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Abstract The diffusion of Internet of Things (IoT) technologies not only enables

the provision of advanced and valuable services, but also raises several challenges.

First of all, the increasing number of heterogeneous interconnected devices creates

scalability and interoperability issues, and thus, a flexible middleware platform is

needed to manage all the sources together with all the tasks related to data collec-

tion and integration. In fact, the large amount of data has to be properly managed.

In particular, on the one hand, data have to be protected from security threats; on

the other hand, it is necessary to consider that data are useful only if their quality

is suitable for the processes in which they have to be used. For these reasons, it is

important that applications/users that aim to exploit the collected data are aware of

data quality and security levels in order to understand if data can be trusted and thus

used. In this chapter, we present a distributed architecture for managing IoT data

extraction and processing that also includes algorithms for the assessment of data

quality and security levels of considered sources. A prototype of such an architec-

ture has been realized; through a user interface, it is possible to access data services

able to filter data from IoT devices on the basis of security and data quality require-

ments. The chapter describes the prototype and shows some experiments performed

by using several real-time open data feeds characterized by different levels of relia-

bility, quality and security.
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1 Introduction

The diffusion of Internet of Things (IoT) technologies turns everyday objects into

Smart Objects. A global network infrastructure allows such physical objects or things
to interact among themselves and with the environment where they are placed, in

order to fulfill a given goal [1]. Such an interaction, together with the collection

and integration of sensed data, not only enables the provision of innovative and cus-

tomized services to individuals and businesses in different application domains, but

also raises many challenges. In fact, the resulting system may include an extremely

large number of heterogeneous devices and thus creates scalability and interoperabil-

ity issues. Hence, it is necessary to deal with the variety of protocols, domains and

applications, and with the fact that estimations state in 2020 the number of Internet-

connected things will reach 20 billions. Moreover, connecting physical objects to

the Internet implies the transfer and management of a high amount of data that need

to be properly governed. In particular, in this chapter, we aim to highlight that data

governance concerns the analysis of data processes and risk management and, in

particular, it includes the assurance of regulatory compliance, security, privacy and

quality.

Security and privacy are widely acknowledged to represent critical issues in such

a context [2]. Besides security issues related to the communications over the Inter-

net, it is also necessary to consider that devices have limited interfaces to monitor

network intrusion, and they have data vulnerabilities that can often be exploited to

attack the system. In this scenario, the confidentiality and the integrity of the trans-

mitted and stored information has to be guaranteed, and authentication and autho-

rization mechanisms have to be provided to prevent unauthorized users or devices to

improperly access the system. Furthermore, taking into account that data are often

related to personal and/or sensitive information, privacy of users, intended as the

ability to support data protection and users anonymity, has to be ensured [3].

As stated above, the large amount of available data enables the design of smart

services. However, in order to obtain valuable results, it is necessary to consider that

not all the values might be relevant: errors, missing or outdated values can negatively

affect decisions [4, 5]. Data quality represents another essential requirement for the

adoption at scale of IoT services; provided results should be correct and reliable or

at least the users should be aware of both security and quality level of the data being

accessed, in order to take informed decisions about their usage.

For these reasons, we claim that an effective data governance should be supported

by a system able to manage heterogeneous data sources and to evaluate the security

and the quality of the information being collected, processed and transmitted, possi-

bly in real-time and in an automatic manner. The design of such a system has also to

deal with the dynamism of the IoT environments and with the fact that the compo-

sition of input sources can evolve over time adding new sources or eliminating old
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ones. In this chapter, we present novel algorithms for evaluating the data security

and quality levels of the data provided by different sources over time.

Such algorithms are integrated in an existing IoT middleware, named NetwOrked
Smart objects (NOS) presented in our previous work [6–8]. NOSs are computation-

ally powerful devices connected to create a distributed processing and storage layer,

able to process the data gathered from IoT data sources. NOSs collect the data gener-

ated by nearby IoT devices, process them and finally transmit the processed data on

a publish/subscribe broker. Such a middleware includes functionalities for users and

applications to dynamically specify their requirements in terms of data security and

quality levels. In this way, the architecture is able to assess data security and qual-

ity metadata and filter out only the data that satisfy users/applications needs. This

adaptive behavior represents a clear innovation over conventional one-size-fits-all

approaches, which provide the same information to all consumers without consid-

ering their specific preferences. We also provide a prototype of the illustrated archi-

tecture in which real-time open data feeds are used.

The chapter is organized as follows: Sect. 2 describes literature contributions that

consider security and data quality issues in IoT scenarios. Sections 3–5 present,

respectively, the architecture and the algorithms for evaluating security and data

quality levels. The implemented prototype is instead described in Sect. 6, along with

the results obtained by the validation phase. Section 7 ends the paper.

2 Related Work

One of the main factors limiting the growth and take-up of IoT is the lack of a refer-

ence model [9]. There have been many projects that tried to design a common archi-

tecture based on the analysis of the needs in this scenario. For example, an archi-

tectural reference model for the interoperability of IoT systems has been the main

goal of the Internet of Things Architecture (IoT-A) project [10]. A dynamic archi-

tecture for services orchestration and self-adaptation has been proposed in Internet

of Things Environment for Service Creation and Testing (IoT.EST) [11]. The project

defines a dynamic service creation environment that gathers and exploits data from

sensors and actuators making use of different communication technologies and for-

mats. Such an architecture deals with issues such as the composition of business ser-

vices based on reusable IoT service components, the automated configuration and

testing of services for “things” and the abstraction of the heterogeneity of underly-

ing technologies to ensure interoperability. Also the FP7 COMPOSE (Collaborative

Open Market to Place Objects at your Service) project [12] focuses on composi-

tion. It aims to design and develop an open marketplace for IoT data and services.

The basic concept underpinning such an approach is to treat smart objects as ser-

vices, which can be managed using standard service-oriented computing approaches

and can be dynamically composed to provide value-added applications to end users.

Another architecture has been proposed in the Ebbits project [13], that designed a

SOA platform based on open protocols and middleware, effectively transforming IoT
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subsystems or devices into web services with semantic resolution. The goal was to

allow businesses to integrate IoT into mainstream enterprise systems and to support

interoperable end-to-end business applications.

Considering all these contributions, it is possible to state that researchers only

agree that the basic model is a 3-layer architecture composed of application, net-

work and perception layers [9, 14]. However, in the literature, several contributions

propose other models that add more abstraction to the IoT architecture [14, 15].

In our work, we also tried to add different abstraction layers for designing a light-

weight and flexible middleware for IoT applications [8]. In this chapter, we aim to

highlight the novelty and relevance of this solution, since it is the unique architec-

ture that provides a comprehensive approach for managing data gathered from het-

erogeneous sources both addressing security and data quality issues. In fact, in the

literature, security and data quality issues have been addressed, but separately, as

discussed in the next sections.

2.1 Security Issues in IoT

In some proposal, security issues have been addressed. Typically, they focus on data

communications; they enforce data to be exchanged according to strict protection

constraints considering the heterogeneity of devices and communication technolo-

gies. Indeed, devices can be characterized by different technologies; for example,

many smart devices can natively support IPv6 communications [16, 17], while other

existing deployments might not support the IP protocol within the local area scope

and this requires the design of ad hoc gateways and middlewares [18]. Relevant con-

tributions on security oriented IoT middlewares include as follows: VIRTUS [19],

which relies on the open extensible Messaging and Presence Protocol (XMPP) to

provide secure event-driven communications; Otsopack [20] and naming, address-

ing and profile server (NAPS) [21], which are data-centric frameworks based on the

usage of HTTP and representational state transfer (REST) interfaces.

Security aspects were also the central points of projects such as uTRUSTit [22]

and Butler [23]. The approach pursued in the former one is to directly integrate the

user in the trust chain, guaranteeing transparency in the underlying IoT security and

reliability properties. If successful, the uTRUSTit approach shall enable system man-

ufacturers and system integrators to express the underlying security concepts to users

in a comprehensible way, allowing them to reason on the trustworthiness of such sys-

tems. Butler aims to allow users to manage their distributed profile by allowing data

duplication and identity control over different applications. The final purpose is to

deliver a framework able to dynamically integrate user data (e.g., location, behavior)

in privacy and security protocols.
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2.2 Data Quality Issues in IoT

The huge number of data sources in IoT is considered a positive aspect for data

fusion and for the extraction and provisioning of advanced services. However, it is

important to exploit the benefits provided by the quantity of data only if a certain

quality is guaranteed. Several literature contributions recognize data quality as one

instrumental issue in IoT research. A survey was recently dedicated to this topic,

stating that data quality is the basis for sound decisions [24]. In the survey, authors

consider work that addressed quality issues in data streams and RFID data. They

show that the main data quality dimensions are accuracy, confidence completeness,

data volume and timeliness.

Other additional data quality dimensions to consider are mostly related to the

infrastructure through which data are offered; in fact, they include the ease of access,

the access security and the availability. Also in [25], quality is cited as a key para-

meter for an efficient access, and use of IoT data and services, and [26] claims the

need of control over data sources to ensure their validity, information accuracy and

credibility. Other literature contributions are focused on specific data quality aspects

and issues. Metzger et al. [27] addresses only data accuracy timeliness and the trust-

worthiness of the data provider. In particular, authors propose anomaly detection

techniques to remove noise and inaccurate data in order to improve data quality.

New data quality dimensions have been introduced in [28]. In fact, authors

focus on uncertainty, redundancy, ambiguity and inconsistency. Such dimensions

are mainly related to the fact that, in an IoT environment, data may be gathered from

different sources, and they can be characterized by different precision or accuracy or

they can monitor the same phenomenon reporting duplicates or inconsistent values.

All these issues have a negative effect on the source reliability.

3 Networked Smart Objects Architecture

The architecture called NOS, proposed in [8], is illustrated in Fig. 1. It provides inter-

faces for the interaction with the sources and with the users. In fact, on the one hand,

the architecture gathers input data from different kinds of sources (the so-called E-
Nodes) that are represented by heterogeneous devices (e.g., wireless sensor networks,

RFID, NFC, actuators, social networks); on the other hand, it lets the users access the

offered IoT-based services through Internet-connected mobile devices (e.g., smart-

phone and tablet). In the following, we briefly describe how the architecture works.

Starting from the sources, the architecture provides a service for the source regis-

tration by means of HTTP protocol. Registered sources are associated with an iden-

tifier, and, optionally, with a geographical position and/or an encryption scheme,

including the proper keys for interactions with NOSs. For each incoming data, NOSs

extract the following information: (i) the data source, which describes the type of

node (i.e., the identifier in case of a registered source); (ii) the communication mode,
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Fig. 1 NOS architecture

that is the way in which the data are transmitted (e.g., discrete or streaming commu-

nication); (iii) the data schema, which represents the type (e.g., number and text) and

the format of the transmitted data; (iv) the metadata describing the data content; (v) a

timestamp describing when the data were received by NOS. The HTTP communica-

tion protocol is also used among NOSs and the data sources for the data transmission.

Since received data are highly heterogeneous, they are stored in the Raw Data repos-

itory, and, periodically, they are processed by the Data Normalization and Analyzers
modules. The former puts the data in the format specified in Fig. 2. The latter peri-

odically extracts the normalized data and computes the relevant security and data

quality indicators (the related algorithms are described in Sects. 4 and 5).

The processed data are used for providing services to the target users. The user

interface is based on the Message Queue Telemetry Transport (MQTT) protocol, that
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Fig. 2 NOS data format

is a lightweight publish/subscribe protocol [29] specifically designed for resource-

constrained devices. The MQTT client exchanges messages with the MQTT broker

by means of publications and subscriptions to topics. Such a mechanism is adopted

to support interactions between services and IoT devices. The architecture includes

a module in charge of assigning data items to the corresponding topic and to publish

them on a MQTT broker, as depicted in Fig. 1. For this task, a taxonomy is needed:

for example, for publishing temperature information of a sensor with identifier sen-
sorId could be sensor/temperature/sensorId. Note that subscribers may register for

specific topics at runtime, and our architecture provides a mechanism for dynamic

subscription and unsubscription to topics. According to the MQTT protocol, mes-

sages can be published with a quality of service (QoS) parameter indicating that

a message should be delivered “at most once,” “at least once” and “exactly once.”

MQTT also supports persistence of messages to be delivered to future clients that

subscribe to a topic, and may be configured to send messages of specific topics when

the subscriber connection is abruptly closed. These parameters are specified in the

Config storage unit. Summarizing, a typical MQTT message includes the following

parameters: (i) the topic; (ii) the data value; (iii) the QoS level; and (iv) the retain

value.

4 Data Quality Evaluation

IoT architectures are designed to handle streams of data gathered from millions of

intelligent devices; therefore, new challenges in data quality assessment raise. In fact,

data volume, velocity and variety need to be properly addressed. The first two issues

can be handled by considering a window-based approach for which the data quality

of the data streams results from the periodic assessment of the set of values included

in the different time windows. Different windows can be rapidly analyzed by using

parallel distributed processing (e.g., map-reduce approaches). Data variety requires

adaptive mechanisms, able to activate the appropriate data quality dimension and the

related assessment metric. For example, in case of numbers (e.g., temperature val-

ues gathered from a specific sensor or provided by a sensor), accuracy and precision
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have to be calculated, but in case of text (e.g., tweets), the source reputation could be

more relevant than the evaluation of a syntactic accuracy. However, all the data qual-

ity metadata assessed for the different windows are aggregated to define the source

data quality level. In particular, in our approach, the data quality metadata have been

defined as scores in the range [0, 1]. For the case study defined in Sect. 6, timeliness,

completeness, accuracy and precision levels have been considered [30, 31] and eval-

uated by the Quality Analyzer (see Fig. 1).

Timeliness is defined as the temporal validity of data and is calculated on the basis

of the freshness of data and on the frequency of data updates. The former is called

Currency and defines the interval from the time when the value was sampled to the

time instant at which data are received by NOSs. The latter is called Volatility and

indicates the amount of time units (e.g., seconds) during which a data remains valid;

it is usually associated with the type of phenomenon that the system has to monitor

and depends on the timescale of its dynamics.

Completeness provides information about the quantity of values received by the

source. In particular, it analyzes if the data set includes all the values that a sensor

or device was supposed to gather. In fact, it is calculated as the amount of collected

values in a given time interval with respect to the amount of expected values. Com-

pleteness is important since the percentage of missing values can be a good indicator

for revealing sensors inefficiencies or communication issues.

Accuracy is usually defined as correctness, and it is measured as the degree of

similarity between the value stored in the system and the right value. More formally,

the accuracy is based on the evaluation of the error 𝜀acc resulting from the difference

between the sensed value vn and a reference value vref . Accuracy is usually related

to Precision, conceived as the degree to which further measurements of the same

phenomenon in a close time instant provides the same or similar results. Precision is

often specified in terms of the standard deviation of the measured values: the smaller

the standard deviation, the higher the precision. A correct representation is charac-

terized by accurate and precise values. However, in continuous quality monitoring,

changes in accuracy and precision can reveal errors or changes in the monitored

process. In particular, precise but inaccurate values can be caused by changes in the

monitored phenomenon or by faulty sensors [30].

5 Security Evaluation

Together with data quality metadata, security metadata are exploited to understand

the nature and reliability of the sources managed by the IoT platform. The Security
Analyzer is responsible for the security assessment and must be able to access the

Sources storage unit in order to analyze the received data in relation to the source

that sent them to NOSs.

In more detail, NOSs associate a score in the range [0, 1] to each security met-

ric. As in the IoT context sensitive data are often managed, the security scores are

intended as levels of confidentiality and integrity of the received information, pri-
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Fig. 3 Weighed

relationships among attacks

and countermeasures

vacy of the transmitting source and authentication (i.e., the robustness of the source

authentication). Note that malicious devices may be represented by non-registered

sources, which send violated data to the IoT platform or execute malicious actions

toward those transmitted by non-malicious ones (e.g., spoofing and sniffing).

In order to assess security, it is necessary to consider two groups of elements:

a set A of threats/attacks an and a set C of security countermeasures cm. The for-

mer includes the attacks that may impact on the data managed by the platform (e.g.,

data violation, unauthorized access, masking and impersonation). The latter regards

the countermeasures available in the platform to face the attacks (i.e., encryption,

authentication and key pre-distribution). The security model considered by this algo-

rithm links the attacks of an with the corresponding countermeasures in cm. The

taxonomy of the security attacks and the related countermeasures is retrieved from

[32], which also considers that each countermeasure is characterized by a degree

of resistance to a violation or to an attack attempt. On such a basis, we are able

to define the relationships among attacks and countermeasures, considering that an

attack can be tackled through a plurality of countermeasures and a countermeasure

can face more than one attack. Each relationship is associated with a weight wan,cm
in the range [0 ∶ 1], which represents the level of robustness of the countermeasure

cm with respect to the attack an (see Fig. 3).

The identified relationships can be classified on the basis of the considered secu-

rity metrics in a way to obtain four groups that might also overlap: (i) gconf for attacks-

countermeasures related to the data confidentiality; (ii) gint for the pairs related to

data integrity; (iii) gpri for privacy issues; (iv) gauth for the pairs concerning sources’

authentication. Note that such a model has to be defined at design time, stored in

the collection named Config and can be updated at runtime when new attacks and/or

countermeasures have to be considered.

Table 1 shows some examples of attack-countermeasure pairs derived from the

used taxonomy and classified in the groups described above.

The weights associated with the relationships are at the beginning set to 1. They

might be updated at runtime on the basis of the malicious events that occur in the IoT

system (detected by a monitoring system installed on NOSs). Weights can thus vary

over time in a dynamic way; such a process of automatic adjustment is performed

by means of a well-known learning approach, namely difference temporal learning

[33]. Please refer to [8] for further details on this method.
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Table 1 pairs attack-countermeasure

Attack Countermeasure Group

(1) Packet sniffing Data content encryption gconf

(2) Password attack Complex password generation gconf , gauth

(3) Man-in-the-middle attack Data content encryption gint

(4) Session hijacking attack Secure session establishment gint, gauth

(5) Identity spoofing Identity encryption gpri

(6) Key impairment Secure key distribution scheme gconf , gauth

Once the attacks/countermeasures model is defined, the algorithm computes for

each incoming data the related security scores on the basis of the actual weights and

of the data source sk. A general equation for the assessment of the different security

dimensions secdim (i.e., confidentiality (secconf ), integrity (secint), privacy (secpri) and

authentication (secauth)) can be defined as:

secdim =
|Adim,sk

|

|Agdim|

⋅

∑
i∈Adim,sk ,j∈Cdim,sk

wi,j

|Cdim,sk
|

(1)

where: Adim,sk
is the number of attacks related to a specific security dimension that

the source sk could suffer; Agdim
is the total number of attacks included in the group

gdim (valid for any type of sources); Cdim,sk
is the number of countermeasures adopted

by sk related to the attacks to the specific security dimension included in Adim,sk
. The

sum of the weights considers only the weights between the attacks in Adim,sk
and the

countermeasures in Cdim,sk
.

For example, let us consider confidentiality, and let us suppose that the source

sk adopts AES for encrypting its data; moreover, it also adopts a 8-bit length pass-

word as credential for ensuring both confidentiality and authentication. As shown

in Table 1 (points 1 and 2), AES is a countermeasure associated to the gconf group,

while the password is associated to both gconf and gauth groups. The steps performed

by NOS to assess over the time the confidentiality score secconf are the following:

∙ The initial weights corresponding to the two pairs attack-countermeasure (i.e.,

AES-packet sniffing, 8-bit password-credential violation) are set to 1, and the first

confidentiality score secconf is evaluated;

∙ During the system operations, the platform recognizes no violated packets from

the source sk, but several times its password has been intercepted (e.g., through

brute-force attack). As a consequence, the weight related to the pair 8-bit password-

credential violation decreases; for such an example, let us assume that it is updated

to 0.3 by the learning algorithm;

∙ The new data obtained from the source sk will receive a lower confidentiality score

secconf , which is recomputed to 0.65.
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As a consequence, a user who wants to receive data from the source sk will be

aware that they have a level of confidentiality not greater than secconf , so there is a

((1 − secconf ) ∗ 100)% risk of a confidentiality attack.

Knowledge and metadata required to properly assess data quality and security

levels are stored in a proper format in the repository Config. Such a unit contains all

the configuration parameters required for the correct management of the IoT system

(e.g., how to calculate quality properties on the basis of the data type, which attacks

or security countermeasures to consider), represented in JSON format (as described

in Sect. 6). Therefore, Analyzers periodically query the Config storage unit in order

to know which rules shall be used.

6 Prototype and Validation

The NOS system presented in Sect. 3 has been implemented
1

by using the follow-

ing technologies: (i) the Node.JS platform
2

has been used for the platform imple-

mentation; (ii) MongoDB3
for storage management; (iii) Mosquitto

4
for the pub-

lish/subscribe system. Modules interact among themselves via RESTful services.

We deployed a prototypical service middleware platform able to manage a large

amount of data from heterogeneous devices with lightweight modules and interfaces

working in a non-blocking manner to perform data analysis, discovery and query [8].

Such a platform is innovative for different aspects. First of all, one or more NOSs

can be deployed in a distributed manner without using a peer-to-peer management,

since they are completely independent from each other. This is a novel approach

with respect to the conventional ad hoc centralized IoT solutions. Moreover, such

solutions are often hardly reconfigurable [34], because they are conceived for very

specific applications, based on a vertical silo-based approach. The middleware pre-

sented in this work supports, instead, dynamic reconfiguration and can be remotely

orchestrated through Internet/intranet protocols, which are based on open standards

(see Sect. 3).

As just said, a great advantage of this approach is that changes in the platform

can be performed in a non-blocking manner; it is possible to introduce new mod-

ules, duplicate the existing ones or remove them without restarting the whole system.

Furthermore, the use of the non-relational MongoDB database allows the platform

to be flexible since the data model can dynamically evolve. Finally, we obtain good

performance in data access, especially in read/write operations using the in-memory

capability of MongoDB: the IoT-generated data contained in Raw Data and Normal-

1
The code is released as open source under a permissive license https://bitbucket.org/

alessandrarizzardi/nos.

2
http://nodejs.org/.

3
http://www.mongodb.org/.

4
http://mosquitto.org.

https://bitbucket.org/alessandrarizzardi/nos
https://bitbucket.org/alessandrarizzardi/nos
http://nodejs.org/
http://www.mongodb.org/
http://mosquitto.org
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Fig. 4 User dashboard

ized Data repositories are not persistent; only the databases Config and Sources are

persistent in the platform.

We tested the NOS platform by deploying it on a Raspberry Pi and connecting it

to a number of open data feeds. In particular, we exploited six sensors at the mete-

orological station in the city of Campodenno (Trentino, Italy) that provide real-time

data referred to temperature, humidity, wind speed, energy consumption and air qual-

ity. Data are transmitted by a web service that exposes them in JSON format, and

the NOS retrieves them through HTTP GET requests. According to the system pre-

sented in Sect. 3, data are analyzed from a security and quality perspective following

the methods presented in Sects. 4 and 5 and then transmitted to the MQTT broker.

Through a simple visualization, service users can set their preferences in terms of

security, privacy and data quality and access the metadata calculated for the incom-

ing values. The dashboard is shown in Fig. 4.

For testing the effectiveness of the proposed mechanisms, the system has been

observed for a period of a week. Results have been discussed in [8]. We want only to

highlight that, as specified in Sects. 4 and 5, each score is initially set to the maximum

value (i.e., 1); values are then updated following changes in security and quality

aspects. From the figures, it can be observed that some sources are characterized by

a good level of authentication, but, at the same time, by a low level of reliability in

terms of confidentiality, integrity and privacy (e.g., source 6 in Fig. 5) and viceversa
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Fig. 5 Security score evaluation

(e.g., source 3 in Fig. 5). From the data quality perspective, in some sources, the

provided data present good levels of completeness and timeliness, but poor accuracy

and precision levels (e.g., source 4 in Fig. 6).

The experiments confirmed the usefulness of the presented approach in empow-

ering the users to retrieve only the data that meet their requirements.

Other useful metrics about NOSs’ performance, in terms of overhead, memory

occupancy, computational load and latency, have been evaluated in other recent

work, which include as follows: (i) the integration with an enforcement frame-

work [35], conceived for guaranteeing a fine-grained access control against violation

attempts; moreover, it allows to enforce policies specifically related to the security

and data quality levels presented in this chapter; (ii) a protocol, named authenti-

cated publish/subscribe (AUPS), for the authentication of the communications tak-

ing place via MQTT [36]; it is able to manage the disclosure of data on the basis

of the policies associated to the defined topics; (iii) the integration of two key man-

agement systems, originally conceived for wireless sensor networks and adapted to

the NOS platform [37]; they provide NOSs with the capabilities of handling the dis-

tribution and the replacement of the encryption keys among users and data sources.

In all these cases, NOS platform demonstrated a good trade-off between a correct

behavior and efficiency.
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Fig. 6 Quality score evaluation

7 Conclusions

In this chapter, we have presented the design and a prototypical implementation of

a distributed IoT middleware layer, named NOS, able to manage heterogeneous data

sources, to provide a uniform, consistent data representation and to provide data ser-

vices to manage and filter data on the basis of their related security and data quality

metadata. Such an architecture improves data governance in IoT environments, since,

on the one hand, it manages efficiently data and, on the other hand, it also addresses

security and data quality issues by improving the user’s awareness about the relia-

bility of the accessed data. In this way, it is possible to provide data that are fit for

the use in a specific context/application and thus valuable results.

The effectiveness of the proposed solution has been validated through the imple-

mentation of a real prototype of the NOS platform. Future work will focus on the

design and development of new methods for assessing further data quality dimen-

sions and for dealing with other types of sources. Moreover, new sources will be

considered for the evaluation of the proposed architecture.
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