Matthew J. Patitz
Mike Stannett (Eds.)

Unconventional Computation
and Natural Computation

16th International Conference, UCNC 2017
Fayetteville, AR, USA, June 5-9, 2017
Proceedings

LNCS 10240

&\ Springer EXTRAS ONLINE




Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

10240



More information about this series at http://www.springer.com/series/7407


http://www.springer.com/series/7407

Matthew J. Patitz - Mike Stannett (Eds.)

Unconventional Computation
and Natural Computation

16th International Conference, UCNC 2017
Fayetteville, AR, USA, June 5-9, 2017
Proceedings

@ Springer



Editors

Matthew J. Patitz Mike Stannett
University of Arkansas University of Sheffield
Fayetteville, AR Sheffield

USA UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-58186-6 ISBN 978-3-319-58187-3  (eBook)

DOI 10.1007/978-3-319-58187-3
Library of Congress Control Number: 2017938636
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

The 16th International Conference on Unconventional Computation and Natural
Computation (UCNC 2017) was held June 5-9, 2017, on the campus of the University
of Arkansas in Fayetteville, Arkansas, USA. The UCNC series of international con-
ferences is genuinely interdisciplinary and it covers theory as well as experiments and
applications. It is concerned with various proposals for computation that go beyond the
Turing model, human-designed computation inspired by nature, and with the compu-
tational nature of processes taking place in nature. Typical, but not exclusive, topics
are: hypercomputation; chaos and dynamical systems-based computing; granular,
fuzzy, and rough computing; mechanical computing; cellular, evolutionary, molecular,
neural, and quantum computing; membrane computing; amorphous computing, swarm
intelligence; artificial immune systems; physics of computation; chemical computation;
evolving hardware; the computational nature of self-assembly, developmental pro-
cesses, bacterial communication, and brain processes.

More information about this conference series and its full history can be found
on the following website: https://www.cs.auckland.ac.nz/research/groups/CDMTCS/
conferences/uc/uc.html.

Submissions to UCNC 2017 comprised 21 full papers across a wide variety of
topics, including (but not limited to) quantum computing, algorithmic self-assembly,
and chemical reaction networks. Of these, 14 were accepted for presentation at the
conference and publication in these proceedings. Beyond the contributed papers and
associated talks, UCNC 2017 was greatly enhanced by the plenary talks and tutorials
provided by several prestigious speakers. José Félix Costa from the University of
Lisbon, Portugal, gave a plenary talk titled “The Power of Analogue-Digital
Machines.” Erik Demaine from the Massachusetts Institute of Technology, USA,
presented his plenary talk “Computing with Glue, Balls, and Recycled Bits: New
Physical Models of Computing.” Masayuki Endo from Kyoto University, Japan, gave a
plenary talk titled “High-speed AFM Imaging of Synthetic Nanomachines and
Nanostructures.” A tutorial titled “Ways to Compute in Euclidean Frameworks” was
provided by Jérome Durand-Lose from the Université d’Orléans, France, and Makoto
Naruse from the National Institute of Information and Communications Technology,
Japan, presented a tutorial titled “Decision Making by Photonics: Experiment and
Category Theoretic Foundation.”

Included during the conference were two workshops. The Workshop on Membrane
Computing was organized by Matteo Cavaliere from the University of Edinburgh, UK,
and Alfonso Rodriguez Paton from the Universidad Politecnica de Madrid, Spain.
Invited speakers for that workshop were Alvaro Sanchez from Yale University, USA,
and Sergey Verlan from the University Paris Est Créteil, France. The First International
Workshop on Oritatami (Oritatami 2017) was organized by Shinnosuke Seki from the
University of Electro-Communications, Japan, and the invited speakers for that
workshop were Cody Geary from Caltech, USA, and Aarhus University, Denmark, and
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VI Preface

Nicolas Schabanel from CNRS, University of Paris Diderot (IRIF), and ENS Lyon
(IXXT), France.

UCNC 2017 brought together researchers from all over the world to share and
discuss ideas on forms of computation inspired by natural systems and unconventional
methods. Its success as the 16th conference in the series is owed to a great amount of
help from many people and organizations. First and foremost, we would like to thank
the Steering Committee co-chairs, Natasa Jonoska and Jarkko Kari, whose expert
guidance and invaluable advice helped to shape all aspects of the conference. Next, a
huge debt of gratitude is owed to the Program Committee members and external
reviewers who carefully reviewed all submissions and provided important feedback to
help decide which papers to accept. Beyond the technical details of assembling invited
speakers and selecting contributed papers, the amount of work done to organize the
venue, meals, excursion, and countless other details would have been completely
overwhelming without the enthusiastic and tireless help of Cindy Pickney, as well as
the other members of the Organizing Committee, Jamie Stafford, George Holmes, and
Jason Crawley. There would have been no conference without their help. Important
financial support was provided by the Department of Computer Science and Computer
Engineering at the University of Arkansas, the College of Engineering at the University
of Arkansas, and the National Science Foundation (which provided funding to support
student travel to the conference). Finally, many thanks are owed to the LNCS team at
Springer who helped with the publication of these proceedings.

June 2017 Matthew Patitz
Mike Stannett
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The Power of Analogue-Digital Machines
(Extended Abstract)

José Félix Costa'?

! Department of Mathematics, Instituto Superior Técnico,
Universidade de Lisboa, Lisboa, Portugal
fgc@math.tecnico.ulisboa.pt
2 Centro de Filosofia das Ciéncias da Universidade de Lisboa, Lisboa, Portugal

Abstract. The ARNN (Analogue Recurrent Neural Net) abstract computer,
extensively analysed in H.T. Siegelmann: Neural Networks and Analog Com-
putation: Beyond the Turing Limit, Birkhduser (1999), introduces an
analogue-digital model of computation in discrete time. When the parameters
of the system (so-called weights) are real-valued the computations cannot be
specified by finite means: we have computation without a program. Several
other models of analogue-digital computation were introduced around the same
time to explore the power of reals added to digital computation. Under the
polynomial time constraint, the ARNN efficiently performs not only all Turing
machine efficient computations but also computes non-recursive functions such
as (a unary encoding of) the halting problem (of Turing machines).



Computing with Glue, Balls, and Recycled
Bits: New Physical Models of Computing

Erik D. Demaine

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
32 Vassar St., Cambridge, MA 02139, USA
edemaine@mit.edu

Abstract. Real computers live in a physical world, which offers many different
ways to compute other than standard CMOS chips. I’ll talk about a few different
models I’ve played with, which incorporate geometry and/or thermodynamics
into the computational model.

1. Glues: We can build computers out of simple geometric nanoparticles (e.g.
DNA) with somewhat selective glues that define how they stick together, or
come apart. Our latest result is a way to build a universal replicator, like a
photocopier for unknown nanostructures.

2. Balls: We can build computers out of obstacles and rolling balls that just
respond to global signals like “roll all balls maximally to the right”. The
puzzle Tilt embodies this physics, which also have real-world applications
in biomedicine.

3. Recycled Bits: We can build computers that recycle bits whenever possible
instead of throwing them away a billion times a second. This requires
developing a whole new suite of algorithms, but it can lead to several orders
of magnitude improved energy efficiency, which ultimately may lead to a
similar improvement in speed.

4. In the Limit: What happens when computation and memory are taken to
their physical (geometric) limits? I think we should go back to studying
algorithms for 1970s-era mesh computers.



Ways to Compute in Euclidean Frameworks

Jérome Durand-Lose

Laboratoire d’Informatique Fondamentale d’Orléans,
Université d’Orléans, Orléans, France
jerome.durand-lose@univ-orleans. fr

Abstract. This tutorial presents what kind of computation can be carried out
inside a Euclidean space with dedicated primitives—and discrete or hybrid
(continuous evolution between discrete transitions) time scales. The presented
models can perform Classical (Turing, discrete) computations as well as, for
some, hyper and analog computations (thanks to the continuity of space). The
first half of the tutorial presents three models of computation based on respec-
tively: ruler and compass, local constraints and emergence of polyhedra and
piece-wise constant derivative. The other half concentrates on signal machines:
line segments are extended and replaced on meeting. These machines are cap-
able hypercomputation and analog computation and to solve PSPACE-problem
in “constant space and time” though partial fractal generation.



High-Speed AFM Imaging of Synthetic
Nanomachines and Nanostructures

Masayuki Endo

Institute for Integrated Cell-Material Sciences and Department of Chemistry,
Graduate School of Science, Kyoto University,
Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
endo@kuchem.kyoto-u.ac.jp

Direct observation of molecular motions is one of the most fundamental issues for
elucidating the physical properties of individual molecules and their reaction mecha-
nisms. Atomic force microscopy (AFM) enables direct molecular imaging, especially
for biomolecules in the physiological environment. We have developed AFM-based
single-molecule observation systems for biomolecule imaging by employing DNA
origami nanostructures and high-speed AFM. [1, 2] Using this system, we have char-
acterized the DNA structural changes and enzyme reactions in the DNA nanostructures.
We also employed photochemical reactions to construct the mobile nanosystems and
devices controlled by hybridization and dehybridization of DNA strands by
photo-irradiation. Using the photoresponsive systems, we directly observed the dynamic
assembly and disassembly of hexagonal origami structures on a lipid bilayer during
high-speed AFM scanning. [3] We further employed a lipid-bilayer to observe the
dynamic 2D array formation from cross-shaped, triangular, and hexagonal origami
monomers. [4] For control of a linear molecular movement, a pyrene-attached DNA
motor and the track were assembled on the DNA origami tile. [S] We observed the
photo-induced movement of the motor on the DNA origami surface as similar to an
enzyme-induced DNA motor. In addition, we constructed a photo-controllable rotator
system on the DNA origami tile, and the rotary movement of the photoresponsive DNA
nanostructure was observed by switching UV/Vis irradiation. These chemically con-
trolled DNA nanosystems are expected to be applied for construction of mobile
nanostructures and nanodevices. Also the high-speed AFM observation supports the
detailed analysis of the movements of the target molecules and the morphology changes
of the nanostructures at nanoscale resolution.

References

. Endo, M., Sugiyama, H.: Acc. Chem. 47, 1645-1653 (2014)

. Rajendran, A., Endo, M., Sugiyama, H.: Chem. 114, 1493-1520 (2014)
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Decision Making by Photonics: Experiment
and Category Theoretic Foundation

Makoto Naruse!, Martin Ber[hel2, Aurélien Drezet3, Serge Huant4,
Hirokazu Hori® , and Song-Ju Kim®

! National Institute of Information
and Communications Technology, Tokyo, Japan
naruse@nict.go.jp
2 University Grenoble Alpes, CNRS, Institute NEEL, Grenoble, France
martin.berthel@u-bordeaux. fr
3 University Grenoble Alpes, CNRS, Institute NEEL, Grenoble, France
serge.huant@neel.cnrs. fr
4 University Grenoble Alpes, CNRS, Institute NEEL, Grenoble, France
serge.huant@neel .cnrs.fr
5 University of Yamanashi, Kofu, Japan
hirohori@yamanashi.ac.jp
6 National Institute for Materials Science, Tsukuba, Japan
KIM.Songju@nims.go.jp

Decision making is a vital function in the age of artificial intelligence. Here we
experimentally demonstrate that single photons can be used to make decisions in
uncertain, dynamically changing environments and describe its category theoretic
foundation. The specific decision making problem under study is the multi-armed
bandit problem where a user tries to maximize the total reward from multiple slot
machines. To find the machine with the highest reward probability, the user needs to
explore. However, excessive exploration may result in frequent losses whereas insuf-
ficient exploration may lead to the user missing the best machine; there is a difficult
trade-off called exploration-exploitation dilemma. We aim to physically resolve this
problem by using the dual probabilistic and particle attributes of single photons. The
propagation direction of a linearly polarized single photon that impinges on a polar-
ization beam splitter changes probabilistically depending on the polarization. Mean-
while, an individual single photon was detected by either of the destination
photodetectors. These quantum attributes of light were utilized in our optical system,
which includes a nanodiamond as the single photon source and a polarization con-
troller. Adequate and adaptive decision making for two-armed bandit problem was
successfully solved [1]. Further, by introducing a hierarchical architecture, four-armed
bandit has been solved leading to the scalability of photon decision making [2].
Further, we developed a category theory foundation for the single-photon-based
decision making, including a quantitative analysis that agrees well with the experi-
mental results [3]. Category theory is a branch of mathematics that formalizes math-
ematical structure into collections of objects and morphisms. One of the significant
features of category theory is that objects and morphisms are determined by the role
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they play in a category via their relations to other objects and morphisms, i.e., by their
position in a structure and not by what they are or what they are made. Such a nature of
category theory is highly beneficial to reveal complex interdependencies of the entities
in decision making in a most simplified manner, including the dynamically changing
environment. In particular, the octahedral and braid structures of the triangulated cat-
egories provide a clear understanding and quantitative metrics of the underlying
mechanisms for single-photon decision makers. This is the first demonstration of a
category theory interpretation of decision making and it provides a solid understanding
and a fundamental design for intelligence.

Acknowledgements. This work was supported in part by the Core-to-Core Program,
A. Advanced Research Networks from the Japan Society for the Promotion of Science.
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The Power of Analogue-Digital Machines
(Extended Abstract)

José Félix Costal:2(®)

! Department of Mathematics, Instituto Superior Técnico,
Universidade de Lisboa, Lisboa, Portugal
fgc@math.tecnico.ulisboa.pt
2 Centro de Filosofia das Ciéncias da Universidade de Lisboa, Lisboa, Portugal

The ARNN abstract computer,’ extensively analysed in [28], introduces an
analogue-digital model of computation in discrete time. When the parameters
of the system (so-called weights) are real-valued,? the computations cannot be
specified by finite means: we have computation without a program. Several other
models of analogue-digital computation were introduced around the same time to
explore the power of reals added to digital computation (see [17,27,29]). Under
the polynomial time constraint, the ARNN efficiently performs not only all Tur-
ing machine efficient computations,® but also computes non-recursive functions
such as (a unary encoding of) the halting problem (of Turing machines). The
reals* are introduced into the computation by means of measurements made
either by a few neurons that read a weight byte by byte, or by means of a
real-valued probability of transition. In the first case, the ARNN decides P/poly
in polynomial time and, in the second case, the ARNN decides BPP//logx
in polynomial time. However, in these systems, measurements sound physically
unrealistic since the function involved in computing the so-called activation of
the neurons (the physical processors) is the well-behaved piecewise linear func-
tion, exhibiting sharp vertices. In an attempt to recover the classical analytic
sigmoid activation function, in [25], the power of the deterministic ARNN in
polynomial time drops to P/log* as shown in [7,19].

Criticism was addressed towards the possibility of engineering such machines.
In [20], Martin Davis pointed clearly that the only way a machine can go beyond
the Turing limit is being provided with non-computable information and in [21]
he says that, even if a machine could compute beyond the Turing limit, we would
not be able to certify that fact (a phenomenon that can be well understood in
[24], since only the computable character of a function can be verified — but
not decided — in the limit). In [30], Younger et al. discuss the realization of
BPP//log* super-Turing machines with their electronic engineering project. In
our paper, the general model is only intended to establish limits to abstract
and ideal computing devices that, like the ARNN, have access to real numbers

1 Analogue Recurrent Neural Net.

2 Real weights are quite common in the neural net literature.

3 A few rational weights being enough for the purpose.

4 In fact, the truncated reals. The amount of precision depends on the size of the
input.

© Springer International Publishing AG 2017

M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 3-7, 2017.
DOI: 10.1007/978-3-319-58187-3_1



4 J.F. Costa

by means of an ideal measurement in Classical Physics. It should be noted that
measurements of physical quantities are also the subject of well-developed theory
that started with Hempel and Carnap (see [18,22,23]). Their theory explains how
numerical representations of qualitative attributes are possible and is laid out in
the work of Krantz et al. [26].

In order to understand the computations of new paradigms of computing
involving real numbers, it was proposed in [5,6] to replace the classical oracle
to a Turing machine by an analogue device like those in the hybrid models of
the sixties (see [16] for those analogue-digital models).

The oracles that we considered are physical processes that enable the Turing
machine to measure quantities. As far as we have investigated (see [15]), mea-
surements can be classified in one of the three types:® one-sided or threshold
measurement, two-sided measurement and vanishing measurement. A one-sided
experiment is an experiment that approximates the unknown value y just from
one side, i.e. it approximates an unknown value y either with values z from above
or with values z from below, checking either if y < z or if z < y, but not both.
A two-sided experiment® is an experiment that approximates the unknown value
y from both sides, i.e. it approximates the unknown value y with values z from
above and with values z from below, checking if y < z and z < y. A vanishing
experiment is an experiment that approximates the unknown value y measuring
the number of ticks of a (Turing machine) clock.” This type of experimental clas-
sification is neither in Hempel’s original work in [23], nor in the fully developed
theory in [26].

For the previous types of oracle, the communication between the Turing
machine and the oracle is ruled by one of the following protocols, inter alia (see
[8] for the other protocols):

— Infinite precision: the oracle answers to the queried word with infinite
precision;

— Arbitrary precision: the oracle answers to the queried word with probability
of error that can be made as small as desired but is never 0;

— Fixed precision € > 0: the oracle answers to the queried word with probability
of error €.

It was then realised that the interaction between the analogue part — experi-
ment to conduct or value to be measured — and the digital part — the scientist or
the computer — takes (physical) time that is at least exponential in the desired
number of bits of precision (see [10-15]). (This physical time is intrinsic to phys-
ical law and does not represent the time needed for the activity of measurement
itself.) Having discovered such a timing restriction (that in the ARNN model cor-
responds to the replacement of the piecewise linear or saturated sigmoid by the
analytical sigmoid), we engaged in an investigation on experimental apparatuses

5 This is still conjecture.
5 ARNN computes with a two-sided experiment.
" A time constructible function.
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in order to answer the question What can one compute with the help of a mea-
surement of a magnitude? (see [1,4,8,13,15]). In [1,2,4,8,9] the upper bounds
of analogue-digital computation in polynomial time under ideal conditions were
placed in BPP//logx in the case of both deterministic, and of probabilistic,
computation. In fact, the power of measurements has been BPP//log* per-
sistently, across all limited precision protocols, while it drops from P/poly to
P/logx in the case of the deterministic measurement. We wondered whether the
barrier BPP//logx would persist in more general conditions. In [3], we show
that under the most general (ideal) conditions the upper bounds of computa-
tional power of measurements of (deterministic) infinite, arbitrary and limited
precisions are BPP//logx.

Among a number of theorems, we have shown that if these measurements
are used as an oracle to a Turing machine, then, in polynomial time, we can
compute the complexity classes listed in Table 1.

Table 1. The lower and upper bounds for the main complexity classes computed by
the analogue-digital models characterised by either a non-analytic (C°, but not C?) or
an analytic function (from C? to analytic). These results were presented in [5,6] for
the first case and in [1,4,8] for the second case. Different classes such as BPP//log®*
and BPP//logx occur in further specialization of the protocols not considered in this
extended abstract.

‘ Infinite ‘ Unbounded ‘ Fixed
Non-analytic analogue
Lower bound | P/poly | P/poly BPP//logx
Upper bound | P/poly | P/poly BPP//logx
Analytic analogue
Lower bound | P/logx| BPP//logx BPP//logx
Upper bound | P/ logx| BPP//log®x or BPP//logx| BPP//log®x or BPP//logx

Recently, we have moved towards understanding the computational limits of
analogue-digital machines operating in bounded space. Some new research will
be summarised.
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Ways to Compute in Euclidean Frameworks
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Abstract. This tutorial presents what kind of computation can be car-
ried out inside a Euclidean space with dedicated primitives—and discrete
or hybrid (continuous evolution between discrete transitions) time scales.
The presented models can perform Classical (Turing, discrete) compu-
tations as well as, for some, hyper and analog computations (thanks
to the continuity of space). The first half of the tutorial presents three
models of computation based on respectively: ruler and compass, local
constraints and emergence of polyhedra and piece-wise constant deriva-
tive. The other half concentrates on signal machines: line segments are
extended and replaced on meeting. These machines are capable hyper-
computation and analog computation and to solve PSPACE-problem in
“constant space and time” though partial fractal generation.

Keywords: Analog computation - Computability - Fractal computa-
tion - Fractal generation - Hybrid-computation - Hyper-computation -
Mondrian Automata - Piece-wise constant derivative - Ruler and com-
pass - Signal machine -+ Turing computation

1 Introduction

This tutorial provides some insight on the following question: What can be done
with a Euclidean space with dedicated primitives and controls? Space is not con-
sidered as the place to assemble gates and wires but as the substrate of com-
putation itself. The general framework is not machines or automata but some
Euclidean space where information is displayed and evolved according to some
dynamics.

The approaches considered here are: constructions with ruler and compass,
polyhedra emerging from local constraints, extending a sequence of line segments
across polyhedral regions, extending line segments until they intersect, etc. In
each case, distance, carried information, available room, encounters/collisions,
etc., are elements where spatial localization matters.

Space is Euclidean, this means, on the one hand, that it is continuous and,
on the other hand, that the underlying geometry is the one of points, lines
and circles. This geometrical point of view is prevalent here as shown by the
illustrations. This general framework has limitations: no differential equation, no

© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 8-25, 2017.
DOI: 10.1007/978-3-319-58187-3_2
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algebraic geometry, etc. Outside of instantaneous “border” crossing or apparatus
operation, all is straightforward and absolutely plain. The models presented here
belong to a more general framework: hybrid systems with continuous (related to
the nature of space and possibly time) and discrete (phase transition, collision,
etc.) traits.

Continuity opens the way to Zenon effects: an infinite number of discrete
transitions during a finite (continuous) duration (in a finite space). Many models
use this capability to hyper-compute (solving the Halting problem and even “less
computable” problems, see Syropoulos (2010)).

Like Euclidean geometry, presented models are idealized: lines have zero
width, positions are exact, etc. From the physics standpoint, they are more
abstract than realistic: unbounded density of information, space is Euclidean at
every scale, etc.

When Turing computability is addressed, rational versions of the models are
used: all coordinates, speeds, etc., are rational numbers. On the one hand, this
often allows exact manipulation on a computer and on the other hand, it prevents
oracles to be encoded in the system as a real number [for example the solution
to the Halting problem as Chaitin’s omega number (Calude 2002, Chap. 7)].

Each presented model is described, main results and references are provided.
Proofs are omitted as well as complex results. Clues are provided as long as they
remain intelligible.

This tutorial has two parts. The first part presents three computing models.
The first model, the Geometric Computation Machines of Huckenbeck (1989,
1991), uses an automaton to activate ruler and compass and generates points,
lines and circles. The second one, the Mondrian Automata of Jacopini and
Sontacchi (1990), starts from uniform local constraints (on open balls from R™)
on space-time diagrams ensuring causality; from these emerge polyhedra at the
usual scale. The third one, the Piece-wise Constant Derivative of Asarin and
Maler (1995); Asarin et al. (1995), partitions space into polyhedral regions cor-
responding to constant speeds; the orbit starting from a single point can perform
infinitely many region changes during a finite portion.

The second part concentrates on one model: the signal machines of
Durand-Lose (2005, 2006). After the definition of the model, a simulation of a
generic Turing machine is presented. Using the continuity of both space and time,
it is possible to dynamically scale down the computation and accelerate to imple-
ment a form of the Black Hole model of computation (and to hyper-compute).
Fractal generation scheme can be used in order to dispatch sub-computations
and to achieve fractal computation (allowing, e.g., to solve quantified SAT in
constant space and time). This part ends by showing that the model is capable
of analog computation (computing over real numbers).

This survey of computing models involving space is not comprehensive. Some
models like cellular automata or tile assembling systems have their own devoted
conferences (or already had been the subject of a tutorial at UCNC) and have
so much literature about that each would spread over a few books; it would be
pointless to present them in a few pages. Models using higher level mathematics
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(differential equations, algebraic geometry, etc.) would not fit here and neither
would algorithmic geometry. Many others (e.g. continuous counterparts of cel-
lular automata like (Hagiya 2005; Takeuti 2005), use of optics to manipulate
2D-pictures (Naughton and Woods 2001; Woods and Naughton 2005)) are not
addressed just because the purpose is to show the variety and specificity and not
make an inventory.

This tutorial is based on the survey Durand-Lose (2016).

2 Three Models Operating on Euclidean Geometry

2.1 Ruler and Compass

This section is devoted to the work of Huckenbeck (1989, 1991) on Geometric
Computation Machines. The primitives of these machines are the usual geometric
operations that can be carried out with ruler and compass. The purpose is not
to do algorithmic geometry (would it be discrete, symbolic or algebraic) but to
construct in a two dimensional Euclidean space.

Each machine is an automaton (or program) equipped with a finite number
of registers. There are three kinds of register: for points, for lines and for circles.
The states of the automaton are used to represent both the program counter
and to record the state of the computation (i.e. Unfinished, Finished and Error, the
last two ones are final).

The available operations are:

— output a value (point, line or circle),

— put in a register the intersection of two lines,

— put in a register one of the intersections of a line and a circle (optionally
different from some point),

— put in a register one of the intersections of two circles (optionally different
from some point),

— put in a register the line going through two points,

— put in a register the circle whose center is given (as a point) as well as its
radius (as the distance between two points),

— copy a register, and

— Finished.

Intersections do not necessarily exist and neither are unique. This means that
the execution of the automaton is non deterministic. Whenever an instruction
cannot be carried out, the branch (of the tree of all possible executions) ends
with Error.

If the whole tree of possible executions is finite, has only Finished (i.e. no
Error) leafs and all its branches generate the same output, then the computation
succeeds and the output is the common output (it is generated by every branch).
For example, the program of Fig.1 computes the middle of a segment (whose
extremities are A and B and are the only input). Please note that there are two
possible executions (where are p; and pa?), but their outputs are identical.
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1: ¢;« Circle ( center A, radius d(A,B) ) g
2: cp«— Circle ( center B, radius d(A,B) ) 2
3: p1+ Intersection ( c1, c2 )
4: po« Intersection ( c1, c2 ) different from py c2
5: dy«Line ( p1, p2 ) c1 '
6: do—Line (A, B)
7: p3— Intersection ( dy, d2 ) ‘
8: Output p3
9: Finished dy

(a) program (b) construction

Fig. 1. Constructing the middle of the segment AB.

With the given primitives, it is also possible to construct the perpendicular
to a line passing through a point and then the parallel.

Conditional jump instructions are like “if py € E go to i: otherwise to j:”
where py is a point-register and E is a predefined set used as an oracle.

A simple case is when E contains only the origin (0,0) and points (1,0) and
(0,1) are provided as constants. The functions (computable in bounded time)
from an n-tuple of points to n-tuple of points are exactly the ones where the
input is divided in finitely many pieces (defined as intersection of finitely many
algebraic surfaces) where the coordinates of the output can be expressed with
rational functions. This is related to the possibility to implement the following
primitives: on the one hand, projections (z,y) — (z,0), (z,y) — (y,0) and recon-
struction (z,0) (y,0) — (z,y) and, on the other hand, addition, multiplication
and division on the x axis as on Fig. 2.

I S P
(0«,0)% y ‘ /

(a) addition: (££¥,0) then (z + y,0) (b) multiplication: (0,y) then (zy,0)

@or 1NV T 77

Fig. 2. Constructing from (z,0) and (y,0) with constants (0,0), (1,1) and (0, 1).

This corresponds to the classical construction of numbers computable with
rule and compass (Conway and Guy 1996, Chap. 7). These are also closed by
square rooting. Here, the condition that each branch should generate the same
output makes it impossible for root to appear (Huckenbeck 1991).

It should be noted that since the following operations can be performed:
(2,0) — (z 4+ 1,0), (,0) — (= — 1,0), and test whether (x,0) is (0,0); an
unbounded counter can be encoded with a point register. These machines can
simulate any 2-counter automaton and are thus Turing-universal.
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2.2 Mondrian Automata

The work of Jacopini and Sontacchi (1990) starts from a space and time modeling
of reality. Hypotheses are made from which follow local constraints that brought
forth the emergence of polyhedra.

In a Euclidean space of any dimension, each point is associated with a
state/color. The hypothesis is made that color and local neighborhood are linked:
if two points have the same color, then there is a sufficiently small (non-zero)
radius where balls match. This is depicted in Fig. 3.

(a) colored space (b) local constraints

Fig. 3. Mondrian space. (Color figure online)

As a consequence, if there is a ball of uniform color then any point of this
color is only surrounded by this color. Topologically, this means that they form
an open set. Similarly, if there is a curve (of zero width) of a color then the curve
must be a line segment: identical neighborhood implies a constant derivative.
All the points of this color must be on parallel line segments and, following any
direction, the surrounding colors should be the same. The extremities of the
segments should have different colors.

More generally, each color corresponds to polyhedral regions of equal and
parallel dimension. When they are restricted to their dimensions, they are open
and the frontiers of lesser dimensions should be colored differently. Whereas
following any other direction, adjacent colors are always the same.

Another hypothesis is that there is a finite number of colors. Hence, having a
common neighborhood (up to re-scaling) for each color defines all the constraints.
They provide all the information on the dimensions and directions associated to
each color as well as the color of the neighbors of higher dimensions.

Next step consists in adding one dimension for time and constraints for
causality. This is defined by a speed of light, ¢ and the condition that the color
of a point is uniquely defined by what is inside the past cone (delimited by
the speed of light). Figure4(b) shows two portions of space at different dates
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where colors are displayed similarly. The two cones based on these portions and
delimited by the speed of light are thus identical.

time time

t+A t R TA

(a) past and future cones (b) causality

Fig. 4. Cones and causality. (Color figure online)

Another argument from physical modelisation is that the system should be
reversible at local scale. This implies that the same constraint is also applied
with time running in the opposite direction. This corresponds to exchanging the
cones (pointing to past and future) in Fig. 4(b).

Temporal constraints can also be read at the polyhedra scale. It is possible to
think in terms of intersections and collisions (this kind of approach is developed
in the signal machine section). At this level, simulating a Turing machine in
dimension 2 (or 1 + 1 for time) would look like Fig. 8(b) except for reversibility.
(Reversible signal machines can compute as proven in Durand-Lose (2012).)

2.3 Piece-Wise Constant Derivative

In this model introduced in Asarin and Maler (1995), space is partitioned into a
finite number of polyhedral regions. On each region, a constant speed is defined.
On Fig. 5, thick lines separate the regions and the arrows indicate the directions
of speeds.

Starting from any point a trajectory is defined. When a region border is
reached, movement just follows on the other side with the new speed. In Fig. 5,
two trajectories are indicated. They both start on the left. The dashed trajectory
changes direction twice and then goes away forever. The dotted one is wrapping
itself infinitely around the intersection point of three regions.

This second trajectory is singular: it changes region infinitely often but nev-
ertheless reaches its limit in finite time (as a convergent geometrical sum) and
stops there. There are two distinct time scales: a continuous time one where the
limit is reached in finite time and an infinite discrete time one (of region change
events). This is a Zeno phenomenon/effect.

The rest of the section is restricted to rational initial points and vertices (of
polyhedra). Those systems can compute considering that the input is the initial
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Fig. 5. Piece-wise Constant Derivative trajectories.

position (in a given zone) and that halt and result correspond to entering some
other identified zone. In four dimensions, it is possible to encode the configuration
of a Turing machine and operate it in the following way. The words over {a,b}
(left and right part of the tape) are encoded with the recursive function 1 defined
by: ¢(g) = 1/4, Y(aw) = 1/3(1 + (w)), and Y(b.w) = 1/3(2 + ¢ (w)). Symbols
can be accessed by the primitives in Fig.6. (Scaling in Fig.6(b) is done by
changing the direction; proportions are preserved by Thales’s theorem.) The
tape needs two dimensions ((0,1)?). The state is encoded as the part in space
the trajectory is in. The trajectory loops and that each loop corresponds to a
transition of the Turing machine. Building and merging the “looping pipes” use
the two extra dimensions.

b
1 —4: X '
— —
— 2 7 — T —
ot —L =3 —
T 0 — o
(a) extract the first symbol (b) re-scale (c) prefixing with a

Fig. 6. Primitives for manipulating sequences of symbols.

With a more involved proof, the Reachability problem—to decide whether a
zone can be reached from a point—is thus undecidable in dimension 3 and above.
Adding dimensions to the systems allows to add nested levels of Zeno effect and
to climb hierarchies in the undecidable. With d dimensions, the level d—2 of the
arithmetical hierarchy (viz. ¥4_5)! is decidable (Asarin and Maler 1995; Asarin
et al. 1995). The model is even more powerful: Reachability is complete on levels
of the hyper-arithmetic hierarchy? (Bournez 1997, 1999a,b).

1 ¥ is the recursive sets, X is recursively enumerable sets, e.g. the Halting problem.
2 Extension of the arithmetical hierarchy to ordinal indices.
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3 Signal Machines

This section is dedicated to signal machines (SM) (Durand-Lose 2005, 2006).
This model was born as a continuous abstraction of Cellular Automata (CA)
(Durand-Lose 2008). Signals allow to store and transmit information, to start a
process, to synchronize, etc. They are the key tool in CA both for building CA
and for understanding. CA dynamics are often detailed as signals interacting in
collisions resulting in the generations of new signals.

CA-signals extend over one or more discrete cells whilst SM-signals are
dimensionless points on a 1-dimensional Euclidean space. The main properties of
CA are preserved: synchronicity (signals move at the same pace) and uniformity
(the dynamics are always and everywhere the same: the speeds and interac-
tions only rely on the nature of signals, like CA-patterns define the evolution of
discrete signals). Signals have uniform movement and “draw” line segments on
space-time diagrams. The nature of a signal is called a meta-signal.

A Signal machine (SM) is defined by a triplet (M, S, R) where M is a finite
set of meta-signals, S is a function associating a speed to each meta-signal, and R
is a set of collision rules. A collision rule associates to sets of at least two meta-
signals of different speeds (incoming) a set of meta-signals of different speeds
(outgoing). R is deterministic: a set appears at most once as the left (incoming)
part of a rule.

In any configuration, there are finitely many signals and collisions. They are
located in distinct places in space. Since a signal is completely defined by its
associated meta-signal and a collision by a rule, a configuration is fully defined
by associating to each point on the real axis a meta-signal, a rule or nothing.

As long as signals do not meet, each one moves uniformly; whereas as soon
as two or more signals meet, a collision happens. Collisions provide a discrete
time scale. Dynamics are defined using it: at any collision, incoming signals are
instantly replaced by outgoing signals according to collision rules. In-between
collisions, signals regularly propagate. This emphasizes the hybrid aspect of SM:
continuous steps separated by discrete steps.

To find the location of a collision, a linear system of two equations in two
variables has to be solved. Thus the location of any collision of signals whose
speeds and initial locations are rational numbers, has to be rational. A signal
machine is rational (Q-SM) if all speeds are rational numbers as well as any non-
void positions in any initial configuration. In any generated space-time diagram,
all collisions have rational locations and the positions of signals are rational at
each collision time.

Ezample 1 (Finding the middle). Tt is possible to compute the middle of two
signals, i.e. to position a signal exactly there. This is illustrated in Fig.7 where
a O signal is positioned exactly half-way between two W signals (bottom of
Fig.7(c)). The meta-signals and collision rules are defined in the left Fig.7. On
the right, is depicted a space-time diagram generated from a configuration with
signals of meta-signals (left to right): Sub, Add, Add, W and W.
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The process is started by the arrival of a Add signal on the left. When it
encounters the left W, it is transformed into A and ﬁ) The latter is three times
faster than the former and bounces on the right W; it becomes then F, still
three times faster (but with opposite direction). It encounters A exactly half-
way between the two W. The correct positioning of this collision can be proved
by computing the locations of all the intermediate collisions.

Considering the rules in Fig. 7(b), finding the middle only uses the three first
ones as can be read from the diagram. The fourth one allows to generate the
middle between the left W and the first O on right of it. This is started by
sending another Add from the left as illustrated in the middle in Fig. 7(c).

It is also possible to suppress the first O on the right of the left W. To achieve
this, a Sub order is sent from the left. It becomes E when passing over W. Signal
E collides and destroys the first O it encounters. This corresponds to the last
two rules and the top of Fig. 7(c).

Rt

A E 1
o, W 0
—
R 3
l

R
a) meta-signals
(a) g

Time

{Add,W} — {W,A,R }
{R,W} - {R.w}
(AR}~ {0}
{R,0} = {R,0}

{Sub,W} — {W,E}

{E,0} = {} Space
(b) collision rules (c) space-time diagram

Fig. 7. Finding the middle and more.

Finding the middle is a key primitive for designing SM. For example, as
shown above, it is possible to use it repeatedly to record any natural number in
unary (with O’s as in Fig. 7(c)) in a bounded space.

3.1 Turing Computability

Signal machines can simulate any Turing machine (TM) as shown in Fig. 8. The
evolution of the TM in Fig.8(a) can be seen in Fig.8(b). Vertical (null speed)
signals encode each cell of the tape. Zigzagging signals indicate the position of
the head and record the state of the automaton. Another interest of SM is to
provide graphical traces.

The enlargement of the tape is done with the middle construction, but back-
wards! It is also possible to set these speeds such that the distance is halved



Ways to Compute in Euclidean Frameworks 17

I

q,
[ Tololalo]#] EN
q,
[ Tololalo]#]
q,
Tololalo]e]
q,
Tololalo]#]
q2
Tololale[#]
[ Tolol+e[7] »
[ Tolalee]7]
qu
[Talalee]7]
qi
[ Talolee]7]
qi
Talol#e]7]

CTalelela[e] , g
(a) TM run (b) SM simulation

I

b
%\

|

‘

Time

Sl

i

Fig. 8. Simulating a Turing machine with a signal machine.

each time. The width of the whole tape is then bounded independently from the
number of cells.

This construction works on Q-SM that can be simulated exactly on any
computer. Leaving open the definition of input, halt and output, Q-SM have
exactly the same computing power as TM. This leads to the undecidability
of many problems for Q-SM (expressible in classic context since everything is
rational) like: decide whether the number of collisions is finite or decide whether
a meta-signal appears or a collision rule is used.

Using various meta-signals similar to O in Fig.7, it is possible to encode
sequences of letters functioning as a stack. This can also be achieved by using
positions to encode values (Durand-Lose 2006) (with irrational positions, it is
even possible to encode infinite stacks). It is possible to simulate any TM with
a constant number of signals and collisions involving only two signals resulting
in exactly two signals (conservation of the number of signals), but moreover this
remains true if rules should be injective: the rule is also defined by outgoing sig-
nals (reversibility) (Durand-Lose 2012). This simulation uses reversible universal
TM (Bennett 1988; Lecerf 1963; Morita et al. 1989).

Signal machines can also be used to simulate the Cyclic Tag Systems intro-
duced in Cook (2004). His work restarted the race to small universal machines,
e.g. on TM (Woods and Neary 2009). The smallest Turing-universal SM known
simulates any CTS and has 13 meta-signals and 21 collision rules (Durand-Lose
2011b).
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3.2 Malleability of Space-Time and the Black Hole Model

The context is the continuum without scale nor origin; scaling or translating the
initial produces the same space-time diagram. In particular, if all distances are
halved, then so are the durations.

It is possible to dynamically re-scale a configuration and then to restart
it with a construction similar to the PCD re-scaling in Fig.6(b). To freeze a
computation, a signal crosses the configuration and replaces everything it meets
by parallel signals. Being parallel, there is no collision and the (relative) distances
are preserved. It is unfrozen by a signal of the same velocity as the freezing one.

There is no limit to scaling. It is possible to restart the shrinking process
forever as illustrated in Fig.9. Each time the entangled original computation
is activated with the same relative duration because although the activation
duration is halved, since distances are halved, duration between collision is also
halved. Altogether, in this finite portion of the space-time diagram, the whole
infinite original space-time diagram is entangled.
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Fig. 9. Iterated shrinking.

With a bounded space simulation of a TM entangled, if the computation
stops, then it is in bounded time. With minor modifications, it is possible to let
some signal leave the iterated shrinking in such a case. Outside of the structure,
this witness of the halt could be collected but this can only happen during a
bounded delay. This bound on duration can be “implemented” in the space-time
diagram by a collision with another signal. If the machine does not halt, then
nothing is received before that collision, whilst in case of halting, the witness is
collected before. Outside of the shrinking structure, the halt is decided. SM can
hyper-compute by creating a local Zeno effect (Durand-Lose 2005, 2006).

The general principle behind this construction is to have two time-lines: one
is infinitely accelerated and does the computation and possibly sends some signal
while the other waits for it with some timeout. This corresponds to the so-called
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Black Hole model of computation (Hogarth 2004; Andréka et al. 2009; Etesi
and Németi 2002). The accumulation above the space-time diagram in Fig. 9(c)
corresponds to the Black Hole.

3.3 Build and Use Fractals

Many fractals can be generated using SM in a straightforward way. For example,
four meta-signals are enough to build the fractal accumulation in Fig. 10(a). The
space-time diagram is undefined at this accumulation singularity. Recursively
generating middles also generate a fractal as in Fig. 10(b). By considering left
and right thirds instead of halves, a classical construction of the Cantor set is
generated as in Fig. 10(c). By varying the speed and the proportion, it is possible
to generate sets of any fractal dimension between 0 and 1 (Senot 2013, Chap. 5).

(a) simple accumulation (b) half slicing (c) Cantor set

Fig. 10. Fractals.

In Fig. 10(b) spaces are sliced in half at each step. This can be used to provide
parallelism and deal with one sub-cases on each side. For boolean formulas, it
is possible to recursively slice for each and every variable. All cases are thus
generated. If the variables appear in some boolean formula whose satisfiability
is to be checked, then one gets a scheme to solve the satisfaction of boolean
formula (SAT). This scheme can also deal with quantified variables to solve the
PSPACE-complete Quantify SAT (QSAT) (Sipser 1997, Sect. 8.3).

If a boolean formula contains 10 variables, then 10 levels of slicing are done.
(What remains of the construction of the fractal in Fig. 10(b) is useless and
dangerous since the diagram is not defined at the limit.) For example, in Fig. 11,
the QSAT formula, Jz1VxoVas x1 A (—x2 V x3), is represented by a ray of signals
encoding all its elements. Computation is organized following a complete binary
tree (of depth 3). Evaluation is done on the leafs and results are aggregated on
top of the space-time diagram.

A specific machine is generated for each formula. Using a more complex
encoding, it is possible to use a unique machine for which the initial configuration
totally encodes the formula (Duchier et al. 2012; Senot 2013, Chap. 8).

It is also possible to solve other problems on formulas: how many satisfying
valuations (#SAT, #P-complete)? What is the “smallest” satisfying valuation?
etc. One “just” has to change the way the variable-free formulas are evaluated
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Fig. 11. Solving QSAT with fractal computation, the whole picture.

and the results are aggregated to generate an integer, a valuation, etc. This is a
modular parametrization of the construction.

More levels of the fractal are generated as needed. It does not need more
time or space. Altogether, there is a SM able to decide any instance of QSAT in
constant space and time. Using a controlled and unfinished fractal construction
to display parallel computations and then aggregate the result is called fractal
computation.

Discrete complexity measures are defined by considering space-time diagrams
as directed acyclic graphs. A direct causal link exists between two signals if the
first ends in the collision where the second starts. A causal link is its transi-
tive closure. Time complexity is then the size of the longest sequence of signals
with direct causal link between each two consecutive signals (path in the DAG).
Space complexity is the largest number of signals without any causal link. With
these definitions, complexity is quadratic in time (cubic for the generic case) but
exponential in space.

Figure 10(a) shows that it is possible to build a fractal with only four different
speeds. With two speeds or less, the number of collisions is finite and bounded.
With three speeds, the situation is two-fold: in a Q-SM, signals must travel on
a regular mesh (without any accumulation). But accumlation might happen as
soon as there is an irrational ratio between speeds or between initial positions.
This can be understood by the presence of a mechanism computing the ged,
which only converges on rational (Becker et al. 2003).
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What about the computing capability? In the rational case, the same mesh
shows that usable memory is finite and bounded. Whereas in the other case, it is
possible to simulate a TM using a fractal construction step to enlarge the tape
(Durand-Lose 2013).

3.4 Analog Computation

This section deals with computation on real numbers. They are represented
by the distance between two (parallel) signals of distinct meta-signals (base or
value)—or one encoding zero (zero). Dividing by two corresponds to finding
the middle. Multiplication by any constant can be done likewise. Adding two
numbers can be done as in Fig.12(a). The presence of a parallelogram proves
the equality of the distances. Subtraction can be done similarly as depicted in
Fig. 12(b) where the parallelogram is folded around the lower right value.

base value base value base _ value value
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(a) adding 12 to —6 (b) subtracting 12 from —6

Fig. 12. Basic operations on reals.

Starting from a sequence of real values (like the sequence of cells of the
tape of a TM), it is possible to multiply by constants and to add a value to
another inside a window (bounded part of the sequence) and to move the window.
These primitives could be triggered by some deterministic finite automata (or
sequential program). The state of the automaton can be encoded in the meta-
signals used to carry out the operations.

The automaton can be equipped with conditional transition: testing the sign
of a value can be used to branch. The automaton can have an initial and final
state (no more collisions then). Constants may be provided in the initial config-
uration.

Altogether, starting from a finite sequence of real numbers (infinity extend-
able on both side), it is possible to store in a cell the linear combination of values
around it, branch according to sign and move inside the sequence. This corre-
sponds to the BSS model (Blum et al. 1989, 1998) without inner multiplication.
It is the linear version of it: lin-BSS (Bournez 1999b; Meer and Michaux 1997)
with an unbounded number of registers.

Signal machines are capable of implementing 1in-BSS. The converse is also
true. The configuration of a SM can be represented by a sequence of blocks,
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each one encoding the meta-signal, the distance to next plus various temporary
registers. The lin-BSS machine runs through the configuration and computes the
minimal time to a collision. Since speeds are constant of the SM, they become
constants of the lin-BSS machine, thus everything is linear.

Once this delay to the next collision time is known, the automaton runs
through the configuration again. Distances are updated. When the distance is
zero, then a collision happens. Involved signals are replaced according to rules
(which are hard encoded into the automaton). If the number of signals is changed,
all the values on the right are moved accordingly. When room is needed (or should
be removed) shifting the values in the cells is done like for a TM.

BSS and Computable Analysis. Taking accumulations and infinitely many sig-
nals during finite duration into account allows to go further on.

For example, it is possible to extract an infinite sequence of 0 and 1 repre-
senting the binary encoding of a real number. This flow can be used to make
a multiplication: each time half and add or not depending on the received bit.
Inner multiplication thus becomes possible and the whole classical BSS model
can be implemented (Durand-Lose 2007).

Accumulation can also be perceived as a convergent approximating process
which is the foundation of recursive/computable analysis, type-2 TM (Weihrauch
2000). In this context, an input is an infinite stream of symbols representing a
convergent approximation (approximation bound is known at each step) and the
output is also such a stream (once something is output, it cannot be modified)
with the same representation. It is possible to make an accumulation to be
located according to a process generating such a stream (Durand-Lose 2009,
2011a) on a Q-SM.

One last result about isolated accumulation on Q-SM: not only they cannot
happen everywhere (by a simple cardinality argument) but their possible loca-
tions are exactly characterized in (Durand-Lose 2011c). They can only happen
at dates that correspond to computably enumerable (c.e.) real numbers (Calude
2002, Chap.7), i.e. there is a TM that produces an increasing and convergent
infinite sequence (there is no hypothesis on the quality of the approximation).
The positions of isolated accumulations are exactly the differences of two such
numbers. Position and date can be handled independently. This is proved by a
two scales construction: an embedded TM is accelerated and stopped so that
it provides the data on request in bounded time, the large scale directs the
accumulation to the right spot according to the provided data.

4 Conclusion

Presented models operate inside continuous euclidean spaces. Their variety is
huge as well as their computing capabilities. They bring forth a new kind of
algorithmic where localization, distance, relative positions, etc., provide possi-
bilities as well as constraints.

Unsurprisingly, the capability to compute in the Turing understanding is
common. As soon as it is possible to take advantage of continuity of space and
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time, analog computation and hyper-computation arise too (thus transcending
the Church-Turing thesis).

This remains true only in the ideal word of the model where there is no error,
nor approximation, nor limit to sub-division or to density of information. This
is a limit to the realism of the models. Other arguments are the unbounded
quantity of information that can be stored and retrieved in a bounded space and
the absence of Heisenberg’s Uncertainty principle at any scale.

This leads to wonder what would be their discrete approximation. Discrete
geometry and related issues are a totally different world. Nevertheless, for signal
machines, the discrete counterpart exists (CA) and there are works on exact
discretization: (Besson and Durand-Lose 2016).
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Abstract. We explore the class of real numbers that are computed in
real time by deterministic chemical reaction networks that are integral in
the sense that all their reaction rate constants are positive integers. We
say that such a reaction network computes a real number « in real time if
it has a designated species X such that, when all species concentrations
are set to zero at time ¢ = 0, the concentration z(t) of X is within 27" of
the fractional part of o at all times ¢ > 1, and the concentrations of all
other species are bounded. We show that every algebraic number is real
time computable by chemical reaction networks in this sense. We discuss
possible implications of this for the 1965 Hartmanis-Stearns conjecture,
which says that no irrational algebraic number is real time computable
by a Turing machine.

Keywords: Analog computation - Chemical reaction networks
Hartmanis-Stearns conjecture + Real-time computability

1 Introduction

Chemical reaction networks, originally conceived as descriptive mathematical
models of molecular interactions in well-mixed solutions, are also widely used
as prescriptive mathematical models for engineering molecular processes. In the
present century this prescriptive use of chemical reaction networks has been
automated by software compilers that translate chemical reaction networks into
complete specifications of DNA strand displacement systems that simulate them
[4,21]. Chemical reaction networks have thus become the programming language
of choice for many molecular programming applications.

There are several alternative semantics (operational meanings, also called
kinetics) for chemical reaction networks. The two oldest and most widely used
of these are deterministic mass-action semantics and stochastic mass-action
semantics. This paper concerns the former of these, so for the rest of this paper,
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a chemical reaction network (briefly, a CRN or a deterministic CRN) is a chem-
ical reaction network with deterministic mass-action semantics. This model is
precisely specified in Sect. 2 below. For this introduction, it suffices to say that
such a CRN is an ordered pair N = (S, R), where S is a finite set of species
(abstract molecule types), and R is a finite set of reactions, each of which has
some form like:

X+7z-Fr vz

where X,Y,Z € S are species and k € [0,00) is a rate constant. A state x of N
specifies the real-valued concentration x(Y) € [0,00) of each species Y. Given
an initial state x(0) at time ¢ = 0, deterministic mass action semantics specify
the (continuous) evolution of the state (t) over time.

Even prior to the implementation of chemical reaction networks as a program-
ming language it was clear that they constitute a model of computation. In the
case of deterministic CRNs, Stansifer has reportedly proven [5] that this model
is Turing universal, i.e., that every algorithm can be simulated by a deterministic
CRN. (Note: The title of [17] seems to make this assertion, but the paper only
exhibits a way to use deterministic CRNs to simulate finite Boolean circuits.)

Deterministic chemical reaction networks are an analog model of computa-
tion, both in the intuitive sense that their states are vectors of real-valued con-
centrations that vary continuously over real-valued times and in the technical
sense that they are a special case of Shannon’s general purpose analog computer
(GPAC) [20], as explained in Sect. 5 below.

This paper studies the ability of deterministic CRNs to rapidly compute
real numbers in the following analog sense. We say that a deterministic CRN
computes a real number « in real time if it has a designated species X such
that the following three things hold. (See Sect.3 for more details.) First, the
CRN’s reaction rate constants are positive integers, and it is initialized with
all concentrations set to zero at time ¢t = 0. This implies that the CRN is,
like any reasonable model of computation, finitely specifiable. It also implies
that only countably many real numbers are real time CRN-computable. Second,
there is some fixed bound on all the CRN’s concentrations. Under deterministic
mass-action semantics, this implies that all the reaction rates of the CRN are
bounded, whence time is a meaningful resource. Third, the concentration z(t)
of the designated species X (t) is within 27 of the fractional part {a} = o — ||
of a — i.e., within ¢ bits of accuracy of {«} — at all times ¢ > 1. We say that the
real number « is real time computable by chemical reaction networks (briefly,
real time CRN-computable) if there is a CRN that computes « in this sense.
Elementary properties of real-time CRN computability are developed in Sect. 3.

Our main theorem says that every algebraic number (i.e., every real solution
of a polynomial with integer coefficients) is real time CRN-computable. This
result is proven in Sect.4. We conjecture, but have not proven at the time of
this writing, that some transcendental (i.e., non-algebraic) real numbers are also
real time CRN-computable.

Our main theorem is a counterpoint — but not a disproof — of the 52-year-
old, open Hartmanis-Stearns conjecture that no algebraic irrational is real time
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computable by a Turing machine [12]. Section 5 discusses this contrast in some
detail and poses two questions whose answers would shed further light on the
computational complexities of algebraic irrationals.

2 Chemical Reaction Networks

A species is an abstract type of molecule. Capital Roman characters such as X,
Y, and Z are commonly used to distinguish different species, but we also use
decorations such as Xg, Y and Z to distinguish them.

A reaction over a ﬁmte set S of species is a tuple p = (r,p, k) € N¥ x N¥ x
(0, 00) and its components are called the reactant vector, the product vector, and
the rate constant, respectively. (Here N denotes the set of all functions mapping
S into N.) To avoid excessive use of subscripts, for a reaction p we use r(p), p(p),
and k(p) to access the individual components of p. A species Y € S is called
a reactant if r(Y) > 0, called a product if p(Y) > 0, and called a catalyst if
r(Y) = p(Y) > 0. The net effect of reaction p = (r,p, k) is the vector Ap € N
defined by

Ap(Y) = p(Y) = r(Y)

for each Y € S.

A chemical reaction network (CRN) is an ordered pair N = (S, R) where
S is a finite set of species and R is a finite set of reactions over S. Although
this completes the definition of the syntaz of a CRN, we have yet to define the
semantics used in this paper.

Under deterministic mass action semantics, the state of a CRN N = (S, R)
at time t is a real-valued vector x(t) € [0,00)°, and for Y € S, we call z(¢)(Y)
the concentration of Y in x(t). We also write y(¢f) = «(t)(Y) to denote the
concentration of species Y at time ¢.

The rate of a reaction p at time ¢ is defined as

rate,(t) H y(t (2.1)

YeS

This conforms to the so-called law of mass action which states that the rate
of a reaction is proportional to the concentration of its reactants.

The total rate of change of a species Y € S depends on the rates of all
reactions in the CRN and the magnitude of their net effect on Y. Therefore the
concentration y(t) conforms to the ordinary differential equation (ODE)

Z Ap(Y') - rate,(t) (2.2)
PER

If we let & be the ODE above for each Y € S, then the mass action system
of the CRN is the coupled system

&y |Y €9). (2.3)
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Given an initial state @y € [0,00)7, the behavior of the CRN is defined as
the solution to the initial value problem (IVP) of the mass action system (2.3)
along with the initial condition

y(0) = zo(Y)

foreach Y € S.

3 Real-Time CRN Computability

We say that a real number « is real time computable by chemical reaction net-
works (briefly, real time CRN-computable), and we write & € Rrrorn, if there
exist a chemical reaction network N = (S, R) and a species X € S with the
following three properties:

1. (integrality). The CRN N is integral in the sense that:
k(p) e Z* (3.1)

for all p € R.
2. (boundedness). There is a constant 3 > 0 such that, if N is initialized with
y(0) =0 for all Y € S, then, for all Y € S and ¢ € [0, 00),

y(t) < 6. (3.2)

3. (real-time convergence). If N is initialized with y(0) = 0 for all Y € S, then
for all ¢ € [1,00),

j2(t) — {a}] < 271 (3.3)

where {a} = a — |«] is the fractional part of a.

The integrality condition (3.1) prevents the CRN N from “cheating” by hav-
ing information about « explicitly encoded into its rate constants. To see that

this is necessary to avoid nontriviality, note that, for any a € (0, 1), if the sim-
ple CRN:

) 2 X,
X 1.9

is initialized with z(0) = 0, then

for all t € [0, 00).

The boundedness condition (3.2) imposes a “speed limit” on the CRN N.
This prevents N from acting as a “Zeno machine” (machine that does infinite
work in finite time) in the sense of Weyl [26]. More precisely, condition (3.2)
ensures that the reaction rates (2.1) of N are all bounded. This implies that
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the arc length of the curve traced by the state x(s) of N for 0 < s < t is 6(¢),
i.e., bounded above and below by positive constant multiples of ¢. Pouly [1,19]
has convincingly argued (in a more general setting) that this arc length, which
we call the reaction clock time, is the correct measure of the time that a CRN
spends computing during the interval [0,¢]. Viewed in this light, condition (3.2)
ensures that t is, up to constant multiples, an accurate measure of the reaction
clock time of N during the interval [0, ¢].

The real-time convergence condition (3.3) requires the CRN N to compute
{a} to within ¢ bits of accuracy by each time ¢ > 1. Note that this is an analog
approximation of {a}. The CRN N is not required to explicitly produce symbols
in any sort of digital representation of {a}.

For the rest of this paper, unless otherwise noted, all CRNs N = (S, R) are
assumed to be initialized with y(0) =0 for all Y € S.

To save space in our first lemma, we define the predicate

&, - (a) = there exist a CRN N = (S, R) and a species X € S
satisfying (3.1) and (3.2) such that, for all ¢ € [, 00),
jz(t) — {a} < e

for each 7,v € (0,00) and « € R. Note that $; 1,2(c) is the assertion that a €
Rrrorn- The following convenient lemma says that the definition of Rrrorn
is robust with respect to linear changes in condition (3.2).

Lemma 3.1. For each a € R the following conditions are equivalent.

1. o € Rrrern-
2. There exists T,y € (0,00) such that $, ,(a) holds.
3. For every 7,7 € (0,00), @, () holds.

Proof. Let o € R. Tt is clear that (3) = (1) = (2), so it suffices to prove that

(2) = (3). For this, let N, X, 7, and ~ testify that (2) holds, i.e., let N and X
testify that &, - («) holds. To prove (3), let 7,7 € (0, 00). It suffices to show that

&> 5 () holds. Let
c—one{[Z1 121}

and let N = (S, ]’%), where
R={(r,p,ak) | (r,p,k) € R}.
That is, N is exactly like N, except that each rate constant of N has been

multiplied by the positive integer a. Then N is an integral CRN that is a “sped
up version” of N in the sense that, for all y € S and ¢ € [0, c0),

Y5 () = yn(at), (3.4)
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where yn and yg are the values of y in N and N , respectively. This immediately

implies that N satisfies (3.2). Now let ¢ € [7,00). Then at € [r,00), so our
assumption P- () tells us that

25 (6) — {a}] = le(at) — {a}]
< eat
<e M,
affirming @z 5 (). O
The following lemma is a warm-up for our examination of Rrrcrn
Lemma 3.2. Q & Rrrcry

Proof. If o € Z, then the CRN

satisfies
lz(t) — {a}| = x(t) =" <277,

so @ € Rerrern. If a € Q\ Z, then we can write {a} = ¢, where a,b € Z7.
Then the integral CRN
h—— X

X . 0
satisfies

2(t) = S -,

so a € Rrreory by Lemma 3.1. This shows that Q C Rrrorn-
To see that Q # Rrrorn, it suffices to show that % € Rrrcrn. Since the
integral CRN
h— X
2X 25 X

=L (1= e2V2
()= —=| ——= | ,
V2 \ 1+ e2v2

(t) 1 ‘ 1 672\/§t
x _——— = —= —_—
V2 V2 \14e2v2t

1
< 6—2\/§t < 6—2\/§t7

satisfies

we have that

S

SO % € Rrrorny by Lemma 3.1. a

Computable real numbers were introduced by Turing [23,24] and have been
extensively investigated [14,25].
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A real number a is computable, and we write o € Reopp, if there is a com-
putable function @ : N — @ such that, for all r € N

la(r) —al <27
Lemma 3.3. RRTCRN g Rcomp

Proof. Let o € Rrreorn, and let N = (S, R) and X € S testify to this fact. Let
Yi,...,Y, be the distinct species in S. Then the ODEs (2.2) can be written in
the form

vy =iy, yn),
: (3.5)
Yo = Fay1s-- - un),

where f1,..., f, are polynomials with integer coefficients. By the boundedness
condition (3.2) and Theorem 16 of [8], the solution y : [0, 00) — [0,00)™ of (3.5)
is polynomial time computable. It follows by the real-time convergence condition
(3.3) that « is computable in polynomial time in the sense of Ko [14]. Hence,

o € Reomp-
It is well known [14] that not every computable real is computable in poly-
nomial time, so the preceding paragraph proves the lemma. a

4 Algebraic Numbers Are Real Time CRN Computable

This section is devoted to proving the following result, which is our main
theorem.

Theorem 4.1. Every algebraic number is an element of Rrrorn -

Our proof of Theorem4.1 uses the stability theory of ordinary differential
equations. We review the elements of this theory that we need here, referring
the reader to standard textbooks (e.g., [13,22]) for more thorough treatments.

We first note that the ordinary differential equations (2.2) of a CRN N =
(S, R) are autonomous, meaning that they only depend on the time ¢ via the
species concentrations y(t). Hence, if we let Y7, ... Y, be the distinct species in
S, then the ODEs (2.2) can be written as

yll :fl(yla"'7yn)7
: (4.1)
y;z :fn(y17"'ayn),

where fi,...,fn : R® — R are polynomials. If we let f, : R® — R™ be the
function whose components are fi, ..., f,, then (4.1) can be written in the vector
form

2’ = fn(@). (4.2)
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The Jacobian matriz of the CRN N is the Jacobian matrix of fy, i.e., the
n X n matrix

Oy1 Oyn
Iv=| o
Ofn .. Ofn
Oy1 OyYn

More precisely, the Jacobian matriz of N in a state x € [0,00) is the matrix
Jn () in which each of the partial derivatives in Jy is evaluated at the point x.
The eigenvalues of the CRN N in a state & € [0,00)° are the eigenvalues of the
matrix Jy (), i.e., the numbers A € C for which there exists y € R™ such that
In(@)(y) = Ay.

A fized point of the CRN N is a state z € [0,00)% such that fy(z) = 0.
A fixed point z of N is exponentially stable if there exist «,d,C € (0,00) such
that, for all zy € [0,00)% with |xg — z| < §, if N is initialized with x(0) = =,
then, for all ¢ € [0, o),

lz(t) — 2| < Ce " |2(0) — z|. (4.3)

The well known ezponential stability theorem, specialized to CRNs, says that
a fixed point z of N is exponentially stable if all its eigenvalues have negative
real parts [13,22].

In this paper we define a real number o € R to be negative eigenvalue
computable by chemical reaction networks (briefly, negative eigenvalue CRN-
computable), and we write « € Rygorn, if there exist a CRN N = (S, R), a
species X € S, and a state z € [0,00) with 2(X) = «a such that the following
conditions hold.

1. (integrality). The CRN N is integral as in (3.1).

2. (boundedness). Concentrations are bounded as in (3.2).

3. (fixed point). z is a fixed point of N.

4. (negative eigenvalues). All the eigenvalues of N in the state z have negative
real parts.

5. (basin of attraction). If «, §, and C are the constants testifying that z is
exponentially stable, then the zero-vector 0 € [0,00)° defined by 0(Y) = 0
for all Y € S satisfies |0 — z| < 4.

Our interest in the class Rygogn is that the following three lemmas suffice
to prove Theorem 4.1.

Lemma 4.2. Rypcrn s a countable subfield of R.
Lemma 4.3. RNECRN g RRTC’RN-

Proof. Let o € Ryporn. We show in the full version of this paper that o — | «|
is also in Ry porn. Without loss of generality, we assume that « € (0,1). Hence
we have a = {a} in the following proof.

By the definition of Ry gcrn, there is a CRN N = (S, R), a species X € S,
and a state z € [0,00)° with 2(X) = a such that 0 falls in the basin of attraction
of z. Therefore lim; . z(t) = z.
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Since Jy(z) has eigenvalues with negative real parts, then z is exponentially
stable, i.e. there exist «,d,C € (0, 00) such that for all xg € [0,00)° with |xg —
z| < 4, if N is initialized with x(0) = xq, then for all ¢ € [0,00), |x(t) — 2| <
Ce™xg — z|.

Consider the CRN N initialized so that x(0) = 0. Since lim;_, (t) = z,
we let 79 be the point such that |x(m) — z| < §, then by exponential stability of
z, we have |x(t) — z| < Ce= (=70 |xy — 2| for all t > 7.

Pick a number v such that,

Ce®lxg — z| < e

and let a = {%—‘, construct a “sped up version” of N, N , as in Lemma 3.1, by

multiplying each rate constant of N by the positive integer a. Now let 7 = ™

Then for all t > 7, i.e., at > 7, we have
lz5 (X)) —al < [xz(t) — 2|
= |w(at) — 2|

< Ce*a(“t*”’)h:o — z|, since at > 7

YTo e—aat

IN

e
e7o 672'yt

IN

et

IN

Hence @, () holds, and by Lemma 3.1, & € Rrrcrn-. O

Lemma 4.4. FEvery algebraic number is an element of Rnporn -

5 Discussion

We have shown that every algebraic number is real time computable by deter-
ministic chemical reaction networks. What does this say about the complexity
of algebraic irrationals on other models of computation?

The first thing to understand here is that deterministic chemical reaction
networks are, in a very precise sense, a model of analog computation. In 1941,
Shannon [20] introduced the general-purpose analog computer (GPAC). A GPAC
is a mathematical abstraction of the differential analyzer, an early analog com-
puter that Bush [3] had constructed at MIT, and which Shannon had operated
as a graduate research assistant. The GPAC model has been corrected and oth-
erwise modified a number of times over the years [7,9,15,18]. Its present form
can be characterized in terms of circuits, but it is more simply characterized as
a system

y'(t) = p(t,y), (5.1)

of ordinary differential equations, where p is a vector of polynomials. A deter-
ministic CRN is thus a special type of GPAC of the form

y'(t) = p(y), (5.2)
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where each component p; of p has the “kinetic” form p;(y) = ¢:(y) — viri(y),
with ¢; and r; having nonnegative coefficients [11]. Our CRNs in this paper have
the added constraints that all the coefficients in these polynomials are integers,
and all concentrations are initialized to zero. Our main theorem thus implies
that all algebraic numbers are real time computable by GPACs that have only
finite information coded into their parameters and initializations.

We now turn from analog computation to discrete computation. A famous
conjecture of Hartmanis and Stearns [12] says that no irrational algebraic number
is real time computable by a Turing machine. This conjecture has been open
for over 50 years. Fischer et al. [6] proved that real-time computability on a
Turing machine is equivalent to linear-time computability on a Turing machine.
Hence the Hartmanis-Stearns conjecture is equivalent to the statement that no
irrational algebraic number is linear-time computable by a Turing machine. As
observed by Gurevich and Shelah [10], linear time is a very model-dependent
notion. Hence, as stated, the Hartmanis-Stearns conjecture is a very specific
conjecture about linear-time computation on Turing machines.

Our main theorem does not disprove the Hartmanis-Stearns conjecture (nor
was it intended to), but conceptually locating the gap between our main the-
orem and a disproof of the Hartmanis-Stearns conjecture would shed light on
the computational complexities of algebraic irrationals. This raises the following
questions.

Question 1. Can CRNs in our model (or GPACs with only finite information
encoded into their parameters and initializations) produce in linear time the
individual digits of each real number that is real time CRN-computable?
If so, our main theorem implies that the Hartmanis-Stearns conjecture fails
for analog computation. If not, the Hartmanis-Stearns conjecture holds for
analog computation and is essentially about producing the individual digits
as opposed to the analog convergence that we have used here.

Question 2. Is there a reasonable discrete model of computation on which
some algebraic irrational can be computed in linear time? If so, then the
Hartmanis-Stearns conjecture is either false or model-dependent. If not, then
the Hartmanis-Stearns conjecture is true in a strong, model-independent way,
at least for discrete computation. (Note that “reasonable” here excludes mod-
els that perform numerical operations faster than we know how to do them,
because Brent [2] has shown how to compute /2 in linear time if integer
multiplication can be done in linear time. See also [16].)
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Abstract. Time-varying signals are ubiquitous throughout science, and
studying the high-level temporal structure of such processes is of signif-
icant practical importance. In this context, techniques from computer
science such as temporal logic are a powerful tool. Temporal logic allows
one to describe temporal properties of time-varying processes, e.g., the
order in which particular events occur. In this paper, we show that DNA
strand displacement reaction networks can be used to implement com-
putations that check certain temporal relationships within time-varying
input signals. A key aspect of this work is the development of DNA cir-
cuits that incorporate a primitive memory, so that their behavior is influ-
enced not just by the current observed chemical environment, but also
by environments observed in the past. We formalize our circuit designs
in the DSD programming language and use simulation results to confirm
that they function as intended. This work opens up the possibility of
developing DNA circuits capable of long-term monitoring of processes
such as cellular function, and points to possible designs of future DNA
circuits that can decide more sophisticated temporal logics.

1 Introduction

Dynamic processes that produce time-varying signals are found throughout
nature. In molecular biology, for example, changes in levels of protein expression
over time are a cornerstone of cellular regulatory systems. In this context, a
molecular computing system able to analyze both the current state of the pro-
tein expression levels as well as the “historical record” of previously observed
protein expression levels would be able to make sophisticated decisions about
the cell state by observing protein expression over an extended period of time.
A fundamental goal of research into molecular computing and synthetic biol-
ogy is to produce time-varying signals, an early example being the “repressilator”
oscillatory network produced by a ring of three mutually inhibiting transcription
factors [1]. However, there has been relatively little work on using molecular com-
puters or engineered bacteria to analyze time-varying signals. This is because
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published research on molecular circuit designs has focused in large part on ana-
lyzing the input signals present in the chemical environment at a particular point
in time. Examples include previously published DNA circuits that implement
digital logic circuits [2], analog neural networks [3], and population protocols for
approximate majority voting [4]. The most notable examples of synthetic bio-
molecular circuits designed for processing temporal signals are designs for DNA
strand displacement circuits to carry out discrete-time signal processing tasks
using a combination of “fast” and “slow” reactions [5], and prior experimental
work on using recombinase enzymes to integrate expressed single-stranded DNA
into the genomes of engineered bacteria, as a record of events experienced in the
past [6]. More tangentially related to the current topic are studies of learning and
adaptation in engineered biochemical circuits [7,8] and abstract chemical reac-
tion networks [9-11], including DNA strand displacement learning circuits [9,12]
designed using buffered strand displacement gates [13]. The concept of memory
in DNA reaction networks has also been explored indirectly via a postulated
DNA implementation of a “reservoir computing” system [14], as well as by pro-
posals for chemical memories implemented using bistable switches [15] and delay
lines [16].

In this paper we broaden the focus of research in molecular circuit design to
produce systems that can analyze the current chemical environment not just in
isolation, but rather in the context of previous states of the chemical environment
observed by the system. We will present designs for DNA strand displacement cir-
cuits that can analyze the temporal structure of time-varying input signals mod-
eled as a sequence of additions of input strands that are subsequently degraded.
(This could be realized in an experimental system by using RNA inputs and
RNAse-containing media [17].) The structures of our networks will be designed
such that the reactions triggered by the additions of the input strands at dif-
ferent points in time activate strand displacement gates whose outputs act as a
“memory”, so that the state of the network effectively stores information about
its past experience. By cascading multiple such gates together, we will design
systems in which the cascade only executes to completion (and thus produces
an output signal) if the input signals are presented in an order that satisfies the
temporal relationships that are encoded in the network structure, and we will
verify correct operation of our circuit designs using computational simulations
of an ordinary differential equation (ODE) model of the circuit kinetics. This
work therefore demonstrates a path toward molecular computing systems that
can analyze non-trivial temporal properties of time-varying signals, with poten-
tial applications in the analysis of biochemical systems and in the diagnosis and
treatment of disease.

The remainder of this paper is structured as follows. We introduce a basic
logic of temporal relationships for sequential signals in Sect. 2 and present designs
for DNA strand displacement circuits that test whether a sequential presenta-
tion of input signals satisfies a particular formula in Sect.3. We present results
from simulations of example circuits in Sect. 4 and conclude with a discussion in

Sect. 5.
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2 A Logic of Temporal Relationships for Sequential
Signals

In this section we present a logic for expressing simple temporal relationships
within sequential input sequences. We begin by specifying the well-formed for-
mulae ¢ of our logic, which are as follows:

pu=ACBC---CZ
| @1 A2
| ¢1Vp

The formula A C B should be read as “A before B”, and its intended meaning
is that an occurrence of input A is observed in the sequence of input signals before
an occurrence of B is observed.

Let o range over finite input sequences [Aj---Ay]. These finite input
sequences will serve as models for our formulae. We now define satisfaction of a
formula by an input sequence, written o F ¢, by recursion on the structure of
formulae, as follows:

cEACBC ---CZ <= Hd09,01,...,0pn.0=][0gAc1Boy--0p_1Z0,]
O":(pl/\gOQ < 0|=g01/\0|:g02
cEpiVps <= oFp1VoFEp

The semantics of conjunction and disjunction formulae are standard. A BEFORE
formula A C B C --- C Z is satisfied by an input sequence o if there exist

subsequences og,071,...,0, such that the input sequence o can be expressed
as the concatenation [cgAcyBosg - 0,-1Z0,]. In other words, we require that
there exist occurrences of A, B,...,Z that appear in the input sequence in the

correct order. Since we do not place any restrictions on the number of times a
particular input may appear in the sequence, there may be multiple different
decompositions of this form, but we do not distinguish this in the semantics.

For example, consider the formula ¢ = (AT B) A (AC C). The following
both hold:

[ABC]E (AC B)A (AT O)
[ACB]E (AC B)A (AT O),

but, on the other hand,
[CAB]F(AC B)A(ALCC)

because A does not occur before C' in the input sequence [C AB].

In the following section, we will define a translation of these formulae into
chemical reaction networks realized using DNA strand displacement reactions.
Viewed through the prism of the definitions presented above, the DNA reaction
networks that we define will each embody a formula ¢, and we will challenge the
network by a sequence of input additions that correspond to a particular input
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sequence o. Then, the goal for our network will be to respond (by producing a
“high” concentration of an output species) iff the input sequence satisfies the
implemented formulae, i.e., iff o F ¢ holds.

We note that, if all signals mentioned in the subformula are unique, we can
define the A C B C --- C Z construct in terms of the two-input case, as follows:

A CAC - CA= N A Aic 4y
i€{l,...,n} je{i+1,...,n}

However, for the purposes of producing a DNA implementation it is simpler
and far more compact to implement the extended version using a single gate
cascade than it is to add a large number of additional AND gates. In defining
this expansion, we consider two formulae ¢1 and @2 to be equivalent iff they are
satisfied by the same set of input sequences, i.e., iff {o | cEp1} ={o| o F pa}.

3 DNA Circuits for Analyzing Temporal Relationships

In this section we present our designs for DNA circuits that carry out tempo-
ral analysis tasks. Our chemical framework of choice is DNA strand displace-
ment [18]. Strand displacement is a scheme for implementing reaction networks
in DNA in which “signals” are represented by single strands of DNA in solu-
tion that interact with structures known as “gates” that consume certain input
strands from solution and release output strands, with different sequences, back
into solution. These interactions take place via a two-step process: the incoming
strand first binds reversibly to the gate via a short complementary domain known
as a “toehold”, which positions the incoming strand to initiate the process of
“branch migration”, whereby it competes with the neighboring incumbent strand
to bind to the gate. When the branch migration process completes, the end result
is that the input strand is bound to the gate and the incumbent strand is released
into solution. By designing structures so that multiple strand displacement reac-
tions proceed in a pre-defined sequence, possibly with the assistance of other
“fuel” molecules in solution, strand displacement gates can implement a range
of computational tasks. Here we focus in particular on two-domain DNA strand
displacement [19], a simplified form of strand displacement that has proven itself
amenable to experimental implementation [4].

We will model our systems using the DSD programming language, which
provides a text-based syntax for representing strand displacement gate structures
and processes that represent the combination of multiple different gates and
strands in a dilute, well-mixed solution. The semantics of the DSD language
specifies a formally-defined translation of those structural models into a kinetic
model, by enumerating all possible interactions between the DNA components
that could possibly occur within the system. For reasons of brevity, we do not
provide a full exposition of the DSD language here, rather, we refer the reader
to previous work that formally defines the syntax and semantics of the DSD
language [13].
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In the DSD syntax, each two-domain signal A in our circuits will be repre-
sented by a DSD module Signal(A) that just consists of a single two-domain
DNA strand <ta” a>. Furthermore, we will model the input signals that appear
in temporal formulae as degrading over time (with standard exponential decay
kinetics) when they are free in solution. This approximates a real-world temporal
analysis scenario where the DNA circuit is monitoring the occurrence of envi-
ronmental markers that may also be consumed by other downstream chemical
reactions that are taking place simultaneously.

We will implement our DNA reaction networks using three different kinds
of strand displacement gates: “catalyst” reaction gates that implement abstract
reactions of the form C'+ X — C 4+ Z, “AND” logic gates that compute the
logical conjunction of two inputs, and “OR” logic gates that compute the logical
disjunction of two inputs. Reaction schemes for each of these gate types are
presented in Fig. 1.! The basic pattern is that the input strands bind to an input-
accepting gate in a pre-programmed order, and with the help of a fuel strand
enable the release of an intermediate strand that initiates a similar cascade of
reactions on an output-releasing gate, which requires additional fuel strands to
be present and which releases the output strands from the gate into solution.
The function implemented by each gate is dependent on the patterns of input
and output signals, so, for example, the “AND” gate has two input strands that
must both be consumed in order to enable the release of a single output strand.

We can now define translation of the language of formulae from Sect. 2 into
DNA strand displacement systems. For a formula ¢, the translation [¢] returns a
DSD process P (which is just a collection of parallel DSD species) and an output
species Z. The output species is the one whose concentration will indicate the
output of the computation: if it goes high then the input signal sequence satisfies
the formula encoded in the network, and if it stays low then the input signal
sequence does not satisfy the formula encoded in the network.

The definition of the translation is presented in Fig.2. The key case is the
one for the formulae with actual temporal meaning, that is, the formulae of the
foorm A C B C --- C Y. Temporal formulae such as this are encoded using a
cascade of strand displacement catalyst gates, catalyzed by the input signals
A, B,...,Y. These reactions catalyze conversion of a “substrate” species X3
to Xs, then to X3, and so on, until the final catalyst gate produces the overall
output species Z. (The DSD process produced by this case of the translation also
includes the initial substrate species X;.) Crucially, the input signals A, B,...,Y
catalyze this cascade of reactions in the same order as they appear in the temporal
formula, ordered from earliest to latest. This means that, if the input signals
are actually observed in this order, then these catalyst reactions will all be
activated in turn, leading to the eventual release of the output species. However,
if one or more of the input signals is never observed, or is observed out of
the required sequence, then one or more of the catalyst reactions will not be

! See the Supporting Information (available from the first author’s web page) for full
DSD code listings for each system simulated in this paper, including full definitions
of the modules.
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(a) CatalystGate(C,X,Z) implements C+X — C+Z
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(b) AndGate(X,Y,Z) implements Z =X AY
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(c) OrGate(X,Y,Z) implements Z=X VY
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Fig. 1. Strand displacement reactions that implement (a) the abstract catalytic reac-
tion C+ X — C+ Z, (b) the “AND” logic gate Z = X AY, and (c) the “OR” logic

gate Z =X VY.

activated, and thus the output species will not be produced at the end of the
cascade. Hence, presence or absence of the output species corresponds to whether
the input signals were observed in the correct temporal ordering, and hence to
satisfaction of the temporal formula. The key to our circuit design is that the
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[ACBC---C Y] =(PZ) whereP=Signal(X))
| CatalystGate(4,X,X;)
| CatalystGate(B,X,X3)
| CatalystGate(Y,X,,Z)
and X1,X>,...,X,,Z are fresh species
[o1 A@2]] = (P,Z) where P =P, | P, | AndGate(X;,X,,Z)
and [@1] = (P1,X;)
and [@,] = (P, X)
and Z is a fresh species
[o1V @] =(P,Z) where P=P | P, |O0rGate(X;,Xs,Z)
and [o1] = (P1.X;)
and [@,] = (P2, X3)
and Z is a fresh species

Fig. 2. Definition of the translation [¢] of formulae ¢ into a DSD process P and an
output species Z. The “comments” on the right-hand side provide informal descriptions
of the meaning of the DSD modules, for clarity. We note that, in the first case of the
translation, the execution time is proportional to the number of compared signals.

conversion of the substrate species, catalyzed by the input signals, serves as a
“memory” that records the past experience of the networks interactions with
the observed input species. This ensures that each input signal will be (almost)
entirely removed from the system before the next input signal is presented,
which prevents unwanted circuit responses being generated by overlapping input
signals.

The remaining two cases of the definition of the translation, for “AND” and
“OR” formulae, are comparatively straightforward. In each of these cases, the
processes and output species for the two subformulae are defined recursively,
and these processes are then returned in parallel with a new logic gate whose
input species are the output species from the translations of the two subformulae
and whose output species is a freshly generated signal.

4 Simulation Results

DNA strand displacement reaction networks that carry out temporal analysis
tasks were compiled and simulated using Visual DSD [20], using the “Infinite”
semantics. In particular, we used the “beta” version of DSD [21] that supports
scheduled additions of inputs via mixing events as well as the inclusion of user-
defined reactions.

Briefly, the simulation conditions were as follows: we use a 1000 nM initial
concentration of strand displacement gates and fuel strands, with the exception
of the output part of the “OR” gates, of which we use 10nM (so that the out-
put signal strength of the “OR” gate is the same whether one or two positive
input signals is present). The input signal sequence was implemented by adding a
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Fig. 3. Concentration time courses of selected species for the formula A C B C C, for
input signal sequences (a) [ABDC] and (b) [ACDB].

10 nM concentration of each input signal in a pre-programmed order, with a wait
time between addition of input signals of 30000s. The degradation rate of those
input signals is 0.0005s~!, that is, for each input signal A a unimolecular degra-
dation reaction A — @ with rate constant k=0.0005s"! was explicitly added to
the model. We kept this rate constant between simulations for consistency, how-
ever, our circuits could be adapted to different degradation rates by modifying
the rates of the other DNA reactions, e.g., by lengthening toehold domains or
by increasing fuel concentrations. Additionally, for each input-consuming gate,
a 10nM concentration of the strand that is displaced by the binding of the first
input was also included, to provide a degree of “backpressure” that presents
inputs from being sequestered by binding to the gates, which allows them to be
released back into solution so that they can be degraded. This is crucial to pre-
vent unwanted circuit responses triggered by input signals left over from earlier
stages of the simulation.?

Figure 3 shows time courses of the concentrations of the input signals (A, B,
C, and D) and the output species (Z) for two different input signal sequences,
[ABDC|] and [ACDBJ, when added to a network that tests satisfaction of the
formula A = B C C. Hence, we expect that the response (i.e., the final concen-
tration of the output species Z) should be high for the input sequence [ABDC]|
(since A appears before B and B appears before C' in [ABDC) but should be low
for the input sequence [ACDB] (since B does not appear before C' in [ACDB]).
Indeed, the plots from Fig. 3 confirm this, as the final concentration of Z is high
in part (a) but low in part (b). Thus, in this case the circuit construction for
testing satisfaction of temporal formulae functioned as intended.

We further investigated the correctness of our circuit designs for all possible
permutations of the input signals A, B, C, and D, for three different formulae
that collectively employ all three kinds of formula: A — B C C, (AC B) A

2 See the Supporting Information (available from the first author’s web page) for full
DSD code listings for each system simulated in this paper, including full definitions
of the modules.
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Fig. 4. Final concentrations of the output species for formulae (a) A — B T C, (b)
(ACB)A(CC D), (c) (AC B)vV(CC D),and (d) AC BC AC B.In parts (a)—(c),
the bars represent the output for all possible permutations of the input signals A, B,
C, and D, and in part (d) the bars represent the output for all possible permutations
of the input signals A, A, B, and B. Black bars (with boldface labels) represent those
simulations where the formula is satisfied by the corresponding input signal sequence,
and light grey bars (with italic labels) represent those simulations where it is not
satisfied.

(CC D),and (A B)V(C = D). The final concentrations of the output species
in each case are presented in Fig. 4(a)—(c), where the black bars are those where
the output of the circuit is expected to be high, and the light grey bars are those
where the output of the circuit is expected to be low. For clarity, the labels of
those bars were typeset in boldface and italics, respectively. These results show
that, in all cases, the circuit designs were able to correctly compute whether the
corresponding formula was satisfied by the particular sequence of input signals,
with a high ratio of signal to leakage (unwanted circuit activation). This indicates
that our compilation from formulae into DNA circuits is functioning correctly.
Since our definitions do not require that the inputs in the input sequence are
unique, we also used our circuits to test satisfaction of the temporal formula A
B C A C B, which is satisfied by any input sequence in which A appears followed
by B, followed again by A and then B. Figure 4(d) shows the final concentration
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Fig. 5. Final concentrations of the output species for the formula (A= B) V (A C C))
A(C T D C E). The bars represent the output for all possible permutations of the input
signals A, B, C'; D, and E. Formatting of bars and labels is as explained in Fig. 4.
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Table 1. Circuit sizes for circuits simulated in Figs. 4 and 5, expressed in terms of the
number of species. The number of species in each case was calculated by considering
all logic gates and fuel strands that must be present initially, as well as all signals that
are either present initially or introduced during the course of the experiment.

Formula Signals | Gate structures | Fuel strands | Total
ACBCC 5 6 15 26
(ACB)A(CLC D) 6 10 24 40
(AC B)v(CrC D) 6 11 25 42
ACBC ACB 3 8 20 31
(ACB)V(AC O)A(CC DC E)|8 19 44 71

of the output species from this circuit, when tested with all possible input signal
sequences that contain two occurrences of A and two occurrences of B. As the
figure shows, the circuit only returned a high response for the input sequence
[ABAB], as expected. Thus, our DNA circuits could be used as a crude means
of detecting switching, or oscillatory, input signals.

Finally, we tested a larger example formula (((AC B)V(ACC)) A
(CC DcC E)) that includes all three formula types in a single circuit, with
a total of five input signals (A, B, C, D, and E). This gave a total of 120
distinct input sequences, and the final concentration of the output species for
each of these is presented in Fig.5. Again, we see that the circuit responded
correctly, with a high output concentration whenever the input signal sequence
satisfied the encoded formula, and a low output concentration whenever it did
not. This demonstrates that our approach can be scaled to larger circuits that
implement larger formulae. This scalability is further demonstrated by Table 1,
which presents the circuit sizes for all five example circuits from Figs.4 and 5.
The largest of these circuits, the one from Fig. 5, has a number of initial species
roughly comparable to the largest strand displacement system implemented
experimentally [2], which contained 74 initial DNA species, excluding inputs.

5 Discussion

To summarize, we have shown that our simple logic of temporal relationships,
which allows properties concerning the relative temporal occurrence of signals in
a linear input sequence to be expressed, can be compiled systematically into DNA
strand displacement reaction networks such that the output networks encode the
semantics of the corresponding formulae. Then, when those networks are pre-
sented with a linear temporal sequence of input signals, each network produces
a high concentration of its output species if the input signal sequence satisfies
the encoded formula, and produces little or no output species if the input signal
sequence does not satisfy the encoded formula. For simplicity, in our simulations
we assumed that those input signals undergo exponential decay when free in
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solution. Our simulation results indicate that our circuit designs and compila-
tion process function correctly for a range of input signals and different temporal
formulae, and that our design approach can be scaled to larger formulae (subject
to the usual limitations imposed by the DNA sequence space).

In practice, degrading inputs could be implemented by using RNA input
strands (and RNA outputs from the catalyst gates) with nuclease-containing
media [17] so that single-stranded RNA in solution is degraded. An alternative
approach could be to include additional DNA circuit components that act as
a sink for the input strands. We used two-domain strand displacement catalyst
gates as the basis for our designs because of their highly modular and composable
nature. However, an alternative framework could be the strand displacement
catalyst system developed by Zhang et al. [22]. A practical advantage of this
system is that it would require fewer strands for an experimental implementation.
Furthermore, that catalyst design actually recycles the original input strand back
into solution, as opposed to our design based on two-domain strand displacement
in which a distinct copy of the input strand is released back into solution. Thus,
this approach might be more easily integrated with the RNA-based approach to
implementing degradable inputs, as discussed above.

Another alternative circuit design might employ fork gates instead of cat-
alyst gates, which would mean that the input signals, once used by a gate to
modify the populations of substrate species, would not be released back into
solution at all. This could be a simpler solution for the purposes of building an
experimental system but would mean that the circuit would have a significant
impact on the system that it was measuring—a key rationale for using catalytic
reactions is that the recycled input strands could continue to undergo reactions
elsewhere in the system, thereby allowing our circuits to be used for real-time
monitoring of biochemical systems, such as cellular regulatory networks, without
significantly perturbing the system under observation. An additional advantage
of using simpler strand displacement gates to implement temporal sensing is that
most designs for multi-input strand displacement logic gates impose an implicit
ordering on the binding of multiple inputs to the logic gate [23], thereby pro-
viding another alternative mechanism for the experimental implementation of
temporal sensing.

The logic that we defined in Sect.2 does not include negation, which is in
keeping with previous work that used dual rail expansions to eliminate negation
from DNA logic circuits [2]. In our logic, however, such expansions are more
challenging. It is tempting to think that we can achieve a similar effect by using
de Morgan’s laws to push negations through conjunctions and disjunctions, and
by expanding BEFORE formulae when the negations reach them, e.g.:

ﬁ(A1|:A2|:"'|:An>: \/ \/ (AJIZAl)
i€{l,...,n} je{i+1,...,n}
(1 Ap2) = (mep1) V (—ep2)
(1 V p2) = (mp1) A (—¢p2)
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However, even for simple examples such as =(A C B), which expands to B C A,
this expansion misbehaves when one or both of the mentioned input signals are
absent, e.g., [AC] ¥ AC B and [AC]| ¥ B C A. More disturbingly, =(A C A)
expands to A C A. Clearly more work on the semantics of negation in logics
such as this is required. Indeed, one can think of our logic as a quantifier-free,
negation-free subset of first order logic where the temporal ordering between
signals could be implemented as a ternary predicate over a signal sequence and
the two signals in question, and in this view the implementation of negation is
less problematic but would still require our DNA circuits to be able to detect
the absence of a particular signal from the input sequence.

To simplify the presentation, in this paper we assumed that the times in
which the different inputs are present in the system do not overlap. However,
in practical applications the signals that we might want to analyze are unlikely
to be so clear-cut and regimented. An obvious first step would be to relax the
requirement that all inputs are non-overlapping, so there could be two or more
input signals present in solution simultaneously. In this case, the A C B formula
could be generalized to an A C B formula, which would be satisfied if A occurs
before, or at the same time as, B, and the implementation would need to be
generalized accordingly, e.g., by using cooperative hybridization to detect the
simultaneous presence of input signals [24].

Another important generalization would be to handle input concentration
profiles that change continuously over time, rather than being added at discrete
points as in this paper. In this context, our circuits would likely need to discretize
the incoming signals in terms of their concentration, as well as in time. For
the former, prior work on digital and analog DNA circuits implemented using
“seesaw gates” [2,3] employed a thresholding mechanism, which could be used
to discretize concentrations of the signals in the input time course. To discretize
signals in time, Jiang et al. [5] use both synchronous (via an oscillatory chemical
“clock”) and asynchronous (self-timed) approaches.

Finally, the logic that we implemented in this paper is relatively straight-
forward, as it just allows statements about the order in which different input
signals were observed in the linear input sequence. However, there are many
more temporal logics in practical and industrial use, such as computation tree
logic (CTL), linear temporal logic (LTL), and interval temporal logic (ITL).
These discrete-time logics deal with branching time, infinite linear time, and
finite linear time, respectively, and include more powerful logical primitives such
as checking whether a proposition is globally true, or eventually true, or true
until some other proposition becomes true. In the case of CTL, there are also
logical primitives to deal with whether these properties hold along all branching
paths in time, or just some. Clearly, these are much more powerful logics than
that which we defined in this paper. A fruitful direction for future research would
be to investigate designs for DNA-based circuits that can decide satisfaction of
these more powerful logics, or to recognize strings drawn from regular languages
(in which case, the DNA network would encode a regular expression). These
recognition tasks are non-trivial because solving them would require far more
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information about the past states observed by the network to be stored, such as
the length of time that has passed since a given signal was observed. Tackling
this problem in an efficient and scalable manner would require us to be able to
use the same input signal irrespective of its position in the temporal ordering,
and we note that previous work on chemical memories [15,16] provides a possible
solution to these challenges associated with reusing inputs and deciding more
sophisticated temporal logics.
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Abstract. Quantum-dot cellular automata (QCA) is a non-transistor-
based, classical computing paradigm. QCA devices may be implemented
using mixed-valence molecules, and logic circuits are formed by laying out
ordered arrays of QCA molecules on a substrate. Molecules are locally
coupled via the Coulomb field. The molecular circuits can be clocked using
an applied perpendicular electric field. A fully-quantum model of field-
driven electron transfer (ET) is used to determine the ET rate for specific
QCA candidate molecules. The diferrocenyl acetylene (DFA) molecule is
taken as an example QCA molecule, and this model indicates DFA may
support classical computation at speeds well beyond the GHz range.

Keywords: Molecular classical computing - High-speed computing -
Beyond-CMOS computing - Energy-efficient computing

1 Introduction

Strong motivation now exists for alternatives to complementary metal-oxide
semiconductor (CMOS) transistor-based computing. The scaling of CMOS
devices to the very limits of scaling has resulted in device operation plagued
by vast power dissipation [7]. Thus, modern CMOS-based computing devices
use tremendous amounts of energy. Furthermore, it is estimated that by
2030, transistor-based information and communication technology will consume
30-50% of global power output and contribute up to 23% of global greenhouse
gas emissions [1].

One general-purpose computing paradigm designed to circumvent such prob-
lems is quantum-dot cellular automata (QCA?!) [15,19]. QCA has a molecular

! It is important to provide some disambiguation. In this context, “QCA” refers to
“quantum-dot cellular automata,” a paradigm for general-purpose classical com-
puting proposed by Lent, Tougaw, Porod, and Bernstein [19]. Here, classical bits are
manipulated by exploiting quantum phenomena: quantum tunneling, and the quan-
tization of charge. “QCA” also stands for “quantum cellular automata,” a model for
universal quantum computing. Since this abbreviation has served extensively in the
distinct bodies of literature, we seek to avoid further other confusion by providing
this note here, and by continuing to use “QCA” to refer in this context only to the
classical computing paradigm.
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implementation, which supports ultra-high device densities and operating
speeds, as well as low levels of power dissipation.

Here, an overview of the QCA paradigm is given. The discussion begins with a
review of QCA with a focus on the molecular implementation of QCA devices. An
architecture for logic based on electric-field-clocked molecular QCA is outlined.
Then, a model of electric-field-driven electron transfer is described. This model
is applied specifically to diferrocenyl acetylene (DFA) molecules, and electron
transfer rates are calculated. The results suggest that if implemented using DFA-
like molecules, molecular QCA can support very high operating speeds. These
results are based on quantum mechanical theory and are part of a larger effort
to realize molecular QCA computing devices.

2 Overview of QCA

The elementary computational device in QCA is the cell, a system having some
mobile charge and several charge localization centers known as quantum dots.
A schematic of a six-dot cell with two mobile electrons is shown in Fig.1(a).
Here, two degenerate, information-bearing, active states are labeled “0” and
“1”. The “Null” state bears no information, but enables clocking. Coulomb
repulsion drives the alignment of active states for cells in juxtaposition, as
in the row of cells in upper left of Fig.1(b). This Coulomb coupling enables
general-purpose computing using arrays of QCA cells. Figure 1(b) shows a log-
ically complete set of devices: a QCA inverter circuit (lower left), and a three-
input majority gate, which can function as a two-input, programmable AND/OR,
gate [19,27].

2.1 Implementing QCA

QCA has various implementations. Devices have been built and tested using
metallic dots [22,26]. Also, cells have been constructed from semiconductor dots
[8,13] and atomic dots [10]. Additionally, QCA may be implemented using mixed-
valence compounds [15,17,20]. Here, individual molecules function as cells, with
redox centers providing dots. This molecular implementation, like the atomic-
scale implementation, supports room-temperature operation at switching speeds
well beyond the GHz range. Other features of this implementation are synthet-
ically uniform devices and ultra-high device densities in the molecular limit.
Figure 2 shows ball-and-stick models of molecules studied as QCA candidates.
An uncolocked diferrocenyl acetylene (DFA) molecule has two Fe centers, each
providing a quantum dot. Designed specifically as a molecular QCA candidate,
the zwitterionic nido carborane (FC+FCCQB9_) is a self-doping molecule with
three redox centers, and which supports electric-field clocking [6].
FctFcCyBy~ is a net neutral molecule with a hole as the mobile charge. Tts
dots are assigned labels in Fig. 3(a), and the three localized electronic states are
shown in Fig.3(b). When the hole occupies either of the active dots (0 or 1),
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Fig. 1. Constructing logic from QCA cells. (a) The localized states of a six-dot QCA
cell. White discs represent quantum dots, and two red discs represent two mobile
electrons. The smaller size of middle dots—called “null” dots—indicates that they
lie on the substrate, whereas the corner dots—called “active” dots—are elevated above
the substrate. (b) A set of QCA devices. Binary wires are implemented using a row
of cells (upper left); diagonal intercellular coupling leads to bit inversion (lower left);
and, a majority gate is the natural three-input (A, B, and C'), single-output (D) logic
gate in QCA. One input may be treated as a control bit, allowing the majority gate
to function as a programmable, 2-input AND/OR gate. The majority gate and the
inverter constitute a logically complete set.

(a) Diferrocenyl acetylene (DFA). (b) Zwitterionic nido carborane
(FC+FCCQB97).

Fig. 2. Some molecules studied for QCA applications. (a) Diferrocenyl acetylene (DFA)
provides a double-dot molecule. A pair of DFA molecules could be grouped to form a
four-dot cell without null dots. (b) The FctFcCaBo~ molecule was designed and syn-
thesized to function as clockable QCA half-cell. A pair of these molecules can function
as a six-dot cell [see Fig. 1(a)].

the cell takes an active state, and a fixed neutralizing charge of one electron is
uncovered on the null dot. When the cell is in the “Null” state, |[Null), the mobile
charge covers the fixed neutralizing charge [6].

2.2 Clocked Molecular QCA Devices

Molecular QCA may be clocked using an externally-applied electric field [11].
Consider a pair of three-dot molecules like FctFcCyBy~ paired to function as
a six-dot cell, as in of Fig.1(a). Figure4(a) shows such a system with the cell
adsorbed onto the substrate such that the active dots are elevated above the null
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Fig. 3. Zwitterionic nido carborane (FcTFcC2By ™) provides a clockable three-dot cell.
(a) FctFcCyBo~ has three redox centers, which function as dots: one dot on each of
the two ferrocene groups, and one dot on the central carborane cage. (b) The localized
states of a mobile hole define the states |0), |[Null), and |1). In the active states, |0) or |1),
the mobile hole (translucent green spot) occupies dot 0 or 1, leaving the carborane cage
negatively ionized (red spot). In the null state, the mobile hole resides on the carborane
cage, resulting in a molecule with zero dipole moment. The schematic picture above
each state depicts only the dots (circles) and the mobile hole (solid green disc). Lines
indicate tunneling paths. (Color figure online)

dots. Here, mobile electrons are assumed. A charged conductor buried beneath
the device layer may be used to establish the applied clocking electric field. An
electric field with a negative z-component F, will drive the cell to the active
state preferred by interactions with neighboring cells. For E, > 0, however, the
mobile electrons will be attracted to the null dots, driving the cell to the null
state regardless of neighbor interactions.

QCA circuits may be clocked using an array of wires, as in Fig.4(b). Here,
independently charged conductors establish an electric field with an inhomoge-
neous z component at the device layer on the substrate. Domains of this field
with E, < 0 will activate cells, whereas cells will be driven to the null state in
regions where E, > 0 [3].

Time-varying clocking excitations result in moving active domains. Consider
the plan view of clocking wires shown in Fig.5(a). The upper part of this sub-
figure shows one period of one particular phase of a four-phase clock. When the
four-phase clocking excitation is applied to this array of wires, the electric field
is established with active domains that propagate to the right.

The motion of active domains across the QCA plane drives the flow of data
and calculations through QCA circuits. Figure 5(b) shows a shift register at work.
Since bit packets exist only within active domains, the translation of an active
domain across the device layer also moves the bit packet(s) contained within it.
Thus, the active domain propagates rightward, driving the bit through the shift
register. Calculations take place in the circuity at the leading edge of the active
domain, and erasures occur at the trailing edge.
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(a) A single clocked QCA cell. (b) An array of clocked QCA cells.

Fig.4. An externally-applied electric field is used to clock molecular QCA cells. (a)
Two three-dot molecules are paired to form cells with six dots (dots are blue spheres). A
single cell with two mobile electrons (red discs) is clocked to an active state by applying
a negative charge to a buried conductor (red slab below the six-dot cell). The resulting
electric field repels the electrons to the active dots, and the cell’s state is determined
by neighbor interactions. On the other hand, if the polarity of the conductor charge is
reversed (indicated by the green color of the slab below the six-dot cell), the electric
field reverses polarity, attracting the electrons to the null dots. The cell is clocked to the
null state regardless of neighboring molecular states. (b) Two buried, independently-
charged wires (red for negative and green for positive voltage) create an inhomogeneous
electric field at the surface of the substrate. This field activates cells in certain regions
called active domains, where the field’s vertical (z-component) is negative (E. < 0).
In null domains, E. > 0, and cells are driven to the null state. (Color figure online)

More complex logic circuits are possible. Figure6 shows the operation of
a majority gate and a permuter circuit. Additionally, more complex clocking
schemes can support memories and feedback loops [3,16]. Finally, an estimated
upper limit of power dissipation in the clocking wires indicates that such dissi-
pation will be quite manageable, even up to clocking speeds of 100 GHz [4].

2.3 Challenges in Molecular QCA: Circuit Layout and Bit Readout

Tasks taken for granted in CMOS technologies can become more challenging in
molecular QCA because of the nanometer scale of the devices. We briefly discuss
the challenges posed by the layout of molecules and the readout of QCA bits on
individual molecules.

The layout of QCA cells on the substrate is important: a two-dimensional cel-
lular lattice cannot provide adequate functionality for general-purpose comput-
ing. Photolithography is suitable for fabricating metal-dot and semiconductor-
dot QCA arrays, but the layout of molecular QCA cells requires a different
approach.

One interesting layout concept relies on self-assembly and involves the use
of rafts or tiles formed using DNA [25] or PNA, as depicted in Fig.7. These
rigid structures will provide tiny molecular circuit boards for cells. Placement
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Fig. 5. A time-varying clocking electric field drives a bit packet through a shift register.
(a) A layout of wires (middle) is charged using a four-phase clocking voltage. Here, the
conductors are color-coded, indicating a separate phase of a four-phase clock. A single
phase of this T-periodic clock is shown (top). The z-component of the electric field, E,
(pointing out of the page), is plotted in the grayscale background of the bottom panel,
with the position of wires marked using white lines. White regions of the field are active
domains, and black regions are null domains. The phase sequence of the clock drives
active domains rightward. (b) A “0” bit packet propagates rightward within an active
domain along a row of cells, resulting in shift-register action. The state of the cell is
encoded on its face color. Bit packets reside inside active domains, and thus are driven
through registers or other circuitry by the motion of the active domains. Three panels
show three successive snapshots in time.

and adhesion on the boards can be achieved by building into the DNA structure
preferred attachment sites [see Fig. 7(a)]. The QCA cells, in turn, must have as
part of their design an appendage to conjugate with an attachment site. The
DNA structures may be programmed to link with one another, forming larger
composite structures which can adhere to a substrate [see Fig. 7(b)] appropriately
patterned through photolithography. The DNA tiles, then, are an intermediate
layer between the QCA devices and the substrate. Seeman crystals [28] and
DNA origami [24] can provide useful techniques for realizing tiles. While DNA
tiles will have numerous stray charges likely disruptive to QCA operation, PNA
structures are charge-neutral and may address the problem of stray charge on
the tiles [18].

Another important task in QCA is that of reading the state of a nanometer-
scale QCA cell. Single-electron transistors (SETs) provide one potential solution
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(a) Majority gate operation.

(b) Permuter operation.

Fig. 6. Time snapshots show the clocking field (grayscale background) driving data
through circuits (colored foreground squares). (a) The majority gate processes three
input bits. The clock shifts three bit packets (0,1,0) into the device cell from the
left. The result is a zero bit. (b) The clock pipelines data and calculations through a
QCA permuter circuit. Two distinct active domains, labeled “A” and “B” drive two
calculations through the circuit. The top panel shows that in domain A, a two-bit
word entered the circuit as atopabottom = 01 from the left (top panel), followed by
btopbbottom = 10 in active domain B. At some time later, the bottom panel shows the
word in domain A exiting, permuted to atop@bottom = 10. The word biopbbottom Will
follow, being permuted to btopbhottom = 01 by the time domain B exits the circuit.
Fixed cells are used to program majority gates as AND or OR gates. (Color figure
online)
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(a) The DNA tile concept. (b) Linked DNA tiles.

Fig. 7. The use of DNA tiles in the layout of QCA circuits. (a) A DNA tile structure
(yellow slab) provides a molecular circuit board for QCA cells. A particular QCA
molecule (three clustered blue spheres) is designed with a docking appendage. Cells of
this type conjugate with the DNA tile at built-in attachment sites. (b) DNA tiles can
be programmed to link with other tiles and adhere to a substrate (gray slab). This will
enable the assembly of large-scale molecular QCA circuits. (Color figure online)

[23]. SETs are exquisitely sensitive electrometers, having an unequivocal
response to sub-nanometer displacements of single electrons [14].

3 Modeling Electron Transfer Rates in Molecular QCA

Modeling electron transfer in molecular QCA is of particular interest in QCA
design. QCA device switching occurs through ET, and driven ET rates are
directly related to maximum device operating speed, a key figure of merit for
any computational hardware. Molecular QCA likely will support operation at
speeds well beyond the GHz-range speeds seen in modern classical computing.
A fully-quantum model of field-driven, intramolecular ET was developed, in
which a field-driven ET event is coupled to molecular vibrations [2]. The mole-
cular vibrations, then, are damped by the thermal environment at temperature
T—in this case, the substrate. This model is shown schematically in Fig. 8(a).
The model is described here briefly, in the context of a DFA molecule. In this
model, the system energetics are captured in the Hamiltonian H (t), given by

. At
() = 6, + 25 4 9

ev A P2 me- )2
5 5 OA_ZQ+ Q 4 v1bQ

o 5 (1)

Here, the first two terms describe the energetics of the two-state electronic sys-
tem: v is the hopping energy between the two dots [see Fig.8(b)], and A(t) is
the bias between the states |1) and |0) [see Fig. 8(c)] due to the electrostatic field
from neighboring molecules. The operators 6, and ¢, are two of the three Pauli
operators. The nuclear displacements are captured in a single vibrational coordi-
nate @, which is modeled as a quantum harmonic oscillator with effective mass
m and angular oscillation frequency wyi,. The oscillator, the excitations of which
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Fig. 8. A model of electric-field-driven ET in a target molecule. (a) A schematic block
diagram of the quantum system. The electron and vibron comprise the model tar-
get system described by p(t). The charge configuration of the driver establishes a
potential, which may transfer energy to or from the electron+vibron system, and the
electron+vibron system may transfer energy to the environment at temperature 7.
(b) DFA has one redox center per ferrocene group, providing a total of two quantum
dots. Dots are treated as points separated by distance a. (c) The localized states of a
mobile electron (translucent red disc) define the states |0) and |1). The schematic pic-
ture above each state depicts the dots (blue circles) and the mobile electron (solid red
disc). Lines indicate tunneling paths. (d) A set of four snapshots illustrate the driven
ET process: (i) for ¢ < 0 the driver configuration, along with a confining potential (not
pictured) confine the target electron to the left dot; (ii) at ¢ = 0, the confining potential
is abruptly lifted, and the driver configuration is abruptly switched, establishing a A
that drives ET to the right dot; (iii) at some time 0 < ¢t < oo, the ET is in progress via
quantum-mechanical, interdot tunneling; and, (iv) after sufficient time (¢ — o), the
electron has transferred to the right dot. (Color figure online)
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are called “vibrons,” has position and momentum operators Q and PQ, respec-
tively, which may be expressed in terms of vibronic creation and annihilation
operators, dg and ag, respectively:

>

h mwyiph
Q= /g (af) +aq) and Pq = = (3h-4a). @
The energetics of the vibronic system alone are captured in the last two terms
of H(t). The middle term in H(t) describes the electron-vibron coupling. This
depends on the coupling constant g., = v/2muwyipA, where A is the reorganization
energy of the molecule [2,12]. Molecular parameters such as v, A, m, and wyi,
may be obtained through quantum chemistry calculations or experiment. Here,
the model parameters used are characteristic of DFA: ¢ = 0.67 nm, 7 = 50 meV,
m = 5.6 amu, A = 440 meV, and foip = wyip/27 = 298 cm~ L. Of course, the
model can be applied to other molecules as well, if the appropriate characteristic
molecular parameters are provided.

To model environmental damping on this system, we assume that the envi-

ronment is Markovian or memoryless. In this limit, model dynamics are described
by the Lindblad equation [9,21]:

5] +®, with @:Zﬁjpﬁj—%{ﬂgﬂj,ﬁ}. (3)
j=1

Here, the density operator p(t) describes the state of the electron+vibron system.
Equivalent to the Schrodinger equation, the first term of (3) describes unitary
evolution of the quantum mechanical system. The summation ®, referred to as
the Lindbladian term or the dissipator, describes the non-unitary and irreversible
time evolution, including quantum decoherence and dissipative effects. Here,
[A, B] and {A B} are the commutator and the anticommutator, respectively,
of operators A and B; and, the operators {L;} are Lindblad operators [5]. A
particular model of environmental effects requires a specific choice of operators
{L,}, and for this model, two operators were used:

N 1 . hw 1
Li=+/=—a Lo, = - —al. 4
1=14/ T ag and Lo exp( 2kBT> \/ T, aq (4)

Here, T is the environmental temperature, kp is Boltzmann’s constant, and T}
is the environmental energy relaxation time, which measures the strength of the
vibron-environment interaction. This combination of ﬁl and ﬁg models a system
that achieves a Boltzmann distribution in the steady state. Model dynamics are
obtained by numerically solving Eq. (3).

A driven ET event is depicted schematically in Fig. 8(d). A neighboring driver
cell and a confining potential are established to strongly favor electron occupa-
tion on the left dot of the target molecule for ¢ < 0. Then, at t = 0, the confining
potential is lifted, and the neighboring molecule is abruptly switched, driving
rightward ET in the target molecule. From the solution 5(t), we calculate tgr,
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the time required for the electron to tunnel to the right dot, and the ET rate
k = 1/tgr. Figure9 shows calculations of k using this model. This data indicates
that DFA-based QCA cells could support THz-scale ET rates.

><‘1012
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Fig. 9. The DFA molecule supports ET rates k of the order of 10'? transfers per second
over the terrestrial range of temperatures. Calculations were done with parameters
characteristic of DFA: interdot distance a = 0.67 nm, v = 50 meV, A = 440 meV,
m = 5.6 amu, and f.;p = 298 cm ™.

4 Conclusion

QCA is a paradigm for computing with a molecular implementation that
promises high device densities, room temperature operation, low power dissi-
pation, and high operating speeds. While results for the DFA molecule indicate
that THz-scale operation is possible, other molecules may support even higher
speeds. The results presented here are theoretical in nature and are part of a
larger, transdisciplinary effort to realize molecular QCA.

Modeling the performance of candidate QCA molecules is important because
synthesizing and testing molecules is a time-consuming, labor-intensive project
that at present, may take several person-years. This model, along with models of
other relevant phenomena in QCA, can shed light on desirable molecular prop-
erties and provide a clear objective for molecular designers. Additionally, such
models can close a theoretical design feedback loop that allows a candidate QCA
molecule to be characterized using quantum chemistry calculations, to be evalu-
ated for performance, and redesigned as necessary before undertaking the costly
process of determining a synthesis route. These theoretical models can yield
tremendous savings in time and effort in molecular design and synthesis, and
can contribute directly to the realization of high-performance, energy-efficient,
general-purpose computing devices based on molecular QCA.
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Abstract. It has been shown that alternating attachments of two types
(species) of floating molecular (DNA based) tiles on a predesigned array
that consists of communicating neighboring DNA tiles complementary
to the floating tiles can dynamically simulate some types of cellular
automata (CA). We show that the model can simulate any elementary
one dimensional CA confirming the universal computational power of
the model. We address the question of which design of the platform
array provides communication across the whole plane. We show that for
square tiles only the checkerboard arrangement of the two species can
provide communication between any two tiles of the plane. On the other
hand, there are an uncountable number of arrangements of two colors of
hexagonal tiles on the plane which provide communication between any
two tiles.

1 Introduction

Experimental DNA self-assembly has demonstrated molecular information
processing mainly through assemblies of structures as results of computa-
tions [17,20], or structures that represent computations (e.g. logic circuits [13],
space-time representations of cellular automata [18], binary counters [5], etc.).
In all those cases, the cooperation between the building blocks is guided by the
sticky ends, and once a molecule assumes its location within a larger structure,
it has no further computational interaction with its environment. Recent devel-
opments have shown arrays made by DNA origami tiles [12], incorporating sig-
naling strands within DNA origami [6] and controlled step-by-step tile assembly
through signal activated sticky ends [14]. These results have motivated several
recent works which, at least theoretically, describe models, where through con-
stant interaction with the environment, computations dynamically change the
structures. Many of these works show simulations of cellular automata using a
variety of models such as reaction network based simulations of (asynchronous)
cellular automata [8,11,19], models based on signal passing tile assemblies [10]
and a recent model relying on continuous changes of molecular arrangements on
a 2D array through a global control of the environment [9]. The proposed system
in [9] consists of a 2D DNA origami array (platform) made of two types (species)
of tiles (‘black’ and ‘white’) that serve as a transmission storage (equipped with
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“communication” strands) and two types (species) of free floating tiles able to
attach to their respective counterparts on the platform. Only one species of float-
ing tiles is attached to the platform at a time. In an alternate manner, at each
cycle, one of the platform colors receives corresponding floating tiles and com-
putes the identity of the floating tiles of the next cycle for the other color. Thus,
the floating tiles communicate by transmitting signals through the platform to
their oppositely colored neighbors. The exchange of the tile types on the array
is assumed to be achieved through a global environmental control, for example
with tiles equipped with differently shaped gold particles [4,7], or newly designed
chemistry [1,21]. This global control has the potential to provide a “clock” in
the system allowing synchronous exchange of the arrangements between the two
species of tiles.

In this paper, we address two questions arising from the model description
in [9]: (a) what is the computational power of the system and (b) which color
designs of the platform allow communication across the whole plane? To no
surprise, we observe that the checkerboard coloring of the platform allows simu-
lation of any elementary cellular automaton in Sect. 2. This is achieved through
a dynamic simulation without storing or recording the history of the computa-
tion and follows an approach similar to the simulation in [10]. The 2D cellular
automaton simulation proposed in [9] has a lag; two steps of floating tile arrange-
ments correspond to a single configuration of the automaton being simulated.
In contrast, the simulation in Sect. 2 is such that each automaton configuration
corresponds to a single arrangement of tiles over one of the colors in the plat-
form. In the remaining sections, we study coloring designs of the platform which
allow communication between the floating tiles. We show that communication
between any two tiles on a colored platform through signals sent from a tile to
oppositely colored neighboring tiles is possible only on a checkerboard coloring
of the platform. Further, we observe that a platform made by other types of tiles
(such as hexagonal tiles) may have uncountably many colorings that provide
communication between any two tiles across the plane.

1.1 Preliminaries

In this paper, G = (V, E) is always an undirected, simple graph with a finite or
infinite set of vertices V. The number of edges in the shortest simple path from
u to v is denoted dist(u,v). Vertices represent tiles on the plane (platform), and
the edges correspond to the connections between the tiles. When thinking of a
platform, G is also planar. However, our observations in Sect. 4 hold in general
and the planarity of G is not assumed. In the case of the square tiling of the
plane, we take G to be the integer lattice with vertices Z? and edges {u, v} if and
only if |jlu—v]|| = 1. Let C be a finite set; a mapping ¢ : V.— C'is a coloring of G
by C. A coloring ¢ is binary if |C| = 2. As per the experimental implementation
suggested in [9], the platform is partitioned into two types of tiles which can be
distinguished by associating two colors. Therefore, in this paper all colorings are
binary and we set C' = {0,1}. We refer to color 1 as ‘black’, and to color 0 as
‘white’. A checkerboard coloring of Z? is uniquely determined by the color of the
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parity of z + y for u = (x,y) € Z?, that is for a fixed 4, (x,y) is colored i if and
only if x 4 y is even. There are two checkerboard colorings of Z2, depending on
whether ¢ = 0 or ¢ = 1. We define checkerboard colorings of arbitrary graphs in
Sect. 4.

Because communication across the tiles is performed only between oppo-
sitely colored tiles, we consider paths in the graph where successive vertices are
oppositely colored. A path p = vg,...,v, in G is p-alternating if for any two
consecutive vertices v;_1,v; in p, p(v;) = 1 —@(v;—1). We say that u,v € V' com-
municate under ¢ if there is a g-alternating path from u to v. Let C¥ = (V,,, E,)
denote the subgraph of G induced by v and the set of vertices which commu-
nicate with v under ¢. We call C? the communicating graph of v under ¢. We
abuse the notation and drop the superscript ¢ when the coloring is clear from the
context. A colored graph is called y-connected if any two vertices in the graph
are connected by a p-alternating path. This implies that in a ¢-connected graph
G, the communicating graph C¢ coincides with G for every v. A coloring ¢ is
said to be communicating if for every vertex v the graph C'¥ contains vertices
other than v.

2 Simulation

In this section, we recall the computing model introduced in [9] and show how
this model simulates the dynamics of any elementary cellular automaton. The
model is defined over the graph Z2. Let ¢ : Z* — {0,1} be a binary commu-
nicating coloring of Z2. We set B = ¢~ !(1) to be the set of black vertices and
W = ¢~ 1(0) to be the set of white vertices.

We define N = {(1,0),(0,1),(—1,0),(0,—1) }, and for v € Z*, N, = v+ N =
{v+u | u € N} is the neighborhood of v in Z2. Let X be a finite set, and take
e ¢ Y. We denote Y=xU {¢}. Amapa: N — Yis represented with a 4-tuple
(a1,a2,as,a4) where a; = a(1,0),a2 = a(0,1),a3 = a(—1,0), and ag = a(0, —1).

Definition 1. A system of interactive molecular arrangement over Z? (SIMA)
is a four-tuple 8 = (¢, X, ¢, dw) where ¢ is a binary communicating coloring
of Z2, X is a finite set of states and ¢g, dpw : XN — X are local functions.

Definition 2. Let § = (¢, X, ¢p,¢w) be a SIMA with e ¢ X'. An arrangement
is a mapping oc : 22 — X, where C € {B,W}, defined by

oc(v) =
c(v) € otherwise

{s e ifvedl

Since € is not an element of X', we use it as a ‘place holder’, and we refer to it
as the ‘empty state’. So, an arrangement is an assignment of states in Z? such
that vertices of one of the colors are assigned states from X and vertices of the
opposite color are assigned the empty state.
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Definition 3. For a given SIMA 8 = (¢, X, ¢, dw) and a seed arrangement
0%, a computation of 8 is a sequence of arrangements 0%, 0%, 0k, . . ., O'C’V_l, 0B,

ofs U%+1, ... such that

ow . form>0
€ otherwise

n (’U): {¢W(U%|NU) ifUEW

B forn>1

o (v) = {d)B(UnW_IIN") ey
€ otherwise

In the sequence of arrangements forming a computation, the state at each
point v € Z? of an arrangement is obtained by applying the corresponding local
function to the neighborhood N, under the preceding arrangement.

Recall that a one-dimensional cellular automaton (CA) is a three-tuple € =
(A,N,£) where A is a finite set of states, N is a finite subset of Z, and ¢ :
AN — A is the local function. For a configuration a : Z — A of € and v € Z,
denote o, = a(v). Given I' = {a | a : Z — A} of €, the associated global
function is the function Gy : I' — I' defined with (G¢(«)), = €(a,+n) where
v+N={v+j|j €N} forv e Z. A one-dimensional CA where N = {—1,0,1} is
said to have a radius 1 neighborhood. An elementary CA is a CA € = (A, N, /)
with A = {0,1} and a radius 1 neighborhood.

Definition 4. Let € = (A,d,N,£) be a CA and 8 = (¢, X, ¢, dw) be a SIMA.
An arrangement oc, where C € {B, W}, encodes a configuration « : Z¢ — A in
DCCif

(i) there exists X4 C X with oc(D) C X4 and a bijection 0 : A — X4,
(ii) there exists a bijection v : D — 7% such that oc|p = 6o a 0.

Informally, an arrangement o¢ encodes a configuration o in D C C' if the
domain and the image of a can be embedded in the domain and the image of
oc|p, respectively. That is, o¢|p represents an equivalent arrangement of states
over D as a does over Z<.

Definition 5. A SIMA 8 = (¢, X, ¢, dw) simulates a cellular automaton € =
(A, d,N, ) if there exists D C Z? such that for any configuration o : Z¢ — A of
C, there is a seed arrangement 0%, that encodes o in D N B, and a computation

0 0 1 _1 ; : ; )
050w, 0RO, - - - 0f 8 such that there exists an increasing sequence {m;}72, C

Z satisfying for any n > 0, either o™ encodes G} (a) in DN B or oy encodes

G} (o) in DNW.

We say that SIMA § simulates the cellular automaton € wuniformly if the
increasing sequence {mo,ml,mg,...}_ C Z is an arithmetic sequence, and it
simulates strictly € if mi1 =mo + [%].

Lemma 1. For any CA C with a radius 1 neighborhood, there exists a SIMA 8§
which simulates C strictly.
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Proof. Let € be a CA with a radius 1 neighborhood, a set of states A, and a local
function ¢, and let ¢ be a checkerboard coloring of Z? with (0,0) = 0. Hence ¢
is communicating. Let ¥ = AU{L, R,J}, where L represents the “left border,”
R represents the “right border,” and § is reserved for the cases not related to
the simulation. For C € {B, W}, define ¢¢ as follows

b ifay,a2,a4 € Ayaz = L, and l(ay,a1,a2) =b
b if as,a3,a4 € A,a1 = R, and (a4, a3,a2) =b
oc(ar,a2,a3,a4) =< L ifag,as = L,a3 =27, and a; € A
R ifas,ay = R,a1 =6, andaz € A
6 otherwise
az a2 L R

Ll b a; az| b R ) L Jla ad R |6

as a1 T

(a) (b)

Fig. 1. The function ¢¢. (a) b = £(a4, a1, a2) when there is a border L on the left and
b = £(aa,as,a2) when there is a border R on the right; (b) left and right border tiles
that are not part of the encoding of a configuration of C.

The first two cases of the definition of ¢ are shown in Fig.1(a) and the
second two in Fig.1(b). Let D = {(z,y) € Z*> | * = 0,1}, and let a be a
configuration of the cellular automaton €. The configuration « is encoded with
the arrangement 0% : Z2 — by by setting the black vertices in D with 0% (z,y) =
ay (recall (z,y) € B iff z +y is odd). The black vertices with z-coordinate —1
are associated the left border L and the black vertices with z-coordinate 2 are
associated with the right border R. All other black vertices are mapped to §. A
segment of the configuration 0% is presented in Fig. 2(a).

For 5 : DN B — Z with ¢p(z,y) = y, we have 0%|pnp = a0 9p, and

hence 0% encodes a in D N B. Observe that 0%}, encodes Gy(a) in D NW (see

Fig. 2(b)). Inductively, one obtains that og/ % encodes G} (a) in DN B for n even
and J]LBH/QJ encodes G} (a) in D N W for n odd which concludes the proof. W

Observe that Lemma 1 reaffirms the result in [8] that there exists a SIMA
which is Turing complete. Indeed, there exists a SIMA which simulates ele-
mentary CA Rule 110 by the lemma, and it is known that Rule 110 is Turing
complete [3,16]. Although a SIMA can simulate a two-dimensional CA [9], the
characterization of those two-dimensional CA which can be simulated by SIMAs
is unknown, to the best of our knowledge.
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L a2 Gy(az) R
[e%} R L Gy(ar)
ow (o)
L o EE—— Gy(ao) R
a_q R L Gela_1)
L a_o Ge(a_2) R
(a) o (b) oy

Fig. 2. Arrangements (a) 6% and (b) o}, with ¢ ommited.

3 Communication

Recall that a simple bi-infinite path in an infinite graph G is an injective map
p:Z — V such that {p(i),p(i + 1) } € E for all i € Z. Given a binary coloring
®, a simple bi-infinite path is called p-alternating if p(p(i)) = 1 —@(p(i +1)) for
all 4 € Z. For a bi-infinite path p, we define the set of vertices visited by p to be
Vo, ={p(i) | i € Z}. A simple bi-infinite path p does not visit a vertex twice,
so the set V, is infinite. We say that w is in the intersection of two bi-infinite
paths p and ¢ if w € V, N V.

Definition 6. Let ¢ be a binary coloring of an infinite graph G. Letv € V| and
let d be the maximum number of y-alternating simple bi-infinite paths whose
pairwise intersection is just {v}. If d > 1, then ¢ provides communication in d
directions at v. We say that ¢ provides communication in d directions on G if
there exists v € V where ¢ provides communication in d directions at v. If for
all v € V¢ provides communication in d directions at v, then we say that ¢ is
d-directional.

We say that ¢ provides finite communication at v € V if C¢ is finite. If ¢
provides finite communication at every vertex in GG, then we say that G has finite
communication under ¢. Of course, communication at every vertex is finite if
G is finite. When v € V has finite communication under a binary coloring ¢
of G, there exist no @-alternating simple bi-infinite paths which contain v. The
requirement that d-directional communication in Definition 6 be established by
p-alternating simple bi-infinite paths distinguishes d-directional communication
from finite communication.

Following the definition in [15], a binary coloring ¢ on G = (V, E) is I-perfect
or isotropic if the number of vertices adjacent to v € V with color j € {0,1}
only depends on the color of v. In this case, we may represent ¢ with a 2 x 2
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coloring matriz {a;;}; ;—o which indicates that a vertex with color i has a,
adjacent vertices of color j. For the rest of the section, we consider the integer
lattice (Z2, E) where {u,v} € E & ||[u —v|| = 1.

Proposition 1 (Theorem 8 of [2]). Any communicating 1-perfect coloring of
72 has a coloring matriz which is equivalent to one of the matrices My, — M.
Matrices My and Mg correspond to uncountably many I1-perfect colorings, M7
corresponds to two colorings, and all other matrices correspond to a unique (up to
isomorphism) 1-perfect coloring.

04 04 04
= (53) 1= (32) - (1)
13 13 13
= (15) = (22) - (31)
29 22 31
= (35) 1= (32) 2= (13)

Observe that any binary coloring ¢ of Z? provides communication in at most
2 directions at a vertex. Indeed, each vertex in Z? has a degree of four, so at

most two p-alternating simple bi-infinite paths can have an intersection which
is just v. We observe the following corollaries to Proposition 1.

Corollary 1. A 1-perfect coloring ¢ of Z? with a coloring matriz equivalent to
one of the matrices My, My, M7, or My provides finite communication in Z2.

Proof. Let ¢ be such a coloring of Z2, and let v € Z2. Without loss of generality,
assume that ¢ has a coloring matrix equal to one of the matrices My, My, M7, or
My. Figure 3 depicts the communicating graph C¥ for the corresponding color-
ing. For all matrices, the subgraph C,, contains five to two vertices, respectively.

|

o ) e0 e 00 eoeoeo0 N )
o090 AR o ofgle o 00000
o(»—%—o)o o<o—%loo oo: :oo oo'_foo
0cegsee oo\\J'oo oo 600 oo:_J'oo
LI B el 3 ceeee N ) N )
(a) M1 (b) ]V[4 (C) ]\47 (d) Mg

Fig. 3. For v € Z?,C, is depicted within dashed lines above the associated coloring
matrix (a) M1, (b) Ma, (c) M7, or (d) My. Note that if p(v) = 1, v may be taken as any
one of the black vertices in the depictions of C, above. The 1-perfect coloring shown in
(c) is one of the infinitely many 1-perfect colorings whose coloring matrix is equivalent
to Mr; however, the subgraph C,, for v € Z? is the same for all such 1-perfect colorings.
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Note that if a vertex has exactly two oppositely colored neighbors under ¢,
then a p-alternating simple bi-finite path must include these neighbors. The next
corollary follows immediately.

Corollary 2. A I-perfect coloring ¢ of Z? with a coloring matriz equivalent to
Mg provides communication in at most one direction.

Fig. 4. Two distinct 1-perfect colorings which have coloring matrices equivalent to Ms.

Figure 4 shows two possible colorings corresponding to Mg. Observe that Z?2
has finite communication under the coloring in Fig.4(a) whereas the coloring
in Fig.4(b) is 1-directional. One can show, by increasing the sizes of the single
color squares in Fig.4(a), that for any n > 0, there exists a 1-perfect coloring
with a coloring matrix equivalent to Mg such that for all v € Z2, the number of
vertices in C¥ is 2973 — 4, where j, < n.

Corollary 3. A 1-perfect coloring ¢ of Z? with a coloring matriz equivalent to
one of the matrices Ms, M5, or Mg is 1-directional.

(a) (b) (c)

Fig. 5. The unique colorings for matrices (a) Ma, (b) Ms, and (c) Ms [2].
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Proof. Let ¢ be a coloring of Z? that corresponds to a matrix equivalent to one
of the matrices My, M5, or Mg. By Proposition 1 there exists a unique (up to
isomorphism) 1-perfect coloring corresponding to each of these matrices (see
Fig.5) [2]. Figure 6 depicts the communication graphs for these matrices. |

(a) M, (b) Ms (c) Ms

Fig. 6. For v € Z?,C? is depicted above the associated coloring matrix. Note that any
vertex with a matching color may be chosen for v from each of the subgraphs above.

Corollary 4. The only 1-perfect coloring of the integer lattice Z> which pro-
vides communication in 2 directions is a checkerboard coloring. A checkerboard
coloring is 2-directional.

Proof. By Corollaries 1 through 3, all matrices M; where ¢ # 3 from Proposition 1
provide at most 1-directional communication. Note that ¢ has a coloring matrix
equivalent to Mj if and only if it is a checkerboard coloring. Let ¢ be a checker-
board coloring of Z?. For v € Z?, the simple bi-infinite paths {v + (0,k)}>,
and {v+ (k,0)}>, are p-alternating, and v is the only vertex in the intersection
of p1 and p2, so ¢ provides communication in 2 directions at v. Because any
coloring of Z? can provide communication at most in 2 directions at a vertex
(Z? is four-regular graph), ¢ is 2-directional. [ |

4 Checkerboard Coloring and Directions
of Communication

This section shows that d-directional communication for d > 2 may be possible
at some vertices in tilings of the plane other than square tilings.

Definition 7. Let G = (V, E) be a (possibly infinite) graph. A binary coloring
@ s called a checkerboard coloring if for every two adjacent vertices v,u € V
we have that o(u) =1 — p(v).

Observe that there exists a checkerboard coloring of G if and only if G is
bipartite. Hence, when G is a bipartite graph, we assume a checkerboard coloring
of G exists. Note that there are exactly two checkerboard colorings for any
bipartite graph, one obtained from the other by switching the color at every
vertex.

Lemma 2. Let @ be a binary coloring of a bipartite graph G. A path vg, . .., v,
in G is p-alternating if and only if for some checkerboard coloring v of G, ¢(v;) =
v(v;) for all 0 <i < n.
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Proof. By the definition of a checkerboard coloring v, every path in G is ~-
alternating. Suppose ¢ is a binary coloring of a bipartite graph G and the path

v, . - ., Up, 18 p-alternating. Note that ¢(vg) = v(vo) for some checkerboard color-
ing v of G. Then since the path is ¢-alternating and + is a checkerboard coloring,
ovg) =1—@(vk—1) =1 —y(vg—1) = y(vg), for all 1 < k < n. |

As a direct result of Lemma 2, we have the following corollary.

Corollary 5. Let ¢ be a binary coloring of a bipartite graph G. If there exists
a vertex v such that C¥ = G, then ¢ is a checkerboard coloring.

Recall that if there is a vertex v such that C'¥ = G, then G is p-connected and
so C¥ = G for all vertices w. Corollary 5 shows that for bipartite graphs, the only
colorings ¢ under which G is ¢-connected are the two checkerboard colorings.
We provide an example of a non-bipartite graph which has only finitely many
colorings ¢ making the graph ¢-connected.

Let Gy, G2 and G35 be bipartite graphs. Fix vertices v1,ve and v3 in G1,Go
and Gs, respectively, and let G = G; U Ga U G5 U {{v1,v2},{va,v3}, {v1,v3}}
(see Fig. 7). Then (vi,vs,v3) is an odd cycle in G, and therefore, the graph is
non-bipartite.

Gy Gs

Fig. 7. A non-bipartite graph G constructed from bipartite graphs G1, G2 and Gs.

Observe that there exists a coloring ¢, such that C,, = G. Indeed, if for
the coloring ¢ we have ¢(v1) = @(v2) = 0,¢(v3) = 1 and if ¢ coincides with
checkerboard colorings on G1, G4 and Gs, then C,,, = G.

Let v,w be vertices in G; and ¢ be any coloring of G under which G is
p-connected. Then there is a p-alternating path p = ug, ..., u, with ugp = v and
u, = w. If p travels through v; at most once, then all u; are in G;. If p travels
through v; more than once, let ¢ and j be the minimum and maximum indices,
respectively, with u; = v; and u; = v1, and let ¢ be a path obtained from p by
removal of w;41,...,u;. Then all vertices uy, of the path ¢ are in G. Thus, G is
©|g,-connected. By Corollary 5, the restriction ¢|g, is a checkerboard coloring.
Similarly it holds that ¢|g, and ¢|g, are checkerboard colorings. Because there
are only two checkerboard colorings for each of the G;, there are only finitely
many (in this case six) choices for .

The following theorem provides an example of a non-bipartite graph with
uncountably many colorings ¢ under which the graph is ¢-connected. We call
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the dual graph of the hexagonal tiling of the plane the triangular grid denoted
with T. The vertices of T are arranged as depicted in Fig. 8(a).

Theorem 1. There are uncountably many binary colorings ¢ of the triangular
grid T which make T @-connected and provide communication in 3 directions at
infinitely many, but not all, vertices.

Fig. 8. Portions of the triangular grid (a) depicting the defined coordinate system and
(b) one of the sets X;, where s; = 1 and the color of each remaining vertex depends
on s; and its distance to x;.

Proof. Note that the square grid Z? with addition of edges { (i,7), (i +1,5+1) }
is isomorphic to the triangular grid T. Fix a vertex in T and denote it vg,g. We
label the rest of the vertices inductively such that for all ¢, 5 € Z the horizontal
neighbors of v; ; are v;—1; to the left and v;41; to the right. The northwest
and southeast neighbors of v; ; are v; ;11 and v; j_1, respectively (see Fig. 8(a)).
Denote with V' the set of vertices in T. Set 29 = v9,0 and define a sequence of
vertices by setting x, = vg 3k, for k € ZT. We definesets Y = {v; ; € V | j < —1}
and Xy ={v;; €V |3k—-1<j<3k+1l,i€Z} for k=0,1,2,...

We prove the theorem by associating to every infinite binary sequence S a
unique coloring ¢g which makes T pg-connected and provides communication
in three directions at the vertices xq, x1, Z2, .. ..

Let S = sg,s1,82,... be an infinite binary sequence. Define g as follows.
If v;; € Y, then pg(v;;) = ¢ +j mod 2, that is, if one removes the edges
{(4,7),(t+ 1,7+ 1)} in Y, then ¢g is a checkerboard coloring of Y. Therefore Y
is pg-connected.

For each £k =0,1,2,...,if v; ; € X}, then

Sk if dist(xy,v;,;) is even,
(PS(Ui,j) = g .
1— s if dist(zg,v; ;) is odd.

Figure 8(b) depicts a portion of Xj;. One can see that each of the X is
ps-connected. For k = 0,1,2,..., we have that pg(vosr—1) = 1 — vs(v136-1),
so that there is a @g-alternating path between vg s;—2 and either vg sxp—1, or
v1,3k—1. Thus, there exists a ¢g-alternating path between vertices in X, and
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X1 for each k € Z* and also between vertices in Xy and Y. Therefore, G is
pg-connected.

Lastly, observe that for £k = 0,1,2, ..., the paths

ce oy V—23k+1,V—1,3k+1,V0,3k+1, Uo,szc(z xk)7 V1,3k+15V2,3k+15 U3 3k+15 - - -
<oy V_33k,V-23k, V-1 3k, Uo,gk(: xk)7 U1,3k, V2,3k, U3,3k; - - -

3 U—8.3k—1, V=2 3k—1, U—1,3k—1, V0,3k (= Tk ), V0,3k—1,V1,3k—1, V2,3k—1, - - -

are pg-alternating simple bi-infinite paths whose pairwise intersections are {xy }.
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Abstract. The algorithmic self-assembly of shapes has been considered
in several models of self-assembly. For the problem of shape construc-
tion, we consider an extended version of the Two-Handed Tile Assem-
bly Model (2HAM), which contains positive (attractive) and negative
(repulsive) interactions. As a result, portions of an assembly can become
unstable and detach. In this model, we utilize fuel-efficient computation
to perform Turing machine simulations for the construction of the shape.
In this paper, we show how an arbitrary shape can be constructed using
an asymptotically optimal number of distinct tile types (based on the
shape’s Kolmogorov complexity). We achieve this at O(1) scale factor
in this straightforward model, whereas all previous results with sublin-
ear scale factors utilize powerful self-assembly models containing features
such as staging, tile deletion, chemical reaction networks, and tile acti-
vation/deactivation. Furthermore, the computation and construction in
our result only creates constant-size garbage assemblies as a byproduct
of assembling the shape.

1 Introduction

A fundamental question within the field of self-assembly, and perhaps the most
fundamental, is how to efficiently self-assemble general shapes with the smallest
possible set of system monomers. This question has been considered in multiple
models of self-assembly. Soloveichek and Winfree [16] first showed that any shape
S, if scaled up sufficiently, is self-assembled within the abstract tile assembly
model (aATAM) using O(%) tile types, where K (S) denotes the Kolmogorov
or descriptional complexity of shape S with respect to some universal Turing
machine, which matches the lower bound for this problem. This seminal result
presented a concrete connection between the descriptional complexity of a shape
and the efficiency of self-assembling the shape, and represents an elegant example
of the potential connections between algorithmic processes and the self-assembly
of matter. The only drawback with this result is the extremely large scale factor
required by construction: the scale factor to build a shape S is at least linear
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in |S], and is typically far greater in their construction. To lay claim as a true
universal shape building scheme for potential experimental application, a much
smaller scale factor is needed. Unfortunately, example shapes exist (long thin

rectangles for example) which prove that the aTAM cannot build all shapes at

0(]:S]) scale in the minimum possible O( m

the quest for small scale factors in more powerful self-assembly models.

The next result by Demaine, Patitz, Schweller, and Summers [5] considers
general shape assembly within the staged RNAse self-assembly model. In this
model, system tiles are separated into separate bins and mixed over distinct
stages of the algorithm in a way that models realistic laboratory operations. In
addition, each tile type in this model is of type DNA or RNA, and the staging
permits the addition of an RNAse enzyme at any step in the staging, thereby
dissolving all tiles of type RNA, leaving DNA tiles untouched. By adding the
powerful operations of separate bins, sequential stages, and tile deletion, [5]
achieves general shape construction within optimal O(loé{;{s()s)) tile complexity
using only a constant number of bins and stages, and only a logarithmic scale
factor. This leap in scale factor reduction constituted a great improvement, but
required a very powerful model with both staging and tile dissolving. In addition,
the holy grail of O(1) scale factor remained elusive.

The next entry into the quest for Kolmogorov optimal shape assembly at
small scale comes from a recent work by Schiefer and Winfree [14]. Schiefer and
Winfree introduce the chemical reaction network tile assembly model (CRN-
TAM) in which chemical reaction networks and abstract tile assembly systems
combine and interact by allowing CRN species to activate and deactivate tiles,
while tile attachments may introduce CRN species. This powerful interaction
allowed the construction of Kolmogorov optimal systems for the assembly of
general shapes at O(1) scale. Although the result provides a great scale factor,
the CRN-TAM constitutes a substantial jump in model complexity and power.

In this paper we study the optimal shape building problem within one of
the simplest, and most well studied models of self-assembly: the two handed tile
assembly model (2HAM), where system monomers are 4-sided tiles with glue
types on each edge. Assembly in the 2HAM proceeds whenever two previously
assembled conglomerations of tiles, or assemblies, collide along matching glue
types whose strength sums to some temperature threshold. Our only addition
to the model is the allowance of negative strength (i.e., repulsive) glues, an
admittedly powerful addition based on recent work [6,9-11,15], but an addition
motivated by biology [12] that maintains the passive nature of the model as
system monomers are static, state-less pieces that simply attract or repulse based
solely on surface chemistry (Fig.1). While the negative glue 2HAM has been
used for works such as fuel-efficient computation [15] and recently universal
shape replication [1], it is also one of the simplest models where the general
shape assembly problem has been considered. Our result is on par with the best
possible result: we show that any connected shape S is self-assembled at O(1)-

) tile complexity. This motivates

scale in the negative glue 2HAM within O( K( S)) tile types, which is met by
a matching lower bound.
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Our Approach. We achieve our result by combining the fuel efficient Turing
machine construction published in SODA 2013, [15], with a number of novel
negative glue based gadgets. At a high level, the fuel efficient Turing machine
system extracts a description of a path that walks the pixels of the constant-
scaled shape from a compressed initial binary string. From there, the steps of
the path are translated into walker gadgets which conceptually walk along the
surface of the growing path and eventually deposit an additional pixel in the
specified direction, with the aid of path extension gadgets. When all pixels have
been placed, the path through the shape is filled, resulting in a scaled version of
the original shape.

Additional Related Work. Additional work has considered assembly of O(1)-
scaled shapes by breaking the assembly process up into a number of distinct
stages. In particular, [3] introduce the staged self-assembly model in which inter-
mediate tile assemblies grow in separate bins and are mixed and split over a
sequence of distinct stages. This approach is applied to achieve O(1)-scaled
shapes with O(1) tiles types, but a large number of bins and stages which encode
the target shape. In [4] this approach is pushed further to achieve tradeoffs in
terms of bin complexity and stage complexity, while maintaining construction
of a final assembly with no unbonded edges. In [8] similar constant-scale results
are obtained in the step-wise self-assembly model in which tile sets are added
in sequence to a growing seed assembly. Finally, in [17] O(1)-scaled shapes are
assembled with O(1) tile types by simply adjusting the temperature of a given
system over multiple assembly stages. While each of above staged approaches
offers important algorithmic insights, the large number of stages required by
each makes the approaches infeasible for large shapes. Furthermore, the sys-
tem complexity of these systems (which includes the staging algorithms) greatly
exceeds the descriptional complexity of the goal shape in a typical case.

Paper Layout. Our construction consists of a number of detailed gadgets for
specific tasks. Presentation is thus organized incrementally to walk through a
version of each gadget (with symmetry there may be multiple). Section 2 gives
the preliminary definitions and background. In Sect.3 we provide a high-level
overview of the entire process as a guide for the rest of the paper. Some of the
details of our construction are shown in Sect.4 with the construction gadgets
and how to construct a line of the path. Section 5 provides the analysis of our
construction, with the lower bound on tile complexity for shape assembly pre-
sented in Sect. 6, and details for pushing our construction to achieve a matching
upper bound in Sect. 7. Then we conclude in Sect. 8.

2 Definitions and Model

In this section we first define the two-handed tile self-assembly model with both
negative and positive strength glue types. We also formulate the problem of
designing a tile assembly system that constructs a constant-scaled shape given
the optimal description of that shape.
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Fig. 1. This figure introduces notation for our constructions, as well as a simple exam-
ple of negative glues. On each tile, the glue label is presented. Red (shaded) labels
represent negative glues, and the relevant glue strengths for the tiles can be found in
the captions. For caption brevity, for a glue type X we denote str(X) simply as X
(e.g., X +Y = str(X) + str(Y)). In this temperature 7 = 1 example, X =2, Y =1,
Z =2 and N = —1. (a) The three tile assembly on the left attaches with the single
tile with strength Z + N = 2 — 1 = 7 resulting in the 2 x 2 assembly shown in (b).
However, this 2 x 2 assembly is unstable along the cut shown by the dotted line, since
Y + N =1-1 < 7. Then the assembly is breakable into the assemblies shown in (c).
(Color figure online)

Tiles and Assemblies. A tile is an axis-aligned unit square centered at a
point in Z?2, where each edge is labeled by a glue selected from a glue set IT.
A strength function str : II — N denotes the strength of each glue. Two tiles
equal up to translation have the same type. A positioned shape is any subset of
Z2. A positioned assembly is a set of tiles at unique coordinates in Z?2, and the
positioned shape of a positioned assembly A is the set of those coordinates.

For a given positioned assembly 7", define the bond graph Gy to be the
weighted grid graph in which each element of 1" is a vertex and the weight of
an edge between tiles is the strength of the matching coincident glues or 0.} A
positioned assembly C' is said to be 7-stable for positive integer 7 provided the
bond graph G¢ has min-cut at least 7, and C' is said to be connected if every
pair of vertices in G¢ has a connecting path using only positive strength edges.

For a positioned assembly A and integer vector v = (v1,vs), let A, denote
the positioned assembly obtained by translating each tile in A by vector v. An
assembly is a translation-free version of a positioned assembly, formally defined
to be a set of all translations A, of a positioned assembly A. An assembly
is T-stable if and only if its positioned elements are 7-stable. An assembly is
connected if its positioned elements are connected. A shape is the set of all
integer translations for some subset of Z2, and the shape of an assembly A is
defined to be the set of the positioned shapes of all positioned assemblies in A.
The size of either an assembly or shape X, denoted as | X|, refers to the number
of elements of any positioned element of X.

Breakable Assemblies. An assembly is 7-breakable if it can be cut into two
pieces along a cut whose strength sums to less than 7. Formally, an assembly C

! Note that only matching glues of the same type contribute a non-zero weight, whereas
non-equal glues always contribute zero weight to the bond graph. Relaxing this
restriction has been considered as well [2].
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is breakable into assemblies A and B if A and B are connected, and the bond
graph G¢- for some assembly C’ € C has a cut (A, B’) for A’ € A and B’ € B
of strength less than 7. We call A and B pieces of the breakable assembly C.

Combinable Assemblies. Two assemblies are 7-combinable provided they may
attach along a border whose strength sums to at least 7. Formally, two assemblies
A and B are T-combinable into an assembly C provided G¢- for any C’ € C has
a cut (A’, B’) of strength at least 7 for some A’ € A and B’ € B. We call C a
combination of A and B.

Note that A and B may be combinable into an assembly that is not stable
(and thus breakable). This is a key property that is leveraged throughout our
constructions. See Fig. 1 for an example. For a system I' = (T, 7), wesay A —1' B
for assemblies A and B if either A is T-breakable into pieces that include B, or
A is 7-combinable with some producible assembly to yield B, or if A = B.
Intuitively this means that A may grow into assembly B through one or fewer
combination or break reactions. We define the relation —! to be the transitive
closure of —1 ' i.e., A —! B means that A may grow into B through a sequence
of combination or break reactions.

Producibility and Unique Assembly. A two-handed tile assembly system
(2HAM system) is an ordered pair (T, 7) where T is a set of single tile assemblies,
called the tile set, and 7 € N is the temperature. Assembly proceeds by repeated
combination of assembly pairs, or breakage of unstable assemblies, to form new
assemblies starting from the initial tile set. The producible assemblies are those
constructed in this way. Formally:

Definition 1 (2HAM Producibility). For a given 2HAM system I' = (T, 1),
the set of producible assemblies of I', denoted PRODr, is defined recursively:

- (Base) T C PRODp

— (Combinations) For any A, B € PRODp such that A and B are T-combinable
into C, then C € PRODr.

— (Breaks) For any assembly C € PRODr that is T-breakable into A and B, then
A, B € PRODr.

Definition 2 (Terminal Assemblies). A terminal assembly of a 2HAM sys-
tem is a producible assembly that cannot break and cannot combine with any
other producible assembly. Formally, an assembly A € PRODr of a 2HAM sys-
tem I' = (T, 1) is terminal provided A is T-stable (will not break) and not -
combinable with any producible assembly of I' (will not combine).

Definition 3 (Unique Assembly - with bounded garbage). A 2HAM sys-
tem uniquely produces an assembly A if all producible assemblies have a forward
growth path towards the terminal assembly A, with the possible exception of some
O(1)-sized producible assemblies. Formally, a 2HAM system I' = (T, 7) uniquely
produces an assembly A provided that A is terminal, and for some constant c for
all B € PRODr such that |B| > ¢, B —1 A.
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Definition 4 (Unique Shape Assembly - with bounded garbage). A
2HAM system uniquely produces a shape S if all producible assemblies have a
forward growth path to a terminal assembly of shape S with the possible exception
of some O(1)-sized producible assemblies. Formally, a 2HAM system I" = (T, T)
uniquely assembles a finite shape S if for some constant ¢ for every A € PRODp
such that |A| > ¢, there exists a terminal A’ € PRODr of shape S such that
AT AL

Definition 5 (Kolmogorov Complexity). The Kolmogorov complexity (or
descriptional complexity ) of a shape S with respect to some fixed universal Turing
machine U is the smallest bit string such that U outputs a list of exactly the
positions in some translation of shape S when provided the bit string as input.
We denote this value as K(S).

3 Concept/Construction Overview

This section presents a high-level overview of the shape construction process.
First, we will present the conceptual overview, which explains the fundamental
ideas behind our shape self-assembly process. Then, we will show a high-level
look at how our construction implements this process.

3.1 Conceptual Overview

Starting with the Kolmogorov-optimal description of a shape (as a base b string,
b > 2), we simulate a Turing machine which converts any base b string into
its equivalent base 2 representation (Sect.7) We then simulate another Turing
machine that takes the binary description of a shape, finds a spanning tree for
that shape, and outputs a path around that spanning tree as a set of instructions
(forward, left, right) starting from a beginning node on the perimeter.

A simple depth-first search will find the spanning tree for any shape. Scaling
the shape to scale 2 creates a perimeter path that outlines the spanning tree, and
assembles the shape. Scaling again, this time by a multiple of 3, now allows space
for the perimeter path with an equal-sized space buffer on both sides (Fig.2).
This buffer is required as it allows sufficient space for our construction gadgets
to “walk” along the perimeter path being built.

Process Overview:

1. Given the Kolmogorov-optimal description of a shape, run a base conversion
Turing machine to get its binary equivalent.

2. Given that binary string, run another Turing machine that outputs the
description of a path around the shape’s spanning tree as a set of instructions
(forward, left, right).

3. Given those instructions, build the path. Our construction begins with a tape
containing this path description for a scale 24 shape.
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BB ]

(a) Non-scaled shape X (b) Shape X at scale 2 (c) Shape X at scale 6
with spanning tree. with spanning tree. with spanning tree.

Fig. 2. The Turing machine calculates a spanning tree of the tiles in the shape (a),
scales the shape in order to allow a path around the spanning tree (b), and further
scales the shape for the gadgets (c).

3.2 Construction Overview

The construction overview begins at step 3 of the conceptual overview, using the
output from step 2. Throughout this paper, we will be referring to this output
as the tape, meaning the fuel-efficient Turing machine tape with path-building
instructions encoded on it. This tape is detailed in Sect. 4.

Construction Steps Overview:

1. Overlay. The overlay process is the first step in shape construction.
Figure 3a—c shows an abstraction of how the output from step 2 in the con-
cept overview gets covered during the overlay process. The overlay initiator
gadget can only attach to a completed tape. This begins a series of coopera-
tive attachments that will cover the tape. Each bit of information on the tape
is covered by its corresponding overlay piece, and thus is readable on the top
of the overlay. The overlay process is finished once the entire tape is covered.

2. Reading. After the overlay process is complete, information can be extracted
from the tape through the read process (Figs. 3d-f). Information can only be
extracted from the covered leftmost section of the tape if it has not already
been read. When a tape section is read, information is extracted from the
tape and a corresponding information block is created.

3. Information Walking. Once the information block is created, it begins
walking until it reaches the end of the tape/path (Figs. 3g—i). Walking gadgets
allow the information to travel down the entire path.

4. Path Extension. When an information block cannot travel any further, the
path is extended (Figs. 3j-1). The path can be extended forward, left, or right.
The direction of the path extension is dependent on which information block
is at the end of the path. After the path is extended, the information block
is removed from the path.

5. Tape Reduction. Once information is extracted from the tape and sent
down the path, one tape section is removed (Figs.3j-1). Only tape sections
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Fig. 3. (a)—(c) The overlay process covers the tape while making the data readable
on top. (d)—(f) Reading the leftmost piece of data and creating an information block
(depicted in green). (g)—(i) Information Walking on the path to the end where the
information is used. (j)—(1) When the information block reaches the end of the path,
the block triggers a Path Ezxtension. (m)—(o) Once the information has been read, Tape
Reduction removes that piece of the tape. (Color figure online)

that have been read are removed, which then allows the next section to be
read. This process continues until every section of the tape is read /removed.
6. Repeat. Repeat the tape read, information walk, path extend, and tape
reduction processes until all path instructions have been read (Figs. 4a—c).
7. Path Filling. The final tape section that gets read begins the shape fill
process (Figs.4d-f). In this process, the path is padded with tiles which fill
it in and results in the final shape.

4 Construction Details

In this section, we detail the steps presented in the construction overview
(Sect. 3.2). This is the process by which information is read from the tape and
portions of the path are assembled.

We will also cover the gadgets required for each step, and review the tape
construction from the fuel-efficient Turing machine used in [15]. This construc-
tion uses pre-constructed assemblies called gadgets. These gadgets are designed
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(d) Begin Fill ) Continue Fill ) End Fill

Fig. 4. (a)—(c) The process is repeated until all information has been read/removed
from the tape. (d)—(f) The final step is Path Filling the shape.

to work in a temperature 7 = 10 system. In our figures, a perpendicular black
line through the middle of the edge of two adjacent tiles indicates a unique
27 = 20 strength bond?. Each gadget provides a different function to the shape
creation process.

Fig. 5. (a) A completed tape consisting of all forward instructions. (b) Overlay Initiator
gadget attaching to tape. (c—d) Overlay fillers begin covering all tape sections from right
to left.

Turing Machine Tape. A detailed look at a fuel-efficient Turing machine tape
is seen in Fig. 5a. Notice each tape section has a pair of tiles on top of it where

2 The strongest detaching force used in our construction is a 7 strength detachment,
and since the internal bonds of our gadgets are meant to withstand even the strongest
repulsive force, it follows that those bonds must be of strength at least 27.
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the information is stored. When talking about the tape from Sect. 3.2, each pair
of dark grey tiles on top of the tape sections represents a piece of information
describing the path.

The Overlay Initiator Gadget attaches to the end of the completed tape, and
begins the overlay process (Fig.5b—d). Each bit of information on the tape is
covered by a corresponding overlay section, allowing the information to be read
on top of the overlay. This process continues, section by section, until the entire
tape is covered. Once finished, the overlay layer will act as an interface, allowing
the gadgets to use the information on the tape.

Fig. 6. (a) The Read Gadget attaches (n+ 7T + F = 2+ 7+ 1 > 7). In (b) the
first form of an information block attaches (F+ F + J2 = 1+ 1+ 8 > 7). Since
the forward version of the read gadget was used, the forward information block is
placed. After the information block is placed, the penultimate read-helper attaches
(A24+ A2+ 01 =242+4+7 > 7). (c) After all read helpers have attached, the read
gadget becomes unstable (F+F+M+n+T+F+Q=14+14+14+2474+1-7<7).

Read. The read gadget is required for “reading” the Turing machine tape. Essen-
tially, this gadget extracts the information that is relayed from the tape through
the overlay blocks. The read process (Fig.6a—c) can only begin if the leftmost
tape section has not previously been read. Once attached, the gadget allows
the attachment of an information block (corresponding to the information being
read) that will be used to carry the build instructions through the rest of our
construction. Once the information block is present, the remaining read-helpers
can attach. The final helper destabilizes the read gadget, allowing it to fall off
and expose the newly attached information block. The read gadget was designed
to produce this information block, alter the tape section that is being read (mak-
ing it unreadable), and then detach from the assembly. This design ensures that
each tape section is only read once, and allows us to transfer the instructions to
other locations in our construction via the walking gadgets.

Information Walking. The walking gadgets begin the information walking
process (Fig. 7), which allows instructions to travel throughout our construction.
After a tape section has been read and an information block has been placed,
a walking gadget can attach. Once attached, the walking gadget allows a new
information block (of the same type) to attach, while also detaching the previous
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Fig. 7. (a) A Walking Gadget (specific to the information block) attaches to the overlay
and the information block (F + F 4+ J1=1+1+8 > 7). (b) The negative interaction
between the D glues destabilizes the old information block, along with the two walking-
helpers (J2+ A2+ A2+ F+F+D =8+2+2+1+4+1—-7 < 7). Notice that two
helpers remain attached to the tape, as they will be used later in the construction.
(c) Once the second walking-helper is attached, the walking gadget becomes unstable
(F+024+J1+D=1+4+74+8-7<7).

information block. Notice that this detachment will always be O(1) size. After the
previous information is removed, the walking gadget detaches as well, allowing
the new info block to interact with other gadgets. Thus, the same information
has traveled from the tape, through the overlay, and is now traveling along the
tape. This process is repeated until the information has traveled to the end of the
path, at which point it is used to construct the next path portion. This method is
desirable because it does not allow duplicate readable instructions to be attached
to the path at any time.

Fig. 8. (a) The forward-extension gadget attaches to the information block and Turing
tape (B+C+ F+p=3+4+4+1+2 > 7). (b) The second extension-helper comes
with the negative D glue that causes targeted destabilization (X +p+ J1+ X 4+ D =
242+48+2—7 < 7). The extension gadget and its helpers, along with the information
block and its helpers are no longer stable along their tape-overlay edges. (c¢) The final
result is a one path-pixel extension of the path.

Path Extension. After the information block has reached the end of the path,
a path extension gadget can attach to the assembly. Once attached, the gadget
allows the path extension process (Fig.8) to begin, which extends the path in
a given direction (forward, left, or right) based on the instruction carried by
the information block. The extension gadget “reads” the information block, and
then extends the path in the given direction. Afterwards, the extension helpers
destabilize the information block and extension gadget, causing a O(1) sized
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detachment. We designed the extension gadget to essentially replace an instruc-
tion block with a corresponding path portion. This design allows us to attach a
O(1) sized path portion for each instruction read from the tape.

Fig. 9. (a) The tape reduction gadget attaches to the read-helpers (A24+U = 2+8 > 7).
(b) Filler tiles attach (s+s = 848 > 7), and create a strong bond to the tape reduction
gadget. (¢) The two negative o glues cause a strong targeted destabilization of the
previously read tape section (e +ul +u2+o0+0=34+8+8—-5—-5<7).

Tape Reduction. After a tape section has been read, we no longer need it.
Instead of continuing to grow the assembly, we can remove O(1) size portions
of the tape as it is being read. This is where the tape reduction gadget initiates
the tape reduction process (Fig. 9) mentioned in Sect.3.2. The attachments left
behind by the read/walk processes allow the tape reduction gadget to attach to
a tape section that has already been read. The gadget then removes itself, along
with the previously read tape section, exposing the next section of the tape for
reading. This technique is desirable because it allows us to break apart the tape
into O(1) sized pieces as we use it. As the tape is reduced, the path continues to
grow until there are no more tape sections to be read.

Due to page constraints, some of the construction details have been omitted
(such as turning and filling). For complete details, please see the arXiv version
of this paper [7].

5 Constant Scaled Shapes

In this section, we formally state the results based on our construction.

Theorem 1. For any finite connected shape S, there exists a 2HAM system
I' = (Ts,10) that uniquely produces S (with O(1) size bounded garbage) at a

O(1) scale factor, and |Ts| = O(%),

Proof. We show this by constructing a 2HAM system I" = (T, 10). One portion
of T's consists of the tile types which assemble a higher base Kolmogorov-optimal
description of S (Sect. 7). This portion of Ts consists of O(%) tile types,
as analyzed in Sect.7. Another portion of Ts consists of the tile types needed
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to assemble a fuel-efficient Turing machine, as described by [15], that performs
a simple base conversion to binary using O(%) tile types, as analyzed in
Sect. 7. The next portion of T consists of the tile types required to assemble
another fuel-efficient Turing machine that finds and outputs the description of a
path around the spanning tree of S. This Turing machine is of O(1) size, and thus
adds O(1) tile types using the method from [15]. The final portion of T's consists
of the tile types that construct the gadgets and assemblies shown in Sect. 4.
With the number of tile types used for computing the path description and for
Tog 1757

Now, consider assembly A to be the fully constructed tape assembly (Sect.4)
encoded with path-building instructions specific to S. Also, suppose assembly B
is some terminal assembly that has shape S at a constant scale factor.

Note that I" follows the process detailed in Sect. 4. This system was designed
so that two assemblies are combinable only if at least one of those assemblies is
at most a constant size (70 tiles), and every breakable assembly can only break
into two subassemblies if one of those assemblies is at most another constant
size (118 tiles). In our construction, the only non-constant size assemblies are
A, B, or some intermediate assembly that consists of some portion of the tape,
and some partially assembled section of the final shape. Of these, B is the only
terminal assembly.

While A and the intermediate assemblies continue engaging in a series of
attachments and detachments, the tape continues to get smaller and the path
continues to grow. The attachment and detachment of O(1) size pieces with
these assemblies will continue until we reach the terminal assembly B, at which
time A will have been disassembled into smaller constant garbage. Therefore, we
see that A —! B. O

our construction process being O(1), our final tile complexity is O(

6 Lower Bound

Here we present a brief argument for the lower bound of Q(MS(TS(Q)) on the tile
types needed to assemble a scaling of a shape S. This argument is essentially
the same as what is presented in [2,13,16], and we refer the reader there for a

more detailed explanation.

Theorem 2. The tile complexity in the 2HAM for self-assembling a scale-c ver-
K(5) )

sion of a shape S at constant temperature and constant garbage is Q(m

Proof. Note that a 2HAM system I" = (T, 7 = O(1)) can be uniquely represented
with a string of O(|T'|log |T|) bits. In particular, each tile may be encoded as a
list of its 4 glues, and each glue may be represented by a O(log|T|)-bit string
taken from an indexing of the maximum possible 4|T| distinct glue types of
the system. The constant bounded temperature incurs an additional additive
constant. Given this representation, consider a 2HAM simulation program that
inputs a 2HAM system, and outputs the positions of any uniquely produced
scale-¢ shape (with up to O(1) garbage), if one exists. This simulator, along
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with the O(|T|log |T|) bit encoding of a system I" which assembles S at scale ¢,
constitute a program which outputs the positions of S, and is thus lower bounded
in bits by K(S5). Therefore K(S) < d|T'|log|T| for some constant d, implying

K(S
IT| = Q(ilog}(()s)). 0

7 Extension to %

The starting assembly for our shape construction algorithm is the tape assembly
from [15] with a binary string as its value. For a binary string A = ag ... ag—1,
such an assembly can be constructed in a straightforward manner using O(k)
tile types (simply place a distinct tile for each position in the assembly, for
example). However, by using a base conversion trick, we can take advantage of
the fact that each tile type is asymptotically capable of representing slightly
more than 1 bit in order to build the string in O(k/log k) tile types. To achieve
this, first we consider the base-b representation B = by ...bg_1 of the string A
for some higher base b > 2. Note that the number of digits of this string is
d < ’—UTkaJ-I = O(logb) We are able to assemble this shorter string (by brute
force with distinct tile types at each position) with only O(d) tile types.

Next, we consider a Turing machine which converts any base b string into
its equivalent base 2 representation. Such a Turing machine can be constructed
using O(b) transition rules. Therefore, we can apply the result of [15] to run
this Turing machine on the initial tape assembly representing string B to obtain
string A. The cost of this construction in total is O(d) tiles to construct the
initial tape assembly, plus O(b) tiles to implement the rules of the conversion
Turing machine®, for a total of O(d + b) tiles.

Finally, we select b = f@] = O(]ng) which yields d = O(m)

O(lolgC %), implying that the entire tile cost of setting up the initial tape assembly

representing binary string B is O(b + d) = O(10 7) tile types. In our case k =
O(K(S)) where K(S) denotes the Kolmogorov complex1ty of shape S for some
given universal Turing machine, and so we achieve our final tile complexity of

K(S
O(logl(((?S))'

8 Conclusion

In this work, we considered the optimal shape building problem in the neg-
ative glue 2-handed assembly model, and provided a system that allows the
self-assembly of general shapes at scale 24. Shape construction has been studied
in more powerful self-assembly models such as the staged RNA assembly model
and the chemical reaction network-controlled tile assembly model. However, our

3 The formal theorem statement of [15] cites the product of the states and symbols of
the Turing machine as the tile type cost. However, the actual cost is the number of
transition rules, which is upper bounded by this product.
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result constitutes the first example of optimal general shape construction at con-
stant scale in a passive model of self-assembly where no outside experimenter
intervention is required, and system monomers are state-less, static pieces which
interact solely based on the attraction and repulsion of surface chemistry.

Our work opens up a number of directions for future work. We have not
considered a runtime model for this construction, so analyzing and improving the
running time for constant-scaled shape self-assembly in the 2-handed assembly
is one open direction. Another is determining the lowest necessary temperature
and glue strengths needed for O(1) scale shape construction. We use temperature
value 10 for the sake of clarity, and have not attempted to optimize this value.
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Abstract. We prove the unique assembly and unique shape verifica-
tion problems, benchmark measures of self-assembly model power, are
coNPMP-hard and contained in PSPACE (and in IT5, for staged systems
with s stages). En route, we prove that unique shape verification problem
in the 2HAM is coNPNP-complete.

Keywords: DNA computing + Biocomputing -+ 2HAM - Hierarchical

1 Introduction

Here we consider the complexity of two standard problems in tile self-assembly:
deciding whether a system uniquely assembles a given assembly or shape. These
so-called unique assembly and unique shape verification problems are benchmark
problems in tile assembly, and have been studied in a variety of models, including
the aTAM [1,2], the g-tile model [6], and the 2HAM [3].

The unique assembly and unique shape verification problems ask whether a
system behaves as expected: does a given system yield a unique given assembly
or assemblies of a given unique shape? The distinct rules by which assemblies
form in various tile assembly models yield the potential for such problems to
have varying complexity. For instance, assuming P # NP, the unique assembly
verification problem is known to be a strictly easier problem in the aTAM than
in the 2HAM.

However, several open questions remain. For instance, such a separation
between the aTAM and 2HAM for the unique shape verification problem had
not been known. Here we prove such a separation (see Table1).

Additionally, a popular generalization of the 2HAM called the staged tile
assembly model [7] has been shown to be capable of extremely efficient assembly
across a range of parameters [4,7-9,14]. Does this power come from the increased
complexity of verifying that systems assemble intended assemblies and shapes?

We achieve progress on these questions, proving a separation between the
2HAM and staged model for the unique assembly verification problem (coNP-
complete versus coN PNP—hard) utilizing a promising technique that may lead to
proving a stronger separation for the unique shape verification problem (coN phP_
complete versus a conjectured PSPACE-complete).
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Table 1. Known and new results on the unique assembly and unique shape verification
problems.

Model | Unique assembly | Unique shape

aTAM | P [1] coNP-complete [6]

2HAM | coNP-complete [5] | coNPNP-complete (Sect. 3)
Staged | coNPNP-hard (Sect. 5), in PSPACE (Sect. 6)

The coNPNP-hardness results are also interesting as the first, to our knowl-
edge, verification problems in irreversible tile assembly that are decidable but
not contained in NP or coNP.

2 The Staged Assembly Model

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue
from a set Y. Each pair of glues g1,g> € X has a non-negative integer strength,
denoted str(gi, g2). Every set X' contains a special null glue whose strength with
every other glue is 0. If the glue strengths do not obey str(gi,g2) = 0 for all
g1 # g2, then the glues are flexible. Unless otherwise stated, we assume that
glues are not flexible.

Configurations, Assemblies, and Shapes. A configuration is a partial func-
tion A : Z? — T for some set of tiles T, i.e., an arrangement of tiles on a square
grid. For a configuration A and vector u = (ug,u,) € Z?, A + u denotes the
configuration f o A, where f(x,y) = (¢ + usz,y + uy). For two configurations A
and B, B is a translation of A, written B ~ A, provided that B = A+u for some
vector u. For a configuration A, the assembly of A is the set A = {B: B ~ A}.
An assembly A is a subassembly of an assembly B, denoted A T B, provided
that there exists an A € A and B € B such that A C B. The shape of an
assembly A is {dom(A) : A € A} where dom() is the domain of a configuration.
A shape S’ is a scaled version of shape S provided that for some k£ € N and

D e S, UayepUgjeton,. po1y2(kx +iky +j) € 5"

Bond Graphs and Stability. For a configuration A, define the bond graph G 4
to be the weighted grid graph in which each element of dom(A) is a vertex, and
the weight of the edge between a pair of tiles is equal to the strength of the
coincident glue pair. A configuration is 7-stable for 7 € N if every edge cut of
G 4 has strength at least 7, and is T-unstable otherwise. Similarly, an assembly is
7-stable provided the configurations it contains are 7-stable. Assemblies A and
B are 7-combinable into an assembly C provided there exist A € A, B € B, and
C e C such that A|JB = C, dom(A) () dom(B) = (), and C is 7-stable.

Two-Handed Assembly and Bins. We define the assembly process via bins.
A bin is an ordered tuple (S, 7) where S is a set of initial assemblies and 7 € N
is the temperature. In this work, 7 is always equal to 2 for upper bounds, and
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at most some constant for lower bounds. For a bin (S, 7), the set of produced
assemblies P(’ 5.7) is defined recursively as follows:

1. SC P
2. If A, B € Pg ., are T-combinable into C, then C' € P(g .

A produced assembly is terminal provided it is not 7-combinable with any other
producible assembly, and the set of all terminal assemblies of a bin (S,7) is
denoted P(g ;). That is, P(’ 5.7y represents the set of all possible assemblies that
can assemble from the initial set S, whereas P(g ) represents only the set of
assemblies that cannot grow any further.

The assemblies in Pg ;) are uniquely produced iff for each z € P(’ 57) there
exists a corresponding y € P(g ) such that z £ y. Unique production implies
that every producible assembly can be repeatedly combined with others to form
an assembly in Pg ;).

Staged Assembly Systems. An r-stage b-bin miz graph M is an acyclic r-
partite digraph consisting of rb vertices m; ; for 1 < i <rand 1 <7 < b, and
edges of the form (m; j,mit1,/) for some i,7,5'. A staged assembly system is a
3-tuple (M, p,{T1,T5,...,Tp},7) where M, is an r-stage b-bin mix graph, T;
is a set of tile types, and 7 € N is the temperature. Given a staged assembly
system, for each 1 <4 <r,1 < j <, a corresponding bin (R, ;,7) is defined as
follows:

1. Ry ; =T} (this is a bin in the first stage);
2. For¢ > 2, Ri,j = ( U P(R(ifl)k),‘l'i—l,k))'

k: (mq‘,—l,k,mi,j)ejwr,b

Thus, bins in stage 1 are tile sets T}, and each bin in any subsequent stage
receives an initial set of assemblies consisting of the terminally produced assem-
blies from a subset of the bins in the previous stage as dictated by the edges of
the mix graph.! The output of a staged system is the union of the set of termi-
nal assemblies of the bins in the final stage.? The output of a staged system is
uniquely produced provided each bin in the staged system uniquely produces its
terminal assemblies.

3 The 2HAM Unique Shape Verification Problem
Is coNPNP-Complete

This section serves as a warm-up for the format and techniques used in later
sections. We begin by proving the 2HAM USV problem is in coN pNP by providing

! The original staged model [7] only considered O(1) distinct tile types, and thus
for simplicity allowed tiles to be added at any stage (since O(1) extra bins could
hold the individual tile types to mix at any stage). Because systems here may have
super-constant tile complexity, we restrict tiles to only be added at the initial stage.

2 This is a slight modification of the original staged model [7] in that there is no
requirement of a final stage with a single output bin. This may be a slightly more
capable model, and so it is considered here. However, all results in this paper apply
to both variants of the model.
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a (non-deterministic) algorithm for the problem that can be executed on such a
machine. This is followed by a reduction from a SAT-like problem complete for
coNPNP (v3SAT).

Definition 1 (2HAM unique shape verification (2HAM USV) prob-
lem). Given a 2HAM system I' and shape S, does every terminal assembly of
I" have shape S?

Theorem 1. The 2HAM USV problem (for T = 2 systems) is coNPNP_hard.

Definition 2 (V3ISAT). Given a 3-SAT formula ¢(x1, 22, ..., Tk Tht1,---,Tn),
18 it true that for every assignment of x1,x2,...,xk, there exists an assignment
Of Tht 1, Tht2, - - -, Ty, Such that ¢(x1,x2,...,2,) evaluates to T?

The V3ISAT problem was shown to be coNPNP-complete by Stockmeyer [13]
(see [12] for further discussion).

Proof. The reduction is from VISAT. Roughly speaking, the system output by
the reduction behaves as follows. First, a distinct assembly encoding each pos-
sible assignment of the variables of the VASAT instance is assembled. Further
growth “tags” each assembly as either a true or false assembly, based upon the
truth value of the input 3-SAT formula ¢ for the variable assignment encoded
by the assembly.

False assemblies further grow into a slightly larger target shape S. A sepa-
rate set of test assemblies are created, one for each variable assignment of the
variables x1,...x,. Each test assembly attaches to any true assembly with the
same assignment of these variables to form an assembly with shape S - the same
shape as false assemblies.

Terminal assemblies then consist of false assemblies and true-test assemblies
with shape S, and possibly test assemblies. A test assembly is terminal if and
only if there is no true assembly for it to attach to, i.e. the assignment of variables
Z1,...,2 has no corresponding assignment of the variables xy41,...,z, such
that ¢(x1,...,x,) is “true”.

SAT Assemblies. Consider a given input formula C' and input value k for the
V3SAT problem. From this input we design a corresponding 2HAM system I" =
(T,2) and shape S such that the terminal assemblies of I' share a common
shape S if and only if the V3ISAT instance is “true”, i.e. each assignment of the
variables x1 through z can be combined with some assignment of the variables
ZTr41 through x,, such that the 3-SAT instance is satisfied.

The system has temperature 2, and the tile set T of the system output by the
reduction is sketched in Fig. 1. The first subset of tiles is a minor modification
of the commonly used 3-SAT solving system from [11].

For each variable x;, the system has two tile subsets. These collections assem-
ble into 1 x 4 assemblies with exposed north and south glues representing the
values “0” and “1”, respectively, encoding the assignment of a specific variable
to true or false. These 1 x 4 assemblies further assemble into 1 x 4n assemblies
encoding complete assignments of the variables 1 to x,. The non-deterministic
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clause 1 3-SAT Tiles. Non-deterministic growth of "test" assemblies.

clause
variable 1 varial ble2 .. variable k variable k+1 ... variable n ﬂﬂ ﬂ ﬂ

@ (b)

"Reject” assemblies. "Accept" assemblies.

()

Fig. 1. Steps of the 2HAM USV coNPNP-hardness reduction.

assembly process of 2HAM implies that such an assembly for every possible
variable assignment will be assembled.

An additional column is attached to this bar of height equal to m, the number
of clauses in the formula C (Fig.1). An additional set of tiles are added that
evaluate the 3-SAT formula ¢ based upon the variable assignments encoded by
the initial 1 x 4n assembly following the approach of [11]. These tiles place a
tile in the upper right corner of the resulting assembly with exposed glue labeled
“T” or “F”, indicating the truth value of ¢ based upon the variable assignments.

The resulting assemblies are categorized as true and false assemblies. Addi-
tional tiles are added so that every false assembly further grows, extending the
left 4k columns (corresponding to the variables x1 to xy) southward by 3 rows,
and the remaining right 4(n — k) columns southward by 1 row (Fig.1(c)). The
resulting shape is the shape S output by the reduction, i.e. the only shape assem-
bled by the system if the solution to the VISAT instance is “true”.

Test Assemblies. Additional tiles are also added so that true assemblies also
grow southward, but extending the left 4k columns by various amounts based
upon each variable assignment. The result is a sequence of geometric “bumps
and dents” that encode the truth values of these variables.

A set of test assemblies with complementary geometry for each possible
assignment of variables 7 through zj are assembled (Fig.1(b)). Test assem-
blies use two strength-1 glues that cooperatively attach to any true assembly
with a matching assignment of variables 1 through xj, (Fig.1(d)). The assem-
bly formed by a test assembly attaching to a true assembly has shape S: the
same shape as a false assembly.

Terminal Assemblies. If the solution to the V3SAT instance is “false”, there is
some truth assignment for variables x; ... x; with no corresponding assignment
of the variables xp41...2, such that ¢(z1,...,2,) is “true”. Thus, the test
assembly with this assignment of variables x1,...,x; has no compatible true
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assembly to attach to - and this test assembly is a terminal assembly of I" with
shape not equal to S.

On the other hand, if the solution to the VISAT instance is “yes”, every test
assembly attaches to a true assembly and thus every terminal assembly (true-test
assemblies and false assemblies) has shape S.

Theorem 2. The 2HAM USV problem is in coNPN”

Proof. The solution to an instance (I',.S) of the 2HAM USV problem is “true”
if and only if:

1. Every producible assembly of I" has size at most |S]|.
2. Every assembly of size at most |S| and without shape S is not a terminal
assembly.

Algorithm 1 solves the 2HAM USV problem by verifying each of these condi-
tions, using an NP subroutine to verify the second condition. The algorithm is
executed by a coNP machine, implying that “false” is returned if any of the
non-deterministic branches return “false”, and otherwise returns “true”.

Algorithm 1. A coNPN? algorithm for the 2HAM USV problem

: Non-deterministically select a T-stable assembly A with |S| < |A] < 2|S]|.

if A is producible then > In P by Theorem 3.2 of [10]
return false.

end if

Non-deterministically select a T-stable assembly B with |B| < |S| and shape not

equal to S.

if not F(I', B, |S|) then > Algorithm 2
return false.

end if

return true.

Algorithm 2. An NP algorithm subroutine of Algorithm 1

1: procedure F(I',B,n) > Returns whether B is not terminal.
2 Non-deterministically select a 7-stable assembly C with |C| < n.

3 if C cannot attach to B at temperature 7 then

4 return false.

5 end if

6: if C is a producible assembly of I" then > In P by Theorem 3.2 of [10]
7 return false.

8 end if

9 return true.

0

10: end procedure
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Tile Set Stage 1 Bin Assignments

% =)

5
:

(a)

Fig. 2. (a) The tile set used in the staged coNP-hardness reduction. (b) The subsets
of tiles included in separated initial bins within the first stage of the system. (Color
figure online)

4 Staged Unique Assembly Verification Is coNP-Hard

Definition 3 (Staged unique assembly verification (Staged UAV) prob-
lem). Given a staged system I' and an assembly A, does I' uniquely assemble A?

Theorem 3. The staged UAV problem (for 7 = 2 j-stage systems) is coNP-
hard.

Proof. The reduction is from 3-SAT, outputting a staged system I" and assembly
A such that the 3-SAT instance is satisfiable if and only if A is not the unique
terminal assembly of I'. We reduce from 3-SAT: Given a 3-SAT formula ¢, we
design a staged assembly system and an assembly A such that ¢ is not satisfied
if and only if A is uniquely assembled by I".

The Tileset. The tiles used in our construction are shown in Fig. 2(a). In par-
ticular, for each variable z; € {z1,22,...,2,} and clause ¢; € {c1,c2,...,¢n} in
@, there is a block of tiles labeled a; ;,b; ;,¢; ;,d; j, €55, fi,j, Gi,;- The set of tile
types for each block is denoted block; ;.

The strength-2 (7 = 2) glues connecting adjacent tiles are unique with respect
to adjacent tiles, and are unlabelled in the figures for clarity. Note that for each
block (%,j), the top four tiles of the block occupy the same locations as the
bottom four tiles of block (¢, j41). Finally, the tileset includes a length 4m chain
of green tiles, with each green tile sharing a strength-2 glue with its neighbors,
along with four light-grey tiles which together attach to the green assembly.

Stage 1: Variable Assignments. The specific formula ¢ is encoded within
the output staged system via the initial choice of tiles placed into a O(1)-sized
collection of stage-1 bins. For each variable z; and clause c¢; combination, we
select two subsets of the block; ; tileset. The first subset encodes a variable choice
of “false” for z;. The tile sets in Fig. 2(b)(i) and (iv) are used if z; satisfies (and T;
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Fig. 3. In stage 2, rows non-deterministically form encoding each of the 2™ possible
variable assignments. In stage 3 the rows are combined allowing for geometrically com-
patible, sequential rows with exposed red glue to attach. (a) Combinable rows. (b)
Geometrically incompatible rows. (¢) Rows with no glues for attachment. (Color figure
online)

are used if z; does not (and Z; does satisty) clause c;.

Beyond utilizing two types of block; ; tile sets, tile sets are further distin-
guished between odd and even values of i and j. In total, 16 distinct bins (sat-
isfied or not, negated or not, odd or even ¢, odd or even j) are used.

We include the grey and green tiles of Fig. 2(a) separately in two additional
bins. An additional four bins are used in the construction to maintain a set of
single copies of all tiles used within the system. Separating these tile subsets into
four bins ensures that the tiles do no interact (until mixed with other assemblies
at a later stage).

Stage 2: Assembling Rows. In stage 2 we combine all block; ; assemblies
for even j into one bin, and all block; ; assemblies for odd j into a second
bin. Within each bin and for each value j, rows encoding each possible variable
assignment assemble non-deterministically via attaching 0 — block; ; and 1 —
block; ; assemblies for each ¢ € {1,2,...,n}. We refer to these assemblies as
row; assemblies. There are 2" such assemblies for each j - one per variable
assignment. Example row; assemblies are shown in Fig. 3.

Stage 3: Combining Rows with Shared Assignments and Satisfied
Clauses. Stage 3 is where the real action happens. All row; assemblies are
combined, along with the green and grey assemblies of Fig. 2.

Consider the possible assembly of a row; and a row;; assembly. If the two
respective rows encode distinct variable assignments, geometric incompatibility
prohibits any possible connection (Fig. 3(b)). If the rows encode the same truth
assignment, then the rows may attach if any of the row; variable pieces expose
the extended tip via the red 7 = 2 strength glues (Fig. 3(a)). Such an attachment
indicates that the variable assignment of both rows satisfies c;. If the variable
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Fig.4. (a) Non-satisfying variable assignments will not be able to grow from row
0 to row m. (b) Assemblies encoding satisfying variable assignments will allow for
complete assemblies with all rows, allowing for a green assembly to attach. (¢) The
target assembly A given as output of the reduction. (Color figure online)

assignment encoding does not satisfy c;, no extended tip exists and the rows
cannot attach (Fig.3(c)).

A satisfying assignment of ¢ corresponds to m rows attaching to form a
complete “satisfying” assembly (Fig.4(b)). The green assembly attaches coop-
eratively to such assemblies using the row,, assembly glue and a glue from the
grey tiles, which attach uniquely to rowg. The attachment of a green assembly
verifies that all rows are present and the variable assignment satisfies ¢.

A second copy of the green assembly attaches to any assembly containing
rowg, regardless of whether all rows are present or not (Fig.4(a)). In a sepa-
rate bin, the green assembly tiles and grey assemblies are combined, yielding a
combined grey-green product (for mixing in stage 4).

Stage 4: Merging Assignments. In stage 4, the set of all block; ; individual
tiles are added to the assemblies constructed in stage 3 as well as the grey-green
assembly produced in the previous stage. Note that the green assembly is not
an input assembly to this mixing.

Since all block; ; assemblies are included, each terminal assembly from stage 3
may grow into the unique terminal assembly shown in Fig. 4(c) with one excep-
tion: assemblies from stage 3 encoding satisfying variable assignments. These
assemblies have one additional copy of the green bar assembly attached. There-
fore, the assembly of Fig. 4(c) is uniquely assembled if an only if no such satisfying
assembly exists.

5 Staged Unique Assembly Verification Is coNPNP-Hard

Theorem 4. The staged UAV problem (for T = 2 7-stage systems) is coNPNP-
hard.

Proof. We reduce from V3ISAT by combining ideas from the reductions of
Theorem 1 and 3.
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Fig. 5. The assemblies at respective stages for the coNPNP-hardness reduction for the
staged UAV problem. (Color figure online)

Stages 1-3: The SAT Assemblies. The first 3 stages follows those of the
reduction in Theorem 3 but without the inclusion of the green assembly and light
grey tiles. The result is a collection of assemblies encoding satisfying variable
assignments with all m rows, as well as partial assemblies of less than m rows
encoding non-satisfying assignments. For clarity, the bottom half of the j = 0
blocks for values ¢ > k are removed, exposing the “geometric teeth” only for the
first k variables.

Stages 1-3: The Test Assemblies. Additionally, in a separate set of bins,
we non-deterministically generate a set of test assemblies. The test assemblies
are similar to row assemblies and generated in a similar fashion. An example
test assembly is shown in Fig. 5 (Stages 1-4). A test assembly for each of the 2*
possible truth assignments of x1,xo, ..., is grown, and a green bar assembly
is attached to the side of each test assembly.

Stage 4: The Magic Happens. The SAT assemblies and test assemblies are
combined in a bin. Test assemblies attach to SAT assesmblies encoding satis-
fying variable assignments by utilizing cooperative bonding based on the two
strength-1 green glues on the green assembly. SATassemblies encoding non-
satisfying assignments must each lack the topmost or bottommost row, and
therefore cannot attach to a test assembly.

Due to the geometric interlocking teeth from the test assembly and the bot-
tom of SAT assemblies, test assemblies may only attach to SAT assemblies that
encode the same variable assignment (of variables z1,xa,...,xx). Stages 1-4 of
Fig. 5 show an example test assembly and a attaching SAT assembly.
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Note that if there exists a truth assignment for x1,zo, ...,z with no satis-
fying assignment of the remaining variables xy41, k12, ..., Ts, then the corre-
sponding test assembly does not attach to any SAT assembly and is a terminal
assembly of this bin. On the other had, if every assignment of the variables
T1,Ta,...,T, has at least one satisfying assignment of the remaining variables,
i.e. the solution VISAT instance is “true”, then there are no terminal test assem-
blies of this bin.

Stage 5: Tagging Non-satisfying Assignments. In Stage 5, we add pre-
assembled duples which attach to the bottom of any assembly containing row 0
and encodes a non-satisfying variable assignment. This attachment ensures that
in subsequent stages, these assemblies will be geometrically incompatible with
any remaining test assemblies from Stage 4.

It is possible that some duples have no non-satisfying SAT assembly to attach
to. As a solution, an additional height-1 assembly of the row-0 assembly that
“absorbs” each duple is added at this stage. The subsequent stages enable these,
as well as all other SAT assemblies, to grow into a single common (potentially)
unique assembly.

Stage 6: Attaching Test Assemblies. The result of Stage 5 is mixed with an
assembly consisting of:

— The light-grey bar of the test assemblies.
— A second complete layer of dark grey tiles.
— The green bar.

This assembly attaches to any non-satisfying SAT assembly that includes row 0,
ensuring that all assemblies containing row 0 now have a version of the test
assembly attached (Stage 6 in Fig.5).

Stage 7: Merging. In the final stage, every individual tile of the target assembly
(seen in Stage 7 of Fig.5) is added to the result of Stage 6, with the exception
of the green tiles and the tiles in rows 1 through 5 of the SAT assemblies.

These tiles complete each SAT assembly in the assembly in Fig. 5 (Stage 7).
Morever, the height-1 assembly used to absorb duples from Stage 5 grows into
the assembly from Fig.5 (Stage 7). However, because of the lack of tiles from
rows 1 through 5, any leftover test assembly from Stage 4 remains terminal.

Thus the target assembly is the unique terminal assembly of the system if
and only if the solution to the VISAT instance is “yes”.

Observe that every staged system output by the reduction has the property
that if it does not have a unique terminal assembly, then it also does not have a
unique terminal shape. Thus the same reduction suffices to prove that the staged
USV problem is coNPNP-hard.

Corollary 1. The staged USV problem is coNPNP_hard.
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6 Staged PSPACE Containment

Here we prove that the staged UAV and USV problems are in PSPACE. Parame-
terized versions of the results are also obtained; these prove that both problems
restricted to systems with any fized number of stages lie in the polynomial hier-
archy. Both results are obtained via upper bounds on the complexities of the
following three problems:

Definition 4 (Stage-s producible-in-bin verification (PIBV,) problem).
Given a staged system I', a bin b in stage s of I', an assembly A, and an integern:

1. is A a producible assembly of b?
2. and does every producible assembly of every bin in stage s — 1 of I' have size
at most n?

Definition 5 (Stage-sundersized-in-bin verification (UIBV,) problem).
Given a staged system I', a bin b in stage s of I', and an integer n:

1. and does every producible assembly of b have size at most n?
2. and does every producible assembly of every bin in stage s — 1 of I' have size
at most n?

Definition 6 (Stage-s terminal-in-bin verification (TIBV,) problem).
Given a staged system I', a bin b in stage s of I', an assembly A, and an integer n:

1. is A a terminal assembly of b?

2. and does every producible assembly of b have size at most n?

3. and does every producible assembly of every bin in stage s — 1 of I' have size
at most n?

The statements and proofs of the following results use terminology related to

the polynomial hierarchy. For an introduction to the polynomial hierarchy, see
P

Stockmeyer [13]. As a reminder, XF, | = NP> ., :coNPE?, and ¥f = IIF = P.
Lemma 1. For all s € N:

~ The PIBVy problem is in ¥5, 5.
~ The UIBV, and TIBV, problems are in 115, .

Due to space limitations, the proof of this lemma is omitted.

Definition 7 (Stage-s unique assembly verification (Stage-s UAV)
problem). Given a staged system I with s stages and an assembly A, is A
the unique terminal assembly of I'?

Theorem 5. The stage-s UAV problem is in TI5,.

Proof. We give an algorithm for the stage-s UAV problem. The stage-s UAV
problem may be restated as:
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1. is every assembly B with |B| < |A| and B # A not a terminal assembly of
any bin in stage s?7

2. and does every producible assembly of every bin in stage s — 1 of I" have size
at most |A|?

In the algorithm below, 75 and U, are algorithms for the TIBV, and UIBVj
problems, respectively.

Algorithm 3. A II5, algorithm for the stage-s UAV problem

1: procedure UAV (I, A) > I" has s stages.
2: Non-deterministically select an assembly B with |B| <n and A # B.

3 for all bins b in stage s of I do

4 if 7.(I',b, B) then > Function call is in II5,_;
5: return no.

6 end if

7 end for

8 if not Us(I',b,|A|) then > Function call is in TI5,_;
9: return no.

10: end if

11: return yes.

12: end procedure

The algorithm runs as a coNP machine, returning “no” unless every non-
deterministic branch returns “yes”. Lines 2—-8 verify that A is a terminal assembly
of bin b (subproblem 1): A is not a terminal assembly if and only if (1) A is not
producible (lines 2-4), or (2) another producible assembly B can attach to A
(lines 5-8).

Every staged system has some number of stages s € N, but there is no
limit to the number of stages a staged system may have. Thus the staged UAV
problem is not contained in any level of PH, but every instance can be solved
by an algorithm that runs at a fixed level (II5,) of the hierarchy. Since it is a
well-known that PH C PSPACE, this gives the desired result:

Corollary 2. The staged UAV problem is in PSPACE.
Next, we move to shape verification:

Definition 8 (Stage-s unique shape verification (Stage-s USV) prob-
lem). Given a staged system I' with s stages and a shape S, is S the unique
terminal shape of I'?

Theorem 6. The stage-s USV problem is in I15,.
Proof. The stage-s USV problem can be restated as:

1. is every assembly B with |B| < |S| and shape not equal to S not a terminal
assembly of any bin in stage s?

2. and does every producible assembly of every bin in stage s — 1 of I" have size
at most |S|?
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Notice that the subproblems only differ from those of the stage-s UAV prob-
lem in that S replaces A and “equal shape” replaces “equals”. Thus the algo-
rithm differs from the IT5, algorithm for the stage-s UAV problem on only line 5
(replace “A # B” with “shape not equal to S”) and line 8 (replace |A| with |S]).

As for the UAV problem, since the stage-s USV problem is in PH for each
s € N, the USV problem is in PSPACE.

Corollary 3. The staged USV problem is in PSPACE.

7 Open Problems

The most direct problem left open by this work is closing the gap in the bottom
row of Table1 between the coNPNP-hardness and PSPACE containment of the
staged UAV and USV problems. We believe that the approach of differentiating
between satisfying and non-satisfying assignments, then checking for the exis-
tence of various partial assignments (the V portion of V3SAT') can be generalized
to achieve hardness for any number of quantifier alternations, using a number
of stages proportional to the number of alternations:

Congecture 1. The staged UAV and USV problems are PSPACE-complete.

Conjecture 2. The stage-s UAV and stage-s USV problems are H’;?(s)—hard.
The UAV and USV problems considered in this work are two variants of

the generic challenge of verification; considering the same problems limited to

temperature-1 systems or with different inputs is also interesting:

Problem 1. What are the complexities of the staged UAV and USV problems
restricted to temperature-1 systems?

Problem 2. What is the complexity (in any model) of the following UAV-like
problem: given a system I’ and an integer n, does I' have a unique terminal
assembly of size at most n?

Finally, the results and techniques presented here might find use in the study
of other problems in staged and two-handed self-assembly, such as tile minimiza-
tion. The aTAM USV problem is coNP-complete, while the minimum tile set
problem of finding the minimum number of tiles that uniquely assemble into a
given shape is NPN"-complete [2]. We now know that the 2HAM USV problem
is coN PNP—complete (Sect. 3); does the corresponding optimization problem also
rise in the hierarchy?

Conjecture 3. The 2HAM minimum tile set problem is NPNPNP—complete.
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Abstract. In this paper, we consider the strict self-assembly of frac-
tals in one of the most well-studied models of tile based self-assembling
systems known as the Two-handed Tile Assembly Model (2HAM). We
are particularly interested in a class of fractals called discrete self-similar
fractals (a class of fractals that includes the discrete Sierpinski’s carpet).
We present a 2HAM system that strictly self-assembles the discrete Sier-
pinski’s carpet with scale factor 1. Moreover, the 2HAM system that we
give lends itself to being generalized and we describe how this system
can be modified to obtain a 2HAM system that strictly self-assembles
one of any fractal from an infinite set of fractals which we call 4-sided
fractals. The 2HAM systems we give in this paper are the first examples
of systems that strictly self-assemble discrete self-similar fractals at scale
factor 1in a purely growth model of self-assembly. Finally, we give an
example of a 3-sided fractal (which is not a tree fractal) that cannot be
strictly self-assembled by any 2HAM system.

1 Introduction

The study of fractals has both a mathematical and a practical basis, as these
recursively self-similar patterns occur in nature in the form of circulatory systems
and branch patterns. Evidently many fractals found in nature are the result of
a process where a simple set of rules dictating how individual basic components
(such as individual molecules) interact to yield larger complexes with recursive
self-similar structure. One approach to understanding this process is to model
such a process with artificial self-assembling systems.

One of the first and also one of the most studied mathematical models of
self-assembling systems is Winfree’s abstract Tile Assembly Model (aTAM) [39]
where individual autonomous components are represented as tiles with glues
on their edges. The aTAM was intended to model DNA tile self-assembly,
where tiles are implemented using DNA molecules. There have been two main
reasons for considering the self-assembly of fractals. First, in [16,36], DNA-
based tiles are used to self-assemble Sierpinski’s carpet, showing the poten-
tial for DNA tile self-assembly to be used for the controlled formation of
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complex nanoscale structures. Second, there are have been many proposed
theoretical models (and generalizations of these models) of DNA tile self-
assembly (see [1,5,8,11,13,22,25,32,39] for some examples). While mathe-
matical notions of simulation relations between systems in models continue
to further elucidate how these various models relate [3,9,12,20,30,31], many
“benchmark” problems have also been introduced, including the efficient self-
assembly squares and/or general shapes [10,33,37,38], the capacity to per-
form universal computation [6,14,15,17,21,32,33], and the self-assembly of frac-
tals [2,18,26,27,29,34,35]. When considering the self-assembly of discrete self-
similar fractals (dssf) such as the Sierpinski triangle one can consider either
“strict” self-assembly, wherein a shape is made by placing tiles only within the
domain of the shape, or “weak” self-assembly where a pattern representing the
shape forms as part of a complex of tiles that contains specially labeled tiles cor-
responding to points in the shape and possibly additional tiles not corresponding
to points of the shape. In this paper, we only consider strict self-assembly of
dssf’s. Previous work (including [2,26,27,29,34,35]) has shown the difficulty of
strict self-assembly of dssf’s in the aTAM as no nontrivial dssf has been shown to
self-assemble in the strict sense. In fact, the Sierpinski’s triangle [28] and similar
fractals [2] are known to be impossible to self-assemble in the aTAM; though
it is possible to design systems which “approximate” the strict self-assembly of
fractals [28,29, 34]. Interestingly, it is unknown whether there exists a dssf which
strictly self-assembles in the aTAM. This includes the Sierpinski’s carpet dssf.

While the aTAM models single tile attachment at a time!, a more gener-
alized model and another of the most studied models of self-assembly called
the 2-Handed Assembly Model [5] (2HAM, a.k.a. Hierarchical Assembly Model)
allows pairs of large assemblies to bind together. The impossibility of strictly
self-assembling the Sierpinski triangle [3] has been shown; this impossibility is
due in part to the “tree-like” structure of Sierpinski’s triangle. In [4] it is shown
that Sierpinski’s carpet self-assembles in the 2HAM at temperature 2, but with
scale factor 3. That is, instead of self-assembling a structure with tiles corre-
sponding to the points of Sierpinski’s carpet, the structure that self-assembles
contains a 3 by 3 block of tiles that corresponds to a single point of Sierpinski’s
carpet. Here we show that not only does Sierpinski’s carpet self-assemble with
no scale factor, but a general class of fractals, which we call the 4-sided frac-
tals, self-assemble at temperature 2in the 2HAM. Intuitively, 4-sided fractals are
fractals that have a generator (the set of points in the first stage of the fractal)
such that the generator is connected and consists of a rectangle of points and
points “inside” this rectangle. Informally, a 4-sided fractal is a fractal with a
generator that contains all 4 sides and one can define 0, 1, 2, and 3-sided frac-
tals analogously. (Definitions are given in Sect. 2.) Moreover, we show that there
exists a 3-sided fractal that cannot be strictly self-assembled by any 2HAM sys-
tem at any temperature. This is especially interesting considering that 3-sided
fractals are not tree fractals (a class of fractals that can be seen to not strictly
self-assemble in the 2HAM with no scale factor.)

! or step in the self-assembly process.
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Theorem 1 implies that one of the most well-known dssf’s strictly self-
assembles in one of the simplest and most studied models of self-assembly,
the 2HAM. It should be noted that any dssf can strictly self-assemble [18] in
the Signal-passing Tile Assembly Model (STAM) where tiles can change state
and even disassociate from an existing assembly, “breaking” an assembly into
two disconnected assemblies. That is, given any dssf, there is a STAM system
that strictly self-assembles this fractal.? Additionally, in a model similar to the
STAM, the Active Signal Tile Assembly Model [23], infinite, self-similar sub-
stitution tiling patterns which fill the plane have been shown to assemble [24].
This may be considered a testament to the power of active tiles. Here we show
that it is still possible to strictly self-assemble an infinite class of fractals in the
2HAM even though tiles are not active and disassociation is not allowed. While
the positive result presented here pertains only to 4-sided fractals, preliminary
results discussed in Sect. 5 show that the techniques used here to prove this pos-
itive result may give rise to a much more general classification of which fractals
strictly self-assemble in the 2HAM. Due to space limitation, detailed proofs of
the results given here can be found in [19].

2 Preliminaries

Here we provide informal descriptions of the 2-Handed Tile Assembly Model
(2HAM). For more details see [5,7]. We also give the definition of discrete self-
similar fractals similar to the definitions found in [2,18].

2.1 Informal Description of the 2HAM

The 2HAM [5,7] is a generalization of the abstract Tile Assembly Model (aTAM)
[39] in that it allows for two assemblies, both possibly consisting of more than
one tile, to attach to each other. Since we must allow that the assemblies might
require translation before they can bind, we define a supertile to be the set of
all translations of a 7-stable assembly, and speak of the attachment of supertiles
to each other, modeling that the assemblies attach, if possible, after appropriate
translation. We now give a brief, informal, sketch of the 2HAM.

Given V C Z2, the full grid graph of V is the undirected graph GI, = (V,E),
such that for all z,y € V, {z,y} € E iff ||x — y|| = 1, i.e., iff  and y are
adjacent and the 2-dimensional integer Cartesian space.

A tile type is a unit square with each side having a glue consisting of a label
(a finite string) and strength (a non-negative integer). We assume a finite set T
of tile types, but an infinite number of copies of each tile type, each copy referred
to as a tile. A supertile is (the set of all translations of) a positioning of tiles on
the integer lattice Z2. Two adjacent tiles in a supertile interact if the glues on
their abutting sides are equal and have positive strength. Each supertile induces
a binding graph, a grid graph whose vertices are tiles, with an edge between two

2 Additionally, in [18] it is shown that a large class of fractals strictly self-assembles
in the STAM even with temperature restricted to 1.
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tiles if they interact. The supertile is 7-stable if every cut of its binding graph
has strength at least 7, where the weight of an edge is the strength of the glue
it represents. That is, the supertile is stable if at least energy 7 is required to
separate the supertile into two parts. Note that throughout this paper, we will
use the term assembly interchangeably with supertile.

A (two-handed) tile assembly system (TAS) is an ordered triple 7 = (T, S, 1),
where T is a finite set of tile types, S is the initial state, and 7 € N is the
temperature. For notational convenience we sometimes describe S as a set of
supertiles, in which case we actually mean that S is a multiset of supertiles
with one count of each supertile. We also assume that, in general, unless stated
otherwise, the count for any single tile in the initial state is infinite. Commonly,
2HAM systems are defined as pairs 7 = (T, 7), with the initial state simply
consisting of an infinite number of copies of each singleton tile type of T', and
throughout this paper this is the notation we will use.

Given a TAS T = (T,7), a supertile is producible, written as o € A[T],
if either it is a single tile from T, or it is the 7-stable result of translating
two producible assemblies without overlap. A supertile « is terminal, written
as a € Ag[T], if for every producible supertile 8, a and [ cannot be 7-stably
attached. A TAS is directed if it has only one terminal, producible supertile.
A set, or shape, X strictly self-assembles if there is a TAS 7 for which every
assembly a € Ap[7] satisfies dom o = X. Essentially, strict self-assembly means
that tiles are only placed in positions defined by the shape. This is in contrast
to the notion of weak self-assembly in which only specially marked tiles can and
must be in the locations of X but other locations can perhaps receive tiles of
other types. All results in this paper are for strict self-assembly of shapes via
systems that are not directed.

2.2 Discrete Self-Similar Fractals

In order to state the main theorem, we need to provide a few definitions. The
definition of a discrete self-similar fractals and some of the notation used here
also appears in [2,18,34]. First we introduce some notation.

For g € Nand G C NE, let g, 7, bg, and tg denote the integers: lg =
ming ,)eg @ T¢ = MaX(zy)eq T bg = ming yeqy, and tg = max(, ,)eq Y-
Moreover, let wg = r¢ —lg + 1 and hg = tg¢ — bg + 1 denote the width and
height of G respectively. Finally, let Lg = {(lg,y) | ba < y < tg}, Rg =
{(ra,y) | be <y < te}, Te = {(z,tc) | lo < 2 < rg}, and Bg = {(2,bq) |
lg <z <rg}. In other words, Lg, Rg, Ta, and Bg are the left, right, top, and
bottom line segments of a “bounding box” of G. We also use Ny to denote the
subset {0,...,g— 1} of N. Finally, if A and B are subsets of N? and (z,y) € N2,
then A+ (z,y)B = {(xa,%a) + (@ - 2o,y - Ub) | (Ta,ya) € A and (xp,yp) € B}.
First we give the definition of a discrete self-similar fractal.

Definition 1. Let X C N2, We say that X is a discrete self-similar fractal (or
dssf for short), if there is a set {(0,0)} C G C N with at least one point in
every row and column, such that

1. the full grid-graph of G is connected,
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2. wg >1 and hg > 1,

3. G € Ny, X Ny, and

4. X = UX,X;, where X°, the i'" stage of X, is defined by X' = G and
X = X+ (wl, hiy)G

Moreover, we say that G is the generator of X.

A connected discrete self-similar fractal is one in which every component is
connected in every stage, i.e. there is only one connected component in the grid
graph formed by the points of the shape.

Definition 2. [n-sided fractals] Let n € {0,1,2,3,4}, 1 < g € N and X C N2,
We say that X is a n-sided fractal iff X is a g-discrete self-similar fractal with
generator G such that:

1. the full grid graph of G is connected,
2. SNG =8 for at least n distinct sets S in {La, Ra,Ta, B}

Intuitively, the second condition in Definition2 is saying that the fractal
generator contains all points of at least n of the left, right, top, and bottom line
segments of a “bounding box” of G. In particular, the generator of a 4-sided
fractal contains all of the points along the left, right, top, and bottom “sides” of
the fractal generator. Finally, for a fractal X with generator GG, an enumeration
of the points in a generator G = {vz}li‘l, and j € N, the stages of X are S! = G
and S9H1 = 57 + (wé,h]é)G. For i € N such that 1 < i < |G|, we call the points
of the j + 1 stage given by S; + (wJG, hé)vi the j** stage at position i.

3 Four Sided Fractals

In this section we show how to strictly self-assemble the class of 4-sided discrete
self-similar fractals in the 2HAM (with scale factor of 1). The most well-known
example of a 4-sided fractal is Sierpinski’s carpet. This is the first example of a
non-trivial dssf shown to self-assemble in either the 2HAM (or the aTAM) with
no scale factor. Here we give an overview of the construction for the Sierpinski’s
carpet and the modifications needed to the Sierpinski’s carpet construction to
show that any 4-sided fractal strictly self-assembles in the 2HAM. For more detail
(including a depiction of the complete tile set for Sierpinski’s carpet) see [19].
Also, figures in this section contain color. Figures with color can be found in the
online version of the proceedings or in [19].

Theorem 1. Let X be a 4-sided fractal. Then, there exists a 2HAM TAS Tx =
(T,2) that strictly self-assembles X . Moreover, if G is the generator for X and
|Gl =g, |T]| is O(¢%).

We build intuition for a construction showing Theorem 1 by showing that
Sierpinski’s carpet strictly self-assembles in the 2HAM at scale factor 1. We
then describe the modifications needed to extend the construction for the carpet
to give an algorithm for obtaining a tile set T' given a generator for a 4-sided
fractal, X, such that the 2HAM TAS (T, 2) strictly self-assembles X.
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Fig. 1. Three stages of Sierpinski’s carpet

3.1 Sierpinski’s Carpet Construction Overview

The Sierpinski’s carpet dssf is the dssf with generator G = {(0,0), (0,1), (0, 2),
(1,0), (1,2), (2,0), (2,1), (2,2)}. Fig. 1a depicts this generator, while Fig. 1b and
¢ depict the 2"¢ and 3"¢ stages of the dssf respectively. We denote this carpet
by S and for i € N, we denote the i** stage of S as S*. We enumerate the points
of S' as depicted in Fig. la and use this enumeration to reference the positions
of some substage within a subsequent stage of the carpet.

We now describe the tile set, T, that is used to strictly self-assemble S in the
2HAM at temperature 7 = 2 at scale factor 1.

Overview of Stage 2 Assembly. We begin by distinguishing between two
classes of tile types called grout tile types (or grout tiles when referring to
actual tiles) and initializer tile types (or initializer tiles). Informally,
initializer tiles self-assemble to form 8 different super-

tiles, the domains of which are contained in the portion A
of S? depicted in Fig.2. We call these 8 supertiles C? for H M
1 < 4 < 8. The main idea is that tiles that self-assemble 0
C? have been “hard-coded” (i.e. for any glue on the edge
of some tile, there exists a single matching glue on another
tile) to ensure that for each 4, all tiles of C? self-assemble
before C? can be a subassembly in any other strictly larger
assembly. In other words, referring to Fig. 4a, the gray tiles
self-assemble one of the 8 different supertiles C? before any of the the aqua tiles
can attach. Figure 3 depicts C? for each i. Note that for each i, C? subassemblies
may expose glues of type g% or §¢ for d either n, s, e, or w, as well as possibly
g" or g* for 1 < k < 8. Informally, these glues encode which position (1 through
8) each C? assembly will end up in an assembly corresponding to stage 3 of
Sierpinski’s carpet, where C? will be in position i. We now explain the purpose
of these glues in more detail.

Fig. 2. The shape of
the portion of S?
that is self-assembled
by initializer tiles.

Overview of Stage 3 Assembly. For each i, C? exposes glues that allow
for the attachment of grout tiles. In Fig.4, grout tiles are depicted in aqua.
The grout supertiles that bind to some C? before any other grout supertiles
are called start-gadgets. See Fig. 5. There are 8 different classes of grout tile
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Fig. 3. The tiles that self-assemble a stage 2 supertile C2. The unlabelled strength 1
and 2 black and yellow glues shown on edges of two adjacent tiles in each of the 8
supertiles are defined to have matching type. Moreover, these glues do not match any
other glues of other tile types in 7. (Color figure online)
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Fig. 4. For i,j such that 1 < 4,5 < 8, grout tiles bind to C? and expose glues in
precise locations that allow the resulting assemblies (shown in (a)) to bind to form C3.
Moreover, j is determined by the grout class that binds to the assemblies C?.

types (with corresponding grout tiles)
which we enumerate with 1 through
8. Let j € Nsuch that 1 < j < 8
refer to a class of grout. Glues of
grout tiles have been defined so that
grout supertiles cooperatively bind to
C? assemblies, eventually surrounding
such an assembly. The grout super-
tiles other than start-gadgets that
cooperatively bind to C? are called c-
rawlers. Glues labeled g, or g for
1 < k < 8 are called indicator glues
and these have a special purpose. A
grout tile that binds to an indica-
tor glue via a south glue (likewise
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Fig. 5. Left: The supertile that starts the
growth of grout for C7. Right: The super-
tile that starts the growth of grout for C7
for s > 2. Note that for each s > 2, only
one of these supertiles can bind to tiles of
C7. Moreover, the supertile depicted on the
left can bind to some C7 iff s = 2, and the
supertile depicted on the right can bind to
some C7 iff s > 2.
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for north, east, and west) of the grout tile may expose (depending on its
grout class) a strength-1 glue on its north edge that will eventually take part in a
cooperative binding event between C? and CZ with a sufficient number of grout
tiles attached to each. The type of glue and whether or not a grout tile exposes
such a glue depends on the grout tiles class. We call these glues stage-binding
glues for the 37¢ stage. For each i, grout tiles have been defined so that they
attach to C? and eventually bind to all indicator glues of C? before grout
tiles can no longer bind. We let C’(QL 0 denote the largest supertile (in terms of

the subassembly relation) consisting of C? and grout tiles of class j. Figure6
depicts C’(Qij) for ¢ =1 and 2 and j between 1 and 8. Moreover, for 7, j,7" and j’

between 1 and 8 (inclusive), glues are defined so that C’(Zz. 0 and C’(zz./ ;) can bind

iff j = j'. That is the grout tiles of C(2i’j) and C(Qi,’j,) belong to the same class.

As grout tiles attach to each C? assembly, stage-binding glues are exposed
on specially designated grout tiles so that the supertiles C(QL ;) can bind to form
the portion of S® depicted in Fig.4b. Note that stage-binding glues may be
exposed before C(Qi)j) completely assembles and therefore for some ¢ and ¢/, two

subassemblies of C(zi 9 and C(zi, ;) may bind to form a subassembly of an assem-

bly, which we call C]‘?’, corresponding to stage 3. We define glues belonging to
grout tiles so that this does not prevent tiles from binding in locations corre-
sponding to points of stage 2 at positions ¢ and i’ from completing assembly as
a subassembly of C’? and note that this does not permit tiles to bind in loca-
tions outside of locations in dom (C’;’) Therefore, we assume that each C’(Qm.)
completely assembles before binding to some other supertile to become a sub-
assembly of a larger assembly. CJ;” is depicted in Fig. 4b. Finally, for ¢’ such that
1 < ¢ < 8, the glues that might allow (depending on ¢ and i’) some super-
tile C(2i,j) to bind to another supertile C(Qi,’j) are strength 1 glues separated
by a distance of 32~! = 3. This distance is ensured by the locations of the
indicator glues and will prevent supertiles corresponding to different fractal
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Fig.6. (a) A depiction of C(Ql,i> with stage-binding glues h1,; and hy ;. (b) A depic-
tion of C(QQ,i) with stage-binding glues hi;, ﬁl,i, ho,i, and iAzgl Notice that the
stage-binding glues of Cf, ;) and Cf, ;) allow for the cooperative binding of C, ;)
and 0(22,1'). Intuitively, the distance between these glues ensures proper assembly of
each stage of Sierpinski’s carpet.



Self-Assembly of 4-Sided Fractals in the Two-Handed Tile Assembly Model 121

stages from binding. Moreover, we define the grout tiles such that the C? i)
supertiles bind before the “next iteration” of grout tiles can attach. In other
words, C(Z 7 supertiles bind for all ¢ between 1 and 8 before a start-gadget

can bind to the resulting assembly Cj?’.

Overview of Stage s assembly for s > 4. For each j and all 7, the supertiles
C(”) bind to form a supertile C]3 corresponding to a portion of S3. Just as i
corresponds to the position where the C7 supertile will bind when C3 forms, j
corresponds to the position where C;’ will bind when a supertile corresponding
to a portion of S* self-assembles. This portion of Sy is essentially, S* without
northernmost, southernmost, easternmost, and westernmost points, the absence
of which makes room for the assembly of more grout tiles. Informally, the posi-
tion in the C'j3 supertiles of each C? supertile is determined by the glues exposed
by the supertiles C2. Moreover, the grout class j determines the grout tiles that
will bind to C;’, which will in turn determine the position of the C;’ supertile
in S*. Finally, just as some super tile C? exposes some indicator glues the
supertile C’? for ¢ = j expose the same strength-1 indicator glues, only at a
distance of 32 = 9.

Repurposing ¢, we now let Cf be denoted by C3. Now, for each i and j
with 1 < 4,5 < 8, the 8 different classes of grout tile types can attach to
each C? supertile to give supertiles C?i,j), and the glues of each different class
of grout tiles determine where the supertiles consisting of C’(3i7j) attach to self-

assemble supertiles, C’;‘, corresponding to a portion of 4. C;L is depicted in Fig. 7.
Moreover, the glues that allow some supertile
C’ ) to bind to another supertile C for

bome ' say, are strength 1 glues beparated by
a distance of 9.

Repeating this process, we see that for
any ¢,j,s € N such that 1 < 4,57 < 8 and
s > 2, we can self-assemble supertiles CF !
corresponding to a portion of S*~! (again, we
are leaving room for grout tiles), and super-
tiles C;Z_Jl) corresponding to Cf_l with the
attachment of grout tiles all belonging to the Fig. 7. A depiction of the portion of

h class of grout tile types. Moreover, the S that is self-assembled by super-

. 3 . .
supertiles C’f._ 1) expose strength 1 glues that tiles denoted by Ci) for i and j
7 between 1 and 8 (inclusive) and

some class j of grout tiles.

are at a distance of 3°~2 apart that allow for
the stable binding of these supertiles to form
a supertile C?¥ corresponding to S®. For i’ € N such that 1 < ¢/ < 8, since the
distance between the 2 glues that allow for two supertiles C(‘le) and CFZT;) to
bind is 3°72, one can observe that no erroneous supertiles can self-assemble.
In particular, glue distances ensure that for p,q € N such that p,q > 2, C&j)
subassemblies can bind to some C ., subassemblies iff p = ¢. Hence, one can
show that each supertile is a subabsembly of such a C7" for some n € N, and
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(a) Stage 1 (b) Stage 2
Fig. 8. Two stages of a 4-side fractal.

therefore for any producible assembly a € A[T], there exists a stage s > 1
such that dom a C S°. Moreover, one can observe that for any stage s > 1,
5% C Cf“. Therefore, as this hierarchical growth continues indefinitely, the
domain of the terminal assembly of the 2HAM TAS T = (T,2) is S. Thus, 7
strictly self-assembles S.

3.2 4-Sided Fractals Construction Overview

The construction that shows that any 4-sided fractal strictly self-assembles in
the 2HAM at scale factor 1 (Theorem 1) is a generalization of the construction
given in Sect.3.1. Let G be the generator for a 4-sided fractal and recall the
notation of Lg, Ra, Ba, and T. Moreover, let |G| = r, let X denote the dssf
with generator G, and let X be the s stage of X. We will describe a tile set
T such that X strictly self-assembles in the 2HAM system 7 = (7,2). As an
example, consider the generator in Fig. 8a. Stage 2 of this fractal is depicted in
Fig. 8b. We also choose the convention of ordering the positions in G from top
to bottom and left to right. This enumeration is depicted in Fig. 8a.

To show Theorem 1, we first show the following lemma that follows from a
modification of the construction given in Sect. 3.1. Intuitively, this lemma states
that dssf’s with generators consisting only of points on the perimeter of a rec-
tangle strictly self-assemble in the 2HAM.

Lemma 1. Let X be a 4-sided fractal with generator G such that G \ (Lg U
Lo UTg U Bg) = 0. Then, there exists a 2HAM TAS Tx = (T,2) that strictly
self-assembles X .

To show Lemma 1, we show how to mod-
ify the construction given in Sect.3.1. Given
a 4-sided fractal X with generator that sat-
isfies the assumptions of Lemma 1 (for exam-
ple, the generator depicted in Fig.9), one
can see that each step in the construction in
Sect. 3.1 generalizes to give a tile set T' such
that the 2HAM TAS Tx = (T,2) strictly Fig.9. An example generator for
self-assembles X. The basic idea for proving the 4-sided fractals considered in
Lemmal is to “elongate” the initializer Lemmal.
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and grout supertiles given in the Sierpinski’s carpet construction and most of
the remaining details are analogous.

We now give a high-level overview of the proof of Theorem 1. To prove
Theorem 1, given any 4-sided fractal X with generator G, we consider a set
that consists of the points only on the perimeter of G and call this set G’. Then,
the fractal X’ with generator G’ strictly self-assembles in the 2HAM by Lemma 1
and we denote the tile set given by this lemma by 7”. Then, to give a tile set
T such that the 2HAM TAS strictly self-assembles X we add additional tiles to
the set T to account for points of G that are not on the perimeter of G and
modify the tiles of 7" by adding strength-2 glues to particular edges of the tiles
of T” that allow for these additional tiles to attach. Additional initialize-
r tiles are added to T” to ensure that tiles are placed at points of G that are
not on the perimeter of G during the self-assembly of initializer supertiles.
For example, the gray tiles in Fig. 10 are the tiles of an initializer supertile.
Note the tiles corresponding to points of G that are not on the perimeter of G.
Additional grout tiles can be added so that as grout supertiles attach to an
assembly, tiles can attach in locations corresponding to points of G not on the
perimeter of G. For an example, consider the aqua tiles in Fig. 10. These are tiles
of grout supertiles. Note that as grout supertiles attach along the northernmost
tiles of the initializer supertile (shown in gray), strength-2 glue allow for the
self-assembly of complete stage-1 subassemblies.

Moreover, to ensure that stages at a
position, p say, corresponding to points
that are not on the perimeter of G cor-
rectly assemble, additional grout tiles
are added such that these additional gro-
ut supertiles always surround an entire
assembly corresponding to a stage, ¢ say,
and expose glues such that the resulting
supertile will bind to an assembly that
(possibly after the binding of other super-
tiles) corresponds to an assembly corre-
sponding to stage ¢+ 1. Figure 10 depicts
a supertile that will bind at position 12 as a supertile corresponding to stage 3 of
the dssf self-assembles. Note the glues that are exposed on tiles adjacent to red
tiles. These glues will permit this supertile to bind in position 12 as a supertile
corresponding to stage 3 of the dssf self-assembles. Finally, we note that with
these modification to the tiles set given by Lemma 1 give a tile set that satisfies
Theorem 1. To see that the tile complexity is O(g®), note that hard-coding ini-
tializer supertiles, corner-gadgets, crawler supertiles, and start-gadgets
each require O(g?) tile types each. For example, initializer supertiles require

o
Feery
=

i

pis

L

B

Fig.10. A depiction of supertile that
represents stage 2 of the fractal with gen-
erator given in Fig. 8a after grout super-
tiles have attached. (Color figure online)
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O(g?) tiles to hard-code their stage 2 shape and g of them must assembly (one for
each point in G). For tile types making up corner-gadgets, crawler supertiles,
and start-gadgets, note that none of these supertiles consists of more than g
tiles. Therefore, to hard-code one of these these supertiles (requiring O(g) types)
that can bind to some C7 for i between 1 and 8 (requiring O(g) times more types)
that also belongs to one of ¢ classes of grout (requiring O(g) times more types),
O(g3) tile types are required. Hence in total, O(g?) tiles types are required.

4 A 3-Sided Fractal that Does Not Strictly Self-Assemble

In this section we give a high-level sketch of the proof that there exist 3-sided
fractals that do not strictly self-assemble in the 2HAM. A detailed proof is given
in [19].

Theorem 2. There exists a 3-sided fractal X for which there is no 2HAM TAS
Tx = (T,7) that strictly self-assembles X .

To prove Theorem 2, we consider the fractal with generator given by the
points in Fig.11la. Stage 2 of this fractal is shown in Fig. 11b. We refer to this
fractal as X and, similar to the convention in Sect. 3.1, we refer to the s** stage
of X as X*. We refer to the i* position of X* as X7 where 1 <4 < 13 (Fig. 11a).
We call the assembly ~; for which dom ] = X.

Consider any 2HAM TAS 7x = (T, 7). Let g be the number of tiles in 7Tx.
Consider a producible assembly a such that X912 C dom «, and specifically
the subassembly ¢, which is an assembly 79*1. One can then show that 9+
contains a sequence of g+ 1 strength 7 cuts consisting of a single glue (Fig. 11b).

_— L L
51 o s
7 |8 i@ o
9 eI
10011213 EE-LELIEL
(a) Stage 1 (b) Stage 2

Fig. 11. The assemblies that form the first two stages of X . Strength 7 cuts are shown
on Stage 2.
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Let (3 be the subassembly below the | |
kth cut in this sequence. Essentially, REEREERET
because the cuts are strength 7, the .

0Br subassemblies can be removed
and the resulting subassemblies are
still producible, so the i subassem-
blies cannot be guaranteed to attach
before any point in the construction
of a.

However, since there are g + 1
cuts and only g tiles, there is some
B:,B; with |5;] > |B;| that attach ikl
with the same glue, and if other 8 0

T T T T T T T 7
I |

C ] I
=

-
H
H

H

I

»

b:

subassemblies have not yet attached,
it is possible for 8; to bind where 3;
is needed (Fig. 12). Since the domain
of the resulting assembly ¢ X, Tx

does not strictly self-assemble X.
as rectangles.

5 Conclusion

Theorem 1 shows that any 4-sided dssf strictly self-
assembles in the 2HAM at temperature 2 and with no
scale factor. Theorem 2 shows that there exists a 3-sided
fractal that does not strictly self-assemble in any 2HAM
system at any temperature. Preliminary results seem to
show that similar techniques to those described in Sect. 3.2
can be used to give an example of a 3-sided fractal that
can strictly self-assemble in the 2HAM and though still
just an early investigation, the techniques used to give a
tile set that strictly self-assembles a given 4-sided fractal

Fig.12. An example of erroneous binding
within 4°. Because of the large number of
tiles some of the +> subassemblies are shown

Fig. 13. Do fractals
with generators like
the one depicted in
this figure strictly

self-assemble in the
2HAM?

may be modifiable to show that a much more general class of fractals strictly
self-assembles. In particular, a fractal belonging to this class can be described

as having a generator with a generating cycle.

Informally, a simple cycle C' in G (technically defined in the full-grid graph
of G) is a generating cycle iff (1) G contains 2 distinct east points of contact
p1 and ps with corresponding west points of contact ps and p4, and 2 distinct
north points of contact ps and pg with corresponding south points of contact
pr and ps, and (2) for ¢ € N such that 1 < ¢ < n, C contains points pj and
paths P; from p) to p;, (3) moreover, P, N P41 =0 for i € {1,3,5,7}. Figure 13
depicts one of the simplest generators (for a dssf which we have been calling the

hashtag fractal) with a generating cycle.
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Abstract. A new model for analog self-assembly is introduced, the cir-
cuit Tile Assembly model (¢cTAM), in which a supply voltage creates
electric “glues” that attach small resistive circuits to a seed to form
larger circuits. Component circuits can only attach to the growing cir-
cuit if the voltage across the output terminals of the partial assembly
exceeds a given threshold. Thus, as the circuit grows, the supply voltage
progressively dissipates until additional circuit components can no longer
attach. Thus, the supply voltage acts as a finite resource that is used up
as the circuit assembles, like nutrientfor bacterial colonies. Assemblies
in the shape of resistive ladders and grids are analyzed. For ladder-like
circuits, the size of the assembled circuits remain within the order of
the logarithm of the ratio of the supply voltage to the threshold, and is
inversely proportional to the golden ratio ¢, a universal constant perva-
sive in architecture, engineering, and biology. For grids, empirical results
are presented showing bounded growth and unique terminal assemblies.
The model exhibits intriguing properties, such as self-controlled growth
without glue or seed programming, and communication at a distance
within the assembly without signaling programming. In addition, a gen-
eralization of the model is proposed in which construction is driven by
energy minimization in response to boundary conditions on the perimeter
of the assembly.

1 Introduction

Self-assembly is the unsupervised aggregation of component parts through local
interactions to construct a material that is structured to have useful properties,
and promises new methods for manufacturing new materials. Algorithmic models
of self-assembly treat its products as the output of a computation. Because target
structures can be programmed with DNA sequence selection, DNA-guided self-
assembly is one of the more promising techniques to achieve asymmetric patterns
for a wide range of applications [16,20]. The assembly executes an algorithm that
is implemented through specific local interactions, for example, DNA template
matching reactions [16]. When cooperative effects are present in DNA tile assem-
bly, called temperature 2, the system is capable of universal computation [6,22].
Cooperation, however, is difficult to achieve and enforce experimentally. Systems
© Springer International Publishing AG 2017
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that do not rely on cooperation to achieve pattern formation would be easier
to implement in practice, but it is not known whether they are computation-
ally universal in two dimensions [4]. More seriously, they frequently exhibit the
problem of uncontrolled growth and uncertain outcomes [6].

Motivated by Tile Assembly Models (aTAM) and their power and challenges,
a new assembly model and mechanism are proposed here, the circuit Tile Assem-
bly Model (¢cTAM), in which DC resistive circuits self-assemble under voltage
control. This model exhibits both self-assembly and self-control, in the sense
that attachments are controlled by local voltage differences and, as the assembly
grows, there always exists locations (binding domains) to which new compo-
nents might attach, but they do not because the external resource (voltage) that
is necessary for growth has been depleted. The resource can be thought of as
a source of energy that the growth reaction needs in order to proceed, and is
analogous to a source of energy or nutrient for a biological organism.

Electric phenomena are important in several examples of biological self-
assembly and organization. Galvanotaxis is the movement of cells under the
influence of an electric field, and is a mechanism for both wound healing, as
well as embryonic cell migration within embryos [17]. The biological molecules
that inspire artificial approaches to self-assembly, namely lipids, nucleic acids,
and amino acids, are charged molecules, and electric phenomena are directly
involved in their formation and stability [18], as in the role of counterion con-
densation in the formation of a stable DNA helix. Electric fields and associated
effects are used in additive manufacturing [5], electrospray technology [8], and
other nanomanufacturing technologies [9]. In addition, the study of networks
of resistors has a long history, from Kirchhoff [12] to present day. They have
applicability not only to electrical engineering, but also to the theory of random
media and random walks [7], as well as properties of materials like graphene [3].
Therefore, incorporating electrical effects into models of assembly inspired by
biology might elucidate alternative mechanisms for the algorithmic control of
growth. Moreover, if our conjecture below is true that the proposed ¢cTAM may
be generalized into an assembly system that corresponds to a discrete version
of a Dirichlet (boundary value) problem [7,11], then, the range of platforms for
assembly and their applications substantially widens from electromagnetism to
gravitational, fluid, thermal, and mechanical systems.

In this paper, we introduce the ¢TAM and derive bounds on the sizes of
the circuits that it can assemble. The main result is that the assembled circuits
exhibit growth that is controlled by a voltage source, a threshold for attachment,
and the geometry of the assembled circuit. The paper is organized as follows.
In Sect. 2, some circuit analysis fundamentals are given. In Sect. 3, the cTAM
is formally defined. In Sects. 3.1 and 3.2, bounds on the size of self-assembled
circuits for resistive ladders and grids are characterized. In addition, in Sect. 3.1,
our general approach to solving this type of circuit is outlined. In Sect.4, a
generalization of the assembly model is proposed to correspond to a discrete
Dirichlet problem, and empirical evidence is presented to support this general-
ization. Finally, conclusions and open questions are discussed in Sect. 5.
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2 Circuit Theory Background

For what follows we will consider DC resistive circuits exclusively.

Definition 1 (Circuit). Borrowing some notation from [2], a circuit is a
graph consisting of nodes N and edges E. For a connected path of edges
{e1,e2,...,ex} C E, there are mappings that identify the source s : E — N
and target t : E — N of the path, and for each edge, a label R : E — (0,00) U
{Vb, GND} that gives the value of the resistance on that edge, or identifies it as
one of two special circuits, a voltage source Vi or a point of zero potential (ground
GND.) Moreover, two finite subsets Ny, Ny C N identify the inputs and out-
puts to the circuit, respectively. The boundary or terminals of the circuit are
ON = N;,UNyyi. Thus, a circuit is given by a tupley = (N, E, s,t, R, Nin, Nout).

Voltage is the electric potential energy difference per unit charge between
two nodes in a circuit. The ground node in the circuit has a potential of zero.
Thus, a voltage v : N — R relative to ground is associated with each node in
the circuit. It is analogous to pressure in a water pipe because just as pressure
causes water to flow, voltage causes current to flow. Voltage is related to the
work necessary to move a positive charge against an electric field, and thus,
voltage gives rise to current in a circuit, i.e. the movement of charge per unit
time, with positive charge moving from regions of high voltage to those of low
voltage. Electrical resistance is analogous to the resistance produced by different
diameter pipes in a water system. Resistors are units of dielectric material that
impede current flow.

The voltage between two nodes in a circuit joined by a path € = {e1, eq,. ..,
e} is

Vi(e) = v(s(er)) — v(t(er)), (1)

which we will denote V(s,t), s,t € N. The choice of the source s and target
t is somewhat arbitrary but should be consistent with the current flow s — ¢
from points of high voltage s to points of low voltage t. According to Kirchhoff’s
voltage law (KVL), the sum of the voltages around a closed circuit must be
zero, which is a statement of conservation of energy. Kirchhoff’s current law,
which is an expression for conservation of charge, holds for all nonterminal nodes

k € N\ON,
ka,l =0,

leEN

where Ij,; is the current flowing from node k to I. The relationship between
voltage (V) across a resistor and current (I) through a resistor R is given by
Ohm’s law, V' = I R, where the units of current /resistance are the Ampere/Ohm
(A/92), respectively.

In this paper, two additional techniques are used for circuit analysis.
Thévenin’s theorem states that an electrical network can be replaced by an
equivalent voltage source V,. and a resistor in series R;;. Finally, circuits in a
A shape can be converted to an equivalent circuit in the shape of a Y through
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the transformation in Fig. 1, where R4 = (R1R3)/(R1+ R2 + R3), and similarly,
for Rp and R¢. A key topology for the self-assembled circuits which follow is
the voltage divider in Fig.2. The two resistors, Ry and R,, divide the voltage
Vo as Vg, = Voﬁ and Vg, = VO%. In the remainder, Ry = Ry, = R are
assumed and units will be omitted where unnecessary. In addition, the equiva-
lent resistance as the circuit gets large will be denoted R¢?. Circuit simulations

were done using PSpice [1].

AN Ra Ro

Rc

Fig.1. A —Y transformation in which R4 = (R1R3)/(R1 + R2 + R3), and similarly,
for RB and Rc.

+ 1 2 +
+
adl Vout1
Vo R
4 Vin Vout
3 - R
- 4 3
Vout2

Fig. 2. Seed circuit tile for all assemblies. Fig. 3. Circuit tile for the ladder cir-
Vo is the supply voltage. See text for cuit. See text for a precise definition.

definition

3 Circuit Self-assembly Model

Since circuit assembly is inspired by tile assembly models, the notation for the
c¢TAM is adapted from aTAM notation [4,21]. Like tiles in aTAM models, rota-
tion is not allowed.

Definition 2 (Circuit Tile Assembly System). A circuit tile assembly sys-
tem is a tuple C = (I, S, 7,1, (), where I' is a finite set of circuit tile types, S C I’
s a set of seed circuit tiles that includes a source and ground, and T € R is the
threshold voltage for attachment. v : N — R is the electric potential energy at a
node relative to ground in the circuit, and ¢ : N;p — Noyr maps input nodes to
output nodes.
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A diode is a switch, which is one when the voltage across its terminals is
greater than a threshold voltage that is typically about 1V. Therefore, the
threshold function can be implemented with diodes in series with the first resis-
tor in the voltage divider R;. Each diode in series would add about 1V to the
threshold voltage 7.

Definition 3. An configuration of a ¢cTAM is a mapping o : Z*> — I' U {\}.
Thus, the circuit tile type at location (i,7) € Z* is denoted a(i,5). X is the null
circuit tile representing a vacancy. An assembly is a circuit that is obtained from
the seed tiles by a finite number of successive circuit tile attachments.

Thus, an assembly « describes an electric circuit. Intuitively, a new circuit
tile attaches to the circuit assembly if its chosen location is empty, and the
voltage difference between its input terminals would be greater than or equal
to 7 after attachment. The assembly proceeds from the seed circuit tile, which
in this paper, will always refer to the source and ground. Input nodes of new
circuit tiles attach to output nodes of the assembly.

An assembly proceeds asynchronously and nondeterministically with new
circuit tiles v € I attaching to eligible locations (i,7). An eligible location is
unoccupied (contains the null tile \) and one of its neighbors offers a significant
voltage difference between its output nodes to attach new circuit tiles, i.e., a; ; =
A and V(e) > 7, where V(e) (Eq.1) is the voltage difference between the input
nodes of v along the path € at the grid location (4, j), assuming it is electrically
connected to an assembly a.

The mapping ¢ identifies which input nodes connect to which output nodes,
and thus, serves a similar purpose to glues in the aTAM. In general, this is
¢: N, — Nb . where b,c € I, and c is the circuit tile attaching to the assembly
via output nodes on circuit tile b € a. Moreover, the output node of the circuit
tile b should be a terminal of «, i.e., b € IN*. In general for the Fuclidean grid,
if i = 1 (the first row), ¢ is connected to the output nodes of the circuit tile in
the previous column (1,7 — 1), N((L(tl’j_l), and if j = 1 (the first column), ¢ is
connected to the output nodes of the circuit tile in the previous row (i — 1,1),

Ns;(ffl’l). Otherwise, ¢ connects to Nfﬁ’jfl) and N:ﬁfl’j). The notation k; ;)
will represent ¢ where k € ON is the set of terminal nodes for the circuit tile
at grid location (i, ). Whether it is an input or output node will be clear from
the context, but in general will be given as INPUT — OUTPUT. For example,
referring to Fig. 3, suppose this circuit tile were attaching at the grid location
(1,4). The input nodes for the circuit tile are N;,, = {1,4}. Therefore, the voltage
difference is across the path € = {e(19),€(2,3), €34} with V(1,4) = V(e) =
v(s(eq,2))) — v(t(e(s,a))). The voltage across the input nodes of the attaching
circuit tile will be equal to that across the output nodes of the circuit tile in
the assembly to which it attaches. The set of assemblies is A[C]. An assembly
a € A[C] is terminal if no tile can be added that is stable under the attachment
conditions. The set of terminal assemblies is Ag[C] C A[C].
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3.1 Resistive Ladder

In order to demonstrate the model, the first example is a resistive ladder. Richard
Feynman in his Lectures on Physics [10] talked about this circuit. For an infinite
ladder, the equivalent resistance is related to ¢, the golden ratio. The seed circuit
tile (Fig.2) consists of the DC voltage source Vj in series with two resistors,
Ry, and R, with node 4 connected to ground. The configuration of the seed,
as well as the other circuit tiles, is a voltage divider, which results in a V;/2
drop across both resistors R. The seed circuit tile only has output nodes, which
are Nse¢d = {2 3 4}. In what follows, a wire with resistance 0 is denoted R,
and Ry = R, = R > 0. In addition to the seed, there is one circuit tile ¢ =
{N = {1,2,3,4}, {61’2 = R0,€2’3 = R, €34 = R}7an = {174}7Ngut = {273}}
(Fig.3). The assembly proceeds with the ladder tile ¢ attaching to the seed
according to the rules {1}(,2) — {2}1,1) and {4}12) — {3}(1,1), with the
successful attachment if V°(1,4) > 7. The subsequent attachment rules are
{Tray = {2bay-n and {4} — {3}a -1, with Vi§(1,4) = V5,,(2,3) >
7. In these circuit calculations, we need to know the equivalent resistance at
different points in the assembly in order to calculate the voltage differences and
determine if a new circuit tile attaches or not. An important point is that as
new circuit tiles are added anywhere, the equivalent resistances and voltages in
the circuit change everywhere with essentially, the speed of light. First, as the
circuit assembly grows, we need to know how the equivalent resistances change.
Therefore, a recurrence relationship R°¢(m) = f(R®(m — 1)) is determined, as
depicted in Fig. 5. This recurrence starts at the growing interface and proceeds
toward the voltage source Vj. In order to determine if the assembly grows, we
need to know the voltage across the nodes at the growing interface. Therefore,
using the expression for R¢?(m), a recurrence is calculated for the voltage at
nodes on the active boundary of the assembly in terms of the preceding nodes,
N(i) = N(i—1), where for a circuit of size n, m =n—i withm € {1,2,...n—1}
and i € {0,1,...,n} (Fig.4). Thus, the recurrences for resistance and voltage
proceed in opposite directions from the exterior to the interior of the circuit, and
back out again. The calculation of the voltage might involve the determination
of Thévenin Equivalents and A — Y transformations. This is in general how we
proceed.

Theorem 1. The maximum size for a self-assembled ladder circuit is bounded
by B = [log(Vo/7)/log(1l + ¢)] where ¢ is the golden ratio, Vy is the source
voltage in the seed, and T is the threshold voltage for attachment.

Proof. The proof proceeds by characterizing the equivalent resistance, and then,
the voltage for attachments as the size n (number of circuit tiles including the
seed) increases.
Referring to Fig. 5,
R(R+ R*(m — 1))

R m) = 557 Rea(m —1) ’ @
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+ +
V(i-1) Re%(m) V(i) R®9(m) $ <‘,:I R°%(m-1)
R

R
Fig. 4. Circuit to compute voltage Fig.5. Circuit to compute equivalent resis-
recurrence for the ladder. tance for the ladder.

with R°?(0) = R. The circuit has R®(m — 1) in series with R. This series
combination is then in parallel with R resulting in R®Y(m). Letting x(m) =
R®(m)/R, and taking the limit so that x = R®?/R, then, z = ;i—i Solving
the quadratic equation, and knowing that resistance cannot be negative, then,
T = _1%‘/5 = 1/¢, and with x = R®?/R, then, R = R/¢, where ¢ is the golden
ratio. Furthermore, referring to Fig. 4,

) R*1(m)
V(i) = ——7+—

=45 T Rea(m)
where m =n —i, m ={0,1,...,n — 1}, and ¢ = {0,1,...,n}, with V(0) = V,.
Assuming the circuit is large so that R°?(m) — R°?, then, V(n) = ﬁV(n -
1). Finally, the condition on the voltage to stop growth at the nth circuit tile

attachment, including the seed, is V(n) = (1/(¢ +1))" Vo < 7. Solving for n
yields the result. O

V(i-1), 3)

Simulations with PSpice indicated that self-assembled circuits conform to the
predicted bound B. Figure6 shows a self-assembled circuit with V5 = 50 and
7 = 1. The size is n = 5, which matches the bound value B = [4.1]. At size
n = 4, the voltage is still above the threshold; hence, one more tile will attach.
When the threshold voltage for growth is taken across only one resistor in the
voltage divider, the bound should hold for other circuits, such as column ladders,
diagonal ladders, and meandering paths.

50V.
S

1 R 1 R 1 R 1 R 1
R R R R R
NN NN N
1 1 1

1

Fig. 6. Ladder circuit assembly with V5 = 50 and 7 = 1. The maximum size is n = 5,
which matches the predicted value of B = [4.1].

3.2 Resistive Grid

The problems of calculating the resistance between two arbitrary points in a
resistor grid has a long history and continues to generate interest, whether the
grid is finite [23] or infinite [19]. These results relate to the equivalent resistance
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of a graph as seen from a pair of nodes when 1 A of current is injected at one node
and removed at the other with the resistance of all edges equal to 1 2. Therefore,
from Ohm’s law, the equivalent resistance R;; = v(i) — v(j) is derived, which
is also known as the resistance distance. The resistance distance has interesting
properties, such as defining a metric space for which it is the distance func-
tion [13] and its relationship to random walks on the network [7]. The resistance
distance can also be calculated from the Laplacian matrix of the graph of the
electrical network. It seems clear that for highly symmetric graphs, the resistance
distance can be characterized combinatorially as a function of size, but it is not
clear how this relates to our assembly model. Our problem is slightly different
as we not only have to know the resistances, but also the voltage at a potential
attachment point.

To begin, we will consider a symmetric diagonal circuit assembly that is no
longer strictly one-dimensional, like the ladder, and requires that the threshold
voltage appears across two distinct circuit tiles, and both resistors in the voltage
divider (Fig.8). The circuit tiles for this assembly are shown in Fig. 7. As with
the ladder, the seed (Fig.2) is the circuit tile with the source voltage Vj, the
voltage divider consisting of two identical resistors R, and ground. The three
other circuit tiles are ¢; = {N,, = {1,2,3,4},{e12 = Ro,e23 = R,e34 =
R}szcﬁ = {1,4}, Noyy = {3}}, 2 = {N, = {1,2,3,4}, {61,2 = Rex3 =
R,€3,4 = R(),Nii = {1,4},Nocit = {2}}, and C3 = {Nc3 = {1,2,3},{6172 =
R,eq3 =R}, N3 ={1,3}, N;3, = {1,2,3}}. The connection rules are

{1}c1(i,j) - {1}CS(i,j—1)7 {4}cl(i,j) - {2}03(1',3‘—1)7
{1} es) — {3Yeri-1.)5 {3}esti) = {2} eatij—1)»
{L}eati,) = {2 esti-1) {4}ea(i) = Blesi-1)

with corresponding voltage calculations. Figures9 and 10 show the method for
calculating equivalent resistance and voltages, respectively. Moreover, for this
circuit, Thévenin’s theorem and several A —Y transformations were applied for
the calculation of the voltage for the nth attachment, V,,.

Theorem 2. The maximum size n of the self-assembled symmetric diagonal
circuit assembly is bounded by B = [log(Vo/7)/log(2 + /3)] where Vy is the
source voltage in the seed, and 7 is the threshold voltage for attachment.

a 3 3 2 3 2

V,
out Vout2

Fig. 7. Circuit tiles for the symmetric diagonal circuit and grid circuit, c¢1, c2, and cs.
See text for definition.
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R®9(m-1)

R

Fig. 8. Symmetric diagonal circuit. Fig. 9. Circuit to compute equivalent
resistance for the circuit in Fig. 8.

Proof. Following the same general procedure, the proof proceeds by first com-
puting the equivalent resistance, and then, the voltages for attachments as the
size n (in this case, the number of diagonal steps) increases.

Referring to Fig. 9,

_AR(R+ R°9(m — 1))

R m) = R S Reatm = 1) )

with R°?(0) = 2R. Calculation of the equivalent resistance begins with a A —
Y transformation of the two A’s composed of three R resistors in symmetric
positions in the upper right and lower left of the circuit. R°?(m) follows. Letting
z(m) = R*(m)/R, and taking the limit so that © = R°?/R, then, x = iigi.
Solving the quadratic equation, and knowing that resistance cannot be negative,
then, © = %: and with z = R°?/R, then, R°Y = 2R/+/3.

To calculate the voltage relationship, the circuit in Fig. 10 is converted to
a Thévenin equivalent with a voltage source V,. = V(n — 1)/2, which is the
voltage present when the load is open circuit (location of V(n)) in series with
R, = R, which is calculated with the input short circuited, (the location of
V(n — 1) replaced with a wire with resistance 0). Then, for a diagonal circuit of

L

V(n1) ——

+

+
+ I:>V(oc) R%(m) vin)

V(n)

Fig. 10. Circuit to compute voltage recurrence for the circuit in Fig. 8.
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size n and at the ith subcircuit,

J_Rm) (VG-
YO~ v (2 ), ?

where V(0) = Vp, Vo and Ry, have been substituted, and m = n — i, with
m={0,1,...,n—1} and i = {0, 1,...,n}. Assuming the circuit is large so that
R°4(m) — R°9, and substituting R°? = 2R//3, then, V(n) = ﬁgV(n —1).
Finally, the condition on the voltage to stop growth at nth circuit tile attach-
ment, including the seed, is V(n) = (1/(2++/3))"Vp < 7. Solving for n, the result
is obtained. O

The bound was again verified by PSpice simulations.

We do not have a result, yet, that characterizes the size and shape of the resis-
tive grid with supply and threshold voltage. Nevertheless, there is little doubt
that the circuit assemblies are bounded since the supply voltage Vj is distrib-
uted along the growing interface of the grid. As the grid grows, this interface gets
longer, producing lower voltages across each resistor. Eventually, the perimeter
will get long enough that each voltage is below threshold, and growth will cease.
Our simulations also indicated that the terminal assemblies appear to be gener-
ally unique. In addition, because of the way the circuit tiles are defined for the
interior of the grid, there is no node (terminal) to which a new circuit tile can
attach unless the circuit has first grown by attachment in the first row or col-
umn. Therefore, the bounding box of the grid is determined by the length of the
first row and column, and thus, those voltages at the boundary are important
to characterize. For example, using KVL, for the 3 x 3 grid, V(1,3) = V/3, and
for the 4 x 4 grid, V(1,4) = 0.241V}. Simulations reveal an approximately linear
relation between size of the first row and the supply voltage n =~ 0.8V}, and for
Vo = 12 and 7 = 1 produced the circuit assembly in Fig. 11, which shows the

Fig. 11. Grid assembly with Vo = 12, Fig. 12. Contour map of voltages for Grid

7 = 1, and resistor value R. assembly with Vo = 12 and 7 = 1. The seed
is at the lower left corner at the origin. The
upper right region is zero voltage.
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general shape of the truncated square that we observe. A contour map of the
voltages for this circuit is shown in Fig. 12. Study of the grid problem, however,
has produced a proposal for a more general model that is discussed in the next
section.

4 Discrete Dirichlet Assembly Model

The Dirichlet principle states that a real-valued function f(x) over a region of
space T that satisfies Dirichlet boundary conditions f(x) = g(z) on 97 is a
harmonic function with the lowest energy in 1" that satisfies Laplace’s equation
Af = 0, and expresses the physical principle that systems at equilibrium seek
the lowest energy state. In a discrete setting [7,11], the combinatorial Laplacian
defined over a graph is

d; if 1= 7,
L;j = ¢ —w;y :if 4, j adjacent, (6)
0 : otherwise,

where d; is the degree of node 4, and —w;; is the negative of the weight on the
edge (4,7). The harmonic function f(z) minimizes

Dl =5 3wyl — ;)" 7)

ei;€EE

subject to boundary conditions at certain nodes N of the graph. In circuit
problems, as is well known [7], the voltage v is a harmonic function that is a
solution to the Dirichlet problem for a resistive circuit. In particular, a ¢cTAM
assembly should be a solution to a Dirichlet problem over the space of assemblies
A[C] where on the boundary A, v = Vj at the source node, v = 0 at the ground
node, and V(e) < 7 at the boundary of terminal assemblies JA[.

Therefore, we propose a discrete Dirichlet Assembly system (dDAS), of which
the CTAM is a particular case, as follows.

Definition 4 (Discrete Dirichlet Assembly System). A discrete Dirichlet
assembly system (dDAS) is a tuple D = (I, S, 7,v,(), where I' is a finite set of
weighted graph types, S C T is a set of initial graphs connected according to (,
and 7 € R is the threshold value of v for attachment. v is a real valued function
defined over the space of assemblies A[D] and defined for each graph in I". Thus,
v: N — R where N are the nodes in the graphs of I'; { specifies the attachment
rules for the graphs in I' (glues).

In the dDAS, the types I" are weighted graphs, as are the assemblies A[D]. The
potential function v should satisfy Av = 0 by minimizing Eq. (7), subject to
boundary conditions on the terminal assemblies JA5[D], and thus, v is hypoth-
esized to be a harmonic function on the assembly space.

It is an interesting possibility to have an assembly system in which the shape,
response in terms of v, as well as dynamic behavior could be controlled by
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Y - Ground
Y - Ground

0 2 4 6 8 10

2 4 6 8 10

X - Voltage Source X - Voltage Source

Fig. 13. Contour plot of v in the plane as Fig. 14. Contour plot of v (node volt-
continuous solution to Laplace’s equation. ages) in the plane for assembly in
Fig. 11.

conditions on the boundary. In addition, we present a couple of conjectures
that depend upon v being a harmonic function [7]. The first is that assemblies
produced by a dDAS would always terminate, or be controlled, based on the
fact that harmonic functions attain their minima and maxima on the boundary.
As a consequence, the second is that the assemblies produced by a dDAS would
be unique because v, as a harmonic function, would be unique for a given set of
boundary conditions.

Finally, we present some empirical evidence that the proposed dDAM is valid.
In Fig. 13, we present the continuous solution to Av = 0 in the z — y plane with
boundary conditions v = 0 for £ = 0 and v = 12V for y = 0. This is the
continuous version of the grid assembly shown in Fig. 11, for which in Fig. 14,
the node voltages v are shown. Taking into account discretization and truncation
because of 7, the results are similar. Thresholding the voltage on the perimeter
is seen to affect the equipotential lines in the discrete (Fig.14) as compared to
the continuous version (Fig. 13).

5 Conclusions and Open Questions

In the aTAM, an assembly is terminal if no tile can be added that is stable
at threshold. Typically, since tile attachment is governed by the presence of
compatible glues on the sides of the tile, this is achieved programmatically so that
the terminal arrangement of tiles does not present a valid binding site for further
tile attachment at the given temperature. By contrast, in the cTAM valid binding
sites always exist. There is no programmatic control of the extent of the assembly
through a set of glues. For circuit tiles, the connections between input and output
nodes could be considered as “glues,” and in fact, for example, the ladder is
built with a single circuit tile with one set of glues. In aTAM terminology, which
may be strained in this case, the ¢cTAM has similarities to a temperature 1
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assembly system, but with a different kind of control and cooperation. Control
of growth is determined by the source voltage, which represents a finite resource
that supplies the necessary energy for an attachment, and the threshold, which
represents the minimal rate at which the supply is depleted. Cooperation emerges
from the physical properties of electricity, which travels at the speed of light
throughout the circuit, modifying the properties everywhere when the circuit is
changed anywhere.

It is an open question how the ¢cTAM relates in power to various aTAM
models, or how this “action at a distance” in the ¢cTAM circuits can be controlled
in a programmatic way. In aTAM’s, cooperation (temperature 2) seems to be a
necessary feature for increased power, such as computation [4] universality in two
dimensions and intrinsic universality [15]. In the aTAM, a tile assembly system
is directed if there is a unique terminal assembly. It is conjectured that in the
dDAM, assemblies are unique. Complicating factors to understanding the power
of the ¢cTAM are the fact that its voltages and equivalent resistances are real
numbers. Therefore, an interesting question might be, what is the computational
power of the cTAM by restricting its voltages and resistances to rational voltages
and thresholds. Another factor to consider is that the voltages and equivalent
resistances can be solved in polynomial time using the standard analysis tools
of linear circuit theory.

As presented here, the model uses a lumped circuit model in which the
electrical components are “lumped” into circuit elements. As far as potential
implementation in nanoscale systems, a distributed circuit model might be more
appropriate, such as transmission lines, in which properties like resistance are
distributed per unit length or area. One could imagine a nanoscale assembly
system consisting of components with designed electrical properties assembling
in the presence of an electric field, which dDAM would approximate. This also
might present a possible way to implement things like negative glues in restricted
glue tile assembly system [14] in which temperature 1 assembly is computation
universal, or if combined with DNA tiles, a way to enhance cooperation.

In this paper, voltage controls the growth of the circuit assembly in terms of
size. Only one fundamental circuit building block, the voltage divider with equal
resistances, has been presented. Preliminary simulations indicate that using dif-
ferent resistor values in the resistor divider produces different shapes. Certainly,
there are many circuits available within the ¢TAM. Therefore, it is an open
question as to the degree of control that can be exercised in the cTAM by vary-
ing resistor values and the topology of the fundamental circuit tile. In addition,
the ¢TAM could be extended to other passive elements, inductors and capaci-
tors, time-varying voltage sources, or even active, nonlinear elements, like diodes
and transistors, or additional sources. Finally, in this paper, once an element
attached, detachment was not allowed. The model could be extended to allow
dynamic detachment and attachment when the voltage across a circuit tile fell
below threshold, even if it is not on the boundary, resulting in oscillatory behav-
ior or rewriting of blocks of the circuit.
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Finally, an assembly model is proposed, the dDAM, that describes assembly
systems, such as in the ¢TAM, as solving a discrete Dirichlet boundary value
problem, in which an energy source is depleted to match given boundary condi-
tions. Remaining unresolved questions include how the solutions to the discrete
Laplacian for the potential function v can be systematically related to threshold
voltages, and thus, sizes and shapes of assembled structures. Nevertheless, it
is an intriguing possibility to have assembly systems “programmed” by bound-
ary conditions. Moreover, the dDAM extends discrete assembly models toward
important systems that are described by differential equations with boundary
conditions, such as electromagnetic, gravitational, thermal, fluid, and mechan-
ical systems. The dDAM also presents the opportunity for assembly systems
to describe dynamic assembly of time-varying systems by, for example in the
c¢TAM, supplying a time-varying voltage source to circuits containing active,
energy-storing elements, like inductors and capacitors.
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Abstract. As a natural evolution of developments in membrane com-
puting and self-assembly, the time appears ripe to hybridize their princi-
ples to explore models capable of exhibiting further properties exhibited
by living organisms, while preserving the primary advantages of mod-
els in physics, chemistry and computer science, e.g. arising from local
interactions of their components and implementable in silico and/or in
vitro. We introduce an abstract model named M system, capable of self-
assembly and a developmental process, that strikes a balance between
these conflicting goals, namely biological realism, physical-chemical real-
ism and computational realism. We demonstrate that such systems are
capable of being assembled from scratch from some atomic components,
undergo a process of morphogenesis by the unfolding of the self-assembly
rules defined by their local interactions, exhibit crucial properties of liv-
ing cells as the self-healing property or mitosis (cell division), and eventu-
ally enter a stable equilibrium of adulthood in which they will continue
to function as long as certain conditions in their environment remain.
We present some theoretical results on the model, as well as preliminary
simulations and experimental results of an M system simulator we have
developed to explore this kind of model.

1 Introduction

The relationship between the macrosciences (such as biology) and the micro-
sciences (such as quantum mechanics and physics) has been a topic of increasing
interest for decades. In a pioneering work, Schrodinger [21] explored this con-
nection and pointed to the future developments of a molecular basis for biology,
later fully validated by the discovery of the structure of DNA [25] in the 1950s,
the development of biotechnology in the 1980s, the genome projects (HGPs,
www.ornl.gov) of the 1990s, and the subsequent *-omics of the 21st century.
A fundamental distinction between biology and the other natural sciences
is that while physics and chemistry, for example, are governed by interactions
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that appear immutable and perennial over time, the basic unit of life, a biologi-
cal organism, is conceived in the physics and chemistry of the world, undergoes
a growth process that turns it into an idiosyncratic adult, but eventually dies
back into the material world. In the process, the organism produces offspring
that inherit some of its uniqueness and perpetuate it over time, but in a very
mutable way that creates some sort of living memory and gives rise to evolution.
Understandably, the significance of the answers and the complexity of evolution
have led computer scientists, and perhaps even biologists, to focus their work
on the latter (primarily, natural selection and *-omics), which has resulted in
relatively poor attention devoted to the organisms themselves, e.g., the mor-
phogenetic growth processes, which may nonetheless play an equally important
role in the adult organism itself. A major aim of this work is to focus on mod-
els of morphogenesis and the transition into what we term homeostasis, i.e., a
sustainable, balanced functioning state as a “productive” organism.

The development of higher biological organisms from a fertilized zygote
can be logically split into three kinds of processes, namely, cellular differen-
tiation, control of cell growth and morphogenesis (e.g., how biological organ-
isms develop their specific shape). Morphogenesis is a classical, critical, yet
underdeveloped area in biology, computational studies and mathematical mod-
els, although its importance was realized by the early founding fathers of com-
puter science [12,24]. Turing’s paper [24] is perhaps the original most famous
attempt at producing a model to explain the memory pattern formation and
their resilience in biological organisms, such as the spots in a leopard skin [24].

There have been two notable attempts to address this gap, namely mem-
brane computing and virtual cells [23]. The original inspiring idea of membrane
computing, now usually referred to as P systems [17], was to develop models
that could begin to shed light on the role of membranes in the process of mor-
phogenesis of the living cell, while obtaining new insights and approaches to
solving difficult problems in computer science. A survey of membrane comput-
ing (see [18]) shows a number of works hinting at this kind of model. [7] studies
synchronized colonies of membrane-inspired agents, including their behavioural
robustness in cases of agent loss or rule failure. A Spatial P system embedded in a
2D lattice, partly resembling cellular automata, appears in [2]. The same authors
introduced the Spatial Calculus of Looping Sequences (Spatial CLS) [1], where
membranes may have assigned exclusive positions in 2D /3D space. Membrane
systems allowing self-assembly of graphs representing interconnected systems of
cells at their vertices were studied in [3]. A model of morphogenesis of a mul-
ticellular body based on abstract membranes displacement and attachment in
3D space was presented in [10] and applied to simulate the growth of colonies
of Dictyostelium discoideu. However, all these models assume an abstract cell
as an atomic assembly unit of an abstract nature. Here, we are interested in
exploring the developmental process from scratch, i.e., through self-assembly of
1D or 2D primitives allowing for self-assembly of 3D cell-like forms. To be sure,
we are not interested in cloning biological organisms (an exercise that sheds little
understanding of the key mechanisms at play), but in a deeper examination of
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potential mechanisms or strategies whereby they may be achieved through a com-
plexification process distributed in space and time, emerging from the bottom-up
through local interactions among atomic components naturally available in an
environment. Specifically, the objective is to explore higher functions such as
internal dynamical homeostasis, self-reproduction, self-healing, for example, and
their relationships. (We must point out that, to the best of our knowledge, the
actual etiology of these process in biology is not fully known, but even if they
were, knowledge of such mechanisms or strategies may prove useful both within
biology and other fields such as artificial life.)

Perhaps the most appealing feature of membranes is that they bring into the
picture an obvious but most fundamental ingredient in the formation of a biolog-
ical cell, namely the walls that separate it from the external world or the various
parts of it. Less known is the more general and primary role of other spatial
relationships and constraints in the organization of biological systems, let alone
the role of geometric shape. An attempt at a general approach to formalization
of spatial and geometrical interaction in complex (biological) systems is the 3w
calculus [6] based on process algebra.

Recent research points to an increasingly important role in biological morpho-
genesis of topological and geometric features such as crevices and wrinkles (see

g., [22]). Another example of current interest is the formation of the mammalian
brain cortex. Mechanical and biochemical models have been used. Mechanical
models hypothesize that gyris (foldings) in the brain are the results of anisotropic
differential growth, while numerical solutions to chemically reaction-diffusion
(RD) systems have produced qualitatively approximate patterns in cortex for-
mation, both in 2D and 3D models. Genetic factors, particularly the protein
(-catenin recently, are also implicated in the process. These models can be used
for prognosis of brain malformations during development in terms of coefficients
in the RD model (e.g., polymicrogyria and lissencephaly). Biologists are also now
beginning to discover the importance of the role of even more elementary phys-
ical phenomena, such as electric fields and chemical gradients, including their
role in chemical signaling in the living cell [20], e.g. in critical mechano-sensitive
channels [4].

In parallel, from a separate direction, computational ideas from the field of
DNA Computing have developed models and theories of DNA self-assembly that
capture more directly a “morphogenetic” process of sorts in the form of models of
self-assembly of patterns and families of patterns and afford clues as to the nature
of and capabilities of morphogenesis [9]. However, once again, these models do
not directly afford new knowledge on the fundamental biological problem of
morphogenesis and homeostasis that would bring them anywhere near the kind
of contribution that other models in natural sciences like physics and chemistry
provide us about motion and matter transformation.

Inspired by these developments, the time appears ripe to hybridize P
systems and geometric self-assembly in order to explore models of mor-
phogenesis and homeostasis, balancing three somewhat conflicting proper-
ties to the best degree possible: biological realism, physical-chemical realism
and computational realism. To achieve physical-chemical realism, very critical
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components and the corresponding dynamic process occurring in a living cell
will be specifically represented in the model by appropriate data structures and
algorithmic interactions. To achieve computational realism, all components and
processes must be modeled at the appropriate level of granularity in both time
and resources in order to maintain the computational feasibility of the model.
To achieve biological realism, the aggregate observables accumulated over time
and space in the model must reflect, to some degree, the corresponding macro-
scopic observables, e.g., must reflect to some level of scale or granularity known
properties of biological organisms at the observable (nano, micro or macro) level,
independently of whether they faithfully describe factual processes in biological
organisms.

Therefore, the desirable features of the model are self-assembly, self-
controlled growth and emerging global behavior that is consistent with observ-
able properties of biological organisms, but which arise from nondeterministic
local interactions of elementary components, also consistent with self-assembly
and P systems. We present the definition of the model, referred to as M systems,
in Sect. 2, as well as the relevant known biological knowledge (fairly incomplete
and mostly unavailable) that guided it. In Sect. 3, we discuss arguments that
show how these properties may be guaranteed or to what extent, including a
theoretical result and experimental evidence that these properties actually do
emerge with very high probability, and provide a characterization of their behav-
ior, consistent with recent probabilistic analysis of self-assembly systems [11].
Section4 completes the view by demonstration of computational power of the
model in the Turing sense even under severe restrictions. Finally, in Sect. 5, we
present some discussion on the significance of the model, some of its implications,
and some interesting further problems that could be addressed with plausible
extensions of it.

2 M Systems

As mentioned above, introducing geometric features in P systems is a natural
an interesting idea of its own. First, it is an intriguing question that may help
realize the potential of the original idea of membrane computing, as spatial
arrangement is critical for information processing in living cells, colonies, tissues
and organisms. Second, it may also further our understanding of computation
beyond the scope of traditional computer science, where shape and geometry are
not native concepts, but rather that require enormous amounts of effort to build
back in, while on the other hand, our understanding of the world is inherently
dependent on it. Besides being able to compute in the Turing sense, a model
should be able to interact with and “sense” its physical environment, so as to
be capable of self-modification and unenthropical evolution, i.e., to increase its
fitness (however defined) in its embedding environment. Membrane systems seem
to be a good candidate, but a sufficient level of self-modification and evolution
of new features is hardly possible in the current amorphous level.

The basic model of a P system generally consists of a structure of (possibly
nested) membranes which delimit regions precisely identified by the membranes.
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In addition, the system contains objects from a set O placed inside membranes
or in the surrounding environment, but which do not bear any information about
their location or shape within the membranes. Several copies of the same object
can be present in a region, so we work with multisets of objects. A primary
biological carrier of shape is a protein. This feature is explicitly used in P systems
with proteins on membranes [13,14].

The M system extends this concept with explicit geometric features and
self-assembly capabilities. The whole system is embedded in an nD Euclidean
space R™ (assume 3D space unless stated otherwise). There are three types of
objects present in the system: proteins, tiles and floating objects.

Floating objects are small shapeless atomic objects floating freely within the
environment, but having at each moment their specified position in space.
They can pass through protein channels and participate in mutual reactions
with other types of objects, in discrete time steps. This latter property ensures
that, if started empty, membranes will always contain a finite number of
objects regardless of time allowed to operate, and makes unnecessary the
specification of the finite volume they would occupy.

Tiles have their pre-defined size and shape, together with specified position
and orientation in space at each moment. Tiles can stick together along their
edges or at selected points. These edges/points are called connectors and they
are covered with glues. Their connection is controlled by a pre-defined glue
relation. Thus the tiles can self-assemble into interconnected structures.

Proteins are placed on tiles and, apart from acting as protein channels letting
floating objects pass through, they also catalyze their reactions.

Unlike current models of membrane systems, membranes are not present even
implicitly, but they can only be formed of tiles during the evolution of the M
system. Therefore, at the beginning of the evolution, typically no membranes are
present and they must be subsequently self-assembled. The connected tiles can
be also disconnected and/or destroyed under certain conditions. The following
definitions provide the elements to capture these properties in a formal model
(they can be skipped without hindering understanding of Sect. 3).

2.1 Polytopic Tiling

The cornerstone of our concept of morphogenetic self-assembly is an nD tile
shaped as a bounded convex polytope (n-polytope) [28], with faces of dimension
n—1 called facets. Hence, a 1D tile is an edge/rod whose facets are its endpoints,
a 2D tile is a convex polygon with its edges as facets, a 3D tile is a convex
polyhedron with polygons as facets, and so forth. Furthermore, tile may contain
connectors defining its connection to other tiles. Let G be a finite set of glues.
A connector of a tile forming an n-polytope A is a triple (A, g, ¢), where

A, C Ais a bounded convex k-polytope where 0 < k < n,
g € G is a glue,
¢ € (—m,7) is the connecting angle.
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We distinguish

— facet connectors with k =n — 1 where A, is a facet of the polytope A;
— non-facet connectors with k < n — 1 placed anywhere on the tile.

Two or more connectors can share the same position on a tile. Formally, an
n-dimensional tile is defined as

t=(A{c1,...,¢k},9s), for k>0,

where A is a bounded convex n-polytope, ci, ..., c, are connectors and gs € G
is the surface glue covering the entire surface of the tile except where connectors
are placed.

For an (n — 1)-dimensional tile embedded in R™ we denote its two sides by
in and out. A non-facet connector with positive connecting angle is placed on
side in, one with negative angle is placed on side out, and one with zero angle
can only be located on some facet of the tile.

Definition 1. A polytopic tile system in R" is a construct T = (Q, G, 7, dg, S),
where

Q is the set of tiles of dimensions less than n;

G is the set of glues;

v C G x G is the glue relation;

dg € Rar is the gluing distance (assumed to be small compared to the size of
tiles);

S is the finite multiset of seed tiles from Q randomly distributed in space.

A tile t5 with a connector ¢y can connect to a connector ¢; on a tile t; at the
connecting angle of ¢; if the following conditions are met:

— ¢1 and ¢y are unconnected and have the same dimension and size;
— their glues g; and g9 satisfy (¢g1,92) € 7;
— at least one of ¢; or ¢y is a facet connector.

If both ¢; and ty are (n — 1)-polytopes, then their in and out faces must match
and the connecting angle precisely determines their mutual position. Otherwise,
the connecting angle may provide one degree of freedom to t5 whose orientation
is then semi-random.

If ¢t attaches to t; and it still has free connectors now positioned within
the distance d, from free connectors on other tiles already in place, then the
pairs which can connect together would do so. Similarly, if a free connector
¢ = (Ac, ge,p) of to lies within the distance d, from an existing tile ¢3 with
surface glue gs such that (g, gs) € v, then to connects to the surface of ¢s.

Note that the relation ~ is generally non-symmetric. So if ¢5 can connect to
c1 does not imply that also ¢; can connect to co. This is in accordance with
natural morphogenetic processes which are often irreversible [5].
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Ezample 1. Consider a polytopic tile system in R? with a single glue g and
the glue relation v = {(g,9)}. Let @ contain a 2D tile ¢ shaped as a regular
pentagon, with five facet connectors on its edges, each with the glue g and with
the connecting angle ¢ = 2.0345 radians, which is the inner angle between two
faces in a dodecahedron. Let finally S = {¢} be the only seed tile, see the leftmost
image. Then, provided that ¢ is available in enough copies, the system assembles
as follows.

1. Five tiles ¢ would connect to the five connectors of the seed tile in the first
phase, connecting also their five edges starting at vertices of the seed tile as
they stick together. The connecting angle determines them to shape as cup
with zig-zag rim with 10 edges (central-left image).

2. Another five tiles would connect to these edges, determined by the connecting
angle to form an almost-closed shape (central-right image).

3. Finally, the last attached tile encloses the dodecahedral “soccer-ball”. All
connectors on the tiles match and connect together, hence no further assembly

is possible (rightmost image).

e

2.2 Morphogenetic Systems

An M system naturally merges principles of both self assembly and membrane
computing. Geometrical structure and growth of each M system is determined by
its underlying polytopic tile system. Unlike usual tiling systems, the M system
does not assume availability of an unlimited number of copies of each tile. The
M system life cycle starts in an initial configuration where only seed tiles are
present. Further structures can only be created by the application of rules of the
M system.

Formally, for a multiset M we denote by |M], the multiplicity of elements a
in M. A multiset M with the underlying set O can be represented by a string
x € O* (by O* we denote the free monoid generated by O with respect to the
concatenation and the identity A) such that the number of occurrences of a € O
in x represents the value |M|,.

Definition 2. A morphogenetic system (M system) in R™ is a tuple
M = (F,P,T,‘LL’R,T,U)’
where

F = (0,m,e) is the catalogue of floating objects, where:
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O s the set of floating objects;
m : O — R is the mean mobility of each floating object in the environment;
e: 0 — R(J{ is the concentration of each floating object in the environment:
e(o) copies of object o per spatial unit 1™;

P is the set of proteins;

T =(Q,G,,dgy,S) is a polytopic tile system in R™, with O, P,Q,G all pairwise
disjoint;

w is the mapping assigning to each tile t € QQ a multiset of proteins placed on t
together with their positions: u(t) C P x A where A is the underlying polytope
of t;

R is a finite set of reaction rules;

r € RS’ is the reaction radius; a reaction rule can be applied when all objects
entering the reaction are positioned within this radius;

o : v — O* is the mapping assigning to each glue pair (g1,g2) € v a multiset
of floating objects which are released to the environment within the reaction
radius from a new connection with (g1, g2), when the connection is established.

Unless stated otherwise, we consider M systems in R? in the rest of the paper.

A reaction rule from the set R has the form u — v, where v and v are
strings containing floating objects, proteins, glues and tiles due to types of rules
specified bellow. The necessary condition to apply the rule is that all objects in
u are present in the environment within radius r, while certain rules may specify
further conditions on the location of objects.

Metabolic Rules

Metabolic rules are of several types: simple and catalytic rules allowing mutual
reactions of floating objects, similarly as cooperative and catalytic rules in mem-
brane systems [16,17].

Symport and antiport rules allow the floating objects to pass through protein
channels, similarly as in P systems with proteins on membranes [13,14]. Let
u,v € O be non-empty multisets of floating objects and p € P be a protein.
The rules containing the symbol [ are applicable only when p is placed on an
(n — 1)-dimensional tile, where object to the left of [ in the string correspond to
the side “out” and those to the right correspond to the side “in” of the tile.

Type Rule Effect
Simple uU—v Objects in multiset u react to produce v
Catalytic | pu — pv Objects in u react in presence of p to produce v;

ulp — v[p | Eventually, u,v must both appear on the side “out”
[pu — [pv Or on the side “in” of the tile on which p is placed

Symport |u[p — plu | Passing of u through protein channel p
[pu — u[p | To the other side of the tile

Antiport | u[pv — v[pu | Interchange of u and v through protein channel p
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Note that these rules are rather powerful and we will mostly consider some
restrictions when studying M systems from the computational power point of
view.

Creation rules u — t,

where t € Q and v € OF. The rule creates tile ¢ while consuming the floating
objects in u. It can be applied if the following holds:

(i) there already exists a tile (say s) in the environment with a free connector
¢s such that ¢ can connect to ¢s by some of its connectors, and
(ii) floating objects in w exist in the environment within the distance r from c;.

Then an attempt is made to create tile ¢ and connect it to cs as specified in
Sect. 2.1. If ¢ would intersect another existing tile, say s’, then s’ (together with
all tiles interconnected with it) is pushed away to make room for ¢. This may
cause a chain reaction of mutual pushing of tiles in the way. If it is impossible
to make enough room for ¢ and ¢ is a polygon, the rule is not applied, otherwise
t is shortened so that it just touches s’. Its connector(s) at the shortened end (if
any) are preserved.

Finally, free connectors of ¢ automatically connect to existing tiles as
described in Sect. 2.1.

Destruction rules ut — v,

where t € Q,u,v € OF. Tile t is destroyed in the presence of the “destructor”
multiset of floating objects u. All connectors on other tiles connected to t are
released. The objects in u are consumed and the multiset v of “waste” objects
is produced.

Division rules g-%h — g, h,

where g— h is a pair of glues on connectors of two connected tiles. The connection
is released in the presence of the multiset u € OF. The multiset u is consumed.
The tiles remain in their position but the pair of connectors is released so that
new tiles can possibly attach to them.

Configuration of the M system is determined by

— positions and Euler angles of all tiles in the environment;

— interconnection graph of connectors on these tiles;

— positions of all floating objects within the finite part of the environment occu-
pied by tiles; the rest of the (infinite) environment contains floating objects
randomly distributed due to their concentrations e.

The initial configuration contains only (unconnected) seed tiles in S and a ran-
dom distribution of floating objects given by their concentration e.
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Computation of the M System

The system transits between configurations by application of rules in the set
R. At each step, each floating object can be subject to at most one rule, each
connector can be subject to at most one creation or division rule, and each
tile can be subject to at most one destruction rule. Since there may be trade-
offs between applicable rules, their selection is done in the following order: 1.
metabolic rules, 2. destruction rules, 3. creation rules, 4. division rules. The
rules within each group are chosen nondeterministically until their maximum
applicable multiset is obtained, so that no more rules can be added to it. Then
all the selected rules are applied in parallel to the actual configuration.

Finally, each floating object o with mean mobility m(o) changes randomly
its position at each step due to the Maxwell-Boltzmann distribution [27] with
parameter a = /7/8m(0) corresponding to Brownian motion of particles in
liquid media.

A sequence of transitions of an M system between configurations is called a
computation. The computation can be finite (if an M system cannot apply any
rule, it halts) or infinite, and it is, by definition, nondeterministic. The reader is
referred to the proof of Proposition 2 for a simple example, or to supplementary
material for a more complex one (follow the link in the proof of Proposition 1).

We will mostly be interested in the general dynamics of the M system, as
the probability of reaching certain equilibrium or oscillatory states, growth of
certain spatial structures, evolution and emergence of new properties, mitosis
and division of cell-like structures. However, numerical input and output of the
system can be defined, too, demonstrating its computational capability in Turing
sense, as we show in Sect. 4.

3 Computational Morphogenesis and Homeostasis

In this section we demonstrate that M systems are indeed capable of being
assembled from scratch from some atomic components, undergo a process of
morphogenesis by the unfolding of the self-assembly rules defined by their local
interactions as given by the catalytic, creation and destruction rules, and even-
tually enter a stable dynamical equilibrium of adulthood in which they will
continue to function as long as certain conditions in their environment remain.

We illustrate with an example of an M system M shown at Fig.1, that
demonstrates the ability of creation and self-reproduction (mitosis) of elemen-
tary cells and simultaneously building an internal cytoskeleton structure. The
geometrical structure of M builds on two sets of 2D pentagonal tiles: larger tiles
self-assembling in a cell-like membrane, and smaller tiles assembling a nuclear
membrane. These tiles are much alike that in Example 1 but with different glues
on their edges. Some of the larger tiles contain also point connectors on their
inner surface, connecting to rod-shaped 1D tiles. Endpoints of rods bear one
(straight-oriented) or two (fork-oriented) connectors, allowing the rods to assem-
ble a tree-like structure of cytoskeleton.
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Proposition 1. Assuming discrete time and bounded finite resources in the
environment, an arbitrary run of the M system My crosses a critical time at
which it stops growing and enters a period of homeostasis, where it will remain
in functional equilibrium despite certain fluctuations in the environment and/or
damage to its internal structure.

Proof. (Sketch; full description of the M system and more proof details are
provided as a supplementary material at url sosik.zam.slu.cz/Msystem.html or
bmec.memphis.edu/cytos.)

As pointed out above, discrete time interactions guarantee that at any given
time, only a finite number of membranes and objects are contained therein
throughout the life of the model, (although they could potentially contain an
uncountable number of objects as a continuum). In the terminology of self-
assembly systems, M is locally deterministic and attachment of tiles proceeds
as in the aTAM model [26]. As illustrated by Example 1, the geometric structure
of the tiles forces them to curve as they are attached and to close upon them-
selves to eventually form a dodecahedron and present plain geometric blocking
for further growth, which thus finishes the membrane building phase when the
last keystone tile is attached. Simultaneously an analogous process creates a
much smaller nuclear membrane.

The attached tiles bear proteins triggering the formation of cytoskeleton
by rods, which can grow nondeterministically in various directions from both
“poles” of the membrane. Eventually, addition of rods is no longer possible for
excluded volume reasons, so the cytoskeleton, and hence morphogenesis is now
complete and Mg enters the “adult” homeostatic phase.

Even before this phase is fully completed, the contact of growing rods with
the nuclear membrane triggers the process of mitosis which proceeds to create
two copies of the cells and separate it into two identical parts, which will then
begin anew the entire process and continue while enough supplies and room for
growth remain. All this is fully controlled only by local interactions of tiles and
floating objects.

At any point in the morphogenetic process, any damage will either simply
undo a previous state, or detach a piece of the systems altogether, which