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Abstract. We prove the unique assembly and unique shape verifica-
tion problems, benchmark measures of self-assembly model power, are
coNPNP-hard and contained in PSPACE (and in Πp

2s for staged systems
with s stages). En route, we prove that unique shape verification problem
in the 2HAM is coNPNP-complete.
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1 Introduction

Here we consider the complexity of two standard problems in tile self-assembly:
deciding whether a system uniquely assembles a given assembly or shape. These
so-called unique assembly and unique shape verification problems are benchmark
problems in tile assembly, and have been studied in a variety of models, including
the aTAM [1,2], the q-tile model [6], and the 2HAM [3].

The unique assembly and unique shape verification problems ask whether a
system behaves as expected: does a given system yield a unique given assembly
or assemblies of a given unique shape? The distinct rules by which assemblies
form in various tile assembly models yield the potential for such problems to
have varying complexity. For instance, assuming P �= NP, the unique assembly
verification problem is known to be a strictly easier problem in the aTAM than
in the 2HAM.

However, several open questions remain. For instance, such a separation
between the aTAM and 2HAM for the unique shape verification problem had
not been known. Here we prove such a separation (see Table 1).

Additionally, a popular generalization of the 2HAM called the staged tile
assembly model [7] has been shown to be capable of extremely efficient assembly
across a range of parameters [4,7–9,14]. Does this power come from the increased
complexity of verifying that systems assemble intended assemblies and shapes?

We achieve progress on these questions, proving a separation between the
2HAM and staged model for the unique assembly verification problem (coNP-
complete versus coNPNP-hard) utilizing a promising technique that may lead to
proving a stronger separation for the unique shape verification problem (coNPNP-
complete versus a conjectured PSPACE-complete).

This research was supported in part by National Science Foundation Grants
CCF-1117672 and CCF-1555626.

c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 98–112, 2017.
DOI: 10.1007/978-3-319-58187-3 8



Verification in Staged Tile Self-Assembly 99

Table 1. Known and new results on the unique assembly and unique shape verification
problems.

Model Unique assembly Unique shape

aTAM P [1] coNP-complete [6]

2HAM coNP-complete [5] coNPNP-complete (Sect. 3)

Staged coNPNP-hard (Sect. 5), in PSPACE (Sect. 6)

The coNPNP-hardness results are also interesting as the first, to our knowl-
edge, verification problems in irreversible tile assembly that are decidable but
not contained in NP or coNP.

2 The Staged Assembly Model

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue
from a set Σ. Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength,
denoted str(g1, g2). Every set Σ contains a special null glue whose strength with
every other glue is 0. If the glue strengths do not obey str(g1, g2) = 0 for all
g1 �= g2, then the glues are flexible. Unless otherwise stated, we assume that
glues are not flexible.

Configurations, Assemblies, and Shapes. A configuration is a partial func-
tion A : Z2 → T for some set of tiles T , i.e., an arrangement of tiles on a square
grid. For a configuration A and vector u = 〈ux, uy〉 ∈ Z

2, A + u denotes the
configuration f ◦ A, where f(x, y) = (x + ux, y + uy). For two configurations A
and B, B is a translation of A, written B � A, provided that B = A+u for some
vector u. For a configuration A, the assembly of A is the set Ã = {B : B � A}.
An assembly Ã is a subassembly of an assembly B̃, denoted Ã 	 B̃, provided
that there exists an A ∈ Ã and B ∈ B̃ such that A ⊆ B. The shape of an
assembly Ã is {dom(A) : A ∈ Ã} where dom() is the domain of a configuration.
A shape S′ is a scaled version of shape S provided that for some k ∈ N and
D ∈ S,

⋃
(x,y)∈D

⋃
(i,j)∈{0,1,...,k−1}2(kx + i, ky + j) ∈ S′.

Bond Graphs and Stability. For a configuration A, define the bond graph GA

to be the weighted grid graph in which each element of dom(A) is a vertex, and
the weight of the edge between a pair of tiles is equal to the strength of the
coincident glue pair. A configuration is τ -stable for τ ∈ N if every edge cut of
GA has strength at least τ , and is τ -unstable otherwise. Similarly, an assembly is
τ -stable provided the configurations it contains are τ -stable. Assemblies Ã and
B̃ are τ -combinable into an assembly C̃ provided there exist A ∈ Ã, B ∈ B̃, and
C ∈ C̃ such that A

⋃
B = C, dom(A)

⋂
dom(B) = ∅, and C̃ is τ -stable.

Two-Handed Assembly and Bins. We define the assembly process via bins.
A bin is an ordered tuple (S, τ) where S is a set of initial assemblies and τ ∈ N

is the temperature. In this work, τ is always equal to 2 for upper bounds, and
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at most some constant for lower bounds. For a bin (S, τ), the set of produced
assemblies P ′

(S,τ) is defined recursively as follows:

1. S ⊆ P ′
(S,τ).

2. If A,B ∈ P ′
(S,τ) are τ -combinable into C, then C ∈ P ′

(S,τ).

A produced assembly is terminal provided it is not τ -combinable with any other
producible assembly, and the set of all terminal assemblies of a bin (S, τ) is
denoted P(S,τ). That is, P ′

(S,τ) represents the set of all possible assemblies that
can assemble from the initial set S, whereas P(S,τ) represents only the set of
assemblies that cannot grow any further.

The assemblies in P(S,τ) are uniquely produced iff for each x ∈ P ′
(S,τ) there

exists a corresponding y ∈ P(S,τ) such that x 	 y. Unique production implies
that every producible assembly can be repeatedly combined with others to form
an assembly in P(S,τ).

Staged Assembly Systems. An r-stage b-bin mix graph M is an acyclic r-
partite digraph consisting of rb vertices mi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ b, and
edges of the form (mi,j ,mi+1,j′) for some i, j, j′. A staged assembly system is a
3-tuple 〈Mr,b, {T1, T2, . . . , Tb}, τ〉 where Mr,b is an r-stage b-bin mix graph, Ti

is a set of tile types, and τ ∈ N is the temperature. Given a staged assembly
system, for each 1 ≤ i ≤ r, 1 ≤ j ≤ b, a corresponding bin (Ri,j , τ) is defined as
follows:

1. R1,j = Tj (this is a bin in the first stage);
2. For i ≥ 2, Ri,j =

( ⋃

k: (mi−1,k,mi,j)∈Mr,b

P(R(i−1,k),τi−1,k)

)
.

Thus, bins in stage 1 are tile sets Tj , and each bin in any subsequent stage
receives an initial set of assemblies consisting of the terminally produced assem-
blies from a subset of the bins in the previous stage as dictated by the edges of
the mix graph.1 The output of a staged system is the union of the set of termi-
nal assemblies of the bins in the final stage.2 The output of a staged system is
uniquely produced provided each bin in the staged system uniquely produces its
terminal assemblies.

3 The 2HAM Unique Shape Verification Problem
Is coNPNP-Complete

This section serves as a warm-up for the format and techniques used in later
sections. We begin by proving the 2HAM USV problem is in coNPNP by providing
1 The original staged model [7] only considered O(1) distinct tile types, and thus

for simplicity allowed tiles to be added at any stage (since O(1) extra bins could
hold the individual tile types to mix at any stage). Because systems here may have
super-constant tile complexity, we restrict tiles to only be added at the initial stage.

2 This is a slight modification of the original staged model [7] in that there is no
requirement of a final stage with a single output bin. This may be a slightly more
capable model, and so it is considered here. However, all results in this paper apply
to both variants of the model.
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a (non-deterministic) algorithm for the problem that can be executed on such a
machine. This is followed by a reduction from a SAT-like problem complete for
coNPNP (∀∃SAT).

Definition 1 (2HAM unique shape verification (2HAM USV) prob-
lem). Given a 2HAM system Γ and shape S, does every terminal assembly of
Γ have shape S?

Theorem 1. The 2HAM USV problem (for τ = 2 systems) is coNPNP-hard.

Definition 2 (∀∃SAT). Given a 3-SAT formula φ(x1, x2, . . . , xk, xk+1, . . . , xn),
is it true that for every assignment of x1, x2, . . . , xk, there exists an assignment
of xk+1, xk+2, . . . , xn such that φ(x1, x2, . . . , xn) evaluates to T?

The ∀∃SAT problem was shown to be coNPNP-complete by Stockmeyer [13]
(see [12] for further discussion).

Proof. The reduction is from ∀∃SAT. Roughly speaking, the system output by
the reduction behaves as follows. First, a distinct assembly encoding each pos-
sible assignment of the variables of the ∀∃SAT instance is assembled. Further
growth “tags” each assembly as either a true or false assembly, based upon the
truth value of the input 3-SAT formula φ for the variable assignment encoded
by the assembly.

False assemblies further grow into a slightly larger target shape S. A sepa-
rate set of test assemblies are created, one for each variable assignment of the
variables x1, . . . xk. Each test assembly attaches to any true assembly with the
same assignment of these variables to form an assembly with shape S - the same
shape as false assemblies.

Terminal assemblies then consist of false assemblies and true-test assemblies
with shape S, and possibly test assemblies. A test assembly is terminal if and
only if there is no true assembly for it to attach to, i.e. the assignment of variables
x1, . . . , xk has no corresponding assignment of the variables xk+1, . . . , xn such
that φ(x1, . . . , xn) is “true”.

SAT Assemblies. Consider a given input formula C and input value k for the
∀∃SAT problem. From this input we design a corresponding 2HAM system Γ =
(T, 2) and shape S such that the terminal assemblies of Γ share a common
shape S if and only if the ∀∃SAT instance is “true”, i.e. each assignment of the
variables x1 through xk can be combined with some assignment of the variables
xk+1 through xm such that the 3-SAT instance is satisfied.

The system has temperature 2, and the tile set T of the system output by the
reduction is sketched in Fig. 1. The first subset of tiles is a minor modification
of the commonly used 3-SAT solving system from [11].

For each variable xi, the system has two tile subsets. These collections assem-
ble into 1 × 4 assemblies with exposed north and south glues representing the
values “0” and “1”, respectively, encoding the assignment of a specific variable
to true or false. These 1 × 4 assemblies further assemble into 1 × 4n assemblies
encoding complete assignments of the variables x1 to xn. The non-deterministic
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Fig. 1. Steps of the 2HAM USV coNPNP-hardness reduction.

assembly process of 2HAM implies that such an assembly for every possible
variable assignment will be assembled.

An additional column is attached to this bar of height equal to m, the number
of clauses in the formula C (Fig. 1). An additional set of tiles are added that
evaluate the 3-SAT formula φ based upon the variable assignments encoded by
the initial 1 × 4n assembly following the approach of [11]. These tiles place a
tile in the upper right corner of the resulting assembly with exposed glue labeled
“T” or “F”, indicating the truth value of φ based upon the variable assignments.

The resulting assemblies are categorized as true and false assemblies. Addi-
tional tiles are added so that every false assembly further grows, extending the
left 4k columns (corresponding to the variables x1 to xk) southward by 3 rows,
and the remaining right 4(n − k) columns southward by 1 row (Fig. 1(c)). The
resulting shape is the shape S output by the reduction, i.e. the only shape assem-
bled by the system if the solution to the ∀∃SAT instance is “true”.

Test Assemblies. Additional tiles are also added so that true assemblies also
grow southward, but extending the left 4k columns by various amounts based
upon each variable assignment. The result is a sequence of geometric “bumps
and dents” that encode the truth values of these variables.

A set of test assemblies with complementary geometry for each possible
assignment of variables x1 through xk are assembled (Fig. 1(b)). Test assem-
blies use two strength-1 glues that cooperatively attach to any true assembly
with a matching assignment of variables x1 through xk (Fig. 1(d)). The assem-
bly formed by a test assembly attaching to a true assembly has shape S: the
same shape as a false assembly.

Terminal Assemblies. If the solution to the ∀∃SAT instance is “false”, there is
some truth assignment for variables x1 . . . xk with no corresponding assignment
of the variables xk+1 . . . xn such that φ(x1, . . . , xn) is “true”. Thus, the test
assembly with this assignment of variables x1, . . . , xk has no compatible true
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assembly to attach to - and this test assembly is a terminal assembly of Γ with
shape not equal to S.

On the other hand, if the solution to the ∀∃SAT instance is “yes”, every test
assembly attaches to a true assembly and thus every terminal assembly (true-test
assemblies and false assemblies) has shape S.

Theorem 2. The 2HAM USV problem is in coNPNP.

Proof. The solution to an instance (Γ, S) of the 2HAM USV problem is “true”
if and only if:

1. Every producible assembly of Γ has size at most |S|.
2. Every assembly of size at most |S| and without shape S is not a terminal

assembly.

Algorithm 1 solves the 2HAM USV problem by verifying each of these condi-
tions, using an NP subroutine to verify the second condition. The algorithm is
executed by a coNP machine, implying that “false” is returned if any of the
non-deterministic branches return “false”, and otherwise returns “true”.

Algorithm 1. A coNPNP algorithm for the 2HAM USV problem
1: Non-deterministically select a τ -stable assembly A with |S| < |A| ≤ 2|S|.
2: if A is producible then � In P by Theorem 3.2 of [10]
3: return false.
4: end if
5: Non-deterministically select a τ -stable assembly B with |B| ≤ |S| and shape not

equal to S.
6: if not F(Γ, B, |S|) then � Algorithm 2
7: return false.
8: end if
9: return true.

Algorithm 2. An NP algorithm subroutine of Algorithm 1
1: procedure F(Γ, B, n) � Returns whether B is not terminal.
2: Non-deterministically select a τ -stable assembly C with |C| ≤ n.
3: if C cannot attach to B at temperature τ then
4: return false.
5: end if
6: if C is a producible assembly of Γ then � In P by Theorem 3.2 of [10]
7: return false.
8: end if
9: return true.

10: end procedure
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Fig. 2. (a) The tile set used in the staged coNP-hardness reduction. (b) The subsets
of tiles included in separated initial bins within the first stage of the system. (Color
figure online)

4 Staged Unique Assembly Verification Is coNP-Hard

Definition 3 (Staged unique assembly verification (Staged UAV) prob-
lem). Given a staged system Γ and an assembly A, does Γ uniquely assemble A?

Theorem 3. The staged UAV problem (for τ = 2 4-stage systems) is coNP-
hard.

Proof. The reduction is from 3-SAT, outputting a staged system Γ and assembly
A such that the 3-SAT instance is satisfiable if and only if A is not the unique
terminal assembly of Γ . We reduce from 3-SAT: Given a 3-SAT formula φ, we
design a staged assembly system and an assembly A such that φ is not satisfied
if and only if A is uniquely assembled by Γ .

The Tileset. The tiles used in our construction are shown in Fig. 2(a). In par-
ticular, for each variable xi ∈ {x1, x2, . . . , xn} and clause cj ∈ {c1, c2, . . . , cm} in
φ, there is a block of tiles labeled ai,j , bi,j , ci,j , di,j , ei,j , fi,j , gi,j . The set of tile
types for each block is denoted blocki,j .

The strength-2 (τ = 2) glues connecting adjacent tiles are unique with respect
to adjacent tiles, and are unlabelled in the figures for clarity. Note that for each
block (i, j), the top four tiles of the block occupy the same locations as the
bottom four tiles of block (i, j+1). Finally, the tileset includes a length 4m chain
of green tiles, with each green tile sharing a strength-2 glue with its neighbors,
along with four light-grey tiles which together attach to the green assembly.

Stage 1: Variable Assignments. The specific formula φ is encoded within
the output staged system via the initial choice of tiles placed into a O(1)-sized
collection of stage-1 bins. For each variable xi and clause cj combination, we
select two subsets of the blocki,j tileset. The first subset encodes a variable choice
of “false” for xi. The tile sets in Fig. 2(b)(i) and (iv) are used if xi satisfies (and xi
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Fig. 3. In stage 2, rows non-deterministically form encoding each of the 2n possible
variable assignments. In stage 3 the rows are combined allowing for geometrically com-
patible, sequential rows with exposed red glue to attach. (a) Combinable rows. (b)
Geometrically incompatible rows. (c) Rows with no glues for attachment. (Color figure
online)

does not satisfy) clause cj , respectively. Similarly, the tile sets in Fig. 2(b)(ii–iii)
are used if xi does not (and xi does satisfy) clause cj .

Beyond utilizing two types of blocki,j tile sets, tile sets are further distin-
guished between odd and even values of i and j. In total, 16 distinct bins (sat-
isfied or not, negated or not, odd or even i, odd or even j) are used.

We include the grey and green tiles of Fig. 2(a) separately in two additional
bins. An additional four bins are used in the construction to maintain a set of
single copies of all tiles used within the system. Separating these tile subsets into
four bins ensures that the tiles do no interact (until mixed with other assemblies
at a later stage).

Stage 2: Assembling Rows. In stage 2 we combine all blocki,j assemblies
for even j into one bin, and all blocki,j assemblies for odd j into a second
bin. Within each bin and for each value j, rows encoding each possible variable
assignment assemble non-deterministically via attaching 0 − blocki,j and 1 −
blocki,j assemblies for each i ∈ {1, 2, . . . , n}. We refer to these assemblies as
rowj assemblies. There are 2n such assemblies for each j - one per variable
assignment. Example rowj assemblies are shown in Fig. 3.

Stage 3: Combining Rows with Shared Assignments and Satisfied
Clauses. Stage 3 is where the real action happens. All rowj assemblies are
combined, along with the green and grey assemblies of Fig. 2.

Consider the possible assembly of a rowj and a rowj+1 assembly. If the two
respective rows encode distinct variable assignments, geometric incompatibility
prohibits any possible connection (Fig. 3(b)). If the rows encode the same truth
assignment, then the rows may attach if any of the rowj variable pieces expose
the extended tip via the red τ = 2 strength glues (Fig. 3(a)). Such an attachment
indicates that the variable assignment of both rows satisfies cj . If the variable
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Fig. 4. (a) Non-satisfying variable assignments will not be able to grow from row
0 to row m. (b) Assemblies encoding satisfying variable assignments will allow for
complete assemblies with all rows, allowing for a green assembly to attach. (c) The
target assembly A given as output of the reduction. (Color figure online)

assignment encoding does not satisfy cj , no extended tip exists and the rows
cannot attach (Fig. 3(c)).

A satisfying assignment of φ corresponds to m rows attaching to form a
complete “satisfying” assembly (Fig. 4(b)). The green assembly attaches coop-
eratively to such assemblies using the rowm assembly glue and a glue from the
grey tiles, which attach uniquely to row0. The attachment of a green assembly
verifies that all rows are present and the variable assignment satisfies φ.

A second copy of the green assembly attaches to any assembly containing
row0, regardless of whether all rows are present or not (Fig. 4(a)). In a sepa-
rate bin, the green assembly tiles and grey assemblies are combined, yielding a
combined grey-green product (for mixing in stage 4).

Stage 4: Merging Assignments. In stage 4, the set of all blocki,j individual
tiles are added to the assemblies constructed in stage 3 as well as the grey-green
assembly produced in the previous stage. Note that the green assembly is not
an input assembly to this mixing.

Since all blocki,j assemblies are included, each terminal assembly from stage 3
may grow into the unique terminal assembly shown in Fig. 4(c) with one excep-
tion: assemblies from stage 3 encoding satisfying variable assignments. These
assemblies have one additional copy of the green bar assembly attached. There-
fore, the assembly of Fig. 4(c) is uniquely assembled if an only if no such satisfying
assembly exists.

5 Staged Unique Assembly Verification Is coNPNP-Hard

Theorem 4. The staged UAV problem (for τ = 2 7-stage systems) is coNPNP-
hard.

Proof. We reduce from ∀∃SAT by combining ideas from the reductions of
Theorem 1 and 3.
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Fig. 5. The assemblies at respective stages for the coNPNP-hardness reduction for the
staged UAV problem. (Color figure online)

Stages 1–3: The SAT Assemblies. The first 3 stages follows those of the
reduction in Theorem3 but without the inclusion of the green assembly and light
grey tiles. The result is a collection of assemblies encoding satisfying variable
assignments with all m rows, as well as partial assemblies of less than m rows
encoding non-satisfying assignments. For clarity, the bottom half of the j = 0
blocks for values i > k are removed, exposing the “geometric teeth” only for the
first k variables.

Stages 1–3: The Test Assemblies. Additionally, in a separate set of bins,
we non-deterministically generate a set of test assemblies. The test assemblies
are similar to row assemblies and generated in a similar fashion. An example
test assembly is shown in Fig. 5 (Stages 1–4). A test assembly for each of the 2k

possible truth assignments of x1, x2, . . . , xk is grown, and a green bar assembly
is attached to the side of each test assembly.

Stage 4: The Magic Happens. The SAT assemblies and test assemblies are
combined in a bin. Test assemblies attach to SAT assesmblies encoding satis-
fying variable assignments by utilizing cooperative bonding based on the two
strength-1 green glues on the green assembly. SATassemblies encoding non-
satisfying assignments must each lack the topmost or bottommost row, and
therefore cannot attach to a test assembly.

Due to the geometric interlocking teeth from the test assembly and the bot-
tom of SAT assemblies, test assemblies may only attach to SAT assemblies that
encode the same variable assignment (of variables x1, x2, . . . , xk). Stages 1–4 of
Fig. 5 show an example test assembly and a attaching SAT assembly.
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Note that if there exists a truth assignment for x1, x2, . . . , xk with no satis-
fying assignment of the remaining variables xk+1, xk+2, . . . , xn, then the corre-
sponding test assembly does not attach to any SAT assembly and is a terminal
assembly of this bin. On the other had, if every assignment of the variables
x1, x2, . . . , xk has at least one satisfying assignment of the remaining variables,
i.e. the solution ∀∃SAT instance is “true”, then there are no terminal test assem-
blies of this bin.

Stage 5: Tagging Non-satisfying Assignments. In Stage 5, we add pre-
assembled duples which attach to the bottom of any assembly containing row 0
and encodes a non-satisfying variable assignment. This attachment ensures that
in subsequent stages, these assemblies will be geometrically incompatible with
any remaining test assemblies from Stage 4.

It is possible that some duples have no non-satisfying SAT assembly to attach
to. As a solution, an additional height-1 assembly of the row-0 assembly that
“absorbs” each duple is added at this stage. The subsequent stages enable these,
as well as all other SAT assemblies, to grow into a single common (potentially)
unique assembly.

Stage 6: Attaching Test Assemblies. The result of Stage 5 is mixed with an
assembly consisting of:

– The light-grey bar of the test assemblies.
– A second complete layer of dark grey tiles.
– The green bar.

This assembly attaches to any non-satisfying SAT assembly that includes row 0,
ensuring that all assemblies containing row 0 now have a version of the test
assembly attached (Stage 6 in Fig. 5).

Stage 7: Merging. In the final stage, every individual tile of the target assembly
(seen in Stage 7 of Fig. 5) is added to the result of Stage 6, with the exception
of the green tiles and the tiles in rows 1 through 5 of the SAT assemblies.

These tiles complete each SAT assembly in the assembly in Fig. 5 (Stage 7).
Morever, the height-1 assembly used to absorb duples from Stage 5 grows into
the assembly from Fig. 5 (Stage 7). However, because of the lack of tiles from
rows 1 through 5, any leftover test assembly from Stage 4 remains terminal.

Thus the target assembly is the unique terminal assembly of the system if
and only if the solution to the ∀∃SAT instance is “yes”.

Observe that every staged system output by the reduction has the property
that if it does not have a unique terminal assembly, then it also does not have a
unique terminal shape. Thus the same reduction suffices to prove that the staged
USV problem is coNPNP-hard.

Corollary 1. The staged USV problem is coNPNP-hard.
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6 Staged PSPACE Containment

Here we prove that the staged UAV and USV problems are in PSPACE. Parame-
terized versions of the results are also obtained; these prove that both problems
restricted to systems with any fixed number of stages lie in the polynomial hier-
archy. Both results are obtained via upper bounds on the complexities of the
following three problems:

Definition 4 (Stage-s producible-in-bin verification (PIBVs) problem).
Given a staged system Γ , a bin b in stage s of Γ , an assembly A, and an integer n:

1. is A a producible assembly of b?
2. and does every producible assembly of every bin in stage s − 1 of Γ have size

at most n?

Definition 5 (Stage-sundersized-in-bin verification (UIBVs) problem).
Given a staged system Γ , a bin b in stage s of Γ , and an integer n:

1. and does every producible assembly of b have size at most n?
2. and does every producible assembly of every bin in stage s − 1 of Γ have size

at most n?

Definition 6 (Stage-s terminal-in-bin verification (TIBVs) problem).
Given a staged system Γ , a bin b in stage s of Γ , an assembly A, and an integer n:

1. is A a terminal assembly of b?
2. and does every producible assembly of b have size at most n?
3. and does every producible assembly of every bin in stage s − 1 of Γ have size

at most n?

The statements and proofs of the following results use terminology related to
the polynomial hierarchy. For an introduction to the polynomial hierarchy, see
Stockmeyer [13]. As a reminder, ΣP

i+1 =NPΣP
i ,ΠP

i+1 =coNPΣP
i , and ΣP

0 = ΠP
0 = P.

Lemma 1. For all s ∈ N:

– The PIBVs problem is in ΣP
2s−2.

– The UIBVs and TIBVs problems are in ΠP
2s−1.

Due to space limitations, the proof of this lemma is omitted.

Definition 7 (Stage-s unique assembly verification (Stage-s UAV)
problem). Given a staged system Γ with s stages and an assembly A, is A
the unique terminal assembly of Γ?

Theorem 5. The stage-s UAV problem is in ΠP
2s.

Proof. We give an algorithm for the stage-s UAV problem. The stage-s UAV
problem may be restated as:
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1. is every assembly B with |B| ≤ |A| and B �= A not a terminal assembly of
any bin in stage s?

2. and does every producible assembly of every bin in stage s − 1 of Γ have size
at most |A|?

In the algorithm below, Ts and Us are algorithms for the TIBVs and UIBVs

problems, respectively.

Algorithm 3. A ΠP
2s algorithm for the stage-s UAV problem

1: procedure UAVs(Γ, A) � Γ has s stages.
2: Non-deterministically select an assembly B with |B| ≤ n and A �= B.
3: for all bins b in stage s of Γ do
4: if Ts(Γ, b, B) then � Function call is in ΠP

2s−1

5: return no.
6: end if
7: end for
8: if not Us(Γ, b, |A|) then � Function call is in ΠP

2s−1

9: return no.
10: end if
11: return yes.
12: end procedure

The algorithm runs as a coNP machine, returning “no” unless every non-
deterministic branch returns “yes”. Lines 2–8 verify that A is a terminal assembly
of bin b (subproblem 1): A is not a terminal assembly if and only if (1) A is not
producible (lines 2–4), or (2) another producible assembly B can attach to A
(lines 5–8).

Every staged system has some number of stages s ∈ N, but there is no
limit to the number of stages a staged system may have. Thus the staged UAV
problem is not contained in any level of PH, but every instance can be solved
by an algorithm that runs at a fixed level (ΠP

2s) of the hierarchy. Since it is a
well-known that PH ⊆ PSPACE, this gives the desired result:

Corollary 2. The staged UAV problem is in PSPACE.

Next, we move to shape verification:

Definition 8 (Stage-s unique shape verification (Stage-s USV) prob-
lem). Given a staged system Γ with s stages and a shape S, is S the unique
terminal shape of Γ?

Theorem 6. The stage-s USV problem is in ΠP
2s.

Proof. The stage-s USV problem can be restated as:

1. is every assembly B with |B| ≤ |S| and shape not equal to S not a terminal
assembly of any bin in stage s?

2. and does every producible assembly of every bin in stage s − 1 of Γ have size
at most |S|?
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Notice that the subproblems only differ from those of the stage-s UAV prob-
lem in that S replaces A and “equal shape” replaces “equals”. Thus the algo-
rithm differs from the ΠP

2s algorithm for the stage-s UAV problem on only line 5
(replace “A �= B” with “shape not equal to S”) and line 8 (replace |A| with |S|).

As for the UAV problem, since the stage-s USV problem is in PH for each
s ∈ N, the USV problem is in PSPACE.

Corollary 3. The staged USV problem is in PSPACE.

7 Open Problems

The most direct problem left open by this work is closing the gap in the bottom
row of Table 1 between the coNPNP-hardness and PSPACE containment of the
staged UAV and USV problems. We believe that the approach of differentiating
between satisfying and non-satisfying assignments, then checking for the exis-
tence of various partial assignments (the ∀ portion of ∀∃SAT) can be generalized
to achieve hardness for any number of quantifier alternations, using a number
of stages proportional to the number of alternations:

Conjecture 1. The staged UAV and USV problems are PSPACE-complete.

Conjecture 2. The stage-s UAV and stage-s USV problems are Πp
Ω(s)-hard.

The UAV and USV problems considered in this work are two variants of
the generic challenge of verification; considering the same problems limited to
temperature-1 systems or with different inputs is also interesting:

Problem 1. What are the complexities of the staged UAV and USV problems
restricted to temperature-1 systems?

Problem 2. What is the complexity (in any model) of the following UAV-like
problem: given a system Γ and an integer n, does Γ have a unique terminal
assembly of size at most n?

Finally, the results and techniques presented here might find use in the study
of other problems in staged and two-handed self-assembly, such as tile minimiza-
tion. The aTAM USV problem is coNP-complete, while the minimum tile set
problem of finding the minimum number of tiles that uniquely assemble into a
given shape is NPNP-complete [2]. We now know that the 2HAM USV problem
is coNPNP-complete (Sect. 3); does the corresponding optimization problem also
rise in the hierarchy?

Conjecture 3. The 2HAM minimum tile set problem is NPNPNP

-complete.
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