates precedence constraints stip-
ulating that certain flights must arrive at the airport before the departure of others.
In addition, each aircraft may fly several flights a day. This raises a constraint of
minimum rotation time between flights (time required to disembark the passengers,
to service the aircraft, and to embark passengers for the next flight). These con-
straints are not taken into account in this work; however they can easily be handled
by pre-processing the set of feasible time shifts of each flight.

In order to prevent excessive delay (or advance) of departure time, the departure-
time shift δi is limited to lie in the interval

[δ i
a,δ

i
d ].

However, common practice in airports conducted us to rely on a discretization
of this time interval. Given a user-defined departure time shift step-size δs (to be

set by the user), this yields Ni
a := −δ i

a
δs

possible advance slots and Ni
d :=

δ i
d
δs

possible

delay slots of flight i. Parameters are to be set by the user so that both δ i
a and δ i

d are
multiples of δs. Therefore, the set, Δi, of all possible departure time shifts of flight
i:y

Δi := {−Ni
a.δs,−(Ni

a − 1).δs, . . . ,−δs,0,δs, . . . ,(N
i
d − 1).δs,N

i
d .δs}. (14.2)

Maximum allowed flight-level changes. In order to limit the change of flight
levels, the flight level shift is also bounded. The set, ΔFLi, of all possible flight-
level shifts of flight i is given by:

ΔFLi = [FLi,0 − li,max, . . . ,FLi,0 − 1,0,FLi,0 + 1, . . . ,FLi,0 + li,max]. (14.3)

Maximal route length extension. The alternative trajectory induces route length
extension which causes an increase of fuel consumption. Therefore, it should be
limited so that it remains acceptable by the airline. Let 0 ≤ di ≤ 1 be the maximum
allowed route length extension coefficient of flight i (to be set by the user). The
alternative en-route profile of flight i must satisfy:

Li(wi)≤ (1+ di)Li,0, (14.4)

where Li(wi) is the length of the alternative en-route profile determined by wi. This
constraint can be satisfied a priori simply by restricting the set of possible waypoint
locations (as will be described below).
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Allowed waypoint locations. To limit the search space, to prevent undesirable
sharp turns, and to restrain the route length extension, we bound the possible lo-
cation of each virtual waypoint. For simplicity, for each trajectory i, and for each
waypoint wm

i , its longitudinal component, wm
ix′ , is set to lie in the interval:

W m
ix′ :=

[(
m

1+M
− bi

)
Li,0,

(
m

1+M
+ bi

)
Li,0

]
, (14.5)

for m = 1, . . . ,M; and i = 1, . . . ,N, and where bi ≥ 0 is a user-defined coefficient
controlling the length of the interval W m

ix′ .
Furthermore, to avoid sharp turns, the longitudinal position of the virtual way-

points should not be too close to each other. To obtain a regular trajectory, the lon-
gitudinal component of two adjacent waypoints must not overlap, i.e.

(
m

1+M
+ bi

)
<

(
m+ 1
1+M

− bi

)
,

and hence the user should choose parameter bi so that

bi <
1

2(M+ 1)
.

Similarly, the lateral component, wm
iy′ , is restricted to lie in the interval:

W m
iy′ := [−ai.Li,0,ai.Li,0], (14.6)

where ai ≤ 0 is a user-defined coefficient. The box-size parameters (ai,bi)
N
i=1 should

be chosen so that the maximal route length extension constraint (14.4) is satisfied for
all possible locations of the m waypoints in the 2D boxes {W m

ix′ ×W m
iy′ }M

m=1, for every
trajectory i (i = 1,2, . . . ,N). Figure 14.9 illustrates for a trajectory i the 2D boxes of
possible locations for M = 2 virtual waypoints, an example of positions for w1

i and
w2

i , and the resulting alternative trajectory. More precisely, for each trajectory i, ai

and bi must be chosen a priori so that:

max
wi

{Li(wi)|wi ∈Wix′ ×Wiy′ } ≤ (1+ di)Li,0

14.3.3.4 Objective Function

In the strategic trajectory planning, where uncertainty is too large to fine-tune the
trajectories, we focus on separating roughly aircraft trajectories rather than on solv-
ing precisely each conflict locally. Therefore, we introduce here the concept of
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Fig. 14.9 2D boxes of possible locations for M = 2 virtual waypoints, a proposition of location of
the virtual waypoints, and the corresponding alternative trajectory

interaction between trajectories to define a situation that occurs in the planning
phase, when more than one trajectory compete for the “same space” at the “same
period of time”.

For given values of the decision variables u = (δ , l,w), one must first dis-
cretize each of the N resulting alternative trajectories into a sequence of 4D points:
{Pi,k(ui)}Ki

k=1, i = 1,2, . . . ,N. Each of these points depends only on the ith compo-
nent of u.

Let us define an interaction at a point Pi,k(ui) to be the sum of all the con-
flict probabilities associated to point Pi,k(ui); we denote it Φi,k(u). Remark that it
depends also on the other trajectories j �= i. Hence,

Φi,k(u) =
N

∑
i=1

N

∑
j=1
j �=i

Ki

∑
k=1

Kj

∑
l=1

PC(Pi,k(ui)Pj,l(u j)),

where Ki and Kj are the number of sampling points for trajectory i and j respectively.
The interaction associated with trajectory i, denotedΦi(u), is defined as follows:

Φi(u) =
Ki

∑
k=1

Φi,k(u).

Finally, the total interaction between trajectories, Φtot(u), for a whole N-aircraft
traffic situation is simply defined as:

Φtot (u) =
N

∑
i=1

Φi(u) =
N

∑
i=1

Ki

∑
k=1

Φi,k(u). (14.7)
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One wishes to determine values for the optimization variables δi, li, and wi for
each flight i = 1,2, . . . ,N so as to minimize the total interaction, Φtot (u), between
the N given trajectories.

To summarize, the strategic trajectory planning problem with uncertainty can be
represented by an interaction minimization problem formulated as a mixed-integer
optimization problem as follows:

min
u
Φtot (u)

subject to

δi ∈ Δi, i = 1,2, . . . ,N

li ∈ ΔFLi, i = 1,2, . . . ,N

wm
i ∈W m

ix′ ×W m
iy′ , m = 1,2, . . . ,M, i = 1,2, . . . ,N,

(P1)

whereΦtot (u) is defined by (14.7), and Δi, ΔFLi, W m
ix′ , and W m

iy′ are defined by (14.2),
(14.3), (14.5), and (14.6) respectively.

The optimization formulation (P1) involves mixed-integer variables introduc-
ing high combinatorics to the search space. We have W m

ix′ ×W m
iy′ ⊆ R2 for m =

1,2, . . . ,M and i = 1,2, . . . ,N, and therefore w ∈ R2MN . Each discrete departure-

time shift-variable (δi) feasible set has cardinality |Δi|=
|δ i

a|+|δ i
d |

δs
+1, which implies

δ ∈ Z
(N

|δ i
a|+|δ i

d |
δs

+1). Finally, each discrete flight-level shift variable (li) feasible set
has cardinality 2li,max + 1; therefore we have l ∈ ZN(2li,max+1).

We emphasize the fact that one evaluation of the objective function Φtot for one
proposition of the decision variables u = (δ , l,w) involves discretizing each of the N
resulting candidate trajectories. Remark also that, the objective function of problem
(P1) is non-separable, because each term Φi,k(u) does not depend solely on the
variable ui; it is also affected by neighboring trajectories. The evaluation of the
objective function involves a heavy computational burden in practice, as this will
be seen in the sequel of this chapter where we consider a real-world problem at the
nation-wide scale. Besides, the objective function may feature several local optima
(the objective function may easily be shown to be multimodal). This route/flight-
level/departure-time assignment problem with uncertainty is therefore sufficiently
difficult to motivate recourse to a stochastic method of optimization.

14.4 Interaction Detection Module

To evaluate the objective function, Φtot , at a candidate solution, u, one needs to
compute the interaction at each possible pair of sampled trajectory points involved
in N aircraft trajectories. To avoid the exhaustive N(N−1)

2 time-consuming pair-wise
comparisons, which is prohibitive in our large-scale application context, we propose
the following grid-based interaction-detection scheme.
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First, we define a four-dimensional (3D space + time) grid. The dimension of this
4D grid must be large enough to include the N given trajectories (and all its possible
modifications through our decision variables). For instance, the time dimension of
the grid must span enough to include the earliest and the latest flights on a given
operational day taking into account all candidate departure-time shift options.

The 4D grid is partitioned into cells (see Fig. 14.10). To detect interactions, the
idea is to store the N trajectories in each corresponding cell in the 4D grid. Then
for each trajectory i, and for each cell (Ix, Iy, Iz, It) corresponding to each sampling
point Pi,k := (xPi,k ,yPi,k ,zPi,k , tPi,k), we simply need to check all the surrounding cells
corresponding to the time period [tPi,k −2tε ,Pi,k +2tε ]. If these neighboring cells are
occupied by other aircraft, for instance j, we then note j ∈ (Ix, Iy, Iz, It), and then the
conflict probabilities between point Pi,k and the sample point corresponding to those
aircraft are computed (otherwise, it is null).

In order to optimize the required computation memory, we implement the
interaction-detection scheme using a so-called harsh table, which is a data struc-
ture that maps keys to values or entries. It allows us to store information in an array
without the need to define a priori the size of the array. Moreover, the hash table only
stores data as it is created; therefore it does not use memory for the (very numerous)
empty cells in the array.

t0 t1 t2 tn

timexxxx
zzzz

yyyy

. . .

Fig. 14.10 Four dimension (space–time) grid

In order not to underestimate interaction (missing the loss of spatial separation
occurring between two successive sampling time steps), trajectories must be dis-
cretized with a sufficiently-small sampling time step, ts, which depends on the max-
imum possible aircraft horizontal and vertical speeds. Figure 14.11 illustrates an
undetected violation of the horizontal minimum separation occurring between two
successive time steps. As stated in [4], the worst-case scenario for interaction de-
tection in the horizontal plane occurs when two aircraft follow parallel trajectories
that are separated by a distance, D, less than or equal to the horizontal separation
norm, Nh = 5 Nm, at maximum horizontal speed, Vhmax , with headings in opposite
directions. Hence, in the horizontal plane, undetected interaction can occur when:

ts >
Nh

Vhmax

cos

(
arcsin

(
D
Nh

))
.
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tPA ,1 + ts

tPB ,1 + ts

tPA ,1 + t<ts tPB ,1 + t<ts
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Fig. 14.11 Undetected violation of horizontal separation when the sampling step, ts, is too large.
In (a) and (c) the horizontal spatial distances between A and B are larger than Nh = 5 Nm, therefore
the violation of the horizontal minimum separation, which occurs in the meantime (figure (b))
cannot be detected

In the vertical plane, the worst-case scenario occurs when one aircraft is climbing
at a maximum rate of climb, RoCmax, and another is descending at maximum rate of
descent, RoDmax (see Fig. 14.12). Thus, in the vertical plane, in an analogical way
as what was done in [4] for the horizontal plane, we can easily show that undetected
interaction can occur when:

ts >
Nv

(RoCmax +RoDmax)
,

where Nv := 1,000 ft is the vertical separation norm.

Fig. 14.12 Undetected violation of the vertical minimum separation between two aircraft when
the sampling step, ts, is too large

In order to avoid such undetected conflicts, one can therefore simply choose a
sufficiently small value for the (user-provided) sampling time step, ts. However, us-
ing too small sampling time step leads to a large number of trajectory sample points,
which in turn requires more computation time and memory. Instead, we propose an
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inner-loop algorithm, called Interp, detecting the violation of minimum separa-
tion requirements between two sampling times, t and t + ts, by interpolating aircraft
positions with a sufficiently small interpolation step size, tinterp. This tinterp value
must be set by the user so as to guarantee that no interaction remains undetected.
Then, one checks each pair of these interpolated points. The algorithm stops when
a violation of the minimum separation requirements is identified or when every pair
of points have been checked. The inner-loop interpolation algorithm called Interp
is described in Fig. 14.13. The algorithm to compute the total interaction between
the N trajectories, Φtot (u), is described in detail in Fig. 14.14.

Fig. 14.13 Inner-loop interpolation algorithm

14.5 Hybrid-Metaheuristic for Strategic Trajectory Planning

In our country-wide air traffic scale application context, the evaluation of the ob-
jective function value relies on a black-box simulation through the interaction de-
tection scheme introduced in the previous section. For such a large-scale problem,
this simulation requires a very large computation memory. Therefore, to solve the
interaction minimization problem (P1), we rely on a non-population based hybrid-
metaheuristic optimization method that combines the advantages of simulated an-
nealing and of an iterative-improvement local search.

After presenting brief overviews of simulated annealing and iterative-improvement
local search, this section presents the optimization methodology we are proposing.
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Fig. 14.14 Interaction detection algorithm

14.5.1 Simulated Annealing: A Brief Overview

Simulated annealing is inspired by the annealing process in metallurgy where the
state of material can be modified by controlling the cooling temperature. The phys-
ical annealing process consists in heating up a material to bring it to a high energy
state. Then, it is slowly cooled down, keeping each given temperature stage for a
sufficient duration until a thermodynamic balance is reached. The temperature is re-
duced according to a pre-described temperature reduction schedule, until the mate-
rial reaches a global-minimum energy state and forms a crystallized solid. Decreas-
ing too rapidly the temperature can however yield a non-desirable local minimum
energy state.
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In the simulated annealing optimization algorithm, the objective function to be
minimized is analogical to the energy of the physical problem, while the decision
variables of the problem correspond to the coordinates of the material’s particles. A
control parameter, T , that decreases as the number of iteration grows, plays the role
of the temperature schedule, and a number of iterations, NI , at each temperature step
plays the role of time duration.

For a physical system, when the system reaches the thermodynamic balance at a
given temperature, T , the energy, E , of its particles is distributed according to the

Boltzmann distribution: e
−E
kBT , where kB is the Boltzmann constant. To simulate this

evolution of the physical system towards the thermal equilibrium, the Metropolis
algorithm is used. For a given temperature, T , starting from a current configuration,
the state space of the simulated system is subjected to a transformation (e.g. apply a
local change to one decision variable). If this transformation improves the objective
function value, then it is accepted. Otherwise, it is accepted with a probability

Paccept := e
ΔE
T ,

where ΔE is the degradation of the objective function value.
Once the number of iterations, NI is reached, the temperature is decreased accord-

ing to a pre-defined cooling schedule. As the temperature decreases, the probability,
Paccept , to accept a degrading solution also decreases. The algorithm will eventually
converge to a local optimum whose value is close to that of the global optimum if the
temperature was decreased sufficiently slowly. The simulated annealing algorithm
used here is summarized in Fig. 14.15, where Sc represents a current solution, and
SN represents a neighboring solution generated by a neighborhood function, which
will be presented in the following section.

14.5.2 Iterative-Improvement Local Search: A Brief Overview

An iterative-improvement local search is an algorithm that starts from a given ini-
tial solution, and then iteratively replaces the current solution with a better solu-
tion chosen in a pre-defined neighborhood. Given an initial solution, the iterative-
improvement local search generates a neighborhood solution, and then accepts this
new solution only if it yields an improvement of the objective-function value. The al-
gorithm stops when a (pre-defined) maximum number of iteration, NLoc, is reached.
The quality of the solution found by the local search depends on the initial solution,
and on the definition of the neighborhood structure.

Let us denote by Sc the current solution, and let i be a given flight. In this work,
we introduce a local-search module that relies on two different search strategies:

1. Intensifying the search on one Particular Trajectory (PT). This state-exploit-
ation step focuses on improving Sc by applying a local change from a neigh-
borhood structure involving solely flight i, so that only the decision variables
ui = (δi, li,wi) can be modified.
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Simulated annealing
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Fig. 14.15 Simulated annealing algorithm

2. Intensifying the search on the Interacting Trajectories (IT). This state-exploit-
ation step applies a local change, from a neighborhood structure involving several
flights: the flights that are currently interacting with flight i in solution Sc. Mod-
ifications to each of these neighboring flights are made sequentially in a greedy
manner. For instance, suppose that trajectory i interacts with trajectories p,q, and
r. Changes are sequentially applied to the decision variables up,uq, and ur. Ob-
viously, the order in which the flights are considered may affect the quality of the
resulting IT step.

14.5.3 Hybrid Simulated-Annealing/Iterative-Improvement Local
Search

To implement the hybrid metaheuristic, we have to determine a structure to control
the level of hybridization between each metaheuristic algorithm. According to [23],
we may classify the level of hybridization into two levels:

• The low-level hybridization addresses an integration of metaheuristic algorithms,
where each algorithm is strongly coupled with each other. In this case, an indi-
vidual component in each metaheuristic may be replaced by, or exchanged, with
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a component from another metaheuristic algorithm. For instance, one may con-
sider using a greedy heuristic as a crossover operator in a genetic algorithm.

• For the high-level hybridization, each algorithm retains its own characteristics
without direct interactions between the internal functions of the algorithm. In-
formation are exchanged between each self-contained metaheuristic algorithm
through a well-defined interface. For instance, the best solution obtained from
one metaheuristic algorithm can be used as an initial solution for another meta-
heuristic algorithm.

Another property to consider is the order of carrying out each metaheuristic
algorithm. In general, the algorithms can be run either in a sequential, an interleaved,
or a parallel manners.

Finally, one has to determine the values of the various user-provided parameters
specifying the metaheuristics. These parameters control, for example, the balance
between exploration and exploitation of the solution space and must be fine-tuned
with care as they have a strong impact on the quality of the solution obtained.

For the sake of simplicity in this preliminary implementation, the simulated an-
nealing and the iterative-improvement local search are hybridized in a self-contained
(high-level) manner where each algorithm is sequentially run. The iterative local
search is integrated as an inner loop in the simulated annealing (SA) algorithm so
that the local search is considered as one search step of the SA. The initial solution
of the local search is provided by the current solution of the simulated annealing.
The solution found by the local search is returned to the simulated annealing, where
an acceptance condition will be systematically applied.

The order of carrying out each metaheuristic is given as follows.

• At each iteration of the hybrid algorithm, one flight is randomly chosen among all
flights featuring a certain, pre-defined level of interaction. More precisely, let Φτ
be a pre-defined interaction threshold value (provided by the user). The hybrid
algorithm chooses randomly one flight in the set {i ∈ {1,2, . . . ,N} : Φi ≥ Φτ}.
Let i denote the selected flight.

• Then, the hybrid algorithm determines whether to perform a classical SA step, or
to trigger the iterative-improvement local search, or to perform both search strate-
gies successively. This decision is taken according to a specific (user-defined)
probability that depends upon the control temperature, T , and the value of the
term, Φi of the objective function corresponding to flight i.

The probability to carry out an SA step, PSA, is:

PSA(T ) = PSA,min +(PSA,max −PSA,min) ·
T0 −T

T0
, (14.8)

where PSA,max and PSA,min are the (user-provided) maximum and minimum allowed
probabilities to perform SA (pre-defined by the user).

The probability of running the iterative-improvement local search module,
PLoc, is given by:
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PLoc(T ) = PLoc,min +(PLoc,max −PLoc,min) ·
T0 −T

T0
, (14.9)

where, similarly, PLoc,max and PLoc,min are the (user-provided) maximum and mini-
mum probabilities to perform the local search.

Finally, the probability of carrying out both SA and the local search (succes-
sively), PSL, is simply:

PSL(T ) = 1− (PSA(T )+PLoc(T )) (14.10)

A key factor in tuning this hybrid algorithm is to reach a good trade-off between
exploration (diversification) and exploitation (intensification) of the solution space,
i.e. a compromise between fine convergence towards local minima, and the compu-
tation time invested in exploring the whole search space in order not to miss a global
optimum.

The proposed hybrid algorithm is detailed in Fig. 14.16, where Tinit and Tf inal

are respectively the initial and the final temperatures of the (user-provided) cooling
schedule, and where NI is the maximal number of iterations at each temperature step
(also set by the user).

Fig. 14.16 Hybrid simulated-annealing/iterative-improvement local search algorithm
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14.5.4 Neighborhood Function

A neighboring solution is generated by applying a so-called neighborhood function
(or transformation operator) that generates a local change to the current solution.
This change should be computed rapidly, but should not involve a drastic change in
the current solution. Otherwise, the characteristics of the SA will become those of a
pure random search.

To generate a neighboring solution, first a flight, i, to be modified is chosen. Then,
one has to determine whether to modify the location of waypoints, or to modify its
departure time, or its flight level. In general, searching for a neighboring solution in
the time domain would be more preferable, since it does not induce extra fuel con-
sumption. However, empirical tests show that limiting the search to only that degree
of freedom results in prohibitive computational times before reaching a reasonably
good solution.

Therefore, we introduce further user-defined parameters: 0 ≤ Pw ≤ 1, 0 ≤ PFL ≤
1, and Pδ to control respectively the probabilities of modifying: the location of the
waypoints, the flight level, and the departure time of the chosen flight i. Once Pw

and PFL are chosen, Pδ is simply defined to satisfy Pw+PFL+Pδ = 1. These param-
eters allow the user to implement his preferences for the resulting conflict-free 4D
trajectories.

14.6 Computational Results

The proposed strategic 4D trajectory planning methodology is implemented with
the programming language Java on an AMD Opteron 2 GHz processor with 128 Gb
RAM.

The methodology is tested on air traffic data representing a full-day en-route air
traffic over the French airspace. It consists of N = 8,836 trajectories. Figures 14.17
and 14.18 illustrate the initial given trajectory sampling with ts = 60 s in both the
horizontal and the vertical planes (the dense area located at the coordinate point
(0;5× 106) on Fig. 14.17 corresponds to Paris).

The parameter values that specify the problem under consideration are given in
Table 14.1. Simply to give an idea of the complexity of the computation of the ob-
jective function of this problem instance; when using the sampling time-step value
ts = 20 s, the N trajectories are discretized into between 1,388,080 and 2,175,928
sample 4D points according to the location of waypoints used to modify the shape
of trajectories. With regard to the dimension of the search space, remark that our
optimization problem involves for this instance:

• 2MN = 53,016 (continuous) waypoint variables (w);

• N
|δ i

a|+|δ i
d |

δs
+ 1 = 3,189,796 (discrete) departure-time shifts variables (δ );

• N(2li,max + 1)= 44,180 (discrete) flight-level shifts variables (l);
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Fig. 14.17 The initial given trajectories con-
sisting of a full-day traffic over the French
airspace in the horizontal plane

Fig. 14.18 The initial given trajectories con-
sisting of a full-day traffic over the French
airspace in the vertical plane

for a total of 53,016 continuous variables and 3,233,976 discrete variables. Em-
pirical tests lead us to set the values of the parameters of the hybrid simulated-
annealing/local-search as presented in Table 14.2.

Table 14.1 (User-defined) parameter values of the problem

Parameters Value

Sampling time step, ts 20 s
Inner-loop interpolation sampling time step, tinterp 5 s
Maximum departure time shift, δ i

a = δ i
d 60 min

Discretization time step for possible delay/advance departure-time shift 20 s
Maximum allowed route length extension, di 0.20
Maximum number of flight level shifts, li,max 2
Maximum number of waypoints, M 3
Probability to modify horizontal flight profile, Pw 1/3
Probability to modify flight level, PFL 1/3
Probability to modify departure time, Pδ 1/3

Table 14.2 Empirically-set (user-defined) parameter values of the hybrid algorithm

Parameter Value

Number of iterations at each temperature step, NI 200
Number of iterations of the inner loop local search, NLoc 5
Geometrical temperature reduction coefficient, β 0.99
Final temperature, Tf inal (1/500).Tinit

Probability to carry out simulated annealing, PSA 0.8 + 0.1 T/Tinit

Probability to carry out the inner-loop local search, PLoc 0.4 + 0.2 T/Tinit
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The initial temperature, Tinit , is calculated using an algorithm proposed in [13,
pp. 44–45]. It is computed by initiating 100 deteriorating disturbances at random;
evaluating the average variation (ΔΦavg) of the objective-function value; and then

deducing Tinit from the relation: e
−ΔΦavg

Tinit = τ0, where τ0 is the initial rate of accept-
ing degrading solutions whose value depends on the assumed quality of the initial
configuration. Empirical tests leads us to set τ0 = 0.3. Each temperature reduction
is performed using a geometric reduction coefficient, β , whose value is provided by
the user: Tk+1 := βTk.

The simulations are performed considering successively aircraft time uncertainty
of 2 and 3 min, respectively. The proposed strategic trajectory planning methodol-
ogy is able to find interaction-free trajectory plans for both cases. The required com-
putation time for each problem is presented in Table 14.3. When considering higher
level of time uncertainty (3 min), the solution space becomes more constrained and
therefore the algorithm requires more computation time to converge.

The number of modified flight plans for both cases is compared in Fig. 14.19.
The average changes made to the initial flight plan is shown in Table 14.4. The
proposed algorithm is able to ensure separation of these nation-wide scale aircraft
trajectories by modifying roughly 50% of the initial flight plans, yielding an aver-
age of 5% route length extension, 1.5 flight level shifts, and 30 min departure-time
shifts.

Table 14.3 Numerical results considering aircraft time uncertainty of 2 and 3 min

Time uncertainty interval Initial Resulting Computation No. of iterations
(2tε ) (min) Φtot Φtot time (min) performed

2 217,441.37 0.0 188.07 653,970
3 274,953.55 0.0 2210.42 5,583,192

Table 14.4 Average modifications applied to the initial flight plan

Time uncertainty interval Avg. route Avg. FL Avg. departure-
(2tε ) (min) length extension (%Li,0) shifts time shifts (min)

2 5.43 1.55 30.37
3 5.66 1.55 30.15

14.7 Conclusions

We introduced an efficient methodology to address the strategic trajectory planning
problem in the framework of future trajectory-based ATM operations assuming time
uncertainty on the position of the aircraft along its 4D trajectory. The proposed
methodology minimizes interaction (a sum of conflict probabilities) between trajec-
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Fig. 14.19 Number of modified flight plans considering time uncertainty of 2 and 3 min

tories and results in conflict-free flight plans on a nation-wide scale data instance.
Uncertainty of aircraft arrival time at a given position is taken into account by mod-
eling the predicted aircraft arrival time as a triangular probability distribution over
the uncertainty time period. The proposed trajectory planning approach relies on a
route/flight-level/departure-time allocation technique to separate the aircraft trajec-
tories. The problem was modeled mathematically under the form of a mixed-integer
optimization problem aiming at minimizing total interaction between trajectories.

The problems we aim at addressing involve a full-day of traffic at the nation-wide
scale involving more than 8000 trajectories. In order to ensure separation between
trajectories under time uncertainty, we developed an efficient grid-based conflict
detection module. To reduce the number of sampling points needed while mini-
mizing further the computation time, this interaction-detection method interpolates
the aircraft position between two suspected sampling points instead of refining the
sampling-time step.

To find an optimal route, a flight level, and a departure time for each flight, we
rely on a hybrid-metaheuristic optimization algorithm that combines the advantages
of simulated annealing and of an iterative-improvement local-search method. The
simulated annealing part ensures diversity of the candidate solutions considered,
while the local-search module intensifies the search in promising regions of the
feasible domain in order to accelerate convergence.

Computational experiments on a day instance of en-route air traffic over the
French airspace with different levels of time uncertainty show that the proposed
methodology is able to find interaction-free (i.e. conflict-free) trajectory plans, and
to ensure separation between aircraft trajectories in presence of time uncertainty,
within a computation time viable for the strategic planning level.

Further research should concentrate on reducing the extra route length, and the
number of flight level shifts, and of departure-time shifts, instead of being content
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with (possibly costly) interaction-free solutions. Another challenging research track
is to take into account equity between airlines in the trajectory optimization process
when deciding which trajectory is to be modified in order to avoid a conflict.
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Chapter 15
Sampling-Based Genetic Algorithms for the
Bi-Objective Stochastic Covering Tour Problem

Michaela Zehetner and Walter J. Gutjahr

Abstract The paper investigates a sampling-based extension of the NSGA-II algo-
rithm, applied to the solution of a bi-objective stochastic covering tour problem. The
proposed extension uses variable samples for gradually improving approximations
to the Pareto front. The approach is evaluated on a test benchmark for a humanitar-
ian logistics application with data from Senegal. Comparisons to alternative solution
techniques, in particular also to the exact solution of the deterministic counterpart
problem based on a fixed sample, show the superiority of our approach.

Keywords Humanitarian logistics • Genetic algorithms • Multi-objective opti-
mization • Stochastic optimization • Covering tour problem

15.1 Introduction

“On a Saturday morning in March 2003, I got a call from our regional management
team in Amman requesting an urgent airlift of emergency supplies, materials and ve-
hicles. I immediately called our head logistician who proceeded to make calls to our
logistics staff in Italy, Germany and the US. By Monday morning bids were being
answered. By Tuesday morning the transporter had been selected and mobilised. By
Wednesday morning all the goods were prepared for shipment. By Thursday morn-
ing the aircraft was on the tarmac at Brindisi airport. That afternoon it landed with
40 tonnes of goods in Amman and was cleared and offloaded within a couple of
hours. Three transport trucks, 10,000 collapsible water containers and purification
tablets, 6,300 blankets and 1,800 plastic tarpaulins were among the goods landed.
By the weekend – seven days after the initial phone call – these goods were en route
to regional destinations in preparedness and readiness for possible influx of refugees
from Iraq.” [16].

When disasters occur – like in the example above – a good logistics management
is very critical. The affected people are to be provided with necessities like food,
water, medicines and sanitation as quickly as possible. The big challenge is to get

M. Zehetner • W.J. Gutjahr (�)
University of Vienna, Wien, Austria
e-mail: walter.gutjahr@univie.ac.at

© Springer International Publishing AG 2018
L. Amodeo et al. (eds.), Recent Developments in Metaheuristics,
Operations Research/Computer Science Interfaces Series 62,
DOI 10.1007/978-3-319-58253-5 15

253

mailto:walter.gutjahr@univie.ac.at


254 M. Zehetner and W.J. Gutjahr

these things to the right place at the right time and at the right cost. Decisions have
to be made for example about procurement, transportation, warehousing, inventory
management and others. These are some of the important tasks of humanitarian
logistics (cf. [50]). Generally, the field of humanitarian logistics is growing and also
has to because the number of disaster relief operations will possibly increase fivefold
within the next 50 years (cf. [49]).

In Tricoire et al. [51], a bi-objective stochastic covering tour problem concerned
with disaster management is formulated and solved using the framework of the
epsilon-constraint algorithm. One objective of the problem is to minimize the ex-
pected uncovered demand of the affected people, and the other objective is to min-
imize total costs. Total costs include the cost for opening distribution centers and
the cost for carrying out the delivery tours. Because of possible short-term envi-
ronmental changes and other uncertainty factors, demand cannot be assumed as
deterministically known and is therefore modeled by a probability distribution. A
branch-and-cut solution algorithm is used for determining the set of Pareto-optimal
solutions, based on a comparably small set of randomly chosen demand scenarios.
In view of the inherent complexity of the problem, however, it is not possible to
solve medium-sized or large instances to optimality.

In this paper, another way to address this problem will be studied. Whenever
the distribution defined by a set of scenarios is rather an approximation to a true
stochastic model than a proper description of this model itself, the solution of the
scenario-based optimization problem cannot be considered as the exact solution of
the original problem anyway. Thus, the solution quality with respect to the original
problem may possibly even be increased by solving the underlying deterministic
problem by a powerful heuristic instead of a mathematical programming algorithm,
and by using the saved computation time for including a much higher number of
scenarios.1 Simultaneously, this also allows to deal with larger problem instances.

For solving the underlying (in our case multi-objective) deterministic problem
heuristically, we have chosen the well-established NSGA-II metaheuristic, devel-
oped by Deb et al. [8]. Clearly, our multi-objective application problem is special
insofar as it builds on a stochastic model, which means that objective function values
can only be estimated by sampling. This raises the question of a suitable collabo-
ration between the NSGA-II algorithm and a sampling procedure. As we shall see,
this collaboration can be organized in very straightforward ways, which will provide
us with two basic approaches. As a third alternative, however, also a more sophis-
ticated interplay may be used: We shall apply the Adaptive Pareto Sampling (APS)
framework proposed in [19] for the solution of a broad class of stochastic multi-
objective optimization problems. This approach has appealing theoretical features:
On mild conditions, convergence to the true Pareto front can be ensured [19, 23],
and it can be shown analytically that the optimization time overhead compared to
the solution of the corresponding deterministic multi-objective counterpart problem

1 It should be mentioned that also in these cases, the exact solution of the sample-average approx-
imation problem has its own advantages, e.g., it allows the construction of confidence intervals on
the optimality gap (cf. [37]).
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is only moderate [21]. Of course, the performance in an application to a given prob-
lem type has to be evaluated experimentally. The present chapter contains results of
this kind.

The chapter is organized as follows. Section 15.2 presents the problem to be in-
vestigated, first in informal, then in mathematical terms. In Sect. 15.3, the solution
approaches to be compared and the used algorithms (NSGA-II and APS) are de-
scribed. Section 15.4 provides the experimental results for a real-world data bench-
mark. In the last section, conclusions from our results are summarized.

15.2 The Bi-Objective Stochastic Covering Tour Problem

In this section, we start by recapitulating the covering tour problem (CTP) and ex-
plain then the specific extended variant (first introduced in [51]) of the CTP investi-
gated in this paper in informal terms, as it occurs in the particular application context
considered here. Furthermore, a short literature review is given referring to theoret-
ical approaches as well as practical applications regarding the CTP and some of its
variants. Then, the extended problem to be investigated in this paper is described on
a formal mathematical level. Because of the solution approach adopted in this paper,
it is also necessary to briefly recall the vehicle routing problem, which occurs as a
subproblem and therefore needs to be solved as well.

15.2.1 The Covering Tour Problem

The CTP is a combinatorial optimization problem combining features of facility
location and vehicle routing. Its basic version is described in Gendreau et al. [15].
Therein, the problem is defined on an undirected graph G= (V ∪W,E). The vertices
in the set V can be visited, whereas the vertices in the set T ⊆ V must be visited.
Vertex v1 ∈ T denotes the depot. All vertices in W must be covered. A vertex w ∈W
is called covered if the distance between w and the nearest visited vertex v ∈V is less
than or equal to the predefined covering distance c. The set E = {(vi,v j) | vi, v j ∈
V ∪W, i < j} is the edge set. The distance between two vertices is stored in the
distance matrix D = (di j). The objective function is the minimization of the tour
length under the given coverage constraints. Note that for c = 0, the CTP reduces to
a traveling salesperson problem (TSP).

The CTP and its variants can be applied, e.g., in the areas of transportation net-
work design, location routing and telecommunication, and they are also suitable to
address various other problems existing in reality.

15.2.2 The Bi-Objective Stochastic Extension

Variants of the CTP can be used to address decision problems occurring (among
others) in the humanitarian logistics sector. Let us consider the case of a disaster
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relief operation. In the aftermath of a disaster, like a flood or an earthquake, the
affected people are to be provided with essential goods like water, food or medicine
as quickly as possible. To supply these people with relief goods, vehicle routes for
transportation have to be determined. The vehicles should deliver the goods from
a depot to certain distribution centers. People whose villages cannot be supplied
directly will have to walk to the nearest distribution center. The maximum distance
they are able to traverse corresponds to the covering distance in the context of the
CTP. It is assumed that a distribution center can only be located in a village, i.e., the
set of potential locations is equal to the set of villages. The distances between all
pairs of the villages are assumed to be given.

The problem proposed in [51] takes an additional feature into account in order
to better adapt the model to reality: Immediately after the occurrence of a disas-
ter, it might not always be clear to what extent the affected people will need relief
goods during the period of the disaster relief operation, which can take some weeks
or in some cases even months. Nevertheless, it is important to establish fixed, reli-
able delivery schemes and to organize the procurement of the goods from national
and international markets in time. Therefore, a decision problem under uncertainty
arises. To take account of this aspect, the model represents the demand in each
village as a random variable, assuming that the joint distribution of these random
variables can be estimated at the time of the decision, but not their actual realiza-
tions. This produces a stochastic optimization problem. Evidently, by each decision
on the organization of the delivery (except a very conservative one, which would be
too costly in cases of high uncertainty), it can happen that some part of the demand
remains uncovered. Of course this is very undesirable, so the (expected) amount of
uncovered demand should be minimized.

Distribution centers are assumed to have only limited capacities to store or pro-
vide relief goods. This is not only because disasters usually happen unexpectedly
and therefore only improvised distribution centers are at hand, but also because in
order to ensure a controlled delivery of the goods and to prevent plundering, staff
has to be assigned to each distribution center, which further restricts the throughput
in addition to storage limitations. If a potential distribution center is selected to be
opened, costs will arise which may depend on the specific location. A given fleet of
vehicles provides the distribution centers with the goods to be delivered there. Each
vehicle starts its tour at a depot and returns there.

Another extension of the CTP proposed in [51] concerns coverage. The extended
model diverges from the assumption that a population center (a village) can only
either be covered completely or not at all. A step function is used to describe the
percentage of inhabitants of a village who are able or willing to go to the closest
distribution center if it is located at a certain distance d. The percentage of people
who can be covered in this way decreases with increasing value of d.

Finally, the problem is formulated as a bi-objective (stochastic) optimization
problem. The first objective is to minimize all costs including opening costs and
routing costs. The second objective is to minimize expected uncovered demand.
These goals can be seen as conflicting. To illustrate this, let us consider two extreme
cases. Firstly, let us assume that we reduce costs to zero. This would imply that no
distribution centers are opened and nobody can be supplied with any relief goods,
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which results in the highest possible amount of uncovered demand. Alternatively, if
we implement a solution ensuring that the demand of all people is satisfied (in the
extreme case, this would imply to establish a distribution center in every village),
the expected costs will be the highest. To take account of the trade-off between the
monetary and the non-monetary objective, [51] uses the concept of Pareto optimal-
ity. Decision makers will be provided with various feasible solutions that are all
guaranteed to be efficient in the Pareto sense. Out of these solutions, the decision
makers can choose one which fits their preferences best.

In this paper, we will retain the problem formulation of Tricoire et al. [51] and
even use the same test benchmark, but apply different solution techniques. The
contribution of the present paper is twofold. First, we shall describe heuristic ap-
proaches to solve the problem outlined above. Secondly, we will study possible
options concerning the sampling part of the algorithms by examining whether the
use of a more sophisticated sampling technique can improve the quality of the so-
lutions under fixed given runtime. Of course, it is also interesting to know whether
the mathematical programming approach (based on a limited sample size) or the
heuristic approach (which can use a much larger sample size) will produce better
results within a comparable computation time, if the results of both are assessed on
a very large sample.

15.2.3 Literature Review

Current and Schilling [7] introduced the maximal covering tour problem (MCTP),
where exactly p out of n nodes have to be visited on a tour. One objective is to mini-
mize the total tour length and the second is to maximize the total demand which can
be covered. Coverage means that a demand point lies within a pre-determined max-
imum distance from a node which is on the tour. Gendreau et al. [15], as mentioned
above, formulate a single-objective version of the CTP. They develop a first exact
method, namely a branch-and-cut algorithm and also present a heuristic to solve this
problem. In Hachicha et al. [25], three heuristics are proposed for the multi-vehicle
CTP (m-CTP) with m identical vehicles, where the goal is to minimize the total
length of all vehicle routes. Motta et al. [39] introduce three GRASP metaheuristics
for solving a generalized version of the CTP. Baldacci et al. [3] tackle the CTP by
using three heuristic scatter search algorithms.

In Jozefowiez et al. [33], a bi-objective covering tour problem is studied, where
the first objective is the minimization of the tour length and the second objective is
to minimize the largest distance between a node in a set W that has to be covered
and the respective nearest node lying on the tour. A combination of a multi-objective
evolutionary algorithm and a branch-and-cut algorithm is used to determine the op-
timal solutions. Naji-Azimi et al. [40] analyze an extension of the m-CTP, where
multiple commodities and a fleet of heterogeneous and capacitated vehicles are
assumed and split deliveries are allowed. To solve the problem, they propose an
efficient heuristic approach and test it on real data. Jozefowiez [31] presents a col-
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umn generation approach and a branch-and-price algorithm for the m-CTP [32]. Ha
et al. [24] develop a metaheuristic and an exact branch-and-cut algorithm to solve
a special case of the m-CTP, where the restriction concerning the length of each
route is relaxed. It turns out that the exact method performs better than the column
generation approach of Jozefowiez [31]. Nolz et al. [41] are concerned with the dis-
tribution of drinking water in a post-natural-disaster situation. In Nolz et al. [42], a
multi-objective CTP is formulated for the problem of delivering relief supplies after
the occurrence of a disaster. The three objective functions incorporate a measure
of risk, a combination of two coverage criteria and a measure of total travel time.
In Rath and Gutjahr [43], a multi-objective model is assumed where contrary to
the above-mentioned papers, relief goods are delivered from the distribution centers
to the villages by vehicles. A two-stage stochastic programming extension of this
model is investigated in Rath et al. [44].

The CTP and its variants have also been applied to real-world problems in the
area of medical supply. Earlier studies already focus on mobile health care services
in developing countries (see Foord [14] and Swaddiwudhipong et al. [46]). Hodgson
et al. [26] make use of the CTP model to determine a minimum length tour for one
mobile health care facility in Suhum district in Ghana. They also consider various
road types and different weather conditions in their model, to be better in line with
reality. Doerner et al. [10] provide an extension of the model in Hodgson et al. [26]
and Hachicha et al. [25]. They formulate a three-objective CTP, where the first cri-
terion is economic efficiency, which is closely related to the tour length, the second
is an average accessibility criterion and the third is related to coverage.

Literature on the solution methodology will be indicated in Sect. 15.3.

15.2.4 Mathematical Formulation

The problem formulation in this section is based on [51]. The problem under in-
vestigation can be defined on a complete undirected graph G = (V0,E), where
V0 = V ∪{0} is the node set and E is the set of edges. Node 0 is the depot. The
set V contains all population nodes and hence, by assumption, also all potential dis-
tribution centers. A population node is henceforth always referred to as a “village”.
Although there is no need to differentiate between villages and potential distribu-
tion centers, index i defines a node as a village and index j defines it as a potential
distribution center. The edges in E = {(i, j) | i ∈ V0, j ∈ V0, i < j} are undirected.
Therefore, the distance matrix D storing the distances di j between two nodes is sym-
metric. Driving costs depend on the distance between two nodes and are assumed
as τ ·di j with τ denoting the cost of driving one kilometer.

We make the assumption that the people living in the villages are to be provided
with a single commodity. (The case of multiple commodities can be addressed by the
same model, as long as divisibility problems are not relevant and the ratios between
the required amounts of the single commodities are constant.) The vehicles k ∈ K
can be used to transport goods to the distribution centers, but vehicle k is limited to
the capacity Qk (k ∈ K). The cost of opening a distribution center in node j is c j
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currency units. A distribution center at location j has a capacity of γ j; this value can
vary across locations. The demand in village i ∈ V is given by the random variable
Wi. The joint distribution of the random variables Wi (i ∈V ) is assumed to be known.
More precisely, it is assumed that Wi = ξi ·wi, where the ξi are random variables
which take account of uncertainty, and wi = E(Wi) denotes the expected value of
Wi. The values wi are essentially determined by the population sizes (number of
inhabitants) of the villages i. We assume that the inhabitants of a village always
envisage the nearest distribution center j as a possible source for obtaining supply.
However, the percentage of people who are able (or willing) to go to this nearest
distribution center j is determined by a decreasing function ψ of the distance di j.
This means that the farther they would have to walk, the fewer people will walk and
consequently receive goods.

The first decision in this problem concerns the question where to open distribu-
tion centers. Depending on this choice, tours of the available fleet of vehicles have
to be determined to visit the opened distribution centers and to provide them with
goods. We refer to this part of the problem as the first-stage decision; it is made
before the actual demand is known. Note that we also include the choice of the
tours in the first-stage decision, which means that the tours are not changed any-
more at a later time. In the disaster relief application, this is desired insofar as it
gives each driver a responsibility for a certain area s/he has to supply with the re-
lief items. In the second-stage decision, the quantities of goods actually delivered
to each distribution center on each tour have to be determined, depending on the
current demand, the capacity of the distribution center and the load capacity of the
vehicle.

The decision variables used in the model are the following:

• xi jk counts how often vehicle k passes through edge (i, j),
• yi j = 1 means that the distribution center in node j is the closest to village i,

otherwise yi j = 0,
• z jk = 1 means that vehicle k visits the distribution center in node j, otherwise

z jk = 0,
• u jk defines the quantity delivered by vehicle k to node j.

We use x, y, z and u for the respective matrices or arrays of decision variables.
Moreover, δ (S) = {(i, j) ∈ E | i ∈ S, j ∈V0 \S or j ∈ S, i ∈V0 \S} contains all edges
for which exactly one incident node is in the set S ⊆ V0. For a set E ′ ⊆ E , we use
the abbreviation xk(E ′) for denoting ∑(i, j)∈E ′ xi jk.

The bi-objective stochastic CTP outlined before in informal terms can now be
expressed by the following bi-objective two-stage stochastic program:

First stage:

min
x,y,z

( f1, f2) s. t. (15.1)

f1 = τ ∑
k∈K

∑
(i, j)∈E

di jxi jk +∑
k∈K

∑
j∈V

c jz jk (15.2)
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f2 = E(R(y,z,ξ )) (15.3)

∑
j∈V

yi j = 1 ∀i ∈V (15.4)

yi j ≤ ∑
k∈K

z jk ∀i, j ∈ V (15.5)

∑
j∈V

di jyi j ≤ dim +M

(
1−∑

k∈K

zmk

)
∀i,m ∈V (15.6)

∑
k∈K

z jk ≤ 1 ∀ j ∈V (15.7)

∑
k∈K

z0k = |K| (15.8)

xk(δ ( j)) = 2z jk ∀ j ∈ V0, k ∈ K (15.9)

xk(δ (S))≥ 2z jk ∀S ⊆ V, j ∈ S, k ∈ K (15.10)

xi jk ∈ {0,1} ∀(i, j) ∈ E \ δ (0), xi jk ∈ {0,1,2} ∀(i, j) ∈ δ (0) (15.11)

yi j ∈ {0,1} ∀(i, j) ∈ V (15.12)

z jk ∈ {0,1} ∀ j ∈ V0, k ∈ K (15.13)

Second stage:

R(y,z,ξ ) = min
u

[
∑
i∈V

ξiwi −∑
k∈K

∑
j∈V

u jk

]
s. t. (15.14)

u jk ≤ ∑
i∈V

ξi wiψ(di j)yi j ∀ j ∈ V, k ∈ K (15.15)

u jk ≤ γ jz jk ∀ j ∈ V, k ∈ K (15.16)

∑
j∈V

u jk ≤ Qk ∀k ∈ K (15.17)

u jk ≥ 0 ∀ j ∈ V, k ∈ K (15.18)
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According to Eq. (15.1), the two objectives f1 and f2 of the first-stage problem
should be minimized. The objective function f1 [see Eq. (15.2)] includes the driving
costs as well as the opening costs of the distribution centers. It is important to note
that if ∑k∈K z jk = 1, a distribution center in village j is opened. Equation (15.3)
defines f2 as the expected uncovered demand, which arises either because the way
to the nearest distribution center is too long for the inhabitants or due to capacity
constraints of the distribution centers or the vehicles. The actual uncovered demand
will be calculated in the second-stage problem.

Constraints (15.4) ensure that each village is assigned to exactly one distribution
center. Furthermore, in this case the distribution center has to be an open one [see
constraints (15.5)]. According to constraints (15.6), the people of each village go to
the nearest opened distribution center. Here, M is a very large number. Constraints
(15.7) imply that there is not more than one vehicle allowed to visit a distribution
center. These constraints also say that in a village there cannot be more than one
opened distribution center. Because of constraint (15.8), all vehicles have to visit
the depot. Constraints (15.9) contain degree constraints. Constraints (15.10) exclude
infeasible sub-tours. Constraints (15.11) allow a vehicle to use the link between two
villages at most once. On the other hand, the link between a village and the depot can
be used at most twice (which allows forth-and-back tours where a vehicle just visits
one village and then returns to the depot again). Constraints (15.12) and (15.13)
state that yi j and z jk are binary variables.

The objective function (15.14) in the second-stage problem is defined as total
demand minus total supply or, in other words, as the uncovered demand, which is to
be minimized. According to constraints (15.15), the supply u jk has to be less than
or equal to the total request occurring in distribution center j. This request includes
the requests from all villages that are assigned to distribution center j. Therein, the
request from village i is calculated as the product of the overall demand ξiwi occur-
ring in village i and the share ψ(di j) of people going to the distribution center in j
to satisfy their demand. Because of constraints (15.16), the supply in a distribution
center has also to be less than or equal to the capacity of this distribution center.
Constraints (15.17) pay attention to the load capacity of each vehicle. Constraints
(15.18) state that the supplies u jk can only attain a value larger than or equal to zero.

Obviously, as soon as the subset of candidate sites where distribution centers
are to be opened has been selected, a vehicle routing problem (VRP) remains to be
solved as a subproblem: Each of the opened distribution centers has to be visited by
exactly one of the available vehicles. Split deliveries are not allowed. The aim of the
subproblem is to find routes for the vehicles at minimum total cost.

15.3 Algorithms

In this section, we will present the algorithms we use for solving the problem de-
scribed above. Let us start with a short literature review on solution methods for
stochastic multi-objective optimization problems (SMOOPs) in the sense of the de-
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termination of Pareto-optimal solutions with respect to expected objective function
values.2 For more detailed information, the reader is referred to the surveys by Ben
Abdelaziz [5], Gutjahr [20] and Gutjahr and Pichler [22]. We focus here on meta-
heuristic solution methods.

Most metaheuristics for SMOOPs use diverse variants of evolutionary algo-
rithms. Here are a few examples: Hughes [28], Teich [48], and Eskandari et al. [13]
adapt the multi-objective evolutionary algorithm SPEA and the non-dominated sort-
ing genetic algorithm NSGA-II to the stochastic situation. Also Ding et al. [9] pro-
pose a multi-objective genetic algorithm and combine it with a simulation proce-
dure. Gutjahr [18] uses multi-objective variants of Ant Colony Optimization and of
Simulated Annealing and generalizes them to the stochastic case. Amodeo et al. [1]
combine a discrete-event simulation procedure with the multi-objective algorithms
SPEA-II and NSGA-II, and compare with a multi-objective variant of the Particle
Swarm Optimization algorithm. Eskandari and Geiger [12] carry out computational
experiments with an extension of the approach in [28]. Syberfeldt et al. [47] use
a multi-objective evolutionary algorithm supported by an artificial neural network
and combine it with simulation. Basseur and Zitzler [4] and Liefooghe et al. [35, 36]
reduce the multi-objective problem to a single-objective one by means of the quality
indicator technique. Finally, the APS algorithm [19, 23] allows it to extend an ar-
bitrary (exact or heuristic) multi-objective optimization algorithm to the stochastic
optimization case by interleaving it with a sampling procedure. We shall describe
APS in more detail below.

15.3.1 NSGA-II

Deb et al. [8] introduced the Non-Dominated Sorting Genetic Algorithm II (NSGA-
II). In genetic algorithms (GAs), solutions are encoded as individuals, also termed
chromosomes x ∈ X; together, the individuals form a population. In iterative steps,
new populations are generated by selecting parent chromosomes and creating off-
spring, using genetic operators like crossover and mutation. By repeating this pro-
cedure, the individuals in the population are expected to become fitter and fitter with
respect to the objective function(s) under consideration.

In a multi-objective GA, the aim is to compute an approximation to the Pareto
front. The Pareto front is the image of the set of all Pareto-optimal solutions in
the objective space. A solution x is called Pareto-optimal (or efficient) if it is not
dominated by any other solution y, where y dominates x if and only if fi(y)≤ fi(x)
for all i and fi(y)< fi(x) for at least one i. (Minimization of all objective functions
fi is assumed.) We write y ≺ x if y dominates x (cf. [34]).

2 We assume a risk-neutral decision maker, which implies that only the expectations of the ob-
jective functions count. In the case of a risk-averse decision maker, more complex methods are
required, see [22]. Also the case of chance constraints will not be discussed here.
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Algorithm 1 NSGA-II
Procedure NSGA-II

generate P0 of size N create initial population randomly
F = non-dominated-sort(P0) F = (F1,F2, . . .)
crowding-distance-assignment(Fi) calculation of crowding distances
for (t = 0, break condition) {

selection(Pt) selection of parents
generate offspring Qt of size N use crossover and mutation
Rt = Pt ∪Qt combination: parents and offspring
F = non-dominated-sort(Rt)
Pt+1 = /0, i = 1
while |Pt+1|+ |Fi| ≤ N { until population is filled

crowding-distance-assignment(Fi)
Pt+1 = Pt+1 ∪Fi add front to population
i = i + 1

}
sort(Fi) on crowding distance in descending order
Pt+1 = Pt+1 ∪Fi[1 : (N −|Pt+1|)] include first (N −|Pt+1|) elements
t = t + 1

}
return(F1) return solutions from the first front

15.3.1.1 Main Procedure

A pseudo-code description of the NSGA-II is given above (Algorithm 1). The algo-
rithm starts by randomly creating an initial population P0 of size N . These solutions
are sorted and partitioned into non-dominated fronts. Then a so-called crowding dis-
tance is calculated for each solution. Chromosomes are selected according to their
fitness to become parents of the child population. Crossover and mutation are used
to create the offspring population Qt of size N . Then Qt and Pt are combined to a
population Rt of size 2N . Because the next aim is to achieve a new population Pt+1

with a reduced population size N instead of 2N , a non-dominated sorting pro-
cedure is applied to the population Rt . The fronts are included successively in the
new population Pt+1, starting with the first front and so on. The fronts are inserted
until there is no more space for the members of an additional front. If the new pop-
ulation Pt+1 is not completely filled, the individuals of the current front that cannot
be included completely anymore are sorted in descending order based on crowding
distance. Then the first N − |Pt+1| solutions are included in Pt+1. Now the loop
starts again by selecting parents to create offspring and so on. As soon as a termina-
tion condition is met, the algorithm stops and returns the non-dominated individuals
belonging to the first front.
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Jensen [30] proposed an efficient algorithm for non-dominated sorting, which
reduces the overall computational complexity of the NSGA-II from O(MN 2) to
O(N logM−1 N ), where M is the number of objectives. All the fronts are created
simultaneously. The algorithm proceeds as follows. First, the solutions are all sorted
in ascending order with respect to the first objective function value. If these values
are the same, then the corresponding solutions are sorted with respect to the second
objective function value. So for i < j, it always holds that x j �≺ xi. Next, solution x1

is assigned to the first front. The current number of fronts is stored in e. Now the
iteration starts for i = 2 to N . We examine whether any solution of the current
worst front Fe dominates the solution xi. If not, then xi belongs to one of the fronts
created so far. But if the solution xi is dominated by a solution belonging to Fe,
a new front is created and e is increased by one. Because of the pre-sorting and
the non-domination-property in each front it is quite easy to check whether xi is
dominated by F j . Only a comparison between the value of the second objective of
solution xi and the value of the second objective of the last solution in F j is needed.
The algorithm returns all fronts F1, . . . ,Fe.

Besides the aim of convergence to the Pareto front, a good spread of solutions is
also desirable. To maintain diversity, Deb et al. [8] presented a so-called crowded-
comparison approach. A crowding distance, which is a measure of how far solutions
belonging to the same front are away from each other in the objective space, is
computed for each solution. We implemented the crowding distance computation in
a quite standard way, so we omit a detailed description.

The population members are compared with each other by using the crowded-
comparison operator: If two solutions belong to the same non-dominated front, the
solution with the higher crowding distance is preferred. On the other hand, if two
solutions do not belong to the same non-dominated front, the one which belongs to
a lower front is preferred (see [8]).

15.3.1.2 Adaptation to Our Problem

We use a binary-coded NSGA-II to solve the “upper level” subproblem of selecting
the distribution centers to be opened. Each gene in the chromosome representing
a solution is associated with a potential distribution center. Gene j, corresponding
to a potential distribution center at location j, attains the value 1 if this distribution
center is opened, and the value 0 otherwise. Thus, in terms of the decision variables
of (15.1)–(15.18), the value of gene j is just ∑k z jk.

The genetic operators we use in this algorithm are selection, crossover and mu-
tation. Since by the encoding above, the upper-level subproblem of our problem is
a usual (bi-objective) binary vector optimization problem, we apply the mentioned
genetic operators in a standard way. For implementation details, see Sect. 15.4.

To obtain complete solutions to the first-stage problem, however, also delivery
tours have to be determined, i.e., after the choice of locations for the distribution
centers, a capacitated VRP has to be solved. This yields then both the decision
variables z jk determining which vehicle k visits the distribution center in site j, and
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the decision variables xi jk describing the tours. Note that the third class of first-stage
decision variables, the variables yi j, result directly from the choice of the distribution
center locations. The determination of the delivery tours will be described in the next
subsection.

15.3.2 Savings Algorithm

As we use a heuristic approach to address the upper level decision on the distribution
centers to be opened, we also apply a heuristic algorithm for tackling the routing
problem on the lower decision level. We chose the well-known Savings Algorithm
by Clarke and Wright. In terms of our application, this heuristic solution procedure
for capacitated VRPs can be described as follows (cf. [11]). First, an initial solution
is obtained by assigning each distribution center to be visited to a single tour: For
the distribution center in village i, the associated route is (0, i,0), where 0 is the
depot. By combining some of these forth-and-back tours through links (i, j), savings
regarding the tour length can be achieved. The savings value si j for link (i, j) with
i < j is calculated as si j = d0i + d0 j − di j. Savings values are sorted in decreasing
order. In each iteration, the best (i.e., largest) element si j for which the constraints
below are satisfied is chosen and the two tours containing i and j are merged along
link (i, j) to a single tour. The constraints are:

• Villages i and j are not on the same tour.
• In their respective tours, both village i and village j are adjacent to the depot.
• By merging the two tours, capacity constraints are not violated.

After performing this operation, link (i, j) is eliminated from the list and the itera-
tion starts again until there are no savings left. In our case, we change this standard
termination condition to the condition that exactly |K| tours are achieved, corre-
sponding to the |K| available vehicles.

15.3.3 Sampling Procedures

15.3.3.1 General Remarks

After the first-stage decision has been made, i.e., the decision variables x, y and z
have been fixed, the realization of the random demand is observed and the second-
stage decision (described by u) is determined by solving the second-stage prob-
lem. As argued in [51], the solution of the second-stage problem (15.14)–(15.18)
is straightforward: Each variable u jk is chosen as large as possible given (15.15)–
(15.17). Nevertheless, in our algorithmic context, there remains the question of how
to evaluate a first-stage solution (x, y, z) produced by the NSGA-II and the Sav-
ings Algorithm with respect to objective function f2 = E(R(y,z,ξ )) (objective func-



266 M. Zehetner and W.J. Gutjahr

tion f1 is not problematic, since it is deterministic). We rely on scenario-based ap-
proaches, estimating the objective function value of f2 by sampling.

Most works applying these approaches use a sample of scenarios fixed in ad-
vance. This is the so-called fixed-sample method, which we shall investigate as our
first sampling variant, abbreviated by Fixed, to deal with the randomness in the de-
mand. The solutions obtained from the NSGA-II are evaluated here based on the
average objective function value over the sample drawn in advance. It is clear that
in this way, the “true” probability distribution of the demand is replaced by an ap-
proximation.

In addition to that, we shall also study two other variants of dealing with the
randomness, both working with a variable sample of scenarios, i.e., with a sample
that is changed during the execution of the bi-objective optimization algorithm. One
of them, our second sampling variant which we shall abbreviate by Variable, is
quite straightforward: In each iteration of the NSGA-II, we use a new, independently
generated random sample of demand vectors. Again, the evaluation of a solution is
then based on the average objective function value over the (current) sample.

The third variant we study is again of variable-sample type, but contrary to the
second variant, it uses a higher degree of interaction with the bi-objective optimiza-
tion procedure and an archive of potentially efficient solutions. This is the Adaptive
Pareto Sampling method, which we shall abbreviate by APS. In the single-objective
stochastic optimization context, it has been shown that under certain conditions,
variable-sample modifications of evolutionary algorithms converge to the true opti-
mum (see, e.g., [27, 17]). In the multi-objective context, corresponding convergence
results (convergence to the true Pareto front) are harder to obtain, but conditions can
be given under which they hold for APS [19, 23].

15.3.3.2 Adaptive Pareto Sampling

The APS approach is an algorithmic framework for solving stochastic multi-objective
optimization problems. It works by generating a series of random samples, solving
the deterministic multi-objective optimization problems corresponding to them by
any suitable subprocedure, and adapting the current approximation to the Pareto
front iteratively based on the results from the calls of the subprocedure and on ob-
jective function evaluations with increasing precision.

To outline the algorithm for the bi-objective case, we assume a stochastic opti-
mization problem of the form

min (F1(x),F2(x)) s.t. x ∈ S (15.19)

with
Fr(x) = E( fr(x,ω)) (r = 1,2),

where S is the feasible set, fr is the r-th cost function, ω represents the influ-
ence of randomness, and E denotes the mathematical expectation. The expecta-
tion E( fr(x,ω)) can be approximated by drawing N independent random scenar-
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ios ω1, . . . ,ωN . Then we can calculate the sample average estimate of Fr(x) =
E( fr(x,ω)) as

1
N

N

∑
ν=1

fr(x,ων ) ≈ E( fr(x,ω)) (r = 1,2). (15.20)

A deterministic problem corresponding to Eq. (15.19) can be solved to obtain an
approximation of the solution. This deterministic approximation results by replac-
ing the original objective functions with the sample average estimates (15.20). The
problem

min

(
1
N

N

∑
ν=1

f1(x,ων ),
1
N

N

∑
ν=1

f2(x,ων )

)
s.t. x ∈ S (15.21)

is called the bicriteria sample average approximation (BSAA) problem.
The APS algorithm operates as described below (Algorithm 2). The algorithm

works iteratively and the current solution set L(k) is updated at the end of each it-
eration. In each run, we first determine a proposal for the solutions by solving the
deterministic BSAA problem. This can be done either by an exact or a metaheuristic
method. Then these solutions and the elements of the solution set L(k−1) are com-
bined and evaluated on a new sample of scenarios. Solutions which are dominated
are removed from the set. The respective sample sizes used in steps (a) and (b) are
denoted by sk and s̄k. The algorithm terminates when a predefined maximum num-
ber of iterations is reached. We obtain the current solution set L(k) as the desired
approximation to the set of Pareto-optimal solutions.

In our model, we use the NSGA-II algorithm to solve the BSAA problem in the
solution proposal step in part (a). Furthermore, we can simplify the APS algorithm
for our purposes in an obvious way, considering that the first objective function in
our problem is deterministic.

Algorithm 2 Adaptive Pareto Sampling
Procedure APS

initialize the solution set L(0) as the empty set
for iteration k = 1,2, . . . {

(a) “solution proposal”:
draw a sample of scenarios {ω1, . . . ,ωsk} of size sk

for the drawn sample, determine the Pareto-optimal set S(k)

of the BSAA problem with sample size sk

(b) “solution evaluation”:
for each x ∈ L(k−1)∪S(k) and each r = 1,2 {
determine an estimate of Fr(x), based on a new sample of σk scenarios

}
obtain L(k) as the set of efficient solutions in L(k−1)∪S(k) according
to the cost function estimates just determined

}
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15.4 Case Study

We have tested the three sampling-based NSGA-II variants described above using
real-world data from the region of Thiès, Senegal. First, we describe the parame-
ters used for the implementation. Then, computational results will be presented and
compared.

15.4.1 Implementation Details

15.4.1.1 General Assumptions

The region of Thiès consists of 32 rural communities. Each rural community con-
tains several villages. We treat each rural community as a separate instance. Therein,
the most important village, after which the rural community is named, serves as a
depot, although this may not always be the largest village in terms of number of
inhabitants. Two vehicles whose capacities are not constraining are available. The
distances between the villages correspond to the driving costs. The share of people
who are able to go to their closest distribution center is determined by the following
step function:

ψ(d) =

⎧
⎨
⎩

1 if d ≤ 6,
0.5 if 6 < d ≤ 15,

0 if d > 15,

where the distance unit is 1 km. The capacity of each distribution center is assumed
to be three times the baseline demand of the village in which the distribution center
is located. The baseline demand wi equals the number of inhabitants of village i.
The costs for opening a distribution center are the same for each potential location.
Regarding the demand distribution, the random variable ξi is a combination of a
random baseline term for the whole region and a village-specific random correction
term [51]: ξi = ξbas −β2 + 2β2Zi with ξbas = ξ̄ −β1 + 2β1Z, where ξ̄ is a constant
parameter, Z and Zi (i = 1, . . . ,n) are independent uniformly distributed random
numbers between 0 and 1, and β1, β2 > 0 are constant parameters. As in [51], the
values c j = 5000, ξ̄ = 1, β1 = 0.5 and β2 = 0.5 were chosen.

15.4.1.2 Parameters for the Sampling Approaches

For the sample size in the variant Fixed, we have tested the value 1500. The variant
Variable uses samples with growing sample sizes 10+(t − 1), where t is the index
of the current NSGA-II iteration. For the variant APS, a total number K of APS
iterations has been carried out (each containing several NSGA-II iterations); for
K, we have tested the values 5,10,15,20,25 and 30. The sample size sk in APS
iteration k has been chosen as independent of k and fixed to the value 200, and the
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sample size σk has been chosen as growing according to σk = ᾱ + β̄ (k − 1). The
results below refer to the special choice ᾱ = 10,000 and β̄ = 5000/K. Whenever
possible, the idea of cumulative samples is used to reduce computation time. This
sample scheme starts, e.g., with a sample size of ᾱ and appends in each iteration
a new sample of size β̄ , computing the average of the considered function over the
union of the samples by a weighted mean so that the effort already invested during
previous iterations is not wasted [27].

We aimed at a fair comparison of the investigated algorithms by providing each
of them with (approximately) the same computation time for each of the considered
test instances. Since all algorithmic variants use the NSGA-II algorithm, the number
of NSGA-II iterations was the parameter by which we were able to control the
overall computation time. Different test instances were given slightly different time
budgets, but all of them in the range of a few minutes per single run. For each
instance and each algorithmic version (one version of Fixed, one version of Variable
and six versions of APS), 20 runs with different seeds were carried out.

15.4.1.3 Parameters for the NSGA-II Algorithm

For the binary-coded NSGA-II, we used a one-point crossover and a bitwise mu-
tation. The crossover probability has been chosen as pc = 0.8 and the mutation
probability for each gene in a chromosome is pm = 1/�, where � is the string length.
These values are chosen for all test instances. They are in the range of commonly
used values in other NSGA-II applications. For the selection operator, we use the
method of tournament selection with a tournament size of 2. For the population size
parameter N , different values in the range between 100 and 200 have been used in
dependence of the instance, based on a pre-test for a single seed value. As described
above, the maximum number of generations, i.e., the number of NSGA-II iterations,
was determined with the aim of producing comparable computation times.

15.4.2 Performance Measures

In order to evaluate the quality of the proposed non-dominated solutions obtained
by the execution of the different algorithmic variants, we need suitable performance
measures. The definition of the quality of an approximation to the set of Pareto-
optimal solutions is difficult because several aspects play a role. There is general
agreement on the opinion that the assessment of a multi-objective optimization
metaheuristic is a multi-objective problem itself. For the performance comparison
of our different solution approaches, we use the following quantitative measures:

• the hypervolume metric defined in [53],
• a metric (originally proposed by Van Veldhuizen [52]) given by the ratio of points

in the approximation set that are non-dominated points, and
• the spacing metric introduced by Schott [45].
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The hypervolume metric QH requires defining a fixed reference point xR in the
objective space with the property that in each of the objective functions, xR is not
better than any feasible solution. The hypervolume metric QH is then defined as the
hypervolume of the set of all those points that are dominated by the approximation
set and that dominate the reference point. Larger hypervolumes are preferred.

The ratio metric QR suggested in [52] (denoted as Q3 in Jaszkiewicz [29]) is
defined as

QR(A) =
|A∩T |
|A| ,

where A is the approximation set (the set of solutions proposed as non-dominated
by the algorithm), and T is the true Pareto set. If one does not know the true Pareto
set, a common procedure is to approximate T by a reference set T̃ which consists of
the non-dominated solutions within the union of all solution sets provided by any of
the investigated algorithms.

The spacing metric QS for a bi-objective optimization problem, finally, is calcu-
lated as

QS =

[
1

|A|− 1 ∑x∈A

(D̄−D(x))2

]1/2

where A is again the approximation set,

D(x) = min
y∈A

{| f1(x)− f1(y)|+ | f2(x)− f2(y)|},

and D̄ denotes the mean of all values D(x) (x ∈ A). If QS is zero, the solutions in A
are equally spaced from each other, which would be the ideal case.

As usual, we performed the calculations of the metrics based on normalized ob-
jective function values that lie in the interval [0,1]. Ideally, the objective functions
f1 and f2 should be transformed by

f̄i(x) = ( fi(x)−min
y

fi(y))/(max
y

fi(y)−min
y

fi(y)).

However, the determination of maxy fi(y) and miny fi(y) may be difficult, so in prac-
tice, surrogates for these two values are used. We determine an approximation to the
worst case point (maxy f1(y), maxy f2(y)) by executing all solution algorithms, max-
imizing over the values found and adding a safety increment. The worst case point
is also used as the reference point for the hypervolume metric. The “utopia point”
(miny f1(y), miny f2(y)) is obtained in our case by setting both objective function
values to zero.

15.4.3 Test Instances

The different algorithmic variants described above are tested on several problem
instances. The test instances are taken from [51], where they were treated by a
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branch-and-cut algorithm based on a fixed-sample approach with sample size 10.
In this paper, we only consider the harder of these instances, namely those instances
for the solution of which the necessary CPU time reported in [51] exceeded 3600 s,
or which could not even be solved to optimality3 at all by the exact algorithm within
the CPU time limit of 3 days chosen in [51]. In Table 15.1, the resulting 12 Sene-
gal instances are listed, and their respective problem sizes (ranging from 18 to 31
nodes) are indicated.

Table 15.1 Senegal instances and problem instance sizes

No. Instance # nodes
1 Diender Guedj 22
2 Fandane 24
3 Fissel 21
4 Mboro 31
5 Ndiagagniao 24
6 Ndiass 18
7 Ngandiouf 19
8 Notto 28
9 Pire Goureye 18

10 Pout 29
11 Tassette 21
12 Touba Toul 20

15.4.4 Computational Results

The programming language C has been used for the implementation of the algo-
rithms. The programs have been executed on a computer with a 2.00 GHz Intel Core
2 Duo T7250 processor.

15.4.4.1 Performance Evaluation

For the performance assessments, the single solutions provided (as part of an ap-
proximation set) by each of the algorithms were post-evaluated with respect to
objective function f2 on a new sample of size 3 · 104; this sample was chosen in-
dependently from those used in the algorithms. This allows a fair and sufficiently
accurate evaluation of QH and QS for the produced approximation sets, as well as

3 Note that “solved to optimality” in the sense of [51] does not mean that the true Pareto front
of the original stochastic bi-objective problem has been found, but only that the true Pareto front
of the bi-objective problem obtained by replacing the original probability distribution with the
empirical distribution in the random sample has been determined. Only for this modified problem,
the branch-and-cut algorithm is an “exact” solution algorithm.
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an estimation of the ratio QR of non-dominated solutions among all solutions in the
approximation set A.

The performance of each of the three solution approaches with respect to the hy-
pervolume metric is shown in Table 15.2. In addition, for comparison purposes, the
second column contains the hypervolumes achieved by the mathematical program-
ming approach used in [51], based on sample size 10. This variant is denoted by MP
Fixed 10. It provides the exact solution of the problem based on a sample of size 10
for those instances where the implementation in [51] was able to find it within 3
days, or, in the case of the other instances, the result of the MP-based heuristic
proposed in [51]. Columns 3–5 contain the average hypervolumes achieved by our
NSGA-II implementations for Fixed (with sample size 1500), Variable, and APS, re-
spectively. As a representative for the six different tested parametrizations of APS,
we took APS 10, i.e., the variant with K = 10 APS iterations. (Some observations on
the influence of K on the performance of APS will be given later.) As stated above,
we executed 20 runs for each of the NSGA-II-based algorithms in order to take ac-
count of the inherently stochastic nature of the NSGA-II. The reported hypervolume
value is the average over these runs. For the deterministic algorithm MP Fixed 10,
only one run was carried out.

The best values are printed in bold. We see that in 9 out of the 12 instances,
APS 10 provided the best solutions. Nevertheless, the differences of the average
hypervolume between the NSGA-II-based algorithms are very small, so we cannot
say that a practically relevant superiority of APS with respect to the hypervolume
is shown by the experimental outcome. This is underlined by statistical tests on
the level of the single instances: For each instance, we tested the null hypothesis
that the respective best NSGA-II-based algorithm has the same hypervolume as the
second-best NSGA-II-based algorithm, against the alternative hypothesis that the
hypervolumes differ. Welch’s t-test (independent two-sample test, equal variances
not assumed) was used. In none of these comparisons, the difference turned out as
statistically significant at level α = 0.05.

It is interesting to see that in spite of much larger computation times (see Ta-
ble 15.5), the mathematical programming solution approach of Tricoire et al. [51]
produces worse results than each of the three considered alternatives in 11 out of
the 12 instances.4 Of course, this is due to the only small sample size of 10 it can
build upon in view of runtime limitations, whereas the NSGA-II variants used in this
paper can apply much higher sample sizes. We can interpret this result by saying at
the given problem, it obviously pays off to invest runtime rather in sampling (even
at the price of solving the deterministic counterpart problem only heuristically) than
in solving the deterministic counterpart problem exactly.

4 Thus, by a binomial test over the 12 instances, it performed significantly worse in total at a
significance level of α = 0.05.
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Table 15.2 Hypervolumes QH for MP Fixed 10, Fixed 1500, Variable, and APS 10 (averaged over
20 runs for the GA-based algorithms). Best values are in bold

Test instance no. MP Fixed 10 Fixed 1500 Variable APS 10
1 0.834287 0.835609 0.835680 0.835680
2 0.704308 0.705690 0.705689 0.705689
3 0.788490 0.800320 0.800332 0.800333
4 0.731014 0.736246 0.736523 0.736533
5 0.827665 0.836296 0.836295 0.836299
6 0.772287 0.772505 0.772586 0.772589
7 0.732510 0.732214 0.732213 0.732214
8 0.768785 0.790878 0.790947 0.790953
9 0.817639 0.817783 0.817787 0.817787
10 0.850377 0.856147 0.856163 0.856167
11 0.804675 0.804685 0.804789 0.804794
12 0.778684 0.778942 0.778942 0.778939

Table 15.3 shows the results for the measure QR, the ratio of proposed solutions
that turn out as actually efficient in the post-evaluation. We see that in this evalua-
tion measure, the APS variant is clearly superior compared to all other algorithms.
Firstly, it produces the best average QR scores in all 12 instances. Secondly, the su-
periority is statistically significant (usually even highly significant) for 75% of all
instances. It is not surprising that APS 10 outperforms the other algorithms with re-
spect to the criterion that proposed solutions should be Pareto-optimal indeed, since
by construction, the algorithm eliminates dominated solutions from the archive in
each iteration. What comes less expected is that this desirable property does not im-
pair the ability of APS 10 to achieve a competitive hypervolume within the given
computation time as well, as it has been seen in Table 15.2.

Table 15.3 Ratios QR of truly efficient solutions for MP Fixed 10, Fixed 1500, Variable, and APS
10 (averaged over 20 runs for the GA-based algorithms). Best values are in bold. One, two and
three stars denote a significant difference to the second-best algorithm at the considered instance
over the 20 runs for significance level 0.05, 0.01 and 0.001, respectively

Test instance no. MP Fixed 10 Fixed 1500 Variable APS 10
1 0.70588 0.95079 0.94451 0.99441***
2 0.88235 0.95633 0.94537 0.98444**
3 0.64486 0.96123 0.95721 0.99535***
4 0.74107 0.99400 0.98900 1.00000*
5 0.66304 0.94297 0.96479 0.98676***
6 0.85455 0.97487 0.96255 0.99825***
7 0.77333 0.97634 0.97934 0.98954
8 0.83720 0.96455 0.96183 0.99149***
9 0.92727 0.99007 0.98341 0.99917**

10 0.83636 0.95715 0.96382 0.99468***
11 0.87879 0.98190 0.98305 0.99290
12 0.90698 0.99694 0.99485 1.00000
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Table 15.4 shows the resulting values of the spacing metric. With respect to this
evaluation measure, no clear performance hierarchy between the methods can be
observed. It should be noted that as long as the values of the spacing metric QS do
not differ too much for different algorithms under consideration, the spacing metric
is not the most important criterion for ranking the algorithms, since the true Pareto
front can obviously have a value of QS that is distinctly larger than zero, whereas a
poor approximation to it can have a value of QS closer to zero. We see in Table 15.4
that in the case of the majority of instances, the QS values are very similar for all
algorithms, which means that the degree to which the solution points are evenly
distributed is visually almost indistinguishable between the algorithms.

From Table 15.5 we see that all heuristic methods are able to solve each of the
test instances within a few minutes, which even holds for instances that cannot be
solved by the mathematical programming algorithm within 3 days.

Table 15.4 Spacing metric QS for the algorithms MP Fixed 10, Fixed 1500, Variable, and APS 10
(averaged over 20 runs for the GA-based algorithms). Best values are in bold

Test instance no. MP Fixed 10 Fixed 1500 Variable APS 10
1 0.02756 0.02811 0.02667 0.02673
2 0.01301 0.01375 0.01436 0.01353
3 0.00766 0.00858 0.00824 0.00838
4 0.02143 0.01722 0.01702 0.01718
5 0.01196 0.01139 0.01127 0.01122
6 0.02903 0.02595 0.02720 0.02687
7 0.01442 0.01356 0.01356 0.01357
8 0.02078 0.01493 0.01681 0.01634
9 0.00872 0.00691 0.00693 0.00669

10 0.01233 0.00973 0.00990 0.00935
11 0.01933 0.02147 0.02096 0.02109
12 0.02737 0.02555 0.02556 0.02550

Table 15.5 Computation times per single run in seconds. MPFx10 = MP Fixed 10, Fx1500 = Fixed
1500, Var = Variable

No. MPFx10 Fx1500 Var APS5 APS10 APS15 APS20 APS25 APS30
1 > 3 days 122 119 123 125 126 126 128 124
2 > 3 days 418 404 401 403 411 409 409 404
3 > 3 days 261 259 257 255 252 250 252 267
4 > 3 days 546 523 520 512 526 528 519 518
5 > 3 days 252 251 258 261 264 268 267 259
6 6925 90 89 91 93 92 92 93 96
7 13262 286 288 289 292 290 291 287 282
8 > 3 days 352 349 346 349 348 354 354 336
9 3663 85 83 80 80 85 85 82 88

10 > 3 days 575 569 564 557 549 548 565 554
11 4974 123 119 122 123 123 123 124 125
12 12707 105 104 103 102 103 103 103 103
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15.4.4.2 Behavior of APS for Increasing Number of Iterations

In the previous subsection, we compared the behavior of APS to the alternative algo-
rithms for a fixed choice of K = 10 APS iterations. A more detailed analysis should
address the question how the number K influences the quality of the algorithm ac-
cording to our chosen evaluation measures. We focus the analysis on the measures
QH and QR. It can be expected that for large K, the quality will deteriorate since
the NSGA-II, executed as a subprocedure, will not receive anymore a sufficiently
large number of iterations to work efficiently. Recall that the overall runtime budget
is always kept (approximately) fixed in order to enable a fair comparison.

In Figs. 15.1, 15.2 and 15.3 the three special instances Fissel, Ndiagagniao and
Tassette are used to illustrate the development of the hypervolume and of the ratio of
truly efficient solutions when the number of APS iterations is successively increased
and the number of NSGA-II iterations in the subprocedure is correspondingly de-
creased. We see that as far as the hypervolume is concerned, an optimal value is
reached already by comparably few APS iterations. For more than about 20 itera-
tions, the performance starts distinctly to drop (first plots in Fig. 15.1). A converse
effect can be observed for the share QR of the efficient solutions among all provided
solutions (second plots in Fig. 15.1): this share seems to be continuously improving
with growing APS iteration number.

We verified the last observation by carrying out a linear regression analysis for
each instance (independent variable: number K of APS iterations, dependent vari-
able: QR) and by testing whether the obtained regression coefficients are signifi-
cantly positive. The results are shown in Table 15.6. We see that in 9 out of the 12
instances, the regression coefficient is larger than zero, in 2 instances it is smaller
than zero. According to a binomial test, this verifies that the probability of a posi-
tive regression coefficient is significantly higher than that of a negative regression
coefficient (α = 0.05). Furthermore, by a statistical F-test, we tested the null hy-
pothesis that the regression coefficient is zero against the alternative hypothesis that
it is different from zero for each instance separately. In the case of four instances
(all with positive regression coefficient), the null hypothesis was rejected. In the
two instances with negative regression coefficient, the null hypothesis was not re-
jected, i.e., the negativity of the regression coefficient is not significant. Together,
this provides a good statistical justification for the conjecture that with an increas-
ing iteration number of APS (in the range between 5 and 30), the share of efficient
solutions among all provided solutions will increase.

From the results, it is obvious that an APS iteration in the range of 10–20 achieves
a good compromise between the aim of maximizing QH and the aim of maximizing
QR. In this range, the value of QH has typically not yet relevantly dropped, and on
the other hand, the value of QR is typically already higher than for very small K
values.
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Fig. 15.1 Development of the hypervolume QH and the ratio of efficient solutions QR for growing
iteration numbers of APS (overall runtime fixed) in the case of Fissel instances. First plots show
QH , second plots show QR

15.4.4.3 Graphical Comparison

In order to get a better insight into the behavior of the algorithms studied in this
paper and to show how they perform in approximating the true set of Pareto-
optimal solutions, a look at Fig. 15.4 can be instructive. The figure visualizes the
non-dominated fronts achieved by the different solution approaches for the instance
Notto. For this instance, the branch-and-cut-based algorithm from [51] considering
10 scenarios is not able to find all non-dominated solutions within the time limit of 3
days. Under MP Fixed 10, we depict the solutions provided by this algorithm within
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Fig. 15.2 Development of the hypervolume QH and the ratio of efficient solutions QR for growing
iteration numbers of APS (overall runtime fixed) in the case of Ndiagagniao instances. First plots
show QH , second plots show QR

the given time (these solutions are Pareto-optimal with respect to the chosen sam-
ple, but the solution set is incomplete even with respect to the sample). Within very
small runtime, the NSGA-II-based solution procedures are able to find additional
solutions close to the right end of the Pareto front (high costs, but low uncovered
demand) and extend in this way the options of the decision maker to solutions that
effect nearly full coverage or full coverage of the demand. Also in that range of the
front for which MP Fixed 10 yielded points, the applied heuristic techniques deliver
high-quality solutions. Already the NSGA-II-based variant Fixed 10 using only a
sample size of 10 is surprisingly good.
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15.5 Conclusions

In this paper, we presented different approaches for solving an extended ver-
sion of the covering tour problem (CTP), namely the bi-objective stochastic CTP
proposed in [51]. In [51], problem instances from Senegal have been solved by
applying branch-and-cut within an epsilon-constraint algorithm to a (small) fixed
random sample of scenarios. Since larger problem instances cannot be solved within
reasonable time by this approach, we used in the present paper the metaheuristic
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Table 15.6 Regression analysis for the dependence of QR on the number K of APS iterations.
A star marks instances for which the regression coefficient is significantly different from zero at
significance level α = 0.05

Test instance no. Regression coefficient
1 0.0003899
2 0.0003537*
3 0.0000212
4 0.0000549
5 0.0003942*
6 -0.0000453
7 0.0000020
8 0.0003327*
9 0.0000325
10 -0.0000059
11 0.0002469*
12 0.0000000
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NSGA-II algorithm to tackle the multi-objective aspect of the problem. As a way to
cope with the stochastic aspect, we applied different sampling methods: (i) a variant
where a fixed random sample is used, (ii) a variant where the sample is exchanged in
each NSGA-II iteration, and (iii) the more sophisticated Adaptive Pareto Sampling
(APS) technique which works with an archive of solutions and iteratively proposes
and tests new candidate solutions for inclusion in the current approximation to the
Pareto set.

Our experimental results, carried out for the same test benchmark as it has been
studied in [51], led to two essential insights: Firstly, at the considered problem, it
pays off to invest computation time rather in a more extensive sampling than in an
exact solution of the deterministic sample average optimization problem obtained
by applying the optimization procedure to a chosen random sample. The quality of
our NSGA-II-based solution sets was consistently better than that of the solution
sets found in [51], though we needed only a small fraction of the computation time
invested there. Secondly, all three investigated NSGA-II-based variants performed
very well with respect to the hypervolume measure (with only a slight and statis-
tically not significant advantage observable for APS with small iteration number),
but they differed by a second evaluation measure, the share QR of efficient solutions
among the solutions proposed as efficient: in this respect, APS performs better than
the two other variants. In terms of the number K of APS iterations, we observed a
trend of increasing QR with increasing K, expressed by a usually positive regres-
sion coefficient. On the other hand, the number K of APS iterations should not be
chosen too large since beyond a value of about K = 20, the achieved hypervolume
starts to drop. This suggests the use of APS with a moderate number of iterations for
achieving a good compromise between the two aims of reducing the area between
approximated and true Pareto front, and of producing only solutions that have a good
chance of being Pareto-optimal (or nearly Pareto-optimal) indeed. All comparisons
have been done based on (almost) equal computation times, which means that as
the number of APS iterations has been increased, the number of NSGA-II iterations
used in the subprocedure has been decreased correspondingly.

For the larger instances from the Senegal test benchmark for which the Pareto
front could not be determined completely in [51] within 3 days, all of the pro-
posed heuristic algorithms were able to find, within a runtime that is pre-determined
by only a few minutes, a broader Pareto front approximation containing also ad-
ditional non-dominated solutions on that side of the front that has turned out
as hardly accessible by the mathematical programming approach. In total, all
applied heuristic solution implementations produced high-quality solutions and
should be considered as well-suited for solving the optimization problem under
investigation.

Our three NSGA-II-based algorithms are “anytime” algorithms, i.e., their execu-
tion can be arbitrarily prolonged, and the solution quality can be expected to increase
with growing runtime. An advantage of APS over the more straightforward variable-
sample variant is that by construction, APS aims at the possibility of convergence
to the true Pareto front, and on certain conditions on the problem, this convergence
can be proven to hold in a rigorous mathematical sense (see [19, 21, 23]). Up to
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now, however, we did not yet manage to verify this mathematical property for the
problem under consideration in this paper.

Several issues for future research remain open. In the following remarks, we fo-
cus on the technical aspect and do not address possible further research concerning
the envisaged application in disaster management, which would of course also be
an interesting and important direction. Concerning the genetic algorithm compo-
nent, an open question is whether and how the genetic operators can be modified
to improve the performance of the NSGA-II for the purposes of inclusion within
a sampling framework. To give an example, it might be promising to implement
an adaptive mutation operator as proposed by Carvalho and Araujo [6] where the
strength of the mutation depends on information about the population. In the sam-
pling framework, not only the diversity of the population, but also statistical charac-
teristics of the current accuracy of the objective function estimation might be taken
into account. A second issue is the use of a so-called non-dominated tree, as pro-
posed in Mendes and de Vasconcelos [38]. Furthermore, probabilistic dominance
relations may be used, as it has been proposed in [12, 28, 48].

With respect to the variable-sample approach and APS, a solution-dependent
adaptation of the sample size after each iteration (cf. [27]) could be a promising
topic for further experiments. This might lead to algorithmic approaches similar
to racing algorithms (cf. [2]). Moreover, whereas the investigations in this paper
concern the bi-objective situation, results on related problems with three or more
objectives would be very valuable.

From a more theoretical point of view, finally, it would be interesting to ob-
tain analytical results on the questions addressed in this paper. For example, one
would like to know (at least for simplified stochastic multi-objective problems) un-
der which circumstances variable-sample techniques outperform fixed-sample tech-
niques and vice versa in an asymptotic consideration.

Acknowledgements We want to express our thanks to Fabien Tricoire for his help during the
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Chapter 16
A Metaheuristic Framework for Dynamic
Network Flow Problems

M. Hajjem, H. Bouziri, and El-Ghazali Talbi

Abstract Dynamic network problems is a very interesting topic in modeling real
life situations where we aim to send some flow to a given destination within time
dependent parameters. This can occur in many applications such in evacuation of
people or vehicules in emergency time.

The majority of existing algorithms are based on mathematical approximations.
However, this work proposes another technique based on metaheuristics. A general
framework is provided in both single and population based algorithms. Therefore,
basic search techniques are proposed such as the crossover or the mutation. More-
over, solution representations are given within a general metaheuristical scheme. In
addition, we assess a genetic algorithm by an experimental study is conducted on a
case study of a building evacuation.

Keywords Metaheuristic • Genetic algorithm • Dynamic flow problem
• Evacuation

16.1 Introduction

Network flow is an important topic in combinatorial optimization arising in various
applications such as evacuation, transportation, telecommunication and finance. We
distinguish between static and dynamic approaches. Static network flow problems
have been known for many years as valuable tools to model various real life appli-
cations. Deep theorems and efficient polynomial algorithms have been developed.
However, these models fail to capture the dynamic property of several real prob-
lems such as evacuation problem, road or air traffic control, production systems and
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communication networks. Time in these problems is an essential component, either
because the flow takes time to pass from one location to another, or because the
structure of the network changes over time.

Ford and Fulkerson [14] have proposed dynamic network flow models (named
also flow over time) which are more appropriate than static one to simulate sev-
eral real life applications. Considering flow over time, flow does not travel instanta-
neously from one node to another but it requires a certain amount of time to cross
an arc. Hence, in dynamic network, each arc is characterized by a transit time which
computes the time needed to travel this arc. flow over time allows the introduc-
tion of new problems and techniques [26]. When transit time of arcs are either
flow-dependent or time-dependent, flow over time problems become more difficult
[11]. Our idea is to use metaheuristics that have the reputation to be efficient in
solving such difficult problems.

The main contribution of this chapter is to provide a metaheuristic framework
to solve flow over time problems. The next section recalls the basic concepts of
static network flow models. The third section describes the dynamic network, its
characteristics and its variants. The fourth section focus on the definition of dynamic
flow models and their complexities. Section 16.5 gives an overview of metaheuristic
techniques. Section 16.6 explains the design of metaheuristic for dynamic network
flow problems. Finally in Sect. 16.7, we present a case study where we adapt the
proposed framework for designing an evolutionary schema to deal with evacuation
problem . Section 16.8 is devoted to main conclusions and research perspectives.

16.2 Basic Notions and Results of Static Network Flow Problems

Static network is a directed graph G= (N,A) where N is the set of nodes and A is the
set of arcs. Each arc a ∈ A is characterized by the capacity ca. Each static network
G defines three type of nodes: source nodes, sink nodes and intermediate nodes.

Given a static network G, the static flow function x : A −→R+ assigns to each arc
a a non negative flow denoted by xa. This flow must satisfy the following constraints:

xa ≤ ca,∀a ∈ A (16.1)

∑
a∈ς−(n)

xa = ∑
a∈ς+(n)

xa,∀n ∈ N \ {s, t} (16.2)

Equation (16.1) corresponds to the capacity constraint where the flow xa should
not exceed the fixed upper bound ca. We say that xa is feasible if it obeys this
constraint. Whereas, Eq. (16.2) introduces the flow conservation constraint where
ς−(n) and ς+(n) denote respectively the set of outgoing arcs of node n and incom-
ing arcs into node n. This constraint implies that the total flow entering each node
must be equal to the total flow leaving this node.

The value of flow defined by val(X) presents the amount of flow that can pass
from the source to the sink of a given network. This value of flow have to verify
constraints (16.1) and (16.2). It is computed as follows:
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val(X) = ∑
a∈ς+(s)

xa − ∑
a∈ς−(s)

xa

= ∑
a∈ς+(t)

xa − ∑
a∈ς−(t)

xa

Two basic network flow problems are defined in literature. The first one is the
maximum flow problem which attempts to achieve the maximum value of flow
val(X) from the source to the sink. Polynomial algorithms are provided to find the
maximum flow in a given network. The most popular one was proposed by Ford
and Fulkerson [13]. The second problem is the minimum cost flow problem which
attempts to achieve the maximum flow with minimum cost. Similarly to the maxi-
mum flow problem, the minimum cost flow problem is polynomially solved [6].

These two basic problems have been treated and solved in different ways ac-
cording to the type of the considered network. We distinguish four network flow
problems:

• The s− t-flow problem is defined on networks with a single source s and a single
sink t.

• The multiple source multiple sink problem is introduced on networks with multi-
ple sources and multiple sinks. This problem can be transformed into s− t-flow
problems by adding two artificial nodes: the super source which is connected to
the set of sources and the super sink which is connected to the set of sinks.

• The transshipment flow problem is a variant of multiple sources and multiple
sinks problem where supplies at sources and demands of sinks are fixed. This
problem can be transformed to s− t-flow problem with fixed supply on the super
source and fixed demand on the super sink.

• The multi-commodity problem presents several types of flow in the same network.
The object is to construct flows for the commodities that satisfy the demand
for each commodity at each node without violating the constraints imposed by
Eqs. (16.1) and (16.2).

16.3 Dynamic Network

Ford and Fulkerson [14] introduced the dynamic network by adding the time di-
mension to the classical network. In this way, a transit time is defined for every arc.
Therefore, a dynamic network GT = (N,A,T ) is a directed graph in which N is the
set of nodes, A is the set of directed arcs and T is the time horizon.

16.3.1 Time Horizon

We distinguish between finite time horizon and infinite time horizon. In finite time
horizon models, flow units should arrive to the destination node before a given time
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T [31]. This means that only the amount of flow which arrives to the destination
node before this fixed horizon time T is considered.

Infinite horizon time model does not have a specified and fixed period to solve
problems [28]. It is used for example where activities are happen periodically like
inventory problems.

The time horizon can be classified into discrete or continuous time. In discrete
horizon time models [19], the horizon time T is broken up into finite uniform integer
time periods t = 0,1, . . . ,T . In continuous time problem, the horizon time is broken
up into finite periods t which can take any real value of the interval t ∈ [0,T ]. In this
work, we focus on problems with discrete finite horizon time.

16.3.2 Parameters

As in static network, each arc a ∈ A has a capacity ca(t)∈N for all t = {0,1, . . . ,T}.
The capacity ca(t) defines the upper bound of flow units that can enter an arc a at
each unit time t.

In dynamic network, it is possible to store the flow at nodes. This model is named
dynamic network with storage nodes. Therefore, each node n ∈ N has a capacity
cn(t) ∈N which defines the maximum number of units of flow that can be held over
at this node. This capacity is called holdover capacity. We distinguish also flow over
time models without storage nodes and with infinite holdover capacity [31].

In literature, capacities of nodes and arcs are treated as constant or time-dependent
attributes. Constant capacity means that each node or each arc has the same capacity
for all periods t ∈ [0,T ]. Time-dependent capacity implies that capacities of arcs and
nodes are defined at each period t ∈ [0,T ].

In dynamic network, each arc is characterized by a transit time denoted by
λa(t) ∈N. This transit time defines the time period needed to cross an arc a = (v,w)
departing from node v at time t, and arriving to node w at time t ′ = t +λa(t). The
transit time of a given arc depends on its physical distance and the speed of flow in
this arc. Three main approaches are used to model the transit time.

• The first approach assumes that the transit time is fixed independently of the
horizon time [14]. Similarly to constant capacities, constant transit time is defined
once for all periods of the time horizon.

• The second approach assumes that the transit time is time-dependent [19]. This
means that at each period, a constant transit time is defined in arcs. This travel
time which depends on the average of speed’s flow on arcs, is assumed to be
constant for the travel duration on the arc at the given unit time.

• The third approach defines flow-dependent transit time. This approach takes into
consideration the dependence between the transit time, the flow’s rate and the
flow’s speed. Two main flow-dependent transit time models are proposed: inflow-
dependent transit time [25] and the load-dependent transit time [24]. Inflow-
dependent transit time models assume that the flow units entering an arc a at the
same period t have the same speed. Hence, the flow entering an arc a with flow
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rate fa(t) needs a transit time λa( fa(t)) to traverse a. However, load-dependent
transit time model assumes that at each period of the horizon time, the transit
time λa(la(t)) of an arc a depends on load la(t) which is the amount of flow not
only entering this arc but also standing on this arc at a given time t.

16.3.3 Representation

The dynamic network GT = (N,A,T ) can be presented by a discrete time-expanded
network GT = (NT ,AT ) over the horizon time T as it is seen in Fig. 16.1. A time-
expansion network GT with time horizon T consists of T copies of the set of nodes
N, one for each unit time t . For each movement arc aM = (v,w) having transit time
λa(t), an arc is inserted between the copy of node v(t) for all t ∈ {0, . . . ,T −λa(t)}
and the copy of node w(t ′) for all t ′ = t + λa(t). If we allow storage in nodes,
holdover arcs are needed to connect the copy of node v(t − 1) to the copy of
node v(t).

Fig. 16.1 Time-expanded network. A network with 4 copies of 5 nodes. Each copy corresponds to
a node at the given unit time. Horizontal lines describe holdover arcs. Other lines are the movement
arcs. Time-expanded network defines capacities for movement and holdover arcs. Only capacities
of holdover arcs are illustrated

In the case of flow-dependent transit time models, Köhler et al. [25] have pre-
sented an extension of time-expansion graph which is named fan graph. Flow in the
fan graph can use several adjacent arcs corresponding to different transit times as it
is presented in Fig. 16.2.

In Fig. 16.2, where graduated horizontal lines define copies of nodes s and d at
periods t ∈ {0, . . . ,5}. Furthermore, copies of the arc (s,d) are distinguished accord-
ing to the flow rates x1, x2 and x3 where x1 < x2 < x3.
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Fig. 16.2 Fan graph. This graph illustrates arcs with different capacities that connect all copies of
a source node s to all copies of a destination node d. At each unit time, arcs model the different
possible transit times. The capacities of arcs try to control the distribution of flow according to the
transit time function. For example, if the rate of flow which is sent into the arc (s,d) is x1, the
transit time assigned to this flow is at least λ(s,d)(x1) = 1

16.4 Flow Over Time Models

The number of flow problems that can be defined in dynamic network is obviously
more important than that which can be defined in static network. Various extensions
of dynamic network flow problems are treated. The variation of flow over time mod-
els is based on objective of the problem, characteristics of arcs and nodes (constant,
time-dependent or flow-dependent), the type of the network (single source and sink,
multiple sources and sinks or the value of demands and supplies on sources and
sinks. . . ) and models of the time horizon (discrete or continuous time). Depending
on objectives of different flow over time problems, this section summarizes basic
dynamic approaches proposed in literature.
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16.4.1 Maximum Dynamic Flow Problem

The maximum dynamic network flow problem (MDFP) is firstly introduced by Ford
and Fulkerson [14]. It tries to send the maximum flow from the source to the sink at
a given horizon time T . This problem has been studied on dynamic network having
constant attributes (capacities and transit time) with single source and single sink. A
polynomial algorithm has been proposed to get an optimal solution. This algorithm
consists on the repetition of the feasible flow along some chains of the static network
from the source to the sink for every time period within T . This approach is called
the temporally repeated flow algorithm.

Minieka [27] has modified this technique to solve MDFP in a dynamic network
where arcs can be added or removed in any time period. Later, Halpern [18] has
treated MDFP with time-varying capacities and MDFP without storage in nodes.
Tjandra [31] has presented a pseudo polynomial algorithm for MDFP with time-
varying attributes where capacities and transit time are time-dependent. Fleischer
and Skutella [11] have studied the MDFP with flow-dependent transit time. Fur-
thermore, dynamic maximum multi-commodity flow problem has been studied by
Awerbuch and Leighton [1] and Hall et al. [17]. Approximate algorithms have been
proposed for this problem with and without storage nodes.

16.4.2 Earliest Arrival Flow Problem

The earliest arrival flow problem (EAFP), also called universal maximum flow prob-
lem has been introduced by Gale [15]. The EAFP is an extension of the maxi-
mum dynamic flow problem. This problem consists on the maximization of the flow
reaching the sink not only for the time horizon T , but also for every time T ′ < T .
Therefore, the earliest arrival flow presents an additional property named the earliest
arrival property. Minieka [27] and Wilkinson and John [32] have proposed polyno-
mial algorithms based on the successive shortest path technique for the EAFP with
constant parameters. Under the same assumptions, Hoppe and Tardos [20] have de-
veloped a polynomial (1+ ε)-approximation algorithm to solve the same problem.
This algorithm, named the capacity scaling shortest augmenting path, has been
adapted later by Hamacher and Tjandra [19] to solve EAFP with time-dependent
attributes. In addition, Cai and Sha [7] and Fleischer [10] have provided pseudo-
polynomial algorithms to solve the same problem. In the case of flow-dependent
transit time, Baumann and Köhler [3] have showed that the earliest arrival property
can not be verified. This means that if we try to maximize the flow at each unit time,
we can’t obtain the maximum at the end of the horizon time. Hence, they proposed
a relaxation which looks for the maximum flow with minimum lateness.

Furthermore, Hajek and Ogier [16] have given the first polynomial algorithm for
the transshipment EAFP in the case of several sources and single sink with zero
transit time. In the case of time-dependent attributes, this problem has been treated
by a FPTAS approximation algorithm [11] and an exact polynomial algorithm [4].
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16.4.3 Quickest Flow Problem

The quickest flow problem (QFP) asks to minimize the time needed to send a finite
value of flow in source node to the sink [26]. This time is called the network clear-
ance time. Burkard et al. [5] have given a polynomial algorithm for QFP with con-
stant attributes. Also, Tjandra [31] has presented a pseudo polynomial algorithm to
this problem with time-dependent attributes. Further, the QFP with flow-dependent
transit time has been treated by Köhler and Skutella [24] and an approximation al-
gorithm has been proposed. They provide a (2+ε)-approximation using temporally
repeated flow technique.

The quickest transshipment problem seeks to minimize the time needed to satisfy
a given supplies and demands in sources and sinks within a minimum time. Hoppe
and Tardos [21] have described a polynomial algorithm to solve this problem by
considering constant attributes. Fleischer [9] envisaged the quickest transshipment
problem with zero transit time. He proposed an approximation algorithm to solve
the problem. Further, the multi-commodity QFP has been treated with constant at-
tributes by Fleischer and Skutella [11] and with inflow-dependent transit time by
Hall et al. [17].

16.4.4 Dynamic Minimum Cost Flow Problem

The dynamic minimum cost flow problem seeks to find the flow that satisfies sup-
plies and demands in a given horizon time such that the total cost defined on arcs or
nodes is minimized. Therefore, if costs on arcs are given, then we fix the amount of
flow val(X) and the horizon time T , and we ask for the minimum cost dynamic flow
on arcs that sends val(X) amount of flow from the source to the sink over T . Hence,
the minimum cost maximum dynamic flow problem tries to maximize the flow and
minimize the cost of a given val(X) in a given horizon time. Whereas, the minimum
cost quickest flow problem seeks to minimize the cost and the time T needed to send
a given flow val(X). Kotnyek [26] has defined these two problems and has proved
that both are NP-hard.

Klinz and Woeginger [23] considered the s-t-dynamic minimum cost flow prob-
lem with constant attributes and without waiting in nodes. Fleischer and Skutella
[12] treated transshipment dynamic minimum cost flow problem with the same
constraints. Approximation algorithms have been proposed for these problems.
s-t-minimum cost dynamic flow problem on time-varying networks has been han-
dled by Cai and Sha [7]. In this work, the time-varying attributes are costs, travel
times and capacities on arcs as well as on nodes. Pseudo-polynomial algorithms
are provided to solve this problem with waiting capacity, with unlimited waiting in
nodes and with the prohibition of waiting in nodes.
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16.4.5 Complexity of Dynamic Network Flow Problems

We summarize in this section the complexity of flow over time problems. In Ta-
ble 16.1, three sets of flow over time problems are considered: single source and
single sink flow problems, transshipment problems and multi-commodity problems
[24]. We can note that for flow over time problems with constant transit time,
polynomial (Poly) solutions has been proposed [14, 15]. Dynamic network flow
problems with time-dependent transit time [31] are classified pseudo-polynomials
(Pseudo-Poly). However, no polynomial results have been presented for transship-
ment problems [9], multi-commodity problems [11] and the flow over time problems
with flow-dependent transit time [25]. These problems are classified as NP-hard.

Table 16.1 Complexity of flow over time problems

Dynamic Single source- Transshipment Multi-commodity
problems single sink
Constant Poly Poly Pseudo-poly
transit time
Time-dependent Pseudo-poly NP-hard NP-hard
transit time
Flow-dependent NP-hard NP-hard NP-hard
transit time

Approximation algorithms have been proposed to solve NP-hard flow over time
problems. These algorithms define a guarantee on the bound of the obtained solution
from the global optimum. However, in practice, these algorithms present several
limits to solve problems with large size instances. Indeed, dynamic network flow
models have been used to simulate real-life applications where large scale instances
are needed as for evacuation and telecommunication. In these cases, decision makers
need efficient solutions in reasonable time.

For this reason, we choose in this work to use metaheuristics to handle NP-hard
dynamic network flow problems, and more precisely those with flow-dependent
transit time. This was motivated by the ability of these techniques to solve real-life
NP-hard problems.

16.5 Metaheuristics

Metaheuristics have a good potential for resolving various NP-hard problems since
they use strategies to escape local solutions and to allow the search space to be
explored efficiently. Unlike exact methods, there is no guarantee to find optimal or
even bounded solutions.
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Before implementing a metaheuristic, three main parameters have to be defined:
the representation of the solution handled by algorithms, the definition of the ob-
jective function that will guide the search and the definition of the constraint han-
dling strategy. Many classifications of metaheuristics have been proposed by Talbi
[30]. In this study, we distinguish between evolutionary-based metaheuristics and
blackboard-based metaheuristics.

16.5.1 Blackboard-Based Metaheuristics

Blackboard-based metaheuristics are inspired from the collective behavior of agents.
Ant colony [8] and artificial bee [22] algorithms are classified as blackboard-based
metaheuristics. These algorithms are based on the cooperative construction of the
solution. Blackboard-based algorithms are greedy algorithms where each agent tries
to construct an efficient solution by adding solution components to a partial one until
a complete solution is derived. In addition, each agent contribution is done according
to the shared memory and heuristic information. The shared memory keeps char-
acteristics of the best generated solution. Heuristic information represents known
information specific to the problem.

16.5.2 Evolutionary-Based Metaheuristics

Evolutionary algorithms operate on complete solutions unlike blackboard-based al-
gorithms. They try to improve iteratively, the solution’s quality. We distinguish be-
tween two classes of evolutionary algorithms: single-solution based evolutionary
algorithms and population-solution based evolutionary algorithms [30].

Single-solution based evolutionary algorithms start with a solution generated ran-
domly or using a method. A neighborhood is generally obtained by local transfor-
mation or mutation of the given solution. Furthermore, selection is performed from
candidate solutions from the neighborhood to replace the current solution. Local
search algorithm, tabu search and simulated annealing are considered as examples
of single-solution based evolutionary algorithms.

Population-solution based evolutionary algorithms operate on a set of solutions
called population. Initially, a population is generated randomly or using specific
methods. At each step, individuals are selected to reproduce new offsprings using
variation operators. A replacement scheme is applied to determine which individ-
uals of the population will survive from offsprings and parents. This generation is
iterated until a stationary state is reached [33].
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16.6 An Evolutionary Framework for Dynamic Network
Flow Problems

In this section, we provide an evolutionary framework to treat dynamic network flow
problems. This framework is generic since it can be adapted to different models and
problems presented in Sect. 16.4.

16.6.1 Solution Representation

A solution in a dynamic flow problem corresponds to a set of assignments of flow to
each node or arc at each period. Since, we can deduce the flow on arcs if we have the
flow on nodes or inversely, we can choose to represent the flow distribution either
on nodes or arcs.

More formally, let GT = (N,A,T ) be a dynamic network, each solution is de-
scribed by the flow matrix F . Indeed, F has as dimension |N|×T entries or |A|×T .
Each entry Fit assigns to each node i = 1 . . . |N| (respectively i = 1 . . . |A|) a number
of flow X at each unit time t = 0 . . .T . Hence, each row rt in F corresponds to the
state of GT at unit time t.

16.6.2 Generation of Initial Solutions

For flow over time problems, solutions have to be feasible by verifying standard
constraints related to flows on network. In addition, the state of the network in a
given time t depends on its state in time t − 1. Thus, to generate initial solutions for
dynamic flow problems, we recommend the use of hybrid strategies. Indeed, initial
solution should be constructed in a greedy way and flow on nodes and arcs have
to be generated randomly to ensure diversification. Furthermore, these values have
to satisfy basic constraints such as capacity’s constraint and flow’s conservation
constraint.

16.6.3 Crossover Operator

The crossover operator is binary and sometimes n-ary. The role of crossover opera-
tors is to inherit some characteristics of parents to generate the offsprings. For flow
over time problems, we define a crossover operator as follows.

Given two selected solutions, represented by two matrix F1 and F2 (parents), we
have to form a new solution (offspring) F3. At each unit time, each node in F1 is
compared to the corresponding node in F2 and the flow of the dominant node is put
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in F3 at the same period. We say that a node dominates another node if it contains
more flow units in the case of maximization of flow. This definition can be changed
according to the chosen fitness function of the problem.

After combination, the offspring F3 have to be transformed to a feasible solution
by adjusting the flow on the network to respect constraints on nodes and arcs.

16.6.4 Mutation Operator

Mutation operator is unary operator acting on single solution. This operator can be
simple by flipping a cell in the current matrix corresponding to a solution, or more
sophisticated by applying a local search procedure on the chosen solution.

16.7 Application to Evacuation Problem

Emergency evacuation is needed in many situations such as fire, floods, volcanoes,
tsunamis and terrorism acts. This evacuation consists in the movement of people
from dangerous area to safe one as quickly as possible. In order to obtain an optimal
evacuation process, researchers sought for methods to find an efficient evacuation
plan which maximizes the number of saved evacuees.

Different flow over time models has been used to simulate evacuation problem.
We choose, to deal with dynamic maximum flow problem with flow-dependent tran-
sit time (DMFP-FDT) using a genetic algorithm based on the framework proposed
in the previous section.

We consider a graph GT with ci j(t), ci(t) , xi j(t) and li j(t) which are respectively
the capacity of arc (i, j), the capacity of node i, the flow value and the load of the arc
(i, j) at period t. The dynamic maximum flow problem is modeled as follows [11];

Maximize

val(X) =
T

∑
t=0

∑
(i,d)∈A

xid(t) (16.3)

Subject to

xi j(t)≤ ci j(t),∀(i, j) ∈ A, t ≤ T (16.4)

xi(t)≤ ci(t),∀i ∈ N, t ≤ T (16.5)

λi j(t) = λ 0
i j ∗ (1+ γ(li j(t)/ci j(t))) (16.6)

∑
(i, j)∈A

∑
t′

xi j(t
′)− ∑

(i, j)∈A
∑
t

xi j(t) = xi(t)− xi(t − 1) (16.7)

t ′+λi j(t
′) = t (16.8)
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Equation (16.3) describes the objective of maximization of saved evacuees. This
function computes the value of flow val(X) arriving to destination node at each unit
time. Equations (16.4) and (16.5) represent constraints of capacity on arcs and nodes
respectively. Since capacities of arcs and nodes are time-dependent, it is necessary
to verify these constraints at each period. Equation (16.6) illustrates the transit time
function which defines the dependence between transit time and flow on arcs. Equa-
tion (16.7) defines the conservation constraint which computes the load in nodes at
each unit time. This constraint allows the storage of flow in nodes. The period t ′

used in Eq. (16.7) is defined by Eq. (16.8).
The transit time function in Eq. (16.6) is the Bureau of Public Roads function

(BPR) defined by Sheffi [29]. This transit time function has been used by Baumann
[2] for the earliest arrival flow problem with flow-dependent transit time. The BPR
function depends on λ 0

i j which is the transit time of the arc (i, j) when it is empty.
li j(t) is the load of the arc (i, j) at unit time t and ci j(t) is the capacity of the arc
(i, j) at unit time t. The value γ weights the importance of crowdedness in this transit
time.

16.7.1 A Case Study for Building Evacuation

We propose an evacuation planning case study for the second floor of children hos-
pital (see Fig. 16.3) located in the city of Bab Saadoun in Tunisia. The purpose of
this application is to investigate the performance of the proposed metaheuristic in
evacuation networks simulated using flow over time models. We apply a genetic
algorithm to find a maximum number of saved evacuees for a given period in a
time-dependent environment taking into consideration the crowdedness in corridors
and doors.

The plan of the hospital is transformed to static network consisting of 30 nodes
represented in Fig. 16.4. Nodes correspond to rooms and corridors of the hospi-
tal and arcs corresponds to doors. This network defines multiple sources and one
sink.

The sink is represented by node 30. Nodes drawn by a circle surrounded by a
rectangle describes sources nodes. The network can be transformed into network
with single source by adding an artificial node named super source which is con-
nected to the set of sources. The capacity of this node will be the sum of source
nodes capacities. Arcs related to this node have zero transit time.

We predict an emergency situation which need 20 min to evacuate all people from
the building. We define one unit time by 1 min. Hence, the time horizon T is broken
to 20 periods. Table 16.2 lists all nodes with positive initial load where the total
number of evacuees is set to 965 at the first unit time.

The transit time λ 0
i j and initial capacities of arcs and nodes at the first unit time

are specified by an architect depending on the plan of the building. Time-dependent
capacities data are defined randomly. Initial capacities of nodes are presented in
Table 16.3.
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Fig. 16.3 Plan of the second floor of children hospital

16.7.2 Design of Genetic Algorithm

Genetic algorithms (GA) have a good potential to solve various dynamic NP-hard
problems. We propose this GA based on a population of solution represented by the
matrix of flow in nodes at each unit time. As it is seen in Sect. 16.6, we have to adapt
algorithms generating initial population, crossover and mutation in order to check
constraints and characteristics of flow over time problems.

16.7.2.1 Initial Population

The generation of flow in nodes can not be completely random, since the state of
nodes at a given unit time depends on their state and the state of predecessor nodes
in previous unit times. Hence, we choose to use a constructive random dynamic
algorithm. This algorithm is based on temporally repeated flow technique [14] using
random units of flow and flow-dependent transit time.

We propose the Operator 1 to generate initial population. This heuristic uses the
dynamic residual network defined by Tjandra [31]. At each unit time, a residual
network is constructed. From each node n with positive flow xn > 0 a random flow
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Fig. 16.4 Network representation of the second floor of children hospital

Table 16.2 Initial load of nodes
Node 1 3 5 7 8 9 11 12 14

Initial load 100 100 100 100 30 30 30 100 15
Node 16 17 19 20 24 25 26 27 28 29

Initial load 60 60 6 9 21 30 21 45 33 75

Table 16.3 Initial nodes’s capacities

Node 1 2 3 4 5 6 7 8 9
Initial capacity 120 60 120 60 120 60 120 45 45

Node 10 11 12 13 14 15 16 17 18 19
Initial capacity 60 45 120 50 25 35 70 70 60 15

Node 20 21 22 23 24 25 26 27 28 29
Initial capacity 15 10 10 20 27 40 30 50 40 100

f is generated at each outgoing arc a with capacity ca. Therefore the transit time
λa( f ) is computed following the formula (16.6).

16.7.2.2 Crossover and Mutation

Since the objective of this study consists on maximization of flows in destination
node, offspring should inherit nodes with maximum flow from parents. Hence,
crossover operator consists on assigning to offspring the maximum load from par-
ents’ solutions for each node at a given period. We choose to apply crossover for the
set of nodes at the first five periods.
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Operator 1 Algorithm for generating initial population
Set dynamic parameters of the graph
for all θ ∈ T do

for all n ∈ N with flow not null do
for all a ∈ ς−(n) do

Generate Random flow f ∈ [0,xn] in a
if f > ca(t) then

f = ca(t)
end if
Compute the transit time λa( f )
Assign f to destination node of arc a for period θ +λa(θ )

end for
end for

end for

Other periods of offspring are constructed using the algorithm proposed for
the generation of initial population during the mutation. At each generation, off-
springs are evaluated and best solutions from parents and offspring are sent to next
generation.

16.7.3 Results Analysis

We implemented the GA using Paradiseo framework [30] based on C++ language.
These experiments were conducted on a centrino duo 1.66 GHz laptop. Experiments
have been performed to maximize the number of people that can be saved when we
assume that transit time is flow-dependent.

Table 16.4 Representation of the best solution obtained by the proposed GA

Periods T0 T1 T2 . . . T20

Node 0 965 572 316 . . . 0
Node 1 0 7 17 . . . 0
Node 2 0 1 1 . . . 0
Node 3 0 42 67 . . . 55
. . . . . . . . . . . . . . . . . .

Node 30 0 47 71 . . . 771

Table 16.4 defines the solution representation of the solution provided by our
adaptation of GA where rows correspond to nodes and columns to periods. We re-
mind that this solution describes flow in nodes at each period. Hence, the GA pro-
cedure can generate at each iteration several evacuation plans and tries to improve
the evacuation process using genetic operators.
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Fig. 16.5 Distribution of evacuees at period 5 in random plan from initial population

Indeed, in Fig. 16.5, we show the distribution of evacuees after 5 min in the initial
solution (plan) which is constructed randomly. This distribution demonstrates that
after five periods, source nodes are still crowded such as node 1 which contains 64
persons. However, in this distribution, 113 persons which reach destination node are
saved.

Figure 16.6 describes evacuation plan at the end of evacuation period (at period
20). In this figure, the distribution of evacuees in the building after 20 min shows that
an important number of evacuees are saved (771 persons reach destination node).

Therefore, this figure shows that several nodes such as node 13 and node 10
still contain people. This proves that crowdedness in these nodes increases the tran-
sit time of these people. This phenomena can be explained by the fact that these
nodes have several predecessors and only one successor. Hence, we recommend the
adding of other doors to these rooms. In addition, we believe that it is crucial to pre-
vent crowdedness by installing cameras in these locations. Therefore, this solution
may be improved by the increase of the time needed to evacuate people (evacuation
time T ).
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Fig. 16.6 Distribution of evacuees at period 20 in the best plan

16.8 Conclusion

Our survey of the state of the art of network flow problems states clearly that flow
over time problems could adequately model several real applications. Dynamic net-
work flow models append the time factor to classical static models. Dynamic net-
work flow models differ according to three parameters: the type of the network, the
objective of the problem and the attributes’s proprieties (transit time and capaci-
ties).These variants do not exhibit the same complexity. We distinguish polynomial,
pseudo-polynomial and NP-hard problems.

The contribution of this chapter is the definition of a metaheuristic framework for
NP-hard flow over time problems. A specific case study of dynamic flow problem
is treated, precisely the evacuation problem from a building. Therefore, we have
supposed that the dynamic maximum flow model with flow-dependent transit time
could handle the dynamic property and the crowdedness on nodes and arcs. We
choose the genetic algorithm as a population-based evolutionary method to treat
this NP-hard problem.

The GA enables the search to reach evacuation plans that could simulate real
evacuation process. In addition this algorithm enabled the location of critical areas
that should improve their security by implementing cameras or adding exits. The



16 A Metaheuristic Framework for Dynamic Network Flow Problems 303

proposed evolutionary framework can also applied by testing single-solution evolu-
tionary approaches such as tabu search or simulated annealing. Furthermore, other
operators should be tested and parameters could be adjusted accordingly.
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Chapter 17
A Greedy Randomized Adaptive Search for the
Surveillance Patrol Vehicle Routing Problem

Simona Mancini

Abstract In this chapter a new rich vehicle routing problem is introduced, the
Surveillance Patrol Vehicle Routing Problem (SPVRP). This problem came out from
a real need of a surveillance company to create fairer routing plans for its security
patrols. The problem consist into routing a set of patrols in order to visit a set of
checkpoints. Each checkpoint requires one or more visits, each one of which, to
be performed within a fixed time window. A minimum time spacing between two
consecutive visits should be observed. The goal is to minimize cost while minimiz-
ing, at the same time, time windows and minimum spacing constraints violations. In
order to avoid repetitiveness in the routes and to provide more unpredictable rout-
ing plans, the company looks for a pool of sensibly different high quality solutions
form which, each night they can choose the routing plan to be followed. To ad-
dress this problem a Greedy Randomized Adaptive Search algorithm (GRASP), is
used to provide good solutions and a further GRASP algorithm is used to generate
pools of good solutions. The quality of a pool is measured both in terms of averaged
quality of the solutions in the pools and in terms of diversity among each others.
Experimental tests on real instances are reported.

Keywords Rich Vehicle Routing • Multiple Time Windows • Heterogenous fleet
• Greedy Randomized Adaptive Search

17.1 Introduction

In the last decades the request of private security and surveillance services con-
stantly grows. Customers became more and more exigent, and their requests may
be completely different among each others. They may require single or multiple
visits per night, with different time windows which may be completely disjointed,
overlapped or partially overlapped. For instance, a customer may require three visits,
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in which one must be achieved before midnight, one between midnight and 2 o’clock
in the morning and one after 4 o’clock, while another one may request three visits in
which the only rule is that they must be carried out all before 4 o’clock. The case of
partially overlapped time windows occurs when, for instance, one visit is required
before 2 o’clock and the other two after midnight. The location to be visited, from
now on called checkpoints, may be completely different both in typology and in size.
They may vary from a large shopping center, which requires several minutes to be
checked, to a cash dispenser. Furthermore, the same customer may require different
types of visits during the night. For instance, a shopping center may require a longer
visits in the first hours of the night (just after closing time) and short checks during
the night. Moreover, a minimum spacing time between two consecutive visits must
be ensured. In fact, if a checkpoint must be visited once before 2 o’clock and once
after 2 o’clock, it is not fair to visit it at 1:55 a.m. and at 2:05 a.m. The difficulty of
a task depends on the checkpoint location (checking a cash dispenser near the train
station may be much more dangerous than one located in an uptown district) and
typology. Patrols may be grouped by level of expertness, and only certain group of
patrols may visit the most dangerous checkpoints. The fixed cost associated to the
use of a specific patrol is proportional to its level of expertness.

A surveillance company aims to reduce costs, given by fixed cost for patrol usage
plus kilometric cost multiplied for the total covered distance, while at the same time
minimizing the number of time windows and minimum spacing constraints violated.
This because they aim to be more competitive on the mark and to be able to offer
a high quality service level at a competitive price. The final goal of the company is
not only to schedule a fair routing plan at the minimum cost, but also to define a set
of potential high quality plans from which to choose, each day, a different plan to be
followed. This request came out from the need to avoid to repeat always the same
tours, for security reasons. Indeed, if criminals know exactly at what time a patrol
visit a checkpoint, they may easily evade surveillance. More unpredictable is the
visits schedule, more difficult is to elude surveillance, with a consequent increase of
the public safety level and a reduction of committed crimes. For this reason a second
optimization problem may be defined, consisting into choosing a subset of Q solu-
tions within a set of N feasible solutions, in order to minimize cost, time windows
and minimum spacing constraints violation and repetitiveness. More in detail, two
repetitiveness indexes can be defined, the first one, deals with visit times at check-
points and works as follows. If, a checkpoint is visited within the same timeslot in
more than r% of the solutions belonging to the subset, a visit time repetitiveness
penalty is added. A similar procedure is applied for sequence repetitiveness. In fact,
if a checkpoint is visited immediately after the same checkpoint in more than q%
of the solutions in the subset, a sequence penalty is added. The value of r and q
are parameters of the algorithm. Timeslots are defined as very small consecutive
disjointed time intervals (i.e. 10 min).
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17.2 Literature Review

Considering all the requirements and features described in the previous section,
planning and scheduling routes for surveillance patrols becomes a very challenging
problem, much more complex than the classical extensions of the vehicle routing
problem (VRP), broadly studied in the literature. In particular, the SPVRP can be
described as a multi-objectives version of the VRP with Multiple Time Windows
and Heterogeneous Fleet with additional minimum spacing constraints. This prob-
lem combines different features which have never been addressed together in the
literature, but which have been broadly studied separately. Multi-objectives vehicle
routing problems frequently occur in real-life applications. The most studied prob-
lem in this field is the VRP with Workload Balance, introduced by Lee and Ueng
[13] in which the goal is twofold: minimize the total traveled distance (or more gen-
erally the total travel cost) and balance the workload of the drivers. In [16] the goal
is to minimize the routing cost trying to maximize customers satisfaction, which can
be achieved minimizing time windows violations, which is also one of the goal of
the SPVRP. Many different objectives may be found in practical applications such
as the Schoolbus Routing Planning, addressed in [2], in which four objectives are
considered: the minimization of the total route length, the minimization of the to-
tal student walking distance, the fair distribution of the load (i.e., the number of
students transported), and the fair division between the buses of the total distance
traveled. Other objectives addressed in the literature are the minimization of the
longest route, as specified in an application in urban trash collection [12], and the
balancing of time spent on the bus by the scholars, in a Rural Schoolbus Routing
Planning [3]. Multiple Objectives optimization is very frequent in Hazardous Mate-
rial Transportation, where the objectives addressed are the routing cost minimization
and the risk minimization [9, 19]. For a complete survey on multi-objectives VRPs
the reader ma refer to [11].

Vehicle-routing problems with time windows (VRPTW) have been broadly ad-
dressed in the literature. Two different types of Time Windows may be defined:
Hard Time Windows, which must be respected, Soft Time Windows which may be
violated paying a penalty in the objective function. The Vehicle Routing Problem
with Hard Time Windows (VRPHTW), has been extensively studied and hundreds
of solution approaches, both exact and heuristics have been proposed. For a com-
plete survey on this subject the reader may refer to [17]. Soft time Windows have
received limited attention respect to their hard counterpart, even if they are more
frequently addressed in real-life applications. A survey on papers dealing with Ve-
hicle Routing Problems with Soft Time Windows is reported in [14]. In the SPVRP,
Soft Time Windows are considered; in fact, the minimization of TW violations is
one of the objective of the problem.

The Heterogeneous Fleet Vehicle Routing Problem (HVRP), is an extension of
the classical VRP in which customers are served by a heterogeneous fleet of vehicles
with various capacities, fixed usage costs, and variable cost per distance unit. An
extensive literature review on HVRP is reported in [1].
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Despite its high relevance in real-life applications, the spacing constraints it is
not often studied in the literature. In fact, in many real applications, such as in the
SPVRP, it is important not only the period within which the visit is carried out but
also the moment, within that period, in which it is actually performed.

The need of ensuring diversity among routing plans across different days in the
time horizon, which is of crucial importance in the SPVRP, has never been addressed
before in literature, while a similar but specular issue is treated in the Consistent Ve-
hicle Routing Problem (ConVRP), introduced by Groer et al. [10], in which the same
driver must visit the same customers at roughly the same time on each day that these
customers need service. In SPVRP, diversity is treated as a soft constraint, adding
a penalty in the objective function if it is violated, while consistency in ConVRP is
treated as a hard constraint.

17.3 The Surveillance Patrols Vehicle Routing Problem

In this section a formal description of the Surveillance Patrols Vehicle Routing Prob-
lem (SPVRP) is reported. The problem consist into routing a set of patrols P in order
to visit a set of checkpoints C. Each checkpoint c may require a different number
of visits |Vc| (being Vc the set of visits to checkpoint c) each one to be exploited
within a fixed time window. The routes scheduling is done across a single period. A
minimum time spacing, δ , between two consecutive visits should be observed for
all the checkpoints. Each visit to a checkpoint is characterized by a service time, scv,
representing the time to be spent at checkpoint c during visit v (this time may vary
from 1–2 min to 15–20 min depending on the service required). Each checkpoint
is associated with a level of difficulty dc, basing on its degree of danger. Check-
points located in residential zones generally have a low dangerousness, due to the
low number of crimes committed in the zone, while checkpoints located in slum
neighborhood or near the railway station or places with a high affluence of people
like stadiums, are potentially much more dangerous and must be controlled only
by expert patrols. Each patrol p is associated with an expertness level, lp such as a
patrol p may be assigned to a checkpoint c only if it holds the minimum experience
level required by c, i.e. only if lp ≥ dc. A checkpoint c can be visited by different
compatible patrols. Obviously more expert patrols cost is higher than less experted
ones; more precisely a fixed cost, Kp is associated to each patrol and it is activated
only if the patrol is scheduled in the plan. Patrols are grouped in classes of expert-
ness and fixed costs are homogeneous within each class of experience. This means
that, if two patrols, p1 and p2, hold the same level of expertness, i.e. if lp1 = lp2 ,
then Kp1 = Kp2 . A limited number of patrols for each class is available. Each route
start from the company station and must come back to the station before the end of
the working period (generally patrols work in the period 10 p.m.–6 a.m.). A unitary
distance cost νd , equal for all the patrols, and a unitary time cost, νt p varying among
classes of patrols, are defined. The objectives addressed in the optimization process
are the following:
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• Minimization of a generalized cost function composed by

– Patrols activation costs
– Distance costs: equal to the total traveled distance multiplied by unitary dis-

tance cost
– Time costs: equal as the sum over all the patrols of total time spent out of the

station multiplied by unitary patrol time cost

• Minimization of minimum spacing constraints violations
• Minimization of time windows violations

A further optimization problem consists into determine the best pool of Q solu-
tions according to the following criteria:

• Minimization of averaged generalized cost of the solutions within the pool
• Minimization of minimum spacing constraints violations
• Minimization of time windows violations
• Minimization of visit time repetitiveness
• Minimization of visits sequences repetitiveness

The visit time repetitiveness is defined as follows. If, a checkpoint c is visited
within the same timeslot in more than r% of the solutions belonging to the subset,
a visit time repetitiveness penalty is added. A similar procedure is applied for se-
quence repetitiveness. In fact, if a checkpoint is visited immediately after the same
checkpoint in more than q% of the solutions in the subset, a sequence penalty is
added. Timeslots are defined as very small consecutive disjointed time intervals (i.e.
10 min). The greater the value of r and q, the lower is the minimum degree of diver-
sity requested.

17.4 A GRASP for the Surveillance Patrol Vehicle Routing
Problem

The greedy randomized adaptive search procedure (GRASP) has been broadly ap-
plied to solve combinatorial optimization problems [8]. At each iteration of the
GRASP a feasible solution is constructed by a greedy randomized algorithm and
is improved through a Local Search procedure [5, 6, 7]. Greedy randomized algo-
rithms are based on the same principle guiding pure greedy algorithms. However,
they make use randomization to build different solutions at different runs. At each
iteration, the set of candidate elements is formed by all elements that can be incor-
porated into the partial solution under construction without destroying feasibility.
As before, the selection of the next element is determined by the evaluation of all
candidate elements according to a greedy evaluation function. The evaluation of the
elements by this function leads to the creation of a restricted candidate list (RCL)
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formed by the best elements, i.e. those whose incorporation into the current par-
tial solution results in the smallest incremental costs. In the first version of GRASP
presented by Feo and Resende [5], the element to be incorporated into the partial
solution is randomly selected from those in the RCL, but in later works, [4, 15] a
fitness function is computed for all the elements and their probability to be chosen
to be inserted in the solution is proportional to their fitness. Once the selected ele-
ment has been incorporated into the partial solution, the set of candidate elements is
updated and the incremental costs are reevaluated. Greedy randomized algorithms
are extremely useful in case in which it is necessary to create several feasible good
quality solutions. Since in this problem we are looking for a pool of good quality
solutions, and not only for the best solution, GRASP fit well for this purpose.

The GRASP proposed for the SPVRP works as follows. At each iteration of
the algorithm, a greedy solution is constructed. At each step of the construction
phase, next checkpoint to be visited is randomly drawn according to distance based
probability, i.e. the probability of each checkpoint to be chosen as next, is based on
the inverse of the distance of the checkpoint and the last visited one (or, when the
first customer of a route must be selected, based on the inverse of the distance of
the checkpoint and the station). If a checkpoint has been already visited by the same
route or by another one, during the current time window, or within a fixed minimum
spacing time, its probability to be chosen is put equal to zero. For instance, assume
that checkpoint c must be visited once during the time window 12 p.m.–2 a.m. and
once during the time window 2 a.m.–4 a.m and the minimum spacing time between
visits has been fixed equal to 60 min; if c has been visited once at 1:30 a.m. and if
inserted in the current route at the current point it would be visited at 2:10 a.m. its
probability to be chosen at this point is forced to zero, because, even if the two visits
would respects time windows constraints, the minimum required spacing between
consecutive visits would not be respected. A route is closed when no more available
customers may be inserted in or when maximum duration is reached. We consider
a maximum duration equal to the 80% of the actual maximum duration in order to
leave enough room for adding other checkpoints to the routes during the local search
phase. After a route is closed, if there are still unrouted customers, another route is
created according to the same procedure. After this procedure ends, the results is a
completed feasible routing plan, in which all the minimum spacing constraints and
all the time windows are respected. From a scheduling point of view the solution
may be still unfeasible for two reasons: (a) the number of created routes is larger
than the number of patrols available, (b) the number of routes requesting at least a
level of expertness l� is larger than the number of patrols holding a level higher or
equal to l�. At this point patrols are assigned to routes according to the following
procedure, named Assign Patrols (AP).
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Operator 1 Assign Patrols
for all the routes ρ ∈ℜ (where ℜ is the set of routes in the analyzed solution) do

assign ρ to an available patrol p with lowest expertness level lp such that lp > dc∀c ∈ ρ
if No more patrols holding at least the minimum level required to cover route ρ then

Assign ρ to a patrol p with the highest level available
Mark route ρ as infeasible

end if
end for
Set the infeasibility degree of the solution equal to the number of infeasible routes

At this point of the procedure a local search phase, described in Sect. 17.4.1, is
applied. If, after the local search, the obtained solution is still unfeasible, a Feasibil-
ity Search procedure, describe in Sect. 17.4.2, is applied, and if also this procedure
is not able to recover from infeasibility, we discard the solution and pass to the next
iteration of the GRASP. A pseudocode of the algorithm is reported in the following:

Operator 2 A GRASP for the SVRP
repeat

while there are still unrouted customers do
open a new route
apply Calculate Fitness (Station, T0)
select a checkpoint c� to be inserted in the route
repeat

apply Calculate Fitness (c�, Time in which visits to c� ends)
select a checkpoint c� to be inserted in the route

until no more checkpoints may be inserted in the route
end while
apply Assign Patrols
apply Local Search
if the solution is infeasible then

apply Feasibility Search
end if

until the maximum number of GRASP iterations has been reached

The procedure Calculate Fitness takes, as input parameter, the last visited node
n in the route, which can be either a checkpoint or the station (if the selected route
is empty), and the time in which the visit to that node has been completed, t. (If the
analyzed node is the station t is considered equal to zero). The pseudocode of the
procedure is reported in Operator 3.
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Operator 3 Calculate Fitness(n,t)
for all the checkpoints c for which at least one more visit must be scheduled do

if t+travel time between n and c is such that arrival time in c allows to not violate time
windows constraints nor minimum spacing constraints then

set fitness(c)=distance(n,c)
else

set fitness(c)=0
end if

end for

17.4.1 Local Search

The local search phase is composed by two different operators applied sequentially:

• Minimize Routes (MR): which tries to empty routes containing less than γ
checkpoints, relocating the removed checkpoints in another route at the mini-
mum relocation cost.

• Node Exchange (NE): which attempts to exchange each checkpoints with other
checkpoints which are located within a small radius σ and which are and served
in the same time-slot. (1 h length disjointed time slots).

The MR procedure aims to reduce the number of routes in the solution, and it also
helps to recover from infeasibility, even if it cannot guarantee that a feasible solution
is reached. In fact, each time we empty one route, we release the assignment of one
patrol that could be available to be assigned to another route which needs a more ex-
pert patrol respect whom to which it has been assigned. NE is a very fast procedure
because it performs a granular exploration of the neighborhood, i.e. limit the search
on promising moves trying to avoid time windows and minimum spacing constraints
violations. The efficiency and effectiveness of granular neighborhoods exploration
has been proved in [18]. After each iteration of the local search, the AP procedure
is applied. The acceptance criteria for new explored solutions is composed by two
criteria applied in a hierarchical order:

• Criteria 1: if a solution s′ has a degree of infeasibility lower than that of the
current best solution, s′ becomes the current best solution (whichever the values
of the other objectives)

• Criteria 2: if the solution s′ has the same degree of infeasibility of the current
solution, and the score of s′ is lower than that of the current best solution, s′

becomes the current best solution

The score of a solution is computed as the weighted sum of generalized cost,
minimum spacing violations and time windows violations. If s′ has a degree of in-
feasibility greater than that of the current best solution it is discarded.
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17.4.2 Feasibility Search

If at the end of the local search phase the solution is still infeasible, a feasibil-
ity search procedure is applied. For each infeasible route we try to remove all the
checkpoints holding a difficulty level dc ≥ lp, where p is the patrol currently as-
signed to the route, and to relocate them in another route, which is associated with
a patrol l′ holding a level l′p ≥ dc, at the minimum solution score increment. If, even
this procedure is not able to reach complete feasibility, the solution is discarded and
we pass to another iteration of the GRASP algorithm.

The three components of the GRASP, initial construction, local search and fea-
sibility search, are devoted to different goals. In fact, in the initial construction we
aim to create good quality solutions without looking explicitly at the patrol assign-
ment feasibility. In the local search we try to recover from infeasibility as a primary
goal and at the same time we try to improve solution quality. In the last phase,
the feasibility search is completely oriented to the recovery from infeasibility. This
alternation of goals among the three phases allows the algorithm to reach good so-
lutions, which could be not reached with standard local search algorithms, passing
through infeasible regions.

17.5 A GRASP for Solutions Pools Selection

The final goal of this problem is to provide a pool of Q good quality solutions ensur-
ing the highest degree of diversity among each others, chosen among the N solution
provided by the GRASP described in the previous section. Diversity is ensured try-
ing to avoid sequences repetitiveness and customers visit time repetitiveness. A se-
quences repetitiveness penalty is added if a sequence of two consecutive checkpoints
is present in more than q% of the solutions while customers visit time repetitiveness
is added if a checkpoint is visited more than r% within the same time interval. The
time horizon is divided in consecutive disjointed very small intervals (i.e. 10 min).
At each iteration of the GRASP a new pool of solutions is constructed. The fitness
of each solution is computed as a weighted sum of its score and the repetitiveness
penalty that occurs if that solution is added at the current pool. This means that fit-
ness functions are dynamic and depends on the solutions already belonging to the
group. At each step, a solution is drawn according to probability inversely propor-
tional to solution fitness. The procedure ends when Ng groups, each one composed
by Q solutions, are constructed. At this point, a domination analysis of the groups
set is carried out. More in details, a group g1 is dominated by a group g2 if g2 is
better than or equal to g1 according to each criteria and is strictly better than g1 in
at least one criteria. The list of criteria considered is:

• Averaged generalized cost of the solutions within the pool
• Averaged Spacing constraints violations
• Averaged Time windows violations
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• Visit time repetitiveness
• Visits sequences repetitiveness

A set of non dominated solutions is then reported by the algorithm.

17.6 Computational Tests

In this section are reported computational results obtained on a real instance pro-
vided by a surveillance company operating in the north of Italy. The features of this
instances are reported in the following:

• Number of checkpoints: 125 (28 of level 3, 80 of level 2 and 17 of level 1)
• Number of visits per checkpoint: varying from 1 to 4
• Total number of visits to be scheduled: 290
• Number of patrols: 30 (10 of level 3, 15 of level 2 and 5 of level 1)
• Service time: varying from 2 to 15 min
• Time Horizon: 8 h (from 10 p.m to 6 a.m)
• Minimum Spacing: 30 min

while the parameters of the algorithm are:

• Number of solutions generated by the GRASP (N): 100
• Number of solutions per pool (Q): 20
• Number of pools generated: 30
• Visit time repetitiveness percentage (r): 20
• Sequences repetitiveness percentage (q): 40
• Threshold on the number of checkpoints to determine if a route should be

destroyed (γ:) 5

The value of the five objectives: generalized cost, averaged number of minimum
spacing violations, averaged number of tw violations, visit time repetitiveness penal-
ties, sequences repetitiveness penalties, for each pool, is reported in Table 17.1. At
each iteration of the GRASP we obtain a different solution and the value of each
objective is quite homogeneous among all the provided solutions. This is a strength
point of the algorithm because it means that the GRASP was able to broadly explore
different areas of the solutions space, and that was able to find several good solu-
tions. Non dominated pools are underlined in the table. What we can note is that the
averaged generalized cost is equal to 8293.97, while the best non dominated pool in
terms of generalized cost presents an averaged generalized costs of 8319, which is
0.3% higher. This increment of cost is the price we have to pay to ensure diversity.
The fact that this price is so small means that the GRASP was able to find good solu-
tions with a good diversity degree among each others. Computational times are very
small, even for large size instances, since the whole procedure took less than 1 s to
be carried out. The proposed pools of solutions avoid visit time repetitions and only
one sequence of two customers is repeated in more than 40% of the solutions, that
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means that the diversity degree of the solutions within the pool is very high. On av-
erage, only 8 time windows over 290 and only 3 minimum spacing constraints over
165 are violated, which is a relevant result in such a constrained problem.

Table 17.1 Objectives value for the pools of solutions

Pool Generalized cost MS violations TW violations VT repetitiveness S repetitiveness

1 8437 3 8 0 2
2 8463 3 7 0 2
3 8371 3 8 0 2
4 8447 3 8 0 6
5 8549 3 8 0 2
6 8519 3 9 0 4
7 8583 3 7 0 2
8 8595 3 8 0 2
9 8547 3 8 1 1
10 8484 3 8 1 3
11 8497 3 8 1 2
12 8502 3 7 0 3
13 8428 3 7 0 3
14 8456 3 7 1 2
15 8437 3 7 0 1
16 8420 3 8 0 2
17 8428 3 8 0 2
18 8470 3 9 0 2
19 8545 3 8 2 3
20 8556 3 8 0 3
21 8539 3 8 0 2
22 8553 2 9 1 1
23 8618 3 8 1 3
24 8511 3 8 0 2
25 8522 3 7 0 2
26 8492 3 7 0 3
27 8430 3 7 0 2
28 8426 3 7 1 3
29 8445 3 7 0 3
30 8319 3 9 0 4

17.7 Conclusions and Future Developments

In this chapter a new rich vehicle routing problem has been introduced and formal-
ized, the Surveillance Patrol Vehicle Routing Problem (SPVRP). This problem came
out from a real need of a surveillance company to create fairer routing plans for its
security patrols. The final goal is to obtain a pool of good solutions, sufficiently
diverse among each others, from which to chose a different routing and scheduling
plan each day, in order to avoid predictability of the patrol itineraries. The fairness of
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the solution is measured according to different criteria, regarding both generalized
costs (comprehensive of time, distance and patrols salary based cost) and service
quality level. A Greedy Randomized Adaptive Search (GRASP) has been developed
to identify several good solutions and a further GRASP is used to create pools of
good solutions diverse among each others. Finally pools are evaluated and compared
among each others according to different criteria based on generalized costs, service
quality and diversity, in order to find non dominated pools. The algorithm has been
tested on real cases instances and show strong improvements in the solution quality
respect to the routing plans adopted in the reality. The proposed algorithm is able to
widely explore the solution space and to provide several not similar good solutions.
As further development, it could be extended to other problems concerning similar
issues, such as the Consistent Vehicle Routing Problem (ConVRP), in which the
goal of the problem is to ensure similarity instead of diversity. This GRASP, given
its ability of finding feasible solutions, could be applied also on highly constrained
routing and scheduling problems in which is difficult even to find a feasible solu-
tion. Furthermore, it could be useful to provide high quality initial populations, with
a high degree of diversity, to initialize evolutionary and population based algorithms.
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Chapter 18
Strip Algorithms as an Efficient Way to Initialise
Population-Based Metaheuristics

Birsen İrem Selamoğlu, Abdellah Salhi, and Muhammad Sulaiman

Abstract The Strip Algorithm (SA) is a constructive heuristic which has been tried
on the Euclidean Travelling Salesman Problem (TSP) and other planar network
problems with some success. Its attraction is its efficiency. In its simplest form,
it can find tours of length Ω (

√
n) in O (n log n) operations where n is the num-

ber of nodes. Here, we set out to investigate new variants such as the 2-Part Strip
Algorithm (2-PSA), the Spiral Strip Algorithm (SSA) and the Adaptive Strip Algo-
rithm (ASA). The latter is particularly suited for Euclidean TSPs with non-uniform
distribution of cities across the grid; i.e problems with clustered cities. These cases
present an overall low density, but high localised densities. ASA takes this into
account in that smaller strips are generated where the density is high. All three al-
gorithms are analysed, implemented and computationally tested against each other
and the Classical Strip Algorithm. Computational results are included.

Keywords Strip Algorithm • Travelling Salesman • Heuristics • Optimisation

18.1 Introduction

Cheap but not necessarily robust algorithms are always needed. Here, the need is for
such an algorithm to provide us with good approximate solutions to start with better
performing population-based algorithms for intractable problems such as the TSP.

Often, hard problems encountered in the real world are not required to be solved
exactly. Approximate solutions are enough particularly when execution time is cru-
cial. Real world problems often require no more than a cheap but quick and reliable
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algorithm that can deliver good approximate solutions. The TSP is one of those
problems that occurs frequently in the real world. So, cheap algorithms were de-
vised for it. A class of such algorithms is known as the Strip Algorithms (SA)
[4, 2, 23]. They are simple and efficient heuristics for large Euclidean TSPs [14].
Their approach is to cut the plane into vertical or horizontal strips, then group the
cities within strips according to their coordinates, and find Euclidean distances by
following the order of the cities. Eventually the total length of a tour is obtained.
The Strip Algorithm can be implemented in various ways. Furthermore, we believe
that SA has a lot of scope for improvement.

This paper is organised as follows. In Sect. 18.2 ideas behind the SA are given.
In Sect. 18.3, the 2-Part Strip Algorithm is introduced. In Sect. 18.4, the worst case
performance of the new heuristic is analysed. In Sect. 18.5, two more variants of
the strip algorithm are introduced briefly. Finally, results of experiments and the
conclusion are given in Sect. 18.6.

18.2 Ideas Behind the Strip Algorithm

Consider the Euclidean TSP, which is a TSP, [16], cast over the Euclidean 2-
dimensional space [11]. The idea is to connect nodes which are within a reduced
area of the 2d problem. SA is not very different from approaches which build tours
from minimum spanning trees and other greedy methods [9]. However, it allows for
“less obvious” links to be taken into consideration and discourages cris-crossings
from appearing in the tour.

Besides well-known construction heuristics such as, the nearest neighbour, the
greedy algorithm, and insertion heuristics, there are different approaches for solv-
ing large TSP instances. In some situations, i.e. for large TSP instances, the speed
of an algorithm becomes the priority rather than the quality of solutions. In other
words, time is critical for some applications [12]. Therefore, for large Euclidean
TSP instances, and for TSP instances in general, [18, 16], various algorithms have
been introduced. Some of these heuristics can be listed as Space Filling Curves,
Strip Heuristics and Decomposition Approaches [14, 10].

Few [4] has proved that for n points, with n ≥ 2, the path length through them
cannot be larger than

√
2n+ 1.75 by using the strip idea. Beardwood et al. [2] have

studied the shortest path for large numbers of points on a k-dimensional Euclidean
space. They have assumed k = 2. They have shown that the optimum tour length is
almost always proportional to

√
nv , where n is the number of points and v is the

area of the plane defined. So, in the unit square this proportion has been defined as

lim
n→∞

copt√
nv

=C, (18.1)

where copt is the optimal solution, and C ≤ 0.9212 is a constant.
In [19], the constant C found by Beardwood et al. was improved and the new

constant was defined as C ≤ 0.894 again by using the strip idea. Supowit et al.
[22, 23] have studied the length of the shortest TSP tour in the worst case, through
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n cities in the unit square. They have found the worst case tour length to be α
√

n+
o(

√
n), where 1.075 ≤ α ≤ 1.414. They introduced the strip algorithm which was

inspired from the study in [2]. In their strip heuristic, the unit square is divided into
r = �(

√ n
2 ) vertical strips. The configuration of their strip algorithm can be seen

in Fig. 18.1. The first tour T1 is formed by linking the points starting from the city
which has the smallest y-axis value on the leftmost strip. The path goes up along
that strip, then jumps to the next strip and goes down, and so on. The last city is
connected to the first one to complete a tour. The second tour T2 is formed in the
same way. However, in order to construct the second tour the strips are shifted by 1

2r
while the width of each strip is kept the same. The algorithm returns the tour with
shortest length [23]. The complexity of this algorithm is O (n log n) [1].

Fig. 18.1 An illustration of the classical strip algorithm

In [3], Dazango has introduced a new strategy for the expected length of tours by
considering zones of various shapes and the density of vertices. The expected tour
length was given as

D ≈ φ
√

AN (18.2)

as N → ∞, where N is the number of points uniformly distributed in the plane, A is
the area of the plane, and φ is accepted to be 0.75 for the Euclidean metric.

In [8], Karloff has introduced the Local Strips method and proved that the upper
bound for the shortest length of a TSP tour for n cities in a unit square cannot be
larger than α

√
n+ 11, where n is the number of points and α√

(2)
< 0.984. Reinelt

et al. [14], defined the strip algorithm as follows.

1. Split the planar graph into s vertical strips of equal width.
2. Split the planar graph into s vertical strips each having the same number of cities.
3. Split the planar graph into s horizontal strips of equal height.
4. Split the planar graph into s horizontal strips each having the same number of

cities.
5. Choose the one which gives the best result.

The running time for this algorithm is estimated to be Θ (n log n), and the

number of strips is s =
√

n
2 , where n indicates the total number of points. In [7],

Johnson et al. modified the strip algorithm to overcome the problem that occurs
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with clustered datasets. They ran the algorithm twice for each problem; once using
vertical strips and once horizontal strips. They, then, chose the one which gives the
better result. This method is called “2-Way Strip Algorithm”.

18.2.1 The Appropriate Number of Strips

In their algorithm, Supowit et al. [23], used r = �
√ n

2 strips for the vertices uni-
formly distributed on a unit square. We applied this algorithm to some TSP prob-
lems taken from [13], but we used different numbers of strips chosen arbitrarily. We
also used the number of strips suggested in the original paper for comparison pur-
poses. Results can be seen in Table 18.1. Instances with 100, 200, 280, 442, 575 and
1084 points have been solved. The numbers of strips were chosen arbitrarily as 12,
20, 30, 40. But, we also used �

√ n
2 strips. Average error is calculated as follows

Avg. Error =
Avg. Solution Found −Optimum Solution

Optimum Solution
∗ 100 (18.3)

Table 18.1 The classical strip algorithm with various numbers of stripsa

Number of strips r=12 r=20 r=30 r=40 r=�
√

(n/2) 
TSP instances Opti.

rd100 7910 63.80 129.45 188.26 231.51 33.93
kroA200 29,368 37.67 60.55 92.90 133.30 38.70
a280 2579 57.31 51.49 84.18 119.83 57.31
pcb442 50,778 37.49 56.22 82.83 126.42 48.77
rat575 6773 60.54 38.95 39.72 57.63 38.29
vm1084 239,297 73.83 53.23 55.65 77.23 49.19

aAverage errors for different r values are given in %

Results show that, better approximations can be obtained using different numbers
of strips. For kroA200 and pcb442 the algorithm with 12 strips gives better results.
For 280 points, 20 strips give a better result. Reinelt et al. [14] defined the number

of strips as r =
√

n
2 , where n indicates the total number of nodes. Another study

of the optimum number of strips can be found in [3]. Dazango claimed that, for
any rectangle containing the cities, the width of strips, i.e. their number, affects the
quality of solution. If width w is too small then there will be extra length to connect
points. But, if w is too large, then there will be zigzags which increase the tour
length. For the configuration in his study, where A is the area and σ is the number

of points in unit area, the optimum width was found to be w =
√

3A
σ . Dazango’s

configuration of the strip algorithm can be seen in Fig. 18.2.
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Fig. 18.2 Dazango’s configuration of the strip algorithm

18.3 2-PSA: The 2-Part Strip Algorithm

The difference between CSA, [23], and 2-PSA is that in the latter the plane is divided
into two by one horizontal line. Furthermore, the number of strips can be changed in
the given interval, so more alternatives can be compared in one method. In practical
implementations, this algorithm aims at minimising the distance between the last
visited point and the starting point. In both upper and lower part CSA is applied. It
starts from the bottom part and follows the ascending or descending order of y-axis
values to connect to the next strip. When it goes through the upper part, the same
procedure is used and the last point meets the starting point. The time complexity
of this algorithm is O (n logn), because of the sorting that has been performed with
respect to the vertical coordinates. The 2-PSA can be described as follows:

1. Divide the grid into two horizontal parts each having roughly equal number of
points; then divide each into r vertical strips.

2. Proceed as in the basic strip algorithm from either of the horizontal parts, but
reverse the sense of travel when at the end of the first part.

3. Connect the last point of the tour to the starting point to complete the Hamiltonian
tour.

4. Return the tour and its length.

Note that r can be chosen between r = �
√

(n/2) and width w =
√

3A
σ or after

some experimentation.

18.4 Worst-Case Analysis of 2-PSA and an Upper Bound
on the Minimum Tour Lengths Returned

In this section, 2-PSA is analysed. Since it is a refined version of CSA, [23], the
analysis of 2-PSA has been carried out in the same way. The L2 metric has been
used. An example output of 2-PSA for a large TSP instance can be seen in Fig. 18.3.

Let there be n points uniformly distributed in the unit square. Construct two tours,
T1 and T2 according to the procedure described in Sect. 18.3 and let the lengths of
these tours be LT1 and LT2, respectively. In order to define upper bounds on the
optimum tour length, create two tours BT1 and BT2, the former following the median
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Fig. 18.3 The graphical representation of the solution found by 2-PSA for TSP problem rl5915
[13]

of a strip that is used to construct T1 and the latter that of a shifted strip to the right
by 1

2r , that is used to construct T2. Tours BT1 and BT2 are generated using the same
procedure as that of 2-PSA. However, since each path goes up or down through the
median of the strip and its shifted counterpart, in order to connect the points, there
is a jut that goes horizontally to the middle of the intersection of the two strips. This
can be seen in Fig. 18.4. A similar representation can be found in [23].

Fig. 18.4 The paths BT1 and BT2 visiting points
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Assuming that the horizontal line cuts the unit square from the midpoint of the
leftmost and the rightmost sides, the vertical length of the upper and lower parts
becomes 1

2 each. The total length of BT1 and BT2 are calculated in order to define an
upper bound for the 2-PSA. Since the total vertical length for BT1 is r

2 for the lower
part and r

2 for the upper part, it is therefore, r for the total tour length. Similarly
for BT2, it is r+1

2 + r+1
2 = r+ 1. Since the strips have been shifted to construct the

second tour, the total number of strips has increased by 1. The total horizontal length
for BT1 to connect one strip to another is, 1− 1

r for the lower part, because on the
leftmost and the rightmost strips, there are gaps of 1

2r , and the same applies for the
upper part, therefore the total tour length would be 2− 2

r . For BT2, this length is 2. In
order to calculate the total horizontal length of visiting each point and coming back
to the median line, let us assume that points have been placed 1

4r apart from each
half strip. Therefore, from each path, which is on the median, there is a horizontal
length of 2 1

4r . For both BT1 and BT2, the total horizontal length is n
r . Finally, the

length of connecting the last visited point to the starting point is 1 in the worst case
for both tours. By using the triangle inequality and assuming r = �(

√ n
3) , we can

write

LT1 +LT2 ≤ length(BT1)+ length(BT2),

≤ r+ r+ 1+
n
r
+(2− 2

r
)+ 2+ 1+ 1,

≤ n
r
+ 2r+O(1),

≤ 5

√
3n
3

+O(1). (18.4)

Therefore, as in [23], either LT1 or LT2 is less or equal to 5
√

3n
6 +O(1) which is the

worse upper bound in terms of cost. However, experiments show that assuming that
we know the optimal width of the strips, we can deduce that

length(T2−PSA
1 )≤ length(TCSA

1 ).

In other words, 2-PSA generates better tours than CSA. But, referring to experi-
mental evidence again, CSA is much faster (see Table 18.4).

18.5 Other Implementations of the Strip Algorithm

In this study, different variants of the strip algorithm have been developed and tested.
However, amongst all variants, only 2-PSA produced competitive results. In this
section, we consider these variants.
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18.5.1 The Adaptive Strip Algorithm (ASA)

The classical strip algorithm is not effective on instances with clustered cities. To
generate good quality initial tours for such TSP instances in a cheap way, a new
idea has been explored. This idea consists in generating strips with approximately
similar numbers of cities in them. A threshold of cities is arbitrarily chosen and then
any strip with a number of cities greater than this threshold is subdivided into two
new strips. The process is started with the initial grid containing all cities. Since
the threshold is set well below the number of given cities, this initial grid or box
is vertically split into two. The choice of splitting vertically first is arbitrary. Each
resulting strip or box is then checked for the number of cities it has. If this number
is higher than the threshold, the box is split further. The process continues. Note that
any box which is a result of a vertical split is split horizontally, and any box which
is the result of a horizontal split is divided vertically. This approach results in small
boxes where there is a high density of cities and larger ones where the density is low.
In each box, a representative city is then chosen at random. These representatives
are linked up using CSA. Then in every box a path linking all cities is generated.
These paths fall into the overall path which links the boxes, to form a Hamiltonian
path. The last city in the last box is then linked to the first city in the first box to
complete a tour. Note that, boxes with no cities in them are ignored. The Adaptive
Strip Algorithm of ASA can be described as follows.

1. Split the unit square into horizontal and vertical strips. Each strip should contain
a predetermined number of cities at most.

2. Choose a city from each strip as a representative of the cities in that strip.
3. Apply CSA to all representative cities to link them into a path,
4. Apply CSA to all cities in each strip.
5. Link up all paths within strips to each other to create the final tour.

The graphical result of ASA for solving greece9882 problem can be seen in
Fig. 18.5. A 50-city TSP problem was solved by using both ASA and CSA. Graph-
ical results can be seen in Fig. 18.6a, b. In this set of cities, there are clusters, which
cause CSA to work ineffectively. Applying ASA, the same problem was solved by
hand. The total length of the tour formed with CSA is 6.33. With ASA it is 5.50.
This shows that the clustered TSP instances can be solved more efficiently using the
new algorithm.

18.5.2 The Spiral Strip Algorithm (SSA)

In this approach, the plane is cut into a number of horizontal and vertical strips
proportional to the number of cities. Assume that r is the number of vertical strips
and p the number of horizontal strips. Therefore, r∗ p cells are created. Both r and p
are calculated as � number o f cities

t  , where t is a positive integer used as the number of
strips. The application starts from the leftmost upper corner cell and follows a spiral
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Fig. 18.5 ASA solution of greece9882

way and ends up about the middle of the plane. The Hamiltonian cycle is completed
by connecting the ending point with the starting one.

One similar approach can be found in [6]. To justify the investigation of the
SSA, we compare the tour length it produces with that of the CSA, for instance.
Let consider two identical unit squares with n number of cities spread over each.
In order to complete the Hamiltonian cycle, let solve each using CSA and SSA,
respectively. If we use r strips to solve the problem with CSA, the total tour length
in the worst case will be r+ r−1

r +
√

2. Similarly, to solve the problem using SSA
with r vertical and r horizontal strips, then, the total tour length in the worst case will

be 3
r (r−1)+ (r−2)(r−1)

r +
√

2
2 . In both cases, it is assumed that nodes are exactly on

the strips. Comparison of the results of each problem proves that

length (T SSA)≤ length (TCSA). (18.5)

An example of the implementation can be seen in Fig. 18.7.

18.6 Computational Results and Conclusion

We have implemented 2-PSA and other similar schemes and tested them on stan-
dard TSP problems ranging from 51 to 5915 cities [13]. The computing platform
is an Intel core I5 PC with a 3.40 GHz processor and 16 Gigabytes RAM, running
Windows 7. All algorithms are coded in Matlab R2014a. The results show the value
of the strip approach at least as a tool for generating computationally cheap but
better tours than those generated randomly. Note that it was not expected to gener-
ate solutions too close to the optimum, hence the relatively large errors observed.
The aim is to have something which is better than just random tours. Speed is the
essence. For comparison purposes, the CPU time of 2-PSA for the TSP with 9882
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Fig. 18.6 (a) The adaptive strip algorithm on the 50-city problem. (b) The classical strip algorithm
on the 50-city problem



18 Strip Algorithms 329

Fig. 18.7 SSA solution of problem rd100 [13]

cities is less than 1
10 th of a second, while that of the greedy algorithm is around

8 min. Comparative results between the different variants of the strip algorithm and
random permutation considered have also been recorded in Table 18.2; the superior-
ity of 2-PSA over CSA, SSA and the random permutation is very clear. Note that the
paper has also introduced new strip algorithms and analysed them in the worst case.
Further work will concentrate hybrids which may be slower but that can produce
better tours than at the moment. A hybridisation of ASA and a greedy algorithm
seems to produce much better tours. Accounts of this current work will be reported
in the future.

Table 18.2 Deviation (in %) from the optimum of CSA, SSA, 2-PSA and random permutation

TSP instances No. of cities Opt. sol. CSA SSA 2-PSA Rand. perm.

eil51 51 426 21.67 40.63 19.62 303.28
st70 70 675 31.94 47.93 17.75 443.46
rd100 100 7910 32.84 48.18 23.80 598.31
a280 280 2579 41.50 62.19 29.71 1190.02
rat575 575 6773 47.70 37.54 20.83 1604.73
vm1084 1084 239,297 51.74 519.27 40.38 3498.61
vm1748 1748 336,556 55.58 671.69 44.19 4342.15
rl5915 5915 565,530 78.24 163.03 64.11 7436.97

In Table 18.3, real-life instances [24] have been used to compare the perfor-
mance of CSA, 2-PSA, ASA and the random permutation. Note that 2-PSA and
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ASA give better results than CSA. Table 18.4 records the total computation time for
each algorithm. ASA has solved all problems in a reasonable time. Results show that
2-PSA runs 7–20 times longer than CSA, however it reduces the error from 10% to
mostly half. ASA is faster than 2-PSA, and for large instances, it gives better tour
lengths than both CSA and 2-PSA. Results demonstrate that although the random
permutation is the fastest, it gives the worst approximation amongst the others.

Table 18.3 Deviation (in %) from the optimum of CSA, 2-PSA, ASA and random permutation

TSP instances No. of cities Opt. sol. CSA 2-PSA ASA Rand. perm.

usca50 50 14,497 108.79 54.69 97.61 451.08
zimbabwe929 929 95,345 68.13 57.27 61.91 1319.46
canada4663 4663 1,290,319 158.17 114.88 86.11 1793.95
greece9882 9882 300,899 90.81 90.12 87.75 12,529.2

Table 18.4 CPU time of each algorithm

CPU time (s) usca50 zimb929 ca4663 gre9882

CSA 0.008 0.003 0.006 0.012
2-PSA 0.028 0.061 0.117 0.083
ASA 0.006 0.009 0.020 0.047
Random permutation 0 0 0 0.001

The Strip Heuristic is cheap yet effective in finding good tours in a short time.
The proposed algorithms, 2-PSA and ASA have given better results than CSA. Al-
though the returned solutions are far from the optimum solutions in terms of qual-
ity, they have been obtained quickly. This makes them potential providers of initial
populations for other meta-heuristics such as the Plant Propagation Algorithm or
the Strawberry Algorithm [17, 21, 20], the Genetic Algorithm [5, 15], and others.

Acknowledgement We are grateful to the Ministry of National Education of the Republic of
Turkey for sponsoring this work.
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Chapter 19
Matheuristics for the Temporal Bin Packing
Problem

Fabio Furini and Xueying Shen

Abstract We study an extension of the Bin Packing Problem, where items consume
the bin capacity during a time window only. The problem asks for finding the mini-
mum number of bins to pack all the items respecting the bin capacity at any instant
of time. Both a polynomial-size formulation and an extensive formulation are stud-
ied. Moreover, various heuristic algorithms are developed and compared, including
greedy heuristics and a column generation based heuristic. We perform extensive
computational experiments on benchmark instances to evaluate the quality of the
computed solutions with respect to strong bounds based on the linear programming
relaxation of the proposed formulations.

Keywords Temporal bin packing problem • Heuristic algorithms • Column
generation

19.1 Introduction

The Bin Packing Problem (BPP) [11] is a classical NP-hard combinatorial opti-
mization problem and it has been widely studied in the literature, we refer the in-
terested readers to [6, 5]. It has applications in different areas, such as filling up
containers, placing data on multiple disks and many others. Numerous BPP vari-
ants have been studied as the Multi-Dimensional Bin Packing Problem or the On-
line Bin Packing Problem. In this paper, we study a natural generalization of the
BPP called Temporal Bin Packing Problem (TBPP). The input of the problem are
a bin capacity W and a set of items N = {1,2, . . . ,n}, where each item i ∈ N is
associated to an integer weight wi ≤ W consuming the bin capacity during the time
window [si, ti). The TBPP asks for finding the minimum number of bins to pack
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all the items so that the capacity of each bin is not exceeded at any point in time.
Despite the capacity requirements being defined on the entire time horizon, clearly
it is sufficient to satisfy the capacity restrictions only at the starting time of each
item. Let us define S j := {i ∈ N : si ≤ s j and ti > s j} as the set of active items at
time s j, then for each bin, the total capacity of packed items that belong to S j should
be less than or equal to the bin capacity W for any j ∈ N. Moreover, if S j ⊆ Sk,
then the associated capacity constraint at time s j is dominated by that of time sk.
Define T = {t ∈ N : St � Sk,∀k ∈ N}, which represents the index set of all the non-
dominated constraints, then we only need to consider the capacity usage at each
t ∈ T , and we call t a time step.

In Fig. 19.1, we give one example to illustrate a TBPP instance with a bin capac-
ity W = 4 and 5 items (weights w1 = 2, w2 = 2, w3 = 3, w4 = 2 and w5 = 1). The
starting time and ending time (si and ti) are also shown in the Fig. 19.1. For instance,
item 1 is active from time point 1 to 3 and item 2 is active from time point 2 to 14.
The set of non-dominated time steps are t = 2, t = 7 and t = 12, with the following
simultaneously active item sets S2 = {1,2}, S4 = {2,3,4} and S5 = {2,5}.

time

1 2 3 5 7 8 10 12 13 14

S2 ={1,2}

S5 ={2,5}

S4 ={2,3,4}

w1=2

w4=2

w3=3

w5=1

w2=2

W=4

Fig. 19.1 Example of a temporal bin packing problem instance

In fact, the TBPP can be seen as a special case of the multi-dimensional bin
packing problem where each time step corresponds to one dimension. Moreover,
for each item i ∈ N, it either consumes zero capacity or wi for each dimension.
The concept of “temporal extension” has already been used to extend the classical
knapsack problem, which is called Temporal Knapsack Problem (TKP) [1]. TKP
has been shown to be strongly NP-hard in [2] and different exact algorithms have
been developed, we address the interested reader to [1, 3].

19.1.1 Greedy-Type Algorithms

Inherited from the BPP, we extend two greedy-type algorithms for the TBPP: the
first-fit algorithm and the best-fit algorithm.
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• First Fit-Algorithm: pack the current item into the first non-empty bin in which
it fits. If no such bin exists, pack the current item into an empty bin.

• Best Fit-Algorithm: pack the current item into the non-empty bin with the largest
free space in which it fits. By “the largest free space”, we mean the summation
of the remaining capacities at all the time steps. If no such bin exists, pack the
current item into an empty bin.

These two algorithms are computationally efficient, therefore they can be used to
provide the number of bins m for the Mixed Integer Programming (MIP) formula-
tion (see the following sections), or to provide an initial solution for more advanced
heuristic algorithms.

The rest of the paper is organized as follows. The compact formulation is given
in Sect. 19.2, while an extensive formulation and a heuristic algorithm based on it
are presented in Sect. 19.3. The computational results are given in Sect. 19.4, which
is followed by the conclusion in Sect. 19.5.

19.2 Compact Formulation

Let m ≤ n be an upper bound on the number of bins necessary to fit all items. For
each item i ∈ N and bin b ∈ M = {1,2, . . . ,m}, we introduce two sets of binary
variables:

xb
i =

{
1 if item i is packed in bin b,
0 otherwise,

yb =

{
1 if bin b is used,
0 otherwise.

Then the polynomial-size MIP formulation reads as follows:

Form A min ∑
b∈M

yb (19.1)

∑
b∈M

xb
i ≥ 1 i ∈ N, (19.2)

∑
i∈St

wix
b
i ≤ Wyb b ∈ M, t ∈ T, (19.3)

xb
i ∈ {0,1} i ∈ N,b ∈ M, (19.4)

yb ∈ {0,1} b ∈ M. (19.5)

Exploiting the link between the TBPP and the BPP, we can compute a valid lower
bound for the TBPP from the solution values of |T | BPPs, one for each time step
separately. The result is shown in the following property:
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Property 19.1. Given an instance of the TBPP, for t ∈ T we define the BPP(t) as
follows:

BPP(t) min ∑
b∈M

yb

∑
b∈M

xb
i ≥ 1 i ∈ N,

∑
i∈St

wix
b
i ≤ Wyb b ∈ M,

xb
i ∈ {0,1} i ∈ N,b ∈ M,

yb ∈ {0,1} b ∈ M,

and let z∗(BPP(t)) be the optimal objective function value of BPP(t). Then,

max
t∈T

z∗(BPP(t))

is a valid lower bound of the TBPP.

Proof. For any t ∈T , the BPP(t) results from relaxing the capacity constraints (19.3)
for each b ∈ M on all time steps except the one at time step t. Therefore, it is a re-
laxation problem of the TBPP and provides a valid lower bound. The result follows.
&'

The following example shows that the optimal solution of the TBPP may differ
from the optimal solutions of the BPP(t) for each t ∈ T . Given the bin capacity
W = 10, and 5 items with weights: w1 = 9, w2 = 2, w3 = 4, w4 = 6 and w5 = 8. We
consider 2 time steps defined as S1 = {1,2,3} and S2 = {2,3,4,5}. Then we have
maxt=1,2 z∗(BPP(t)) = 2 (i.e., 2 bins are necessary at any time step), but the optimal
solution value of the TBPP is 3.

Besides the lower bound given above, the Linear Programming (LP) relaxation of
Form A also provides a valid lower bound. Moreover, the following property shows
that the LP relaxation of above formulation Form A can be solved in a closed form.

Property 19.2. Given an instance of the TBPP, the optimal objective function value
of the LP relaxation of the formulation Form A can be given in the following closed
form:

z̄l p =
maxt∈T ∑i∈St wi

W
, (19.6)
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with the solution

x̄b
i =

1
m

i ∈ N,b ∈ M,

ȳb =
maxt∈T ∑i∈St wi

W ·m b ∈ M.

Proof. First, we show that the solution is feasible. For any t ∈ T , b ∈ M,

∑
i∈St

wix̄
b
i = ∑

i∈St

wi ·
1
m

≤ max
t∈T

∑
i∈St

wi ·
1
m

=
maxt∈T ∑i∈St wi

W ·m ·W =Wȳb.

For any i ∈ N,

∑
b∈M

x̄b
i = ∑

b∈M

1
m

= 1.

Therefore, the solution (x̄b
i , ȳ

b) is feasible, and the objective function value can be
calculated directly as z̄l p.

Second, we show that the solution is optimal. For any t ∈ T , we have BPP(t) is
a relaxation of Form A, the LP relaxation of BPP(t) is a relaxation of the LP re-
laxation of Form A. Let zl p(Form A) and zl p(BPP(t)) denote the optimal objective
function value of the LP relaxation of Form A and BPP(t) respectively. Then

zl p(Form A)≥ zl p(BPP(t)) =
∑i∈St wi

W
.

The second equality is proved in [13]. Take t∗ = argmax{t ∈ T : maxt∈T ∑i∈St wi},
the results follows. &'

The formulation Form A is compact in the sense that it has a polynomial number
of variables and constraints. An MIP solver can be directly used to solve it, or can
be used to obtain heuristic solutions by imposing a given time limit. However, the
performance of the formulation highly depends on the upper bound m due to its im-
pact on the number of variables and constraints. Also, the symmetric structure of the
model generates a huge amount of equivalent solutions. For large scale problems,
MIP solvers are not able to find optimal solutions within reasonable amount of time.
Due to these limitations, we propose an extensive formulation which, together with
column generation techniques, can be used to develop exact algorithms and heuris-
tic algorithms. Column generation is a powerful tool to deal with LP problems with
exponential number of variables. It has been successfully applied to many classes
of problems including the cutting stock problem [8, 9], the vehicle routing problem
[4], the crew scheduling problem [12] and many others. In the following of the pa-
per, we focus on an extensive formulation of the problem and a heuristic algorithm
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based on column generation. We also computationally show that the LP relaxation
of the extensive formulation provides tighter bounds, which can be used to prove
the optimality of heuristic solutions.

19.3 Extensive Formulation

Let us introduce the extensive formulation with an exponential number of variables
associated with all feasible packing patterns, i.e., subsets of items respecting bin
capacities at any point in time. Let S represent the collection of all possible feasible
packing patterns:

S =

{
S ⊆ N : ∑

i∈St∩S

wi ≤ W,∀t ∈ T

}
.

For each S ∈ S , we introduce a binary variable zS:

zS =

{
1 if pattern S is selected,
0 otherwise.

Then the extensive formulation of the TBPP reads as follows:

Form B(S ) min ∑
S∈S

zS (19.7)

∑
S∈S :i∈S

zS ≥ 1 i ∈ N, (19.8)

zS ∈ {0,1} S ∈ S . (19.9)

The LP relaxation of Form B(S ) is formulated as ((19.7)-(19.8), (19.10)):

zS ≥ 0 S ∈ S , (19.10)

and it is denoted by MLP(S ). The model needs column generation techniques to
be efficiently managed. Actually, it has exponentially many variables, which cannot
be explicitly generated for large-size instances.

To solve the LP relaxation MLP(S ), we start with a restricted problem MLP(S ′)
with an initial feasible set of variables associated to S ′ ⊆ S . The dual problem of
MLP(S ′) reads as follows:
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DLP(S ′) max∑
i∈N

πi

∑
i∈S

πi ≤ 1 S ∈ S ′,

πi ≥ 0 i ∈ N.

Finding a variable with negative reduced cost to be added to MLP(S ′) is equivalent
to find a violated constraint in DLP(S ′). Given an optimal dual solution π∗ = {π∗

i }
to MLP(S ′), the separation problem asks to determine a subset S∗ ⊆ S such that
∑i∈S∗ π∗

i > 1. The problem arising during the separation procedure is a 0-1 TKP.
This problem can be modelled using a binary variable xi which takes value 1 if item
i ∈ N is selected in subset S∗ and it reads as follows:

max∑
i∈N

π∗
i xi (19.11)

∑
i∈St

wixi ≤ W t ∈ T, (19.12)

xi ∈ {0,1} i ∈ N. (19.13)

If a feasible pattern S∗ with maximum profit greater than 1 is found, the column
corresponding to S∗ is added to the current MLP(S ′). When no feasible pattern
with maximum profit greater than 1 is found, MLP(S ) is optimally solved, and the
rounded-up value of the optimal objective function value to MLP(S ′) is a valid
lower bound for the TBPP.

In order to find an optimal integer solution of model Form B(S ), a branch-and-
price algorithm is necessary, i.e., the column generation procedure must be per-
formed at each node of the branching scheme. The development of such an algo-
rithm goes beyond the scope of this paper, we instead use this formulation to derive
a heuristic algorithm and strong dual bounds for hard TBPP instances.

19.3.1 Column Generation Heuristics

In order to obtain good feasible integer solutions, we test a heuristic strategy based
on formulation Form B(S ). The procedure consists of applying an MIP solver to
model Form B(S ′), by considering all the variables generated to optimally solve
its LP relaxation (MLP(S )). This strategy takes full advantage of the advanced
routines embedded in MIP solvers. The pseudo-code of our heuristic algorithm is
given in Fig. 19.2.
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begin
Initialize the set S ′ with the initial heuristic solution.
1. Solve the MLP(S ′) by column generation, and update set S ′ by adding the generated

columns (cutting patterns);
2. Solve Form B(S ′) with an MIP solver by considering the subset of variables zS, S ∈ S ′.
end.

Fig. 19.2 Heuristic algorithm based on column generation

The idea of generating a subset of variables containing at least one feasible so-
lution, and then solving the corresponding restricted model with an MIP solver, is
an effective method to derive strong upper and lower bounds for the TBPP (see
the next section of this manuscript for further details). Moreover, this framework
can be applied to different models with an exponential number of variables. We ad-
dress the interested reader to [7], where similar ideas have been applied to tackle
2-Dimensional BPP.

19.4 Computational Experiments

In this section, we present our computational results for the heuristic algorithms
and lower bounds developed above. All the algorithms described in the previous
sections are implemented in C++ and run on one core of an Intel Core i7-4790
2.50 GHz 3.60, with 16 GB shared memory, under the Linux Ubuntu 12.4 operating
system. All the LP problems and the MIP problems are solved with CPLEX 12.6
[10]. In the following tables, all the computing times are expressed in seconds.

As testbed, we use the instances of the TKP presented in [3], due to the fact
that the TBPP instances share the same data structure with those of the TKP, except
the absence of item profits. The testbed consists of two types of instances, which
are called the I instances and the U instances respectively. Each set consists of one
hundred instances which are further divided into ten classes based on the different
values of instance generating parameters (see [3] for further details).

We apply the two greedy-type heuristic algorithms as well as the Form A with a
given time limit of 5 min. The detailed results for each instance can be found in Ta-
bles 19.1 and 19.2. For each instance, the number of items n and the number of time
steps |T | are reported. Moreover, the objective function value and computation time
are given in columns Ob j and Time. For comparison, we summarize the results in
Table 19.3. In this table, for each class of instances, the average number of items and
average number of time steps are reported to illustrate the problem size. We present
the average objective function values to give an idea on the number of bins neces-
sary to solve the instances. Clearly the model Form A benefits from low values of
m. Also given are the average computational time and the average gap. The column
Exit Gap reports the average ratio UB−LB

UB where UB and LB are the primal and the
dual bounds computed by CPLEX respectively at time limit (0.00 means instances
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Table 19.1 Heuristic algorithms comparison and computational behavior of formulation Form A:
Instance U

Form A Best fit First fit Form A Best fit First fit

Inst n |T | Obj Time Obj Time Obj Time Inst n |T | Obj Time Obj Time Obj Time

U1 1000 459 2 0.02 2 0.01 2 0.00 U51 1000 445 6 0.20 6 0.00 6 0.01
U2 1000 468 2 0.02 2 0.01 2 0.00 U52 1000 467 5 0.18 6 0.01 5 0.00
U3 1000 485 2 0.02 2 0.00 2 0.00 U53 1000 464 6 0.20 6 0.00 6 0.00
U4 1000 484 2 0.02 2 0.01 2 0.01 U54 1000 443 5 0.23 6 0.00 6 0.00
U5 1000 474 2 0.01 2 0.01 2 0.00 U55 1000 456 5 0.17 6 0.00 5 0.00
U6 1000 465 2 0.07 3 0.00 3 0.00 U56 1000 457 6 0.20 6 0.00 6 0.00
U7 1000 487 2 0.02 2 0.01 2 0.01 U57 1000 437 5 0.17 5 0.00 5 0.00
U8 1000 474 2 0.02 2 0.01 2 0.01 U58 1000 435 6 0.18 6 0.00 6 0.00
U9 1000 473 2 0.02 2 0.01 2 0.00 U59 1000 464 6 0.20 6 0.00 6 0.00
U10 1000 468 2 0.02 2 0.01 2 0.00 U60 1000 447 6 0.20 6 0.00 6 0.00
U11 1000 452 3 0.06 3 0.00 3 0.01 U61 1000 433 7 0.24 7 0.00 7 0.00
U12 1000 466 3 0.05 3 0.01 3 0.01 U62 1000 460 6 0.27 7 0.01 6 0.01
U13 1000 467 3 0.06 3 0.01 3 0.01 U63 1000 439 7 0.24 7 0.00 7 0.00
U14 1000 461 3 0.06 3 0.00 3 0.01 U64 1000 453 6 0.24 7 0.01 6 0.00
U15 1000 470 3 0.07 3 0.00 3 0.01 U65 1000 448 7 0.26 7 0.00 7 0.00
U16 1000 465 3 0.06 3 0.01 3 0.01 U66 1000 477 6 0.23 6 0.01 6 0.01
U17 1000 477 3 0.06 3 0.00 3 0.00 U67 1000 444 6 0.32 6 0.00 6 0.00
U18 1000 466 3 0.08 3 0.01 3 0.00 U68 1000 448 6 0.23 6 0.00 6 0.00
U19 1000 467 3 0.06 3 0.01 3 0.01 U69 1000 473 6 0.24 6 0.01 6 0.00
U20 1000 461 3 0.06 3 0.00 3 0.01 U70 1000 439 6 0.21 6 0.00 6 0.00
U21 1000 445 4 0.09 4 0.01 4 0.01 U71 1000 439 7 0.30 8 0.00 7 0.00
U22 1000 478 4 0.10 4 0.00 4 0.00 U72 1000 456 7 0.31 7 0.00 7 0.01
U23 1000 476 4 0.09 4 0.00 4 0.00 U73 1000 444 7 0.28 7 0.00 7 0.00
U24 1000 471 3 0.08 3 0.00 3 0.00 U74 1000 438 7 0.31 7 0.00 7 0.00
U25 1000 454 4 0.09 4 0.01 4 0.00 U75 1000 465 6 277.14 7 0.01 7 0.00
U26 1000 449 4 0.09 4 0.00 4 0.01 U76 1000 439 7 0.28 7 0.00 7 0.00
U27 1000 456 4 0.09 4 0.00 4 0.01 U77 1000 431 7 0.32 8 0.01 7 0.00
U28 1000 462 3 0.07 3 0.00 3 0.00 U78 1000 456 6 0.30 6 0.00 6 0.01
U29 1000 477 3 0.89 4 0.00 4 0.00 U79 1000 453 8 0.33 8 0.00 8 0.00
U30 1000 457 4 0.09 4 0.01 4 0.00 U80 1000 437 7 0.31 7 0.01 7 0.00
U31 1000 446 4 0.09 4 0.00 4 0.00 U81 1000 409 7 7.01 8 0.00 8 0.00
U32 1000 470 5 0.13 5 0.00 5 0.00 U82 1000 451 8 0.39 8 0.00 8 0.01
U33 1000 463 5 0.12 5 0.00 5 0.00 U83 1000 452 7 8.23 8 0.00 8 0.00
U34 1000 449 4 0.10 4 0.00 4 0.00 U84 1000 447 7 0.41 7 0.00 7 0.00
U35 1000 454 4 0.09 4 0.00 4 0.00 U85 1000 441 7 10.37 8 0.01 8 0.00
U36 1000 455 4 0.11 4 0.00 4 0.00 U86 1000 451 7 7.31 8 0.00 8 0.01
U37 1000 444 4 0.10 5 0.01 4 0.00 U87 1000 452 7 0.36 7 0.00 7 0.00
U38 1000 445 4 0.11 4 0.00 4 0.00 U88 1000 452 7 0.44 7 0.00 7 0.00
U39 1000 472 4 0.10 4 0.00 4 0.00 U89 1000 437 8 0.40 8 0.00 8 0.01
U40 1000 442 5 0.13 5 0.00 5 0.00 U90 1000 430 7 7.96 8 0.00 8 0.00
U41 1000 439 5 0.15 5 0.00 5 0.00 U91 1000 441 8 7.60 9 0.00 9 0.00
U42 1000 475 5 0.15 5 0.00 5 0.00 U92 1000 467 8 51.12 9 0.00 9 0.00
U43 1000 476 5 0.15 5 0.00 5 0.00 U93 1000 450 8 0.43 8 0.00 8 0.00
U44 1000 452 4 0.11 4 0.00 4 0.00 U94 1000 449 8 0.55 9 0.00 8 0.00
U45 1000 469 4 2.66 5 0.00 5 0.00 U95 1000 462 8 0.55 8 0.00 8 0.00
U46 1000 456 5 0.15 5 0.00 5 0.00 U96 1000 446 8 7.94 9 0.00 9 0.00
U47 1000 478 5 0.16 5 0.00 5 0.00 U97 1000 475 8 0.49 8 0.01 8 0.00
U48 1000 465 4 2.92 5 0.00 5 0.00 U98 1000 462 8 0.54 8 0.00 8 0.00
U49 1000 436 5 0.14 5 0.00 5 0.00 U99 1000 444 8 0.45 8 0.00 8 0.00
U50 1000 454 5 0.15 5 0.00 5 0.00 U100 1000 438 8 0.44 8 0.01 8 0.00
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Table 19.2 Heuristic algorithms comparison and computational behavior of formulation Form A:
Instance I

Form A Best fit First fit Form A Best fit First fit

Inst n |T | Obj Time Obj Time Obj Time Inst n |T | Obj Time Obj Time Obj Time

I1 2697 2688 12 T.L. 12 0.50 12 0.20 I51 4948 768 26 T.L. 26 0.08 26 0.07
I2 2825 2816 12 T.L. 12 0.58 12 0.23 I52 5769 896 26 T.L. 26 0.14 26 0.08
I3 2953 2944 12 T.L. 12 0.60 12 0.26 I53 6721 1024 28 T.L. 28 0.47 28 0.17
I4 3081 3072 12 T.L. 12 0.71 12 0.29 I54 7382 1152 26 T.L. 26 0.84 26 0.30
I5 3209 3200 12 T.L. 12 0.79 12 0.33 I55 8266 1280 26 T.L. 26 1.15 26 0.33
I6 3337 3328 12 T.L. 12 0.92 12 0.36 I56 9002 1408 29 T.L. 29 1.74 29 0.48
I7 3465 3456 11 T.L. 12 0.95 11 0.39 I57 9865 1536 29 T.L. 29 2.19 29 0.69
I8 3593 3584 11 T.L. 11 1.00 11 0.43 I58 10,000 1664 29 T.L. 29 2.91 29 0.71
I9 3721 3712 12 T.L. 12 1.18 12 0.47 I59 10,000 1792 26 T.L. 26 2.55 26 0.76
I10 3849 3840 12 T.L. 12 1.28 12 0.53 I60 10,000 1920 27 T.L. 28 3.13 27 0.77
I11 4480 2688 16 T.L. 16 1.19 16 0.45 I61 2071 768 30 T.L. 30 0.03 30 0.02
I12 4749 2816 15 T.L. 16 1.30 15 0.51 I62 2422 896 28 T.L. 28 0.05 28 0.03
I13 4887 2944 16 T.L. 16 1.49 16 0.56 I63 2763 1024 27 T.L. 27 0.13 27 0.06
I14 5153 3072 16 T.L. 16 1.67 16 0.63 I64 3103 1152 28 T.L. 28 0.22 28 0.09
I15 5298 3200 16 T.L. 16 1.76 16 0.69 I65 3434 1280 27 T.L. 27 0.35 27 0.12
I16 5547 3328 15 T.L. 15 1.83 15 0.75 I66 3774 1408 27 T.L. 27 0.56 27 0.19
I17 5745 3456 17 T.L. 17 2.27 17 0.85 I67 4164 1536 26 T.L. 26 0.70 26 0.26
I18 5929 3584 17 T.L. 17 2.41 17 0.90 I68 4488 1664 27 T.L. 27 0.85 27 0.31
I19 6208 3712 16 T.L. 16 2.58 16 0.98 I69 4786 1792 27 T.L. 27 1.01 27 0.37
I20 6462 3840 16 T.L. 16 2.77 16 1.03 I70 5142 1920 29 T.L. 29 1.36 29 0.45
I21 4972 2688 19 T.L. 19 1.53 19 0.58 I71 2916 768 29 T.L. 29 0.06 29 0.04
I22 5161 2816 22 T.L. 22 2.06 22 0.67 I72 3424 896 28 T.L. 28 0.13 28 0.05
I23 5423 2944 21 T.L. 21 2.24 21 0.74 I73 3832 1024 28 T.L. 28 0.19 28 0.07
I24 5658 3072 21 T.L. 21 2.45 21 0.82 I74 4316 1152 28 T.L. 29 0.41 28 0.12
I25 5875 3200 20 T.L. 20 2.68 20 0.89 I75 4771 1280 27 T.L. 27 0.64 27 0.19
I26 6112 3328 20 T.L. 20 2.77 20 0.98 I76 5403 1408 30 T.L. 30 0.97 30 0.30
I27 6380 3456 21 T.L. 21 2.99 21 1.09 I77 5793 1536 29 T.L. 29 1.11 29 0.37
I28 6582 3584 20 T.L. 20 3.06 20 1.17 I78 6167 1664 27 T.L. 28 1.25 27 0.47
I29 6817 3712 21 T.L. 21 3.48 21 1.27 I79 6800 1792 28 T.L. 28 1.74 28 0.60
I30 7026 3840 21 T.L. 21 3.69 21 1.38 I80 7241 1920 28 T.L. 28 2.00 28 0.69
I31 6322 2688 24 T.L. 24 2.32 24 0.88 I81 5210 768 28 T.L. 28 0.14 28 0.06
I32 6546 2816 23 T.L. 23 2.47 23 0.95 I82 6057 896 26 T.L. 27 0.20 26 0.08
I33 6895 2944 24 T.L. 24 2.97 24 1.14 I83 6901 1024 29 T.L. 29 0.59 29 0.18
I34 7209 3072 25 T.L. 25 3.50 25 1.22 I84 7737 1152 29 T.L. 29 0.85 29 0.22
I35 7484 3200 25 T.L. 25 3.47 25 1.27 I85 8656 1280 28 T.L. 28 1.27 28 0.38
I36 7784 3328 24 T.L. 24 4.13 24 1.51 I86 9370 1408 28 T.L. 28 1.19 28 0.43
I37 8089 3456 24 T.L. 24 4.55 24 1.67 I87 10,000 1536 27 T.L. 27 2.11 27 0.63
I38 8425 3584 23 T.L. 23 4.77 23 1.82 I88 10,000 1664 27 T.L. 27 2.20 27 0.68
I39 8650 3712 24 T.L. 24 5.50 24 1.96 I89 10,000 1792 29 T.L. 29 2.79 29 0.70
I40 8977 3840 23 T.L. 23 5.53 23 2.18 I90 10,000 1920 29 T.L. 29 2.95 29 0.75
I41 2071 768 26 T.L. 26 0.03 26 0.02 I91 3117 768 31 T.L. 30 0.25 31 0.10
I42 2422 896 26 T.L. 26 0.06 26 0.03 I92 3594 896 33 T.L. 33 0.13 33 0.06
I43 2756 1024 27 T.L. 27 0.14 27 0.06 I93 4176 1024 32 T.L. 32 0.27 32 0.10
I44 3104 1152 27 T.L. 27 0.22 27 0.08 I94 4671 1152 32 T.L. 32 0.40 32 0.13
I45 3433 1280 27 T.L. 27 0.36 27 0.13 I95 5209 1280 31 T.L. 31 0.71 31 0.22
I46 3789 1408 28 T.L. 28 0.60 28 0.20 I96 5628 1408 32 T.L. 32 0.99 32 0.33
I47 4154 1536 29 T.L. 29 0.67 29 0.24 I97 6215 1536 31 T.L. 31 1.23 31 0.43
I48 4476 1664 27 T.L. 27 0.85 27 0.31 I98 6730 1664 33 T.L. 33 1.73 33 0.56
I49 4797 1792 28 T.L. 27 0.99 28 0.37 I99 7172 1792 32 T.L. 31 1.96 32 0.67
I50 5129 1920 27 T.L. 27 1.26 27 0.47 I100 7709 1920 31 T.L. 32 2.30 31 0.90

Time limit (T.L.) = 5 min
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Table 19.3 Heuristic algorithms comparison and computational behavior of formulation Form A

Form A Best fit First fit

Group n |T | Obj Time Exit Gap Obj Time Gap Obj Time Gap

U inst.
I 1000 473 2.00 0.02 0.00 2.10 0.01 5.00 2.10 0.00 5.00
II 1000 465 3.00 0.06 0.00 3.00 0.01 0.00 3.00 0.01 0.00
III 1000 462 3.70 0.17 0.00 3.80 0.00 3.33 3.80 0.00 3.33
IV 1000 454 4.30 0.11 0.00 4.40 0.00 2.50 4.30 0.00 0.00
V 1000 460 4.70 0.67 0.00 4.90 0.00 5.00 4.90 0.00 5.00
VI 1000 451 5.60 0.19 0.00 5.90 0.00 6.00 5.70 0.00 2.00
VII 1000 451 6.30 0.25 0.00 6.50 0.00 3.33 6.30 0.00 0.00
VIII 1000 445 6.90 27.99 0.00 7.20 0.00 4.52 7.00 0.00 1.67
IX 1000 442 7.20 4.29 0.00 7.70 0.00 7.14 7.70 0.00 7.14
X 1000 453 8.00 7.01 0.00 8.40 0.00 5.00 8.30 0.00 3.75

I inst.
I 3273 3264 11.80 T.L. 6.97 11.90 0.85 0.91 11.80 0.35 0.00
II 5445 3264 16.00 T.L. 28.39 16.10 1.93 0.67 16.00 0.74 0.00
III 6000 3264 20.60 T.L. – 20.60 2.70 0.00 20.60 0.96 0.00
IV 7638 3264 23.90 T.L. – 23.90 3.92 0.00 23.90 1.46 0.00
V 3613 1344 27.20 T.L. – 27.10 0.52 0.00 27.20 0.19 0.37
VI 8195 1344 27.20 T.L. – 27.30 1.52 0.37 27.20 0.44 0.00
VII 3614 1344 27.60 T.L. – 27.60 0.53 0.00 27.60 0.19 0.00
VIII 5066 1344 28.20 T.L. – 28.40 0.85 0.73 28.20 0.29 0.00
IX 8393 1344 28.00 T.L. – 28.10 1.43 0.38 28.00 0.41 0.00
X 5422 1344 31.80 T.L. – 31.70 1.00 0.32 31.80 0.35 0.66

Time limit (T.L.) = 5 min

solved to proven optimality and “–” means no dual bound). The column Gap reports
the average ratio zA−z∗

z∗ , where z∗ and zA are the objective function values of the best
known solution and that of the solution given by the corresponding algorithm.

We can see that for both sets of instances, the best fit algorithm and the first fit
algorithm have the same results in more than 90% of the cases, while the first fit
algorithm is computationally more efficient. Hence, we choose the first fit algorithm
to provide the initial solutions for the other heuristic algorithms, including providing
the initial solution for Form A. We also point out that no I instance can be solved to
proven optimality by the compact model Form A within the time limit, whereas all
the U instances are optimally solved.

We now test the column generation based heuristic algorithm introduced in
Sect. 19.3.1, together we also compare the different lower bounds of the TBPP dis-
cussed in this paper, i.e., the LP relaxation of Form A, Form B and the bound based
on the BPP in Property 19.1. The initial solution of the algorithm is provided by
the first fit algorithm. Since the U instances are easy to solve, we only consider the
I instances. Moreover, I instances are computational hard for Form B as well, we
only report results for the subset of instances of which we are able to solve its LP
relaxation within 1 h via column generation. The results are presented in Table 19.4.
For formulation Form A, in column zl p and Time, we report the objective function
value of the LP relaxation and the computational time of CPLEX. The lower bound
based on the BPP is given in column LBBPP. Computing the best LBBPP requires
the solution of |T | BPPs and accordingly it may require a very long computational
time. We decide instead to solve only 100 BPPs for randomly sampled time steps
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Table 19.4 The column generation based heuristic algorithm and lower bounds of the TBPP

Form A LBBPP Form B

Instance zl p Time zl p Pricing Time Time Cols Obj

I40 18.35 268.31 20 23 321.71 1034.28 789 23
I44 21.53 34.27 26 26 1862.41 2639.48 1631 27
I45 22.18 46.84 24 27 0.48 0.53 81 27
I61 20.69 300.34 26 26 2001.04 3011.65 1924 40
I64 21.43 41.73 26 27 2237.6 2551.92 1091 28
I71 23.41 130.53 28 28 482.14 494.61 514 29
I72 23.07 21.57 26 27 1676.97 1823.78 985 28
I73 22.96 28.75 28 27.5 794.43 831.12 593 28
I75 23.66 42.71 24 27 8.56 13.33 284 27
I76 23.61 44.17 27 29 885.51 948.59 736 30
I77 23.2 73.38 26 29 32.61 38.47 530 29
I78 22.4 76.32 27 27 1035.21 1295.63 566 27
I82 22.7 26.08 26 26 1888.26 2757.68 904 26
I83 24.46 27.98 28 28 480 564.07 896 29
I86 23.2 64.88 27 28 141.08 161.43 742 28
I88 22.62 65.42 26 27 12.17 12.7 135 27
I89 23.79 73.45 29 29 14.88 23.91 717 29
I90 24.53 74.82 28 29 142.55 229.19 1512 29
I93 26.58 49.61 31 31 1163.19 1235.46 752 32
I95 25.14 75.06 31 31 53.06 81.47 417 31
I96 25.55 88.64 32 32 56.23 88.91 477 32
I98 27.58 131.05 30 33 17.17 26.27 378 33
I99 27.06 142.98 29 31 1322.96 1438.21 664 32

in order to achieve a good compromise between computational time and quality of
the bounds. Finally, for Form B, column Ob j and zl p give the objective function
value obtained by the heuristic algorithm proposed in Sect. 19.3.1 and that of the LP
relaxation. The pricing time to solve the sub problem TKP during column genera-
tion and the total computational time of solving the LP relaxation are reported in
column Pricing Time and Time respectively. The time for solving the final MIP of
the column generation heuristic is on average very low except in some rare cases in
which this phase can take up to 1 min. In our experiments, the TKP sub problems
are solved by CPLEX using Formulation (19.11)–(19.13). Table 19.4 also presents
the number of columns generated during the entire process.

It is worth mentioning that the computation of the LP relaxation of Form A is
surprisingly high while it can be alternatively computed in negligible time using
the formula (19.6) presented in Property 19.2. In any case, this bound is very poor
compared to other ones. We observe that in all cases, the extensive formulation
returns better lower bounds. Also, the lower bounds based on the BPP are strictly
better than the ones provided by Form A in all cases except one. Finally, thanks to
our column generation algorithm, we can prove the optimality for 14 instances out
of 23 instances considered. In Table 19.4, we highlight objective function values
of LP relaxation and that obtained by the heuristic algorithm based on Form B for
these14 instances. Many of the I instances still remain open and we hope this paper
may stimulate further research on the TBPP.
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19.5 Conclusion

In this paper, we study an extension of the bin packing problem called TBPP
and present a compact MIP formulation and an extensive MIP formulation. Also,
greedy-type heuristic algorithms are developed, while an MIP solver together with
the compact formulation is used as a heuristic given time limits. A heuristic algo-
rithm based on the extensive formulation together with the column generation tech-
nique is presented. Computational experiments are discussed, showing the strength
of the extensive formulation and the potentiality of column generation based algo-
rithms applied to the TBPP.

For future research, a pseudo-polynomial size formulation could be developed.
Also, other heuristic algorithms based on column generation can be studied, such as
combining diving strategies and variable fixing.
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Chapter 20
A Fast Reoptimization Approach for the
Dynamic Technician Routing and Scheduling
Problem

V. Pillac, C. Guéret, and A.L. Medaglia

Abstract The Technician Routing and Scheduling Problem (TRSP) consists in rout-
ing staff to serve requests for service, taking into account time windows, skills, tools,
and spare parts. Typical applications include maintenance operations and staff rout-
ing in telecoms, public utilities, and in the health care industry. In this paper we
tackle the Dynamic TRSP (D-TRSP) in which new requests appear over time. We
propose a fast reoptimization approach based on a parallel Adaptive Large Neigh-
borhood Search (RpALNS) able to achieve state-of-the-art results on the Dynamic
Vehicle Routing Problem with Time Windows. In addition, we solve a set of ran-
domly generated D-TRSP instances and discuss the potential gains with respect to
a heuristic modeling a human dispatcher solution.
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20.1 Introduction

The Technician Routing and Scheduling Problem (TRSP) [22] deals with a limited
crew of technicians K that serves a set of requests R. The TRSP can be seen as an
extension of the Vehicle Routing Problem with Time Windows (VRPTW), where
technicians play the role of vehicles and requests are made by clients. In the TRSP,
each technician has a set of skills, tools, and spare parts, while requests require a
subset of each. The problem is then to design a set of routes of minimal duration
such that each request is visited exactly once, within its time window, by a tech-
nician with the required skills, tools, and spare parts. The TRSP naturally arises
in a wide range of applications, including telecommunications, public utilities, and
maintenance operations.

This problem introduces compatibility constraints between technicians and re-
quests. While skills are intrinsic attributes, technicians may carry different tools and
spare parts over the planning horizon. Technicians usually start their route from their
home with an initial set of tools and spare parts that allows them to serve an initial
set of requests. They can also replenish their tools and spare parts at a central depot
at any time to serve more requests. Tools can be seen as renewable resources, while
spare parts are non renewable and consumed once the technician serves a request.

Figure 20.1 illustrates an instance of the TRSP with two technicians and six
requests. Technician A has one skill, while B has two. Technician A starts their route
at home (gray diamond) with a hammer and a screwdriver, then serves requests 1,
2, and 3, before returning home. Technician B also departs from their home, serves
4, then goes to the central depot (black square) to pick up a drill that allows them to
serve request 6 after serving request 5. Note that although request 5 is close to the
route of technician A, only technician B can serve it due to skill constraints.

 

Skills

Skills

Tools

Tools

Home
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Pickup

A
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1
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6
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Fig. 20.1 Example of a technician routing and scheduling problem with two technicians, three
tools, and two skills

In this work, we introduce a dynamic variant of the problem, namely the D-TRSP,
in which new requests appear while the technicians are executing their routes.
In addition to designing a set of routes at the beginning of the day, two types of
decisions have to be taken in real time. First, whenever a technician finishes serving
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a request, it must be decided what will be the next request to serve. Second, when-
ever a request appears, the algorithm must decide whether it is possible or desirable
to accept it or not. If not, the request is said to be rejected, which leads to a cost
penalty corresponding to the cost of outsourcing or postponing the request. This
problem is motivated by a practical application in which no stochastic information
is available to anticipate new requests, while decisions need to be made in limited
time to provide an appropriate level of service to customers. Therefore, we propose
a fast reoptimization approach that focuses on providing good solutions in limited
time. Finally, we compare two distinct objective functions, the first minimizing the
duration of routes, and the second the traveled distance.

The rest of this chapter is organized as follows. Section 20.2 reviews the litera-
ture on related problems and approaches. Section 20.3 describes a parallel adaptive
Large Neighborhood Search (pALNS), Sect. 20.4 introduces a fast reoptimization
approach based on pALNS, Sect. 20.5 presents computational results for the pro-
posed approach, and finally Sect. 20.6 concludes this paper and draws directions for
future research.

20.2 Literature Review

Despite its numerous practical applications and its challenging features, static tech-
nician routing and scheduling problems have received limited attention until re-
cently, and to the best of our knowledge, no study simultaneously considers skills,
tools, and spare parts. For instance, Xu and Chiu [37] studied the Field Techni-
cian Scheduling Problem (FTSP) seen as a variant of the VRPTW, in which the
objective is to maximize the number of requests served while accounting for skill
constraints, request priorities, multiple depots, and overtime. The authors describe
a mixed integer formulation and develop three heuristics including a GRASP al-
gorithm. Similarly, Weigel and Cao [36] present a software solution developed for
Sears, a US retailer that serves its customers with home delivery and on-site tech-
nical assistance. The proposed solution works by first assigning technicians to re-
quests, and then optimizing technician routes individually. Tsang and Voudouris
[33] studied the technician workforce scheduling problem faced by British Tele-
com. Their study does not consider skill constraints, but uses a proficiency factor
that reduces the service time depending on the technician experience. They propose
a Fast Local Search and a Guided Local Search to solve this problem. Borenstein
et al. [7] extended this problem accounting for dynamic requests and skill compati-
bility constraints. They cluster the requests using a k-means algorithm followed by a
heuristic that assigns technicians to areas. Finally, they propose a rule-based system
that assigns and sequences the requests. They conclude their study by assessing the
impact of soft clustering and show that it can increase system performance under
certain assumptions.

Maintenance operations planning is a problem closely related to the TRSP.
Blakeley et al. [6] present the optimization of periodic maintenance operations for
Schindler Elevator Corporation in North America, a company that manufactures,
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installs, and maintains elevators and escalators. The problem faced by this company
consists in designing a set of routes for technicians to perform periodic mainte-
nance and repairs taking into account travel times, working regulations, and skill
constraints. A similar application was studied by Tang et al. [31] who formulate the
problem as a multi-period maximum collection problem in which time-dependent
rewards are granted for the completion of a request. This approach allows the mod-
eling of soft constraints such as the desirability of performing a task in a given
day (job-to-time penalties). The authors propose a Tabu Search (TS) algorithm that
yields near-optimal solutions on real instances in reasonable time.

In 2007 the French Operations Research Society (ROADEF) organized a chal-
lenge based on a problem submitted by France Telecom. The problem consists in
finding a schedule for technicians to execute a set of tasks on a multiple-day horizon.
Each task requires one or more skills with different minimum proficiency levels,
while technicians can have multiple skills with a given proficiency. An important
aspect is the creation of teams that work together during one day, combining the
skills of their members, and the possibility to outsource the execution of a task.
However, this problem ignores the routing aspects. Cordeau et al. [11] proposed a
mathematical model and an Adaptive Large Neighborhood Search (ALNS), while
Hashimoto et al. [14] proposed a Greedy Randomized Adaptive Search procedure
(GRASP) approach to tackle this problem.

Work regulation is an important aspect of technician routing and scheduling.
Tricoire [32] presents a technician routing problem faced by Veolia, a water dis-
tribution and treatment company. In this application, technicians have the skills to
perform all requests that are divided in two categories: user requested interventions
and company scheduled visits. As new requests appear on a daily basis, the routing
of technicians is performed on a rolling horizon, taking into account work regu-
lations and customer service standards. In his work, the main contributions are a
column generation approach and a memetic algorithm [8]. His approaches take ad-
vantage of partial solutions from previous plans in the rolling horizon framework to
reduce computational times.

A number of technological advances have led to a renewed interest in dynamic
vehicle routing problems, leading to the development of new optimization ap-
proaches. Pillac et al. [21] classify dynamic routing problems in two categories:
deterministic and stochastic. In both cases the information available to the stake-
holder changes over time. In a stochastic setting, data is available on the dynami-
cally revealed information in the form of known probability distributions, while in
deterministic problems, changes are simply unpredictable. The present work falls in
the dynamic and deterministic category.

Dynamic and deterministic problems are often tackled with approaches either
based on periodic reoptimization or continuous reoptimization [21]. Periodic re-
optimization approaches start at the beginning of the day by producing an initial
set of routes that are communicated to the vehicles. As the available information is
updated along the day, or at given intervals of time, an optimization is performed us-
ing the currently available information to update the routing. Such approaches can
be based on algorithms developed for static problems and are therefore relatively
easy to implement, however, they may introduce delays between the information
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update and the routing plan. Examples of periodic reoptimization include the Ant
Colony Systems proposed by Montemanni et al. [20] to solve the Dynamic VRP
(D-VRP). A novel feature of their approach is the use of the pheromone trace to
transfer characteristics of a good solution between reoptimizations. Other heuristic
approaches, such as Tabu Search (TS), have also been used to tackle the Dynamic
Pickup and Delivery Problem (D-PDP) [9, 2] and the Dynamic Dial-a-Ride Problem
(D-DARP) [1, 3].

Continuous reoptimization approaches run throughout the day and are generally
based on an adaptive memory [30] that stores alternative solutions. The adaptive
memory is then used to react to changes in the available information, thus avoid-
ing a complete reoptimization of the problem. Gendreau et al. [12] developed a
parallel TS with adaptive memory to tackle a Dynamic VRPTW (D-VRPTW), that
was later applied to the D-VRP [16, 17]. Bent and Van Hentenryck [4] general-
ized this framework and introduced the Multiple Plan Approach (MPA) to tackle
the D-VRPTW. Following a different approach, Benyahia and Potvin [5] studied
the Dynamic Pickup and Delivery Problem (D-PDP) and proposed a Genetic Algo-
rithm (GA) that models the decision process of a human dispatcher. More recently,
GAs were also used for the same problem [13, 10] and for the D-VRP [34].

To the best of our knowledge, no work considers simultaneously skills, tools,
spare parts, and dynamically arriving requests, four key and practical components
of technician routing and scheduling. The present work addresses this aspect and
proposes an optimization approach for the dynamic version of the problem, denoted
D-TRSP, in which new requests arrive during the execution of the routes.

20.3 The Parallel Adaptive Large Neighborhood Search

The proposed approach is based on a parallel Adaptive Large Neighborhood Search
(pALNS) algorithm which is used to compute an initial solution, and then, to reop-
timize the solution whenever a new request arrives. In this section we present the
original Adaptive Large Neighborhood Search (ALNS) algorithm and introduce an
efficient parallelization scheme.

The ALNS algorithm, originally proposed by Pisinger and Ropke [23], is an
extension of the Large Neighborhood Search (LNS) algorithm [28]. LNS works by
successively destroying (removing requests) and repairing (inserting requests back)
a current solution, using destroy and repair operators. ALNS adds an adaptive layer
that randomly selects operators depending on their past performance, automatically
fitting the algorithm to the instance at hand. We refer the interested reader to Pisinger
and Ropke [24] for a detailed description of LNS, ALNS, and related methods.

Algorithm 1 presents the outline of the ALNS approach. ALNS starts with an
initial solution Π0. Then for I iterations, the algorithm selects destroy and repair
operators with a roulette wheel that reflects their past performance (line 4). Destroy
operators remove a subset of requests from the current solution, while repair oper-
ators reinsert them using heuristics that are known to perform well on the problem
at hand (line 5). The resulting new solution is conditionally accepted as current
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Algorithm 1 Adaptive Large Neighborhood Search (ALNS) algorithm
Input: Π0 initial solution, z evaluation function,Θ−/Θ+ set of destroy/repair operators, I number

of iterations
Output: Π∗ the best solution found
1: Π∗ ←Π0{Initialize best solution}
2: Π ←Π0{Initialize current solution}
3: for I iterations do
4: d ← select (Θ−) ; r ← select (Θ+){Select destroy/repair}
5: Π ′ ← r(d(Π)){Generate a neighbor}
6: if accept (Π ′,Π) then
7: Π ←Π ′ {Update current solution}
8: end if
9: if z(Π ′)< z(Π∗) then

10: Π∗ ← Π ′{Update best solution}
11: end if
12: updateScore (d, r,Π ′) {Update scores}
13: end for
14:
15: return Π∗

solution according to a simulated annealing criterion (line 6). At the end of each
iteration, the scores of the destroy and repair operators are updated depending on
the solution they generated (line 12).

The Parallel Adaptive Large Neighborhood Search (pALNS) was briefly intro-
duced by the authors in Pillac et al. [22], the remaining of this section details its
components. It is an extension of the Adaptive Large Neighborhood Search (ALNS)
algorithm that includes a novel parallelization scheme that efficiently spreads the
computational effort among independent processors.

Algorithm 2 presents the outline of pALNS. The algorithm maintains a pool P
of N promising solutions that are optimized in K subprocesses (note that N ≥ K).
For each master iteration, a subset of K promising solutions is selected randomly
(line 2) and distributed among independent subprocesses. Each subprocess performs
I p ALNS iterations (lines 3–14) by destroying and repairing the current solution Π p

as in the original ALNS algorithm. The final current solution of each subprocess is
added to the pool of promising solutions (line 13) and a filtering procedure ensures
that the pool contains at most N solutions, including the best solution found so far
(line 15). The algorithm stops after Im master iterations, which corresponds to I =
Im × I p ALNS iterations. Note that the implementation of pALNS ensures that no
synchronization is required between subprocesses to avoid deadlocks. The following
paragraphs present in more detail the different components of the algorithm.

20.3.1 Destroy

Destroy operators remove a random fraction ξ ∈ [ξmin,ξmax] of the requests from
the current solution. We denote R the set of requests served in the solution, and U
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Algorithm 2 Parallel Adaptive Large Neighborhood Search (pALNS) algorithm
Input: P pool of initial solutions, z evaluation function, Θ−/Θ+ set of destroy/repair operators,

N maximum size of the solution pool, K number of subprocesses, Im number of master itera-
tions, Ip number of iterations performed in parallel.

Output: Π∗, the best solution found
1: for Im iterations do
2: P ′ ← selectSubset (P,K) {Select a subset of K solutions}
3: for All Π in P ′ do
4: Π p ←Π {Current solution for this subprocess}
5: for Ip iterations do
6: d ← select (Θ−) ; r ← select (Θ+){Select destroy/repair}
7: Π ′ ← r(d(Π p)){Destroy and repair current solution}
8: if accept (Π ′,Π p) then
9: Π p ←Π ′ {Π ′ is accepted as current solution}

10: end if
11: updateScore (d, r,Π ′) {Update d and r scores}
12: end for
13: P ← P ∪{Π p} {Add Π p to the pool P}
14: end for
15: P ← retain (P,N){Retain at most N solutions from the pool P}
16: end for
17:
18: return Π∗ = argminΠ∈P {z(Π)}

the set of requests that are not served. We used three destroy operators originally
proposed by Pisinger and Ropke [23]: random, related, and critical.

The random destroy operator selects requests randomly and removes them from
their actual routes.

The related destroy operator attempts to remove requests that share some char-
acteristics. Let the relatedness ri j of requests i and j be a measure of how related
two requests are (the lower the ri j , the more related i and j). The procedure starts by
randomly removing a seed request i (U = {i}), then it iteratively selects a request
i ∈ U , and removes the most related request j∗:

j∗ = argmin
j∈R

{
ri j
}

(20.1)

There are different ways to measure relatedness. We propose a new metric that can
be precalculated, namely a-priori relatedness, that does not depend on the actual
position of requests in routes:

rs
i j =

(
1+

ci j

Mc

)θc
(

1+
|bi − b j|

Mt

)θt
(

2− |Ki ∩K j|
min

{
|Ki|, |K j|

}
)θs

(20.2)

where Mc and Mt are scaling constants, and θc, θt , and θs are factors that define
the weight given to each component. The first component measures the geographic
distance between two requests (ci j); the second component is the difference of due
dates bi and b j; and the third component measures the number of technicians that
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can serve both requests, modeled by the intersection of Ki and K j, the sets of tech-
nicians that can serve request i and j, respectively.
In addition, we use time-oriented relatedness [23] that measures the difference be-
tween the current times of service Ai and A j of requests i and j:

rt
i j = |Ai −A j| (20.3)

Finally, critical destroy removes the request i∗ such that the cost of the resulting
solution is minimal:

i∗ = argmax
i∈R

{ci−1,i+1 − ci−1,i − ci,i+1} (20.4)

where i− 1 and i+ 1 are the predecessor and successor of i.
In practice, related and critical operators are randomized and the !yp|R|"-th best

request is selected, where y is a random number within [0,1) and p ≥ 1 is a param-
eter that controls the level of randomness (the lower the p, the more randomness is
introduced).

20.3.2 Repair

Repair operators attempt to insert requests that are currently unserved. Our imple-
mentation is based on regret-q heuristics [25]: at each iteration the algorithm inserts
(at the best position) the request with the lowest regret value. The regret-q value
rq

i of request i is a measure of how desirable it is to insert i in the current iteration
assuming that the best insertion will no longer be feasible in the next iteration. It is
defined as:

rq
i =

q

∑
h=2

(
Δzh

i −Δz1
i

)
(20.5)

where Δzq
i is the cost of the q-th best insertion of request i ∈ U . Note that ties are

broken by selecting the request with the lowest Δz1
i value, and regret-1 corresponds

to the classical best insertion heuristic. We used three regret levels: regret-1, regret-
2, and regret-3.

20.3.3 Adaptive Layer

Every iteration, pALNS selects a destroy and a repair operator using a selection
roulette, such that operator θ ∈Θ � is selected with probability wθ , whereΘ � is either
the set of destroy (Θ−) or repair (Θ+) operators. Probabilities are initialized with
value 1

|Θ .| , and then updated every l iterations (a segment) as follows:
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wθ ← (1−ρ)wθ +ρ
sθ

∑θ∈Θ . sθ
(20.6)

where ρ ∈ [0,1] is the reaction factor which defines how quickly probabilities are
adjusted, and sθ is the score of operator θ in the last l iterations. The scores sθ are
reset to 0 every l iterations and updated at the end of each iteration depending on the
new solution: a score of σ1 is granted for a new best solution, σ2 for an improving
solution, σ3 for a non-improving but accepted solution, and σ4 for a rejected solu-
tion. It is worth noting that in contrast with the adaptive scheme originally proposed
by Pisinger and Ropke [23], this formula ensures that ∑θ∈Θ � wθ = 1 at all time,
which makes it easier to interpret as the relative weight of each operator.

20.3.4 Objective Function

The initial solution or the solution resulting from the destroy operator can leave
some requests unserved (U �= /0). Therefore, we need to be able to evaluate a partial
solution Π ′ to account for the unserved requests. Let z be one of the two objective
functions considered in this paper, and Π0 an initial solution. Pisinger and Ropke
[23] define the cost of partial solution Π ′ as follows:

zφ (Π ′) = z(Π ′)+φ |U |z(Π0) (20.7)

where φ is a parameter that controls the unserved request penalty. Note that in a
dynamic context, the penalty can be interpreted as an outsourcing cost for rejected
requests.

20.3.5 Acceptance Criterion

As in the original ALNS, the pALNS algorithm relies on a simulated annealing

acceptance criterion which accepts a new solution Π ′ with probability e
z(Π)−z(Π ′)

T ,
where T is the temperature parameter. The temperature is initialized with the value
T0 and it is reduced at each iteration by a cooling factor c. The two parameters
T0 and c are set depending on the initial solution and the target number of itera-
tions [27]. Given an initial solution Π0, T0 is defined such that a solution with value
(1+w)z(Π0) is accepted with probability p, and c is set such that the temperature
after n iterations is equal to αT0.
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20.3.6 Computation of an Initial Solution

The pALNS algorithm requires an initial solution which is computed with a regret-
3 constructive heuristic: starting with empty routes for each technician, the algo-
rithm iteratively inserts the request with the lowest regret value as described in
Sect. 20.3.2.

20.3.7 Solution Pool

The solution pool acts as a shared memory and allows subprocesses to collaborate
efficiently. In the original algorithm, the simulated annealing acceptance criterion
results in a search scheme that starts from a diversification phase, in which poor so-
lutions may be accepted as current solutions, and progressively switch to an intensi-
fication phase, in which only improving solutions are accepted. The use of a solution
pool that contains the N best solutions found so far tends to break this scheme, as
poor solutions may never be kept in the pool and will not be exploited properly. To
overcome this limitation we propose to maintain a pool of diverse solutions that are
promising in terms of cost.

This is achieved by the retain method (line 15) which ensures that P con-
tains at most N solutions: if |P| > N then the method retains the N best solutions
according to the fitness function f :

f (Π) = (1−λ )rankz(Π)+λ rankd(Π) (20.8)

where λ is a weight between 0 and 1, rankz(Π) is the rank of solution Π according
to its objective value, and rankd(Π) is the rank ofΠ according to its average broken-
pairs distance [26] relative to the other solutions from P . The broken pairs distance
counts the number of arcs that differ between two solutions. This fitness function is
inspired by the biased fitness introduced by Vidal et al. [35] in a genetic algorithm
with diversity management. The weight λ can either be fixed a-priori, or adjusted
throughout the search to switch from diversification (λ = 1) to intensification (λ =
0). Note that we ensure that P always contains the best solution found so far.

20.4 Parallel Reoptimization Approach

Figure 20.2 illustrates the proposed reoptimization approach, namely RpALNS. The
algorithm starts by producing an initial solution S0 by using a constructive heuristic
coupled with the pALNS described in the previous section. Then each time a new
request appears, it fixes the currently executed portion of the routes, and re-runs
the pALNS for a limited number of iterations to produce an updated solution S′

t .
If pALNS is able to insert the new request, then it is accepted and S′

t becomes
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the new current solution, otherwise the request is rejected and St remains as the
current solution.
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Fig. 20.2 Overview of the proposed reoptimization approach

It is important to note that the immediate commitment of idle technicians to re-
quests may lead to difficulties when new requests appear. Figure 20.3 illustrates this
with a single technician. Suppose that at time t a technician is assigned to a request
i, if the technician is dispatched immediately to i (upper left time line), it will travel
to i then wait at its destination until the start of the time window (black brackets).
On the other hand, if a waiting strategy is used (lower left time line), the technician
will remain idle until the latest moment such that it will not wait at i. If at time t +1
a new request j appears, in the first case j cannot be served as the technician is al-
ready waiting at i, while in the second case a visit to j can be inserted right before i.
As a consequence, technicians are considered to remain idle at their current location
until the latest departure time.
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Fig. 20.3 Illustration of waiting vs. immediate commitment strategies
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20.5 Computational Results

In this section we first validate the proposed reoptimization approach on a well
known benchmark and present computational results for randomly generated in-
stances of the D-TRSP.

20.5.1 Experimental Setting

The experiments were run on a quad-core desktop computer.1 Table 20.1 presents
the detail parameter setting used in the pALNS algorithm. The number of parallel
iterations and the maximum size of the pool where selected after running experi-
ments with values I p ∈ {10, 50, 100, 500, 1000} and N ∈ {1, 5, 10, 20, 30, 40, 50}.
We also tested two schemes for the solution pool, the first with a fixed value of 0.5
for λ , the second using an adaptive scheme starting with λ = 0.5 and decreasing
its value using the same process as the one used to decrease the simulated anneal-
ing temperature. Over all our experiments the combination of an adaptive diversity
management with I p = 50 and N = 40 showed the best results for 25,000 pALNS
iterations, and I p = 100 and N = 10 for 5000 pALNS iterations. The remaining
parameters were directly derived from the work by Pisinger and Ropke [23].

Table 20.1 Detailed parameter setting for the pALNS algorithm for 25,000 iterations, values in
parenthesis indicate adjusted values for 5000 iterations

Parameter Value Description

K 8 Number of threads
Ip 50 (100) Number of parallel iterations
N 40 (10) Maximum promising solution pool size

φ 0.10 Penalization for unserved customers
ξmin 0.10 Minimum proportion of customers to be removed
ξmax 0.40 Maximum proportion of customers to be removed

w 0.05 Reference objective degradation
p 0.5 Initial probability of accepting a degrading solution
α 0.002 Fraction of the initial temperature to be reached at the end

ρ 0.40 Reaction factor
σ1 1.00 Score for new best solution
σ2 0.25 Score for improving solution
σ3 0.40 Score for non-improving accepted solution
σ4 0.00 Score for rejected solution
l 100 Operator probability (wθ ) update frequency

θc, θt , θs 1.0 A-priori relatedness weights

1 CPU: Intel i7 860 (4× 2.8 GHz), RAM: 6 GB DDR3, OS: Ubuntu 11.10 ×64, Java 7.
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20.5.2 Validation on the D-VRPTW

To assess the effect of parallelization we tested our algorithm on the static instances
for the VRPTW proposed by Solomon [29]. In the VRPTW, customers require a
specific quantity of product to be delivered or picked up. The objective is to find a
set of routes minimizing the traveled distance while ensuring that all customers are
visited exactly once, and satisfying the capacity of the vehicle. The instances contain
100 customers located randomly (R), in clusters (C), or combining both (RC); while
the planning horizon is either short (type 1) or long (type 2). These instances are
organized combining location and horizon length, leading to six groups (R1, C1,
RC1, R2, C2, RC2). We consider the minimization of the total distance.

Table 20.2 Comparison of gap to the best known solutions and running times for different levels
of parallelization

Parallel: num. of threads
Seq. 1 2 4 8

Gap 0.74% 0.72% 0.55% 0.54% 0.48%
Gap (st. dev.) 0.87% 0.88% 0.76% 0.70% 0.66%
Time (s) 36.58 37.32 22.07 14.70 11.32
Time (s, st. dev.) 6.27 6.33 4.06 2.72 2.15

Table 20.2 presents aggregated values over the 56 instances, with ten run per
instance and 25,000 ALNS iterations.2 The column labeled “Seq.” corresponds to
the original sequential implementation of the ALNS, and the columns labeled “1”
through “8” to the parallel implementation with 1–8 threads. The first and second
rows contain the mean and standard deviation of the gap value relative to either the
optimal or the best known solution. Finally, the third and fourth rows show the mean
and standard deviation of the CPU times. Note that increasing the number of threads
has a limited impact on the gap to the best known solutions, which is consistently
around 0.6%, but it allows a reduction of running times by a factor of 3.3.

Figure 20.4 presents the box plot of the distribution of the gap and CPU times
for the sequential (S) and parallel implementations with 1, 2, 4, and 8 threads. A
graphical analysis shows that the median and variance of the gap slightly decrease
with the number of threads. In contrast, the median and variance of the running time
sharply decrease with the number of threads. Therefore, we selected the configu-
ration with 8 threads as it offers the best compromise between speed and quality.3

These results show that pALNS consistently produces results that are very close to
the optimal solutions of the Solomon [29] instances within a tight time budget.

2 To ensure that I = Im × Ip ×K ( 25,000, we used Im =
⌈

25,000
40×K

⌉
.

3 Note that the processor used is a quad-core with Intel hyper-threading technology which allows
two threads per core. This partially explains the relatively small reduction of CPU times when
switching from 4 to 8 threads.
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Fig. 20.4 Impact of the number of threads on the gap and CPU time

We tested the RpALNS approach on the instances proposed by Lackner [18] and
based on the Solomon [29] benchmark, in which a fraction of the customers is re-
vealed dynamically. This fraction, also referred to as degree of dynamism (δ ) is
either 10%, 30%, 50%, 70%, or 90%. For each instance, we performed 10 simula-
tions in which pALNS is first run for 25,000 iterations to produce an initial solution.
Then, each time a new customer appears, pALNS runs for 5000 iterations to produce
a solution that will be used until the next customer is revealed. Finally, pALNS is
run for 50,000 iterations to solve the a-posteriori problem, in which all the accepted
customers are assumed to be known beforehand.

Table 20.3 presents the Value of Information (VI) [19] for each instance group
and degree of dynamism (δ ). The value of information for instance I is defined as

the ratio z(I)−z(Iap)
z(Iap)

, where z(I) is the value of the solution found by the algorithm

for the dynamic instance and z(Iap) is the value of the solution for the a-posteriori
instance Iap. As expected, results indicate that the VI increases with the degree of
dynamism, which can be explained by the fact that suboptimal routing decisions add
up over time, and more decisions are made in highly dynamic instances. However,
it is of only 2.1% when 10 out of 100 customers appear dynamically (δ = 10%),
4.5% for δ = 30%, and even with δ = 90%, the VI is of just 11% on average, which
means that the algorithm produces a final routing that is very close to what would
have been done if all the customers were known from the beginning of the day.
The results also indicate the robustness of the approach with respect to the different
types of instances. With the exception of group C2, for which the results are slightly
better, the approach has a similar performance on all groups for a given degree of
dynamism.

Table 20.4 presents a comparison of approaches for the Lackner [18] instances.
The third and fourth columns present the total distance (Dist.) and number of re-
jected customers (Rej.) for RpALNS, averaged over 10 runs and for each group and
degree of dynamism. The fifth and sixth columns report the average distance, rela-
tive average additional distance (in parenthesis), and number of rejected customers
for the Large Neighborhood Search (LNS) approach proposed by Hong [15], while
the seventh and eighth columns report the same values for the Genetic Algorithm
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Table 20.3 Average value of information for the Lackner [18] instances

δ R1 (%) C1 (%) RC1 (%) R2 (%) C2 (%) RC2 (%) Avg. (%)

10 2.05 2.89 3.06 1.70 1.66 1.61 2.14
30 4.67 5.83 5.83 4.34 1.74 4.70 4.54
50 6.41 9.28 9.03 8.15 2.82 5.38 6.93
70 8.29 11.18 10.24 10.17 5.41 8.60 9.03
90 9.33 12.49 11.84 11.83 6.51 12.33 10.71

(GA) developed by Lackner [18].4 Figures show that our approach is competitive
both in terms of total distance and number of rejected customers. The improvement
on the total distance is on average of 6.75% and 15.61% in comparison with Hong
[15] and Lackner [18] respectively, and ranges from 0.56% to 34.45% depending on
the instance group. This significant range of improvements combined with the pre-
vious conclusions suggest that RpALNS is in addition more robust than the other
two approaches. In addition, average running times are of just 5.3 s for the initial
optimization, and 2.0 s for subsequent reoptimizations, which is significantly less
than the 33 and 47 s reported by Hong [15]5 and Lackner [18],6 respectively.

20.5.3 Results on the D-TRSP

We tested the RpALNS approach on a set of 280 randomly generated instances
based on the Solomon [29] testbed. The 56 static instances were originally presented
by the authors in Pillac et al. [22] and contain 100 requests located randomly (R),
in clusters (C), or combining both (RC); while the planning horizon is either short
(type 1) or long (type 2). These instances are organized combining location and
horizon (i.e., C1, C2, R1, R2, RC1, and RC2). We considered 5 skills, 5 tools, and
5 types of spare parts. For each request, we selected 1 skill, and between 0 and 2
tools and spare part types. Each one of the 25 technicians has between 2 and 4 skills,
and an initial set of 0–5 tools, and 2–5 spare parts. In addition, we generated release
dates for either 10, 30, 50, 70, or 90 requests, leading to a complete testbed of 280
dynamic instances.

We compare the proposed approach with a regret-3 heuristic, which is used to
model the solution that a human dispatcher could produce. This simple approach
starts with the same initial solution as RpALNS. Each time a new request appears,
it attempts to insert it in the current solution using a regret heuristic, rejecting it
if it cannot be inserted. The parameter setting for RpALNS is the same as in the
D-VRPTW experiments.

4 Note that the experimental setting of the two cited studies is not explicitly presented, which limits
the relevance of direct comparisons.
5 CPU: Intel Core 2 Duo CPU (2.40 GHz), RAM: 2 GB, OS: Windows Vista, C#.
6 CPU: Pentium 4 (2.8 GHz), RAM: 1 GB, OS: Unspecified.
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Table 20.4 Comparison of approaches for the Lackner [18] instances

RpALNS Hong [15] Lackner [18]

Group δ Dist. Rej. Dist. Rej. Dist. Rej.

R1 10 1197.4 0.25 1257.1 (4.99%) 0.17 1278.1 (6.74%) 0.47
30 1212.9 0.80 1286.6 (6.08%) 0.58 1337.9 (10.30%) 0.72
50 1225.0 1.25 1295.8 (5.78%) 0.67 1330.0 (8.57%) 0.78
70 1237.3 1.71 1331.3 (7.60%) 1.75 1336.1 (7.98%) 0.94
90 1230.1 2.55 1335.9 (8.60%) 2.33 1278.3 (3.92%) 0.75

C1 10 850.6 0.11 895.8 (5.31%) 0.22 996.4 (17.14%) 0.00
30 874.9 0.11 962.1 (9.97%) 0.33 1066.9 (21.95%) 0.00
50 903.4 0.11 1001.2 (10.82%) 0.22 1236.1 (36.82%) 0.00
70 919.1 0.11 1031.7 (12.25%) 0.22 1261.3 (37.24%) 0.00
90 929.9 0.11 1039.8 (11.81%) 0.22 1479.6 (59.11%) 0.00

RC1 10 1389.4 0.04 1436.2 (3.37%) 1.13 1426.9 (2.70%) 0.46
30 1421.5 0.28 1492.2 (4.98%) 1.13 1439.7 (1.28%) 0.42
50 1463.4 0.23 1514.7 (3.50%) 1.38 1448.1 (−1.05%) 0.46
70 1470.1 0.58 1511.3 (2.80%) 1.88 1488.4 (1.25%) 0.58
90 1495.5 0.51 1513.9 (1.23%) 2.00 1475.2 (−1.36%) 0.42

R2 10 893.0 0.00 950.0 (6.39%) 0.09 1052.9 (17.90%) 0.03
30 915.6 0.00 985.5 (7.63%) 0.00 1085.4 (18.54%) 0.15
50 948.6 0.00 1016.5 (7.17%) 0.00 1138.8 (20.05%) 0.21
70 967.7 0.00 1032.0 (6.65%) 0.09 1116.9 (15.42%) 0.30
90 981.7 0.00 1047.8 (6.73%) 0.09 1193.3 (21.55%) 0.52

C2 10 597.2 0.00 594.7 (−0.42%) 0.00 629.1 (5.35%) 0.00
30 597.6 0.00 651.4 (9.01%) 0.00 632.3 (5.81%) 0.04
50 604.0 0.00 605.0 (0.17%) 0.00 689.3 (14.12%) 0.13
70 619.2 0.00 636.5 (2.79%) 0.00 743.8 (20.12%) 0.21
90 625.7 0.00 636.8 (1.78%) 0.00 792.5 (26.66%) 0.29

RC2 10 1024.4 0.00 1103.3 (7.70%) 0.00 1220.9 (19.18%) 0.00
30 1053.1 0.00 1166.0 (10.73%) 0.25 1244.9 (18.21%) 0.04
50 1060.5 0.00 1190.5 (12.26%) 0.13 1244.9 (17.38%) 0.00
70 1091.4 0.00 1239.5 (13.57%) 0.00 1269.3 (16.30%) 0.00
90 1130.3 0.00 1257.2 (11.23%) 0.13 1346.8 (19.16%) 0.13

Average 0.29 (+6.75%) 0.50 (+15.61%) 0.27

The static TRSP problem [22] considers the minimization of the total working
time. In a dynamic setting, this objective leads to the premature ending of routes:
technicians are sent home as soon as possible to reduce the duration of their route,
ignoring the fact that additional requests may appear in the future. To prevent this
behavior we define a cutoff policy that ensures for an instance I that technicians will
no be sent back to their home until time tc(I). Considering that each instance has a
different horizon [0,T (I)], we define the relative cutoff α(G) for instance group G.
The value of α(G) is defined such that all requests of instance I ∈ G will be known
before α(G)T (I) with a certain probability. In our experiments, α(G) corresponds
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to the 90-percentile of the distribution of
{

rdI
max

T (I)

}
I∈G

where rdI
max is the last release

date for instance I.7

A direct consequence of this policy is that the minimal route duration for instance
I is either 0 (if the technician is not used), or α(G)T (I). Therefore the total duration
at the end of the day is significantly longer than the one found when solving the
static problem.

Table 20.5 Average gap to a-posteriori solution and number of rejected requests for the D-TRSP
instances minimizing the total duration

RpALNS Regret-3

δ Gap (%) Rej. Gap (%) Rej.

10% 65.7 0.0 59.9 0.4
30% 79.5 0.1 84.6 0.6
50% 93.0 0.1 100.4 1.0
70% 100.3 0.2 113.8 1.4
90% 102.8 0.4 122.3 1.8

Avg. 88.3 0.2 96.2 1.0

Table 20.5 reports the results for the 56 instances and 5 degrees of dynamism
when minimizing the total duration. The first column contains the degree of dy-
namism (δ ). The second and third columns report the average gap to an a-posteriori
solution8 and the average number of rejected requests (Rej.) for the RpALNS. The
fourth and fifth columns contain these statistics for the regret-3 heuristic. Note that
running times for RpALNS are of 12 s on average for the calculation of the initial so-
lution and 2.8 s for subsequent reoptimizations, while decision times are negligible
for regret-3.

Firstly, it can be observed that gaps are large regardless of the approach. This
is due to the fact that the a-posteriori solution does not consider the cutoff strategy
enforced in the dynamic context. Therefore the gap should not be interpreted as an
absolute performance metric, but instead as a metric that allows comparisons be-
tween approaches. Secondly, the results show that, as expected, both the gap and
number of rejected requests increase with the degree of dynamism. Finally, they in-
dicate that the RpALNS approach leads to better solutions both in terms of quality of
the routing (measured by the gap) and ability to cope with new requests (measured
by the number of rejected requests).

The cutoff policy forces technicians to wait at their current location before
returning home. Thus, the minimization of the working time may not be as relevant

7 With this definition: αC1 = 0.380, αC2 = 0.509, αR1 = 0.357, αR2 = 0.419, αRC1 = 0.321,
αRC2 = 0.400.
8 The gap for instance I is defined as the ratio z(I)−z(I)

z(I) where z(I) is the value of the solution found

by the algorithm for the dynamic instance, and z(I) is the solution to the static a-posteriori instance
with 50,000 iterations of the pALNS algorithm.
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in a dynamic context as it is for the static case. To assess the validity of this objec-
tive, we performed the same experiments with the minimization of the total distance
as unique objective.

Table 20.6 Average gap to a-posteriori solution and number of rejected requests for the D-TRSP
instances minimizing the total distance

RpALNS Regret-3

δ Gap (%) Rej. Gap (%) Rej.

10 2.4 0.1 10.5 0.3
30 5.4 0.1 30.5 0.4
50 10.8 0.3 44.1 1.0
70 11.8 0.2 57.5 1.2
90 17.9 0.4 64.1 1.4

Avg. 9.7 0.2 41.3 0.8

Table 20.6 compares the two approaches when the objective only considers the
minimization of the total distance. As before, the gap and number of rejected re-
quests generally increases with the degree of dynamism. These results show that
RpALNS consistently outperforms the regret-3 heuristic.

Table 20.7 Difference in total working time and distance when minimizing the total distance in-
stead of the total working time (in %)

RpALNS Regret-3

δ ΔWTΔWTΔWT ΔDistΔDistΔDist ΔWTΔWTΔWT ΔDistΔDistΔDist

10 −8.0 −40.9 −1.4 −33.6
30 −9.8 −45.5 −7.7 −31.7
50 −16.4 −46.5 −11.0 −31.4
70 −18.5 −47.6 −10.8 −30.2
90 −20.2 −45.4 −11.9 −32.0

Avg. −14.6 −45.2 −8.5 −31.8

Finally, Table 20.7 presents the effect of minimizing the total distance instead
of the working time on total working time (ΔWT ) and total distance (ΔDist ) for the
two approaches. As expected, minimizing the distance instead of the working time
leads to a reduction of the total distance by 45% and 32% for RpALNS and regret-3,
respectively. More surprisingly, it also leads to a reduction of the total working time
by 15% and 8%. This can be explained by the cutoff policy that is contradictory
with the minimization of the working time, which mainly focuses on minimizing
waiting times. In contrast, minimizing the total distance always leads to a reduction
of the travel times, which in turn reduces the duration of routes.
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20.6 Conclusions

In this paper we introduced a new dynamic optimization problem, namely the Dy-
namic Technician Routing and Scheduling Problem (D-TRSP). This problem arises
in several practical contexts such as public utilities, telecommunications, and main-
tenance operations.

We proposed a periodic reoptimization approach based on a parallel Adaptive
Large Neighborhood Search (RpALNS) that produces a new routing plan each time
a new request appears. Our preliminary computational results indicate that RpALNS
dominates a simpler regret-3 heuristic, by yielding high quality results in limited
time. In addition, its relative simplicity makes it a good candidate for practical ap-
plications.

We illustrated that the minimization of the total working time, although perfectly
sound in a static context, does not fit well in a dynamic environment. In particular,
we have shown that minimizing the total distance ultimately leads to solutions that
are better both in terms of total distance and duration.

Further work will focus on developing approaches that continuously optimize
the routing throughout the day. In addition, we are testing the proposed approach on
real world data from an industrial partner. Finally, uncertainty should be modeled to
better anticipate the arrival of new requests and improve the quality of the decisions.
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Chapter 21
Optimized Air Routes Connections for Real Hub
Schedule Using SMPSO Algorithm

H. Rahil, B. Abou El Majd, and M. Bouchoum

Abstract The choice to open new routes for air carriers, airports and regional gov-
ernments have some tools to promote desirable connections to be offered toward
specific destinations. With a given flight program, the air carrier decision to open
new routes faces several constraints and affects the flight schedules in a remarkable
way. This work is distinguished by the fact of being the first to introduce the problem
of connectivity in the network of an airline whose main activity is based on air hub
structure, optimizing the insertion of new airline routes while ensuring the best fill
rate seats and avoiding significant delays during correspondence. Quality of Service
Index (QSI) will be considered as a duel parameter for the profit of a new opened
market. This aspect of decision making is formulated as multi-objective problem
by testing the impact of a new insertion in term of delays, generated with related
costs and financial gain, and the quality of service offered to a target customers. The
SMPSO Algorithm is adopted to generate a Pareto-optimal front composed of many
optimal departure times toward the new opening insuring the best filling ratio with
minimum connecting times. Experiences are based on real instance of Royal Air
Maroc flights schedule on the hub of Casablanca.

Keywords Route networks • Hub and spokes • Outbound/Inbound connection
• Flight schedule • Multi-objective optimization • SMPSO algorithm • Pareto
optimal

21.1 Introduction

In literature on air transport there is not a precise definition of connectivity. Typically,
connectivity measures allow to identify how it is easy to reach the rest of the network
starting from an airport or which are the opportunity for interconnections that the
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airport offers with the latter typically employed in order to measure performance of
airline hub [1, 6, 10]. Connectivity is important for airport, airlines and local author-
ities. For airports, connectivity is employed to benchmark their performance against
other airports [8] to better understand on which new opened routes they can provide
a competitive hub service and to evaluate self help strategies. More in general, as
discussed by Burghouwt [2] connectivity has an important role in setting strategic
airport planning.
Connectivity measure can be applied to a single airlines network thus allowing a per-
formance comparison among airlines, a rivalry analysis and a better understanding
of benefits coming from network consolidation as a result of alliances and partner-
ships [17]. For policy makers, connectivity measures allow to monitor the level of
service provided to the local area, to evaluate the cohesion to the rest of the coun-
try for example in term of travel times required to reach a given share of country’s
gross domestic product (GDP) [13]. Burghouwt and Redondi analysis [3] showed
that connectivity measures differ from traditional size based measures typically em-
ployed to rank airport and to proxy their competitive position. Connectivity thus
needs specific indexes like the Airport Connectivity Quality Index (ACQI) intro-
duced by Wittman and Swelbar [18]. The connectivity could be also represented
according to the graph theory as the number of step required to reach a destination.
The standard connectivity index can be weighted by service frequency or by the
number of seat offered. In order to develop measure that more realistically repre-
sent the connectivity chance for passengers, several adjustments can be imposed in
order to account for temporal coordination and connection quality. Thresholds can
be imposed in term of maximum number of steps and minimum and maximum con-
necting time at intermediate airports. For its part, Royal Air Maroc, the Morocco’s
flag carrier is weighing whether global alliance membership will help attract more
premium travellers and provide connectivity to other parts of the world. In addition
to its flights to over 80 destinations, Royal Air Maroc now offers more flights around
the world through many airline partners. An alliance would benefit from RAM’s po-
sition in Morocco but also central/west Africa, RAM’s largest international market
after Europe as illustrated in Fig. 21.1.

Adding connections from Casablanca to elsewhere in Africa would likely pro-
vide only incremental traffic. With most of RAM’s markets served less than daily as
illustrated in Fig. 21.2, it will be challenged to offer convenient connections. Even
on only the Beijing-Casablanca leg, RAM will compete with many low-priced one-
stop services through Europe and the Gulf. To be both competitive and safe, airlines
must be managed with just. To do this, they must use specific optimization tech-
niques at each stage of production.
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Fig. 21.1 Morocco international seat capacity share by alliance: 5-Jan-2015 to 11-Jan-2015

These mathematical techniques are called “operational research”. This area was
born under the influence of Anglo-Saxon military needs during the Second World
War, with the beginnings of computers and methods known as linear programming.
Operational research has since developed a lot and has largely penetrated the world
of business and industry. Given the stakes, methods are sometimes confidential. The
standard connectivity index can be weighted by service frequency or by the number
of seat offered. The connectivity process could be represented according to the graph
theory as the number of step required to reach a destination.

In order to develop measures that more realistically represent the connectivity
chance for passengers, several adjustments can be imposed in order to account for
temporal coordination and connection quality. Thresholds can be imposed in term
of maximum number of steps and minimum and maximum connecting time at in-
termediate airports. For an airline, the flight schedule, specifying the flight steps
and departure time of each flight segment, defined broadly competitive position, it
is therefore a determining factor in the profitability of airlines. Most airlines use an
airport as a main base of operations. This is the place where are the technical facil-
ities maintenance of aircraft and often their sales office. These main bases are also,
of course, interchanges but if many companies have adopted the term hub there
is relatively little that ensure speed and guaranteed connections [5, 7]. The trans-
fer between flights is the passenger’s responsibility and in case of delay the sec-
ond segment is lost [11]. Passengers obviously prefer direct flights, that’s why The
minimum connecting time is a very important parameter that defines a competitive
appearance in the sale of tickets between air carriers and predicts the connectivity
gain of each new route. Several editions of this work have been presented at interna-
tional and national conferences [14, 15] and during these scientific meetings, it was
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Fig. 21.2 Royal Air Maroc routes served by frequency/week: 12-Jan-2015 to 18-Jan-2015

mentioned that this work is distinguished by the fact of being the first to introduce
the problem of connectivity in the network of an airline whose main activity is based
on air hub structure, optimizing the insertion of new airline routes while ensuring
the best fill rate seats and avoiding significant delays during correspondences. Qual-
ity of Service Index (QSI) will is considered as a duel parameter for the profit of a
new opened market.

This aspect of decision making is formulated as multi-objective problem by test-
ing the impact of a new insertion in term of delays, generated with related costs and
financial gain, and the quality of service offered to a target customers. The chapter
is organized as follows: we start with an exhaustive introduction of flight schedule
management then we present in Sect. 21.2 a mathematical formulation for adding
new routes to an existent programm, under specific constraints. Section 21.2.1
presents the optimization process used to solve the problem, while Sect. 21.3 gives
some experimental results that further explain the model and the optimisation pro-
cess, discusses the possible extensions of the model and sketches further directions
of research. Finally, Sect. 21.4 concludes the paper and states some perspectives.

21.2 Methods

21.2.1 Problem Formulation

Let Ak (resp. Dk) the set of the weekly arrivals time (resp. departures time) from
an airport k ∈ K to the hub and aki the ith one (resp. dk j the jth one) with
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i, j ∈ {1,2, ..,Nk} (aki and dk j are classed in ascending order), and Nk is the weekly
frequency of routes between hub and a given airport k ∈ K, we take the minute as
unit of time. We note that, arrivals and departures time during the week are included
in the interval [0,10080]. Figures 21.3 and 21.4 shows respectively the arrival and
departure programs of twenty airports for a typical week, in this example, the hub
receives regularly and every day, one flight from every airport figuring on the tar-
geted potentials list.

Aki =

{
1 Outbound connection is realized for aki

0 otherwise,

Dk j =

{
1 Inbound connection is realized for dk j

0 otherwise,

wk is the weight vectors given by:

wk =
Pk

∑Nk
i=1 Pi

,

This parameter is introduced to encourage the connection of airports with high
potentials, and x ∈ [x+ t+ tmin,10080− tmax], where tmin is the minimum connecting
time, and tmax is the maximum allowed connecting time. Figure 21.5 illustrates the
Outbound and Inbound connections, where the flight Inbound step (red color), pass
through the hub to join the new destination, and return back again via the hub for the
Outbound step (black color). During the optimization process, each random value
x generates two intervals [x− tmax,x− tmin] and [x+ t + tmin,x+ t + tmax]. An Out-
bound connection is realized when a given value aki comes inside the arrival time
window [x− tmax,x− tmin] and the Inbound one is realized when a given value dk j

comes inside departure time window [x+ t+ tmin,x+ t+ tmax]. Figure 21.6 gives the
time intervals where the arrival and departure times should occur to guarantee a full
connection.

21.2.1.1 The Best Filling Ratio Profit Objective

Network planning is an integral part of every air carrier’s revenue generation capa-
bilities. Considering today’s challenging business environment, one way of knowing
whether an airliner’s network planning and scheduling is paying off, is to see how
much revenue is improving. There are several aspects of scheduling that can reduce
operating costs and lift overall profitability.

In addition, the air transporter must work in conjunction with several contribu-
tors, including revenue management office, to be sure that they have a same level
of understanding of the features of targeted customers in a given market. When the
decision maker opts to reach the best filling ratio (maximising profit) in the new
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Fig. 21.3 Arrivals Distribution of twenty targeted airports over a typical week, the hub receives
every day, one flight from each airport

route, he should first of all localise the category of customers interested to this new
insertion and define the most important airport passenger potentials travelling to this
destination. In order to find the best departure time x, we maximize the following
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Fig. 21.4 Departures Distribution of twenty targeted airports over a typical week, the destinations
are served every day from the hub
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objective function
f1(x) =∑

k
∑

i
∑

j

wkAki Dk j (21.1)

Fig. 21.5 Hub Outbound/Inbound connections: flight Inbound step (red color), pass through the
hub to join the new destination, and return back again via the hub for the Outbound step (black
color)

aki dkj
Xμ1(x) μ2(x) μ3(x) μ4(x)

0 10080

Fig. 21.6 Time windows: Time windows provides the opportunity to determine which flights can
be connected

21.2.1.2 The Best Quality of Service Index Objective

Quality of service models are used to estimate the probability a traveler selects a
specific itinerary connecting an airport pair. Itineraries are the products that are
ultimately purchased by passengers, and hence it is the characteristics of these
itineraries that influence demand. In making their itinerary choices, travelers make
tradeoffs among the characteristics that define each itinerary (e.g. departure time,
equipment type(s), number of stops, route, carrier, delays ...). Modeling these
itinerary-level tradeoffs is essential to truly understand air-travel demand and is,
therefore, one of the most important components of network-planning models. One
among several aspects We take as quality of service indicator will be the generated
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delays, that means, we have to decrease the delays average, caused by precedent
correspondence. For a smooth connection between flights, it’s important to give
yourself adequate time between the arrival of the first flight and the departure of the
next one.
This time between flights is known as the minimum connection time, and it’s the
time needed to facilitate security checks and transfers inter terminals. Connecting
time is also a critical parameter for air passengers, to make there choice of con-
venient route correspondence, they prefer generally, the companies offering com-
fortable services, including minimum hub connecting times, in both outbound and
inbound legs of the travel. The delays average can take the following form:

f2(x) =
∑ki j(x− aki)Aki ×Dk j

∑ki j Aki ×Dk j
+
∑ki j(dk j − (x+ t))Aki×Dk j

∑ki j Aki ×Dk j

For efficient results, the objective function calculates the average only for flights
that are connected. Thus the average received will help to quantify the cumulated
delays caused by these connections, and then will give us an idea about the resulting
costs if we opt for this strategy.

21.2.2 SMPSO Algorithm

The term SMPSO has come to be used to refer to the metaheuristic ‘Speed con-
strained Multi-objective PSO’, and can be defined as a recent multi-objective
PSO algorithm. The particle swarm optimization algorithm (PSO) is a famous
population-based search algorithm which adopted in the SMPSO algorithm. It was
introduced originally by R. Eberhart and J. Kennedy in 1995 [12]. The algorithm
emulates the swarm behavior of bird flocking or fish schooling and belongs to the
Swarm Intelligence (SI). This optimization algorithm explores the search space of a
problem by moving particles, and each one of them represents a potential solution
to optimize one or several objectives. The PSO was has a several attractive features:
Simplicity, High efficiency, fast convergence, strong robustness, flexibility, easy to
implement, Parallelism, etc. This advantage makes PSO algorithm more robust, and
it has been successfully applied in many areas and solved a variety of optimization
problems in a faster and cheaper way [16, 19]. Each particle’s position represents
a solution of the problem, and depends on the particle’s velocity. In a search space
of dimension d and at time step t, each particle i of the swarm is presented by its
current position X(t) given by:

Xi(t) = (X1
i ,X

2
i , . . . ,X

d
i ),

its best previous position pBest and its fitness.
The particle moves to its own way, towards its best previous position (pBest) or
towards the best position of all particles (gBest) namely the leader, by updating the
velocity V (t) and the position X(t) using (1) and (2):
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Vi(t + 1) = w∗Vi(t)+V 1
i (t + 1)+V2

i (t + 1) (21.2)

Xi(t + 1) = Xi(t)+Vi(t + 1) (21.3)

where,
V 1

i (t + 1) = c1 ∗ r1 ∗ (pBest −Xi(t)),

V 2
i (t + 1) = c2 ∗ r2 ∗ (gBest −Xi(t)),

w is the inertia weight, c1 and c2 are two positive constants called cognitive learn-
ing rate and social learning rate respectively, r1 and r2 are two uniformly distributed
random values in the range [0,1]. The acceleration constants c1 and c2 represent
the weighting of the stochastic acceleration terms that pull each particle toward
pBest and gBest positions. Therefore, each particle of the swarm is effectively mov-
ing through the search space, with the aim to obtain better results in accuracy (the
quality of the resulting approximation sets) and the convergence speed. It is becom-
ing increasingly difficult to ignore the swarm explosion when solving multi-modal
problems by using a multi-objective PSO algorithm. The velocity of the particles
in these problems can become too high, resulting in erratic movements towards the
upper and lower limits of the positions of the particles. SMPSO used to limit the
velocity of the particles by using a velocity constriction mechanism. For that, the
velocity of each particle is calculated by (2), after that its multiplied by the con-
striction factor χ using (3) [4], then each variable j of the ith particle’s velocity Vi, j

constrained by using (4).

χ =
2

2−ρ−
√
ρ2 − 4ρ

(21.4)

where,

ρ =

{
c1 + c2 if c1 + c2 > 4
1 otherwise.

Vi, j(t) =

⎧
⎨
⎩

δ j if Vi, j(t)> δ j

−δ j if Vi, j(t)≤ −δ j

Vi, j(t) otherwise.
(21.5)

where,

δ j =
upper-limit j − lower-limit j

2
As we can see in Fig. 21.7, the basic of the SMPSO algorithm is very simple.

It starts by initializing randomly the swarm. According to the evaluation of each
particle, it updates the leaders archive and particles memory.
As long as it has not reached the maximum iteration or some value criterion, it
updates the velocity and the position of the particle by using the formulas (1), (2),
(3) and (4) seen previously, and repeats until achieving one of the stopping criterion.
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Fig. 21.7 Flowchart of SMPSO algorithm

21.3 Results and Discussion

First, we compute for different number of assessed airports. As shown in Fig. 21.8,
the number of Pareto optimal solutions increases with the number of airports. This is
quite normal because the chances of capturing values inside intervals [μ1(x);μ2(x)]
and [μ3(x);μ4(x)] become greater with increasing the size of Ak and Dk. Follow-
ing the air carrier demand, we focus on the test of 30 airports, obtained results are
given by Fig. 21.9, moreover, Table 21.1 gives pareto’s front solutions with the cor-
responding coordinates.We obtain seven optimal solutions, offering the possibility
to connect 30 targeted airports to the new opening, maintaining an interesting fill
rate and minimizing the stopover time over the hub. One of the factors sought by
the potential passenger is the shortness of the trip. He therefore preferred the direct
flights between the airport of departure and destination.
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Fig. 21.8 Pareto optimal solutions, connecting 10, 20, 25 and 30 Airports (AP) , insuring the best
filling ratios and reducing to minimum, the hub stopover times
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Fig. 21.9 Pareto optimal for the thirty airports case, showing the coordinates of obtained optimal
solutions

When the passenger is obliged to carry out a correspondence, airlines have an
incentive to attract these passengers to increase the profitability of their lines by
providing a continuous service from airport of departure, passing via the connecting
airport until reaching the final destination.

Tables 21.2 and 21.3 gives details of connected airports for each solution from
Pareto front. We notice that Airports 5, 6, 15, 25, 26 and 28 are not connected
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Table 21.1 Optimal solutions coordinates ( f1, f2)

x
Objective function

f1 f2

S1 = 4710 12,560 722.5

S2 = 5433 2890 440

S3 = 4308 12,575 728.75

S4 = 4660 9360 635

S5 = 1817 5450 477.5

S6 = 5156 9650 656.25

S7 = 3611 7625 598.33

Table 21.2 Optimal solutions with correspondent rotations

Optimal solutions
Flight rotation

Departure
(UTC) Arrival (UTC)

S1 THU 06:30 THU 23:00

S2 THU 18:35 FRI 11:05

S3 WED 23:50 THU 16:20

S4 THU 05:40 THU 22:10

S5 TUE 06:25 TUE 22:55

S6 THU 13:55 FRI 06:25

S7 WED 12:15 THU 04:45

Table 21.3 Table of connected airports with correspondent optimal solutions

AP 1 2 3 4 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 27 29 30

S1 � � � � � � � � � � � � � � � � �

S2 � � � �

S3 � � � � � �

S4 � � � � � � � � � � � � � � �

S5 � � �

S6 � � � � � � � � � �

S7 � � � � � � �
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by the obtained solutions. S1 remains the best solution, connecting 17 of the 30
tested airports, and performing an index of 10 by 11, connecting 10 of the 11 best
connected potentials corresponding to the new opened market.

S1 solution provides 08 h 50 min maximum stopover time on the hub of
Casablanca in outbound step, and 1 h 05 min (1 h 05 min) as minimal stopover time.
Departure time is Thursday at 06:30 UTC from Casablanca, the return is the same
day at 23:00, the inbound step is 55 min stopover time in casablanca and 10 h 40 min
maximum before continuing correspondences back to connected airports. This study
is applied to a real case of Moroccan national airline, and the results meet the ex-
pectations of policy makers. In the airline market between Africa and Europe, Royal
Air Morocco has made a special place, far ahead of its North African counterparts
and showing better prospects. Royal Air Morocco is distinguished from its com-
petitors Maghreb in air links between Europe and Africa, and now allows you to
tread on Air France’s toes. The Moroccan company now ranks 2nd in the top 15
in terms of monthly passenger seats on the intercontinental segment, behind Air
France. Obtained Departures from Casablanca fits perfectly the fleet programming
strategy adopted by Royal Air Maroc company. Indeed, the company sends daily
almost the two-thirds of its fleet on Africa within half an hour before midnight to
return in the morning on the Casablanca hub before continuing to Europe, Amer-
ica and golf countries. And knowing that the best potentials of this example are
African countries friends and allies of Morocco, the obtained arrival from the new
opening around 23:00 (UTC) is perfectly convenient to the fleet departures to Africa
starting around 23:30 (UTC). Similarly, a departure time toward the new opening at
06:30 (UTC) is very perfect knowing that the vast majority of those arrivals lands in
Casablanca before 06:00(UTC).

21.4 Conclusions and Future Works

This paper provides a simple way to optimize the connectivity between several air-
ports via a single hub airport for a given airline. Managers of airlines and policy-
makers are likely interested in examining the results of this paper, that show how the
planning of their fleets could be made without taking into account planned or un-
planned connectivity. However, when receives a project to open a new destination,
the reason may be political or purely commercial, we can thanks to this model, in-
sert this new schedule without losing the planned connections and without causing
important delays during correspondences, knowing that the delay is an annoying pa-
rameter and causes significant additional costs for the airline companies. Then this
model will serve as a decision support tool for an air carrier for properly placing the
new schedules in an already established airlines flight schedule. We have introduced
new multi-objective optimization approach for the insertion of new routes in a given
flight programme and this work is distinguished by the fact of being the first to in-
troduce the problem of connectivity in the network of an airline whose main activity
is based on hub structure. The pareto set is generated using SMPSO Algorithm and
the numerical experiences are based on real instance of Royal Air Maroc schedule
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on the hub of Casablanca. Finally, we are all convinced that airline industry is one
of the most affected by operational disruptions, defined as deviations from origi-
nally planned operations. Due to airlines network configuration, delays are rapidly
propagated to connecting flights, substantially increasing unexpected costs for the
airlines [10, 11]. The goal in these situations is therefore to minimise the impact of
the disruption, reducing delays and the number of affected flights, crews and passen-
gers. As perspective of this chapter, we will include the disruption model in order to
construct a robustness approach.
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Chapter 22
Solving the P/Prec, pj,Cij/Cmax Using
an Evolutionary Algorithm

Dalila Tayachi

Abstract In this chapter, we tackle the problem of scheduling a set of related tasks
on a set of identical processors taking into account the communication delays with
the objective of minimizing the maximal completion time. This problem is well
known as NP-Hard. As Particle swarm optimization PSO is a promising approach
for solving NP-complete problems due to its simple implementation, fast conver-
gence and its few parameters to adjust, the main contribution of this research is to
use for the first time PSO to solve the multiprocessor scheduling problem with com-
munication delays. The proposed approach HEA-LS is a hybrid algorithm involving
particle swarm optimization PSO and local search algorithm LS. Experiments con-
ducted on several benchmarks known in the literature prove the effectiveness of our
approach and show that it compares very well to the state of the art methods.

Keywords Scheduling • Communication delays • Evolutionary algorithm
• Hybridizing • Particle swarm • Local search

22.1 Introduction

The multiprocessor scheduling problem considered in this chapter deals with schedul-
ing n tasks on m identical processors, in presence of communication delays. That
means, in addition of classical precedence constraints between tasks, we must
consider the communication delays when related tasks are processed on different
processors. The objective of this scheduling problem is the minimization of the
makespan. This problem is NP-Hard even in specific cases when the processing
times and communication delays are unitary [12]. Only specific cases are solved in
polynomial times when strong assumptions are made on the number of processors,
the graph structure, or the communication times. For example, Chretienne [1] in-
troduced an algorithm for the case of an unbounded number of processors, small
communication delays and out-tree precedence constraints. Colin and Chretienne
[2] proposed a polynomial algorithm for optimally scheduling in the case of an un-
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bounded number of processors, small communication times and when duplication
is allowed. Heuristics are proposed for solving general cases, like the algorithm of
Hwang et al. [7], and the one of Wu and Gajski [15]. Metaheuristics are also pro-
vided for solving this problem such as the tabu search algorithm of Tayachi et al.
[13], variable neighborhood search of Davidovic et al. [5], and the genetic algorithm
of Omara and Arafa [11].

In this research, we propose an evolutionary algorithm based on particle swarm
optimization to solve the multiprocessor scheduling problem with communication
delays. The swarm is represented by permutations of n tasks, then ETF algorithm is
applied to generate schedules.

The remainder of this chapter is structured as follows: first we give the notation
of the problem, then we provide related works, next we present a brief description of
PSO algorithm followed by our approach. Finally, we give results of experimental
tests carried on different benchmark problems.

22.2 Problem Formalization

Given a set of n non preemptive tasks I =
{

1, ...n
}

Each task is characterized by its
processing time pi, a set of successors S(i) and a set of predecessor P(i). These tasks
constitute an acyclic directed and valuated graph G = (I, U, P, C) in which a node
correspond to a task and an arc (i, j) represent the precedence constraints. η(i,j) is
a positive integer which represents the number of messages sent from i to j where
i is an immediate predecessor of j. A set of m identical processors

{
Π1, ...Πm

}
is

available. A parameter d
(
Πi,Π j

)
is introduced to represent the transfer of a unit

time from processor Πi to processor Π j, that is if an arc
(
i, j
)

in U, then the time
taken between i and j is Ci j= η(i,j)* d

(
Πi,Π j

)
. If i and j are performed on the same

processor then Ci j =0.
A schedule S of the problem consists of assigning to each task i a starting time ti

and a processor Πi in such a way that:

• For any arc (i, j) of G, t j ≥ ti + pi if Πi = Π j and t j ≥ ti + pi + ci j if Πi �= Π j

• At any time, each processor executes at most one task; and m processors are busy.

The objective is to determine a schedule whose makespan Cmax is minimum. Fol-
lowing the notation of Veltman [14] this problem is denoted by P/Prec, p j, Cjk/Cmax.

Figures 22.1 and 22.2 show respectively a precedence graph with communi-
cations delays and the corresponding schedule produced on two processors tak-
ing into account precedence constraints and communication delays. For example,
task 2 precedes task 3 and the value of the precedence arc between them is three
units. As task 3 and task 2 are assigned to different processors (Fig. 22.2) task
3 cannot start before a communication delay of three units passed after the end
of task 2.
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Fig. 22.2 A schedule of the previous precedence graph on two identical processors taking into
account the communication delays, Cmax = 11

22.3 Related Work

The main exact methods devoted to solve the general case of multiprocessor schedul-
ing problem with communication delays are the branch and bound method of Daddi-
Moussa [3] and another branch and bound algorithm proposed by Kwok and Ah-
mad [9] in the case of fully connected multiprocessor system. However, due to the
computational complexity of this scheduling problem these approaches solve only
instances of small size. The best known heuristics for solving the general case of
this problem are list algorithms. These algorithms allocate tasks into the available
processors without back tracking. We emphasize ELS

(
Extended list Schedule

)
of

Hwang et al. [7]. This heuristic adopts a two phase strategy: in the first communica-
tion delays are ignored and a solution is determined by a classical list algorithm and
in the second step, communication delay is added to the schedule obtained in the
first step. The same author provided a second algorithm ETF

(
Earliest Task First

)
with better performance. It’s a generalization of the list algorithm of Smith (1987)
in the case of unitary processing times and unitary communication delays. This list
algorithm assigns first the earliest ready task. It offers the possibility to postpone
a scheduling decision to the next decision time if a task completion occurring be-
tween two successive decision times makes a more urgent task schedule. Wu and
Gajski [15] computes, in the modified critical path MCP algorithm, for each task a
list priority. This priority is the longest path from the task and an end node includ-
ing communication delays. Then the task with the highest priority is assigned to a
processor that allows the earliest start time.
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Metaheuristics have been also used in solving the multiprocessor scheduling
problem with communication delays P/Prec, p j, Cjk/Cmax but the number of papers
found in the literature remain little. The most significant and known are a parallel
genetic algorithm proposed by Kwok and Ahmad [10]. Authors evaluated their algo-
rithm through a comparison with two heuristics using random task graph for which
optimal solutions are known. Tayachi et al. [13] proposed a tabu search algorithm
operating in two phases based on modeling the problem by a disjunctive graph.
They studied the cases of small and large communication delays. Experiments car-
ried on arbitrary graphs and comparison with many heuristics show the efficiency
of the method. Davidovic et al. [5] provided a variable neighborhood search and
illustrate the performance of their algorithm by testing it on randomly generated
task graphs. Notice that in most of algorithms developed, experimental results are
reported by applying them on new set instances only, making difficult a fair com-
parison between them. Recently, Davidovic and Crainic [4] proposed new sets of
benchmark instances. They developed several algorithms such as variable neighbor-
hood method, a genetic algorithm and a local search and they applied them on these
benchmarks in order to investigate the characteristics of the proposed test-problem
instances.

Thus, the first objective of this paper is to provide for the first time a compar-
ison between different metaheuristics for the multiprocessor scheduling problem
with communication delays by carrying experiments on these benchmarks. More
recently, Omara and Arafa [11] proposed a genetic algorithm based on critical path
heuristic. The evaluation process was only provided using standard task graphs with
random communication delays.

The second objective of this work is to provide a new evolutionary algorithm
based on particle swarm optimization to solve the multiprocessor scheduling prob-
lem with communication delays. To the best of our knowledge this is the first appli-
cation of the PSO algorithm for this problem. The main elements of this algorithm
will be described in the next section.

22.4 A New Hybrid Evolutionary Algorithm Based on Particle
Swarm Optimization HEA-LS

22.4.1 Particle Swarm Optimization

Particle swarm optimization is a metaheuristic introduced by Kennedy and Eberhart
[8] simulating swarming habits of animals like birds and fish in the nature. It is based
on a population of particles moving in the search space and each one is a potential
solution. Each particle memorizes information about its best solution visited and the
best solution known in its neighborhood. A basic iteration in this algorithm consists
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of updating the position of each particle in the swarm in order to move to a new
position according to these equations:

Vt+1
i = w.Vt

i + r1.c1(lbesti − xt
i)+ r2.c2(Gbesti − xt

i) (22.1)

xt+1
i = xt

i +Vt+1
i (22.2)

In these equations, xt
i indicates the position of a particle at time t in the search

space; Vt
i its velocity; lbesti the best solution visited by the particle and Gbesti is

the best solution in the whole swarm. Three parameters c1, c2 and w are respec-
tively cognitive factor, social factor and the inertia. The scheme of this algorithm is
summarized Fig. 22.3.

Fig. 22.3 Basic PSO algorithm

22.4.2 Position Representation and Fitness Evaluation

In our Approach, a position is a permutation of n tasks. The initial population is
generated randomly. For each particle is associated an Lbesti which is also a ran-
domly generated permutation. For each permutation is applied the ETF algorithm
to produce the schedule. The fitness value of each particle is then the length of the
schedule Cmax obtained by ETF.

Figure 22.4 shows an illustrative example of multiprocessor scheduling with a
number of processors m = 2, a precedence graph of nine tasks and a swarm of four
particles. Cmaxp is the length of the schedule obtained by ETF (Fig. 22.4).



390 D. Tayachi

1

4

7

9

86

532

30
3 8

87

10

(a) Precedence Graph

Population

current position(pos)Particle Cmaxp

Cmaxp = Cmax obtained by applying ETF Algorithm on the
             current position (pos)

1 6

2 7 1 4 8 9 3 6 5

2 6 1 4 3 9 7 8 5

8 9 7 3 6 2 4 5 1

8 9 1 2 4 3 5 7135

149

145

150

2

3

4

306

8 4
5

9

10

5 20

204020
10

40

20

Fig. 22.4 Illustration of particle position representation for (a) the precedence graph. (b) Cmaxp =
Cmax obtained by applying ETF Algorithm on the current position (pos)

22.4.3 Position Update

At each iteration, the position of each particle is updated by a recombination of the
current position, the best position of the particle and the global best of the whole
swarm. This recombination is based on the PSO proposed by Dang et al. [6] for the
Team Orienteering Problem TOP, and is interpreted as an extraction of a number of
tasks from each position. The number of tasks extracted from each position are w.n
from the current position, (1−w).n.c1 r1/c1 r1+c2 r2 from local best position and
(1−w).n.c2 r2/c1 r1+c2 r2 from the best neighbor in the swarm. This extraction is
illustrated in Fig. 22.5.

Phase 1. Extraction
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Fig. 22.5 Example of position update
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In this example, the PSO parameters are set as follows: w=0.25 , c1=0.5 and
c2 = 0.4. r1 and r2 are equal to 0.5. Thus the number of tasks extracted from
each position are respectively 2 (= 0.25 ∗ 9), 3 (= (1− 0.25) ∗ 9 ∗ 0.5 ∗ 0.5/(0.5 ∗
0.5+ 0.4 ∗ 0.5)) 2 (= !0.25 ∗ 9"), 3 (= !(1− 0.25)∗ 9 ∗ 0.5 ∗ 0.5/(0.5∗ 0.5+ 0.4 ∗
0.5)")4 (= 9− 2− 3). Let note that our PSO algorithm is a discrete variant of PSO
and classified as a PSO with position that no velocity is used.

22.4.4 The Hybrid HEA-LS Algorithm

In order to enforce the effectiveness of our discrete evolutionary algorithm we opt
to integrate two local search procedures: a local search on the positions and a local
search on the schedules.

22.4.4.1 Local Search on Positions

In this procedure each new position has a probability to be improved by one of
shift or swap operator. The shift operator consists at moving each task from its
position to any other position. In the swap operator, every two successive tasks are
exchanged in the permutation. Local search on positions allows us to explore more
permutations in the search space in order to obtain new permutation giving better
Cmax. Given that the evaluation of each permutation is done by the list algorithm
ETF which didn’t ensure optimality, we decide to apply local search on schedule
(solution).

22.4.4.2 Local Search on Schedules

When a new local best is found we apply local search on the schedule obtained. This
local search is based on the graph decision model [10]. In this model, in addition to
precedence constraints, we take into consideration additional constraints expressing
relative order of independent tasks on the same processor. Thus, an instance of the
problem P/Prec, p j,Ci j/Cmax is modeled by a decision graph Gd = (I, U ∪ A) where
U is the set of precedence constraints and A the set of decision arcs. A decision arc
(i, j) belongs to A if tasks i and j are independent tasks and sequenced successively
on the same processor. This decision graph is acyclic and the length of the schedule
is the length of the critical path in Gd . Thus, to determine the optimal schedule
we should determine the decision arcs set such that the critical path of Gd (A) is
minimum.

In Fig. 22.6, we illustrate the graph decision model of a multiprocessor schedul-
ing problem with three processors and nine related tasks. (Dotted arcs are the deci-
sion arcs.)
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Fig. 22.6 Decision graph of a multiprocessor scheduling problem with nine tasks and two ho-
mogenous processors [10]. (a) Precedence graph. (b) Schedule of the precedence graph (a) with
m = 2, Cmax = 75. (c) A decision graph of a P3/Prec, p j ,Ci j/Cmax

Based on this model, the candidate tasks to move are the critical ones. Our lo-
cal search contains three neighborhoods proved to be efficient in our preceding
work [10]:

• In the first neighborhood, each critical task is moved from its processor to the
minimal load processor in order to achieve a load balance between processors.

• In the second, we permute every two critical tasks that are independent and se-
quenced successively on the same processor.

• Finally, the third neighborhood is built by assembling each pair of critical tasks
on the same processor.

Our local search is a descent method that is at each iteration, we restart with the
best neighbor.
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22.5 Performance Comparison and Results

We evaluate the performance of our HEA-LS algorithm by carrying several exper-
imental tests on different benchmark problems. The first set benchmarks instances
are from Kwok and Ahmad [9] in which the processors are assumed to be fully con-
nected. These problems are divided into three classes. The first one denoted RGBOS
contains 36 random graphs with Branch and bound obtained optimal solutions. The
number of tasks n ranges between 10 and 32 and m = 2. The second class called
RGPOS is composed of 30 instances with known optimal solutions in which the
number of tasks n ranges from 50 to 500 and m ranges between 3 and 11 processors.
The third class denoted RGNOS contains 250 random task graphs, with n ranging
between 50 and 500, and the optimal solutions are unknown. The second set of
benchmark instances is from Davidovic and Crainic [4], in which fully connected
and hypercube multiprocessor are considered.

HEA-LS is coded in C++ using Standard Template Library STL for data struc-
ture the program is compiled with GNU GCC in Microsoft Windows environment
and the tests were conducted Intel Core 2 Duo (2.2 GHz) processor.

The parameters set for the proposed algorithms are c1 = c2 = 0.5, r1 and r2 are
randomly generated in [0, 1], the size of the swarm is proportional to the number of
tasks n and termination criterion used is the total number of iterations which ranges
from 500 to 5000.

By applying HEA-LS algorithm on all the instances of RGBOS and RGPOS,
we have found optimal solution. For the RGNOS class, the optimal solutions are
unknown. In [3], the authors give solutions by applying many heuristic methods on
50 graphs of this class in which the number of tasks ranges from 50 to 500, and a
number of processors is equal to 2. Our algorithm, HEA-LS gives in almost 80%
of cases better results than all the heuristics cited in [3]. Results are reported in the
tables below.

In Tables 22.1, 22.2, 22.3, and 22.4, the first column contains the names of the
instances, the second column gives the number of the processors and the column
3 reports the results obtained by our algorithm HEA-LS. The remainder columns
contain the results obtained by many heuristics proposed in [3].

Table 22.5 displays comparison results of HEA-LS and the other methods of
Davidovic and Crainic [4] over 50 instances (five graphs for each n). Av.Cmax de-
notes the average of Cmax. From this table, we observe that HEA-LS outperforms
the other methods.

We have also applied our algorithm on 50 instances of the benchmarks proposed
in [3]. These instances are randomly generated test instances with known optimal
solutions. The number of tasks n ranges between 50 and 500. The authors give re-
sults of different heuristics and metaheuristics such as Variable neighborhood VNS,
two genetic algorithms PSGA, GA, Local search LS and Critical Path CP.

Table 22.6 compares the results obtained by the hybrid proposed algorithm HEA-
LS with the results given in [3] in the case of 4 processors. Column 2 contains the
optimal length of the schedule SLopt , Other columns give the average percentage
deviations from the optimal solutions. It is clear that the HEA-LS performs better
than PSGA, LS and CP, and is closer than GA but VNS gives the best results.
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Table 22.1 Scheduling results for RGBOS instances

Opt.Cmax Cmax

Graph p HEA-LS CPES LPTES LBMC DC LPTDC PPS
r10 0 2 271 271 488 352 275 284
r10 1 2 207 207 281 279 283 289
r10 10 2 266 266 1342 902 902 1163
r12 0 2 307 307 522 395 339 414
r12 1 2 246 246 366 320 356 352
r12 10 2 232 232 916 780 701 970
r14 0 2 281 281 428 339 326 399
r14 1 2 271 271 629 370 368 373
r14 10 2 267 267 1212 843 882 678
r16 0 2 332 332 441 485 373 428
r16 1 2 326 326 620 358 428 489
r16 10 2 416 416 2175 1040 1109 2517
r18 0 2 420 420 815 512 481 569
r18 1 1 428 428 892 476 732 526
r18 10 2 390 390 1860 1201 1255 2147
r20 0 2 477 477 962 566 547 579

Table 22.2 Scheduling results for RGBOS instances

Opt.Cmax Cmax

Graph p HEA-LS CPES LPTES LBMC DC LPTDC PPS

r20 1 2 378 378 783 469 521 596
r20 10 2 457 457 3361 1249 1249 2989
r22 0 2 585 585 1023 686 708 784
r22 1 2 488 488 905 488 605 996
r22 10 2 575 575 2567 1292 1356 3370
r24 0 2 480 480 882 634 557 625
r24 1 2 618 618 1276 800 817 961
r24 10 2 594 594 3843 1349 1372 2691
r26 0 2 737 737 1319 893 781 934
r26 1 2 614 614 1097 687 687 1150
r26 10 2 529 529 909 1128 1196 4287
r28 0 2 680 680 1269 750 731 958
r28 1 2 671 671 1194 875 312 1279
r28 10 2 623 623 4507 1467 1467 3189
r30 0 0 750 750 1435 849 790 1068
r30 1 2 811 811 1842 859 1144 1530
r30 10 2 653 653 3519 1388 1333 4692
r32 0 2 749 749 1337 894 821 1186
r32 1 2 886 886 1806 886 1353 1698
r32 10 2 941 941 5487 1675 1713 6453



22 Solving the P/Prec, pj,Cij/Cmax Using an Evolutionary Algorithm 395

Table 22.3 Scheduling results for RGPOS instances

Opt.Cmax Cmax

Graph p HEA-LS CPES LPTES LBMC DC LPTDC PPS
o50 0 3 933 933 2085 1690 1473 1864
o50 1 3 956 956 2403 1807 1790 2176
o50 10 3 811 811 6166 2281 2360 7255

o100 0 5 898 898 2601 2435 1939 1501
o100 1 5 831 831 2583 2353 2032 1704
o100 10 5 929 929 7138 4602 4650 7349

o150 0 6 1215 1215 3442 3973 3166 2253
o150 1 6 1104 1104 3490 3464 3342 2539
o150 10 6 1186 1186 11,269 6583 6319 11,879

O200 0 7 1351 1351 4807 4895 4091 3175
O200 1 7 1345 1345 5343 4663 4450 3336
O200 10 7 1446 1446 18,640 8824 8473 17,132

Table 22.4 Scheduling results for RGPOS instances

Opt.Cmax Cmax

Graph p HEA-LS CPES LPTES LBMC DC LPTDC PPS
O250 0 7 2553 2553 9505 9696 9855 8532
O250 1 7 2377 2377 9399 8750 8448 7127
O250 10 7 2357 2357 27,198 12,238 12,835 26,373

O300 0 8 2464 2464 8798 10,316 9601 5850
O300 1 8 2250 2250 10,388 9831 3098 6520
O300 10 8 2397 2397 28,860 14,076 14,767 23,844

O350 0 9 2342 2342 8986 11,177 9880 5299
O350 1 9 2371 2371 9582 11,012 10,590 7879
O350 10 9 2409 2409 28,824 16,906 16,855 24,231

O400 0 10 1796 1796 6218 9258 7387 3809
O400 1 10 1798 1798 7290 8854 7504 4554
O400 10 10 1781 1781 24,140 13,889 14,626 20,964

O450 0 10 2763 2763 10,363 15,207 12,273 6597
O450 1 10 2872 2872 12,478 14,645 14,470 9924
O450 10 10 3168 3168 42,928 22,035 23,214 33,480

O500 0 11 2085 2085 7356 11,864 9744 4663
O500 1 11 2050 2050 9288 11,041 9789 5488
O500 10 11 2054 2054 28,111 16,049 17,545 24,285
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Table 22.5 Scheduling results for RGNOS instances

Av. Cmax

n HEA-LS CPES LPTES LBMC DC LPTDC PPS

50 1214 1232.6 1328 1838 1398 1379.4 1573.6

100 2478.6 2530.4 2572.4 3907 2699.6 2936.4 3106.2

150 3782.8 3861.6 3962.2 5749 4164.2 4770.4 4875

200 5013 5105.6 5283 7339.2 5497.4 6373 6014.6

250 6433.4 6602.4 6750 10,134.4 6863.6 8333 7553.4

300 7626.2 7675.6 7882 11,446.2 8055.2 9462.8 8887.2

350 8753.6 8819.4 8989.2 13,164.2 9215 10,403 10,441

400 10,123.2 10,301.2 10,585.2 14,975.6 10,645.6 12,446.2 12,088.4

450 11,309.8 11,523.8 11,767.8 16,406.2 11,936 13,353.6 13,226.2

500 12,476.6 12,562.8 12,811.4 17,928.6 13,249 15,618 14,531.4

Table 22.6 Scheduling results for benchmarks of Davidovic and Crainic [4] with optimal known
solutions and m = 4

Av. percentage deviations
n SLopt HEA-LS CP LS VNS GA PSGA
500 600 16.70 48.2 22.3 2.42 15.7 12.43
100 800 24.29 57.54 36.22 10.14 25.46 35.37
150 1000 59.65 74.7 38.96 11.47 44.33 42.5
200 122 58.68 86.97 59.78 24.5 49.47 35.95
250 1400 59.23 78.48 61.93 31.05 65.69 46.53
300 1600 64.74 82.82 66.17 53.43 72.92 78.99
350 1800 40.33 82.24 61.15 35.51 63.52 72.88
400 200 68.37 83.66 80.96 47.21 26.37 77.99
450 2200 65.30 85.36 58.85 31.76 30.14 56.69
500 2400 46.46 84.87 38.59 37.45 76.96 69.76
Average 50.37 76.49 52.49 28.5 47.06 52.91

To improve the performance, further experiments should be carried to adjust
the various parameters of the HEA-LS, and an investigation of new neighborhood
should be done especially for the hypercube multiprocessor architecture.

22.6 Conclusion and Perspectives

In this chapter, we proposed a hybrid evolutionary algorithm for the multiprocessor
scheduling problem with communication delays P/Prec, p j, Cjk/Cmax. This problem
is a difficult and important scheduling problem due to the assumption that commu-
nication delays between tasks are not negligible. Our approach is based on particle
swarm optimization and the modeling of the problem by a decision graph. In numer-
ical results, we used benchmarks of Davidovic and Crainic [4] and we compared our
algorithm with various heuristics and metaheuristics. Experiments show the good
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performance of the addressed algorithm HEA-LS. To the best of our knowledge, the
PSO is applied to this scheduling problem for the first time in this research.

For further work, some perspectives could be considered. Firstly, in addition to
experiments conducted on complete interconnection network it would be interesting
to evaluate performance of the proposed algorithm on other multiprocessor archi-
tecture systems like the hypercube. Secondly, an interesting perspective could be the
modification of our algorithm to solve the case of the heterogeneous multiproces-
sor. Lastly, we will intend to consider other objective criteria in this multiprocessor
scheduling problem.
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work.
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Chapter 23
A User Experiment on Interactive
Reoptimization Using Iterated Local Search

David Meignan

Abstract This article presents an experimental study conducted with subjects on an
interactive reoptimization method applied to a shift scheduling problem. The studied
task is the adjustment, by a user, of candidate solutions provided by an optimization
system in order to introduce a missing constraint. Two procedures are compared on
this task. The first one is a manual adjustment of solutions assisted by a software
that dynamically computes the cost of the current solution. The second procedure is
based on reoptimization. For this procedure, the user defines some desired changes
on a solution, and then a reoptimization method is applied to integrate the changes
and reoptimize the rest of the solution. This process is iterated with additional de-
sired changes until a satisfactory solution is obtained. For this interactive approach,
the proposed reoptimization procedure is an iterated local search metaheuristic. The
experiment, conducted with 16 subjects, provides a quantitative evaluation of the
manual and reoptimization approaches. The results show that, even for small lo-
cal adjustments, the manual modification of a solution has an important impact on
the quality of the solution. In addition, the experiment demonstrates the efficiency
of the interactive reoptimization approach and the adequacy of the iterated local
search method for reoptimizing solutions. Finally, the experiment revealed some
limitations of interactive reoptimization that are discussed in this article.

Keywords Interactive optimization • Shift scheduling • Heuristic
• Reoptimization

23.1 Introduction

Optimization-based decision support systems are tools that can support a decision
maker to solve a complex optimization problem [15]. Such a system provides the
decision maker with at least a model of the optimization problem, an optimization
procedure for solving it, and means of instantiating the optimization model as well
as analyzing solutions [4]. However, inmany cases, the optimization model does not
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capture all aspects of the real problem. For instance, some aspects of the problem
may be too difficult to express in mathematical terms (e.g. a robustness criterion),
or the optimization model may have been simplified for being tractable. This gap
between the real problem and the optimization model can result in the computation
of inadequate or unrealistic solutions. In such cases, the decision maker can adjust
the solutions to introduce the missing aspects. The adjustment can be performed
manually which can be complex and potentially impair the quality of the solutions.
Alternatively, the adjustment process can be done interactively using a reoptimiza-
tion procedure that introduces local modifications in a solution while maintaining
the quality of the entire solution [10].

Reoptimization procedures are used in two different contexts, namely dynamic
optimization and interactive optimization. In dynamic optimization, the problem
data change over time and a reoptimization procedure can be used to adapt a so-
lution according to the perturbations (see for instance [14, 2, 16]). In interactive
optimization, the perturbations do not correspond to modifications of the real prob-
lem, but are adjustments of a solution requested by a user of the optimization sys-
tem. Our study investigates the latter context, where a reoptimization procedure is
used in an interactive process for adjusting a solution. We use the term interactive
reoptimization for this process [12].

In the research literature there are relatively few studies on interactive reopti-
mization. In [13] the author reviews different optimization methods for scheduling
problems and suggests the use of a reoptimization procedure when a user modifies
a solution. In the interactive reoptimization method proposed in [13], the user can
edit manually a solution and then reoptimize the solution while keeping the manu-
ally modified parts frozen. Another interactive reoptimization approach is proposed
in [5] for solving linear optimization problems. The authors study in particular the
stability and responsiveness of different reoptimization algorithms. The stability is
the ability of a reoptimization procedure to minimize the changes it induced on the
initial solution. The responsiveness is related to the computation time required for
reoptimizing a solution. Finally, in [10] an interactive reoptimization method is pro-
posed for a shift scheduling problem. The work presented in the current paper is
based on this latter study.

To the best of our knowledge, no experimental study with real users on inter-
active reoptimization is reported in the research literature. Results presented in
previous works, such as in [5] and [10], are computational evaluations of reopti-
mization procedures. It should be noted that for other interactive optimization ap-
proaches, such as human-guided search [8], experimental studies with test subjects
have been performed (see for instance [1, 8]) but the purpose of the interaction is
different from that of interactive reoptimization. Looking at the interactive aspect of
reoptimization, it appears important to validate such an approach through an exper-
imental study with real users, which is the principal objective of the work presented
in this article. The proposed experiment quantitatively evaluates an interactive re-
optimization approach with real interactions and realistic datasets. In addition, we
compare the reoptimization approach with manual edition in order to determine the
gain of interactive reoptimization for adjusting solutions. Finally, we identify the
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limitations of the proposed interactive reoptimization approach by examining the
gap between reoptimized and ideal solutions. In summary, the presented experiment
aims at providing experimental evidences for promoting the use of interactive re-
optimization and also aims at encouraging further experimental investigations of
interactive optimization methods.

This paper is a revised version of [11] presented at the Metaheuristics Interna-
tional Conference in 2015.

In the next section, the interactive reoptimization process is detailed and the opti-
mization problem on which it is applied is presented. In Sect. 23.3 the goals and the
method of the experimental evaluation are explained. The results of the experiment
are presented and discussed in Sect. 23.4. Finally, concluding remarks are given in
Sect. 23.5.

23.2 Interactive Reoptimization for Shift Scheduling

Interactive reoptimization aims at adjusting solutions when inaccuracies in an opti-
mization model result in inadequate computed solutions. Although the enrichment
of an optimization model is preferable to the adjustment of solutions, in many cases
it is not possible to integrate all aspects of the real problem in an optimization model.
In this context, it is necessary to rely on the user to adjust solutions according the
real problem. The interactive reoptimization approach therefore assumes that the
user has an expertise in the application domain, but in turn, it does not require
knowledge in modelling or optimization. In this section we detail the interactive
reoptimization approach that has been proposed for a shift scheduling problem.

23.2.1 Interactive Process

The proposed interactive reoptimization process starts with an initial solution com-
puted by an optimization procedure. We consider the case where this initial solu-
tion has been computed with an incomplete or inaccurate optimization model and
consequently may require some modifications. The solution is presented to the user
who can check whether the solution is valid or needs to be adjusted. If some ad-
justments have to be made on the solution, the user specifies the changes that are
required and runs a reoptimization procedure for integrating them. In the proposed
reoptimization approach, the changes requested by the user are specified in terms of
preferred values on decision variables (i.e. a set of preferred or inadequate values
can be assigned to each decision variable). The reoptimization procedure aims at
integrating the requested changes and reoptimizing globally the solution in order to
maintain the quality of the solution. Since the reoptimization can modify some parts
of the solution where no changes have been requested, it may be necessary to per-
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form several iterations of reoptimization with additional changes’ requests before
obtaining a satisfactory solution. For these subsequent iterations, the last reopti-
mized solution is used as the starting solution and additional requested changes are
combined with previous ones to avoid recurrence of inadequate components in the
solution.

The main computational component of this interactive process is the reoptimiza-
tion procedure. In comparison to the optimization procedure used for generating the
initial solution, the reoptimization procedure has particular features. First, in addi-
tion to the initial constraints and objectives, the optimization model used for the
reoptimization contains two supplementary objectives. The first one aims at inte-
grating the changes requested by the user. In the proposed reoptimization model,
this first additional objective ensures that decision variables are set with preferred
values (when such a preference exists). The second additional objective minimizes
the distance between the initial solution and the solution reoptimized. This objec-
tive ensures the stability of the reoptimization which is essential for the convergence
of the interactive process toward a satisfactory solution. Besides these differences
between the optimization model and the reoptimization model, the requirements in
terms of computation time are more important for reoptimization than for the initial
optimization process. Due to the interaction, the reoptimization should only take a
few seconds to keep the user focused. To meet this requirement, the initial solution
can be used as a starting point for the reoptimization. However, it should be noted
that even with a good initial solution the complexity of a reoptimization problem
generally remains the same as the initial optimization problem [2].

23.2.2 Shift Scheduling

The proposed interactive reoptimization approach has been evaluated on a staff
scheduling problem. This application domain is promising for applying interac-
tive reoptimization and more generally it is an interesting domain for interactive
optimization approaches due to the difficulty in modeling and solving the related
optimization problems [3]. The fact that the solutions to staff scheduling problems
directly impact employees’ activities reinforces the need for interactions between
the decision maker and the optimization system in order to adjust and validate solu-
tions. In a real context, an optimization model for staff scheduling is likely to present
some simplifications and omissions which could be solved using an interactive re-
optimization approach.

The shift scheduling problem consists in assigning shifts (e.g. Early shift 7:00–
15:00, Late shift 15:00–22:00) to employees for a given planning period. The result
of the optimization is a roster defining the schedule of each employee. The con-
straints retained for the problem model are drawn from a problem proposed for the
International Nurse Rostering Competition held in 2010 (INRC2010) [7]. The initial
INRC2010 model contains about 20 different constraints but it has been simplified
for the purpose of the experiment.



23 A User Experiment on Interactive Reoptimization Using Iterated Local Search 403

The problem model used for the generation of initial solutions contains three
types of constraints, namely a hard constraint (H), work regulations (R1–R5), and
soft constraints (S1–S5). The hard constraint ensures that the roster is complete:

H (Complete roster) For each day in the planning horizon, the number of employ-
ees assigned to a shift must be equal to the demand. An employee can only have
one shift assigned per day.

Work regulations are requirements specified by the contracts of the employees and
that must be satisfied in a roster:

R1 (Maximum number of assignments) The total number of assignments of an
employee within the whole planning period must not exceed a given maximum
value.

R2 (Minimum number of assignments) The total number of assignments of an em-
ployee within the whole planning period must not be less than a given minimum
value.

R3 (Maximum number of consecutive working days) The number of consecutive
working days of an employee must not exceed a given maximum value.

R4 (Incompatible shift sequences) Some pairs of shifts cannot be worked on two
consecutive days. For instance, an Early shift cannot be worked the day after an
Night shift.

R5 (Days-off) No shift must be assigned to an employee for the days he has re-
quested days-off.

Soft constraints are rules for improving the quality of employees’ schedule and are
not mandatory:

S1 (Minimum number of consecutive working days) The number of consecutive
working days of an employee should not be less than a given minimum value.

S2 (Maximum number of consecutive days-off) The number of consecutive days-
off of an employee should not exceed a given maximum value.

S3 (Minimum number of consecutive days-off) The number of consecutive days-
off of an employee should not be less than a given minimum value.

S4 (Complete weekends) Weekends should be either entirely worked or com-
pletely free.

S5 (Identical shifts during weekend) During weekends completely worked, an em-
ployee should have the same shift assigned.

As we mentioned in the previous section, two constraints are added to the prob-
lem model for the reoptimization procedure. The first constraint (P) aims at inte-
grating the changes requested by the user, the second constraint (D) minimizes the
distance between the initial solution and the reoptimized solution.

P (Preferences on assignments) For adjusting a solution the user can specify pre-
ferred assignments (e.g. the user can indicate that Early shift and Day-off are
preferred assignments for a given day and employee). A preference is satisfied
when the assignment corresponds to one of the preferred assignments.
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D (Distance to initial solution) The distance constraint penalizes any deviation
from the initial solution that is reoptimized. An assignment in the solution that is
different to the initial assignment corresponds to a penalty of one.

For the optimization and the reoptimization procedures, an order between these
different sets of constraints is defined. The global objective, reported in Eq. (23.1),
is the minimization of the number of unsatisfied constraints using a lexicographic
order. This means that the satisfaction of the hard constraint (H) takes priority over
all other constraints. Then, the satisfaction of work regulations (R1–R5) comes in
second rank. If some preferences on assignments (P) have been defined by the user,
they are less important than work regulations but have priority over soft constraints.
The soft constraints (S1–S5) are rank four, before the distance constraint (D) which
is the less important objective.

minimizeLEX
(

fH ,∑ fRi , fP,∑ fSi , fD
)

(23.1)

The use of a lexicographic order between different sets of constraints is justi-
fied by its simplicity and the fact that it is easily understandable by users. Unlike
the INRC2010 problem model, it is not necessary to specify weights for each con-
straint. Thus, in the proposed model, one occurrence of an unsatisfied constraint
corresponds to a cost of one unit in the related rank. The lexicographic order, which
may appear complicated in the objective function, is in fact accessible for users
without requiring particular knowledge in optimization.

23.2.3 Optimization Procedures

The procedure used for the reoptimization of solutions is the same as the procedure
that provides the initial solutions. It is an Iterated Local-Search (ILS) [9] which basi-
cally alternates between an improvement phase and a perturbation step for exploring
the solution space with one solution. In this section we provide a general description
of the optimization procedure and we refer the reader to [10] for additional details
on the implemented ILS procedure.

ILS is a trajectory metaheuristic, which means that the exploration is made with
one solution that “moves” in the search space. One iteration consists of, a pertur-
bation step applied on the current solution to diversify the search and escape local-
optima, then an improvement of the perturbed solution by local-search, and finally
the application of an acceptance criterion to determine if the next iteration starts
from the newly improved solution or from the last accepted solution. In the im-
plemented ILS, the improvement phase is a Variable Neighborhood Descent (VND)
[6]. The neighborhood structures used for the VND are based on block-swap moves.
As illustrated in the left hand side of Fig. 23.1, a move is an exchange between two
employees of a block of consecutive assignments. The size of the blocks varies be-
tween 1 and 7 during the VND. The perturbation step applies random moves to the
solution using a different neighborhood structure to that of VND. A perturbation
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move is illustrated in the right hand side of Fig. 23.1. The moves for the perturba-
tion are rotations of assignments’ blocks between three employees. The advantage
of such a rotation between three employees is that a perturbation move cannot be
easily undone using block-swap moves. Concerning the acceptance criterion, a sim-
ple rule that only accepts improving solution has been adopted.

Fig. 23.1 Illustration of moves used in the ILS procedure. The first move (first two schedules at
the top of the figure) illustrates the block-swap moves used in the VND procedure. The second
move (third and fourth schedules) shows a rotation move as used in the perturbation procedure
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For the reoptimization, the performance of the procedure is a key element. As
we mentioned previously, the reoptimization should last only a few seconds to be
appropriate for an interactive context. For the experiment the duration of the reop-
timization is fixed to 5 s. In order to meet this requirement, the implemented ILS
procedure makes extensive use of delta-evaluation of solutions, and also exploits
high-level parallelism. The parallel version of ILS is obtained by running multiple
concurrent ILS procedures that exchange their best found solutions. This simple par-
allel strategy only aims at speeding up computation by using multiple threads. On
the INRC2010 benchmark the results of the implemented ILS procedure are compa-
rable to the results of state of the art metaheuristics [10].

23.3 Experiment

23.3.1 Objectives

The proposed experiment aims at evaluating the interactive reoptimization proce-
dure presented in the previous section with real user interactions. For this evaluation,
the results obtained by interactive reoptimization are compared to results of a man-
ual adjustment of solutions, and also compared with ideal solutions which require
no adjustments. This comparison between reoptimized solutions, manually adjusted
solutions and ideal solutions should provide a measure of the cost gain obtained by
the interactive reoptimization. In addition, the experiment should assess the impact
of manual adjustment of solutions when it is not assisted by a reoptimization proce-
dure. Finally, the comparison between reoptimized and ideal solutions should pro-
vide information on the limits of the proposed interactive reoptimization approach.

In a real decision context it would be difficult to evaluate quantitatively the in-
teractive reoptimization approach. The inaccuracies of the optimization model that
necessitate to adjust solutions are generally not clearly specified (otherwise these
inaccuracies would be resolved in the optimization model). Therefore, it is difficult
to determine ideal solutions, and the comparison between interactive reoptimization
and manual adjustment would be delicate without knowing exactly if the compared
solutions satisfy the same criteria. These obstacles are overcome in the experiment
by controlling which aspects of the solutions need to be adjusted. More precisely,
during the experiment, the users are asked to modify solutions according to given
constraints. Thus, it is possible to determine if the expressed constraints are suc-
cessfully integrated, and it becomes meaningful to compare solutions obtained by
interactive reoptimization with manually adjusted solutions and ideal solutions.

The task analyzed during the experiment is the modification of an initial roster
to satisfy a given constraint, called missing constraint. Subjects completed this task
with different missing constraints and initial rosters, each representing a scenario.
For instance, one of the scenarios consists in modifying a roster so that a partic-
ular employee has no shift assigned on Wednesdays. The scenarios are completed
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by subjects with two different methods, namely manual edition and interactive re-
optimization. For both approaches, the Graphical User Interface (GUI) is the same
(see Fig. 23.2) but the means of interaction are limited to either manual adjustment
actions or the use of interactive reoptimization tools. In order to compare the results
of the two modes of interaction, subjects are asked to satisfy the missing constraints
with the following priorities: First, the modifications must not impact work regula-
tions constraints, then the missing constraint must be satisfied, and finally the num-
ber of unsatisfied soft constraint should be minimized. Thus, for scenarios where the
missing constraint is satisfied, solutions can be compared on the basis of the cost of
soft constraints.

Fig. 23.2 Graphical user interface of the software implemented for the experiment

23.3.2 Method

23.3.2.1 Subjects and Procedures

The subjects for the experiment are voluntary undergraduate and graduate students
of the University of Osnabrück. Sixteen subjects took part in the experiment. The
course of the experiment is summarized in Fig. 23.3. Each subject completed a ses-
sion on manual edition and another session on interactive reoptimization. To mini-
mize possible order effects, a group of subjects started with the interactive reopti-
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mization task and the remaining subjects started with the manual edition task. For
the two sessions, the task was explained to the subjects and two training scenarios
were completed and verified by the experimenter before starting the evaluated sce-
narios. Then, the subjects completed ten scenarios. For each scenario, the subject
had 10 min for adjusting a provided roster according to a missing constraint. Then,
the subject filled out a short questionnaire in which it is asked if the task has been
understood and also how the subject evaluate his/her own performance.

Fig. 23.3 Course of the experiment for the two groups. Each session has the same structure (on
the right)

23.3.2.2 Details of Scenarios

The ten scenarios that are completed during the manual edition task are the same as
the scenarios completed using interactive reoptimization. The list of the respective
missing constraints is given in Table 23.1. To simplify the task for the subjects, all
scenarios are based on similar shift scheduling problems with small variations in
day off requests and in initial rosters. However, it should be noted that scenarios
completed by a user are paired between the manual edition session and the interac-
tive reoptimization session (i.e. for a scenario completed by a subject with manual
edition the exact same problem and initial roster is used for the related scenario in
interactive reoptimization). The variations in problems and in initial rosters should
ensure that average results per scenario are not altered by specific configurations of
initial rosters.

Since the subjects are not experts in scheduling, the problems have been sim-
plified for being tractable without prior knowledge in shift scheduling. Only ten
employees are considered, with three possible shifts (Early, Late and Night) and
two types of contract (Full-time and Part-time). Also for simplifying the task, the
initial rosters that are optimal pre-computed rosters satisfy all work regulations and
only one or no soft constraint is unsatisfied. Thus, subjects do not have to put much
effort on the satisfaction of work regulation constraints and can essentially focus on
the satisfaction of the given missing constraint and the minimization of unsatisfied
soft constraints.
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Table 23.1 List of the missing constraints that had to be integrated by subjects in initial rosters

Scenario Missing constraint

1 The employee E1a must not work on the first weekend
2 The employees E2 and E3 must work only on Early shifts for the whole planning

period
3 The employee E4 must not work on D1 and D2
4 The employee E5 must not work the second and fourth weekends
5 The employee E6 must work five consecutive days from D3
6 The employee E7 must not work on any Wednesdays
7 Part-time employees must not work on Night shifts
8 For part-time employees, the Monday must be free after a working Sunday
9 For all employees, no Night shift must be assigned on Friday when the weekend is

free
10 For all employees, a Night shift must not be assigned the day after an Early shift

aFor the experiment, the codes for employees (E#) have been replaced by generated names, and
days (D#) by real dates

23.3.2.3 Interactions

As previously mentioned, the same GUI presented in Fig. 23.2 is used for both the
manual edition task and the interactive reoptimization task. It is composed of three
panels. The upper right panel displays the instructions. When the subject loads a sce-
nario, this panel indicates the missing constraint to introduce and recalls the steps
for modifying the initial roster. The upper left panel gives a summary of the con-
straints unsatisfied for the current roster. The subject can also obtain a description
of the constraints and their parameters from this panel. When the roster is modified,
the values for unsatisfied constraints are instantaneously updated. Finally, the lower
panel display the current roster. All unsatisfied constraints are represented directly
on the affected assignments and the subject can obtain a precise description of them
by selecting the assignments. When a modification of the roster is made, by man-
ual edition or reoptimization, the roster and all indications concerning unsatisfied
constraints are instantaneously updated. In addition, the last modifications made on
the roster are highlighted to easily keep track of the changes. For modifying the
roster, the subject directly interacts with the assignments of the roster. The actions
available for the manual edition task and the reoptimization task are as follows.

For manually editing a roster, the subject can swap assignments by drag-and-
drop between any employee. In addition, assignments can be removed and then
reassigned to any employee using drag-and-drop. The list of shifts for which the
demand is not fulfilled appears above the corresponding days. Any modification
made on the roster can be undone and redone using buttons in the toolbar of the
roster.

For the interactive reoptimization task, only the reoptimization tools are enabled
and the roster cannot be directly modified using drag-and-drop of assignments. The
subject can set assignment preferences using a contextual menu. A right mouse-click
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on an assignment opens a menu in which the subject can select the preferred and un-
wanted assignments (that includes the possibility to set a preference for a day-off).
In addition, it is possible to change or clear assignment preferences at any time. The
assignments for which a preference has been defined are indicated on the roster. To
introduce the desired changes (i.e. reflect assignment preferences) the subject clicks
on a reoptimization button in the toolbar of the roster. The roster is then reoptimized
for 5 s and the changes are dynamically displayed. As for the manual edition, the
user can undo and redo any change, including the definition of assignment prefer-
ences and the reoptimization, using buttons in the toolbar of the roster.

23.4 Results

During the experiment, the rosters obtained by subjects using manual edition and
interactive reoptimization are compared to ideal solutions. These ideal solutions
correspond to rosters that optimally express the missing constraints (i.e. satisfy the
work regulations, the missing constraint and have the minimum possible number of
unsatisfied soft constraints). Ideal solutions are computed for each scenario using the
ILS procedure applied on a model that contains the missing constraint. Optimality
has been verified using global lower-bound values.

For the results obtained by the subjects, only the solutions that satisfy the work
regulations and the missing constraints are considered. When the missing constraint
is not satisfied in a roster adjusted by a subject, it is not possible to determine if it is
due to a misunderstanding of the subject, the result of inattention, or related to the
difficulty of the task. Thus, we removed those results to only compare successful
adjustments of rosters.

Since all of the compared solutions satisfy the work regulations and the missing
constraints, the cost of a solution is defined as the number of soft constraints unsat-
isfied. The charts in Fig. 23.4 reports the average cost difference between solutions
obtained by subjects and ideal solutions. In addition, the average duration of the
adjustment process is reported. This duration correspond to the time from the first
interaction with the initial roster to the end of the last action performed by the sub-
ject. For the interactive reoptimization task, this duration includes the time taken by
the reoptimization procedure.

The results in Fig. 23.4 confirm that the interactive reoptimization approach is
globally more efficient than manual edition for adjusting solutions. But more im-
portantly, these results provide a quantitative evaluation of the impact of manual
adjustment of solutions. The manual edition of solutions introduces on average 4.04
unsatisfied soft constraints where the interactive optimization produces on average
1.08 unsatisfied soft constraint. The worst scenario for both manual edition and in-
teractive reoptimization is the scenario 6 for which the average cost differences to
optimal values are respectively 9 for manual edition and 2.47 for interactive reop-
timization. For scenarios 1 and 3, where only two assignments have to be changed
in the initial roster, the manual edition introduces respectively 5.2 and 5 unsatisfied
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Fig. 23.4 Average results for the manual edition task and the interactive reoptimization task

constraints. These results show the substantial impact of manual adjustment of so-
lutions on their quality. In addition, these comparative results illustrate the gains in
terms of cost and duration achieved by the interactive reoptimization approach.

A closer look at the results reveals few cases where the interactive reoptimization
approach provides worse results than the manual edition setting. For scenarios 9 and
10, the average costs of solutions obtained by manual edition are better than the av-
erage costs achieved by interactive reoptimization. It should be noted, however, that
these average costs are below 1 for both manual edition and interactive reoptimiza-
tion. Regarding the average durations, the average times for completing scenarios
7, 9 and 10 are slightly better for manual edition than for interactive reoptimization.
These cases where the interactive reoptimization approach has similar or inferior
results than the manual edition setting does not question the overall effectiveness of
the interactive reoptimization but expose some limits of the implemented approach.
These limits are summarized below.

Computational Performance of ILS The reoptimization of rosters is a challeng-
ing optimization problem, in particular with the limited computation time. Meta-
heuristics such as ILS appear to be appropriate for reoptimization thanks to their
capacity to provide good solutions in a reasonable time. However, there is some
room for improving the implemented ILS and obtaining better solutions.
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Expressiveness of Preferences In the proposed interactive reoptimization method,
the user can only define preferences related to single assignments. When, in sce-
narios 9 and 10, it is asked to adjust a roster according to preferred or unwanted
sequences of shifts, the preferences on assignments become less efficient. In fact for
these two scenarios, when a preference is set for adjusting an inadequate sequence
of shifts, the reoptimization affects the rest of the solution and may reintroduce the
inadequate sequence at another place of the roster. In this case, it is necessary to pro-
ceed with multiple iterations of preference definition and reoptimization, although
the distance constraint tends to reduce the number of iterations. This could result
in the definition of assignment preferences that overconstrain the problem (e.g. the
initial assignment preferences may no longer be necessary after several iterations)
and thus impair the quality of solutions. The design of additional tools for defining
preferences seems to be necessary to address this problem.

Interactions Finally, it should be noted that for the interactive reoptimization task
the subjects had no means to manually adjust the roster, and in some cases the visu-
alization of the roster allows the subjects to identify efficient moves that are hardly
made by the ILS. The good performances on the manual edition task for scenar-
ios 7, 9 and 10 shows that in particular cases it could be interesting to exploit user
heuristics for improving solutions. A possible approach would be to combine both
manual and interactive approaches for adjusting solution, but it raises the problem
that a user may be reluctant to use the interactive reoptimization approach. In this
direction, it seems necessary to study the usability and acceptance of methods that
combines multiple interaction mechanisms.

23.5 Conclusion and Perspectives

In this paper, we proposed an interactive reoptimization method for adjusting solu-
tions when some inaccuracies in an optimization model need to be solved by the user
of the optimization system. This interactive process is studied for a shift scheduling
problem. The method proposed for reoptimizing solutions and integrating changes
requested by a user is an Iterated Local Search (ILS) procedure. We proposed an ex-
periment to evaluate this interactive reoptimization approach. The experiment was
conducted with 16 subjects and ten different scenarios. The results of the interactive
reoptimization approach were compared with solutions obtained by manual adjust-
ment and with ideal solutions. This comparison shows the value of a global opti-
mization method such as the ILS procedure for integrating efficiently some changes
in a solution. In addition, the results of the experiment demonstrate the impact of
manual adjustment of solutions on their quality. Finally, this experiment revealed
some limits of the implemented interactive reoptimization method. The perspec-
tives of this work are directly connected to the observations made on the results of
the experiment. Further works will concern the improvement of performance of the
reoptimization procedure, the investigation of additional interaction means, and also
will address usability and acceptance of the proposed interactive approach.
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Chapter 24
Surrogate-Assisted Multiobjective Evolutionary
Algorithm for Fuzzy Job Shop Problems

Juan José Palacios, Jorge Puente, Camino R. Vela, Inés González-Rodrı́guez,
and El-Ghazali Talbi

Abstract We consider a job shop scheduling problem with uncertain processing
times modelled as triangular fuzzy numbers and propose a multiobjective surrogate-
assisted evolutionary algorithm to optimise not only the schedule’s fuzzy makespan
but also the robustness of schedules with respect to different perturbations in the du-
rations. The surrogate model is defined to avoid evaluating the robustness measure
for some individuals and estimate it instead based on the robustness values of neigh-
bouring individuals, where neighbour proximity is evaluated based on the similarity
of fuzzy makespan values. The experimental results show that by using fitness esti-
mation, it is possible to reach good fitness levels much faster than if all individuals
are evaluated.

Keywords Fuzzy job shop • Robust scheduling • Multiobjective evolutionary
algorithm • Surrogate fitness

24.1 Introduction

Scheduling problems form an important body of research since the late fifties with
multiple applications in industry, finances, welfare, etc. Traditionally, scheduling
has been treated as a deterministic problem that assumes precise knowledge of all
data. However, modelling real-world problems usually involves processing uncer-
tainty and flexibility. In the literature we find different proposals for dealing with
uncertainty in scheduling [14], either finding solutions which adapt dynamically
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to changes or incorporating available knowledge about possible changes to the
solution. In particular, fuzzy sets have contributed to bridge the gap between clas-
sical techniques and real-world user needs, serving both for handling flexible con-
straints and uncertain data [26]. They are also emerging as an interesting tool for im-
proving solution robustness, a much-desired property in real-life applications [18].

When the improvement in robustness must not be obtained at the cost of loosing
performance quality in the solutions, we face a bi-objective scheduling problem.
In general there is a growing interest in multiobjective optimisation for scheduling
and, given its complexity, in the use of metaheuristic techniques to solve these prob-
lems, as shown in [7] among others. Specifically, the multiobjective fuzzy job shop
problem is receiving an increasing attention, mostly to optimise objective functions
related to makespan and due-date satisfaction. Existing proposals include genetic
algorithms [12], differential evolution algorithms [15], or hybrid strategies like the
genetic simulated-annealing algorithm from [25]. Interestingly, the latter contem-
plates finding both robust and satisfactory schedules, although the robustness opti-
misation criterion is based on the worst-case approach which can be too conservative
in cases where the worst case is not that critical and instead an overall acceptable
performance might be more adequate.

Roughly speaking, a schedule is said to be robust if it minimises the effect of
executional uncertainties on its primary performance measure [1], the makespan in
our case, so the robustness of one schedule can be only measured after executing it
in a real environment. In absence of real execution, we can use Monte-Carlo simu-
lations to approximate the robustness value of every schedule, but even with this ap-
proximation the number of simulations required to compute this value translate into
an excessive computational cost for a fitness function in a evolutionary algorithm.
This suggests resorting to surrogate-assisted evolutionary computation, which was
mainly motivated to reduce computational time in problems where complex simu-
lations are involved [16].

The idea of approximating fitness values of some individuals based on informa-
tion generated during the run, i.e. based on fitness values of individuals generated
previously, has lately gained increasing attention [16]. In the simplest case, the fit-
ness of a new individual is derived from its parents’ fitnesses. Other approaches
attempt to construct a more global model of the fitness landscape based on previous
evaluations. Several such approaches can be found in the literature, mainly differ-
ing in the model that is used to approximate the landscape and the selection of data
points used to construct the model [5]. The idea is to keep previous evaluations in a
history and select the closest neighbours to build a specific estimation model.

In the following, we will consider the bi-objective fuzzy job shop problem with
the goal of optimising both makespan and robustness. We will propose to solve
it with a multiobjective evolutionary algorithm (MOEA) where the fitness related
to robustness is found via surrogates, considering closest neighbours in terms of
approximation of fuzzy values, using the degree of similarity between fuzzy sets to
have a proximity measure.
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The rest of the paper is organised as follows. Section 24.2 introduces the fuzzy
job shop scheduling problem and a related robustness measure. Section 24.3 de-
scribes the multiobjective evolutionary algorithm proposed to solve the problem,
including the surrogate model for evaluating the robustness fitness function. We
then present and analyse some experimental results in Sect. 24.4 and finish with
some conclusions and future work in Sect. 24.5.

24.2 Job Shop Scheduling with Uncertain Durations

The job shop scheduling problem, also denoted JSP, consists in scheduling a set of
jobs {J1, . . . ,Jn} on a set of physical resources or machines {M1, . . . ,Mm}, subject
to a set of constraints. There are precedence constraints, so each job Ji, i = 1, . . . ,n,
consists of m tasks {θi1, . . . ,θim} to be sequentially scheduled. Also, there are ca-
pacity constraints, whereby each task θi j requires the uninterrupted and exclusive
use of one of the machines for its whole processing time. A solution to this prob-
lem is a schedule (an allocation of starting times for all tasks) which, besides being
feasible, in the sense that precedence and capacity constraints hold, is optimal ac-
cording to some criteria, for instance, that the makespan is minimal or its robustness
is maximal.

24.2.1 Uncertain Durations

In real-life applications, it is often the case that the exact duration of a task, i.e. the
time it takes to be processed, is not known in advance, and only some uncertain
knowledge is available. Such knowledge can be modelled using a triangular fuzzy
number or TFN, given by an interval [a1,a3] of possible values and a modal value
a2 in it. For a TFN A, denoted A = (a1,a2,a3), the membership function takes the
following triangular shape:

μA(x) =

⎧⎪⎪⎨
⎪⎪⎩

x−a1

a2−a1 : a1 ≤ x ≤ a2

x−a3

a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(24.1)

In the job shop, we essentially need two operations on fuzzy numbers, the sum and
the maximum. These are obtained by extending the corresponding operations on
real numbers using the Extension Principle. However, computing the resulting ex-
pression is cumbersome, if not intractable. For the sake of simplicity and tractability
of numerical calculations, we follow [11] and approximate the results of these op-
erations, evaluating the operation only on the three defining points of each TFN.
It turns out that for any pair of TFNs A and B, the approximated sum A + B ≈
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(a1 + b1,a2 + b2,a3 + b3) coincides with the actual sum of TFNs; this may not be
the case for the maximum max(A,B)≈ (max(a1,b1),max(a2,b2),max(a3,b3)), al-
though they have identical support and modal value.

The membership function of a fuzzy number can be interpreted as a possibility
distribution on the real numbers. This allows to define its expected value, given for
a TFN A by E[A] = 1

4(a
1 + 2a2 + a3). It coincides, among others, with the neutral

scalar substitute of a fuzzy interval and the centre of gravity of its mean value [9].
It induces a total ordering ≤E in the set of fuzzy numbers, where for any two fuzzy
numbers A,B A ≤E B if and only if E[A]≤ E[B].

24.2.2 Robust Scheduling

A fuzzy schedule does not provide exact starting times for each task. Instead, it
gives a fuzzy interval of possible values for each starting time, provided that tasks
are executed in the order determined by the schedule. In fact, it is impossible to
predict what the exact time-schedule will be, because it depends on the realisation
of the task’s durations, which is not known yet. This idea is the basis for a semantics
for fuzzy schedules from [13] by which solutions to the fuzzy job shop should be
understood as a-priori solutions, also called baseline or predictive schedules in the
literature [14]. When tasks are executed according to the ordering provided by the
fuzzy schedule we shall know their real duration and, hence, obtain a real (executed)
schedule, the a-posteriori solution with deterministic times. Clearly, it is desirable
that a fuzzy solution yields reasonably good executed schedules at the moment of
its practical use, in clear relation with the concept of schedule robustness.

As already mentioned, we consider that a schedule is robust if it minimises the
effect on the makespan of executional uncertainties. This straightforward definition
may, however, be subject to many different interpretations when it comes to spec-
ifying robustness measures [22]. In this work, we will consider only uncertainties
in task processing times and we shall adopt the concept of ε-robustness proposed
in [3] for stochastic scheduling, already adapted to the fuzzy flexible job shop in
[20]. This definition states that a predictive schedule is considered to be robust if the
quality of the eventually executed schedule is close to the quality of the predictive
schedule. In particular, for the fuzzy job shop, a predictive schedule with makespan
value Cmax,pred (a TFN) is ε-robust for a given ε if the objective value Cmax,ex of the
eventually executed schedule (a real value) is such that:

(1− ε)≤ Cmax,ex

E[Cmax,pred ]
≤ (1+ ε) (24.2)

or, equivalently,
|Cmax,ex −E[Cmax,pred]|

E[Cmax,pred ]
≤ ε. (24.3)
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That is, the relative error of the estimation made by the predictive schedule (i.e. its
expected makespan) is bounded by ε . Obviously, the smaller ε is, the better.

Notice however that this definition requires a real execution of the problem
which may not always be available. Consider for instance the synthetic problems
commonly used in the literature as benchmarks. In this case, following [20], we
provide an approximation of the ε-robustness measure by means of a Monte-Carlo
simulation. Given a fuzzy instance, we generate a sample of K possible realisations
of that instance by assigning an exact duration to each task, that is K deterministic
instances on which we can evaluate the ε-robustness of the solution. Now for each
realisation k = 1, . . . ,K, let Cmax,k denote the exact makespan obtained by executing
tasks according to the ordering provided by a predictive schedule. Then, the average
ε-robustness of the predictive schedule, denoted ε , is calculated as:

ε =
1
K

K

∑
k=1

|Cmax,k −E[Cmax]|
E[Cmax]

, (24.4)

where E[Cmax] is the expected makespan estimated by the predictive schedule.
A crucial factor in this method is the way in which we sample deterministic du-

rations for the tasks based on their fuzzy values. This is done by simulating exact
durations for tasks following a probability distribution that is consistent with the
possibility distribution μA defined by each fuzzy duration A. A simple approach
consists in considering the uniform probability distribution that is bounded by the
support of the TFN. This possibility-probability transformation is motivated by sev-
eral results from the literature (see [10, 2]) that justify the use of TFNs as fuzzy
counterparts to uniform probability distributions and model-free approximations of
probability distributions with bounded support.

24.2.3 The Multiobjective Approach

In scheduling, when there is uncertainty in some of the input data, solution robust-
ness becomes an important factor to be taken into account. Indeed, an optimal solu-
tion found for an ideal deterministic scenario (for instance, assuming that all dura-
tions take their modal value) may be of little or no use when it is executed if changes
in the input data affect its real performance. Therefore, our aim in this work is to
optimise both a performance or quality function, the expected makespan E[Cmax], as
well as the robustness of the solution with respect to that function, the approximate
measure ε .

To optimise these two objective functions, we shall take a dominance-based ap-
proach. In general, for a minimisation problem with fi, i = 1, . . . ,n objective func-
tions, a solution s is said to be dominated by a solution s′, denoted s′ � s iff for each
objective function fi, fi(s′) ≤ fi(s) and there exists at least one objective function
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such that fi(s)< fi(s). Our goal will then be to find non-dominated solutions to the
FJSP with respect to E[Cmax] and ε . To achieve this, we propose a dominance-based
multiobjective evolutionary algorithm (MOEA) [23].

24.3 Multiobjective Evolutionary Algorithm

We propose a MOEA based on the well-known NSGA-II template [8]. An initial
population is randomly created and evaluated and then the algorithm iterates over a
number of generations, keeping a set of non-dominated solutions. At each iteration
i, a new population Off(Pi) is built from the current one Pi by applying the genetic
operators of selection and recombination and then a replacement strategy is applied
to obtain the next generation Pi+1. Finally, the stopping criterion can be at least
one of the following: stop when no solution belonging to the set of non-dominated
solutions is removed from this set after niiter iterations or after a fixed number of
iterations or after a given running time.

Solutions are encoded into chromosomes using permutations with repeated el-
ements, which are permutations of the set of tasks, each being represented by its
job number [4]. A given chromosome is decoded into the associated schedule, us-
ing an insertion strategy in the schedule-generating scheme [19]. This immediately
gives the makespan expected value. The other fitness function is evaluated based on
the degree of similarity between the fuzzy makespan of the current solution and a
set of solutions, named cache hereafter, for which the ε value has been previously
calculated. We shall refer to this algorithm as sMOEA.

24.3.1 The Surrogate Model

Evolutionary algorithms usually need a large number of fitness evaluations before
obtaining a satisfying result. Either when an explicit fitness function does not exist
or when the evaluation of the fitness is computationally very expensive, it becomes
necessary to estimate the fitness value by an approximate model. This is indeed the
case of one of our fitness functions, related to the objective of robustness.

Fitness approximation has been addressed from different areas, as can be seen for
instance in [5, 16]. Techniques to manage surrogates for fitness evaluation include
evaluating the fitness function only in some of the generations or in some individuals
within a generation, having a pre-selection of offspring before evaluation, evaluating
only those individuals that potentially have a good fitness value or choosing for re-
evaluation representative individuals by clustering the population, to mention but a
few.

Here we propose a new double approximation by using data sampling techniques.
First, we run a Monte-Carlo simulation to provide a surrogate of the ε-robustness
measure for the individuals in the cache, as explained in Sect. 24.2.2. Then we ap-
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proximate the ε-robustness of a solution with that of the most similar solution in
the set for which ε values have been previously computed, provided that this simi-
larity exceeds a given threshold. The set of pre-evaluated solutions is named cache
inspired in the cache memory of the computers. For this second part of the surrogate
model there are several design decision that have to be made, namely, the similarity
measure and the update strategy of the cache list. The similarity threshold and the
size of the cache list are to be experimentally determined.

24.3.1.1 The Similarity Measure

Every decoded solution has a fuzzy makespan value, so we propose to use a similar-
ity measure for TFNs to compare a given solution with every solution in the cache
list based on fuzzy makespan values. The rationale behind this choice is that, on
one hand, ε depends on the expected value of the fuzzy makespan and, on the other
hand, the makespan of every deterministic realisation used to compute ε lies in the
support of the fuzzy makespan.

In the literature we can find numerous proposals to quantify the degree of sim-
ilarity between two fuzzy numbers using different descriptive parameters, such as
the geometric distance, the perimeter, the area or the distance between the centres
of gravity, etc. [6, 24]. However, most similarity functions are not adequate for our
framework. In particular we need normalised similarity values in order to establish
threshold values which are independent of the instance and this normalisation must
be invariant to translations if they are to correspond to similarities in ε values. Ad-
ditionally, similarity degrees must be easy to compute. That is, we look for simple
but still representative measures.

In this paper, we consider a measure based on the so-called shared area between
the fuzzy numbers. The shared area between fuzzy numbers with respect to the total
area of these fuzzy numbers has been incorporated as a component of the measure
of similarity of generalised fuzzy trapezoidal numbers in [24]. Here we are using
TFNs, less complex than generalised fuzzy numbers, so we need only consider this
value. The degree of similarity SA,B of A and B is then defined as

SA,B =
Area(A∩B)
Area(A∪B)

(24.5)

When A ∩ B is not a triangle, we approximate the area by the maximum triangle
inscribed in this plane area. We will say that A and B are approximately equal given
a small nonnegative number δ iff SA,B ≤ δ .

24.3.1.2 The Update Strategy

The update strategy for the cache is motivated by the fact that, as the algorithm
converges, the chance that a new solution lies in areas of the search space with bad
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solutions becomes smaller. A new solution is thus added to the cache only if it is
not similar enough to any of the elements already in the list, in the sense that they
are not approximately equal as defined above. When this is the case, the solution
is fully evaluated to obtain its ε value and added to the list. If this is full, the new
solution replaces the one in the list that has not been used for longer to estimate the
value of the robustness for another individual.

The cache is initially empty. Then, every individual in the initial population is
processed to be inserted in the list following the replacement strategy above. Notice
that by doing this the cache list, which has a prefixed size, may not be full once the
whole initial population is analysed.

24.3.2 Genetic Operators

In the selection phase all chromosomes are randomly grouped into pairs, and then
each of these pairs is mated to obtain two offspring. For the mating we have imple-
mented one of the most extended crossover operators for the JSP, the Generalized
Order Crossover (GOX). In order to preserve the diversity of individuals inside the
population and prevent the algorithm from getting stuck in local optima, the inser-
tion mutation strategy is also introduced.

The replacement strategy is a key factor in MOEA algorithms. Here we adopt a
strategy based on the non-dominated sorting approach with diversity preservation
from [8], that is, solutions belonging to a lower (better) non-domination rank are
preferred and, between two solutions in the same non-dominance level, we prefer
the solution located in the less crowded region. To introduce greater diversity in the
algorithm, we remove from the pool of individuals those which are repeated, in the
sense that there exists in the pool at least another individual having identical values
for all objective functions. In the case that such elimination causes the pool to con-
tain less individuals than the population size, all the non-repeated individuals pass
onto the next generation, which is later completed with the best repeated individuals
according to their rank level and crowding distance.

24.4 Experimental Study

For the experimental study, we consider one hard and well-known instance obtained
by fuzzifying task durations of a crisp JSP classical benchmark, La29, as proposed
in [21].

We start by trying to gain some insight into the effects of considering different
similarity thresholds and cache sizes, respectively denoted δ and λ hereafter. We
have generated a set of 1000 random solutions and, for different similarity thresh-
olds δ ranging from 0.10 to 0.95, we have recorded the percentage of times (called
hit rate) that a solution is approximately equal to at least one solution in a set of
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size λ , with λ ranging from 10 to 200. We have seen that, for similarity thresholds
under 0.80, the cache almost always contains an approximately equal solution for
most of the λ values. Moreover, even when δ = 0.80 and λ values over 100 are
considered, we have hit rates near 100%. Translated into our surrogate algorithm
this could mean that actual ε values will most likely be computed only for those so-
lutions inserted in the cache in the first iterations. However, a different behaviour is
observed for the same cache sizes (λ ≥ 100) when δ = 0.90 and δ = 0.95 are con-
sidered. On the other hand, when these stricter similarity thresholds are considered
with small λ values, there is little chance of finding an approximately equal solution
in the cache, so most of the times a new solution will need to be completely eval-
uated, neutralising the potential effect of the surrogate approach in running times.
That said, δ = 0.8 offers more reasonable hit rates for small λ values, which support
considering these smaller cache sizes in the experimental study.

We now proceed to consider different values for δ and λ and analyse their ef-
fects in running times and solution quality. For the sake of clarity, we will refer to
the multiobjective algorithm using the surrogate model as sMOEA, while MOEA
will refer to the algorithm that avoids surrogates and evaluates every new solution.
As a result of a preliminary parametric analysis, the parameter setup is as follows:
population size 100, crossover and mutation probabilities 1.0 and 0.1 respectively.
Given the stochastic nature of the algorithm, it is run ten times, so ten different sets
of non-dominated solutions are stored in order to obtain representative data.

In the literature we find many proposals to compare multiobjective algorithms.
In this work we consider two metrics: the hypervolume, which is a quality indica-
tor that combines both convergence and diversity measures and the unary additive
ε-Indicator, which is a distance-based indicator [23]. This last indicator is calcu-
lated with respect to a reference set RF , which ideally should be the optimal Pareto
front PO∗. However, since the benchmark instance used here has not been solved
yet, this Pareto front is unknown. In consequence, we approximate it by the set
of non-dominated elements of the union of all sets of solutions obtained so far in
this experimentation [23]. Additionally, to avoid problems derived from the differ-
ent scales of the objective functions, we normalise their values. More precisely, let
f−i (S) = min{ fi(s) : s ∈ S} be a lower bound of the objective function fi in the set
S, and

f+i (S) = max{ fi(s) : s ∈ S}+ 0.05 ∗ (max{ fi(s) : s ∈ S}−min{ fi(s) : s ∈ S})

an upper bound thereof, then the objective value fi(s) of each solution s ∈ S is
normalised as follows:

∀i fi(s) =
fi(s)− f−i (S)

f+i (S)− f−i (S)
. (24.6)

By taking this upper bound, we prevent the solutions from having a value equal to
1, which can be troublesome when computing the hypervolume. Indeed, solutions
with objective values equal to 1 define a rectangle with null area, making them
unsuitable for fair comparisons.
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Fig. 24.1 Improvement and hypervolume values for different sizes of cache. Red lines represent
hypervolumes and blue lines time reductions. (a) δ = 0.95. (b) δ = 0.90. (c) δ = 0.80

In our experimental study, we first run the MOEA that evaluates ε for every so-
lution, using niiter = 25 non-improving consecutive iterations as stopping criterion.
Besides the sets of non-dominated solutions, we register the number of generations
needed for MOEA to converge (3950). Then, using this number of generations as
stopping criterion, sMOEA is executed considering three δ values: 0.80, 0.90 and
0.95 and six λ values: 10, 25, 50, 75, 100 and 200. The sets of non-dominated solu-
tions obtained after every run are then fully evaluated in order to obtain their actual
ε values that allow for fairer comparisons, so solutions that are dominated after the
full evaluation are removed from the sets.

Figure 24.1 shows the improvement in running time of sMOEA w.r.t. MOEA
and the hypervolume values for sMOEA given different combinations of λ and δ :
Figure 24.1a for δ = 0.95, Fig. 24.1b for δ = 0.90 and Fig. 24.1c for δ = 0.80. All
figures show a primary Y -axis for time improvement in percentage (from −15% to
105%) and a secondary Y -axis for hypervolume values (from 0.61 to 0.71), being
0.6939 the hypervolume value reached by MOEA.

We can observe that, in general, increasing the similarity threshold improves the
hypervolume and reduces the time improvement. This behavior is quite natural, as
having a stricter threshold δ causes the algorithm to fully evaluate more solutions,
thus having more accurate information, at the cost of having a longer runtime.

Notice as well that, even though time reductions are comparable, this is not the
case for hypervolume (HV) values. When δ = 0.80, the HV values obtained are in
general much worse than those obtained with δ ≥ 0.90 (only with a cache size of
200 do they begin to be competitive). This leads us to reject 0.80 as an appropriate
threshold for the similarity of solutions.
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Fig. 24.2 HV for all runs of sMOEA(0.90,100), sMOEA(0.95,100) and MOEA (with no cache)

Focusing on Fig. 24.1a, b we can observe that, when the similarity threshold is
high and the cache size is small, the processing time not only does not decrease,
it even increases. Specifically, with δ = 0.95 and λ ≤ 50, and with δ = 0.90 and
λ = 10, CPU times of sMOEA are worse than those of MOEA. This is explained
by the fact that it is unlikely to find an approximately equal individual in a small-
sized cache, so most of individuals of the sMOEA are fully evaluated (as is the
case with MOEA) and, additionally, sMOEA has to compare solutions and update
the cache frequently, incurring in higher computational cost. For values such as
δ = 0.95 and λ = 75 or δ = 0.90 and λ = 50, for which the cache is actually used
by sMOEA, we can observe time improvements at some cost in HV values. More
interestingly, when the cache size increases to 100, time reduction does not imply
a loss in quality. We believe this is because the most similar solution in the cache
is more likely to be really close to the current solution, having the effect of more
reliability in the surrogates, leading to better HV values. This effect is nonetheless
lost for λ = 200, probably because an excessively large cache causes the robustness
fitness value to be estimated too often. Finally, we look at the ε-indicator for those
sets of experiments where sMOEA does not consume more time resources than
MOEA. We see that, only for λ = 100 and δ = 0.90 or δ = 0.95, the ε-indicator
values obtained for sMOEA are similar to those of the MOEA (0.0712, 0.0791, and
0.0731 respectively).

Once a first filter has been applied to the different options for δ and λ values,
we shall compare the two best variants of sMOEA (with λ = 100 and δ = 0.95 or
0.90) and MOEA. Regarding runtime, sMOEA(0.90,100) obtains a greater reduc-
tion in CPU times (53% versus 21% of sMOEA(0.95,100)). In terms of quality, a
first impression can be obtained from the box-plots in Fig. 24.2, which correspond
to the HV values obtained using the three configurations. With the exception of two
outsider values, HV values corresponding to the configuration sMOEA(0.95,100)
appear to be slightly better than the rest. Having said this, differences in the box-plot
are not big enough for a solid conclusion, making further comparisons necessary.

A more detailed comparison between the three algorithms, taking into account
their multiobjective nature, can be done by means of the empirical attainment func-
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tions (EAFs), which characterise the output of a stochastic multiobjective optimi-
sation algorithm [17]. Figure 24.3 graphically plots the difference (using a gray
scale) between the EAFs for algorithms MOEA (with no cache), sMOEA(0.95,100)
and sMOEA(0.90,100), which allows us to identify the regions where one algo-
rithm performs better than another. We can see that the solutions obtained with
MOEA dominate those obtained by sMOEA(0.90,100) in almost every region with
a low probability, slightly higher in the middle of the front, whereas solutions from
sMOEA(0.90,100) almost never dominate those of MOEA with not null probability.
The comparison between MOEA and sMOEA(0.95,100) reveals more equilibrium:
the solutions from MOEA dominate with lower probability those of the surrogate
version in some regions of the space, but they are dominated in other regions with a
probability higher than 0. Finally, between both variants of the surrogate algorithm,
sMOEA(0.95,100) is clearly better than sMOEA(0.90,100), since the difference
between their EAFs is positive in almost every region and it is null when we make
the opposite comparison.

Finally, a statistical analysis between HVs of the sets of solutions obtained with
sMOEA(0.95,100) and MOEA is carried out, with a level of significance of 0.05 in
every test considered. Once the normality of the samples and the homocedasticity
are verified, a t-test is done with the result that there are no significant differences
in terms of solution quality (p-value 0.918709). Notice that the lack of statistically
significant differences, far from being a bad result, supports the interest of our pro-
posal. Indeed, it indicates that the HV values obtained with the proposed sMOEA
and MOEA are similar and therefore means that the use of surrogates does not have
a bad influence in solution quality (in terms of hypervolume values), while it pro-
vides a reduction of over 20% in running time.

24.5 Conclusions

We have considered the job shop problem with uncertainty in the task durations
modeled as fuzzy numbers. We have proposed to simultaneously optimise the
makespan and the robustness of the solutions, understood as an overall acceptable
performance under variations in the input data.

We have seen that a multiobjective evolutionary algorithm (MOEA) may produce
good results for the FJSP, but at the same it is too time consuming. To overcome this
drawback we have proposed a new surrogate model to spend less time in robust-
ness evaluation. The resulting algorithm, termed sMOEA, has shown to be quite
sensitive to the values of the parameters δ and λ . In particular, the combination of
small δ values with large λ values gives rise to a fast method, at the cost of losing
quality on solutions, while with large δ and small λ values the opposite happens.
From a thorough experimental study, we have found a reasonable tradeoff between
these parameters that allows sMOEA to reduce running times in more than 20%
w.r.t. the original MOEA, without significant loss of solution quality in terms of
hypervolumes.
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Fig. 24.3 Comparison between MOEA (no cache) and sMOEA(0.90/0.95,100) based on EAFs
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Chapter 25
Towards a Novel Reidentification Method
Using Metaheuristics

Tarik Ljouad, Aouatif Amine, Ayoub Al-Hamadi, and Mohammed Rziza

Abstract Tracking multiple moving objects in a video sequence can be formulated
as a profile matching problem. Reidentifying a profile within a crowd is done by a
matching process between the tracked person and the different moving individuals
within the same frame. In that context, the feature matching task can be approxi-
mated to a search for the profile that maximizes a considered similarity measure. In
this work, we introduce a novel Modified Cuckoo Search (MCS) based reidentifica-
tion algorithm. A complex descriptor representing each moving person is built from
different low level visual features such as the color and the texture components. We
make use of a database that involves all previously detected descriptors, forming
therefore a discrete search space where the sought solution is a descriptor and its
quality is represented by its similarity to the query profile. The approach is evalu-
ated within a multiple object tracking scenario, and a validation process using the
normalized cross correlation method to accept or reject the obtained reidentification
results is included. The experimental results show promising performances in terms
of computation cost as well as reidentification rate.
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25.1 Introduction

Many problems reported in the field of multiple object tracking, either in grayscale
video or within an environment with similar parametric representation to that of
the sought object, show that even with a sophisticated search strategy, the adopted
object representation play a key role in the profile matching task. In fact, an object
tracking algorithm’s performance basically depend on two key factors: an intelligent
browsing strategy to select a set of candidate regions with the highest probability to
contain the sought object, and the use of a discriminant descriptor. After selecting
the appropriate candidate set, the tracking task can be reduced to a matching task
between the sought profile and the selected candidates descriptors, which is called
a reidentification process (see Fig. 25.1).

Fig. 25.1 Example of a reidentification task in a tracking scenario

In fact, the reidentification problem has been addressed in many researches be-
cause of the important role it plays in different application domains. The main aim
of such an algorithm is to establish a reliable correspondence between different ob-
jects observed in cameras with non-overlapping fields of view by relying on their
visual characteristics. Examples of application domains that makes use of such
an algorithm could be the tracking devices across camera networks [18], multi-
camera based event detection as well as pedestrian detection and extraction [13].
The challenge here is to associate different visual characteristics extracted from dif-
ferent videos in terms of image acquisition conditions, perspective, image resolu-
tion, poses, photometric calibration as well as crowded backgrounds.

The typical reidentification diagram is given in Fig. 25.2. Generally, the process
should start with a detection phase in order to extract the location of all moving
objects in the video, especially in case of a long video. Nevertheless, all existing
approaches skip this phase and rely on the provided ground truth, assuming a per-
fectly accurate detection [6, 12]. The obtained locations are used to initialize the
visual representation of the sought object. The extracted visual characteristics are
supposed to be robust against affine transformation, as well as significant in case
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Fig. 25.2 Typical functional diagram of a reidentification process

of an occlusion. Different approaches in the state-of-the-art aim either at improv-
ing one or a combination of different modules of those exposed in the diagram (see
Fig. 25.2).

The global characteristics describe the general aspect of the object’s color and
texture [3, 23]. This information presents the major advantage of being invariant to
the object’s alignment, pose variation as well as perspective changes. Nevertheless,
their discriminative capability is relatively weak since they are unable to reproduce
the spatial information of the descriptive itself. In order to tackle this weakness,
many approaches adopted the patch concept during the matching process. Com-
paring two different images is then performed by evaluating the similarity between
each patch in the reference image with its corresponding patch in the test image. The
remaining question is then how to handle a misalignment issue. Although, it is pos-
sible to select a set of characteristics, and assign a corresponding weight to each one
of them, this task might be corrupted by the initial choice of the extracted character-
istics. The optimal solution would be a progressive training of selected feature from
aligned data. Such a method is known as the deep learning technique [12, 20, 16].

In this paper, we are more precisely interested in the performance of the Cuckoo
search algorithm as a matching strategy, more then it is a question of building a
discriminant features of the sought object. The remainder of this paper is organized
as follows: after a brief introduction of the reidentification issues and challenges
in the first section, we detail the adopted parametric representation in Sect. 25.2.
Section 25.3 provides details on the projection of the cuckoo search on the reiden-
tification problem, while Sect. 25.4 provides the obtained experimental results. We
conclude by providing an analysis of the obtained results and a glimpse on the future
works triggered by this research outcomes.

25.2 Object Representation

In the world of multiple object tracking in a camera network with multiple fields of
view, it is common to speak about two set of profiles interacting during the matching
process. A query set represents a group of profiles to be identified, and a candidate
set composed of a chosen set of profiles of which the identity is known, and that
should match the ones in the query set. A simple temporal reasoning can simplify
the matching task by roughly estimating the requested transition time between dif-
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ferent cameras for a specific query profile [11]. Such a reasoning would improve the
quality of the candidate set based on a pure temporal preselection. The restriction
would limit the set prior to the computation of any visual feature. State of the art
approaches usually use the same set of visual characteristics and comparison met-
rics in order to map the queries to their corresponding candidates, which is not the
most efficient approach. Our currently proposed approach also adopts this behavior
as per its intuitive nature, its computation cost as well as the programmatic simplic-
ity. Figure 25.3 presents a challenging scenario for such a reasoning: two profiles
(a1) and (b1) are observed in camera 1, with their corresponding candidate set (a2)
and (b2), both observed in camera 2. The red box highlights the reidentification al-
gorithm’s output as a corresponding profile for the query image. As can be observed
in the image, the color feature can be used to identify the query profile correctly in
the set (a), while the same feature would not be as much efficient in the set (b). The
algorithm would have to rely on another feature such as the shape or texture. The
features would have to be correctly balanced, according to the input image.

Fig. 25.3 Matching process between query samples and candidate profiles

Persons reidentification is generally based on the following characteristics:

• Colour: generally used for its intuitive and discriminant capability [4]. Objects
are identified by their color histograms in the RGB (Red-Green-Blue) color space
or HSV (Hue-Saturation-Value) color space.

• Shape: one of the most known shape signature is the Histograms Of Gradients
(HOG) [15, 21].

• Texture: often represented by the Gabor filters [17], differential filters [7], Haar
based representations [1] or even co-occurrences matrix [21].

• Points of interest: varies between the SURF (Speeded Up Robust Features) points
[5] and the SIFT (Scale-Invariant Feature Transform) points [8], depending on
the domain of application and the speed/accuracy requirement.

• Regions of interest: introduced in [4, 15].

Generally, the region based methods tend to split the human body into multi-
ple connected regions, and then extract different features for each body part. These
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methods tend also to represent each individual by a complex combination of differ-
ent weighted characteristics: we cite [14] which introduces the bio-inspired char-
acteristics idea, as well as [10] which automatically discovers a semantic attributes
anthology by training its classifier over publicly available databased. One partic-
ularly interesting approach is the one introduced by Li et al. [11]: each profile is
defined by a combination of 5 low-level features, forming a descriptive vector by
concatenating all resulting features. The used features in this approach are dense
color feature, dense SIFT, HOG descriptor, Gabor descriptor and the LBP signature.
The size of the resulting vector is then condensed using the Principal Component
Analysis (PCA) to retain 90% of the descriptor’s energy, and then normalized.
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Fig. 25.4 Adopted feature combination for building a lightweight discriminative descriptor for
reidentification purpose in a MOT scenario

This approach surely produces a very robust descriptive vector against most and
different types of possible (known) distortions. Nevertheless, we are more interested
in the computation cost. Therefore, we chose a lighter descriptor, with a reasonable
discriminative rate. Figure 25.4 provides a descriptive schema of the adopted fea-
tures in the present research. For each profiles, two major aspects are captured: the
color and the texture. This combination turned out to be sufficient when trying to
build a discriminative representation of a profile in the framework of multiple object
tracking. The color component is build using the concatenation of the normalized
vector of the color density distribution in the RGB color space as well as the H and S
components in the HSV color space. The texture is composed of a two-dimensional
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Daubechies wavelet transformation, concatenated to the non-oriented LBP signa-
ture of the profile. The concatenation of both color and texture components form
the descriptive vector of the object. The discriminative power is then strengthened
by a temporal reasoning, restricting our search over a subset of candidates.

Another asset of the adopted representation is the computational cost. Such a
combination does not request a high computation time, compared to using the Ga-
bor filters for example to represent the texture appearance, and therefore is suitable
for a real-time application. This representation is then somehow similar, but less
“crowded” and much faster than the one introduced and adopted in [17]. The later
uses an additional color feature in the YCbCr color space, and replaces our texture
component by 21 texture filters, composed of Gabor and Schmidt filters applied to
the luminance channel.

25.3 Projection of the Modified Cuckoo Search on the Multiple
Object Tracking Problem

As we previously explained, there are multiple reidentification methods since this
research field has been introduced. These approaches are generally relying on a clas-
sification instance selected based on a priorly defined parameters or sometimes on
a simple author’s personal preference. The optimization work is then generally per-
formed on the descriptor’s combination level, in order to strengthen the discrimina-
tion capacity over a large set of pedestrians. The main aim of such a contribution is
its accuracy in terms of reidentification produced by the designed algorithm. Many
implementations are also made publicly available for comparison purposes.1

Nevertheless, regardless of the accuracy provided in terms of false and correct
matchings—which we will hereby denote as TP and TN—, such algorithms present
a major drawback residing in the algorithm’s speed. In fact, the algorithm’s rapid-
ness is generally omitted in such a problem, and all the attention is focused on the
ID-Switch reduction. This leads to very accurate algorithms in terms of reidentifica-
tion and based on low-level and high-level features, unfortunately with very reduced
number of application domains as per its computation complexity. In this present
work, We tried to address this problem, by making use of the Modified Cuckoo
Search (MCS) [22] algorithm in the correspondence phase. We designed a special
context in order to validate the proposed method: the reidentification shall be used
in the context of a multiple object tracking problem. The used video includes a mean
of 16 moving persons per image [2].

Before computer vision, multiple object tracking has been already explored by
multiple projects within the Radar and signal processing community, leading to
multiple original works in that field such as [19], which now are the basis of the
reidentification field. These works were annotated as Multi-Hypothesis Trackers

1 Example of reidentification open-source project: https://github.com/Robert0812/
saliencereid introduced by Zhao et al. [26].

https://github.com/Robert0812/saliencereid
https://github.com/Robert0812/saliencereid
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(MHT). The main purpose was to build a set of detection in a crowded tracking
environment over a specific time frame, to produce a spacious-temporal tracking
of targets generating the detections. The MHT theory results in a tree of possibili-
ties exponentially evolving over time. Thus, further researches investigated on how
to filter the resulting nodes of the possibility tree using specific optimization al-
gorithms, and avoiding therefore the classical classification algorithms during the
matching phase.

Fig. 25.5 Temporal associations of three objects oi1<i<3 and three tracking hypotheses hi1<i<3.
Two mismatches are highlighted (source [9])

However, the multiple target tracking implies a temporal association issue be-
tween different detections as illustrated in Fig. 25.5. Since we are aiming for a first
validation of the theory in a mono-view tracking context, each ID-Switch (i.e. mis-
match) would be propagated over time and would induce a high error rate. To avoid
such a situation, we included a validation system for ambiguous results based on the
normalized cross correlation algorithm [25].

We start our approach the creation of the descriptors database. In fact, in order
to take different appearances of the same object into consideration, we use a de-
scriptors database as illustrated in Fig. 25.6. The database is initialized using the
first frame of the video. Based on the provided Ground Truth location data, the
algorithm considers a bounding box around each moving person. This procedure
replaces a perfect prior detection, since each misdetection would result in biased
descriptor and therefore induce a poor reidentification performance and thus a high
ID-Switch rate. The rectangular bounding box delimits the image region where the
feature descriptor will be computed. This descriptor is stored afterwards in a matrix
that we call a descriptors database. This database hold the objects feature descriptor
along with its ID. Each object is then associated to a representative and randomly
initialized color in the RGB color space. After this process has been applied to all
objects in the first frame, the algorithm sorts the descriptors database based on the
objects IDs.
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Fig. 25.6 Initialization process of the descriptors database

The Cuckoo Search based reidentification algorithm starts then from the second
image. The descriptors database is then recalled at each reidentification process. Fig-
ure 25.7 describes the functioning schema of the proposed approach. We will then
detail each of the phases described in the figure. In fact, the algorithm is composed
of following stages:
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Fig. 25.7 Functional diagram of the MCS based reidentification approach
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0. Start of a request: each detection (provided in the ground truth file) is consid-
ered as a query profile. The candidate set is then picked up from the descriptors
database as an initial population for the cuckoo search algorithm

1. Creation of the initial population: the initial population, as explained in [24], is
composed of a set of object descriptors instead of simple histograms. It is initial-
ized using the descriptors of the objects previously detected or identified in the
previous frame. This concept illustrate the temporal selection theory as explained
in the previous section. The probability of having an object in the current frame
that was already present in the previous one is much higher of the probability of
seeing an object that already left the scene 100 frames before. Thus, it is more
likely to obtain a fast convergence using this roll-back process, then randomly
initializing the initial population from the database with no consideration to the
time and “maximum velocity constraint” factors.

2. Lévy Flights: once the population initialized, the matching process takes place.
This is done by comparing the query’s descriptor to the gallery’s (i.e. candi-
date) using the Euclidean distance between both vectors. The candidates are then
sorted based on their similarity measure. The smaller the distance, the bigger the
similarity between the query and the gallery test. The best candidate in the initial
population is picked up, and starting from his position in the descriptors database,
a Lévy Flight is performed. It is worth reminding that the database is sorted us-
ing IDs. This implies that the Lévy Flights would help explore the neighborhood
and therefore select another descriptor of the same individual that might refine
the similarity with the query image, while keeping an eye on remotely located
individuals, and thus avoiding getting stuck on a local minimum. The selected
descriptor using the Lévy Flights is then compare to a randomly chosen descrip-
tor from the initial population. If the later is of a lower quality, it is substituted
by the selected one using the Lévy Flights. Since we are using the modified ver-
sion of the Cuckoo Search as introduced by Walton et al. [22], the position of the
Lévy Flights candidate is calculated based on the best obtained element using
Eq. (25.1):

X(t+1) = Xt +

√
1
i
⊕Lévy(λ ), (25.1)

Where X(t) refers to the candidate’s position in frame t, Lévy(λ ) is a Lévy flight
which provides a random walk based on a random step length drawn from a Lévy
distribution

Lévy(λ )≈ t−λ , (1 < λ ≤ 3)

Using the number of performed generations as an inversed multiplicative scalar√
1
i to the generated Lévy step helps transforming the search from an exploration

pattern to a refinement.
3. Discovery by the host bird: next to the Lévy Flights, we illustrate the discovery

phase, where the host bird discovers the alien egg (i.e. the cuckoo’s egg) and
reacts accordingly. This phase is represented in the algorithm by a blind substitu-
tion process of a portion or the initial population with a new randomly generated
portion picked up from the descriptors database. The portion’s size is of Pa and
includes the least similar descriptors to the sought one. In order to locate them,
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the population is sorted at the beginning of this phase based on the similarity
measure of all population’s descriptors to the target profile.

4. Stop Criteria evaluation: by the end of the substitution phase, the algorithm
checks whether one or more of the stop criteria is met. If yes, the algorithm stops
assuming a total convergence, and hands out the ID of the last best descriptor
obtained. Stop criteria are defined as follows:

• A maximum number of iterations are performed without obtaining a satisfying
descriptor.

• An considerable number of iterations are performed without any remarkable
change similarity measure of the best element.

• A descriptor with a satisfying similarity has been reached.

The last obtained descriptor as well as its Euclidean distance ore provided as
output in order to check if the obtained results are classified as ambiguous case
or not.

Add new
descriptor to the

descriptors
database

Validation/rejection
via Normalized

Cross-Correlation

Matching
confirmed? New Profile

MCS based
reidentification

Satisfying
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rate?
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Fig. 25.8 Validation schema of the matching result driven by the MCS

After a total convergence of the algorithm, the obtained similarity measure is
checked. The functional diagram describing the different possibilities is exhibited
in Fig. 25.8. The algorithm checks if the obtained similarity measure driven by the
MCS refer to a perfect match between the query and the best obtained descriptor.
Where applicable, no further validation is needed and the query descriptor is inserted
in the descriptors database, and the ID of the best matching descriptor is assigned
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to the query descriptor in the database. The database is then sorted again based on
the IDs in order to gather different descriptors of one same person in the same area
of the database. This is an essential step in order to preserve the advantage provided
by the Lévy Flights. In ambiguous cases where the similarity measure is not totally
convincing, the algorithm proceeds with an ID confirmation, which is carried out
by the normalized cross correlation. If the match is confirmed, the algorithm pro-
ceeds as in the first case by inserting the new descriptor with its corresponding ID
in the database. Otherwise, the match is rejected and the algorithm considers the
query descriptor as a new appearance corresponding to a new person in the video,
and assigns a new identity and representing color in the database to it. The same
conclusion is drawn when the provided similarity measure from the MCS matching
process is very low

25.4 Experimental Results

Fig. 25.9 Reidentification scenario in mono-camera VS multi-camera systems

It is worth mentioning that this present work is a first milestone of which the main
aim is to validate the reidentification theory using the cuckoo search algorithm. The
validation has been carried out in a mono-camera environment and is meant to be
extended to a multi-camera network system as described in Fig. 25.9. In order to
validate our approach, we adopted the ID-switch metric as introduced in [9]. Since
we completely rely on the provided ground truth data, assuming a perfect prior
detection, we see no use of computing the MOTA and MOTP as they are more for
the accuracy and precision of detection.
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In fact, due to the recent extensive growth in the number of approaches intro-
duced for multiple object tracking, and because most of them rely on completely
original ideas and very special logic, comparison between different algorithms was
becoming a hard task. The lack in common metrics made it hard to compare dif-
ferent results of algorithms, even when run using the same test dataset. One of the
most remarkable and successfully and now extensively used contributions was for-
mulated in [9] and labeled The CLEAR MOT Metrics, where authors introduced and
developed different metrics covering different aspects of the multiple object track-
ing area. In this paper, authors explicitly provided two intuitive metric definitions to
allow comparison between trackers characteristics, as well as an implicit description
of a third metric to asses the algorithms ability to correctly and consistently label
tracked objects along their appearance. Following definitions were provided:

• The multiple object tracking precision (MOTP): which evaluates the tracker’s
ability to precisely locate an object compared to its ground truth position, regard-
less of whether the object is correctly recognized. It is calculated by summing the
error in the estimated position, averaged by the total number of correspondences
established.

• The multiple object tracking accuracy (MOTA): gives an idea on the algorithm’s
capability to correctly detect moving objects in a frame, and consistently keep
track of their trajectory. It sums up all misdetections such as mismatches, false
positives (regions of the image labeled as moving objects while belonging to the
background) and misses in the sequence. It is somehow similar to the widely
used Word Error Rate (WER) used in speech recognition.

• ID-switch: is a metric that tackles tricky situations where the same reidentifica-
tion error can be made, while counted differently if counting incorrect matches
along the sequence. Assuming O1 is incorrectly identified in two frames by
tracker 1, while incorrectly labeled in four frames by tracker 2, the number of
mismatches for tracker 1 equals 2 and 4 for tracker2, while they both switched
O1’s ID once. Therefore, the ID-switch value for both algorithm’s equals 1.

In all tests run in this section, the stop criteria were configured as follows:

1. A maximum number of 3 iterations are performed without obtaining a satisfying
descriptor.

2. 20 iterations are performed without any remarkable change similarity measure of
the best element. The end of the section provides an evaluation of the configura-
tion impact on the algorithm’s performances when this parameter is changed.

3. A descriptor with a similarity measure of 0.4 has been reached. This value is
experimentally obtained after trying multiple different values.

The first set of experiment is designed in order to validate the algorithm’s capac-
ity to recognize a patch after a long occlusion period. To do so, we used a video from
the CAVIAR2 database, with 1387 frame of which size is 288 ∗ 384. Figure 25.10
shows the obtained visual results of this experiment.

2 Dataset Available at : http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Fig. 25.10 Reidentification results of multiple persons in presence of long time occlusions

Once the first moving person dressed in a blue shirt appears, the algorithm com-
putes a descriptor patch and tracks the person correctly and successfully. As he
leaves the stage, another person with a black shirt appears. The algorithm computes
the new descriptor and compares it to the already existing patch in the database. The
algorithm correctly distinguishes between both profiles, and assigns a new ID to the
person with the black shirt. It is worth mentioning that the second person enters
the scene from the same sport where the first person disappeared. The second mov-
ing person crosses the scene, then disappears for another 60 frames. Once back, the
algorithm correctly recognizes this person and tracks is successfully. Another occlu-
sion is observed for more than 100 frames, and the person is correctly recognized
again as can be seen in the third line of Fig. 25.10.

In order to test the algorithm’s performances in a crowded scene, we used a video
from the Town Center database which is provided by the Oxford university. The used
video is made of 7500 frames, with an HD resolution of 1080∗1440. An average of
16 moving person per frame are present in this video [2]. With such a density, one
ID-switch represents a missing rate of 0.0625% ( 1

10 ), which makes it 6.25 ∗ 10−4%
in a 100 images long sequence. Figure 25.11 shows a visual result of the algorithm’s
performances. The proposed method is able to build the trajectory of multiple mov-
ing persons with a very reduced missing rate, at very high speed. In fact, the success
rate is around 99% in 128 s/100 frames, which is around 1.28 per image, and thus
0.08 s per profile, which clearly overtakes the state of the art approaches. When al-
lowing more iterations per frame (around 150 iteration per frame), the algorithm is
able to lower the mismatches to 4 ID-switch in a 1600 matching operation.

And since sample images from a tracking performances are not convincing
enough, we carried out a specific experiment to highlight the impact of the max-
imum number of iteration per frame over the algorithm’s convergence. Figure 25.12
provides a visual aspect of the obtained results. We conclude that the higher the
number of allowed iteration per frame, the more accurate the reidentification re-
sults, which makes perfect sense since we allow a total convergence to the algorithm.
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Fig. 25.11 Reidentification performances in a crowded scene with an average of 16 profile per
image

Also, the increase shown in the execution time is logically inversely proportional to
the mismatch rate. Note that up to a certain threshold (in this case 150), the ID-
switch value becomes constant as the algorithm reaches its accuracy limit. There-
fore allowing more iterations per frame would only affect the execution time due to
superficial computation.

Fig. 25.12 Relationship between the ID-switch rate, the execution time and the maximum number
of allowed iteration per frame

Nevertheless, the designed architecture presents a major drawback. Since around
16 descriptors are stored in the descriptors database at each image, an important
storage memory is necessary for each execution. And because of its definition, each
descriptor is a concatenation of multiple vectors, and therefore requires a consider-
able memory size, which presents the algorithm’s handicap. The first set of images
are rapidly processed, and because a sorting operation is performed at each iteration,
it becomes time consuming as the database grows bigger. The same concept is valid
for the color association process at the visualization step. Figure 25.13 shows the
evolution of the execution time per image. The spikes correspond to the execution
of the normalized cross-correlation validation, which is a time consuming opera-
tion. The increase of the requested processing time highlights the major drawback
of storing all used descriptors, preventing therefore a correct processing of the entire
7500 HD images. The algorithm provides acceptable results up to 300–350 frames.
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Fig. 25.13 Increase of the execution time during the processing of an HD video due the growth of
the descriptors database

25.5 Conclusion

In this paper, we introduce a novel approach for person reidentification using the
modified version of the cuckoo search algorithm. After a brief introduction to the
problematic, we presented the state of the art of the used parametric representation
in that field. The projection of the cuckoo search algorithm into the reidentification
problem was then detailed, including the justification of the used parametric repre-
sentation. As a validation step to our proposed architecture, we used a lightweight
combination of color and texture representation of the query object. The validation
step is carried out in a mono-camera system as a matching process in a tracking
performance. A descriptors database is considered in order to take into considera-
tion multiple possible appearances of the same moving person for accuracy purpose.
The algorithm starts by initializing the database using the Ground Truth file, and at
each reidentification attempt, the algorithm performs a temporal selection by pick-
ing up the descriptors of the previous frame from the database. A Lévy flight is
then performed around the best descriptor in the database, and the candidate com-
pared to a randomly selected element, which is substituted in case the similarity is
increased. A portion of the initial population is then replaced with a probability Pa.
After convergence, the obtained ID is confirmed or rejected using the normalized
cross-correlation method. The obtained results are promising while a major draw-
back was highlighted: storing all descriptors in the database slows the algorithm’s
performances as the database grows. Future work will investigate on how to effi-
ciently sort the database and eliminate useless descriptors after a certain amount of
time. The cleanup process shall enhance the algorithm’s performance and make it
sustainable along very long video sequences.
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Chapter 26
Facing the Feature Selection Problem
with a Binary PSO-GSA Approach

Malek Sarhani, Abdellatif El Afia, and Rdouan Faizi

Abstract Feature selection has become the focus of much research in many areas
where we can face the problem of big data or complex relationship among features.
Metaheuristics have gained much attention in solving many practical problems, in-
cluding feature selection. Our contribution in this paper is to propose a binary hy-
brid metaheuristic to minimize a fitness function representing a trade-off between
the classification error of selecting the feature subset and the corresponding number
of features. This algorithm combines particle swarm optimization (PSO) and gravi-
tational search algorithm (GSA). Also, a mutation operator is integrated to enhance
population diversity. Experimental results on ten benchmark dataset show that our
proposed hybrid method for feature selection can achieve high performance when
comparing with other metaheuristic algorithms and well-known feature selection
approaches.

Keywords Feature selection • Particle swarm optimization • Gravitational search
algorithm • Machine learning • Metaheuristics

26.1 Introduction

Nowadays, machine learning approaches have gained much attention and wide app-
lications in solving non-linear and complex problems. In particular, choosing the
most suitable subset of descriptors among a large number of datasets is one of the
most interesting and challenging steps of solving these kind of problems. Traditional
statistical methods such as principal component analysis (PCA) and factor analysis
may fail to deal with these problems because it supposes in their native form a linear
relationship among variables. Furthermore, these problems may evolve a huge num-
ber of datasets (big data). Therefore, approaches such as feature selection (FS) have
been proposed to reduce dimensionality in complex problems. Feature selection
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or feature subset selection aims at identifying the most relevant input (predictors)
within a dataset. FS may improve the performance of the predictors by eliminating
irrelevant inputs, it may also achieves data reduction for accelerated training and
increases computational efficiency [21]. Recent studies have mentioned other ad-
vantages of the FS task.

There are three main approaches for FS [8]. Filter ones are based on information
theory. Wrapper and embedded approaches utilize a machine learning algorithm to
score subsets of features according to their predictive capability. In embedded ap-
proaches, the selection is done in the training process while in wrappers the machine
learning classifier is used as a black box. Therefore, we can improve the searching
part in wrappers separately from the classifier. Furthermore, wrappers can promise
better results than filter approaches. But, they are more computationally demanding
[20]. Therefore, we have chosen in this paper to use wrapper methods which are the
most commonly used approach within metaheuristics as we can evaluate the search-
ing algorithm separately. Wrappers have been popularized by Kohavi and John [14].
Wrapper approaches hybridize between a machine learning method for classifica-
tion and an algorithm adapted to search in the space of feature subsets which is a
binary space [8].

Two widely used wrapper feature selection algorithms are forward selection and
backward selection. The first one consists in starting without any feature. In the
second one, the wrapper method starts with all candidate variables. Also, these
search algorithms can mainly categorized into one of the following categories: ex-
act methods, greedy sequential subset selection methods, and metaheuristics. The
use of metaheuristics in this context is justified by the fact that FS is an NP-hard
problem. The fitness function that has to be optimized within the wrapper approach
corresponds generally to the error rate of the used classifier [12]. For certain prob-
lems, the number of features can also be considered as a second objective to be
minimized [29].

Over the last decades, various population based metaheuristic algorithms have
been introduced and applied successfully to solve a wide range of the optimization
problems in both continuous and binary search spaces. Particle swarm optimiza-
tion (PSO) and gravitational search algorithm (GSA) are two popular metaheuris-
tics which are initially designed for continuous optimization problems and are ex-
tended to binary search problems. That is, the binary PSO (BPSO) was proposed by
Kennedy and Eberhart [13] and the binary GSA (BGSA) was recently defined by
Rashedi et al. [23].

PSO and GSA are effective optimization algorithms. But, they suffer both from
two main problems: premature convergence (these algorithms can be trapped easily
into a local optima) and slow convergence when the best solution found is near to
the optimum solution. These problems, are more frequents and have a more impact
when treating binary problems. Thus, one of the main challenges within these algo-
rithms is to improve its capability for both global exploration and local exploitation
abilities. Hybridization of metaheuristics is an active research trend that may help to
achieve these goals and especially the first one. Furthermore, operator such as mu-
tation and local search can be added to have a stronger exploration ability and then
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enhance the second feature. Therefore, in this paper, we examine the effectiveness of
a binary hybrid metaheuristic combining PSO and GSA and enhanced by a mutation
operator for the wrapper approach of FS.

The rest of the paper is organized as follows: in the next section, we outline
the related works. In Sect. 26.3, a brief overview of BPSO and BGSA is provided.
Moreover, our hybrid algorithm is described in addition to its contribution to FS.
Section 26.4 presents the obtained results for the experiments. Finally, we conclude
and present perspectives to our work.

26.2 Literature Review

Feature selection has been applied in different fields. It is most used in medical
problems which may evolves, sometimes thousands of variables [8]. The fitness
function can be determined in this case by looking for a trade-off between specificity
and sensitivity [7]. Another common application of FS is in forecasting time series.
Indeed, FS can enable forecasting machine learning approaches to deal with real
world dataset which may contain missing values, outliers, redundant variables and
may evolves a large number of historical values [10]. In general, FS can be used
in real problems from different fields which may evolve a non-linear relationship
among variables or large dataset.

In regards of the methods used in literature for FS, we have to mention first that a
number of papers adapted or extended the statistical methods like principal compo-
nent analysis (PCA) as it can be adequate for FS, see for instance [17]. Furthermore,
the mutual information approach is a powerful mechanism which have been widely
investigated for this application [27].

Concerning using metaheuristic in wrapper approaches. The BPSO has been ap-
plied for FS in different forms, the most used form is the one proposed by Kennedy
and Eberhart [13] as presented in the following section. It has been applied for in-
stance in [26] and [29]. This transformation has been used also for BGSA in [4].
Another way has been presented for example by Talbi et al. [25] which adopted the
Geometric PSO (GPSO) to the FS problem and compared it to the genetic algorithm
(GA). BGSA has been also used for FS in its native form presented by Rashedi et al.
[23], see for instance [2]. Other metaheuristics such as simulated annealing and ants
colony optimization can be used for FS: a review on the integration of metaheuristics
in FS can be found in [5].

Recently, Hybridization of PSO and GSA has been become promising to solve
continuous problems as in [6], [11] and [1]. But, these combination doesn’t always
increase the performance of the algorithm as in [18] in which the GSA technique
has given a better results than PSOGSA.
Regarding avoiding premature convergence for BPSO and BGSA, [1] proposed to
hybridize the BPSO with local search. Furthermore, [30] used a mutation operator
for this purpose, [9] chosen linear chaotic map to enhance the diversity of the search



450 M. Sarhani et al.

space to BGSA and [16] has hybridized mutation algorithm with local search to deal
with the FS problem.

Also, we have noticed that a binary form of PSOGSA has just been pub-
lished in [19]. The combination proposed in the mentioned paper consists in in-
tegrating the global best effect of PSO in the classical BGSA. The authors as-
sumed that this combination may lead to better convergence rate in optimizing
their used benchmark functions. A critical view of this approach is provided in
Sect. 26.3.4.

At the end of this section, we can conclude on one hand that the combination of
PSO and GSA may improve in most cases the convergence rate and performance
of these algorithms. On the other hand, in order to enhance the diversification of
population, it is important to integrate adaptives operators such as mutation and
local search.

26.3 The Proposed Binary PSOGSA Approach

In this section, we present the concepts of BPSO and BGSA. Furthermore, we
present and explain our approach including the proposed fitness function and its
contribution to related works.

26.3.1 The Canonical BPSO Algorithm

The BPSO algorithm was introduced by Kennedy and Eberhart [13] to enable PSO
to operate in discrete and binary search spaces. It follows the same approach of the
canonical PSO. Each particle i has two vectors: the velocity vector and the position
vector. The particles are updated according to its previous best position and the
entire swarm previous best position. That is, particle i adjusts its velocity vi and
position xi in each generation t according to the following formula:

vd
i (t + 1) = wv j

i (t)+ c1r1(p j
i (t)− x j

i (t))+ c2.r2.(p j
g(t)− x j

i (t)) (26.1)

where v j
i (t) and x j

i (t) correspond to the dth dimension of velocity and position
vectors of the particle i. p j

i (t) represents the best previous position of particle i.
p j

g(t) represents the best position among all particles in the population. r1 and r2

are two independently uniformly distributed random variables. c1 and c2 are the
acceleration factors and w is the inertia weight.

In BPSO, the velocities are considered as a probability that the particle will
change to one. This transformation is done using the sigmoid function (sig) which
is defined as follows:
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vd
i (t) = sig(v j

i (t)) =
1

1+ e−v j
i (t)

(26.2)

x j
i (t + 1) =

{
1 if randi ≤ sig(v j

i (t + 1))
0 else

(26.3)

where randi is a uniform random variable in the interval [0,1].

26.3.2 The Classical BGSA Algorithm

Gravitational search algorithm (GSA) is a recent metaheuristic algorithm based on
the law of gravity and mass interactions. The binary version of GSA (BGSA) has
been first published by Rashedi et al. [23].

The first step is to initialize position and velocities for all agents (particles).
Secondly, we adapt GSA parameters according to Eqs. (26.4), (26.5), and (26.7)–
(26.11) (the description of GSA parameters can be found for instance in [23]):

best(t) = min
i

f iti(t) (26.4)

worst(t) = max
i

f iti(t) (26.5)

mi(t) =
f iti(t)−worst(t)

best(t)−worst(t)
(26.6)

Mi(t) = Mii(t) =
mi(t)

∑N
j=1 m j(t)

(26.7)

F j
i j(t) = G.(

Mpi(t)Ma j(t)
Ri j(t)+ ε

).(x j
j(t)− x j

i (t)) (26.8)

F j
i (t) =∑

j �=i

randiF
j

i j(t) (26.9)

a j
i (t) =

F j
i (t)

Mii(t)
(26.10)

v j
i (t + 1) = randi v j

i (t)+ a j
i (t) (26.11)

where f iti(t) is the current fitness of agent i at iteration t. ε is a small constant, Ri j(t)
is the Euclidean distance between two objects i and j. randi is a random variable
as defined previously, G is the gravitational constant. p and a are two indices that
distinguish between active and passive masses [23].

In a same manner of BPSO, the velocity is considered in BGSA as a probabil-
ity. But, in GSA, a position updating means a switching between the two possible
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values. In other words, it shows the probability of changing the value of x j
i (t) from

“0” to “1” and vice versa. Also, the transformation is done using the tanh function
instead of sigmoid function as defined in Eq. (26.12):

x j
i (t + 1) =

⎧
⎪⎨
⎪⎩

x j
i (t) if randi ≤ |tanh(v j

i (t + 1))|

x j
i (t) else

(26.12)

26.3.3 The Aggregative Multi-Objective Fitness Function of FS

To be able to use metaheuristics for FS. The features have to be coded as binary
vectors in which the dimension of the vector is the number of features.
Regarding the classification algorithm of the wrapper approach, we choose K-
nearest neighbour (KNN) which is commonly used for this purpose. Or, our hy-
brid metaheuristic algorithm can be combined also with other supervised machine
learning algorithms to build the wrapper method.

As described by Xue et al. [29], in addition of the classification error, the perfor-
mance of a wrapper FS technique can be measured also by the number of features.
The trade-off between maximising the classification accuracy and minimizing the
number of features can be done in different manners. In this paper, as in [28], we
adopt an aggregative fitness function as described in Eq. (26.13):

F = αF1 +
1−α

F2
(26.13)

F1 is the error rate. F2 is related to the number of features as described in Eq. (26.14):

F2 = n− p (26.14)

where n is the complete number of features and p is the number of selected features.
The value of α is set to 0.8 because the error rate has to be considered more than the
number of features as considered by Vignolo et al. [28] which proposed to adjust α
between 0.7 and 0.9.

26.3.4 The Proposed Hybrid Algorithm for FS

For building our approach, we combine firstly PSO and GSA in the same manner
used in [19]. Therefore, the update of velocities is done following Eq. (26.15):

v(t + 1) = ωv(t)+ c1r1a(t)+ c2.r2.(pg(t)− x(t)) (26.15)
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Secondly, we have to define the function which can transform a continuous space
value into a binary one. [15] have mentioned a number of discretization methods and
concluded that the sigmoid function is the most used in the binary context. However,
according to [1], these binary extension of PSO suffer from lack of convergence: this
problem can be observed for instance if the velocity is near to zero.

Thus, we adopt the tanh transformation (which is used by the classical BGSA)
for building our hybrid algorithm. Furthermore, we compare it with the sigmoid
function which is used by BPSO (the sigmoid function has been used also for the
transformation of BGSA as proposed for instance in [4]).

Also, in order to enhance population diversity, a mutation operator has been
added to our hybrid algorithm, we can notice that many mutation techniques have
been proposed for this purpose. Here, the uniform mutation is used as we can intro-
duce our algorithm BMPSOGSA. The BMPSOGSA pseudo-code for FS including
the uniform mutation is described below (Algorithms 1 and 2) where “xi j = xi j”
symbol in Algorithm 2 refers to the complementary of the binary variable x:

Algorithm 1 Uniform mutation algorithm
Data: Mutation probability (p), the number of particles (n), the number of features (d) and
matrix of random numbers ∈ [0,1] R (of [nxd] dimension)
for i = 1 to n do

for j=1 to d do
if R[i, j]≤ p then

xi j = xi j

end if
end for

end for
Results: Updated positions of particles

To better explain the process of using BMPSOGSA in the wrapper FS approach,
the flowchart of our proposed approach is depicted in Fig. 26.1: after initializing
the BMPSOGSA parameters, the selected features of the complete feature set are
updated at each iteration according to the obtained value of BMPSOGSA that min-
imize the fitness function. This fitness is a trade-off between the KNN classification
accuracy and the number of features. This process is repeated until reaching the final
solution which contains the selected features.

Furthermore, we investigate the use of a local search (LS) heuristic at the end of
the algorithm to refine the solution instead of mutation (as presented in Table 26.3).
Local search methods have been used for improving both PSO and GSA perfor-
mance. Also, [18] used it to improve the continuous PSOGSA.

Our contribution to the paper of Mirjalili et al. [19] which had recently defined
the BPSOGSA algorithm is first to adapt it to the FS problem. That is, the code used
in their paper (which is available online) isn’t yet adapted to the FS problem. Also,
in order to improve the diversity of BPSOGSA, we uses the mutation operator. Fur-
thermore, we examine the effect of using local search to refine the obtained solution
by BPSOGSA and we evaluate the tanh function for the mapping from continuous
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Algorithm 2 BMPSOGSA algorithm
Data: The number of particles (n), the number of features (d) and the initial positions
Initialization: accelerations, positions and velocities of particles
Set k and t values to 0
while (number of iterations t ≤ tmax not met) do

Evaluate the fitness Fi(t) of all the individuals
Determine the best and the worst particles: best(t) and worst(t) according to Eqs. (26.4) and
(26.5)
if (k ≤ 4) & (best(t −1)≤ best(t)) then

k −>k+1
else

Mutate population by uniform mutation algorithm (Algorithm 1)
Set k value to 0

end if
for i = 1 to number of particles do

for d = 1 to dimension of the problem do
Compute the acceleration a j

i (t) corresponding to Eq. (26.10) (BGSA algorithm)

Compute the velocity v j
i (t) corresponding to Eq. (26.15) (BPSO algorithm)

Compute the position x j
i (t) according to Eq. (26.12) using the tanh transformation

(BGSA algorithm)
end for

end for
t −→ t +1

end while
Results: The chosen subset based on the best particle in the population and corresponding fitness
value

Complete feature set

KNN classifier

Fitness function

Update feature subset by
BMPSOGSA (1 iteration)

Termination
condition satisfied

Selected features (final
solution of BMPSOGSA)

Yes

No

Initialization of
BMPSOGSA parameters

Fig. 26.1 The flowchart of our proposed scheme for FS
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to binary spaces by comparing it to the sigmoid function as described in the next
section.

26.4 Experiment

26.4.1 Experiment Setup

The selection of the suitable parameters is an important issue in both PSO and GSA.
Concerning the parameters c1 and c2 , we consider c1 = 0.5 and c2 = 1.25 . Regard-
ing the inertia weight w , as commonly used in both continuous and discrete versions
of PSO, we choose the time-varying method proposed by Shi and Eberhart [24]
which consists on decreasing this parameter according to the following equation:

ω = ωmax −
k

kmax
(ωmax −ωmin) (26.16)

k and kmax are respectively the current iteration and the maximum number of itera-
tions, the values of wmax and wmin are respectively set to 0.9 and 0.4. The maximum
number of iterations is set to 100, the number of particles (chromosomes for GA
and agents for GSA) is set to 40, the mutation rate is set to 0.05 and the random
number has been generated by the matlab software.

All algorithms have been executed on a Matlab 8.1 (2013a). Ten datasets widely
adopted in benchmarking machine learning methods are used in our experiment.
These datasets have taken from the paper of Brown [3], they have different numbers
of features, classes and instances as representatives of real problems from different
fields as presented in Table 26.1.

Table 26.1 The data sets used in the experiment

Data sets name Number of features Number of instances Classes
breast 30 569 2
congress 16 435 2
heart 13 270 2
ionosphere 34 351 2
krvskp 36 3196 2
landsat 36 6435 6
lungcancer 56 32 3
parkinsons 22 195 2
semeion 256 1593 10
sonar 60 208 2
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26.4.2 Examination of BMPSOGSA for FS

In order to evaluate the efficiency of our approach for FS, we compare its best so-
lution found with those of three other candidate metaheuristics which are: genetic
algorithm (GA), BPSO and BGSA. Furthermore, we examine the BPSOGSA when
adopting the sigmoid function as a transfer function as in Eq. (26.12) (at the best
of our knowledge, BPSOGSA is the unique binary hybridization of PSO and GSA
presented in literature).

Therefore, in this section, we depict the obtained values of the fitness func-
tion described in Eq. (26.13) in Table 26.2. More details which contains the best
solution found (in ‘semeion’, the solution is shown partially) and its correspond-
ing number of features are presented in Table 26.4. Also, to illustrate the muta-
tion and local search (LS) effect on BPSOGSA, Table 26.3 gives a comparative
study of BMPSOGSA, BPSOGSA and BPSOGSA-LS. Furthermore, we display in
Figs. 26.2, 26.3, 26.4, 26.5 and 26.6 the obtained values by BMPSOGSA in the
benchmark dataset at each iteration (Table 26.4).

From Table 26.2, it is clearly shown that the BMPSOGSA gives significantly
better results than BPSO, BGSA and BPSOGSA with sigmoid transformation in

Table 26.2 Comparison of BMPSOGSA performance. Bold values are the best obtained results

Data sets BMPSOGSA BPSOGSA-Sig BPSO BGSA GA
breast 0.022178 0.028345 0.026577 0.03426 0.022178
congress 0.0347335 0.037808 0.0347335 0.036897 0.0347335
heart 0.10148 0.1131 0.10519 0.11613 0.10148
ionosphere 0.0262336 0.04708 0.042435 0.063746 0.026567
krvskp 0.0191211 0.04 0.024146 0.030022 0.020025
landsat 0.0744114 0.79231 0.0778024 0.078129 0.0721737
lungcancer 0.0047619 0.14 0.05625 0.10645 0.0302632
parkinsons 0.0194872 0.05 0.022284 0.026387 0.0166
semeion 0.0258149 0.0344285 0.029616 0.036646 0.0191769
sonar 0.016667 0.026127 0.026374 0.02099 0.005882

Table 26.3 Examination of mutation and LS effects on BPSOGSA. Bold values are the best
obtained results

BMPSOGSA BPSOGSA-LS BPSOGSA
breast 0.022178 0.023765 0.023765
congress 0.0347335 0.0347335 0.0347335
heart 0.10148 0.10148 0.10148
ionosphere 0.0262336 0.026567 0.026567
krvskp 0.0191211 0.017272 0.0192584
landsat 0.0744114 0.073293 0.073293
lungcancer 0.0047619 0.030128 0.302632
parkinsons 0.0194872 0.033846 0.0378089
semeion 0.0258149 0.020937 0.020937
sonar 0.016667 0.005 0.007242
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Table 26.4 The number features corresponding to best solutions

Data sets No features Best result
breast 9 1 4 8 15 18 21 22 28 29
congress 5 2 3 4 9 11
heart 7 3 5 9 10 11 12 13
ionosphere 9 2 5 9 13 14 15 17 24 27
krvskp 18 1 6 7 10 11 15 16 17 18 20 21 22 23 27 29 30 33 35
landsat 36 1 2 3 5 7 9 10 12 14 16 17 18 19 24 25 27 28 29 34 35
lungcancer 14 2 3 4 6 8 17 18 19 23 30 34 36 37 46
parkinsons 6 1 17 18 20 21 22
semeion 113 1 2 3 7 8 9 10 12 17 20 21 ...
sonar 60 4 6 7 9 10 13 15 16 20 22 25 34 36 40 41 45 46 48 53 60
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Fig. 26.6 Results obtained for semeion and sonar dataset for BMPSOGSA

all dataset. Even if BMPSOGSA outperforms GA in the five first dataset or gives
the same results and converges rapidly than GA, GA performance is better than
BMPSOGSA in the remaining dataset. This issue may be resolved by adding an
adaptive mutation strategy to BMPSOGSA to enhance the mutation performance.
We notice also from Table 26.3 that the local search has improved the accuracy of
BPSOGSA in a number of datasets (5, 7, 8 and 10). However, the LS (pattern search)
is much more computational demanding of resources than the mutation operator.
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26.4.3 Comparison with Well-Known FS Techniques

To further examine the BMPSOGSA algorithm, we compare it with other well
known wrapper FS techniques. The considered approaches are mutual information
(MI), statistical dependency (SD), random subset feature selection (RSFS), sequen-
tial forward selection (SFS) and sequential floating forward selection (SFFS). There
have been used in [22]. We have adapted the available code of these methods to the
ten benchmark dataset. In this section, the fitness information is limited to the clas-
sification error using KNN classifier as in the mentioned paper because the number
of the selected features depends on the methods parameters which are defined by the
user. For instance, mutual information (MI) and statistical dependency (SD) consist
of ranking variables and choosing the best ones. In this experiment, the number of
chosen features is set to the third of the total number of features (if the third is not
an integer, we use the nearest integer to it) (Table 26.5).

Table 26.5 Comparison of BMPSOGSA performance with well-known FS methods. Bold values
are the best obtained results

Data sets BMPSOGSA SD MI RSFS SFS SFFS
breast Error 0.0158 0.0510 0.0510 0.0475 0.0158 0.0756

Features 9 10 10 10 10 2
congress Error 0.02069 0.0391 0.0391 0.0.0391 0.0276 0.0414

Features 5 5 5 3 5 2
heart Error 0.085182 0.1630 0.1630 0.1556 0.1630 0.1630

Features 7 4 4 5 4 4
ionosphere Error 0.0254 0.1026 0.0826 0.0741 0.0313 0.0684

Features 9 11 11 12 8 3
krvskp Error 0.0160 0.0788 0.0788 0.1724 0.0335 0.3069

Features 18 12 12 5 12 2
landsat Error 0.0751 0.1803 0.1737 – – –a

Features 21 12 12 – – – a

lungcancer Error 0.0313 0.3125 0.2188 0.1875 0.1250 0.1250
Features 17 19 19 8 4 4

parkinsons Error 0.0051 0.1077 0.1077 0.0410 0.0205 0.1590
Features 9 7 7 8 7 2

semeion Error 0.0301 0.0722 0.0722 0.7589 0.0621 0.7533
Features 115 85 85 4 42 2

sonar Error 0.0192 0.026127 0.0433 0.1154 0.0048 0.4183
Features 26 20 20 11 17 2

a The problem cannot be solved by the used tools. This is probably caused by the huge number of
iterations of RSFS, SFS and SFFS (the number of instances of this sample is 6435)

As a first remark, we can see that BMPSOGSA and SFS give better results
than the other well known methods which are considered in this experiment. BMP-
SOGSA has better results than SD, MI, RSFS and SFFS. In more details, SD and
MI give almost similar results which are lower than BMPSOGSA. Moreover, they
are not adapted if the number of instances is less than the number of features (lung-
cancer). We can see also that SFFS is more restricted in terms of number of features
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(caused by the “floating” concept). We can see also that BMPSOGSA gives better
results than SFS in most cases. Therefore, we can confirm again that the metaheuris-
tics are in most cases more adapted to the FS problem than traditional methods and
that our proposed BMPSOGSA algorithm is promising for FS.

26.5 Conclusion

In this paper, we have proposed a binary hybridization of GSA and PSO algorithms
enhanced by a mutation operator. Our aim was to investigate the performance of
this hybrid metaheuristic in wrapper feature selection methods. Experimental results
show that the proposed BMPSOGSA has given better computational performance
than BPSO, BGSA and BPSOGSA-Sig in all benchmark datasets and competitive
results to GA. Moreover, it has outperformed a number of well-known methods for
FS. However, the mutation operator can still be extended to clearly improve the
BPSOGSA algorithm. Therefore, future research should attempt to add a learning
strategy to the mutation operator in order to enhance its impact on the adaptivity of
our algorithm.
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Chapter 27
An Optimal Deployment of Readers for RFID
Network Planning Using NSGA-II

Abdelkader Raghib, Badr Abou El Majd, and Brahim Aghezzaf

Abstract Radio frequency identification (RFID) is an automated data collection
technology with the aim to facilitate data acquisition and storage without human
intervention. RFID process depends on radio-frequency waves to transfer data be-
tween a reader and an electronic tag attached to an item, in order to identify ob-
jects or persons, which allows an automated traceability. The deployment of RFID
readers is an important component in RFID system, and plays a key role in RFID
Network Planning (RNP). Therefore, in order to optimize the deployment of RFID
reader problem, we propose a new approach based on multi-level strategy using as
main objectives the coverage, the number of deployed readers and the interference.
In this way, Non-dominated Sorting Genetic algorithm II (NSGA-II) is adopted in
order to minimize the total quantity of readers required to identify all tags in a given
area. The proposed multi-level approach based on NSGA-II algorithm has a several
attractive features which makes it ideal for our research and the simulation results
show its effectiveness and performance.

Keywords NSGA-II • RFID • RFID network planning • Deployment • Multi-
objective problem • Optimization

27.1 Introduction

The term RFID refers to the radio frequency identification technology. It’s an au-
tomated data collection technology using radio-frequency waves to transfer data
between a reader and a tag which consist to identify, track and do management of
material flow. Figure 27.1 presents the basic components of an RFID system.
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Fig. 27.1 Basic components of a typical RFID system

The identification of objects using RFID system depends on the communication
process between a reader and an electronic tag, attached to an item. This process
depends on correlated factors: the position and orientation of RFID tags, the in-
terference from the environment, the type of material to identify and infrastructure
limitations, etc.
One factor that is under control is the location and orientation of RFID reader. Gen-
erally, in order to detect and monitor the tags in RFID network, multiple readers are
required according to their limited interrogation range. The cost and the number of
tags covered directly depend on the number of deployed readers. Therefore, with
the aim to minimize the deployment costs, there is a need to determine the optimal
quantity and positions of RFID reader in the working area without losing efficiency
in the communication process.

In the new global RFID system, the deployment of the readers has become a cen-
tral issue for the RFID network planning. The aim is to optimize the deployment
of RFID readers by covering all the tags in the entire region using a few number of
readers. Therefore, several attempts have been made to achieve the optimal RFID
network planning, mostly by using the multi-objective optimization [7] based on
operators and algorithms. There is a large volume of published studies describing
the role of the RFID Network Planning (RNP) and presenting several keys in order
to achieve the optimal deployment of RFID readers. As in [9], authors presented a
tentative reader elimination operator (TRE) based on PSO algorithm, and with the
aim to delete and recover the deployed readers during the search process. Detailed
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multi-objective optimization of RNP showed in [6, 2], in order to find the globally
best Pareto-optimal solutions of the problem. In other major studies and with the aim
to propose a new way to solve RNP problem [12, 4, 13], describe a new optimiza-
tion algorithms under the name of hierarchical artificial bee colony (HABC), the
multi-colony bacteria foraging optimization (MC-BFO), and the cooperative multi-
objective artificial colony (CMOABC), respectively. Hsu and Yuan [10], Lu and Yu
[11], and Chen et al. [5] provide in-depth analysis and results of the RNP problem,
by using new models in order to obtain an optimal deployment.

The aim of this paper is to propose an efficient multi-level approach, based on
the non-dominated sorting genetic algorithm II (NSGA-II), with several attractive
features: determining the minimum number of readers, finding their optimal posi-
tions, guarantying a full coverage of all the tags and minimizing the interference of
the environment, etc.

The overall structure of this paper takes the form of five sections. Section 27.2
begins by laying out the theoretical dimension of the deployment of RFID readers
problem, and gives its mathematical formulation. Section 27.3 is concerned with the
methodology and the methods used to solve the deployment problem. For that, we
define the non-dominated sorting genetic algorithm II (NSGA-II). Also, we describe
the two proposed approaches (the multi-level and the multi-objective optimization).
Section 27.4 presents the numerical results. Finally, we conclude and give some
perspectives.

27.2 Problem Formulation

In this section, we outline the different objectives and constraints that we consid-
ered for the optimal deployment of RFID readers. The goal is to find a set of
the coordinates readers such that all the tags of the whole area is covered. At
the same time, the total number of readers and their interference must be mini-
mized. Figure 27.2 shows an example of RFID deployment: readers are presented
by red cross and their interrogation range by red circles, tags are presented by blue
diamond nodes.

Throughout this paper, we use the following notations:

• NR : Number of the available RFID readers.
• NT : Number of the tags deployed in the area.
• IR j: Interrogation range of the jth reader.
• d ji : Distance between the jth reader and the ith tag.
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Fig. 27.2 Example of RFID deployment

27.2.1 Number of Deployed Readers

The first objective function represents the number of RFID readers, which is an
important index for evaluating the performance of the deployment. Minimizing the
total number of readers aims to reduce the cost. The optimization algorithm will
search for the minimum value of this objective function. It can be defined as:

f1 =
NR

∑
j=1

r j

Where,

r j =

{
1 if the jth reader is deployed.
0 otherwise.

Moreover, the algorithm finds the optimal position of each deployed reader, and
satisfies the constraint which ensures that we can only place each reader within a
certain area. For a rectangular area with height H and width W , this constraint is
satisfied:

0 ≤ x j ≤ H and 0 ≤ y j ≤ W ∀ j = 1, . . . ,NR

27.2.2 Full Coverage

The main objective function for the deployment of RFID readers is to cover all the
tags in the whole space. That means each tag must be in the interrogation range of
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at least one deployed reader. Therefore, we should reduce the number of non-covert
tags, which can be formulated as follows:

f2 = NT −
NT

∑
i=1

y ji ( j = 1 . . .NR)

Where,

y ji =

{
1 if ∃! j = 1 . . .NR such that (d ji ≤ IR j and r j = 1)
0 otherwise.

27.2.3 Interference

The interference is the interrogation of a tag with several readers at the same
time. It decreases the efficiency of the RFID system. As we can see in Fig. 27.3,
the interference mainly occurs when at least two deployed readers in the area
cover a tag.

Fig. 27.3 Example of the interference of six tags covered by three RFID readers

The interference must be reduced by using the following expression:

f3 =
NT

∑
i=1

ci

Where,

ci =

{
1 if ∑NR

j=1 y ji ≥ 2
0 otherwise.

27.3 Methods

In order to find an optimal deployment of the RFID readers, the NSGA-II algorithm
is adopted for this investigation due to its several advantages.
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27.3.1 NSGA-II Algorithm

The term NSGA-II has come to be used to refer to the meta-heuristic Non-dominated
Sorting Genetic algorithm II [8], and can be defined as a recent multi-objective ge-
netic algorithm.

The genetic algorithm (GA) is a famous population-based search algorithm
which adopted in the NSGA-II algorithm. It was introduced originally by J. Hol-
land in 1975, inspired on Darwin’s principle of natural selection (Survival of
the fittest). This optimization algorithm explores the search space of a problem
by maintains a population of candidate solutions, and makes it evolve by itera-
tively applying a set of stochastic operators, in order to optimize one or several
objectives.

The GA has a several attractive features: strong robustness, simplicity of the con-
cepts, high efficiency, flexibility, parallelism, etc. This advantage makes GA more
robust, and it has been successfully applied in many areas and solved a variety of
optimization problems in a faster and cheaper way [3, 14, 15, 1].

Each chromosome of the population which represents a candidate solution of
the problem explores the search space effectively, in order to obtain better results.
Therefore, the GA’s process begins by evaluating the fitness (performance) of the
chromosomes. According on the evaluation’s results, and by using simple evolu-
tionary operators (selection, crossover and mutation), some individuals reproduce,
others disappear and only the best adapted individuals are expected to survive in
order to create a new efficiently population.

It is becoming increasingly difficult to ignore the high computational complex-
ity, the non elitism approach and the need for specifying a sharing parameter when
solving multi-modal problems by using multi objective evolutionary algorithms [8].
NSGA-II with three special characteristics, fast non-dominated sorting approach,
fast crowded distance estimation procedure and simple crowded comparison opera-
tor can be used to limit the previous difficulties.

As we can see in Fig. 27.4 [8], the basic of the NSGA-II algorithm is very sim-
ple. It starts by initializing randomly a population, and sorting all the individual
according to the non-domination criteria. Moreover, the individuals are selected
based on the rank and the crowding distance in order to guarantee diversity and
spread of solutions. Also, the solutions will be modified by using specific crossover
and mutation operators with the aim to generate potentially better ones. Offspring
and current generation population are combined and the individuals of the next
generation are set by selection and repeats until achieving one of the stopping
criterion.
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Fig. 27.4 Procedure of the non-dominated sorting genetic algorithm II (NSGA-II) at the tth gen-
eration

27.3.2 The Proposed Approaches

In order to find a full coverage of all the tags distributed in the search space and mini-
mizing their interferences, by using a minimal number of the RFID readers and find-
ing their optimal positions, we presented a mathematical model based on NSGA-II
algorithm for solving the multi-objective RFID readers deployment problem.

{
Min F(x,y,r) = ( f1(x,y,r), f2(x,y,r), f3(x,y,r))
(x,y,r) ∈ (RN

+,R
N
+,{0,1}N)

Each chromosome i of the population contains N available readers according to
the decision maker.

(x1
i ,y

1
i ,r

1
i ,x

2
i ,y

2
i ,r

2
i , . . . ,x

N
i ,y

N
i ,r

N
i )

where (xk
i ,y

k
i ) is the coordinate of the kth reader and rk

i its availability, which equals
1 if its deployed and 0 otherwise. N is the maximum number of RFID readers that
can be deployed in the working area.

Our approach transforms the multi-objective problem, explained above, into an
equivalent bi-objective problem. For that we presented a mathematical model for
obtaining robust solutions using the multi-level approach. The first objective, asso-
ciated to the number of deployed readers, is included in the multi-level concept.

{
Min F(x,y) = ( f2(x,y), f3(x,y))
(x,y) ∈ (RL

+,R
L
+)

where L is the level of the proposed approach as shown in Table 27.1. Moreover,
it’s the number of deployed readers, and the dimension of each individual of the
population.

Each chromosome i contains one or more readers according to the dimension of
the NSGA-II and without fixing the number of available readers, and each one of
them is represented by its coordinate.

(x1
i ,y

1
i ,x

2
i ,y

2
i , . . . ,x

N
i ,y

N
i )
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where (xk
i ,y

k
i ) is the coordinate of the kth reader. The kth level means that we use

the NSGA-II algorithm to find the best solution which covers the maximum of tags
by using k readers in each chromosome.

Table 27.1 Representation of each chromosome of the population

Levels ith chromosome of the population

Level 1 (x1
i ,y

1
i )

Level 2 (x1
i ,y

1
i ,x

2
i ,y

2
i )

. .

. .

. .

Level N (x1
i ,y

1
i ,x

2
i ,y

2
i , . . .,x

N
i ,y

N
i )

As we can see in Fig. 27.5, the proposed multi-level approach starts by deploy-
ing randomly a reader, and then updates its position in order to determine the best
location required to cover the maximum number of tags. At each update, the best
position is searched until we reach the full coverage, or we increment the number of
readers when a search timeout occurs.

The proposed approach has a several of attractive features:

• Finding an optimal deployment without fixing the number of available readers in
the beginning.

• Having complete reports of all levels in order to have many optimal solutions and
facilitate the decision aiding to determine the best judgment of all the scenarios.

• Transforming the multi-objective deployment problem to a bi-objective problem,
which reduce the complexity.

• Minimizing data quantity by controlling the chromosome’s dimension and the
number of readers in all levels.

• Reducing the number of decision variables, which decrease the chromosome’s
length.

27.4 Results and Discussion

The experiments were conducted to evaluate and validate the performance of the
proposed approach. In this case, we considered six benchmarking problems namely
C30, R30, C50, R50, C100 and R100, which contain 30, 50 and 100 tags deployed
in the working area. All the six problems have been described in [9]. The readers
and the tags are distributed in an area of 50*50 m.
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Start

Level ← 1

Initialize the population

Execute NSGA-II

Full Coverage ?

Level ← Level+1

Display the best solution

Stop

No

Yes

Length_Chromosome←Level

Fig. 27.5 Flowchart of the proposed Multi-Level approach

The comparisons between the two approaches (the multi-level and the multi
objective optimization) were made using a set of parameter settings as shown in
Table 27.2.

Table 27.2 Properties of multi-objective and multi-level optimization by using NSGA-II algorithm

Parameter
Value

Multi objective Multi level

Area height H 50.0 50.0

Area width W 50.0 50.0

Number of available readers N –

Maximum iterations 25,000 10,000

Population size 20 20

Length of chromosome N Level dimension

Number of run 10 10
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Fig. 27.6 C30’s Pareto-front obtained by us-
ing Multi-Level and Multi-Objective Opti-
mization
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Fig. 27.7 R30’s Pareto-front obtained by us-
ing Multi-Level and Multi-Objective Opti-
mization

Table 27.3 The results of the two approaches for solving the six benchmarks

Benchmarks C30 C50 C100 R30 R50 R100

Multi objective

Best
Coverage 100% 100% 100% 100% 100% 100%
Readers 3 5 5 6 8 8

Interference 0 0 0 0 0 2

Mean
Coverage 100% 100% 100% 98% 98.4% 98.4%
Readers 3 5 5 6.2 7.4 7.7

Interference 0 0 0 0.4 0.8 5

Worst
Coverage 100% 100% 100% 100% 100% 97%
Readers 3 5 5 7 8 8

Interference 0 0 0 2 1 5

Multi level

Best
Coverage 100% 100% 100% 100% 100% 100%
Readers 3 5 5 6 7 8

Interference 0 0 0 0 0 0

Mean
Coverage 100% 100% 100% 100% 100% 100%
Readers 3 5 5 6.8 7.7 8

Interference 0 0 0 0 0 1.6

Worst
Coverage 100% 100% 100% 100% 100% 100%
Readers 3 5 5 7 8 8

Interference 0 0 0 0 0 4
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Fig. 27.8 C50’s Pareto-front obtained by us-
ing Multi-Level and Multi-Objective Opti-
mization
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Fig. 27.9 R50’s Pareto-front obtained by us-
ing Multi-Level and Multi-Objective Opti-
mization
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Fig. 27.10 C100’s Pareto-front obtained by
using Multi-Level and Multi-Objective Opti-
mization
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Fig. 27.11 R100’s Pareto-front obtained by
using Multi-Level and Multi-Objective Opti-
mization

Table 27.3 presents the global results obtained from all the six problems by using
the multi-level and the multi-objective optimization based on NSGA-II algorithm.
It can be seen clearly that our proposed approach outperforms the multi-objective
approach even in the worst runs. On all the six problems, it achieves the full coverage
with the optimal number of deployed readers in almost all the run even for the
complex problems (R30, R50 and R100).

These results are graphically supported in Figs. 27.6, 27.7, 27.8, 27.9, 27.10,
and 27.11 by a set of Pareto optimal solution for the six problems according to
two objectives (the tags coverage and the number of deployed readers). It’s clearly
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Fig. 27.12 The optimal deployment of C30’s
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Fig. 27.13 The optimal deployment of C50’s
problem
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Fig. 27.14 The optimal deployment of
C100’s problem
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Fig. 27.15 The optimal deployment of R30’s
problem

observed and confirmed that the multi-level approach as the robust strategy provid-
ing the best overall performance by guarantying the quality of the non dominated
solutions than the multi-objective optimization and yield higher accuracy and effi-
ciency in a faster and cheaper way. Also, as we can see in the Pareto’s figures, our
approach obtains always the optimal solutions, which facilitate the decision aiding
by giving a global vision of all the scenarios in order to increase the quality of the
RFID system. All the optimal deployment of RFID readers for the six benchmark
problems are shown in Figs. 27.12, 27.13, 27.14, 27.15, 27.16, and 27.17.
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Fig. 27.16 The optimal deployment of R50’s
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Fig. 27.17 The optimal deployment of
R100’s problem

27.5 Conclusion

This study set out to determine an optimal solution of deployment readers problem
for the multi objective RFID network planning. The results obtained demonstrate
clearly the efficiency and the robustness of the proposed approach by determining
a minimal number of readers, finding their optimal positions, guaranteeing a full
coverage of all tags in the working area and minimizing their interferences. As per-
spectives, we plan to apply the multi-level approach in the airport, with the aim to
achieve an optimal deployment of RFID readers for tracking the luggage, which is
a part of a global contribution of a complete RFID system application. Moreover,
we suggest to apply the proposed approach for more complex benchmarks and real
applications.
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Chapter 28
An Enhanced Bat Echolocation Approach
for Security Audit Trails Analysis Using
Manhattan Distance

Wassila Guendouzi and Abdelmadjid Boukra

Abstract Security Audit Trail Analysis problem consists in detecting predefined at-
tack scenarios in the audit trails. Each attack scenario is defined by a number of
occurrences of auditable events. This problem is classified as an NP-Hard combina-
torial optimization problem. In this paper, we propose to use the Bat echolocation
approach to solve such problem. The proposed approach named an Enhanced Binary
Bat Algorithm (EBBA) is an improvement of Bat Algorithm (BA). The fitness func-
tion is defined as the global attacks risks. In order to improve , the fitness function is
combined with the Manhattan distance measure. Thus, intrusion detection process
is guided, on one hand, by the fitness function that aims to maximize the global
attacks risks and, on the other hand, by the Manhattan distance that attempts to re-
duce false Positives and false negatives. The best solution retained has the smallest
Manhattan distance. Experiments show that the use of the Manhattan distance im-
proves substantially the intrusion detection quality. The comparative study proves
the effectiveness of the proposed approach to make correct prediction.

Keywords Intrusion detection • Security audit trail analysis • Combinatorial
optimization problem • NP-Hard • Manhattan distance • Metaheuristics • Bat
algorithm

28.1 Introduction

In the last years, the ubiquity of network and computer systems in modern society
makes their protection a challenging task. Hackers and intruders, usually, exploit
security vulnerabilities in order to compromise the integrity, availability and confi-
dentiality of a computer resource. That is, traditional intrusion prevention alone like
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firewall, authentication and data encryption mechanism have failed to completely
provide protection against new and sophisticated types of intrusion. Therefore, a
second line of defense is needed. Intrusion detection system (IDS) has become an
important component in security infrastructures that aims to detect all intrusions in
an efficient manner. Intrusion detection is the process of monitoring and analyzing
security activities occurring in a computer or network systems [14].

IDSs can be categorized into different classes according to five concepts: usage
frequency (real-time detection or batch detection), audit source location (Host IDS,
Network IDS or Hybrid IDS), architecture (centralized or distributed), detection
method (anomaly based or misuse based detection) and detection response (passive
or active) [14]. The detection method is the brain of IDS.

In this paper, we are interested in misuse detection. The misuse mechanism aims
to detect predefined attack scenarios in the audit trails. Each attack scenario is de-
fined by a number of occurrences of auditable events. The temporal order of events
sequences is not considered. The problem formulated in Sect. 28.3 is an NP-Hard
combinatorial optimization problem [12]. Accordingly, it requires heuristic meth-
ods as databases of events and attacks grow. We investigate the efficiency of Bat
Algorithm (BA) to solve such problem. BA is a powerful metaheuristic based on
the echolocation principal of bats species when they navigate or chase prey. Our ap-
proach is an Enhanced Binary Bat Algorithm (EBBA) that combines fitness function
with Manhattan distance to find the near optimal solution.

This paper is organized as follows. Section 28.2 presents the related work.
Section 28.3 describes the problem formulation. Section 28.4 is dedicated to an
overview of BA. Section 28.5 explains the proposed approach. Section 28.6 shows
the experimental results and performance evaluation. Finally, we conclude
in Sect. 28.7.

28.2 Related Work

In literature, different techniques, from different disciplines were used to develop
efficient intrusion detection systems. The detection method can perform either
anomaly based or misuse based detection. These two approaches are complemen-
tary. Some works propose to hybridize them [15].

In anomaly based approach, intrusions are identified as deviations from normal
behavior. Statistical methods for anomaly detection were the first proposed in the
area of intrusion detection. Other works based on learning techniques use neural
network [16], immune systems [8] and genetic algorithm [11]. Clustering techniques
are also employed [17].

Misuse detection approach consists of comparing recorded audit trail against pre-
defined signatures. Generally, these techniques analyze audit trail files where are
collected a set of user activities recorded from computer systems. Among the used
techniques for misuse detection we can find genetic algorithm [1] and neural net-



28 An Enhanced Bat Echolocation Approach for Security Audit Trails Analysis 479

work [2]. In [10] Lee uses rule association and frequent episode techniques. Swarm
intelligence [9] is also applied to the intrusion detection field. Dass [6] and Mé [12]
both use genetic algorithm to solve such problem. These two works were improved
in [7] with new defined fitness functions and in [3, 4] and [5] using new Metaheuris-
tics, BBO and HS respectively.

28.3 Problem Formulation

Audit trail analysis problem consists in searching predefined attack scenarios in
the audit trails. Attack scenario is defined as a set of activities that intruders un-
dertake on the computer systems. The proposed work is based on multiple fault
diagnosis approach. This approach is analogous to the process of disease diagnosis
in medicine. It aims to determine the set of conditions that may explain the pres-
ence of observed symptoms (the recorded events in the audit trails), using a specific
knowledge of cause and effect (the attack scenarios).

This approach uses a predefined matrix of attack scenarios in which the temporal
order of events sequences is not considered. Each attack scenario may be described
as a set of couple (Ei, Ni) such that Ei is the event of type i and Ni is the occurrences
number of this event in the audit trails. The mathematical formulation of the audit
trail analysis problem is described by the formulas (28.1) and (28.2) :

Max
Na

∑
j=1

R j ×Hj (28.1)

(AE ×H)i ≤ Oi, 1 ≤ i ≤ Ne (28.2)

Where:

• Ne is the number of events type.

• Na is the number of predefined attack scenarios.

• AE is the Attack/Event matrix of dimension (Ne×Na) that defines, for each
attack, the events it generates. Each element AEi j ≥ 0 is the number of events of
type i generated by the attack j.

• O is a vector of dimension Ne where each element Oi is the number of events of
type i in the audit file. O is created from the analyzed audit file by counting for
each event type the number of its occurrences in this file.

• R is a vector of dimension Na where R j > 0 is the incurred risk of attack j.

• H is the hypothesis vector of dimension Na where Hj = 1 if attack j is present
and Hj = 0 otherwise.

In the audit trail analysis, we aim to obtain the H vector that maximizes the
Product R×H given in (28.1), with the constraint (28.2). The problem is to find the
sub set of present attacks in the audit file. This problem is an NP-Hard combinatorial
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optimization problem [12]. Thus, the application of exact algorithm is impossible
for large size instances. The use of heuristics gains recognition. We opt in this paper
to use the Bat echolocation principle to solve this problem.

28.4 Bat Algorithm Overview

BA mimics the echolocation principle of bats. It was introduced, firstly, by Yang
[18]. Bats send out ultrasonic signals and examine returning echoes to analyze its
surroundings. In BA, Yang has modeled the echolocation characteristics as follows
[18]: Each artificial bat i flies randomly with frequency fi, velocity vi at position
xi. These three parameters are updated according to the formulas (28.3), (28.4) and
(28.5) respectively [18]:

fi = fmin +( fmax − fmin).β (28.3)

vi.(t + 1) = vi(t)+ (xi(t)−Gbest). fi (28.4)

xi (t + 1) = xi (t)+ vi (t + 1) (28.5)

Where β is a random number of a uniform distribution within the interval [0,1],
Gbest is the best solution found until now and fi is the frequency of i-th bat. The
range of frequency is, usually, in the interval [ fmin, fmax].

BA performs a local search by generating a new local solution using local random
walk given by formula (28.6) [18]:

xnew = xold + εA(t) (28.6)

Where ε is a random number in [−1,1]. ε attempts to control direction and
strength of the bat random walk. A(t) is the average loudness of all the bats at
time t.

By analogy to the bats echolocation principle the loudness Ai and the rate ri of
pulse emission have to be updated. Bats can automatically adjust the loudness Ai

and the rate ri, depending on the proximity of their target. The loudness usually
decreases and the rate of pulse emission increases. These two variables are updated
as in formulas (28.7) (28.8) [18]:

Ai (t + 1) = αAi (t) (28.7)

ri (t + 1) = rmax [1− exp(−γt)] (28.8)

Where α and γ are constants fixed experimentally. Initially, each bat should has
different values of loudness and pulse emission rate. These values are randomly
chosen. At the final step of the algorithm, Ai will equal zero, while the final value of
ri is rmax.
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Ai and ri are updated only if the new solutions are enhanced to guarantee that bats
are moving towards the near optimal solution. The basic steps of BA are summarized
in [19].

28.5 Proposed Approach

In this section we describe the main components of the proposed approach named
Enhanced Binary Bat Algorithm (EBBA). It is a balanced combination of exploita-
tion and exploration, controlled by the echolocation parameters Ai and ri. The gen-
eral steps are depicted in Algorithm 1. Note that in what follows we will use indif-
ferently H and xi to signify the solution.

Algorithm 1 EBBA
Initialize the bat population :

Xi (i = 1,2, ..., p) = rand (0 or 1)and Vi = 0
Initialise pulse rates ri and the loudness Ai

Fitness function f (x), x = (x1, x2, . . . , xp)
Define Pulse Frequency Fi, α and γ
while t < Max number of iteration and there is no Solution with Distance Manhattan = 0 do

for each bat bi (i = 1..p) do
if rand [0,1]> ri then

if xi is not feasible then
Apply solution transformation (transform not feasible solution to feasible one)

end if
Apply Vertical permutation (Add intrusion to xi by Transforming 0 Bits to 1)
Apply Horizontal permutation (Rearrange the position of Bits equal to 1)

end if
if rand [0,1]< Ai and f (xi)≥ f (Pbesti) then

Accept the new solution
Increase ri and reduce Ai

end if
Update Pbesti and Globalbest
Update Global best distance (save the solution having the minimum Manhattan distance
found until now)
for each dimension j ( j = 1..Na) do

Adjusting frequency and updating velocities using equations (28.3) (28.4)
Calculate transfer function value using equation (28.13)
if rand [0,1]< transfer function value then

x j
i = 0

Apply Horizontal permutation
end if

end for
end for

end while
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28.5.1 Solution Representation

The encoding for potential solutions is a binary vector H of dimension Na, where
each element Hj is equal to 1 if the attack j is present and equal to 0 otherwise. The
use of EBBA requires the simulation of virtual bats characterized each one by:

• Its position xi that corresponds to the solution H. consequently, the search space
is modeled as a discrete binary space of dimension Na. In each dimension j, the
bat i can move between the positions x j

i equal to 0 or 1.

• Its velocity vi which is used to calculate the next bat position. In each dimension
j, positions vary according to their own velocities v j

i . Indeed, vi is a vector of di-
mension Na in which each element v j

i is updated using Eq. (28.4). The frequency
fi varies in the interval [0,1].

• Its echolocation parameters: the intensity (Ai) and the pulse emission rate (ri).
We choose to vary these two parameters in the interval [0, 1].

28.5.2 Initialization of Algorithm Parameters and Bat Population

The first step in the algorithm is to initialize the parameters α , γ , generation number
(G) and the population size (P). We fix these parameters experimentally. Selected
values are given in the next section.

The initial population is randomly generated. For each bat, the position vector
xi is a random combination of 0 and 1 and the velocity vector vi is initialized to
0. According to the principle of BA, emission pulse rate (ri) is initially small and
thus must takes a value close to 0, however the intensity (Ai) is initialized to a value
close to 1. At the final step of the algorithm, ri tends to rmax (rmax equals to 1) and
Ai tends to 0.

28.5.3 Fitness Function and Manhattan Distance

28.5.3.1 Fitness Function

During the execution of the algorithm, new solutions are generated from existing
ones. Formula (28.9) defines the selective function.

Max
Na

∑
j=1

R j ×Hj (28.9)

Under the constraint : (AE ×H)i ≤ Oi, 1 ≤ i ≤ Ne.
A solution is feasible if it satisfies the defined constraint. That is, the numbers

of the occurrence of the different events generated by all present attacks are less



28 An Enhanced Bat Echolocation Approach for Security Audit Trails Analysis 483

than or equal to the number of events recorded in the observed vector (O). Because
many solutions are not feasible (do not satisfy the constraint), we opt to transform
not feasible solutions into feasible ones in order to reduce the execution time. The
pseudo code of this method is given in Sect. 28.5.5.

28.5.3.2 Manhattan Distance

Experiments show that the use of BA with the defined fitness function (28.9) alone
have failed to find the balance between: the need for detecting all possible attacks
and the need for avoiding false positive (detection of attacks that do not exist). We
have introduced the Manhattan distance combined with the fitness function in order
to improve the intrusion detection.

Definition 28.1. The Manhattan distance between two points A and B, with the re-
spective coordinates (XA,YA) and (XB,YB) is defined by (28.10):

d (A,B) = |XB −XA|+ |YB −YA| (28.10)

We define the Manhattan distance associated with the feasible solution as the
Manhattan distance between the vector Prod defined in (28.12) and the vector O.
this distance is given by the following formula:

d (prod,O) =
Ne

∑
i=1

(Oi − prodi) (28.11)

Such that Prod is a vector of dimension Ne where each element prodi is the sum
of the number of occurrences of event i generated by all the attacks of the solution
H. prodi is defined by the following formula:

prodi =
Na

∑
j=1

(AEi j ×Hj) (28.12)

To illustrate this, consider the example depicted in Fig. 28.1. The Manhattan dis-
tance associated with the solution vector H is calculated as follows: d(prod,O) =
(3+ 0+ 2+ 4+2+2+ 1+0+59+35)= 108
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Fig. 28.1 Example illustrating an instance of all structures manipulated by the algorithm to calcu-
late the fitness value and the Manhattan distance associated with a solution

28.5.4 Proposed Discretisation

The problem of our interest is of discrete nature. Therefore, since standard BA is a
continuous optimization algorithm, it cannot be used to solve such problem directly.
In this section, we propose an adaptation of the binary version of BA to the problem.
The main idea is to change the position of a virtual Bat according to the probability
of its velocity [13]. We have opted for a v-shaped transfer function, defined by
Eq. (28.13).

V
(

v j
i (t)

)
=

∣∣∣∣
2
π

arctan
(π

2
vi j (t)

)∣∣∣∣ (28.13)

For a large absolute value of the velocity, the transfer function V-shaped returns
a high probability of changing the position and it returns a small probability for
a small absolute value of the velocity [13]. Accordingly, the position vector is up-
dated using horizontal permutation described in the next subsection, as shown in the
following rule :

if V
(

v j
i (t)

)
> σ then

x j
i = 0

Apply Horizontal Permutation;
end if
Where σ is a random number in [0,1]. x j

i and v j
i indicate the position and velocity

of i-th Bat in j-th dimension respectively. As shown in the rule above, for each
dimension j, bats far from the global best solution (i.e. with a large absolute value
of the velocity v j

i ) will have a high probability to change their position. In this case,
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the detected intrusion j (x j
i equal to 1) is ignored by updating its value to 0. Then

horizontal permutation is applied to make deeper changes in the entire vector H. The
details of this procedure are given in the next subsection. Notice that we opt to stop
the Algorithm when it reaches the maximum of generation or when the Manhattan
distance is equal to 0.

28.5.5 Operators

In this section, we present the main operators used in Algorithm 1, namely vertical
permutation, horizontal permutation and solution transformation. The local search
(exploitation) uses the Vertical permutation and horizontal permutation. Exploration
uses only the horizontal permutation. Solution transformation is used to transform
not feasible solution to feasible one. For vertical and horizontal operators, each time
we modify the solution vector H, the Manhattan distance associated with it should
be updated. The naive way is to compute it from the scratch. Nevertheless, it can
take much time as data bases of events and attacks grow. For this, we propose a
fast incremental calculation procedure in which the Prod vector associated with the
current solution is used. This latter is updated and saved each time we add an intru-
sion into the current solution. In what follows, we explain these three operators and
present the corresponding algorithms.

28.5.5.1 Solution Transformation

The transformation is performed by removing present intrusions that cause con-
straint violation. That is, changing these specific bats positions x j

i from 1 to 0. Op-
erator 1 describes this process.

Operator 1 Solution transformation procedure
for each row i of the AE matrix (i = 1..Ne) do

Sous = O[i] //initialize the variable Sous
//for each position in H
for j=1 to Na do

if H[ j] = 1 and AE[i][ j] = 0 then
sous = sous−AE[i][ j]

end if
if Sous < 0 then

H[ j] = 0 //Delete the intrusion j, because it caused a constraint violation (Sous is nega-
tive)
Sous = sous+AE[i][ j] // reset the variable Sous to its former value

end if
end for

end for
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28.5.5.2 Vertical Permutation

Vertical permutation consists in adding intrusions into the vector H without con-
straint violation. It is performed by changing a specific bats positions x j

i from 0 to 1.
The choice of the positions that will be changed is guided by the Manhattan distance.
Positions x j

i equal to 0 is converted to 1 in the case where the Manhattan distance
associated with the initial vector H decreases. This operation is repeated until there
is no Positions x j

i equal to 0 in which their transformation to 1 decreases the Man-
hattan distance associated with H. The pseudo-code of the vertical permutation is
given in Operator 2.

Operator 2 Vertical permutation procedure
Calculate the vector named distance, using the initial vector H
Distanceinit = Manhattan distance associated with the initial vector H
while H is updated do

Distmin = minimum distance in the vector Distance
Indicemin= index of Distmin in the vector Distance
if Distmin < distanceinit then

H[Indicemin]=1 //add the intrusion
Distance [Indicemin]= -1// Update the distance element associated with the intrusion of
Indicemin

Update Distanceinit //Manhattan distance associated with the updated vector H (with H
[Indicemin] =1)
Update the vector Distance using the updated vector H

end if
end while

Such as Distance is a vector of dimension Na associated with a solution vector
H. it is used to save the Manhattan distance after changing each positions from zero
to one. Each element Distance[i] can have one of the following values:

• Distance[i] equals to −1 if the corresponding intrusion already exists (H[i] =1).

• Distance[i] equals to −1 if the corresponding intrusion do not exist (H[i] =0) and
changing it from 0 to one causes constraint violation.

• Distance[i] equals to the Manhattan distance associated with H after changing
the corresponding intrusion H[i] from 0 to 1. H[i] is equal to 0 and changing it
from 0 to 1 causes no constraint violation.

28.5.5.3 Horizontal Permutation

Horizontal permutation consists in permuting positions x j
i equal to 1 with positions

x j
i equal to 0 so as to reduce the Manhattan distance associated with H. In this per-

mutation, we keep the same number of intrusion but change their type. The pseudo-
code is given by Operator 3.
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Operator 3 Horizontal permutation procedure
Distinit = Manhattan distance associated with the initial vector H
for each i (i = 1..Na) with H[i]=1 do

Indicemin=-1 // initialize the variable Indicemin

// in the loop bellow we look for Indicemin

for each j ( j = 1..Na) with H[j]=0 do
Distpermutate= Manhattan distance associated with H if we permute H[j] with H[i] ;
if Distpermutate < Distinit then

//Update Distinit

Distinit = Distpermutate

Indicemin = j;
end if
//if we found Indicemin

if Indicemin!=-1 then
//do the permutation
H[i] = 0;
H[ j] =−1; // put -1 instead of 1 to avoid repeating the same permutation (at the end of
the procedure we return -1 to 1)

end if
end for

end for

28.6 Experimental Results

In order to evaluate the effectiveness of the proposed approach, several tests were
carried out using Attack-Events matrices of different sizes. Firstly, we validate our
approach using randomly generated instances of different size (28× 24, 100× 50,
and 200× 100). Subsequently, we use a matrix of real data issued from [12], con-
sisting in a set of 24 attacks scenarios of 28 auditable events. This matrix is used
to compare our approach with existing works [12, 5, 3]. The evaluation process
requires simulation of a set of attacks. That is, present attacks must be known in
advance. In order to evaluate the intrusion detection’s quality, we use the following
performance measures:

• True positive rate (TPR): proportion of intrusions correctly detected.

• False positive rate (FPR): proportion of intrusions detected but non-existent in
the analyzed file.

• Execution time (ET): time used by the approach to find a solution.

Our algorithm attempts to detect intrusions with a minimum FPR (ideally 0%), a
maximum TPR (ideally 100%) and minimum execution time (ET). As the proposed
approach is stochastic, TPR, FPR and ET are obtained from the average of ten runs.
The parameter values α ,γ , generation number (G), and population size (P) are ex-
perimentally determined. To evaluate the performance measures, various tests were
performed and the results are given below.
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28.6.1 Performance Validation Using Random Data

To validate the proposed approach, we conducted a series of experiments on ran-
domly generated instances of different sizes. We were considering matrices of di-
mensions 28× 24, 100× 50 and 200× 100.

28.6.1.1 Parameters Setting

To adjust the adaptation parameters α and γ we have performed a parametric study.
Figure 28.2a shows the evolution of the intensity Ai according to generation number
for different values of α . We have used α = 0.4, 0.8, 0.9, 0.99 and we retain the
value that gives a moderate decrease of intensity parameter from its initial (maxi-
mum close to 1 ) value towards its final value (minimum close to zero). Figure 28.2b
indicates the evolution of the pulse rate ri, according to generation number for dif-
ferent values of γ . We have used γ = 0.01, 0.1, 0.4, 0.8, 0.9 and we retain the value
that gives a moderate increase of pulse rate parameter from its initial (minimum)
value towards its final value rmax. Hence, α is set to 0,9 and γ to 0.1.

Thereafter, the performance evaluation was carried out by observing TPR, FPR
and TE for different values of the generation number parameter (G) and the pop-
ulation size parameter (P). In these experiments, α is set to 0,9 and γ to 0.1. The
number of injected attacks is randomly chosen.

Intrusion Detection Using Matrix AE (28× 24)

In Table 28.1, we find that the best value for the population size (P) is 10 (100%
TPR and 0% FPR). Table 28.2 shows that good results were obtained for generation
number G = 5. Thus, we hold the values P = 10 and G = 5.
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Intrusion Detection Using Matrix AE (100× 50)

The results given in Tables 28.3 and 28.4 show the influence of the population size
(P) and the generation number (G), respectively, on the performance measures (TPR,
FPR and ET). In these two tables, we observe that for P=50 and G=20, we get perfect
results (100% TPR and 0% FPR).

Table 28.1 Evolution of TPR, FPR and ET according to population size (P) using AE (28×24)

Population size (P) TPR (%) FPR (%) ET(s)

6 96.4 5.70 0.00468
10 100 0 0.00624
20 100 0 0.0078

Table 28.2 Evolution of TPR, FPR and ET according to generation number (G) using AE (28×24)

Generation number (G) TPR (%) FPR (%) ET(s)

3 97.6 4.28 0.00468
5 100 0 0.00624
20 100 0 0.00624

Table 28.3 Evolution of TPR, FPR and ET according to population size (P) using AE (100×50)

Population size (P) TPR (%) FPR (%) ET(s)

5 80.9 16 0.269
10 93 7.5 0.274
50 100 0 0.254
70 100 0 0.404

Table 28.4 Evolution of TPR, FPR and ET according to generation number (G) using AE (100×
50)

Generation number (G) TPR (%) FPR (%) ET(s)

10 96.3 4 0.840
20 100 0 0.254
100 100 0 0.365

Intrusion Detection Using Matrix AE (200× 100)

Herein, the experiment is repeated as shown above using larger instances. We test
the influence of the population size (P) on the performance measures (TPR, FPR
and ET). Table 28.5 shows that for a population size (P) equal to 400, we get a good
performance (100% TPR and 0% FPR). The Generation number (G) remained fixed
to 20. Thus, we hold the values P = 400 and G = 20.
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Table 28.5 Evolution of TPR, FPR and ET according to population size (P) using AE (200×100)

Population size (P) TPR (%) FPR (%) ET(s)

200 97.87 7 182.45
400 100 0 41.80
500 100 0 60.22

28.6.1.2 Influence of the Number of Injected Attacks (a) on Intrusion
Detection

Table 28.6 shows the influence of the number of injected attacks on the performance
measures (TPR, FPR and ET) using the previous 200× 100 Attack-Events matrix.
We observe that the number of injected attacks has no effect on the quality of intru-
sion detection. However, it influences the running time which grows with the growth
of the number of attacks especially for the largest instances.

Table 28.6 Evolution of TPR, FPR and ET according to population size (P) using AE (200×100)

Number of attacks (a) TPR (%) FPR (%) ET(s)

2 100 0 0.188
10 100 0 0.482
60 100 0 18.387
80 100 0 41.80

28.6.1.3 The Effect of Manhattan Distance on Intrusion Detection

The effect of the Manhattan distance can be investigated according to Table 28.7.
This table shows the performance measures (TPR, FPR and ET) obtained with and
without this measure. We compared the results obtained using Binary Bat Algorithm
(BBA) [13] without Manhattan distance, with our Enhanced Binary Bat Algorithm
(EBBA) that uses Manhattan Distance. We conducted these experiments on Attack-
Events matrices of different sizes using the previous parameters. Table 28.7 shows
that the proposed Approach (EBBA) improves substantially the intrusion detection
quality.

28.6.2 Comparisons of EBBA with BBO, GA and HS Algorithms
Using Real Data

In this section, we compare the results obtained by our algorithm (EBBA) with
those obtained by GA [12], BBO [5] and HS [3]. This comparison is made using
the same real data (matrix AE of dimension 28× 24) [12]. Table 28.8 indicates the
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Table 28.7 Influence of the Manhattan distance on intrusion detection

Matrices/algorithm BBA (without Manhattan distance) EBBA (with Manhattan distance)

TPR (%) FPR (%) ET(s) TPR (%) FPR (%) ET(s)

28×24 60 28 0.0109 100 0 0.0078

100×60 55 52 7.98 100 0 0.75

200×80 66 49 11.63 100 0 6.44

200×100 68 53 29.95 100 0 59

performance measures (TPR, FPR and ET) obtained by each algorithm according
to the two parameters values (population size and generation number). The rest of
EBBA parameters are set to the previous values (α = 0,9, γ = 0.1 and a = rand [0,
Na]). We observe that all attacks are detected in all approaches (TPR = 100% and
FPR = 0%) except genetic approach. However, our approach needs less time. We
observe that the number of generations needed in our method is less than the number
of generations needed for the other algorithms because of the intensive exploration
and exploitation done during each iteration and because we deal only with feasible
solutions.

Table 28.8 Comparisons of EBBA with BBO, GA and HS algorithms

Approach/measures TPR (%) FPR (%) ET(s) P G

GA 99.5 0.43 18 500 100
BBO 100 0 0.0705 50 100
HS 100 0 0.0560 30 200
EBBA 100 0 0.00156 10 5

28.7 Conclusion

Security Audit Trail Analysis problem consists in detecting predefined attack sce-
narios in the audit trails. The proposed work is based on a simplified analysis of
the audit trails in witch the temporal order of events sequences is not considered.
This problem can be formulated as an NP-Hard combinatorial optimization problem
[12]. In this paper we propose to use the Bat echolocation approach to solve such
problem. We propose an Enhanced Binary Bat Algorithm named EBBA that uses
fitness function in conjunction with Manhattan distance to improve the intrusion
detection’s quality. The evaluation was performed by observing the performance
measures: TPR, FPR and TE using randomly generated instances of different sizes.
Experimental results show the effectiveness of the proposed approach to make cor-
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rect predictions (100% TPR and 0% FPR). Another experiment was carried out
to investigate the effect of the Manhattan distance. The obtained results show that
the use of the Manhattan distance improves substantially the intrusion detection’s
quality. Experiments also show that the number of injected attacks has no effect on
the quality of intrusion detection. It influences the running time which grows with
the growth of the number of attacks. Comparisons with existing works [12, 5, 3]
are made using the same real data (matrix AE of dimension 28× 24) [12]. We ob-
serve that our approach gives the same good results (100% TPR and 0% FPR) with
less time.
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