
Matthew J. Patitz
Mike Stannett (Eds.)

 123

LN
CS

 1
02

40

16th International Conference, UCNC 2017
Fayetteville, AR, USA, June 5–9, 2017
Proceedings

Unconventional Computation
and Natural Computation

Lecture Notes in Computer Science 10240

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Matthew J. Patitz • Mike Stannett (Eds.)

Unconventional Computation
and Natural Computation
16th International Conference, UCNC 2017
Fayetteville, AR, USA, June 5–9, 2017
Proceedings

123

Editors
Matthew J. Patitz
University of Arkansas
Fayetteville, AR
USA

Mike Stannett
University of Sheffield
Sheffield
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-58186-6 ISBN 978-3-319-58187-3 (eBook)
DOI 10.1007/978-3-319-58187-3

Library of Congress Control Number: 2017938636

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 16th International Conference on Unconventional Computation and Natural
Computation (UCNC 2017) was held June 5–9, 2017, on the campus of the University
of Arkansas in Fayetteville, Arkansas, USA. The UCNC series of international con-
ferences is genuinely interdisciplinary and it covers theory as well as experiments and
applications. It is concerned with various proposals for computation that go beyond the
Turing model, human-designed computation inspired by nature, and with the compu-
tational nature of processes taking place in nature. Typical, but not exclusive, topics
are: hypercomputation; chaos and dynamical systems-based computing; granular,
fuzzy, and rough computing; mechanical computing; cellular, evolutionary, molecular,
neural, and quantum computing; membrane computing; amorphous computing, swarm
intelligence; artificial immune systems; physics of computation; chemical computation;
evolving hardware; the computational nature of self-assembly, developmental pro-
cesses, bacterial communication, and brain processes.

More information about this conference series and its full history can be found
on the following website: https://www.cs.auckland.ac.nz/research/groups/CDMTCS/
conferences/uc/uc.html.

Submissions to UCNC 2017 comprised 21 full papers across a wide variety of
topics, including (but not limited to) quantum computing, algorithmic self-assembly,
and chemical reaction networks. Of these, 14 were accepted for presentation at the
conference and publication in these proceedings. Beyond the contributed papers and
associated talks, UCNC 2017 was greatly enhanced by the plenary talks and tutorials
provided by several prestigious speakers. José Félix Costa from the University of
Lisbon, Portugal, gave a plenary talk titled “The Power of Analogue-Digital
Machines.” Erik Demaine from the Massachusetts Institute of Technology, USA,
presented his plenary talk “Computing with Glue, Balls, and Recycled Bits: New
Physical Models of Computing.”Masayuki Endo from Kyoto University, Japan, gave a
plenary talk titled “High-speed AFM Imaging of Synthetic Nanomachines and
Nanostructures.” A tutorial titled “Ways to Compute in Euclidean Frameworks” was
provided by Jérôme Durand-Lose from the Université d’Orléans, France, and Makoto
Naruse from the National Institute of Information and Communications Technology,
Japan, presented a tutorial titled “Decision Making by Photonics: Experiment and
Category Theoretic Foundation.”

Included during the conference were two workshops. The Workshop on Membrane
Computing was organized by Matteo Cavaliere from the University of Edinburgh, UK,
and Alfonso Rodriguez Paton from the Universidad Politecnica de Madrid, Spain.
Invited speakers for that workshop were Alvaro Sanchez from Yale University, USA,
and Sergey Verlan from the University Paris Est Créteil, France. The First International
Workshop on Oritatami (Oritatami 2017) was organized by Shinnosuke Seki from the
University of Electro-Communications, Japan, and the invited speakers for that
workshop were Cody Geary from Caltech, USA, and Aarhus University, Denmark, and

https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferences/uc/uc.html
https://www.cs.auckland.ac.nz/research/groups/CDMTCS/conferences/uc/uc.html

Nicolas Schabanel from CNRS, University of Paris Diderot (IRIF), and ENS Lyon
(IXXI), France.

UCNC 2017 brought together researchers from all over the world to share and
discuss ideas on forms of computation inspired by natural systems and unconventional
methods. Its success as the 16th conference in the series is owed to a great amount of
help from many people and organizations. First and foremost, we would like to thank
the Steering Committee co-chairs, Nataša Jonoska and Jarkko Kari, whose expert
guidance and invaluable advice helped to shape all aspects of the conference. Next, a
huge debt of gratitude is owed to the Program Committee members and external
reviewers who carefully reviewed all submissions and provided important feedback to
help decide which papers to accept. Beyond the technical details of assembling invited
speakers and selecting contributed papers, the amount of work done to organize the
venue, meals, excursion, and countless other details would have been completely
overwhelming without the enthusiastic and tireless help of Cindy Pickney, as well as
the other members of the Organizing Committee, Jamie Stafford, George Holmes, and
Jason Crawley. There would have been no conference without their help. Important
financial support was provided by the Department of Computer Science and Computer
Engineering at the University of Arkansas, the College of Engineering at the University
of Arkansas, and the National Science Foundation (which provided funding to support
student travel to the conference). Finally, many thanks are owed to the LNCS team at
Springer who helped with the publication of these proceedings.

June 2017 Matthew Patitz
Mike Stannett

VI Preface

Organization

UCNC 2017 was organized by the Department of Computer Science and Computer
Engineering at the University of Arkansas.

Steering Committee

Thomas Back Leiden University, The Netherlands
Cristian S. Calude University of Auckland, New Zealand (Founding Chair)
Lov K. Grover Bell Labs, USA
Nataša Jonoska University of South Florida, USA (Co-chair)
Jarkko Kari University of Turku, Finland (Co-chair)
Lila Kari University of Waterloo, Canada
Seth Lloyd Massachusetts Institute of Technology, USA
Giancarlo Mauri Università degli Studi di Milano-Bicocca, Italy
Gheorghe Paun Institute of Mathematics of the Romanian Academy,

Romania
Grzegorz Rozenberg Leiden University, The Netherlands (Emeritus Chair)
Arto Salomaa University of Turku, Finland
Tommaso Toffoli Boston University, USA
Carme Torras Institute of Robotics and Industrial Informatics, Spain
Jan van Leeuwen Utrecht University, The Netherlands

Program Committee

Andy Adamatzky University of the West of England, UK
Martyn Amos Manchester Metropolitan University, UK
Peter Banda University of Luxembourg
Cristian Calude University of Auckland, New Zealand
Matteo Cavaliere University of Edinburgh, UK
Mark Daley University of Western Ontario, Canada
Jérôme Durand-Lose Université d’Orléans, France
Angel Goni-Moreno Centre for Synthetic Biology and Bioexploitation,

Newcastle University, UK
Jacob Hendricks University of Wisconsin-River Falls, USA
Jarkko Kari University of Turku, Finland
Lila Kari University of Waterloo, Canada
Viv Kendon Durham University, UK
Niall Murphy University of Cambridge, UK
Makato Naruse National Institute of Information and Communications

Technology, Japan
Turlough Neary University of Zurich/ETH Zurich, Switzerland

Pekka Orponen Aalto University, Finland
Matt Patitz University of Arkansas, USA (Co-chair)
Alfonso Rodriguez Patón Universidad Politécnica de Madrid, Spain
Rebecca Schulman Johns Hopkins University, USA
Mike Stannett University of Sheffield, UK (Co-chair)
Susan Stepney University of York, UK
Scott Summers University of Wisconsin Oshkosh, USA
Sergey Verlan University Paris Est Créteil, France
Damien Woods Inria Paris, France

Organizing Committee

Matthew J. Patitz University of Arkansas (Chair)
Cindy Pickney University of Arkansas
Jamie Stafford University of Arkansas
George Holmes University of Arkansas
Jason Crawley University of Arkansas

External Reviewers

Matthew Cook
Mika Hirvensalo
James Hughes

Ethan Jackson
Trent Rogers
Ilkka Törmä

Sponsoring Institutions

Department of Computer Science and Computer Engineering, University of Arkansas
College of Engineering, University of Arkansas
National Science Foundation

VIII Organization

Invited Talks

The Power of Analogue-Digital Machines
(Extended Abstract)

José Félix Costa1,2

1 Department of Mathematics, Instituto Superior Técnico,
Universidade de Lisboa, Lisboa, Portugal
fgc@math.tecnico.ulisboa.pt

2 Centro de Filosofia das Ciências da Universidade de Lisboa, Lisboa, Portugal

Abstract. The ARNN (Analogue Recurrent Neural Net) abstract computer,
extensively analysed in H.T. Siegelmann: Neural Networks and Analog Com-
putation: Beyond the Turing Limit, Birkhäuser (1999), introduces an
analogue-digital model of computation in discrete time. When the parameters
of the system (so-called weights) are real-valued the computations cannot be
specified by finite means: we have computation without a program. Several
other models of analogue-digital computation were introduced around the same
time to explore the power of reals added to digital computation. Under the
polynomial time constraint, the ARNN efficiently performs not only all Turing
machine efficient computations but also computes non-recursive functions such
as (a unary encoding of) the halting problem (of Turing machines).

Computing with Glue, Balls, and Recycled
Bits: New Physical Models of Computing

Erik D. Demaine

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

32 Vassar St., Cambridge, MA 02139, USA
edemaine@mit.edu

Abstract. Real computers live in a physical world, which offers many different
ways to compute other than standard CMOS chips. I’ll talk about a few different
models I’ve played with, which incorporate geometry and/or thermodynamics
into the computational model.

1. Glues: We can build computers out of simple geometric nanoparticles (e.g.
DNA) with somewhat selective glues that define how they stick together, or
come apart. Our latest result is a way to build a universal replicator, like a
photocopier for unknown nanostructures.

2. Balls: We can build computers out of obstacles and rolling balls that just
respond to global signals like “roll all balls maximally to the right”. The
puzzle Tilt embodies this physics, which also have real-world applications
in biomedicine.

3. Recycled Bits: We can build computers that recycle bits whenever possible
instead of throwing them away a billion times a second. This requires
developing a whole new suite of algorithms, but it can lead to several orders
of magnitude improved energy efficiency, which ultimately may lead to a
similar improvement in speed.

4. In the Limit: What happens when computation and memory are taken to
their physical (geometric) limits? I think we should go back to studying
algorithms for 1970s-era mesh computers.

Ways to Compute in Euclidean Frameworks

Jérôme Durand-Lose

Laboratoire d’Informatique Fondamentale d’Orléans,
Université d’Orléans, Orléans, France

jerome.durand-lose@univ-orleans.fr

Abstract. This tutorial presents what kind of computation can be carried out
inside a Euclidean space with dedicated primitives—and discrete or hybrid
(continuous evolution between discrete transitions) time scales. The presented
models can perform Classical (Turing, discrete) computations as well as, for
some, hyper and analog computations (thanks to the continuity of space). The
first half of the tutorial presents three models of computation based on respec-
tively: ruler and compass, local constraints and emergence of polyhedra and
piece-wise constant derivative. The other half concentrates on signal machines:
line segments are extended and replaced on meeting. These machines are cap-
able hypercomputation and analog computation and to solve PSPACE-problem
in “constant space and time” though partial fractal generation.

High-Speed AFM Imaging of Synthetic
Nanomachines and Nanostructures

Masayuki Endo

Institute for Integrated Cell-Material Sciences and Department of Chemistry,
Graduate School of Science, Kyoto University,

Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
endo@kuchem.kyoto-u.ac.jp

Direct observation of molecular motions is one of the most fundamental issues for
elucidating the physical properties of individual molecules and their reaction mecha-
nisms. Atomic force microscopy (AFM) enables direct molecular imaging, especially
for biomolecules in the physiological environment. We have developed AFM-based
single-molecule observation systems for biomolecule imaging by employing DNA
origami nanostructures and high-speed AFM. [1, 2] Using this system, we have char-
acterized the DNA structural changes and enzyme reactions in the DNA nanostructures.
We also employed photochemical reactions to construct the mobile nanosystems and
devices controlled by hybridization and dehybridization of DNA strands by
photo-irradiation. Using the photoresponsive systems, we directly observed the dynamic
assembly and disassembly of hexagonal origami structures on a lipid bilayer during
high-speed AFM scanning. [3] We further employed a lipid-bilayer to observe the
dynamic 2D array formation from cross-shaped, triangular, and hexagonal origami
monomers. [4] For control of a linear molecular movement, a pyrene-attached DNA
motor and the track were assembled on the DNA origami tile. [5] We observed the
photo-induced movement of the motor on the DNA origami surface as similar to an
enzyme-induced DNA motor. In addition, we constructed a photo-controllable rotator
system on the DNA origami tile, and the rotary movement of the photoresponsive DNA
nanostructure was observed by switching UV/Vis irradiation. These chemically con-
trolled DNA nanosystems are expected to be applied for construction of mobile
nanostructures and nanodevices. Also the high-speed AFM observation supports the
detailed analysis of the movements of the target molecules and the morphology changes
of the nanostructures at nanoscale resolution.

References

1. Endo, M., Sugiyama, H.: Acc. Chem. 47, 1645–1653 (2014)
2. Rajendran, A., Endo, M., Sugiyama, H.: Chem. 114, 1493–1520 (2014)
3. Suzuki, Y., Endo, M., Yang, Y., Sugiyama, H.: J. Am. Chem. Soc. 136, 1714–1717 (2014)
4. Suzuki, Y., Endo, M., Sugiyama, H.: Nature Commun. 6, 8052 (2015)
5. Yang, Y., Goetzfried, M., Hidaka, K., You, M., Tan, W., Sugiyama, H., Endo, M.: Nano Lett.

15, 6672–6676 (2015)

Decision Making by Photonics: Experiment
and Category Theoretic Foundation

Makoto Naruse1, Martin Berthel2, Aurélien Drezet3, Serge Huant4,
Hirokazu Hori5, and Song-Ju Kim6

1 National Institute of Information
and Communications Technology, Tokyo, Japan

naruse@nict.go.jp
2 University Grenoble Alpes, CNRS, Institute NEEL, Grenoble, France

martin.berthel@u-bordeaux.fr
3 University Grenoble Alpes, CNRS, Institute NEEL, Grenoble, France

serge.huant@neel.cnrs.fr
4 University Grenoble Alpes, CNRS, Institute NEEL, Grenoble, France

serge.huant@neel.cnrs.fr
5 University of Yamanashi, Kofu, Japan

hirohori@yamanashi.ac.jp
6 National Institute for Materials Science, Tsukuba, Japan

KIM.Songju@nims.go.jp

Decision making is a vital function in the age of artificial intelligence. Here we
experimentally demonstrate that single photons can be used to make decisions in
uncertain, dynamically changing environments and describe its category theoretic
foundation. The specific decision making problem under study is the multi-armed
bandit problem where a user tries to maximize the total reward from multiple slot
machines. To find the machine with the highest reward probability, the user needs to
explore. However, excessive exploration may result in frequent losses whereas insuf-
ficient exploration may lead to the user missing the best machine; there is a difficult
trade-off called exploration-exploitation dilemma. We aim to physically resolve this
problem by using the dual probabilistic and particle attributes of single photons. The
propagation direction of a linearly polarized single photon that impinges on a polar-
ization beam splitter changes probabilistically depending on the polarization. Mean-
while, an individual single photon was detected by either of the destination
photodetectors. These quantum attributes of light were utilized in our optical system,
which includes a nanodiamond as the single photon source and a polarization con-
troller. Adequate and adaptive decision making for two-armed bandit problem was
successfully solved [1]. Further, by introducing a hierarchical architecture, four-armed
bandit has been solved leading to the scalability of photon decision making [2].
Further, we developed a category theory foundation for the single-photon-based
decision making, including a quantitative analysis that agrees well with the experi-
mental results [3]. Category theory is a branch of mathematics that formalizes math-
ematical structure into collections of objects and morphisms. One of the significant
features of category theory is that objects and morphisms are determined by the role

they play in a category via their relations to other objects and morphisms, i.e., by their
position in a structure and not by what they are or what they are made. Such a nature of
category theory is highly beneficial to reveal complex interdependencies of the entities
in decision making in a most simplified manner, including the dynamically changing
environment. In particular, the octahedral and braid structures of the triangulated cat-
egories provide a clear understanding and quantitative metrics of the underlying
mechanisms for single-photon decision makers. This is the first demonstration of a
category theory interpretation of decision making and it provides a solid understanding
and a fundamental design for intelligence.

Acknowledgements. This work was supported in part by the Core-to-Core Program,
A. Advanced Research Networks from the Japan Society for the Promotion of Science.

References

1. Naruse, M., Berthel, M., Drezet, A., Huant, S., Aono, M., Hori, H., Kim, S.-J.: Single-photon
decision maker. Sci. Rep. 5, 13253 (2015)

2. Naruse, M., Berthel, M., Drezet, A., Huant, S., Hori, H., Kim, S.-J.: Single photon in hier-
archical architecture for physical decision making: photon intelligence. ACS Photonics, 3,
2505–2514 (2016)

3. Naruse, M., Kim, S.-J., Aono, M., Berthel, M., Drezet, A., Huant, S., Hori, H.: Category
theoretic foundation of single-photon-based decision making. arXiv:1602.08199

XVI M. Naruse et al.

http://arxiv.org/abs/1602.08199

Contents

Invited Talks

The Power of Analogue-Digital Machines (Extended Abstract) 3
José Félix Costa

Ways to Compute in Euclidean Frameworks. 8
Jérôme Durand-Lose

Contributed Papers

Real-Time Computability of Real Numbers by Chemical
Reaction Networks . 29

Xiang Huang, Titus H. Klinge, James I. Lathrop, Xiaoyuan Li,
and Jack H. Lutz

Towards Temporal Logic Computation Using DNA Strand
Displacement Reactions . 41

Matthew R. Lakin and Darko Stefanovic

Quantum-Dot Cellular Automata: A Clocked Architecture for High-Speed,
Energy-Efficient Molecular Computing . 56

Enrique P. Blair

Platform Color Designs for Interactive Molecular Arrangements 69
Jasper Braun, Daniel Cruz, and Nataša Jonoska

Self-assembly of Shapes at Constant Scale Using Repulsive Forces 82
Austin Luchsinger, Robert Schweller, and Tim Wylie

Verification in Staged Tile Self-Assembly . 98
Robert Schweller, Andrew Winslow, and Tim Wylie

Self-Assembly of 4-Sided Fractals in the Two-Handed Tile
Assembly Model . 113

Jacob Hendricks and Joseph Opseth

Self-assembled DC Resistive Circuits with Self-controlled
Voltage-Based Growth. 129

Russell Deaton, Rojoba Yasmin, Tyler Moore, and Max Garzon

Morphogenetic and Homeostatic Self-assembled Systems 144
Petr Sosík, Vladimír Smolka, Jan Drastík, Tyler Moore, and Max Garzon

http://dx.doi.org/10.1007/978-3-319-58187-3_1
http://dx.doi.org/10.1007/978-3-319-58187-3_2
http://dx.doi.org/10.1007/978-3-319-58187-3_3
http://dx.doi.org/10.1007/978-3-319-58187-3_3
http://dx.doi.org/10.1007/978-3-319-58187-3_4
http://dx.doi.org/10.1007/978-3-319-58187-3_4
http://dx.doi.org/10.1007/978-3-319-58187-3_5
http://dx.doi.org/10.1007/978-3-319-58187-3_5
http://dx.doi.org/10.1007/978-3-319-58187-3_6
http://dx.doi.org/10.1007/978-3-319-58187-3_7
http://dx.doi.org/10.1007/978-3-319-58187-3_8
http://dx.doi.org/10.1007/978-3-319-58187-3_9
http://dx.doi.org/10.1007/978-3-319-58187-3_9
http://dx.doi.org/10.1007/978-3-319-58187-3_10
http://dx.doi.org/10.1007/978-3-319-58187-3_10
http://dx.doi.org/10.1007/978-3-319-58187-3_11

Superposition as Memory: Unlocking Quantum Automatic Complexity 160
Bjørn Kjos-Hanssen

Solving the Bin-Packing Problem by Means of Tissue P System
with 2-Division. 170

Hepzibah A. Christinal, Rose Rani John, D. Abraham Chandy,
and Miguel A. Gutiérrez-Naranjo

Universal Matrix Insertion Grammars with Small Size 182
Henning Fernau, Lakshmanan Kuppusamy, and Sergey Verlan

Deduplication on Finite Automata and Nested Duplication Systems. 194
Da-Jung Cho, Yo-Sub Han, and Hwee Kim

Descrambling Order Analysis in Ciliates . 206
Nazifa Azam Khan and Ian McQuillan

Author Index . 221

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-58187-3_12
http://dx.doi.org/10.1007/978-3-319-58187-3_13
http://dx.doi.org/10.1007/978-3-319-58187-3_13
http://dx.doi.org/10.1007/978-3-319-58187-3_14
http://dx.doi.org/10.1007/978-3-319-58187-3_15
http://dx.doi.org/10.1007/978-3-319-58187-3_16

Invited Talks

The Power of Analogue-Digital Machines

(Extended Abstract)

José Félix Costa1,2(B)

1 Department of Mathematics, Instituto Superior Técnico,
Universidade de Lisboa, Lisboa, Portugal

fgc@math.tecnico.ulisboa.pt
2 Centro de Filosofia das Ciências da Universidade de Lisboa, Lisboa, Portugal

The ARNN abstract computer,1 extensively analysed in [28], introduces an
analogue-digital model of computation in discrete time. When the parameters
of the system (so-called weights) are real-valued,2 the computations cannot be
specified by finite means: we have computation without a program. Several other
models of analogue-digital computation were introduced around the same time to
explore the power of reals added to digital computation (see [17,27,29]). Under
the polynomial time constraint, the ARNN efficiently performs not only all Tur-
ing machine efficient computations,3 but also computes non-recursive functions
such as (a unary encoding of) the halting problem (of Turing machines). The
reals4 are introduced into the computation by means of measurements made
either by a few neurons that read a weight byte by byte, or by means of a
real-valued probability of transition. In the first case, the ARNN decides P/poly
in polynomial time and, in the second case, the ARNN decides BPP// log�
in polynomial time. However, in these systems, measurements sound physically
unrealistic since the function involved in computing the so-called activation of
the neurons (the physical processors) is the well-behaved piecewise linear func-
tion, exhibiting sharp vertices. In an attempt to recover the classical analytic
sigmoid activation function, in [25], the power of the deterministic ARNN in
polynomial time drops to P/ log� as shown in [7,19].

Criticism was addressed towards the possibility of engineering such machines.
In [20], Martin Davis pointed clearly that the only way a machine can go beyond
the Turing limit is being provided with non-computable information and in [21]
he says that, even if a machine could compute beyond the Turing limit, we would
not be able to certify that fact (a phenomenon that can be well understood in
[24], since only the computable character of a function can be verified — but
not decided — in the limit). In [30], Younger et al. discuss the realization of
BPP// log� super-Turing machines with their electronic engineering project. In
our paper, the general model is only intended to establish limits to abstract
and ideal computing devices that, like the ARNN, have access to real numbers

1 Analogue Recurrent Neural Net.
2 Real weights are quite common in the neural net literature.
3 A few rational weights being enough for the purpose.
4 In fact, the truncated reals. The amount of precision depends on the size of the

input.

c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 3–7, 2017.
DOI: 10.1007/978-3-319-58187-3 1

4 J.F. Costa

by means of an ideal measurement in Classical Physics. It should be noted that
measurements of physical quantities are also the subject of well-developed theory
that started with Hempel and Carnap (see [18,22,23]). Their theory explains how
numerical representations of qualitative attributes are possible and is laid out in
the work of Krantz et al. [26].

In order to understand the computations of new paradigms of computing
involving real numbers, it was proposed in [5,6] to replace the classical oracle
to a Turing machine by an analogue device like those in the hybrid models of
the sixties (see [16] for those analogue-digital models).

The oracles that we considered are physical processes that enable the Turing
machine to measure quantities. As far as we have investigated (see [15]), mea-
surements can be classified in one of the three types:5 one-sided or threshold
measurement, two-sided measurement and vanishing measurement. A one-sided
experiment is an experiment that approximates the unknown value y just from
one side, i.e. it approximates an unknown value y either with values z from above
or with values z from below, checking either if y < z or if z < y, but not both.
A two-sided experiment6 is an experiment that approximates the unknown value
y from both sides, i.e. it approximates the unknown value y with values z from
above and with values z from below, checking if y < z and z < y. A vanishing
experiment is an experiment that approximates the unknown value y measuring
the number of ticks of a (Turing machine) clock.7 This type of experimental clas-
sification is neither in Hempel’s original work in [23], nor in the fully developed
theory in [26].

For the previous types of oracle, the communication between the Turing
machine and the oracle is ruled by one of the following protocols, inter alia (see
[8] for the other protocols):

– Infinite precision: the oracle answers to the queried word with infinite
precision;

– Arbitrary precision: the oracle answers to the queried word with probability
of error that can be made as small as desired but is never 0;

– Fixed precision ε > 0: the oracle answers to the queried word with probability
of error ε.

It was then realised that the interaction between the analogue part – experi-
ment to conduct or value to be measured – and the digital part – the scientist or
the computer – takes (physical) time that is at least exponential in the desired
number of bits of precision (see [10–15]). (This physical time is intrinsic to phys-
ical law and does not represent the time needed for the activity of measurement
itself.) Having discovered such a timing restriction (that in the ARNN model cor-
responds to the replacement of the piecewise linear or saturated sigmoid by the
analytical sigmoid), we engaged in an investigation on experimental apparatuses

5 This is still conjecture.
6 ARNN computes with a two-sided experiment.
7 A time constructible function.

The Power of Analogue-Digital Machines 5

in order to answer the question What can one compute with the help of a mea-
surement of a magnitude? (see [1,4,8,13,15]). In [1,2,4,8,9] the upper bounds
of analogue-digital computation in polynomial time under ideal conditions were
placed in BPP// log� in the case of both deterministic, and of probabilistic,
computation. In fact, the power of measurements has been BPP// log� per-
sistently, across all limited precision protocols, while it drops from P/poly to
P/ log� in the case of the deterministic measurement. We wondered whether the
barrier BPP// log� would persist in more general conditions. In [3], we show
that under the most general (ideal) conditions the upper bounds of computa-
tional power of measurements of (deterministic) infinite, arbitrary and limited
precisions are BPP// log�.

Among a number of theorems, we have shown that if these measurements
are used as an oracle to a Turing machine, then, in polynomial time, we can
compute the complexity classes listed in Table 1.

Table 1. The lower and upper bounds for the main complexity classes computed by
the analogue-digital models characterised by either a non-analytic (C0, but not C2) or
an analytic function (from C2 to analytic). These results were presented in [5,6] for
the first case and in [1,4,8] for the second case. Different classes such as BPP// log2�
and BPP// log� occur in further specialization of the protocols not considered in this
extended abstract.

Infinite Unbounded Fixed

Non-analytic analogue

Lower bound P/poly P/poly BPP// log�

Upper bound P/poly P/poly BPP// log�

Analytic analogue

Lower bound P/ log� BPP// log� BPP// log�

Upper bound P/ log� BPP// log2� or BPP// log� BPP// log2� or BPP// log�

Recently, we have moved towards understanding the computational limits of
analogue-digital machines operating in bounded space. Some new research will
be summarised.

References

1. Ambaram, T., Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: An analogue-digital
model of computation: turing machines with physical oracles. In: Adamatzky, A.
(ed.) Advances in Unconventional Computing. ECC, vol. 22, pp. 73–115. Springer,
Cham (2017). doi:10.1007/978-3-319-33924-5 4

2. Beggs, E., Cortez, P., Costa, J.F., Tucker, J.V.: A hierarchy for BPP// log� based
on counting calls to an oracle. In: Adamatzky, A. (ed.) Emergent Computation.
ECC, vol. 24, pp. 39–56. Springer, Cham (2017). doi:10.1007/978-3-319-46376-6 3

http://dx.doi.org/10.1007/978-3-319-33924-5_4
http://dx.doi.org/10.1007/978-3-319-46376-6_3

6 J.F. Costa

3. Beggs, E., Cortez, P., Costa, J.F., Tucker, J.V.: Classifying the computational
power of stochastic physical oracles (2017, submitted)

4. Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: Oracles that measure thresholds:
the Turing machine and the broken balance. J. Log. Comput. 23(6), 1155–1181
(2013)

5. Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with
experiments as oracles. Proc. Roy. Soc. Ser. A (Math. Phys. Eng. Sci.) 464(2098),
2777–2801 (2008)

6. Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with
experiments as oracles II. Upper bounds. Proc. Roy. Soc. Ser. A (Math. Phys.
Eng. Sci.) 465(2105), 1453–1465 (2009)

7. Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: A natural computation model of
positive relativisation. Int. J. Unconv. Comput. 10(1–2), 111–141 (2013)

8. Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: Computations with oracles that
measure vanishing quantities. Math. Struct. Comput. Sci. (2017, to appear)

9. Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: An analogue-digital church-turing
thesis. Int. J. Found. Comput. Sci. 25(4), 373–389 (2014)

10. Beggs, E., Costa, J.F., Tucker, J.V.: Computational models of measurement and
Hempel’s axiomatization. In: Carsetti, A. (ed.) Causality, Meaningful Complex-
ity and Embodied Cognition. (TDLA), vol. 46, pp. 155–184. Springer, Dordrecht
(2010). doi:10.1007/978-90-481-3529-5 9

11. Beggs, E., Costa, J.F., Tucker, J.V.: Limits to measurement in experiments gov-
erned by algorithms. Math. Struct. Comput. Sci. 20(06), 1019–1050 (2010)

12. Beggs, E., Costa, J.F., Tucker, J.V.: Physical oracles: the Turing machine and the
Wheatstone bridge. Stud. Logica. 95(1–2), 279–300 (2010)

13. Beggs, E., Costa, J.F., Tucker, J.V.: Axiomatising physical experiments as oracles
to algorithms. Philos. Trans. Roy. Soc. Ser. A (Math. Phys. Eng. Sci.) 370(12),
3359–3384 (2012)

14. Beggs, E., Costa, J.F., Tucker, J.V.: The impact of models of a physical oracle on
computational power. Math. Struct. Comput. Sci. 22(5), 853–879 (2012)

15. Beggs, E., Costa, J.F., Tucker, J.V.: Three forms of physical measurement and
their computability. Rev. Symb. Log. 7(4), 618–646 (2014)

16. Bekey, G.A., Karplus, W.J.: Hybrid Computation. Wiley, Hoboken (1968)
17. Bournez, O., Cosnard, M.: On the computational power of dynamical systems and

hybrid systems. Theoret. Comput. Sci. 168(2), 417–459 (1996)
18. Carnap, R.: Philosophical Foundations of Physics. Basic Books, New York City

(1966)
19. Costa, J.F., Leong, R.: The ARNN model relativizes P == NP and P =/= NP.

Theoret. Comput. Sci. 499(1), 2–22 (2013)
20. Davis, M.: The myth of hypercomputation. In: Teuscher, C. (ed.) Alan Turing:

The Life and Legacy of a Great Thinker, pp. 195–212. Springer, Heidelberg (2006).
doi:10.1007/978-3-662-05642-4 8

21. Davis, M.: Why there is no such discipline as hypercomputation. Appl. Math.
Comput. 178(1), 4–7 (2006)

22. Geroch, R., Hartle, J.B.: Computability and physical theories. Found. Phys. 16(6),
533–550 (1986)

23. Hempel, C.G.: Fundamentals of concept formation in empirical science. Int. Encycl.
Unified Sci. 2(7) (1952)

24. Kelly, K.T.: The Logic of Reliable Inquiry. Oxford University Press, Oxford (1996)
25. Kilian, J., Siegelmann, H.T.: The dynamic universality of sigmoidal neural net-

works. Inf. Comput. 128(1), 48–56 (1996)

http://dx.doi.org/10.1007/978-90-481-3529-5_9
http://dx.doi.org/10.1007/978-3-662-05642-4_8

The Power of Analogue-Digital Machines 7

26. Krantz, D.H., Duncan Luce, R., Suppes, P., Tversky, A.: Foundations of Measure-
ment, vol. I. Dover, Mineola (2007)

27. Moore, C.: Unpredictability and undecidability in dynamical systems. Phys. Rev.
Lett. 64(20), 2354–2357 (1990)

28. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing
Limit. Birkhäuser, Basel (1999)

29. Woods, D., Naughton, T.J.: An optical model of computation. Theoret. Comput.
Sci. 334(2005), 227–258 (2004)

30. Younger, A.S., Redd, E., Siegelmann, H.: Development of physical super-turing
analog hardware. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS,
vol. 8553, pp. 379–391. Springer, Cham (2014). doi:10.1007/978-3-319-08123-6 31

http://dx.doi.org/10.1007/978-3-319-08123-6_31

Ways to Compute in Euclidean Frameworks

Jérôme Durand-Lose(B)

Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans,
Orléans, France

jerome.durand-lose@univ-orleans.fr

Abstract. This tutorial presents what kind of computation can be car-
ried out inside a Euclidean space with dedicated primitives—and discrete
or hybrid (continuous evolution between discrete transitions) time scales.
The presented models can perform Classical (Turing, discrete) compu-
tations as well as, for some, hyper and analog computations (thanks
to the continuity of space). The first half of the tutorial presents three
models of computation based on respectively: ruler and compass, local
constraints and emergence of polyhedra and piece-wise constant deriva-
tive. The other half concentrates on signal machines: line segments are
extended and replaced on meeting. These machines are capable hyper-
computation and analog computation and to solve PSPACE-problem in
“constant space and time” though partial fractal generation.

Keywords: Analog computation · Computability · Fractal computa-
tion · Fractal generation · Hybrid-computation · Hyper-computation ·
Mondrian Automata · Piece-wise constant derivative · Ruler and com-
pass · Signal machine · Turing computation

1 Introduction

This tutorial provides some insight on the following question: What can be done
with a Euclidean space with dedicated primitives and controls? Space is not con-
sidered as the place to assemble gates and wires but as the substrate of com-
putation itself. The general framework is not machines or automata but some
Euclidean space where information is displayed and evolved according to some
dynamics.

The approaches considered here are: constructions with ruler and compass,
polyhedra emerging from local constraints, extending a sequence of line segments
across polyhedral regions, extending line segments until they intersect, etc. In
each case, distance, carried information, available room, encounters/collisions,
etc., are elements where spatial localization matters.

Space is Euclidean, this means, on the one hand, that it is continuous and,
on the other hand, that the underlying geometry is the one of points, lines
and circles. This geometrical point of view is prevalent here as shown by the
illustrations. This general framework has limitations: no differential equation, no

c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 8–25, 2017.
DOI: 10.1007/978-3-319-58187-3 2

Ways to Compute in Euclidean Frameworks 9

algebraic geometry, etc. Outside of instantaneous “border” crossing or apparatus
operation, all is straightforward and absolutely plain. The models presented here
belong to a more general framework: hybrid systems with continuous (related to
the nature of space and possibly time) and discrete (phase transition, collision,
etc.) traits.

Continuity opens the way to Zenon effects : an infinite number of discrete
transitions during a finite (continuous) duration (in a finite space). Many models
use this capability to hyper-compute (solving the Halting problem and even “less
computable” problems, see Syropoulos (2010)).

Like Euclidean geometry, presented models are idealized: lines have zero
width, positions are exact, etc. From the physics standpoint, they are more
abstract than realistic: unbounded density of information, space is Euclidean at
every scale, etc.

When Turing computability is addressed, rational versions of the models are
used: all coordinates, speeds, etc., are rational numbers. On the one hand, this
often allows exact manipulation on a computer and on the other hand, it prevents
oracles to be encoded in the system as a real number [for example the solution
to the Halting problem as Chaitin’s omega number (Calude 2002, Chap. 7)].

Each presented model is described, main results and references are provided.
Proofs are omitted as well as complex results. Clues are provided as long as they
remain intelligible.

This tutorial has two parts. The first part presents three computing models.
The first model, the Geometric Computation Machines of Huckenbeck (1989,
1991), uses an automaton to activate ruler and compass and generates points,
lines and circles. The second one, the Mondrian Automata of Jacopini and
Sontacchi (1990), starts from uniform local constraints (on open balls from R

n)
on space-time diagrams ensuring causality; from these emerge polyhedra at the
usual scale. The third one, the Piece-wise Constant Derivative of Asarin and
Maler (1995); Asarin et al. (1995), partitions space into polyhedral regions cor-
responding to constant speeds; the orbit starting from a single point can perform
infinitely many region changes during a finite portion.

The second part concentrates on one model: the signal machines of
Durand-Lose (2005, 2006). After the definition of the model, a simulation of a
generic Turing machine is presented. Using the continuity of both space and time,
it is possible to dynamically scale down the computation and accelerate to imple-
ment a form of the Black Hole model of computation (and to hyper-compute).
Fractal generation scheme can be used in order to dispatch sub-computations
and to achieve fractal computation (allowing, e.g., to solve quantified SAT in
constant space and time). This part ends by showing that the model is capable
of analog computation (computing over real numbers).

This survey of computing models involving space is not comprehensive. Some
models like cellular automata or tile assembling systems have their own devoted
conferences (or already had been the subject of a tutorial at UCNC) and have
so much literature about that each would spread over a few books; it would be
pointless to present them in a few pages. Models using higher level mathematics

10 J. Durand-Lose

(differential equations, algebraic geometry, etc.) would not fit here and neither
would algorithmic geometry. Many others (e.g. continuous counterparts of cel-
lular automata like (Hagiya 2005; Takeuti 2005), use of optics to manipulate
2D-pictures (Naughton and Woods 2001; Woods and Naughton 2005)) are not
addressed just because the purpose is to show the variety and specificity and not
make an inventory.

This tutorial is based on the survey Durand-Lose (2016).

2 Three Models Operating on Euclidean Geometry

2.1 Ruler and Compass

This section is devoted to the work of Huckenbeck (1989, 1991) on Geometric
Computation Machines. The primitives of these machines are the usual geometric
operations that can be carried out with ruler and compass. The purpose is not
to do algorithmic geometry (would it be discrete, symbolic or algebraic) but to
construct in a two dimensional Euclidean space.

Each machine is an automaton (or program) equipped with a finite number
of registers. There are three kinds of register: for points, for lines and for circles.
The states of the automaton are used to represent both the program counter
and to record the state of the computation (i.e. Unfinished, Finished and Error, the
last two ones are final).

The available operations are:

– output a value (point, line or circle),
– put in a register the intersection of two lines,
– put in a register one of the intersections of a line and a circle (optionally

different from some point),
– put in a register one of the intersections of two circles (optionally different

from some point),
– put in a register the line going through two points,
– put in a register the circle whose center is given (as a point) as well as its

radius (as the distance between two points),
– copy a register, and
– Finished.

Intersections do not necessarily exist and neither are unique. This means that
the execution of the automaton is non deterministic. Whenever an instruction
cannot be carried out, the branch (of the tree of all possible executions) ends
with Error.

If the whole tree of possible executions is finite, has only Finished (i.e. no
Error) leafs and all its branches generate the same output, then the computation
succeeds and the output is the common output (it is generated by every branch).
For example, the program of Fig. 1 computes the middle of a segment (whose
extremities are A and B and are the only input). Please note that there are two
possible executions (where are p1 and p2?), but their outputs are identical.

Ways to Compute in Euclidean Frameworks 11

1: c1← Circle (center A, radius d(A,B))
2: c2← Circle (center B, radius d(A,B))
3: p1← Intersection (c1, c2)
4: p2← Intersection (c1, c2) different from p1

5: d1← Line (p1, p2)
6: d2← Line (A, B)
7: p3← Intersection (d1, d2)
8: Output p3

9: Finished

(a) program

A B
p3

c1

c2

d1

d2

(b) construction

Fig. 1. Constructing the middle of the segment AB.

With the given primitives, it is also possible to construct the perpendicular
to a line passing through a point and then the parallel.

Conditional jump instructions are like “if pk ∈E go to i: otherwise to j:”
where pk is a point-register and E is a predefined set used as an oracle.

A simple case is when E contains only the origin (0, 0) and points (1, 0) and
(0, 1) are provided as constants. The functions (computable in bounded time)
from an n-tuple of points to n-tuple of points are exactly the ones where the
input is divided in finitely many pieces (defined as intersection of finitely many
algebraic surfaces) where the coordinates of the output can be expressed with
rational functions. This is related to the possibility to implement the following
primitives: on the one hand, projections (x, y) → (x, 0), (x, y) → (y, 0) and recon-
struction (x, 0) (y, 0) → (x, y) and, on the other hand, addition, multiplication
and division on the x axis as on Fig. 2.

(0, 0) y

x+y
2

x

x+y

(a) addition: (x+y
2

, 0) then (x + y, 0)

y

1

(0, 0) 1 xy xy

(b) multiplication: (0, y) then (xy, 0)

Fig. 2. Constructing from (x, 0) and (y, 0) with constants (0, 0), (1, 1) and (0, 1).

This corresponds to the classical construction of numbers computable with
rule and compass (Conway and Guy 1996, Chap. 7). These are also closed by
square rooting. Here, the condition that each branch should generate the same
output makes it impossible for root to appear (Huckenbeck 1991).

It should be noted that since the following operations can be performed:
(x, 0) → (x + 1, 0), (x, 0) → (x − 1, 0), and test whether (x, 0) is (0, 0); an
unbounded counter can be encoded with a point register. These machines can
simulate any 2-counter automaton and are thus Turing-universal.

12 J. Durand-Lose

2.2 Mondrian Automata

The work of Jacopini and Sontacchi (1990) starts from a space and time modeling
of reality. Hypotheses are made from which follow local constraints that brought
forth the emergence of polyhedra.

In a Euclidean space of any dimension, each point is associated with a
state/color. The hypothesis is made that color and local neighborhood are linked:
if two points have the same color, then there is a sufficiently small (non-zero)
radius where balls match. This is depicted in Fig. 3.

(a) colored space (b) local constraints

Fig. 3. Mondrian space. (Color figure online)

As a consequence, if there is a ball of uniform color then any point of this
color is only surrounded by this color. Topologically, this means that they form
an open set. Similarly, if there is a curve (of zero width) of a color then the curve
must be a line segment: identical neighborhood implies a constant derivative.
All the points of this color must be on parallel line segments and, following any
direction, the surrounding colors should be the same. The extremities of the
segments should have different colors.

More generally, each color corresponds to polyhedral regions of equal and
parallel dimension. When they are restricted to their dimensions, they are open
and the frontiers of lesser dimensions should be colored differently. Whereas
following any other direction, adjacent colors are always the same.

Another hypothesis is that there is a finite number of colors. Hence, having a
common neighborhood (up to re-scaling) for each color defines all the constraints.
They provide all the information on the dimensions and directions associated to
each color as well as the color of the neighbors of higher dimensions.

Next step consists in adding one dimension for time and constraints for
causality. This is defined by a speed of light, c and the condition that the color
of a point is uniquely defined by what is inside the past cone (delimited by
the speed of light). Figure 4(b) shows two portions of space at different dates

Ways to Compute in Euclidean Frameworks 13

where colors are displayed similarly. The two cones based on these portions and
delimited by the speed of light are thus identical.

t−Δ

t

t+Δ

x

y

time

cΔ

cΔ

(a) past and future cones

x

y

time

Δ

t

Δ

t

(b) causality

Fig. 4. Cones and causality. (Color figure online)

Another argument from physical modelisation is that the system should be
reversible at local scale. This implies that the same constraint is also applied
with time running in the opposite direction. This corresponds to exchanging the
cones (pointing to past and future) in Fig. 4(b).

Temporal constraints can also be read at the polyhedra scale. It is possible to
think in terms of intersections and collisions (this kind of approach is developed
in the signal machine section). At this level, simulating a Turing machine in
dimension 2 (or 1 + 1 for time) would look like Fig. 8(b) except for reversibility.
(Reversible signal machines can compute as proven in Durand-Lose (2012).)

2.3 Piece-Wise Constant Derivative

In this model introduced in Asarin and Maler (1995), space is partitioned into a
finite number of polyhedral regions. On each region, a constant speed is defined.
On Fig. 5, thick lines separate the regions and the arrows indicate the directions
of speeds.

Starting from any point a trajectory is defined. When a region border is
reached, movement just follows on the other side with the new speed. In Fig. 5,
two trajectories are indicated. They both start on the left. The dashed trajectory
changes direction twice and then goes away forever. The dotted one is wrapping
itself infinitely around the intersection point of three regions.

This second trajectory is singular: it changes region infinitely often but nev-
ertheless reaches its limit in finite time (as a convergent geometrical sum) and
stops there. There are two distinct time scales: a continuous time one where the
limit is reached in finite time and an infinite discrete time one (of region change
events). This is a Zeno phenomenon/effect.

The rest of the section is restricted to rational initial points and vertices (of
polyhedra). Those systems can compute considering that the input is the initial

14 J. Durand-Lose

Fig. 5. Piece-wise Constant Derivative trajectories.

position (in a given zone) and that halt and result correspond to entering some
other identified zone. In four dimensions, it is possible to encode the configuration
of a Turing machine and operate it in the following way. The words over {a, b}
(left and right part of the tape) are encoded with the recursive function ψ defined
by: ψ(ε) = 1/4, ψ(a.w) = 1/3(1 + ψ(w)), and ψ(b.w) = 1/3(2 + ψ(w)). Symbols
can be accessed by the primitives in Fig. 6. (Scaling in Fig. 6(b) is done by
changing the direction; proportions are preserved by Thales’s theorem.) The
tape needs two dimensions ((0, 1)2). The state is encoded as the part in space
the trajectory is in. The trajectory loops and that each loop corresponds to a
transition of the Turing machine. Building and merging the “looping pipes” use
the two extra dimensions.

0

1
b

a

ε

(a) extract the first symbol

0

1

(b) re-scale

0

1

(c) prefixing with a

Fig. 6. Primitives for manipulating sequences of symbols.

With a more involved proof, the Reachability problem—to decide whether a
zone can be reached from a point—is thus undecidable in dimension 3 and above.
Adding dimensions to the systems allows to add nested levels of Zeno effect and
to climb hierarchies in the undecidable. With d dimensions, the level d−2 of the
arithmetical hierarchy (viz. Σd−2)1 is decidable (Asarin and Maler 1995; Asarin
et al. 1995). The model is even more powerful: Reachability is complete on levels
of the hyper-arithmetic hierarchy2 (Bournez 1997, 1999a,b).
1 Σ0 is the recursive sets, Σ1 is recursively enumerable sets, e.g. the Halting problem.
2 Extension of the arithmetical hierarchy to ordinal indices.

Ways to Compute in Euclidean Frameworks 15

3 Signal Machines

This section is dedicated to signal machines (SM) (Durand-Lose 2005, 2006).
This model was born as a continuous abstraction of Cellular Automata (CA)
(Durand-Lose 2008). Signals allow to store and transmit information, to start a
process, to synchronize, etc. They are the key tool in CA both for building CA
and for understanding. CA dynamics are often detailed as signals interacting in
collisions resulting in the generations of new signals.

CA-signals extend over one or more discrete cells whilst SM-signals are
dimensionless points on a 1-dimensional Euclidean space. The main properties of
CA are preserved: synchronicity (signals move at the same pace) and uniformity
(the dynamics are always and everywhere the same: the speeds and interac-
tions only rely on the nature of signals, like CA-patterns define the evolution of
discrete signals). Signals have uniform movement and “draw” line segments on
space-time diagrams. The nature of a signal is called a meta-signal.

A Signal machine (SM) is defined by a triplet (M,S,R) where M is a finite
set of meta-signals, S is a function associating a speed to each meta-signal, and R
is a set of collision rules. A collision rule associates to sets of at least two meta-
signals of different speeds (incoming) a set of meta-signals of different speeds
(outgoing). R is deterministic: a set appears at most once as the left (incoming)
part of a rule.

In any configuration, there are finitely many signals and collisions. They are
located in distinct places in space. Since a signal is completely defined by its
associated meta-signal and a collision by a rule, a configuration is fully defined
by associating to each point on the real axis a meta-signal, a rule or nothing.

As long as signals do not meet, each one moves uniformly; whereas as soon
as two or more signals meet, a collision happens. Collisions provide a discrete
time scale. Dynamics are defined using it: at any collision, incoming signals are
instantly replaced by outgoing signals according to collision rules. In-between
collisions, signals regularly propagate. This emphasizes the hybrid aspect of SM:
continuous steps separated by discrete steps.

To find the location of a collision, a linear system of two equations in two
variables has to be solved. Thus the location of any collision of signals whose
speeds and initial locations are rational numbers, has to be rational. A signal
machine is rational (Q-SM) if all speeds are rational numbers as well as any non-
void positions in any initial configuration. In any generated space-time diagram,
all collisions have rational locations and the positions of signals are rational at
each collision time.

Example 1 (Finding the middle). It is possible to compute the middle of two
signals, i.e. to position a signal exactly there. This is illustrated in Fig. 7 where
a O signal is positioned exactly half-way between two W signals (bottom of
Fig. 7(c)). The meta-signals and collision rules are defined in the left Fig. 7. On
the right, is depicted a space-time diagram generated from a configuration with
signals of meta-signals (left to right): Sub, Add, Add, W and W.

16 J. Durand-Lose

The process is started by the arrival of a Add signal on the left. When it
encounters the left W, it is transformed into A and

−→
R . The latter is three times

faster than the former and bounces on the right W; it becomes then
←−
R , still

three times faster (but with opposite direction). It encounters A exactly half-
way between the two W. The correct positioning of this collision can be proved
by computing the locations of all the intermediate collisions.

Considering the rules in Fig. 7(b), finding the middle only uses the three first
ones as can be read from the diagram. The fourth one allows to generate the
middle between the left W and the first O on right of it. This is started by
sending another Add from the left as illustrated in the middle in Fig. 7(c).

It is also possible to suppress the first O on the right of the left W. To achieve
this, a Sub order is sent from the left. It becomes E when passing over W. Signal
E collides and destroys the first O it encounters. This corresponds to the last
two rules and the top of Fig. 7(c).

Name Speed
Add, Sub 1/3

A, E 1
O, W 0−→
R 3←−
R −3

(a) meta-signals

{Add,W } → {W,A,
−→
R }

{ −→
R ,W } → { ←−

R ,W }
{A,

←−
R } → {O }

{ −→
R ,O } → { ←−

R ,O }
{ Sub,W } → {W, E }

{ E,O } → { }
(b) collision rules

Space
R

T
im

e

R
+

Sub

W

W

W

W

W

W

Add

AAdd

A

E

−→
R

←−
R

−→
R

←−
R

O

OO

(c) space-time diagram

Fig. 7. Finding the middle and more.

Finding the middle is a key primitive for designing SM. For example, as
shown above, it is possible to use it repeatedly to record any natural number in
unary (with O’s as in Fig. 7(c)) in a bounded space.

3.1 Turing Computability

Signal machines can simulate any Turing machine (TM) as shown in Fig. 8. The
evolution of the TM in Fig. 8(a) can be seen in Fig. 8(b). Vertical (null speed)
signals encode each cell of the tape. Zigzagging signals indicate the position of
the head and record the state of the automaton. Another interest of SM is to
provide graphical traces.

The enlargement of the tape is done with the middle construction, but back-
wards! It is also possible to set these speeds such that the distance is halved

Ways to Compute in Euclidean Frameworks 17

^

qf

b b a b #

^

qf

b b a b #

^

qf

b b a b #

^

qf

b b a b #

^

q2

b b a # #

^

q1

b b # # #

^

q1

b a # # #

^

q1

a a # # #

^

qi

a b # # #

^

qi

a b # # #

^

qi

a b # # #

(a) TM run

T
im

e

^

^

^

a

a

b

b

b

a

b

b

#

a

a

b

−→qi

−→qi

−→qi

←−q1

−→q1

−→q1

−→q2←−
#

−→
#

←−qf

←−
#

−→
#

←−qf

←−
#

−→
−→

#

#
←−qf

←−qf

←−qf

(b) SM simulation

Fig. 8. Simulating a Turing machine with a signal machine.

each time. The width of the whole tape is then bounded independently from the
number of cells.

This construction works on Q-SM that can be simulated exactly on any
computer. Leaving open the definition of input, halt and output, Q-SM have
exactly the same computing power as TM. This leads to the undecidability
of many problems for Q-SM (expressible in classic context since everything is
rational) like: decide whether the number of collisions is finite or decide whether
a meta-signal appears or a collision rule is used.

Using various meta-signals similar to O in Fig. 7, it is possible to encode
sequences of letters functioning as a stack. This can also be achieved by using
positions to encode values (Durand-Lose 2006) (with irrational positions, it is
even possible to encode infinite stacks). It is possible to simulate any TM with
a constant number of signals and collisions involving only two signals resulting
in exactly two signals (conservation of the number of signals), but moreover this
remains true if rules should be injective: the rule is also defined by outgoing sig-
nals (reversibility) (Durand-Lose 2012). This simulation uses reversible universal
TM (Bennett 1988; Lecerf 1963; Morita et al. 1989).

Signal machines can also be used to simulate the Cyclic Tag Systems intro-
duced in Cook (2004). His work restarted the race to small universal machines,
e.g. on TM (Woods and Neary 2009). The smallest Turing-universal SM known
simulates any CTS and has 13 meta-signals and 21 collision rules (Durand-Lose
2011b).

18 J. Durand-Lose

3.2 Malleability of Space-Time and the Black Hole Model

The context is the continuum without scale nor origin; scaling or translating the
initial produces the same space-time diagram. In particular, if all distances are
halved, then so are the durations.

It is possible to dynamically re-scale a configuration and then to restart
it with a construction similar to the PCD re-scaling in Fig. 6(b). To freeze a
computation, a signal crosses the configuration and replaces everything it meets
by parallel signals. Being parallel, there is no collision and the (relative) distances
are preserved. It is unfrozen by a signal of the same velocity as the freezing one.

There is no limit to scaling. It is possible to restart the shrinking process
forever as illustrated in Fig. 9. Each time the entangled original computation
is activated with the same relative duration because although the activation
duration is halved, since distances are halved, duration between collision is also
halved. Altogether, in this finite portion of the space-time diagram, the whole
infinite original space-time diagram is entangled.

(a) initial figure (b) structure (c) entanglement

Fig. 9. Iterated shrinking.

With a bounded space simulation of a TM entangled, if the computation
stops, then it is in bounded time. With minor modifications, it is possible to let
some signal leave the iterated shrinking in such a case. Outside of the structure,
this witness of the halt could be collected but this can only happen during a
bounded delay. This bound on duration can be “implemented” in the space-time
diagram by a collision with another signal. If the machine does not halt, then
nothing is received before that collision, whilst in case of halting, the witness is
collected before. Outside of the shrinking structure, the halt is decided. SM can
hyper-compute by creating a local Zeno effect (Durand-Lose 2005, 2006).

The general principle behind this construction is to have two time-lines: one
is infinitely accelerated and does the computation and possibly sends some signal
while the other waits for it with some timeout. This corresponds to the so-called

Ways to Compute in Euclidean Frameworks 19

Black Hole model of computation (Hogarth 2004; Andréka et al. 2009; Etesi
and Németi 2002). The accumulation above the space-time diagram in Fig. 9(c)
corresponds to the Black Hole.

3.3 Build and Use Fractals

Many fractals can be generated using SM in a straightforward way. For example,
four meta-signals are enough to build the fractal accumulation in Fig. 10(a). The
space-time diagram is undefined at this accumulation singularity. Recursively
generating middles also generate a fractal as in Fig. 10(b). By considering left
and right thirds instead of halves, a classical construction of the Cantor set is
generated as in Fig. 10(c). By varying the speed and the proportion, it is possible
to generate sets of any fractal dimension between 0 and 1 (Senot 2013, Chap. 5).

zig right
left

zag

zig

right

left

(a) simple accumulation (b) half slicing (c) Cantor set

Fig. 10. Fractals.

In Fig. 10(b) spaces are sliced in half at each step. This can be used to provide
parallelism and deal with one sub-cases on each side. For boolean formulas, it
is possible to recursively slice for each and every variable. All cases are thus
generated. If the variables appear in some boolean formula whose satisfiability
is to be checked, then one gets a scheme to solve the satisfaction of boolean
formula (SAT). This scheme can also deal with quantified variables to solve the
PSPACE-complete Quantify SAT (QSAT) (Sipser 1997, Sect. 8.3).

If a boolean formula contains 10 variables, then 10 levels of slicing are done.
(What remains of the construction of the fractal in Fig. 10(b) is useless and
dangerous since the diagram is not defined at the limit.) For example, in Fig. 11,
the QSAT formula, ∃x1∀x2∀x3 x1 ∧ (¬x2 ∨x3), is represented by a ray of signals
encoding all its elements. Computation is organized following a complete binary
tree (of depth 3). Evaluation is done on the leafs and results are aggregated on
top of the space-time diagram.

A specific machine is generated for each formula. Using a more complex
encoding, it is possible to use a unique machine for which the initial configuration
totally encodes the formula (Duchier et al. 2012; Senot 2013, Chap. 8).

It is also possible to solve other problems on formulas: how many satisfying
valuations (#SAT, #P-complete)? What is the “smallest” satisfying valuation?
etc. One “just” has to change the way the variable-free formulas are evaluated

20 J. Durand-Lose

Fig. 11. Solving QSAT with fractal computation, the whole picture.

and the results are aggregated to generate an integer, a valuation, etc. This is a
modular parametrization of the construction.

More levels of the fractal are generated as needed. It does not need more
time or space. Altogether, there is a SM able to decide any instance of QSAT in
constant space and time. Using a controlled and unfinished fractal construction
to display parallel computations and then aggregate the result is called fractal
computation.

Discrete complexity measures are defined by considering space-time diagrams
as directed acyclic graphs. A direct causal link exists between two signals if the
first ends in the collision where the second starts. A causal link is its transi-
tive closure. Time complexity is then the size of the longest sequence of signals
with direct causal link between each two consecutive signals (path in the DAG).
Space complexity is the largest number of signals without any causal link. With
these definitions, complexity is quadratic in time (cubic for the generic case) but
exponential in space.

Figure 10(a) shows that it is possible to build a fractal with only four different
speeds. With two speeds or less, the number of collisions is finite and bounded.
With three speeds, the situation is two-fold: in a Q-SM, signals must travel on
a regular mesh (without any accumulation). But accumlation might happen as
soon as there is an irrational ratio between speeds or between initial positions.
This can be understood by the presence of a mechanism computing the gcd,
which only converges on rational (Becker et al. 2003).

Ways to Compute in Euclidean Frameworks 21

What about the computing capability? In the rational case, the same mesh
shows that usable memory is finite and bounded. Whereas in the other case, it is
possible to simulate a TM using a fractal construction step to enlarge the tape
(Durand-Lose 2013).

3.4 Analog Computation

This section deals with computation on real numbers. They are represented
by the distance between two (parallel) signals of distinct meta-signals (base or
value)—or one encoding zero (zero). Dividing by two corresponds to finding
the middle. Multiplication by any constant can be done likewise. Adding two
numbers can be done as in Fig. 12(a). The presence of a parallelogram proves
the equality of the distances. Subtraction can be done similarly as depicted in
Fig. 12(b) where the parallelogram is folded around the lower right value.

base

base

base

base

value

value

value

value

add

end

12 −6

6

(a) adding 12 to −6
base

base

base

base

value

value

value

value

sub

end

12 −6

−18

(b) subtracting 12 from −6

Fig. 12. Basic operations on reals.

Starting from a sequence of real values (like the sequence of cells of the
tape of a TM), it is possible to multiply by constants and to add a value to
another inside a window (bounded part of the sequence) and to move the window.
These primitives could be triggered by some deterministic finite automata (or
sequential program). The state of the automaton can be encoded in the meta-
signals used to carry out the operations.

The automaton can be equipped with conditional transition: testing the sign
of a value can be used to branch. The automaton can have an initial and final
state (no more collisions then). Constants may be provided in the initial config-
uration.

Altogether, starting from a finite sequence of real numbers (infinity extend-
able on both side), it is possible to store in a cell the linear combination of values
around it, branch according to sign and move inside the sequence. This corre-
sponds to the BSS model (Blum et al. 1989, 1998) without inner multiplication.
It is the linear version of it: lin-BSS (Bournez 1999b; Meer and Michaux 1997)
with an unbounded number of registers.

Signal machines are capable of implementing lin-BSS. The converse is also
true. The configuration of a SM can be represented by a sequence of blocks,

22 J. Durand-Lose

each one encoding the meta-signal, the distance to next plus various temporary
registers. The lin-BSS machine runs through the configuration and computes the
minimal time to a collision. Since speeds are constant of the SM, they become
constants of the lin-BSS machine, thus everything is linear.

Once this delay to the next collision time is known, the automaton runs
through the configuration again. Distances are updated. When the distance is
zero, then a collision happens. Involved signals are replaced according to rules
(which are hard encoded into the automaton). If the number of signals is changed,
all the values on the right are moved accordingly. When room is needed (or should
be removed) shifting the values in the cells is done like for a TM.

BSS and Computable Analysis. Taking accumulations and infinitely many sig-
nals during finite duration into account allows to go further on.

For example, it is possible to extract an infinite sequence of 0 and 1 repre-
senting the binary encoding of a real number. This flow can be used to make
a multiplication: each time half and add or not depending on the received bit.
Inner multiplication thus becomes possible and the whole classical BSS model
can be implemented (Durand-Lose 2007).

Accumulation can also be perceived as a convergent approximating process
which is the foundation of recursive/computable analysis, type-2 TM (Weihrauch
2000). In this context, an input is an infinite stream of symbols representing a
convergent approximation (approximation bound is known at each step) and the
output is also such a stream (once something is output, it cannot be modified)
with the same representation. It is possible to make an accumulation to be
located according to a process generating such a stream (Durand-Lose 2009,
2011a) on a Q-SM.

One last result about isolated accumulation on Q-SM: not only they cannot
happen everywhere (by a simple cardinality argument) but their possible loca-
tions are exactly characterized in (Durand-Lose 2011c). They can only happen
at dates that correspond to computably enumerable (c.e.) real numbers (Calude
2002, Chap. 7), i.e. there is a TM that produces an increasing and convergent
infinite sequence (there is no hypothesis on the quality of the approximation).
The positions of isolated accumulations are exactly the differences of two such
numbers. Position and date can be handled independently. This is proved by a
two scales construction: an embedded TM is accelerated and stopped so that
it provides the data on request in bounded time, the large scale directs the
accumulation to the right spot according to the provided data.

4 Conclusion

Presented models operate inside continuous euclidean spaces. Their variety is
huge as well as their computing capabilities. They bring forth a new kind of
algorithmic where localization, distance, relative positions, etc., provide possi-
bilities as well as constraints.

Unsurprisingly, the capability to compute in the Turing understanding is
common. As soon as it is possible to take advantage of continuity of space and

Ways to Compute in Euclidean Frameworks 23

time, analog computation and hyper-computation arise too (thus transcending
the Church-Turing thesis).

This remains true only in the ideal word of the model where there is no error,
nor approximation, nor limit to sub-division or to density of information. This
is a limit to the realism of the models. Other arguments are the unbounded
quantity of information that can be stored and retrieved in a bounded space and
the absence of Heisenberg’s Uncertainty principle at any scale.

This leads to wonder what would be their discrete approximation. Discrete
geometry and related issues are a totally different world. Nevertheless, for signal
machines, the discrete counterpart exists (CA) and there are works on exact
discretization: (Besson and Durand-Lose 2016).

References

Andréka, H., Németi, I., Németi, P.: General relativistic hypercomputing and
foundation of mathematics. Nat. Comput. 8(3), 499–516 (2009). doi:10.1007/
s11047-009-9114-3

Asarin, E., Maler, O.: Achilles and the Tortoise climbing up the arithmetical hierarchy.
In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 471–483. Springer,
Heidelberg (1995). doi:10.1007/3-540-60692-0 68

Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoret. Comput. Sci. 138(1), 35–65 (1995). doi:10.
1016/0304-3975(94)00228-B

Becker, F., Chapelle, M., Durand-Lose, J., Levorato, V., Senot, M.: Abstract geometri-
cal computation 8: small machines, accumulations & rationality (2013, submitted).
http://arxiv.org/abs/1307.6468

Bennett, C.H.: Notes on the history of reversible computation. IBM J. Res. Dev. 32(1),
16–23 (1988)

Besson, T., Durand-Lose, J.: Exact discretization of 3-speed rational signal machines
into cellular automata. In: Cook, M., Neary, T. (eds.) AUTOMATA 2016. LNCS,
vol. 9664, pp. 63–76. Springer, Cham (2016). doi:10.1007/978-3-319-39300-1 6

Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions and universal machines. Bull.
Am. Math. Soc. 21(1), 1–46 (1989)

Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer, New York (1998)

Bournez, O.: Some bounds on the computational power of piecewise constant derivative
systems (extended abstract). In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A.
(eds.) ICALP 1997. LNCS, vol. 1256, pp. 143–153. Springer, Heidelberg (1997).
doi:10.1007/3-540-63165-8 172

Bournez, O.: Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy.
Theoret. Comput. Sci. 210(1), 21–71 (1999a)

Bournez, O.: Some bounds on the computational power of piecewise constant derivative
systems. Theory Comput. Syst. 32(1), 35–67 (1999b)

Calude, C.S.: Information and Randomness: An Algorithmic Perspective. Texts in The-
oretical Computer Science. An EATCS Series, 2nd edn. Springer, Heidelberg (2002).
doi:10.1007/978-3-662-04978-5. ISBN 3540434666

Conway, J.H., Guy, R.L.: The Book of Numbers. Copernicus Series. Springer,
Heidelberg (1996). ISBN 9780387979939

http://dx.doi.org/10.1007/s11047-009-9114-3
http://dx.doi.org/10.1007/s11047-009-9114-3
http://dx.doi.org/10.1007/3-540-60692-0_68
http://dx.doi.org/10.1016/0304-3975(94)00228-B
http://dx.doi.org/10.1016/0304-3975(94)00228-B
http://arxiv.org/abs/1307.6468
http://dx.doi.org/10.1007/978-3-319-39300-1_6
http://dx.doi.org/10.1007/3-540-63165-8_172
http://dx.doi.org/10.1007/978-3-662-04978-5

24 J. Durand-Lose

Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40 (2004)
Duchier, D., Durand-Lose, J., Senot, M.: Computing in the fractal cloud: modular

generic solvers for SAT and Q-SAT variants. In: Agrawal, M., Cooper, S.B., Li, A.
(eds.) TAMC 2012. LNCS, vol. 7287, pp. 435–447. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29952-0 42. http://arxiv.org/abs/1105.3454

Durand-Lose, J.: Abstract geometrical computation for black hole computation.
In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 176–187. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-31834-7 14

Durand-Lose, J.: Abstract geometrical computation 1: embedding black hole compu-
tations with rational numbers. Fund. Inf. 74(4), 491–510 (2006)

Durand-Lose, J.: Abstract geometrical computation and the linear blum, shub and
smale model. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol.
4497, pp. 238–247. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73001-9 25

Durand-Lose, J.: The signal point of view: from cellular automata to signal machines.
In: Durand, B. (ed.) Journees Automates cellulaires (JAC 2008), pp. 238–249 (2008)

Durand-Lose, J.: Abstract geometrical computation and computable analysis. In:
Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC
2009. LNCS, vol. 5715, pp. 158–167. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03745-0 20

Durand-Lose, J.: Abstract geometrical computation 5: embedding computable analy-
sis. Nat. Comput. 10(4), 1261–1273 (2011a). doi:10.1007/s11047-010-9229-6. Special
issue on Unconv. Comp. 2009

Durand-Lose, J.: Abstract geometrical computation 4: small Turing universal signal
machines. Theoret. Comput. Sci. 412, 57–67 (2011b). doi:10.1016/.tcs.2010.07.013

Durand-Lose, J.: Geometrical accumulations and computably enumerable real num-
bers. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds.) UC 2011. LNCS, vol.
6714, pp. 101–112. Springer, Heidelberg (2011c). doi:10.1007/978-3-642-21341-0 15

Durand-Lose, J.: Abstract geometrical computation 6: a reversible, conservative and
rational based model for black hole computation. Int. J. Unconv. Comput. 8(1),
33–46 (2012)

Durand-Lose, J.: Irrationality is needed to compute with signal machines with only
three speeds. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol.
7921, pp. 108–119. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39053-1 12.
http://cie2013.disco.unimib.it/. Invited talk for special session Computation in
nature

Durand-Lose, J.: Computing in perfect euclidean frameworks. In: Adamatzky, A. (ed.)
Advances in Unconventional Computing. ECC, vol. 22, pp. 141–163. Springer, Cham
(2017). doi:10.1007/978-3-319-33924-5 6

Etesi, G., Németi, I.: Non-turing computations via Malament-Hogarth space-times. Int.
J. Theoret. Phys. 41(2), 341–370 (2002). http://arxiv.org/abs/gr-qc/0104023

Hagiya, M.: Discrete state transition systems on continuous space-time: a theoreti-
cal model for amorphous computing. In: Calude, C.S., Dinneen, M.J., Păun, G.,
Pérez-J́ımenez, M.J., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 117–129.
Springer, Heidelberg (2005). doi:10.1007/11560319 12

Hogarth, M.L.: Deciding arithmetic using SAD computers. Br. J. Philos. Sci. 55, 681–
691 (2004)

Huckenbeck, U.: Euclidian geometry in terms of automata theory. Theoret. Comput.
Sci. 68(1), 71–87 (1989). doi:10.1016/0304-3975(89)90120-5

Huckenbeck, U.: A result about the power of geometric oracle machines. Theoret.
Comput. Sci. 88(2), 231–251 (1991). doi:10.1016/0304-3975(91)90375-C

http://dx.doi.org/10.1007/978-3-642-29952-0_42
http://arxiv.org/abs/1105.3454
http://dx.doi.org/10.1007/978-3-540-31834-7_14
http://dx.doi.org/10.1007/978-3-540-73001-9_25
http://dx.doi.org/10.1007/978-3-642-03745-0_20
http://dx.doi.org/10.1007/978-3-642-03745-0_20
http://dx.doi.org/10.1007/s11047-010-9229-6
http://dx.doi.org/10.1016/.tcs.2010.07.013
http://dx.doi.org/10.1007/978-3-642-21341-0_15
http://dx.doi.org/10.1007/978-3-642-39053-1_12
http://cie2013.disco.unimib.it/
http://dx.doi.org/10.1007/978-3-319-33924-5_6
http://arxiv.org/abs/gr-qc/0104023
http://dx.doi.org/10.1007/11560319_12
http://dx.doi.org/10.1016/0304-3975(89)90120-5
http://dx.doi.org/10.1016/0304-3975(91)90375-C

Ways to Compute in Euclidean Frameworks 25

Jacopini, G., Sontacchi, G.: Reversible parallel computation: an evolving space-model.
Theoret. Comput. Sci. 73(1), 1–46 (1990). doi:10.1016/0304-3975(90)90160-J

Lecerf, Y.: Machines de Turing réversibles. Récursive insolubilité en n ∈ N de l’équation
u = θnu, où θ est un isomorphisme de codes. Comptes rendus des séances de
l’académie des sciences 257, 2597–2600 (1963)

Meer, K., Michaux, C.: A survey on real structural complexity theory. Bull. Belg. Math.
Soc. 4, 113–148 (1997)

Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine.
Trans. IEICE E72(3), 223–228 (1989)

Naughton, T.J., Woods, D.: On the computational power of a continuous-space optical
model of computation. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS,
vol. 2055, pp. 288–299. Springer, Heidelberg (2001). doi:10.1007/3-540-45132-3 20

Senot, M.: Modèle géométrique de calcul: fractales et barrières de complexité.
Thèse de doctorat, Université d’Orléans, June 2013. https://tel.archives-ouvertes.
fr/tel-00870600

Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Co., Boston
(1997). ISBN 0-534-944728-X

Syropoulos, A.: Hypercomputation. Springer, Heidelberg (2010)
Takeuti, I.: Transition systems over continuous time-space. Electron. Notes Theoret.

Comput. Sci. 120, 173–186 (2005). doi:10.1016/j.entcs.2004.06.043
Weihrauch, K.: Introduction to computable analysis. Texts in Theoretical Computer

Science. Springer, Berlin (2000)
Woods, D., Naughton, T.J.: An optical model of computation. Theoret. Comput. Sci.

334(1–3), 227–258 (2005). doi:10.1016/j.tcs.2004.07.001
Woods, D., Neary, T.: The complexity of small universal Turing machines: a survey.

Theoret. Comput. Sci. 410(4–5), 443–450 (2009). doi:10.1016/j.tcs.2008.09.051

http://dx.doi.org/10.1016/0304-3975(90)90160-J
http://dx.doi.org/10.1007/3-540-45132-3_20
https://tel.archives-ouvertes.fr/tel-00870600
https://tel.archives-ouvertes.fr/tel-00870600
http://dx.doi.org/10.1016/j.entcs.2004.06.043
http://dx.doi.org/10.1016/j.tcs.2004.07.001
http://dx.doi.org/10.1016/j.tcs.2008.09.051

Contributed Papers

Real-Time Computability of Real Numbers
by Chemical Reaction Networks

Xiang Huang1, Titus H. Klinge2, James I. Lathrop1(B), Xiaoyuan Li1,
and Jack H. Lutz1

1 Department of Computer Science, Iowa State University, Ames, IA 50012, USA
{huangx,jil,forbesii,lutz}@iastate.edu

2 Department of Computer Science, Grinnell College, Grinnell, IA 50112, USA
klingeti@grinnell.edu

Abstract. We explore the class of real numbers that are computed in
real time by deterministic chemical reaction networks that are integral in
the sense that all their reaction rate constants are positive integers. We
say that such a reaction network computes a real number α in real time if
it has a designated species X such that, when all species concentrations
are set to zero at time t = 0, the concentration x(t) of X is within 2−t of
the fractional part of α at all times t ≥ 1, and the concentrations of all
other species are bounded. We show that every algebraic number is real
time computable by chemical reaction networks in this sense. We discuss
possible implications of this for the 1965 Hartmanis-Stearns conjecture,
which says that no irrational algebraic number is real time computable
by a Turing machine.

Keywords: Analog computation · Chemical reaction networks ·
Hartmanis-Stearns conjecture · Real-time computability

1 Introduction

Chemical reaction networks, originally conceived as descriptive mathematical
models of molecular interactions in well-mixed solutions, are also widely used
as prescriptive mathematical models for engineering molecular processes. In the
present century this prescriptive use of chemical reaction networks has been
automated by software compilers that translate chemical reaction networks into
complete specifications of DNA strand displacement systems that simulate them
[4,21]. Chemical reaction networks have thus become the programming language
of choice for many molecular programming applications.

There are several alternative semantics (operational meanings, also called
kinetics) for chemical reaction networks. The two oldest and most widely used
of these are deterministic mass-action semantics and stochastic mass-action
semantics. This paper concerns the former of these, so for the rest of this paper,

This research was supported in part by National Science Foundation Grants 1247051
and 1545028.

c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 29–40, 2017.
DOI: 10.1007/978-3-319-58187-3 3

30 X. Huang et al.

a chemical reaction network (briefly, a CRN or a deterministic CRN) is a chem-
ical reaction network with deterministic mass-action semantics. This model is
precisely specified in Sect. 2 below. For this introduction, it suffices to say that
such a CRN is an ordered pair N = (S,R), where S is a finite set of species
(abstract molecule types), and R is a finite set of reactions, each of which has
some form like:

X + Z
k−−−→ 2Y + Z,

where X,Y,Z ∈ S are species and k ∈ [0,∞) is a rate constant. A state x of N
specifies the real-valued concentration x(Y) ∈ [0,∞) of each species Y . Given
an initial state x(0) at time t = 0, deterministic mass action semantics specify
the (continuous) evolution of the state x(t) over time.

Even prior to the implementation of chemical reaction networks as a program-
ming language it was clear that they constitute a model of computation. In the
case of deterministic CRNs, Stansifer has reportedly proven [5] that this model
is Turing universal, i.e., that every algorithm can be simulated by a deterministic
CRN. (Note: The title of [17] seems to make this assertion, but the paper only
exhibits a way to use deterministic CRNs to simulate finite Boolean circuits.)

Deterministic chemical reaction networks are an analog model of computa-
tion, both in the intuitive sense that their states are vectors of real-valued con-
centrations that vary continuously over real-valued times and in the technical
sense that they are a special case of Shannon’s general purpose analog computer
(GPAC) [20], as explained in Sect. 5 below.

This paper studies the ability of deterministic CRNs to rapidly compute
real numbers in the following analog sense. We say that a deterministic CRN
computes a real number α in real time if it has a designated species X such
that the following three things hold. (See Sect. 3 for more details.) First, the
CRN’s reaction rate constants are positive integers, and it is initialized with
all concentrations set to zero at time t = 0. This implies that the CRN is,
like any reasonable model of computation, finitely specifiable. It also implies
that only countably many real numbers are real time CRN-computable. Second,
there is some fixed bound on all the CRN’s concentrations. Under deterministic
mass-action semantics, this implies that all the reaction rates of the CRN are
bounded, whence time is a meaningful resource. Third, the concentration x(t)
of the designated species X(t) is within 2−t of the fractional part {α} = α−�α�
of α – i.e., within t bits of accuracy of {α} – at all times t ≥ 1. We say that the
real number α is real time computable by chemical reaction networks (briefly,
real time CRN-computable) if there is a CRN that computes α in this sense.
Elementary properties of real-time CRN computability are developed in Sect. 3.

Our main theorem says that every algebraic number (i.e., every real solution
of a polynomial with integer coefficients) is real time CRN-computable. This
result is proven in Sect. 4. We conjecture, but have not proven at the time of
this writing, that some transcendental (i.e., non-algebraic) real numbers are also
real time CRN-computable.

Our main theorem is a counterpoint – but not a disproof – of the 52-year-
old, open Hartmanis-Stearns conjecture that no algebraic irrational is real time

Real-Time Computability of Real Numbers by Chemical Reaction Networks 31

computable by a Turing machine [12]. Section 5 discusses this contrast in some
detail and poses two questions whose answers would shed further light on the
computational complexities of algebraic irrationals.

2 Chemical Reaction Networks

A species is an abstract type of molecule. Capital Roman characters such as X,
Y , and Z are commonly used to distinguish different species, but we also use
decorations such as X0, ̂Y , and Z to distinguish them.

A reaction over a finite set S of species is a tuple ρ = (r,p, k) ∈ N
S × N

S ×
(0,∞) and its components are called the reactant vector, the product vector, and
the rate constant, respectively. (Here N

S denotes the set of all functions mapping
S into N.) To avoid excessive use of subscripts, for a reaction ρ we use r(ρ), p(ρ),
and k(ρ) to access the individual components of ρ. A species Y ∈ S is called
a reactant if r(Y) > 0, called a product if p(Y) > 0, and called a catalyst if
r(Y) = p(Y) > 0. The net effect of reaction ρ = (r,p, k) is the vector Δρ ∈ N

S

defined by

Δρ(Y) = p(Y) − r(Y)

for each Y ∈ S.
A chemical reaction network (CRN) is an ordered pair N = (S,R) where

S is a finite set of species and R is a finite set of reactions over S. Although
this completes the definition of the syntax of a CRN, we have yet to define the
semantics used in this paper.

Under deterministic mass action semantics, the state of a CRN N = (S,R)
at time t is a real-valued vector x(t) ∈ [0,∞)S , and for Y ∈ S, we call x(t)(Y)
the concentration of Y in x(t). We also write y(t) = x(t)(Y) to denote the
concentration of species Y at time t.

The rate of a reaction ρ at time t is defined as

rateρ(t) = k(ρ) ·
∏

Y ∈S

y(t)r(ρ)(Y). (2.1)

This conforms to the so-called law of mass action which states that the rate
of a reaction is proportional to the concentration of its reactants.

The total rate of change of a species Y ∈ S depends on the rates of all
reactions in the CRN and the magnitude of their net effect on Y . Therefore the
concentration y(t) conforms to the ordinary differential equation (ODE)

dy

dt
=

∑

ρ∈R

Δρ(Y) · rateρ(t) (2.2)

If we let EY be the ODE above for each Y ∈ S, then the mass action system
of the CRN is the coupled system

(EY | Y ∈ S). (2.3)

32 X. Huang et al.

Given an initial state x0 ∈ [0,∞)S , the behavior of the CRN is defined as
the solution to the initial value problem (IVP) of the mass action system (2.3)
along with the initial condition

y(0) = x0(Y)

for each Y ∈ S.

3 Real-Time CRN Computability

We say that a real number α is real time computable by chemical reaction net-
works (briefly, real time CRN-computable), and we write α ∈ RRTCRN , if there
exist a chemical reaction network N = (S,R) and a species X ∈ S with the
following three properties:

1. (integrality). The CRN N is integral in the sense that:

k(ρ) ∈ Z
+ (3.1)

for all ρ ∈ R.
2. (boundedness). There is a constant β > 0 such that, if N is initialized with

y(0) = 0 for all Y ∈ S, then, for all Y ∈ S and t ∈ [0,∞),

y(t) ≤ β. (3.2)

3. (real-time convergence). If N is initialized with y(0) = 0 for all Y ∈ S, then
for all t ∈ [1,∞),

|x(t) − {α}| ≤ 2−t (3.3)

where {α} = α − �α� is the fractional part of α.

The integrality condition (3.1) prevents the CRN N from “cheating” by hav-
ing information about α explicitly encoded into its rate constants. To see that
this is necessary to avoid nontriviality, note that, for any α ∈ (0, 1), if the sim-
ple CRN:

∅ α−−−→ X,

X
1−−−→ ∅

is initialized with x(0) = 0, then

x(t) = α(1 − e−t)

for all t ∈ [0,∞).
The boundedness condition (3.2) imposes a “speed limit” on the CRN N .

This prevents N from acting as a “Zeno machine” (machine that does infinite
work in finite time) in the sense of Weyl [26]. More precisely, condition (3.2)
ensures that the reaction rates (2.1) of N are all bounded. This implies that

Real-Time Computability of Real Numbers by Chemical Reaction Networks 33

the arc length of the curve traced by the state x(s) of N for 0 ≤ s ≤ t is θ(t),
i.e., bounded above and below by positive constant multiples of t. Pouly [1,19]
has convincingly argued (in a more general setting) that this arc length, which
we call the reaction clock time, is the correct measure of the time that a CRN
spends computing during the interval [0, t]. Viewed in this light, condition (3.2)
ensures that t is, up to constant multiples, an accurate measure of the reaction
clock time of N during the interval [0, t].

The real-time convergence condition (3.3) requires the CRN N to compute
{α} to within t bits of accuracy by each time t ≥ 1. Note that this is an analog
approximation of {α}. The CRN N is not required to explicitly produce symbols
in any sort of digital representation of {α}.

For the rest of this paper, unless otherwise noted, all CRNs N = (S,R) are
assumed to be initialized with y(0) = 0 for all Y ∈ S.

To save space in our first lemma, we define the predicate

Φτ,γ(α) ≡ there exist a CRN N = (S,R) and a species X ∈ S

satisfying (3.1) and (3.2) such that, for all t ∈ [τ,∞),

|x(t) − {α}| ≤ e−γt

for each τ, γ ∈ (0,∞) and α ∈ R. Note that Φ1,ln 2(α) is the assertion that α ∈
RRTCRN . The following convenient lemma says that the definition of RRTCRN

is robust with respect to linear changes in condition (3.2).

Lemma 3.1. For each α ∈ R the following conditions are equivalent.

1. α ∈ RRTCRN .
2. There exists τ, γ ∈ (0,∞) such that Φτ,γ(α) holds.
3. For every τ, γ ∈ (0,∞), Φτ,γ(α) holds.

Proof. Let α ∈ R. It is clear that (3) ⇒ (1) ⇒ (2), so it suffices to prove that
(2) ⇒ (3). For this, let N,X, τ, and γ testify that (2) holds, i.e., let N and X
testify that Φτ,γ(α) holds. To prove (3), let τ̂ , γ̂ ∈ (0,∞). It suffices to show that
Φτ̂ ,γ̂(α) holds. Let

a = max
{

⌈τ

τ̂

⌉

,
⌈ γ̂

γ

⌉

}

,

and let ̂N = (S, ̂R), where

̂R = {(r,p, ak) | (r,p, k) ∈ R}.

That is, ̂N is exactly like N , except that each rate constant of N has been
multiplied by the positive integer a. Then ̂N is an integral CRN that is a “sped
up version” of N in the sense that, for all y ∈ S and t ∈ [0,∞),

y
̂N (t) = yN (at), (3.4)

34 X. Huang et al.

where yN and y
̂N are the values of y in N and ̂N , respectively. This immediately

implies that ̂N satisfies (3.2). Now let t ∈ [τ̂ ,∞). Then at ∈ [τ,∞), so our
assumption Φτ,γ(α) tells us that

|x
̂N (t) − {α}| = |xN (at) − {α}|

≤ e−γat

≤ e−γ̂t,

affirming Φτ̂ ,γ̂(α). �
The following lemma is a warm-up for our examination of RRTCRN

Lemma 3.2. Q � RRTCRN

Proof. If α ∈ Z, then the CRN

X
1−−−→ ∅

satisfies
|x(t) − {α}| = x(t) = e−t ≤ 2−t,

so α ∈ RRTCRN . If α ∈ Q \ Z, then we can write {α} = a
b , where a, b ∈ Z

+.
Then the integral CRN

∅ a−−−→ X

X
b−−−→ ∅

satisfies

x(t) =
a

b
(1 − e−bt),

so α ∈ RRTCRN by Lemma 3.1. This shows that Q ⊆ RRTCRN .
To see that Q �= RRTCRN , it suffices to show that 1√

2
∈ RRTCRN . Since the

integral CRN
∅ 1−−−→ X

2X
2−−−→ X

satisfies

x(t) =
1√
2

(

1 − e−2
√
2t

1 + e−2
√
2t

)

,

we have that
∣

∣

∣

∣

x(t) − 1√
2

∣

∣

∣

∣

=
1√
2

(

e−2
√
2t

1 + e−2
√
2t

)

≤ 1√
2
e−2

√
2t < e−2

√
2t,

so 1√
2

∈ RRTCRN by Lemma 3.1. �
Computable real numbers were introduced by Turing [23,24] and have been

extensively investigated [14,25].

Real-Time Computability of Real Numbers by Chemical Reaction Networks 35

A real number α is computable, and we write α ∈ Rcomp, if there is a com-
putable function α̂ : N → Q such that, for all r ∈ N

|α̂(r) − α| ≤ 2−r.

Lemma 3.3. RRTCRN � Rcomp

Proof. Let α ∈ RRTCRN , and let N = (S,R) and X ∈ S testify to this fact. Let
Y1, . . . , Yn be the distinct species in S. Then the ODEs (2.2) can be written in
the form

y′
1 = f1(y1, . . . , yn),

... (3.5)
y′

n = fn(y1, . . . , yn),

where f1, . . . , fn are polynomials with integer coefficients. By the boundedness
condition (3.2) and Theorem 16 of [8], the solution y : [0,∞) → [0,∞)n of (3.5)
is polynomial time computable. It follows by the real-time convergence condition
(3.3) that α is computable in polynomial time in the sense of Ko [14]. Hence,
α ∈ Rcomp.

It is well known [14] that not every computable real is computable in poly-
nomial time, so the preceding paragraph proves the lemma. �

4 Algebraic Numbers Are Real Time CRN Computable

This section is devoted to proving the following result, which is our main
theorem.

Theorem 4.1. Every algebraic number is an element of RRTCRN .

Our proof of Theorem4.1 uses the stability theory of ordinary differential
equations. We review the elements of this theory that we need here, referring
the reader to standard textbooks (e.g., [13,22]) for more thorough treatments.

We first note that the ordinary differential equations (2.2) of a CRN N =
(S,R) are autonomous, meaning that they only depend on the time t via the
species concentrations y(t). Hence, if we let Y1, . . . , Yn be the distinct species in
S, then the ODEs (2.2) can be written as

y′
1 = f1(y1, . . . , yn),

... (4.1)
y′

n = fn(y1, . . . , yn),

where f1, . . . , fn : R
n → R are polynomials. If we let fN : R

n → R
n be the

function whose components are f1, . . . , fn, then (4.1) can be written in the vector
form

x′ = fN (x). (4.2)

36 X. Huang et al.

The Jacobian matrix of the CRN N is the Jacobian matrix of fN , i.e., the
n × n matrix

JN =

⎛

⎜

⎜

⎝

∂f1
∂y1

· · · ∂f1
∂yn

...
. . .

...
∂fn

∂y1
· · · ∂fn

∂yn

⎞

⎟

⎟

⎠

.

More precisely, the Jacobian matrix of N in a state x ∈ [0,∞)S is the matrix
JN (x) in which each of the partial derivatives in JN is evaluated at the point x.
The eigenvalues of the CRN N in a state x ∈ [0,∞)S are the eigenvalues of the
matrix JN (x), i.e., the numbers λ ∈ C for which there exists y ∈ R

n such that
JN (x)(y) = λy.

A fixed point of the CRN N is a state z ∈ [0,∞)S such that fN (z) = 0.
A fixed point z of N is exponentially stable if there exist α, δ, C ∈ (0,∞) such
that, for all x0 ∈ [0,∞)S with |x0 − z| ≤ δ, if N is initialized with x(0) = x0,
then, for all t ∈ [0,∞),

|x(t) − z| ≤ Ce−αt |x(0) − z| . (4.3)

The well known exponential stability theorem, specialized to CRNs, says that
a fixed point z of N is exponentially stable if all its eigenvalues have negative
real parts [13,22].

In this paper we define a real number α ∈ R to be negative eigenvalue
computable by chemical reaction networks (briefly, negative eigenvalue CRN-
computable), and we write α ∈ RNECRN , if there exist a CRN N = (S,R), a
species X ∈ S, and a state z ∈ [0,∞)S with z(X) = α such that the following
conditions hold.

1. (integrality). The CRN N is integral as in (3.1).
2. (boundedness). Concentrations are bounded as in (3.2).
3. (fixed point). z is a fixed point of N .
4. (negative eigenvalues). All the eigenvalues of N in the state z have negative

real parts.
5. (basin of attraction). If α, δ, and C are the constants testifying that z is

exponentially stable, then the zero-vector 0 ∈ [0,∞)S defined by 0(Y) = 0
for all Y ∈ S satisfies |0 − z| ≤ δ.

Our interest in the class RNECRN is that the following three lemmas suffice
to prove Theorem 4.1.

Lemma 4.2. RNECRN is a countable subfield of R.

Lemma 4.3. RNECRN ⊆ RRTCRN .

Proof. Let α ∈ RNECRN . We show in the full version of this paper that α − �α�
is also in RNECRN . Without loss of generality, we assume that α ∈ (0, 1). Hence
we have α = {α} in the following proof.

By the definition of RNECRN , there is a CRN N = (S,R), a species X ∈ S,
and a state z ∈ [0,∞)S with z(X) = α such that 0 falls in the basin of attraction
of z. Therefore limt→∞ x(t) = z.

Real-Time Computability of Real Numbers by Chemical Reaction Networks 37

Since JN (z) has eigenvalues with negative real parts, then z is exponentially
stable, i.e. there exist α, δ, C ∈ (0,∞) such that for all x0 ∈ [0,∞)S with |x0 −
z| ≤ δ, if N is initialized with x(0) = x0, then for all t ∈ [0,∞), |x(t) − z| ≤
Ce−αt|x0 − z|.

Consider the CRN N initialized so that x(0) = 0. Since limt→∞ x(t) = z,
we let τ0 be the point such that |x(τ0) − z| ≤ δ, then by exponential stability of
z, we have |x(t) − z| ≤ Ce−α(t−τ0)|x0 − z| for all t ≥ τ0.

Pick a number γ such that,

Ceατ0 |x0 − z| ≤ eγτ0

and let a =
⌈

2γ
α

⌉

, construct a “sped up version” of N , ̂N , as in Lemma 3.1, by
multiplying each rate constant of N by the positive integer a. Now let τ = τ0

a .
Then for all t ≥ τ , i.e., at ≥ τ0, we have

|x
̂N (X)(t) − α| ≤ |x

̂N (t) − z|
= |x(at) − z|
≤ Ce−α(at−τ0)|x0 − z|, since at ≥ τ0

≤ eγτ0e−aαt

≤ eγτ0e−2γt

≤ e−γt

Hence Φτ,γ(α) holds, and by Lemma 3.1, α ∈ RRTCRN . �
Lemma 4.4. Every algebraic number is an element of RNECRN .

5 Discussion

We have shown that every algebraic number is real time computable by deter-
ministic chemical reaction networks. What does this say about the complexity
of algebraic irrationals on other models of computation?

The first thing to understand here is that deterministic chemical reaction
networks are, in a very precise sense, a model of analog computation. In 1941,
Shannon [20] introduced the general-purpose analog computer (GPAC). A GPAC
is a mathematical abstraction of the differential analyzer, an early analog com-
puter that Bush [3] had constructed at MIT, and which Shannon had operated
as a graduate research assistant. The GPAC model has been corrected and oth-
erwise modified a number of times over the years [7,9,15,18]. Its present form
can be characterized in terms of circuits, but it is more simply characterized as
a system

y′(t) = p(t, y), (5.1)

of ordinary differential equations, where p is a vector of polynomials. A deter-
ministic CRN is thus a special type of GPAC of the form

y′(t) = p(y), (5.2)

38 X. Huang et al.

where each component pi of p has the “kinetic” form pi(y) = qi(y) − yiri(y),
with qi and ri having nonnegative coefficients [11]. Our CRNs in this paper have
the added constraints that all the coefficients in these polynomials are integers,
and all concentrations are initialized to zero. Our main theorem thus implies
that all algebraic numbers are real time computable by GPACs that have only
finite information coded into their parameters and initializations.

We now turn from analog computation to discrete computation. A famous
conjecture of Hartmanis and Stearns [12] says that no irrational algebraic number
is real time computable by a Turing machine. This conjecture has been open
for over 50 years. Fischer et al. [6] proved that real-time computability on a
Turing machine is equivalent to linear-time computability on a Turing machine.
Hence the Hartmanis-Stearns conjecture is equivalent to the statement that no
irrational algebraic number is linear-time computable by a Turing machine. As
observed by Gurevich and Shelah [10], linear time is a very model-dependent
notion. Hence, as stated, the Hartmanis-Stearns conjecture is a very specific
conjecture about linear-time computation on Turing machines.

Our main theorem does not disprove the Hartmanis-Stearns conjecture (nor
was it intended to), but conceptually locating the gap between our main the-
orem and a disproof of the Hartmanis-Stearns conjecture would shed light on
the computational complexities of algebraic irrationals. This raises the following
questions.

Question 1. Can CRNs in our model (or GPACs with only finite information
encoded into their parameters and initializations) produce in linear time the
individual digits of each real number that is real time CRN-computable?
If so, our main theorem implies that the Hartmanis-Stearns conjecture fails
for analog computation. If not, the Hartmanis-Stearns conjecture holds for
analog computation and is essentially about producing the individual digits
as opposed to the analog convergence that we have used here.

Question 2. Is there a reasonable discrete model of computation on which
some algebraic irrational can be computed in linear time? If so, then the
Hartmanis-Stearns conjecture is either false or model-dependent. If not, then
the Hartmanis-Stearns conjecture is true in a strong, model-independent way,
at least for discrete computation. (Note that “reasonable” here excludes mod-
els that perform numerical operations faster than we know how to do them,
because Brent [2] has shown how to compute

√
2 in linear time if integer

multiplication can be done in linear time. See also [16].)

References

1. Bournez, O., Graça, D.S., Pouly, A.: Polynomial time corresponds to solutions
of polynomial ordinary differential equations of polynomial length: the general
purpose analog computer and computable analysis are two efficiently equivalent
models of computations. In: Proceedings of the 43rd International Colloquium
on Automata, Languages, and Programming, Leibniz International Proceedings
in Informatics, vol. 55, pp. 109:1–109:15. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2016)

Real-Time Computability of Real Numbers by Chemical Reaction Networks 39

2. Brent, R.P.: Fast multiple-precision evaluation of elementary functions. J. ACM
(JACM) 23(2), 242–251 (1976)

3. Bush, V.: The differential analyzer. A new machine for solving differential equa-
tions. J. Frankl. Inst. 212(4), 447–488 (1931)

4. Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D.,
Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol.
8(10), 755–762 (2013)

5. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical
reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E.
(eds.) Algorithmic Bioprocesses. Natural Computing Series, pp. 543–584. Springer,
Heidelberg (2009)

6. Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Time-restricted sequence generation.
J. Comput. Syst. Sci. 4(1), 50–73 (1970)

7. Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals.
J. Complex. 19(5), 644–664 (2003)

8. Graça, D.S., Pouly, A.: Computational complexity of solving polynomial differ-
ential equations over unbounded domains. Theoret. Comput. Sci. 626(2), 67–82
(2016)

9. Graça, D.S.: Some recent developments on Shannon’s general purpose analog com-
puter. Math. Logic Q. 50(4–5), 473–485 (2004)

10. Gurevich, Y., Shelah, S.: Nearly linear time. In: Meyer, A.R., Taitslin, M.A. (eds.)
Logic at Botik 1989. LNCS, vol. 363, pp. 108–118. Springer, Heidelberg (1989).
doi:10.1007/3-540-51237-3 10

11. Hárs, V., Tóth, J.: On the inverse problem of reaction kinetics. Qual. Theory Differ.
Equ. 30, 363–379 (1981)

12. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.
Trans. Am. Math. Soc. 117, 285–306 (1965)

13. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Sys-
tems, and an Introduction to Chaos. Academic Press, Cambridge (2012)

14. Ko, K.-I.: Complexity Theory of Real Functions. Birkhäuser, Basel (1991)
15. Lipshitz, L., Rubel, L.A.: A differentially algebraic replacement theorem, and ana-

log computability. Proc. Am. Math. Soc. 99(2), 367–372 (1987)
16. Lipton, R.J.: Why the Hartmanis-Stearns conjecture is still open (2012). Blog post.

https://rjlipton.wordpress.com/2012/06/15/why-the-hartmanis-stearns-conjectur
e-is-still-open/. Accessed 3 Feb 2017

17. Magnasco, M.O.: Chemical kinetics is Turing universal. Phys. Rev. Lett. 78(6),
1190–1193 (1997)

18. Pour-el, B.M.: Abstract computability and its relations to the general purpose
analog computer. Trans. Am. Math. Soc. 199, 1–28 (1974)

19. Pouly, A.: Continuous models of computation: from computability to complexity.
Ph.D. thesis, École Polytechnique et Universidad do Algarve (2015)

20. Shannon, C.E.: Mathematical theory of the differential analyzer. Stud. Appl. Math.
20(1–4), 337–354 (1941)

21. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Nat. Acad. Sci. 107(12), 5393–5398 (2010)

22. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate
Studies in Mathematics, vol. 140. American Mathematical Society, Providence
(2012)

23. Turing, A.M.: On computable numbers, with an application to the Entscheidung-
sproblem. Proc. Lond. Math. Soc. 42(1), 230–265 (1936)

http://dx.doi.org/10.1007/3-540-51237-3_10
https://rjlipton.wordpress.com/2012/06/15/why-the-hartmanis-stearns-conjecture-is-still-open/
https://rjlipton.wordpress.com/2012/06/15/why-the-hartmanis-stearns-conjecture-is-still-open/

40 X. Huang et al.

24. Turing, A.M.: On computable numbers, with an application to the Entscheidung-
sproblem. A correction. Proc. Lond. Math. Soc. 43(2), 544–546 (1937)

25. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Heidelberg
(2000)

26. Weyl, H.: Philosophie der Mathematik und Naturwissenschaft: Nach der 2. Wal-
ter de Gruyter GmbH & Co KG (1927). Philosophy of Mathematics and Natural
Science, Princeton University Press; with a new introduction by Frank Wilczek
(2009)

Towards Temporal Logic Computation
Using DNA Strand Displacement Reactions

Matthew R. Lakin1,2,3(B) and Darko Stefanovic2,3

1 Department of Chemical and Biological Engineering, University of New Mexico,
Albuquerque, NM, USA

2 Department of Computer Science, University of New Mexico,
Albuquerque, NM, USA

{mlakin,darko}@cs.unm.edu
3 Center for Biomedical Engineering, University of New Mexico,

Albuquerque, NM, USA

Abstract. Time-varying signals are ubiquitous throughout science, and
studying the high-level temporal structure of such processes is of signif-
icant practical importance. In this context, techniques from computer
science such as temporal logic are a powerful tool. Temporal logic allows
one to describe temporal properties of time-varying processes, e.g., the
order in which particular events occur. In this paper, we show that DNA
strand displacement reaction networks can be used to implement com-
putations that check certain temporal relationships within time-varying
input signals. A key aspect of this work is the development of DNA cir-
cuits that incorporate a primitive memory, so that their behavior is influ-
enced not just by the current observed chemical environment, but also
by environments observed in the past. We formalize our circuit designs
in the DSD programming language and use simulation results to confirm
that they function as intended. This work opens up the possibility of
developing DNA circuits capable of long-term monitoring of processes
such as cellular function, and points to possible designs of future DNA
circuits that can decide more sophisticated temporal logics.

1 Introduction

Dynamic processes that produce time-varying signals are found throughout
nature. In molecular biology, for example, changes in levels of protein expression
over time are a cornerstone of cellular regulatory systems. In this context, a
molecular computing system able to analyze both the current state of the pro-
tein expression levels as well as the “historical record” of previously observed
protein expression levels would be able to make sophisticated decisions about
the cell state by observing protein expression over an extended period of time.

A fundamental goal of research into molecular computing and synthetic biol-
ogy is to produce time-varying signals, an early example being the “repressilator”
oscillatory network produced by a ring of three mutually inhibiting transcription
factors [1]. However, there has been relatively little work on using molecular com-
puters or engineered bacteria to analyze time-varying signals. This is because
c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 41–55, 2017.
DOI: 10.1007/978-3-319-58187-3 4

42 M.R. Lakin and D. Stefanovic

published research on molecular circuit designs has focused in large part on ana-
lyzing the input signals present in the chemical environment at a particular point
in time. Examples include previously published DNA circuits that implement
digital logic circuits [2], analog neural networks [3], and population protocols for
approximate majority voting [4]. The most notable examples of synthetic bio-
molecular circuits designed for processing temporal signals are designs for DNA
strand displacement circuits to carry out discrete-time signal processing tasks
using a combination of “fast” and “slow” reactions [5], and prior experimental
work on using recombinase enzymes to integrate expressed single-stranded DNA
into the genomes of engineered bacteria, as a record of events experienced in the
past [6]. More tangentially related to the current topic are studies of learning and
adaptation in engineered biochemical circuits [7,8] and abstract chemical reac-
tion networks [9–11], including DNA strand displacement learning circuits [9,12]
designed using buffered strand displacement gates [13]. The concept of memory
in DNA reaction networks has also been explored indirectly via a postulated
DNA implementation of a “reservoir computing” system [14], as well as by pro-
posals for chemical memories implemented using bistable switches [15] and delay
lines [16].

In this paper we broaden the focus of research in molecular circuit design to
produce systems that can analyze the current chemical environment not just in
isolation, but rather in the context of previous states of the chemical environment
observed by the system. We will present designs for DNA strand displacement cir-
cuits that can analyze the temporal structure of time-varying input signals mod-
eled as a sequence of additions of input strands that are subsequently degraded.
(This could be realized in an experimental system by using RNA inputs and
RNAse-containing media [17].) The structures of our networks will be designed
such that the reactions triggered by the additions of the input strands at dif-
ferent points in time activate strand displacement gates whose outputs act as a
“memory”, so that the state of the network effectively stores information about
its past experience. By cascading multiple such gates together, we will design
systems in which the cascade only executes to completion (and thus produces
an output signal) if the input signals are presented in an order that satisfies the
temporal relationships that are encoded in the network structure, and we will
verify correct operation of our circuit designs using computational simulations
of an ordinary differential equation (ODE) model of the circuit kinetics. This
work therefore demonstrates a path toward molecular computing systems that
can analyze non-trivial temporal properties of time-varying signals, with poten-
tial applications in the analysis of biochemical systems and in the diagnosis and
treatment of disease.

The remainder of this paper is structured as follows. We introduce a basic
logic of temporal relationships for sequential signals in Sect. 2 and present designs
for DNA strand displacement circuits that test whether a sequential presenta-
tion of input signals satisfies a particular formula in Sect. 3. We present results
from simulations of example circuits in Sect. 4 and conclude with a discussion in
Sect. 5.

Towards Temporal Logic Computation 43

2 A Logic of Temporal Relationships for Sequential
Signals

In this section we present a logic for expressing simple temporal relationships
within sequential input sequences. We begin by specifying the well-formed for-
mulae ϕ of our logic, which are as follows:

ϕ ::= A � B � · · · � Z
| ϕ1 ∧ ϕ2

| ϕ1 ∨ ϕ2

The formula A � B should be read as “A before B”, and its intended meaning
is that an occurrence of input A is observed in the sequence of input signals before
an occurrence of B is observed.

Let σ range over finite input sequences [A1 · · · An]. These finite input
sequences will serve as models for our formulae. We now define satisfaction of a
formula by an input sequence, written σ � ϕ, by recursion on the structure of
formulae, as follows:

σ � A � B � · · · � Z ⇐⇒ ∃σ0, σ1, . . . , σn. σ = [σ0Aσ1Bσ2 · · · σn−1Zσn]
σ � ϕ1 ∧ ϕ2 ⇐⇒ σ � ϕ1 ∧ σ � ϕ2

σ � ϕ1 ∨ ϕ2 ⇐⇒ σ � ϕ1 ∨ σ � ϕ2

The semantics of conjunction and disjunction formulae are standard. A before
formula A � B � · · · � Z is satisfied by an input sequence σ if there exist
subsequences σ0, σ1, . . . , σn such that the input sequence σ can be expressed
as the concatenation [σ0Aσ1Bσ2 · · · σn−1Zσn]. In other words, we require that
there exist occurrences of A,B, . . . , Z that appear in the input sequence in the
correct order. Since we do not place any restrictions on the number of times a
particular input may appear in the sequence, there may be multiple different
decompositions of this form, but we do not distinguish this in the semantics.

For example, consider the formula ϕ = (A � B) ∧ (A � C). The following
both hold:

[ABC] � (A � B) ∧ (A � C)
[ACB] � (A � B) ∧ (A � C),

but, on the other hand,

[CAB] �� (A � B) ∧ (A � C)

because A does not occur before C in the input sequence [CAB].
In the following section, we will define a translation of these formulae into

chemical reaction networks realized using DNA strand displacement reactions.
Viewed through the prism of the definitions presented above, the DNA reaction
networks that we define will each embody a formula ϕ, and we will challenge the
network by a sequence of input additions that correspond to a particular input

44 M.R. Lakin and D. Stefanovic

sequence σ. Then, the goal for our network will be to respond (by producing a
“high” concentration of an output species) iff the input sequence satisfies the
implemented formulae, i.e., iff σ � ϕ holds.

We note that, if all signals mentioned in the subformula are unique, we can
define the A � B � · · · � Z construct in terms of the two-input case, as follows:

A1 � A2 � · · · � An =
∧

i∈{1,...,n}

∧

j∈{i+1,...,n}
(Ai � Aj)

However, for the purposes of producing a DNA implementation it is simpler
and far more compact to implement the extended version using a single gate
cascade than it is to add a large number of additional and gates. In defining
this expansion, we consider two formulae ϕ1 and ϕ2 to be equivalent iff they are
satisfied by the same set of input sequences, i.e., iff {σ | σ � ϕ1} = {σ | σ � ϕ2}.

3 DNA Circuits for Analyzing Temporal Relationships

In this section we present our designs for DNA circuits that carry out tempo-
ral analysis tasks. Our chemical framework of choice is DNA strand displace-
ment [18]. Strand displacement is a scheme for implementing reaction networks
in DNA in which “signals” are represented by single strands of DNA in solu-
tion that interact with structures known as “gates” that consume certain input
strands from solution and release output strands, with different sequences, back
into solution. These interactions take place via a two-step process: the incoming
strand first binds reversibly to the gate via a short complementary domain known
as a “toehold”, which positions the incoming strand to initiate the process of
“branch migration”, whereby it competes with the neighboring incumbent strand
to bind to the gate. When the branch migration process completes, the end result
is that the input strand is bound to the gate and the incumbent strand is released
into solution. By designing structures so that multiple strand displacement reac-
tions proceed in a pre-defined sequence, possibly with the assistance of other
“fuel” molecules in solution, strand displacement gates can implement a range
of computational tasks. Here we focus in particular on two-domain DNA strand
displacement [19], a simplified form of strand displacement that has proven itself
amenable to experimental implementation [4].

We will model our systems using the DSD programming language, which
provides a text-based syntax for representing strand displacement gate structures
and processes that represent the combination of multiple different gates and
strands in a dilute, well-mixed solution. The semantics of the DSD language
specifies a formally-defined translation of those structural models into a kinetic
model, by enumerating all possible interactions between the DNA components
that could possibly occur within the system. For reasons of brevity, we do not
provide a full exposition of the DSD language here, rather, we refer the reader
to previous work that formally defines the syntax and semantics of the DSD
language [13].

Towards Temporal Logic Computation 45

In the DSD syntax, each two-domain signal A in our circuits will be repre-
sented by a DSD module Signal(A) that just consists of a single two-domain
DNA strand <taˆ a>. Furthermore, we will model the input signals that appear
in temporal formulae as degrading over time (with standard exponential decay
kinetics) when they are free in solution. This approximates a real-world temporal
analysis scenario where the DNA circuit is monitoring the occurrence of envi-
ronmental markers that may also be consumed by other downstream chemical
reactions that are taking place simultaneously.

We will implement our DNA reaction networks using three different kinds
of strand displacement gates: “catalyst” reaction gates that implement abstract
reactions of the form C + X −→ C + Z, “and” logic gates that compute the
logical conjunction of two inputs, and “or” logic gates that compute the logical
disjunction of two inputs. Reaction schemes for each of these gate types are
presented in Fig. 1.1 The basic pattern is that the input strands bind to an input-
accepting gate in a pre-programmed order, and with the help of a fuel strand
enable the release of an intermediate strand that initiates a similar cascade of
reactions on an output-releasing gate, which requires additional fuel strands to
be present and which releases the output strands from the gate into solution.
The function implemented by each gate is dependent on the patterns of input
and output signals, so, for example, the “and” gate has two input strands that
must both be consumed in order to enable the release of a single output strand.

We can now define translation of the language of formulae from Sect. 2 into
DNA strand displacement systems. For a formula ϕ, the translation[[ϕ]] returns a
DSD process P (which is just a collection of parallel DSD species) and an output
species Z. The output species is the one whose concentration will indicate the
output of the computation: if it goes high then the input signal sequence satisfies
the formula encoded in the network, and if it stays low then the input signal
sequence does not satisfy the formula encoded in the network.

The definition of the translation is presented in Fig. 2. The key case is the
one for the formulae with actual temporal meaning, that is, the formulae of the
form A � B � · · · � Y . Temporal formulae such as this are encoded using a
cascade of strand displacement catalyst gates, catalyzed by the input signals
A,B, . . . , Y . These reactions catalyze conversion of a “substrate” species X1

to X2, then to X3, and so on, until the final catalyst gate produces the overall
output species Z. (The DSD process produced by this case of the translation also
includes the initial substrate species X1.) Crucially, the input signals A,B, . . . , Y
catalyze this cascade of reactions in the same order as they appear in the temporal
formula, ordered from earliest to latest. This means that, if the input signals
are actually observed in this order, then these catalyst reactions will all be
activated in turn, leading to the eventual release of the output species. However,
if one or more of the input signals is never observed, or is observed out of
the required sequence, then one or more of the catalyst reactions will not be

1 See the Supporting Information (available from the first author’s web page) for full
DSD code listings for each system simulated in this paper, including full definitions
of the modules.

46 M.R. Lakin and D. Stefanovic

(a) CatalystGate(C,X ,Z) implements C+X −→ C+Z

(b) AndGate(X ,Y,Z) implements Z = X ∧Y

(c) OrGate(X ,Y,Z) implements Z = X ∨Y

Fig. 1. Strand displacement reactions that implement (a) the abstract catalytic reac-
tion C + X −→ C + Z, (b) the “and” logic gate Z = X ∧ Y , and (c) the “or” logic
gate Z = X ∨ Y .

activated, and thus the output species will not be produced at the end of the
cascade. Hence, presence or absence of the output species corresponds to whether
the input signals were observed in the correct temporal ordering, and hence to
satisfaction of the temporal formula. The key to our circuit design is that the

Towards Temporal Logic Computation 47

Fig. 2. Definition of the translation [[ϕ]] of formulae ϕ into a DSD process P and an
output species Z. The “comments” on the right-hand side provide informal descriptions
of the meaning of the DSD modules, for clarity. We note that, in the first case of the
translation, the execution time is proportional to the number of compared signals.

conversion of the substrate species, catalyzed by the input signals, serves as a
“memory” that records the past experience of the networks interactions with
the observed input species. This ensures that each input signal will be (almost)
entirely removed from the system before the next input signal is presented,
which prevents unwanted circuit responses being generated by overlapping input
signals.

The remaining two cases of the definition of the translation, for “and” and
“or” formulae, are comparatively straightforward. In each of these cases, the
processes and output species for the two subformulae are defined recursively,
and these processes are then returned in parallel with a new logic gate whose
input species are the output species from the translations of the two subformulae
and whose output species is a freshly generated signal.

4 Simulation Results

DNA strand displacement reaction networks that carry out temporal analysis
tasks were compiled and simulated using Visual DSD [20], using the “Infinite”
semantics. In particular, we used the “beta” version of DSD [21] that supports
scheduled additions of inputs via mixing events as well as the inclusion of user-
defined reactions.

Briefly, the simulation conditions were as follows: we use a 1000 nM initial
concentration of strand displacement gates and fuel strands, with the exception
of the output part of the “or” gates, of which we use 10 nM (so that the out-
put signal strength of the “or” gate is the same whether one or two positive
input signals is present). The input signal sequence was implemented by adding a

48 M.R. Lakin and D. Stefanovic

)b()a(

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time (s) ×105

0

2

4

6

8

10

O
ut
pu
tC

on
ce
nt
ra
tio

n
(n
M
)

Signal sequence:
ABDC

A � B �C

A
B
C
D
Z

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time (s) ×105

0

2

4

6

8

10

O
ut
pu
tC

on
ce
nt
ra
tio

n
(n
M
)

Signal sequence:
ACDB

A � B �C

A
B
C
D
Z

Fig. 3. Concentration time courses of selected species for the formula A � B � C, for
input signal sequences (a) [ABDC] and (b) [ACDB].

10 nM concentration of each input signal in a pre-programmed order, with a wait
time between addition of input signals of 30000 s. The degradation rate of those
input signals is 0.0005 s−1, that is, for each input signal A a unimolecular degra-
dation reaction A −→ ∅ with rate constant k=0.0005 s−1 was explicitly added to
the model. We kept this rate constant between simulations for consistency, how-
ever, our circuits could be adapted to different degradation rates by modifying
the rates of the other DNA reactions, e.g., by lengthening toehold domains or
by increasing fuel concentrations. Additionally, for each input-consuming gate,
a 10 nM concentration of the strand that is displaced by the binding of the first
input was also included, to provide a degree of “backpressure” that presents
inputs from being sequestered by binding to the gates, which allows them to be
released back into solution so that they can be degraded. This is crucial to pre-
vent unwanted circuit responses triggered by input signals left over from earlier
stages of the simulation.2

Figure 3 shows time courses of the concentrations of the input signals (A, B,
C, and D) and the output species (Z) for two different input signal sequences,
[ABDC] and [ACDB], when added to a network that tests satisfaction of the
formula A � B � C. Hence, we expect that the response (i.e., the final concen-
tration of the output species Z) should be high for the input sequence [ABDC]
(since A appears before B and B appears before C in [ABDC]) but should be low
for the input sequence [ACDB] (since B does not appear before C in [ACDB]).
Indeed, the plots from Fig. 3 confirm this, as the final concentration of Z is high
in part (a) but low in part (b). Thus, in this case the circuit construction for
testing satisfaction of temporal formulae functioned as intended.

We further investigated the correctness of our circuit designs for all possible
permutations of the input signals A, B, C, and D, for three different formulae
that collectively employ all three kinds of formula: A � B � C, (A � B) ∧
2 See the Supporting Information (available from the first author’s web page) for full
DSD code listings for each system simulated in this paper, including full definitions
of the modules.

Towards Temporal Logic Computation 49

)b()a(

A
B
C
D

A
B
D
C

AC
BD

AC
D
B

A
D
B
C

AD
C
B

BA
C
D

BA
D
C

BC
AD

BC
D
A

BD
AC

BD
C
A

C
AB

D
C
AD

B
C
BA

D
C
BD

A
C
D
AB

C
D
BA

D
A
B
C

D
AC

B
D
BA

C
D
BC

A
D
C
AB

D
C
BA

0

2

4

6

8

10

O
ut
pu
tC

on
ce
nt
ra
tio

n
(n
M
)

A � B �C

A
B
C
D

AB
D
C

A
C
B
D

A
C
D
B

AD
BC

AD
C
B

BA
C
D

BA
D
C

BC
AD

BC
D
A

BD
AC

BD
C
A

C
A
B
D

C
A
D
B

C
BA

D
C
BD

A
C
D
A
B

C
D
BA

D
AB

C
D
AC

B
D
BA

C
D
BC

A
D
C
AB

D
C
BA

0

2

4

6

8

10

O
ut
pu
tC

on
ce
nt
ra
tio

n
(n
M
)

(A � B)∧ (C � D)

(c) (d)

A
B
C
D

A
B
D
C

A
C
B
D

A
C
D
B

A
D
B
C

A
D
C
B

BA
C
D

BA
D
C

B
C
A
D

B
C
D
A

BD
AC

BD
C
A

C
A
B
D

C
A
D
B

C
BA

D
C
B
D
A

C
D
A
B

C
D
BA

D
A
B
C

D
A
C
B

D
BA

C
D
BC

A
D
C
A
B

D
C
BA

0

2

4

6

8

10

O
ut
pu
tC

on
ce
nt
ra
tio

n
(n
M
)

(A � B)∨ (C � D)

A
BA

B

AB
BA

AA
BB

BA
AB

BA
BA

BB
AA

0

2

4

6

8

10

O
ut
pu
tC

on
ce
nt
ra
tio

n
(n
M
)

A � B � A � B

Fig. 4. Final concentrations of the output species for formulae (a) A � B � C, (b)
(A � B)∧ (C � D), (c) (A � B)∨ (C � D), and (d) A � B � A � B. In parts (a)–(c),
the bars represent the output for all possible permutations of the input signals A, B,
C, and D, and in part (d) the bars represent the output for all possible permutations
of the input signals A, A, B, and B. Black bars (with boldface labels) represent those
simulations where the formula is satisfied by the corresponding input signal sequence,
and light grey bars (with italic labels) represent those simulations where it is not
satisfied.

(C � D), and (A � B)∨(C � D). The final concentrations of the output species
in each case are presented in Fig. 4(a)–(c), where the black bars are those where
the output of the circuit is expected to be high, and the light grey bars are those
where the output of the circuit is expected to be low. For clarity, the labels of
those bars were typeset in boldface and italics, respectively. These results show
that, in all cases, the circuit designs were able to correctly compute whether the
corresponding formula was satisfied by the particular sequence of input signals,
with a high ratio of signal to leakage (unwanted circuit activation). This indicates
that our compilation from formulae into DNA circuits is functioning correctly.

Since our definitions do not require that the inputs in the input sequence are
unique, we also used our circuits to test satisfaction of the temporal formula A �
B � A � B, which is satisfied by any input sequence in which A appears followed
by B, followed again by A and then B. Figure 4(d) shows the final concentration

50 M.R. Lakin and D. Stefanovic

0 2 4 6 8 10

Output Concentration (nM)

EDCBA
EDCAB
EDBCA
EDBAC
EDACB
EDABC
ECDBA
ECDAB
ECBDA
ECBAD
ECADB
ECABD
EBDCA
EBDAC
EBCDA
EBCAD
EBADC
EBACD
EADCB
EADBC
EACDB
EACBD
EABDC
EABCD
DECBA
DECAB
DEBCA
DEBAC
DEACB
DEABC
DCEBA
DCEAB
DCBEA
DCBAE
DCAEB
DCABE
DBECA
DBEAC
DBCEA
DBCAE
DBAEC
DBACE
DAECB
DAEBC
DACEB
DACBE
DABEC
DABCE
CEDBA
CEDAB
CEBDA
CEBAD
CEADB
CEABD
CDEBA
CDEAB
CDBEA
CDBAE
CDAEB
CDABE
CBEDA
CBEAD
CBDEA
CBDAE
CBAED
CBADE
CAEDB
CAEBD
CADEB
CADBE
CABED
CABDE
BEDCA
BEDAC
BECDA
BECAD
BEADC
BEACD
BDECA
BDEAC
BDCEA
BDCAE
BDAEC
BDACE
BCEDA
BCEAD
BCDEA
BCDAE
BCAED
BCADE
BAEDC
BAECD
BADEC
BADCE
BACED
BACDE
AEDCB
AEDBC
AECDB
AECBD
AEBDC
AEBCD
ADECB
ADEBC
ADCEB
ADCBE
ADBEC
ADBCE
ACEDB
ACEBD
ACDEB
ACDBE
ACBED
ACBDE
ABEDC
ABECD
ABDEC
ABDCE
ABCED
ABCDE

((A � B)∨ (A �C))∧ (C � D � E)

Fig. 5. Final concentrations of the output species for the formula ((A � B) ∨ (A � C))
∧(C � D � E). The bars represent the output for all possible permutations of the input
signals A, B, C, D, and E. Formatting of bars and labels is as explained in Fig. 4.

Towards Temporal Logic Computation 51

Table 1. Circuit sizes for circuits simulated in Figs. 4 and 5, expressed in terms of the
number of species. The number of species in each case was calculated by considering
all logic gates and fuel strands that must be present initially, as well as all signals that
are either present initially or introduced during the course of the experiment.

Formula Signals Gate structures Fuel strands Total

A � B � C 5 6 15 26

(A � B) ∧ (C � D) 6 10 24 40

(A � B) ∨ (C � D) 6 11 25 42

A � B � A � B 3 8 20 31

((A � B) ∨ (A � C)) ∧ (C � D � E) 8 19 44 71

of the output species from this circuit, when tested with all possible input signal
sequences that contain two occurrences of A and two occurrences of B. As the
figure shows, the circuit only returned a high response for the input sequence
[ABAB], as expected. Thus, our DNA circuits could be used as a crude means
of detecting switching, or oscillatory, input signals.

Finally, we tested a larger example formula (((A � B) ∨ (A � C)) ∧
(C � D � E)) that includes all three formula types in a single circuit, with
a total of five input signals (A, B, C, D, and E). This gave a total of 120
distinct input sequences, and the final concentration of the output species for
each of these is presented in Fig. 5. Again, we see that the circuit responded
correctly, with a high output concentration whenever the input signal sequence
satisfied the encoded formula, and a low output concentration whenever it did
not. This demonstrates that our approach can be scaled to larger circuits that
implement larger formulae. This scalability is further demonstrated by Table 1,
which presents the circuit sizes for all five example circuits from Figs. 4 and 5.
The largest of these circuits, the one from Fig. 5, has a number of initial species
roughly comparable to the largest strand displacement system implemented
experimentally [2], which contained 74 initial DNA species, excluding inputs.

5 Discussion

To summarize, we have shown that our simple logic of temporal relationships,
which allows properties concerning the relative temporal occurrence of signals in
a linear input sequence to be expressed, can be compiled systematically into DNA
strand displacement reaction networks such that the output networks encode the
semantics of the corresponding formulae. Then, when those networks are pre-
sented with a linear temporal sequence of input signals, each network produces
a high concentration of its output species if the input signal sequence satisfies
the encoded formula, and produces little or no output species if the input signal
sequence does not satisfy the encoded formula. For simplicity, in our simulations
we assumed that those input signals undergo exponential decay when free in

52 M.R. Lakin and D. Stefanovic

solution. Our simulation results indicate that our circuit designs and compila-
tion process function correctly for a range of input signals and different temporal
formulae, and that our design approach can be scaled to larger formulae (subject
to the usual limitations imposed by the DNA sequence space).

In practice, degrading inputs could be implemented by using RNA input
strands (and RNA outputs from the catalyst gates) with nuclease-containing
media [17] so that single-stranded RNA in solution is degraded. An alternative
approach could be to include additional DNA circuit components that act as
a sink for the input strands. We used two-domain strand displacement catalyst
gates as the basis for our designs because of their highly modular and composable
nature. However, an alternative framework could be the strand displacement
catalyst system developed by Zhang et al. [22]. A practical advantage of this
system is that it would require fewer strands for an experimental implementation.
Furthermore, that catalyst design actually recycles the original input strand back
into solution, as opposed to our design based on two-domain strand displacement
in which a distinct copy of the input strand is released back into solution. Thus,
this approach might be more easily integrated with the RNA-based approach to
implementing degradable inputs, as discussed above.

Another alternative circuit design might employ fork gates instead of cat-
alyst gates, which would mean that the input signals, once used by a gate to
modify the populations of substrate species, would not be released back into
solution at all. This could be a simpler solution for the purposes of building an
experimental system but would mean that the circuit would have a significant
impact on the system that it was measuring—a key rationale for using catalytic
reactions is that the recycled input strands could continue to undergo reactions
elsewhere in the system, thereby allowing our circuits to be used for real-time
monitoring of biochemical systems, such as cellular regulatory networks, without
significantly perturbing the system under observation. An additional advantage
of using simpler strand displacement gates to implement temporal sensing is that
most designs for multi-input strand displacement logic gates impose an implicit
ordering on the binding of multiple inputs to the logic gate [23], thereby pro-
viding another alternative mechanism for the experimental implementation of
temporal sensing.

The logic that we defined in Sect. 2 does not include negation, which is in
keeping with previous work that used dual rail expansions to eliminate negation
from DNA logic circuits [2]. In our logic, however, such expansions are more
challenging. It is tempting to think that we can achieve a similar effect by using
de Morgan’s laws to push negations through conjunctions and disjunctions, and
by expanding before formulae when the negations reach them, e.g.:

¬(A1 � A2 � · · · � An) =
∨

i∈{1,...,n}

∨

j∈{i+1,...,n}
(Aj � Ai)

¬(ϕ1 ∧ ϕ2) = (¬ϕ1) ∨ (¬ϕ2)
¬(ϕ1 ∨ ϕ2) = (¬ϕ1) ∧ (¬ϕ2)

Towards Temporal Logic Computation 53

However, even for simple examples such as ¬(A � B), which expands to B � A,
this expansion misbehaves when one or both of the mentioned input signals are
absent, e.g., [AC] �� A � B and [AC] �� B � A. More disturbingly, ¬(A � A)
expands to A � A. Clearly more work on the semantics of negation in logics
such as this is required. Indeed, one can think of our logic as a quantifier-free,
negation-free subset of first order logic where the temporal ordering between
signals could be implemented as a ternary predicate over a signal sequence and
the two signals in question, and in this view the implementation of negation is
less problematic but would still require our DNA circuits to be able to detect
the absence of a particular signal from the input sequence.

To simplify the presentation, in this paper we assumed that the times in
which the different inputs are present in the system do not overlap. However,
in practical applications the signals that we might want to analyze are unlikely
to be so clear-cut and regimented. An obvious first step would be to relax the
requirement that all inputs are non-overlapping, so there could be two or more
input signals present in solution simultaneously. In this case, the A � B formula
could be generalized to an A 	 B formula, which would be satisfied if A occurs
before, or at the same time as, B, and the implementation would need to be
generalized accordingly, e.g., by using cooperative hybridization to detect the
simultaneous presence of input signals [24].

Another important generalization would be to handle input concentration
profiles that change continuously over time, rather than being added at discrete
points as in this paper. In this context, our circuits would likely need to discretize
the incoming signals in terms of their concentration, as well as in time. For
the former, prior work on digital and analog DNA circuits implemented using
“seesaw gates” [2,3] employed a thresholding mechanism, which could be used
to discretize concentrations of the signals in the input time course. To discretize
signals in time, Jiang et al. [5] use both synchronous (via an oscillatory chemical
“clock”) and asynchronous (self-timed) approaches.

Finally, the logic that we implemented in this paper is relatively straight-
forward, as it just allows statements about the order in which different input
signals were observed in the linear input sequence. However, there are many
more temporal logics in practical and industrial use, such as computation tree
logic (CTL), linear temporal logic (LTL), and interval temporal logic (ITL).
These discrete-time logics deal with branching time, infinite linear time, and
finite linear time, respectively, and include more powerful logical primitives such
as checking whether a proposition is globally true, or eventually true, or true
until some other proposition becomes true. In the case of CTL, there are also
logical primitives to deal with whether these properties hold along all branching
paths in time, or just some. Clearly, these are much more powerful logics than
that which we defined in this paper. A fruitful direction for future research would
be to investigate designs for DNA-based circuits that can decide satisfaction of
these more powerful logics, or to recognize strings drawn from regular languages
(in which case, the DNA network would encode a regular expression). These
recognition tasks are non-trivial because solving them would require far more

54 M.R. Lakin and D. Stefanovic

information about the past states observed by the network to be stored, such as
the length of time that has passed since a given signal was observed. Tackling
this problem in an efficient and scalable manner would require us to be able to
use the same input signal irrespective of its position in the temporal ordering,
and we note that previous work on chemical memories [15,16] provides a possible
solution to these challenges associated with reusing inputs and deciding more
sophisticated temporal logics.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under grants 1525553, 1518861, and 1318833.

References

1. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regu-
lators. Nature 403, 335–338 (2000)

2. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332, 1196–1201 (2011)

3. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand
displacement cascades. Nature 475, 368–372 (2011)

4. Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D.,
Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol.
8, 755–762 (2013)

5. Jiang, H., Salehi, S.A., Riedel, M.D., Parhi, K.K.: Discrete-time signal processing
with DNA. ACS Synth. Biol. 2(5), 245–254 (2013)

6. Farzadfard, F., Lu, T.K.: Genomically encoded analog memory with precise in vivo
DNA writing in living cell populations. Science 346(6211), 1256272 (2014)

7. Fernando, C.T., Liekens, A.M.K., Bingle, L.E.H., Beck, C., Lenser, T., Stekel, D.J.,
Rowe, J.E.: Molecular circuits for associative learning in single-celled organisms.
J. Royal Soc. Interface 6, 463–469 (2009)

8. McGregor, S., Vases, V., Husbands, P., Fernando, C.: Evolution of associative
learning in chemical networks. PLoS Comput. Biol. 8(11), e1002739 (2012)

9. Lakin, M.R., Minnich, A., Lane, T., Stefanovic, D.: Design of a biochemical circuit
motif for learning linear functions. J. Royal Soc. Interface 11(101), 20140902 (2014)

10. Banda, P., Teuscher, C., Lakin, M.R.: Online learning in a chemical perceptron.
Artif. Life 19(2), 195–219 (2013)

11. Banda, P., Teuscher, C., Stefanovic, D.: Training an asymmetric signal percep-
tron through reinforcement in an artificial chemistry. J. Royal Soc. Interface 11,
20131100 (2014)

12. Lakin, M.R., Stefanovic, D.: Supervised learning in adaptive DNA strand displace-
ment networks. ACS Synth. Biol. 5(8), 885–897 (2016)

13. Lakin, M.R., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA circuit
design. J. Royal Soc. Interface 9(68), 470–486 (2012)

14. Goudarzi, A., Lakin, M.R., Stefanovic, D.: DNA reservoir computing: a novel mole-
cular computing approach. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS,
vol. 8141, pp. 76–89. Springer, Cham (2013). doi:10.1007/978-3-319-01928-4 6

15. Padirac, A., Fujii, T., Rondelez, Y.: Bottom-up construction of in vitro switchable
memories. Proc. Natl. Acad. Sci. USA 109(47), E3212–E3220 (2012)

http://dx.doi.org/10.1007/978-3-319-01928-4_6

Towards Temporal Logic Computation 55

16. Moles, J., Banda, P., Teuscher, C.: Delay line as a chemical reaction network.
Parallel Process. Lett. 21(1), 1540002 (2015)

17. O’Steen, M.R., Cornett, E.M., Kolpashchikov, D.M.: Nuclease-containing media for
resettable operation of DNA logic gates. Chem. Commun. 51, 1429–1431 (2015)

18. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement
reactions. Nat. Chem. 3(2), 103–113 (2011)

19. Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci.
23, 247–271 (2013)

20. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design
and analysis tool for DNA strand displacement systems. Bioinformatics 27(22),
3211–3213 (2011)

21. Yordanov, B., Kim, J., Petersen, R.L., Shudy, A., Kulkarni, V.V., Phillips, A.:
Computational design of nucleic acid feedback control circuits. ACS Synth. Biol.
3(8), 600–616 (2014)

22. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven
reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)

23. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Natl. Acad. Sci. USA 107(12), 5393–5398 (2010)

24. Zhang, D.Y.: Cooperative hybridization of oligonucleotides. J. Am. Chem. Soc.
133, 1077–1086 (2011)

Quantum-Dot Cellular Automata: A Clocked
Architecture for High-Speed, Energy-Efficient

Molecular Computing

Enrique P. Blair(B)

Baylor University, Waco, TX 76798, USA
Enrique Blair@baylor.edu

http://web.ecs.baylor.edu/faculty/blair

Abstract. Quantum-dot cellular automata (QCA) is a non-transistor-
based, classical computing paradigm. QCA devices may be implemented
using mixed-valence molecules, and logic circuits are formed by laying out
ordered arrays of QCA molecules on a substrate. Molecules are locally
coupled via the Coulomb field. The molecular circuits can be clocked using
an applied perpendicular electric field. A fully-quantum model of field-
driven electron transfer (ET) is used to determine the ET rate for specific
QCA candidate molecules. The diferrocenyl acetylene (DFA) molecule is
taken as an example QCA molecule, and this model indicates DFA may
support classical computation at speeds well beyond the GHz range.

Keywords: Molecular classical computing · High-speed computing ·
Beyond-CMOS computing · Energy-efficient computing

1 Introduction

Strong motivation now exists for alternatives to complementary metal-oxide
semiconductor (CMOS) transistor-based computing. The scaling of CMOS
devices to the very limits of scaling has resulted in device operation plagued
by vast power dissipation [7]. Thus, modern CMOS-based computing devices
use tremendous amounts of energy. Furthermore, it is estimated that by
2030, transistor-based information and communication technology will consume
30–50% of global power output and contribute up to 23% of global greenhouse
gas emissions [1].

One general-purpose computing paradigm designed to circumvent such prob-
lems is quantum-dot cellular automata (QCA1) [15,19]. QCA has a molecular
1 It is important to provide some disambiguation. In this context, “QCA” refers to
‘ ‘quantum-dot cellular automata,” a paradigm for general-purpose classical com-
puting proposed by Lent, Tougaw, Porod, and Bernstein [19]. Here, classical bits are
manipulated by exploiting quantum phenomena: quantum tunneling, and the quan-
tization of charge. “QCA” also stands for “quantum cellular automata,” a model for
universal quantum computing. Since this abbreviation has served extensively in the
distinct bodies of literature, we seek to avoid further other confusion by providing
this note here, and by continuing to use “QCA” to refer in this context only to the
classical computing paradigm.

c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 56–68, 2017.
DOI: 10.1007/978-3-319-58187-3 5

QCA: A Clocked Architecture for High-Speed 57

implementation, which supports ultra-high device densities and operating
speeds, as well as low levels of power dissipation.

Here, an overview of the QCA paradigm is given. The discussion begins with a
review of QCA with a focus on the molecular implementation of QCA devices. An
architecture for logic based on electric-field-clocked molecular QCA is outlined.
Then, a model of electric-field-driven electron transfer is described. This model
is applied specifically to diferrocenyl acetylene (DFA) molecules, and electron
transfer rates are calculated. The results suggest that if implemented using DFA-
like molecules, molecular QCA can support very high operating speeds. These
results are based on quantum mechanical theory and are part of a larger effort
to realize molecular QCA computing devices.

2 Overview of QCA

The elementary computational device in QCA is the cell, a system having some
mobile charge and several charge localization centers known as quantum dots.
A schematic of a six-dot cell with two mobile electrons is shown in Fig. 1(a).
Here, two degenerate, information-bearing, active states are labeled “0” and
“1”. The “Null” state bears no information, but enables clocking. Coulomb
repulsion drives the alignment of active states for cells in juxtaposition, as
in the row of cells in upper left of Fig. 1(b). This Coulomb coupling enables
general-purpose computing using arrays of QCA cells. Figure 1(b) shows a log-
ically complete set of devices: a QCA inverter circuit (lower left), and a three-
input majority gate, which can function as a two-input, programmable AND/OR
gate [19,27].

2.1 Implementing QCA

QCA has various implementations. Devices have been built and tested using
metallic dots [22,26]. Also, cells have been constructed from semiconductor dots
[8,13] and atomic dots [10]. Additionally, QCA may be implemented using mixed-
valence compounds [15,17,20]. Here, individual molecules function as cells, with
redox centers providing dots. This molecular implementation, like the atomic-
scale implementation, supports room-temperature operation at switching speeds
well beyond the GHz range. Other features of this implementation are synthet-
ically uniform devices and ultra-high device densities in the molecular limit.
Figure 2 shows ball-and-stick models of molecules studied as QCA candidates.
An uncolocked diferrocenyl acetylene (DFA) molecule has two Fe centers, each
providing a quantum dot. Designed specifically as a molecular QCA candidate,
the zwitterionic nido carborane (Fc+FcC2B9

−) is a self-doping molecule with
three redox centers, and which supports electric-field clocking [6].

Fc+FcC2B9
− is a net neutral molecule with a hole as the mobile charge. Its

dots are assigned labels in Fig. 3(a), and the three localized electronic states are
shown in Fig. 3(b). When the hole occupies either of the active dots (0 or 1),

58 E.P. Blair

(a) States of a QCA
cell.

(b) Basic QCA logic circuits

Fig. 1. Constructing logic from QCA cells. (a) The localized states of a six-dot QCA
cell. White discs represent quantum dots, and two red discs represent two mobile
electrons. The smaller size of middle dots—called “null” dots—indicates that they
lie on the substrate, whereas the corner dots—called “active” dots—are elevated above
the substrate. (b) A set of QCA devices. Binary wires are implemented using a row
of cells (upper left); diagonal intercellular coupling leads to bit inversion (lower left);
and, a majority gate is the natural three-input (A, B, and C), single-output (D) logic
gate in QCA. One input may be treated as a control bit, allowing the majority gate
to function as a programmable, 2-input AND/OR gate. The majority gate and the
inverter constitute a logically complete set.

(a) Diferrocenyl acetylene (DFA). (b) Zwitterionic nido carborane
(Fc+FcC2B9

−).

Fig. 2. Some molecules studied for QCA applications. (a) Diferrocenyl acetylene (DFA)
provides a double-dot molecule. A pair of DFA molecules could be grouped to form a
four-dot cell without null dots. (b) The Fc+FcC2B9

− molecule was designed and syn-
thesized to function as clockable QCA half-cell. A pair of these molecules can function
as a six-dot cell [see Fig. 1(a)].

the cell takes an active state, and a fixed neutralizing charge of one electron is
uncovered on the null dot. When the cell is in the “Null” state, |Null〉, the mobile
charge covers the fixed neutralizing charge [6].

2.2 Clocked Molecular QCA Devices

Molecular QCA may be clocked using an externally-applied electric field [11].
Consider a pair of three-dot molecules like Fc+FcC2B9

− paired to function as
a six-dot cell, as in of Fig. 1(a). Figure 4(a) shows such a system with the cell
adsorbed onto the substrate such that the active dots are elevated above the null

QCA: A Clocked Architecture for High-Speed 59

0 1

null
(a) Redox centers of
Fc+FcC2B9

−.

|0〉 |Null〉 |1〉
(b) Localized states of the (Fc+FcC2B9

−).

Fig. 3. Zwitterionic nido carborane (Fc+FcC2B9
−) provides a clockable three-dot cell.

(a) Fc+FcC2B9
− has three redox centers, which function as dots: one dot on each of

the two ferrocene groups, and one dot on the central carborane cage. (b) The localized
states of a mobile hole define the states |0〉, |Null〉, and |1〉. In the active states, |0〉 or |1〉,
the mobile hole (translucent green spot) occupies dot 0 or 1, leaving the carborane cage
negatively ionized (red spot). In the null state, the mobile hole resides on the carborane
cage, resulting in a molecule with zero dipole moment. The schematic picture above
each state depicts only the dots (circles) and the mobile hole (solid green disc). Lines
indicate tunneling paths. (Color figure online)

dots. Here, mobile electrons are assumed. A charged conductor buried beneath
the device layer may be used to establish the applied clocking electric field. An
electric field with a negative ẑ-component Ez will drive the cell to the active
state preferred by interactions with neighboring cells. For Ez > 0, however, the
mobile electrons will be attracted to the null dots, driving the cell to the null
state regardless of neighbor interactions.

QCA circuits may be clocked using an array of wires, as in Fig. 4(b). Here,
independently charged conductors establish an electric field with an inhomoge-
neous ẑ component at the device layer on the substrate. Domains of this field
with Ez < 0 will activate cells, whereas cells will be driven to the null state in
regions where Ez > 0 [3].

Time-varying clocking excitations result in moving active domains. Consider
the plan view of clocking wires shown in Fig. 5(a). The upper part of this sub-
figure shows one period of one particular phase of a four-phase clock. When the
four-phase clocking excitation is applied to this array of wires, the electric field
is established with active domains that propagate to the right.

The motion of active domains across the QCA plane drives the flow of data
and calculations through QCA circuits. Figure 5(b) shows a shift register at work.
Since bit packets exist only within active domains, the translation of an active
domain across the device layer also moves the bit packet(s) contained within it.
Thus, the active domain propagates rightward, driving the bit through the shift
register. Calculations take place in the circuity at the leading edge of the active
domain, and erasures occur at the trailing edge.

60 E.P. Blair

(a) A single clocked QCA cell. (b) An array of clocked QCA cells.

Fig. 4. An externally-applied electric field is used to clock molecular QCA cells. (a)
Two three-dot molecules are paired to form cells with six dots (dots are blue spheres). A
single cell with two mobile electrons (red discs) is clocked to an active state by applying
a negative charge to a buried conductor (red slab below the six-dot cell). The resulting
electric field repels the electrons to the active dots, and the cell’s state is determined
by neighbor interactions. On the other hand, if the polarity of the conductor charge is
reversed (indicated by the green color of the slab below the six-dot cell), the electric
field reverses polarity, attracting the electrons to the null dots. The cell is clocked to the
null state regardless of neighboring molecular states. (b) Two buried, independently-
charged wires (red for negative and green for positive voltage) create an inhomogeneous
electric field at the surface of the substrate. This field activates cells in certain regions
called active domains, where the field’s vertical (ẑ-component) is negative (Ez < 0).
In null domains, Ez > 0, and cells are driven to the null state. (Color figure online)

More complex logic circuits are possible. Figure 6 shows the operation of
a majority gate and a permuter circuit. Additionally, more complex clocking
schemes can support memories and feedback loops [3,16]. Finally, an estimated
upper limit of power dissipation in the clocking wires indicates that such dissi-
pation will be quite manageable, even up to clocking speeds of 100 GHz [4].

2.3 Challenges in Molecular QCA: Circuit Layout and Bit Readout

Tasks taken for granted in CMOS technologies can become more challenging in
molecular QCA because of the nanometer scale of the devices. We briefly discuss
the challenges posed by the layout of molecules and the readout of QCA bits on
individual molecules.

The layout of QCA cells on the substrate is important: a two-dimensional cel-
lular lattice cannot provide adequate functionality for general-purpose comput-
ing. Photolithography is suitable for fabricating metal-dot and semiconductor-
dot QCA arrays, but the layout of molecular QCA cells requires a different
approach.

One interesting layout concept relies on self-assembly and involves the use
of rafts or tiles formed using DNA [25] or PNA, as depicted in Fig. 7. These
rigid structures will provide tiny molecular circuit boards for cells. Placement

QCA: A Clocked Architecture for High-Speed 61

(a) Clocking wires create a time-dependent
clocking field.

(b) A field-clocked shift register.

Fig. 5. A time-varying clocking electric field drives a bit packet through a shift register.
(a) A layout of wires (middle) is charged using a four-phase clocking voltage. Here, the
conductors are color-coded, indicating a separate phase of a four-phase clock. A single
phase of this T -periodic clock is shown (top). The ẑ-component of the electric field, Ez

(pointing out of the page), is plotted in the grayscale background of the bottom panel,
with the position of wires marked using white lines. White regions of the field are active
domains, and black regions are null domains. The phase sequence of the clock drives
active domains rightward. (b) A “0” bit packet propagates rightward within an active
domain along a row of cells, resulting in shift-register action. The state of the cell is
encoded on its face color. Bit packets reside inside active domains, and thus are driven
through registers or other circuitry by the motion of the active domains. Three panels
show three successive snapshots in time.

and adhesion on the boards can be achieved by building into the DNA structure
preferred attachment sites [see Fig. 7(a)]. The QCA cells, in turn, must have as
part of their design an appendage to conjugate with an attachment site. The
DNA structures may be programmed to link with one another, forming larger
composite structures which can adhere to a substrate [see Fig. 7(b)] appropriately
patterned through photolithography. The DNA tiles, then, are an intermediate
layer between the QCA devices and the substrate. Seeman crystals [28] and
DNA origami [24] can provide useful techniques for realizing tiles. While DNA
tiles will have numerous stray charges likely disruptive to QCA operation, PNA
structures are charge-neutral and may address the problem of stray charge on
the tiles [18].

Another important task in QCA is that of reading the state of a nanometer-
scale QCA cell. Single-electron transistors (SETs) provide one potential solution

62 E.P. Blair

(a) Majority gate operation.

(b) Permuter operation.

Fig. 6. Time snapshots show the clocking field (grayscale background) driving data
through circuits (colored foreground squares). (a) The majority gate processes three
input bits. The clock shifts three bit packets (0, 1, 0) into the device cell from the
left. The result is a zero bit. (b) The clock pipelines data and calculations through a
QCA permuter circuit. Two distinct active domains, labeled “A” and “B” drive two
calculations through the circuit. The top panel shows that in domain A, a two-bit
word entered the circuit as atopabottom = 01 from the left (top panel), followed by
btopbbottom = 10 in active domain B. At some time later, the bottom panel shows the
word in domain A exiting, permuted to atopabottom = 10. The word btopbbottom will
follow, being permuted to btopbbottom = 01 by the time domain B exits the circuit.
Fixed cells are used to program majority gates as AND or OR gates. (Color figure
online)

QCA: A Clocked Architecture for High-Speed 63

(a) The DNA tile concept. (b) Linked DNA tiles.

Fig. 7. The use of DNA tiles in the layout of QCA circuits. (a) A DNA tile structure
(yellow slab) provides a molecular circuit board for QCA cells. A particular QCA
molecule (three clustered blue spheres) is designed with a docking appendage. Cells of
this type conjugate with the DNA tile at built-in attachment sites. (b) DNA tiles can
be programmed to link with other tiles and adhere to a substrate (gray slab). This will
enable the assembly of large-scale molecular QCA circuits. (Color figure online)

[23]. SETs are exquisitely sensitive electrometers, having an unequivocal
response to sub-nanometer displacements of single electrons [14].

3 Modeling Electron Transfer Rates in Molecular QCA

Modeling electron transfer in molecular QCA is of particular interest in QCA
design. QCA device switching occurs through ET, and driven ET rates are
directly related to maximum device operating speed, a key figure of merit for
any computational hardware. Molecular QCA likely will support operation at
speeds well beyond the GHz-range speeds seen in modern classical computing.

A fully-quantum model of field-driven, intramolecular ET was developed, in
which a field-driven ET event is coupled to molecular vibrations [2]. The mole-
cular vibrations, then, are damped by the thermal environment at temperature
T—in this case, the substrate. This model is shown schematically in Fig. 8(a).

The model is described here briefly, in the context of a DFA molecule. In this
model, the system energetics are captured in the Hamiltonian Ĥ(t), given by

Ĥ(t) = −γσ̂x +
Δ(t)

2
σ̂z +

gev
2

σ̂zQ̂ +
P̂ 2
Q

2m
+

mω2
vibQ̂

2

2
. (1)

Here, the first two terms describe the energetics of the two-state electronic sys-
tem: γ is the hopping energy between the two dots [see Fig. 8(b)], and Δ(t) is
the bias between the states |1〉 and |0〉 [see Fig. 8(c)] due to the electrostatic field
from neighboring molecules. The operators σ̂x and σ̂z are two of the three Pauli
operators. The nuclear displacements are captured in a single vibrational coordi-
nate Q, which is modeled as a quantum harmonic oscillator with effective mass
m and angular oscillation frequency ωvib. The oscillator, the excitations of which

64 E.P. Blair

Driver Electron

Vibron

Thermal
environment

T

(a) The electron-vibron-
environment model.

dot 0

dot 1

(b) Redox centers of
diferrocenyl acetylene
(DFA).

|0〉

a

|1〉
(c) Localized electronic states of DFA.

t < 0 t = 0+ t > 0 t → ∞

(d) A driven ET event in a two-dot QCA cell.

Fig. 8. A model of electric-field-driven ET in a target molecule. (a) A schematic block
diagram of the quantum system. The electron and vibron comprise the model tar-
get system described by ρ̂(t). The charge configuration of the driver establishes a
potential, which may transfer energy to or from the electron+vibron system, and the
electron+vibron system may transfer energy to the environment at temperature T .
(b) DFA has one redox center per ferrocene group, providing a total of two quantum
dots. Dots are treated as points separated by distance a. (c) The localized states of a
mobile electron (translucent red disc) define the states |0〉 and |1〉. The schematic pic-
ture above each state depicts the dots (blue circles) and the mobile electron (solid red
disc). Lines indicate tunneling paths. (d) A set of four snapshots illustrate the driven
ET process: (i) for t < 0 the driver configuration, along with a confining potential (not
pictured) confine the target electron to the left dot; (ii) at t = 0, the confining potential
is abruptly lifted, and the driver configuration is abruptly switched, establishing a Δ
that drives ET to the right dot; (iii) at some time 0 < t ≤ ∞, the ET is in progress via
quantum-mechanical, interdot tunneling; and, (iv) after sufficient time (t → ∞), the
electron has transferred to the right dot. (Color figure online)

QCA: A Clocked Architecture for High-Speed 65

are called “vibrons,” has position and momentum operators Q̂ and P̂Q, respec-
tively, which may be expressed in terms of vibronic creation and annihilation
operators, â†

Q and âQ, respectively:

Q̂ =
√

�

2mωvib

(
â†
Q + âQ

)
and P̂Q = i

√
mωvib�

2

(
â†
Q − âQ

)
. (2)

The energetics of the vibronic system alone are captured in the last two terms
of Ĥ(t). The middle term in Ĥ(t) describes the electron-vibron coupling. This
depends on the coupling constant gev =

√
2mωvibλ, where λ is the reorganization

energy of the molecule [2,12]. Molecular parameters such as γ, λ, m, and ωvib

may be obtained through quantum chemistry calculations or experiment. Here,
the model parameters used are characteristic of DFA: a = 0.67 nm, γ = 50 meV,
m = 5.6 amu, λ = 440 meV, and fvib = ωvib/2π = 298 cm−1. Of course, the
model can be applied to other molecules as well, if the appropriate characteristic
molecular parameters are provided.

To model environmental damping on this system, we assume that the envi-
ronment is Markovian or memoryless. In this limit, model dynamics are described
by the Lindblad equation [9,21]:

d

dt
ρ̂ = − i

�

[
Ĥ, ρ̂

]
+ D , with D =

s∑
j=1

L̂jρ̂L̂†
j − 1

2

{
L̂†
j L̂j, ρ̂

}
. (3)

Here, the density operator ρ̂(t) describes the state of the electron+vibron system.
Equivalent to the Schrödinger equation, the first term of (3) describes unitary
evolution of the quantum mechanical system. The summation D, referred to as
the Lindbladian term or the dissipator, describes the non-unitary and irreversible
time evolution, including quantum decoherence and dissipative effects. Here,
[Â, B̂] and {Â, B̂} are the commutator and the anticommutator, respectively,
of operators Â and B̂; and, the operators {L̂j} are Lindblad operators [5]. A
particular model of environmental effects requires a specific choice of operators
{L̂j}, and for this model, two operators were used:

L̂1 =
√

1
T1

âQ and L̂2 = exp
(

− �ω

2kBT

)√
1

T1
â†
Q. (4)

Here, T is the environmental temperature, kB is Boltzmann’s constant, and T1

is the environmental energy relaxation time, which measures the strength of the
vibron-environment interaction. This combination of L̂1 and L̂2 models a system
that achieves a Boltzmann distribution in the steady state. Model dynamics are
obtained by numerically solving Eq. (3).

A driven ET event is depicted schematically in Fig. 8(d). A neighboring driver
cell and a confining potential are established to strongly favor electron occupa-
tion on the left dot of the target molecule for t < 0. Then, at t = 0, the confining
potential is lifted, and the neighboring molecule is abruptly switched, driving
rightward ET in the target molecule. From the solution ρ̂(t), we calculate tET ,

66 E.P. Blair

the time required for the electron to tunnel to the right dot, and the ET rate
k = 1/tET . Figure 9 shows calculations of k using this model. This data indicates
that DFA-based QCA cells could support THz-scale ET rates.

0 500 1000 1500
0.5

1

1.5

2

1012

Fig. 9. The DFA molecule supports ET rates k of the order of 1012 transfers per second
over the terrestrial range of temperatures. Calculations were done with parameters
characteristic of DFA: interdot distance a = 0.67 nm, γ = 50 meV, λ = 440 meV,
m = 5.6 amu, and fvib = 298 cm−1.

4 Conclusion

QCA is a paradigm for computing with a molecular implementation that
promises high device densities, room temperature operation, low power dissi-
pation, and high operating speeds. While results for the DFA molecule indicate
that THz-scale operation is possible, other molecules may support even higher
speeds. The results presented here are theoretical in nature and are part of a
larger, transdisciplinary effort to realize molecular QCA.

Modeling the performance of candidate QCA molecules is important because
synthesizing and testing molecules is a time-consuming, labor-intensive project
that at present, may take several person-years. This model, along with models of
other relevant phenomena in QCA, can shed light on desirable molecular prop-
erties and provide a clear objective for molecular designers. Additionally, such
models can close a theoretical design feedback loop that allows a candidate QCA
molecule to be characterized using quantum chemistry calculations, to be evalu-
ated for performance, and redesigned as necessary before undertaking the costly
process of determining a synthesis route. These theoretical models can yield
tremendous savings in time and effort in molecular design and synthesis, and
can contribute directly to the realization of high-performance, energy-efficient,
general-purpose computing devices based on molecular QCA.

QCA: A Clocked Architecture for High-Speed 67

References

1. Andrae, A., Edler, T.: On global electricity usage of communication technology:
Trends to 2030. Challenges 6, 117–157 (2015)

2. Blair, E., Corcelli, S., Lent, C.: Electric-field-driven electron-transfer in mixed-
valence molecules. J. Chem. Phys. 145, 014307 (2016)

3. Blair, E., Lent, C.: An architecture for molecular computing using quantum-dot
cellular automata. In: IEEE Conference on Nanotechnology, vol. 1, pp. 402–405.
IEEE (2003)

4. Blair, E., Yost, E., Lent, C.: Power dissipation in clocking wires for clocked mole-
cular quantum-dot cellular automata. J. Comput. Electron. 9(1), 49–55 (2010)

5. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford
Scholarship Online (2010)

6. Christie, J., Forrest, R., Corcelli, S., Wasio, N., Quardokus, R., Brown, R., Kandel,
S., Lu, Y., Lent, C., Henderson, K.: Synthesis of a neutral mixed-valence diferro-
cenyl carborane for molecular quantum-dot cellular automata applications. Angew.
Chem. 127, 15668–15671 (2015)

7. Frank, D.: Power-constrained CMOS scaling limits. IBM J. Res. Dev. 46(2/3),
235–244 (2002)

8. Gardelis, S., Smith, C., Cooper, J., Ritchie, D., Linfield, E., Jin, Y.: Evidence
for transfer of polarization in a quantum dot cellular automata cell consisting of
semiconductor quantum dots. Phys. Rev. B 67(3), 033302 (2003)

9. Gorini, V., Kossakowski, A., Sudarshan, E.: Completely positive dynamical semi-
groups of n-level systems. J. Math. Phys. 17(5), 821–825 (1976)

10. Haider, M.B., Pitters, J.L., DiLabio, G.A., Livadaru, L., Mutus, J.Y., Wolkow,
R.A.: Controlled coupling and occupation of silicon atomic quantum dots at room
temperature. Phys. Rev. Lett. 102, 046805 (2009)

11. Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata.
J. Vac. Sci. Technol. B 19(5), 1752–1755 (2001)

12. Holstein, T.: Studies of polar on motion part I. The molecular-crystal model. Ann.
Phys. New York 8, 325–342 (1959)

13. Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G.H., Porod, W.: Majority logic
gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208
(2006)

14. Karbasian, G., Orlov, A., Mukasyan, A., Snider, G.: Single-electron transistors
featuring silicon nitride tunnel barriers prepared by atomic layer deposition. In:
2016 Joint International EUROSOI Workshop and International Conference on
Ultimate Integration on Silicon (EUROSOI-ULIS 2016). IEEE, January 2016

15. Lent, C.S.: Molecular electronics - bypassing the transistor paradigm. Science 288,
1597–1599 (2000)

16. Lent, C., Henderson, K., Kandel, S., Corcelli, S., Snider, G., Orlov, A., Kogge, P.,
Niemier, M., Brown, R., Christie, J., Wasio, N., Quardokus, R., Forrest, R., Peter-
son, J., Silski, A., Turner, D., Blair, E., Lu, Y.: Molecular cellular networks: a non
von Neumann architecture for molecular electronics. In: 2016 IEEE International
Conference on Rebooting Computing (ICRC), pp. 1–7. IEEE, October 2016

17. Lent, C., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata.
J. Am. Chem. Soc. 125, 1056–1063 (2003)

18. Lent, C.S., Snider, G.L.: The development of quantum-dot cellular automata. In:
Anderson, N.G., Bhanja, S. (eds.) Field-Coupled Nanocomputing. LNCS, vol. 8280,
pp. 3–20. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43722-3 1

http://dx.doi.org/10.1007/978-3-662-43722-3_1

68 E.P. Blair

19. Lent, C., Tougaw, P., Porod, W., Bernstein, G.: Quantum cellular automata. Nan-
otechnology 4, 49 (1993)

20. Lieberman, M., Chellamma, S., Varughese, B., Wang, Y., Lent, C., Bernstein, G.,
Snider, G., Peiris, F.: Quantum-dot cellular automata at a molecular scale. Ann.
N.Y. Acad. Sci. 960, 225–239 (2002)

21. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun.
Math. Phys. 48, 119–130 (1967)

22. Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of
a functional cell for quantum-dot cellular automata. Science 277(5328), 928–930
(1997)

23. Prager, A., George, H., Orlov, A., Snider, G.: Experimental demonstration of
hybrid CMOS-single electron transistor circuits. J. Vac. Sci. Tenchnol. B 29(4),
041004 (2011)

24. Rothemund, P.: Folding DNA to create nanoscale shapes and patterns. Nature
440, 297–302 (2006)

25. Sarveswaran, K., Huber, P., Lieberman, M., Russo, C., Lent, C.: Nanometer scale
rafts built from DNA tiles. In: IEEE-NANO, Third IEEE Conference on Nanotech-
nology, vol. 1, pp. 402–405. IEEE (2003)

26. Snider, G.L., Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Merz, J.L.,
Porod, W.: Quantum-dot cellular automata: line and majority logic gate. Jpn. J.
Appl. Phys. 38(12B), 7227–7229 (1999)

27. Tougaw, P., Lent, C.: Logical devices implemented using quantum cellular
automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

28. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-
dimensional DNA crystals. Nature 394, 539–544 (1998)

Platform Color Designs for Interactive
Molecular Arrangements

Jasper Braun, Daniel Cruz(B), and Nataša Jonoska

Department of Mathematics and Statistics, University of South Florida,
Tampa, FL, USA

dcruz@mail.usf.edu

Abstract. It has been shown that alternating attachments of two types
(species) of floating molecular (DNA based) tiles on a predesigned array
that consists of communicating neighboring DNA tiles complementary
to the floating tiles can dynamically simulate some types of cellular
automata (CA). We show that the model can simulate any elementary
one dimensional CA confirming the universal computational power of
the model. We address the question of which design of the platform
array provides communication across the whole plane. We show that for
square tiles only the checkerboard arrangement of the two species can
provide communication between any two tiles of the plane. On the other
hand, there are an uncountable number of arrangements of two colors of
hexagonal tiles on the plane which provide communication between any
two tiles.

1 Introduction

Experimental DNA self-assembly has demonstrated molecular information
processing mainly through assemblies of structures as results of computa-
tions [17,20], or structures that represent computations (e.g. logic circuits [13],
space-time representations of cellular automata [18], binary counters [5], etc.).
In all those cases, the cooperation between the building blocks is guided by the
sticky ends, and once a molecule assumes its location within a larger structure,
it has no further computational interaction with its environment. Recent devel-
opments have shown arrays made by DNA origami tiles [12], incorporating sig-
naling strands within DNA origami [6] and controlled step-by-step tile assembly
through signal activated sticky ends [14]. These results have motivated several
recent works which, at least theoretically, describe models, where through con-
stant interaction with the environment, computations dynamically change the
structures. Many of these works show simulations of cellular automata using a
variety of models such as reaction network based simulations of (asynchronous)
cellular automata [8,11,19], models based on signal passing tile assemblies [10]
and a recent model relying on continuous changes of molecular arrangements on
a 2D array through a global control of the environment [9]. The proposed system
in [9] consists of a 2D DNA origami array (platform) made of two types (species)
of tiles (‘black’ and ‘white’) that serve as a transmission storage (equipped with
c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 69–81, 2017.
DOI: 10.1007/978-3-319-58187-3 6

70 J. Braun et al.

“communication” strands) and two types (species) of free floating tiles able to
attach to their respective counterparts on the platform. Only one species of float-
ing tiles is attached to the platform at a time. In an alternate manner, at each
cycle, one of the platform colors receives corresponding floating tiles and com-
putes the identity of the floating tiles of the next cycle for the other color. Thus,
the floating tiles communicate by transmitting signals through the platform to
their oppositely colored neighbors. The exchange of the tile types on the array
is assumed to be achieved through a global environmental control, for example
with tiles equipped with differently shaped gold particles [4,7], or newly designed
chemistry [1,21]. This global control has the potential to provide a “clock” in
the system allowing synchronous exchange of the arrangements between the two
species of tiles.

In this paper, we address two questions arising from the model description
in [9]: (a) what is the computational power of the system and (b) which color
designs of the platform allow communication across the whole plane? To no
surprise, we observe that the checkerboard coloring of the platform allows simu-
lation of any elementary cellular automaton in Sect. 2. This is achieved through
a dynamic simulation without storing or recording the history of the computa-
tion and follows an approach similar to the simulation in [10]. The 2D cellular
automaton simulation proposed in [9] has a lag; two steps of floating tile arrange-
ments correspond to a single configuration of the automaton being simulated.
In contrast, the simulation in Sect. 2 is such that each automaton configuration
corresponds to a single arrangement of tiles over one of the colors in the plat-
form. In the remaining sections, we study coloring designs of the platform which
allow communication between the floating tiles. We show that communication
between any two tiles on a colored platform through signals sent from a tile to
oppositely colored neighboring tiles is possible only on a checkerboard coloring
of the platform. Further, we observe that a platform made by other types of tiles
(such as hexagonal tiles) may have uncountably many colorings that provide
communication between any two tiles across the plane.

1.1 Preliminaries

In this paper, G = (V,E) is always an undirected, simple graph with a finite or
infinite set of vertices V . The number of edges in the shortest simple path from
u to v is denoted dist(u, v). Vertices represent tiles on the plane (platform), and
the edges correspond to the connections between the tiles. When thinking of a
platform, G is also planar. However, our observations in Sect. 4 hold in general
and the planarity of G is not assumed. In the case of the square tiling of the
plane, we take G to be the integer lattice with vertices Z2 and edges {u, v} if and
only if ||u−v|| = 1. Let C be a finite set; a mapping ϕ : V → C is a coloring of G
by C. A coloring ϕ is binary if |C| = 2. As per the experimental implementation
suggested in [9], the platform is partitioned into two types of tiles which can be
distinguished by associating two colors. Therefore, in this paper all colorings are
binary and we set C = {0, 1}. We refer to color 1 as ‘black’, and to color 0 as
‘white’. A checkerboard coloring of Z2 is uniquely determined by the color of the

Platform Color Designs for Interactive Molecular Arrangements 71

parity of x + y for u = (x, y) ∈ Z
2, that is for a fixed i, (x, y) is colored i if and

only if x + y is even. There are two checkerboard colorings of Z2, depending on
whether i = 0 or i = 1. We define checkerboard colorings of arbitrary graphs in
Sect. 4.

Because communication across the tiles is performed only between oppo-
sitely colored tiles, we consider paths in the graph where successive vertices are
oppositely colored. A path p = v0, . . . , vn in G is ϕ-alternating if for any two
consecutive vertices vi−1, vi in p, ϕ(vi) = 1−ϕ(vi−1). We say that u, v ∈ V com-
municate under ϕ if there is a ϕ-alternating path from u to v. Let Cϕ

v = (Vv, Ev)
denote the subgraph of G induced by v and the set of vertices which commu-
nicate with v under ϕ. We call Cϕ

v the communicating graph of v under ϕ. We
abuse the notation and drop the superscript ϕ when the coloring is clear from the
context. A colored graph is called ϕ-connected if any two vertices in the graph
are connected by a ϕ-alternating path. This implies that in a ϕ-connected graph
G, the communicating graph Cϕ

v coincides with G for every v. A coloring ϕ is
said to be communicating if for every vertex v the graph Cϕ

v contains vertices
other than v.

2 Simulation

In this section, we recall the computing model introduced in [9] and show how
this model simulates the dynamics of any elementary cellular automaton. The
model is defined over the graph Z

2. Let ϕ : Z2 → {0, 1} be a binary commu-
nicating coloring of Z2. We set B = ϕ−1(1) to be the set of black vertices and
W = ϕ−1(0) to be the set of white vertices.

We define N = { (1, 0), (0, 1), (−1, 0), (0,−1) }, and for v ∈ Z
2, Nv = v+N =

{v + u | u ∈ N} is the neighborhood of v in Z
2. Let Σ be a finite set, and take

ε �∈ Σ. We denote Σ̂ = Σ ∪ {ε}. A map a : N → Σ̂ is represented with a 4-tuple
(a1, a2, a3, a4) where a1 = a(1, 0), a2 = a(0, 1), a3 = a(−1, 0), and a4 = a(0,−1).

Definition 1. A system of interactive molecular arrangement over Z
2 (SIMA)

is a four-tuple S = (ϕ,Σ, φB , φW) where ϕ is a binary communicating coloring
of Z2, Σ is a finite set of states and φB , φW : Σ̂N → Σ are local functions.

Definition 2. Let S = (ϕ,Σ, φB , φW) be a SIMA with ε �∈ Σ. An arrangement
is a mapping σC : Z2 → Σ̂, where C ∈ {B,W}, defined by

σC(v) =

{
s ∈ Σ if v ∈ C

ε otherwise

Since ε is not an element of Σ, we use it as a ‘place holder’, and we refer to it
as the ‘empty state’. So, an arrangement is an assignment of states in Z

2 such
that vertices of one of the colors are assigned states from Σ and vertices of the
opposite color are assigned the empty state.

72 J. Braun et al.

Definition 3. For a given SIMA S = (ϕ,Σ, φB , φW) and a seed arrangement
σ0

B, a computation of S is a sequence of arrangements σ0
B, σ0

W , σ1
B , . . . , σn−1

W , σn
B,

σn
W , σn+1

B , . . . such that

σn
W (v) =

{
φW (σn

B |Nv
) if v ∈ W

ε otherwise
for n ≥ 0

σn
B(v) =

{
φB(σn−1

W |Nv
) if v ∈ B

ε otherwise
for n ≥ 1

In the sequence of arrangements forming a computation, the state at each
point v ∈ Z

2 of an arrangement is obtained by applying the corresponding local
function to the neighborhood Nv under the preceding arrangement.

Recall that a one-dimensional cellular automaton (CA) is a three-tuple C =
(A,N, �) where A is a finite set of states, N is a finite subset of Z, and � :
AN → A is the local function. For a configuration α : Z → A of C and v ∈ Z,
denote αv = α(v). Given Γ = {α | α : Z → A} of C, the associated global
function is the function G� : Γ → Γ defined with (G�(α))v = �(αv+N) where
v+N = {v+j | j ∈ N} for v ∈ Z. A one-dimensional CA where N = {−1, 0, 1} is
said to have a radius 1 neighborhood. An elementary CA is a CA C = (A,N, �)
with A = {0, 1} and a radius 1 neighborhood.

Definition 4. Let C = (A, d,N, �) be a CA and S = (ϕ,Σ, φB , φW) be a SIMA.
An arrangement σC , where C ∈ {B,W}, encodes a configuration α : Zd → A in
D ⊆ C if

(i) there exists ΣA ⊆ Σ with σC(D) ⊆ ΣA and a bijection θ : A → ΣA,
(ii) there exists a bijection ψ : D → Z

d such that σC |D = θ ◦ α ◦ ψ.

Informally, an arrangement σC encodes a configuration α in D ⊆ C if the
domain and the image of α can be embedded in the domain and the image of
σC |D, respectively. That is, σC |D represents an equivalent arrangement of states
over D as α does over Z

d.

Definition 5. A SIMA S = (ϕ,Σ, φB , φW) simulates a cellular automaton C =
(A, d,N, �) if there exists D ⊆ Z

2 such that for any configuration α : Zd → A of
C, there is a seed arrangement σ0

B that encodes α in D ∩ B, and a computation
σ0

B, σ0
W , σ1

B , σ1
W , . . . of S such that there exists an increasing sequence {mi}∞

i=0 ⊂
Z satisfying for any n ≥ 0, either σmn

B encodes Gn
� (α) in D ∩ B or σmn

W encodes
Gn

� (α) in D ∩ W .

We say that SIMA S simulates the cellular automaton C uniformly if the
increasing sequence {m0,m1,m2, . . .} ⊂ Z is an arithmetic sequence, and it
simulates strictly C if mi+1 = m0 + � i

2�.
Lemma 1. For any CA C with a radius 1 neighborhood, there exists a SIMA S

which simulates C strictly.

Platform Color Designs for Interactive Molecular Arrangements 73

Proof. Let C be a CA with a radius 1 neighborhood, a set of states A, and a local
function �, and let ϕ be a checkerboard coloring of Z2 with ϕ(0, 0) = 0. Hence ϕ
is communicating. Let Σ = A ∪ {L,R, δ}, where L represents the “left border,”
R represents the “right border,” and δ is reserved for the cases not related to
the simulation. For C ∈ {B,W}, define φC as follows

φC(a1, a2, a3, a4) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b if a1, a2, a4 ∈ A, a3 = L, and �(a4, a1, a2) = b

b if a2, a3, a4 ∈ A, a1 = R, and �(a4, a3, a2) = b

L if a2, a4 = L, a3 = δ, and a1 ∈ A

R if a2, a4 = R, a1 = δ, and a3 ∈ A

δ otherwise

(a)

L

a4

a2

a1b a3

a4

a2

Rb

(b)
L

L

aL a

R

R

R

Fig. 1. The function φC . (a) b = �(a4, a1, a2) when there is a border L on the left and
b = �(a4, a3, a2) when there is a border R on the right; (b) left and right border tiles
that are not part of the encoding of a configuration of C.

The first two cases of the definition of φC are shown in Fig. 1(a) and the
second two in Fig. 1(b). Let D = {(x, y) ∈ Z

2 | x = 0, 1}, and let α be a
configuration of the cellular automaton C. The configuration α is encoded with
the arrangement σ0

B : Z2 → Σ̂ by setting the black vertices in D with σ0
B(x, y) =

αy (recall (x, y) ∈ B iff x + y is odd). The black vertices with x-coordinate −1
are associated the left border L and the black vertices with x-coordinate 2 are
associated with the right border R. All other black vertices are mapped to δ. A
segment of the configuration σ0

B is presented in Fig. 2(a).
For ψB : D ∩ B → Z with ψB(x, y) = y, we have σ0

B |D∩B = α ◦ ψB , and
hence σ0

B encodes α in D ∩ B. Observe that σ0
W encodes G�(α) in D ∩ W (see

Fig. 2(b)). Inductively, one obtains that σ
n/2
B encodes Gn

� (α) in D∩B for n even
and σ

�n/2�
B encodes Gn

� (α) in D ∩ W for n odd which concludes the proof. �

Observe that Lemma 1 reaffirms the result in [8] that there exists a SIMA
which is Turing complete. Indeed, there exists a SIMA which simulates ele-
mentary CA Rule 110 by the lemma, and it is known that Rule 110 is Turing
complete [3,16]. Although a SIMA can simulate a two-dimensional CA [9], the
characterization of those two-dimensional CA which can be simulated by SIMAs
is unknown, to the best of our knowledge.

74 J. Braun et al.

L

L

L

α−1

α1

α−2

α0

α2

R

R

(a) σ0
B

φW (σ0
B)

L

L

G�(α−2)

G�(α0)

G�(α2)

G�(α−1)

G�(α1)

R

R

R

(b) σ0
W

Fig. 2. Arrangements (a) σ0
B and (b) σ0

W with ε ommited.

3 Communication

Recall that a simple bi-infinite path in an infinite graph G is an injective map
p : Z → V such that { p(i), p(i + 1) } ∈ E for all i ∈ Z. Given a binary coloring
ϕ, a simple bi-infinite path is called ϕ-alternating if ϕ(p(i)) = 1−ϕ(p(i+1)) for
all i ∈ Z. For a bi-infinite path p, we define the set of vertices visited by p to be
Vp = { p(i) | i ∈ Z }. A simple bi-infinite path p does not visit a vertex twice,
so the set Vp is infinite. We say that w is in the intersection of two bi-infinite
paths p and q if w ∈ Vp ∩ Vq.

Definition 6. Let ϕ be a binary coloring of an infinite graph G. Let v ∈ V , and
let d be the maximum number of ϕ-alternating simple bi-infinite paths whose
pairwise intersection is just {v}. If d ≥ 1, then ϕ provides communication in d
directions at v. We say that ϕ provides communication in d directions on G if
there exists v ∈ V where ϕ provides communication in d directions at v. If for
all v ∈ V, ϕ provides communication in d directions at v, then we say that ϕ is
d-directional.

We say that ϕ provides finite communication at v ∈ V if Cϕ
v is finite. If ϕ

provides finite communication at every vertex in G, then we say that G has finite
communication under ϕ. Of course, communication at every vertex is finite if
G is finite. When v ∈ V has finite communication under a binary coloring ϕ
of G, there exist no ϕ-alternating simple bi-infinite paths which contain v. The
requirement that d-directional communication in Definition 6 be established by
ϕ-alternating simple bi-infinite paths distinguishes d-directional communication
from finite communication.

Following the definition in [15], a binary coloring ϕ on G = (V,E) is 1-perfect
or isotropic if the number of vertices adjacent to v ∈ V with color j ∈ {0, 1}
only depends on the color of v. In this case, we may represent ϕ with a 2 × 2

Platform Color Designs for Interactive Molecular Arrangements 75

coloring matrix {ai,j}1i,j=0 which indicates that a vertex with color i has ai,j

adjacent vertices of color j. For the rest of the section, we consider the integer
lattice (Z2, E) where {u, v} ∈ E ⇔ ||u − v|| = 1.

Proposition 1 (Theorem 8 of [2]). Any communicating 1-perfect coloring of
Z
2 has a coloring matrix which is equivalent to one of the matrices M1 − M9.

Matrices M4 and M8 correspond to uncountably many 1-perfect colorings, M7

corresponds to two colorings, and all other matrices correspond to a unique (up to
isomorphism) 1-perfect coloring.

M1 =
(

0 4
1 3

)
M2 =

(
0 4
2 2

)
M3 =

(
0 4
4 0

)

M4 =
(

1 3
1 3

)
M5 =

(
1 3
2 2

)
M6 =

(
1 3
3 1

)

M7 =
(

2 2
1 3

)
M8 =

(
2 2
2 2

)
M9 =

(
3 1
1 3

)

Observe that any binary coloring ϕ of Z2 provides communication in at most
2 directions at a vertex. Indeed, each vertex in Z

2 has a degree of four, so at
most two ϕ-alternating simple bi-infinite paths can have an intersection which
is just v. We observe the following corollaries to Proposition 1.

Corollary 1. A 1-perfect coloring ϕ of Z2 with a coloring matrix equivalent to
one of the matrices M1,M4,M7, or M9 provides finite communication in Z

2.

Proof. Let ϕ be such a coloring of Z2, and let v ∈ Z
2. Without loss of generality,

assume that ϕ has a coloring matrix equal to one of the matrices M1,M4,M7, or
M9. Figure 3 depicts the communicating graph Cϕ

v for the corresponding color-
ing. For all matrices, the subgraph Cv contains five to two vertices, respectively.

�

(a) M1 (b) M4 (c) M7 (d) M9

Fig. 3. For v ∈ Z
2, Cv is depicted within dashed lines above the associated coloring

matrix (a) M1, (b) M4, (c) M7, or (d) M9. Note that if ϕ(v) = 1, v may be taken as any
one of the black vertices in the depictions of Cv above. The 1-perfect coloring shown in
(c) is one of the infinitely many 1-perfect colorings whose coloring matrix is equivalent
to M7; however, the subgraph Cv for v ∈ Z

2 is the same for all such 1-perfect colorings.

76 J. Braun et al.

Note that if a vertex has exactly two oppositely colored neighbors under ϕ,
then a ϕ-alternating simple bi-finite path must include these neighbors. The next
corollary follows immediately.

Corollary 2. A 1-perfect coloring ϕ of Z2 with a coloring matrix equivalent to
M8 provides communication in at most one direction.

)b()a(

Fig. 4. Two distinct 1-perfect colorings which have coloring matrices equivalent to M8.

Figure 4 shows two possible colorings corresponding to M8. Observe that Z
2

has finite communication under the coloring in Fig. 4(a) whereas the coloring
in Fig. 4(b) is 1-directional. One can show, by increasing the sizes of the single
color squares in Fig. 4(a), that for any n ≥ 0, there exists a 1-perfect coloring
with a coloring matrix equivalent to M8 such that for all v ∈ Z

2, the number of
vertices in Cϕ

v is 2jv+3 − 4, where jv ≤ n.

Corollary 3. A 1-perfect coloring ϕ of Z2 with a coloring matrix equivalent to
one of the matrices M2,M5, or M6 is 1-directional.

)c()b()a(

Fig. 5. The unique colorings for matrices (a) M2, (b) M5, and (c) M6 [2].

Platform Color Designs for Interactive Molecular Arrangements 77

Proof. Let ϕ be a coloring of Z2 that corresponds to a matrix equivalent to one
of the matrices M2,M5, or M6. By Proposition 1 there exists a unique (up to
isomorphism) 1-perfect coloring corresponding to each of these matrices (see
Fig. 5) [2]. Figure 6 depicts the communication graphs for these matrices. �

(a) M2 (b) M5 (c) M6

Fig. 6. For v ∈ Z
2, Cϕ

v is depicted above the associated coloring matrix. Note that any
vertex with a matching color may be chosen for v from each of the subgraphs above.

Corollary 4. The only 1-perfect coloring of the integer lattice Z
2 which pro-

vides communication in 2 directions is a checkerboard coloring. A checkerboard
coloring is 2-directional.

Proof. By Corollaries 1 through 3, all matrices Mi where i �= 3 from Proposition 1
provide at most 1-directional communication. Note that ϕ has a coloring matrix
equivalent to M3 if and only if it is a checkerboard coloring. Let ϕ be a checker-
board coloring of Z

2. For v ∈ Z
2, the simple bi-infinite paths {v + (0, k)}∞

−∞
and {v+(k, 0)}∞

−∞ are ϕ-alternating, and v is the only vertex in the intersection
of p1 and p2, so ϕ provides communication in 2 directions at v. Because any
coloring of Z

2 can provide communication at most in 2 directions at a vertex
(Z2 is four-regular graph), ϕ is 2-directional. �

4 Checkerboard Coloring and Directions
of Communication

This section shows that d-directional communication for d ≥ 2 may be possible
at some vertices in tilings of the plane other than square tilings.

Definition 7. Let G = (V,E) be a (possibly infinite) graph. A binary coloring
ϕ is called a checkerboard coloring if for every two adjacent vertices v, u ∈ V
we have that ϕ(u) = 1 − ϕ(v).

Observe that there exists a checkerboard coloring of G if and only if G is
bipartite. Hence, when G is a bipartite graph, we assume a checkerboard coloring
of G exists. Note that there are exactly two checkerboard colorings for any
bipartite graph, one obtained from the other by switching the color at every
vertex.

Lemma 2. Let ϕ be a binary coloring of a bipartite graph G. A path v0, . . . , vn

in G is ϕ-alternating if and only if for some checkerboard coloring γ of G,ϕ(vi) =
γ(vi) for all 0 ≤ i ≤ n.

78 J. Braun et al.

Proof. By the definition of a checkerboard coloring γ, every path in G is γ-
alternating. Suppose ϕ is a binary coloring of a bipartite graph G and the path
v0, . . . , vn is ϕ-alternating. Note that ϕ(v0) = γ(v0) for some checkerboard color-
ing γ of G. Then since the path is ϕ-alternating and γ is a checkerboard coloring,
ϕ(vk) = 1 − ϕ(vk−1) = 1 − γ(vk−1) = γ(vk), for all 1 ≤ k ≤ n. �

As a direct result of Lemma 2, we have the following corollary.

Corollary 5. Let ϕ be a binary coloring of a bipartite graph G. If there exists
a vertex v such that Cϕ

v = G, then ϕ is a checkerboard coloring.

Recall that if there is a vertex v such that Cϕ
v = G, then G is ϕ-connected and

so Cϕ
w = G for all vertices w. Corollary 5 shows that for bipartite graphs, the only

colorings ϕ under which G is ϕ-connected are the two checkerboard colorings.
We provide an example of a non-bipartite graph which has only finitely many
colorings ϕ making the graph ϕ-connected.

Let G1, G2 and G3 be bipartite graphs. Fix vertices v1, v2 and v3 in G1, G2

and G3, respectively, and let G = G1 ∪ G2 ∪ G3 ∪ {{v1, v2}, {v2, v3}, {v1, v3}}
(see Fig. 7). Then (v1, v2, v3) is an odd cycle in G, and therefore, the graph is
non-bipartite.

G1 v1
G2v2

G3

v3

Fig. 7. A non-bipartite graph G constructed from bipartite graphs G1, G2 and G3.

Observe that there exists a coloring ϕ, such that Cv1 = G. Indeed, if for
the coloring ϕ we have ϕ(v1) = ϕ(v2) = 0, ϕ(v3) = 1 and if ϕ coincides with
checkerboard colorings on G1, G2 and G3, then Cv1 = G.

Let v, w be vertices in G1 and ϕ be any coloring of G under which G is
ϕ-connected. Then there is a ϕ-alternating path p = u0, . . . , un with u0 = v and
un = w. If p travels through v1 at most once, then all ui are in G1. If p travels
through v1 more than once, let i and j be the minimum and maximum indices,
respectively, with ui = v1 and uj = v1, and let q be a path obtained from p by
removal of ui+1, . . . , uj . Then all vertices uk of the path q are in G1. Thus, G1 is
ϕ|G1 -connected. By Corollary 5, the restriction ϕ|G1 is a checkerboard coloring.
Similarly it holds that ϕ|G2 and ϕ|G3 are checkerboard colorings. Because there
are only two checkerboard colorings for each of the Gi, there are only finitely
many (in this case six) choices for ϕ.

The following theorem provides an example of a non-bipartite graph with
uncountably many colorings ϕ under which the graph is ϕ-connected. We call

Platform Color Designs for Interactive Molecular Arrangements 79

the dual graph of the hexagonal tiling of the plane the triangular grid denoted
with T. The vertices of T are arranged as depicted in Fig. 8(a).

Theorem 1. There are uncountably many binary colorings ϕ of the triangular
grid T which make T ϕ-connected and provide communication in 3 directions at
infinitely many, but not all, vertices.

(a)

v−1,0 v0,0 v1,0

v0,1

v0,−1

(b)

xi

Fig. 8. Portions of the triangular grid (a) depicting the defined coordinate system and
(b) one of the sets Xi, where si = 1 and the color of each remaining vertex depends
on si and its distance to xi.

Proof. Note that the square grid Z
2 with addition of edges { (i, j), (i+1, j +1) }

is isomorphic to the triangular grid T. Fix a vertex in T and denote it v0,0. We
label the rest of the vertices inductively such that for all i, j ∈ Z the horizontal
neighbors of vi,j are vi−1,j to the left and vi+1,j to the right. The northwest
and southeast neighbors of vi,j are vi,j+1 and vi,j−1, respectively (see Fig. 8(a)).
Denote with V the set of vertices in T. Set x0 = v0,0 and define a sequence of
vertices by setting xk = v0,3k, for k ∈ Z

+. We define sets Y = {vi,j ∈ V | j < −1}
and Xk = { vi,j ∈ V | 3k − 1 ≤ j ≤ 3k + 1, i ∈ Z }, for k = 0, 1, 2,

We prove the theorem by associating to every infinite binary sequence S a
unique coloring ϕS which makes T ϕS-connected and provides communication
in three directions at the vertices x0, x1, x2,

Let S = s0, s1, s2, . . . be an infinite binary sequence. Define ϕS as follows.
If vi,j ∈ Y , then ϕS(vi,j) = i + j mod 2, that is, if one removes the edges
{(i, j), (i + 1, j + 1)} in Y , then ϕS is a checkerboard coloring of Y . Therefore Y
is ϕS-connected.

For each k = 0, 1, 2, . . ., if vi,j ∈ Xk then

ϕS(vi,j) =

{
sk if dist(xk, vi,j) is even,

1 − sk if dist(xk, vi,j) is odd.

Figure 8(b) depicts a portion of Xk. One can see that each of the Xk is
ϕS-connected. For k = 0, 1, 2, . . ., we have that ϕS(v0,3k−1) = 1 − ϕS(v1,3k−1),
so that there is a ϕS-alternating path between v0,3k−2 and either v0,3k−1, or
v1,3k−1. Thus, there exists a ϕS-alternating path between vertices in Xk and

80 J. Braun et al.

Xk−1 for each k ∈ Z
+ and also between vertices in X0 and Y . Therefore, G is

ϕS-connected.
Lastly, observe that for k = 0, 1, 2, . . ., the paths

. . . , v−2,3k+1, v−1,3k+1, v0,3k+1, v0,3k(= xk), v1,3k+1, v2,3k+1, v3,3k+1, . . .

. . . , v−3,3k, v−2,3k, v−1,3k, v0,3k(= xk), v1,3k, v2,3k, v3,3k, . . .

. . . , v−3,3k−1, v−2,3k−1, v−1,3k−1, v0,3k(= xk), v0,3k−1, v1,3k−1, v2,3k−1, . . .

are ϕS-alternating simple bi-infinite paths whose pairwise intersections are {xk}.
�

Acknowledgement. This work has been supported in part by the NSF grants CCF-
1526485 and NIH grant R01 GM109459.

References

1. Asanuma, H., Liang, X.G., Nishioka, H., Matsunaga, D., Liu, M.Z., Komiyama,
M.: Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA.
Nat. Protoc. 2(1), 203–212 (2007)

2. Axenovich, M.A.: On multiple coverings of the infinite rectangular grid with balls
of constant radius. Discret. Math. 268(1–3), 31–48 (2003)

3. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40
(2004)

4. de Puig, H., Cifuentes Rius, A., Flemister, D., Baxamusa, S.H., Hamad-Schifferli,
K.: Selective light-triggered release of DNA from gold nanorods switches blood
clotting on and off. PLoS ONE 8(7), 68511 (2013)

5. Evans, C.G.: Crystals that count! Physical principles and experimental investiga-
tions of DNA tile self-assembly. Ph.D. thesis, California Institute of Technology
(2014)

6. Gu, H., Chao, J., Xiao, S.-J., Seeman, N.C.: A proximity-based programmable
DNA nanoscale assembly line. Nature 465(7295), 202–205 (2010)

7. Hamad-Schifferli, K., Schwartz, J.J., Santos, A.T., Zhang, S., Jacobson, J.M.:
Remote electronic control of DNA hybridization through inductive coupling to
an attached metal nanocrystal antenna. Nature 415(6868), 152–155 (2002)

8. Isokawa, T., Peper, F., Kawamata, I., Matsui, N., Murata, S., Hagiya, M.: Universal
totalistic asynchonous cellular automaton and its possible implementation by DNA.
In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 182–195.
Springer, Cham (2016). doi:10.1007/978-3-319-41312-9 15

9. Jonoska, N., Seeman, N.C.: Molecular ping-pong Game of Life on a two-dimensional
DNA origami array. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 373(2046),
20140215 (2015)

10. Jonoska, N., Karpenko, D., Seki, S.: Dynamic simulation of 1D cellular automata
in the active aTAM. New Gener. Comput. 33, 271–295 (2015)

11. Kawamata, I., Yoshizawa, S., Takabatake, F., Sugawara, K., Murata, S.: Discrete
DNA reaction-diffusion model for implementing simple cellular automaton. In:
Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 168–181. Springer,
Cham (2016). doi:10.1007/978-3-319-41312-9 14

http://dx.doi.org/10.1007/978-3-319-41312-9_15
http://dx.doi.org/10.1007/978-3-319-41312-9_14

Platform Color Designs for Interactive Molecular Arrangements 81

12. Liu, W., Zhong, H., Wang, R., Seeman, N.C.: Crystalline two-dimensional DNA-
origami arrays. Angew. Chem. 50(1), 264–267 (2011)

13. Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algo-
rithmic self-assembly of DNA triple-crossover molecules. Nature 407(6803), 493–
496 (2000)

14. Padilla, J.E., Sha, R., Kristiansen, M., Chen, J., Jonoska, N., Seeman, N.C.: A
signal-passing DNA strand exchange mechanism for the active self-assembly of
DNA nanostructures. Angew. Chem. 54(20), 5939–5942 (2015)

15. Puzynina, S.A.: On periodicity of perfect colorings of the infinite hexagonal and
triangular grids. Siberian Math. J. 52(1), 91–104 (2011)

16. Richard, G.: Rule 110: universality and catenations. In: Journees Automates Cel-
lulaires (Proceedings), pp. 141–160 (2008)

17. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature
440(7082), 297–302 (2006)

18. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biol. 2(12), e424 (2004)

19. Scalise, D., Schulman, R.: Emulating cellular automata in chemical reaction-
diffusion networks. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol.
8727, pp. 67–83. Springer, Cham (2014). doi:10.1007/978-3-319-11295-4 5

20. Wu, G., Jonoska, N., Seeman, N.C.: Construction of a DNA nano-object directly
demonstrates computation. BioSystems 98(2), 80–84 (2009)

21. Yang, Y., Endo, M., Hidaka, K., Sugiyama, H.: Photo-controllable DNA origami
nanostructures assembling into predesigned multiorientational patterns. J. Am.
Chem. Soc. 134(51), 20645–20653 (2012)

http://dx.doi.org/10.1007/978-3-319-11295-4_5

Self-assembly of Shapes at Constant Scale Using
Repulsive Forces

Austin Luchsinger(B), Robert Schweller, and Tim Wylie

Department of Computer Science, University of Texas - Rio Grande Valley,
Edinburg, TX 78539, USA

{austin.luchsinger01,robert.schweller,timothy.wylie}@utrgv.edu

Abstract. The algorithmic self-assembly of shapes has been considered
in several models of self-assembly. For the problem of shape construc-
tion, we consider an extended version of the Two-Handed Tile Assem-
bly Model (2HAM), which contains positive (attractive) and negative
(repulsive) interactions. As a result, portions of an assembly can become
unstable and detach. In this model, we utilize fuel-efficient computation
to perform Turing machine simulations for the construction of the shape.
In this paper, we show how an arbitrary shape can be constructed using
an asymptotically optimal number of distinct tile types (based on the
shape’s Kolmogorov complexity). We achieve this at O(1) scale factor
in this straightforward model, whereas all previous results with sublin-
ear scale factors utilize powerful self-assembly models containing features
such as staging, tile deletion, chemical reaction networks, and tile acti-
vation/deactivation. Furthermore, the computation and construction in
our result only creates constant-size garbage assemblies as a byproduct
of assembling the shape.

1 Introduction

A fundamental question within the field of self-assembly, and perhaps the most
fundamental, is how to efficiently self-assemble general shapes with the smallest
possible set of system monomers. This question has been considered in multiple
models of self-assembly. Soloveichek and Winfree [16] first showed that any shape
S, if scaled up sufficiently, is self-assembled within the abstract tile assembly
model (aTAM) using O(K(S)

log K(S)) tile types, where K(S) denotes the Kolmogorov
or descriptional complexity of shape S with respect to some universal Turing
machine, which matches the lower bound for this problem. This seminal result
presented a concrete connection between the descriptional complexity of a shape
and the efficiency of self-assembling the shape, and represents an elegant example
of the potential connections between algorithmic processes and the self-assembly
of matter. The only drawback with this result is the extremely large scale factor
required by construction: the scale factor to build a shape S is at least linear

This research was supported in part by the National Science Foundation Grant
CCF-1555626.

c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 82–97, 2017.
DOI: 10.1007/978-3-319-58187-3 7

Self-assembly of Shapes at Constant Scale Using Repulsive Forces 83

in |S|, and is typically far greater in their construction. To lay claim as a true
universal shape building scheme for potential experimental application, a much
smaller scale factor is needed. Unfortunately, example shapes exist (long thin
rectangles for example) which prove that the aTAM cannot build all shapes at
o(|S|) scale in the minimum possible O(K(S)

log K(S)) tile complexity. This motivates
the quest for small scale factors in more powerful self-assembly models.

The next result by Demaine, Patitz, Schweller, and Summers [5] considers
general shape assembly within the staged RNAse self-assembly model. In this
model, system tiles are separated into separate bins and mixed over distinct
stages of the algorithm in a way that models realistic laboratory operations. In
addition, each tile type in this model is of type DNA or RNA, and the staging
permits the addition of an RNAse enzyme at any step in the staging, thereby
dissolving all tiles of type RNA, leaving DNA tiles untouched. By adding the
powerful operations of separate bins, sequential stages, and tile deletion, [5]
achieves general shape construction within optimal O(K(s)

log K(S)) tile complexity
using only a constant number of bins and stages, and only a logarithmic scale
factor. This leap in scale factor reduction constituted a great improvement, but
required a very powerful model with both staging and tile dissolving. In addition,
the holy grail of O(1) scale factor remained elusive.

The next entry into the quest for Kolmogorov optimal shape assembly at
small scale comes from a recent work by Schiefer and Winfree [14]. Schiefer and
Winfree introduce the chemical reaction network tile assembly model (CRN-
TAM) in which chemical reaction networks and abstract tile assembly systems
combine and interact by allowing CRN species to activate and deactivate tiles,
while tile attachments may introduce CRN species. This powerful interaction
allowed the construction of Kolmogorov optimal systems for the assembly of
general shapes at O(1) scale. Although the result provides a great scale factor,
the CRN-TAM constitutes a substantial jump in model complexity and power.

In this paper we study the optimal shape building problem within one of
the simplest, and most well studied models of self-assembly: the two handed tile
assembly model (2HAM), where system monomers are 4-sided tiles with glue
types on each edge. Assembly in the 2HAM proceeds whenever two previously
assembled conglomerations of tiles, or assemblies, collide along matching glue
types whose strength sums to some temperature threshold. Our only addition
to the model is the allowance of negative strength (i.e., repulsive) glues, an
admittedly powerful addition based on recent work [6,9–11,15], but an addition
motivated by biology [12] that maintains the passive nature of the model as
system monomers are static, state-less pieces that simply attract or repulse based
solely on surface chemistry (Fig. 1). While the negative glue 2HAM has been
used for works such as fuel-efficient computation [15] and recently universal
shape replication [1], it is also one of the simplest models where the general
shape assembly problem has been considered. Our result is on par with the best
possible result: we show that any connected shape S is self-assembled at O(1)-
scale in the negative glue 2HAM within O(K(S)

log K(S)) tile types, which is met by
a matching lower bound.

84 A. Luchsinger et al.

Our Approach. We achieve our result by combining the fuel efficient Turing
machine construction published in SODA 2013, [15], with a number of novel
negative glue based gadgets. At a high level, the fuel efficient Turing machine
system extracts a description of a path that walks the pixels of the constant-
scaled shape from a compressed initial binary string. From there, the steps of
the path are translated into walker gadgets which conceptually walk along the
surface of the growing path and eventually deposit an additional pixel in the
specified direction, with the aid of path extension gadgets. When all pixels have
been placed, the path through the shape is filled, resulting in a scaled version of
the original shape.

Additional Related Work. Additional work has considered assembly of O(1)-
scaled shapes by breaking the assembly process up into a number of distinct
stages. In particular, [3] introduce the staged self-assembly model in which inter-
mediate tile assemblies grow in separate bins and are mixed and split over a
sequence of distinct stages. This approach is applied to achieve O(1)-scaled
shapes with O(1) tiles types, but a large number of bins and stages which encode
the target shape. In [4] this approach is pushed further to achieve tradeoffs in
terms of bin complexity and stage complexity, while maintaining construction
of a final assembly with no unbonded edges. In [8] similar constant-scale results
are obtained in the step-wise self-assembly model in which tile sets are added
in sequence to a growing seed assembly. Finally, in [17] O(1)-scaled shapes are
assembled with O(1) tile types by simply adjusting the temperature of a given
system over multiple assembly stages. While each of above staged approaches
offers important algorithmic insights, the large number of stages required by
each makes the approaches infeasible for large shapes. Furthermore, the sys-
tem complexity of these systems (which includes the staging algorithms) greatly
exceeds the descriptional complexity of the goal shape in a typical case.

Paper Layout. Our construction consists of a number of detailed gadgets for
specific tasks. Presentation is thus organized incrementally to walk through a
version of each gadget (with symmetry there may be multiple). Section 2 gives
the preliminary definitions and background. In Sect. 3 we provide a high-level
overview of the entire process as a guide for the rest of the paper. Some of the
details of our construction are shown in Sect. 4 with the construction gadgets
and how to construct a line of the path. Section 5 provides the analysis of our
construction, with the lower bound on tile complexity for shape assembly pre-
sented in Sect. 6, and details for pushing our construction to achieve a matching
upper bound in Sect. 7. Then we conclude in Sect. 8.

2 Definitions and Model

In this section we first define the two-handed tile self-assembly model with both
negative and positive strength glue types. We also formulate the problem of
designing a tile assembly system that constructs a constant-scaled shape given
the optimal description of that shape.

Self-assembly of Shapes at Constant Scale Using Repulsive Forces 85

(a) (b) (c)

Fig. 1. This figure introduces notation for our constructions, as well as a simple exam-
ple of negative glues. On each tile, the glue label is presented. Red (shaded) labels
represent negative glues, and the relevant glue strengths for the tiles can be found in
the captions. For caption brevity, for a glue type X we denote str(X) simply as X
(e.g., X + Y = str(X) + str(Y)). In this temperature τ = 1 example, X = 2, Y = 1,
Z = 2 and N = −1. (a) The three tile assembly on the left attaches with the single
tile with strength Z + N = 2 − 1 = τ resulting in the 2 × 2 assembly shown in (b).
However, this 2 × 2 assembly is unstable along the cut shown by the dotted line, since
Y + N = 1 − 1 < τ . Then the assembly is breakable into the assemblies shown in (c).
(Color figure online)

Tiles and Assemblies. A tile is an axis-aligned unit square centered at a
point in Z

2, where each edge is labeled by a glue selected from a glue set Π.
A strength function str : Π → N denotes the strength of each glue. Two tiles
equal up to translation have the same type. A positioned shape is any subset of
Z
2. A positioned assembly is a set of tiles at unique coordinates in Z

2, and the
positioned shape of a positioned assembly A is the set of those coordinates.

For a given positioned assembly Υ , define the bond graph GΥ to be the
weighted grid graph in which each element of Υ is a vertex and the weight of
an edge between tiles is the strength of the matching coincident glues or 0.1 A
positioned assembly C is said to be τ -stable for positive integer τ provided the
bond graph GC has min-cut at least τ , and C is said to be connected if every
pair of vertices in GC has a connecting path using only positive strength edges.

For a positioned assembly A and integer vector v = (v1, v2), let Av denote
the positioned assembly obtained by translating each tile in A by vector v. An
assembly is a translation-free version of a positioned assembly, formally defined
to be a set of all translations Av of a positioned assembly A. An assembly
is τ -stable if and only if its positioned elements are τ -stable. An assembly is
connected if its positioned elements are connected. A shape is the set of all
integer translations for some subset of Z

2, and the shape of an assembly A is
defined to be the set of the positioned shapes of all positioned assemblies in A.
The size of either an assembly or shape X, denoted as |X|, refers to the number
of elements of any positioned element of X.

Breakable Assemblies. An assembly is τ -breakable if it can be cut into two
pieces along a cut whose strength sums to less than τ . Formally, an assembly C

1 Note that only matching glues of the same type contribute a non-zero weight, whereas
non-equal glues always contribute zero weight to the bond graph. Relaxing this
restriction has been considered as well [2].

86 A. Luchsinger et al.

is breakable into assemblies A and B if A and B are connected, and the bond
graph GC′ for some assembly C ′ ∈ C has a cut (A′, B′) for A′ ∈ A and B′ ∈ B
of strength less than τ . We call A and B pieces of the breakable assembly C.

Combinable Assemblies. Two assemblies are τ -combinable provided they may
attach along a border whose strength sums to at least τ . Formally, two assemblies
A and B are τ -combinable into an assembly C provided GC′ for any C ′ ∈ C has
a cut (A′, B′) of strength at least τ for some A′ ∈ A and B′ ∈ B. We call C a
combination of A and B.

Note that A and B may be combinable into an assembly that is not stable
(and thus breakable). This is a key property that is leveraged throughout our
constructions. See Fig. 1 for an example. For a system Γ = (T, τ), we say A →Γ

1 B
for assemblies A and B if either A is τ -breakable into pieces that include B, or
A is τ -combinable with some producible assembly to yield B, or if A = B.
Intuitively this means that A may grow into assembly B through one or fewer
combination or break reactions. We define the relation →Γ to be the transitive
closure of →Γ

1 , i.e., A →Γ B means that A may grow into B through a sequence
of combination or break reactions.

Producibility and Unique Assembly. A two-handed tile assembly system
(2HAM system) is an ordered pair (T, τ) where T is a set of single tile assemblies,
called the tile set, and τ ∈ N is the temperature. Assembly proceeds by repeated
combination of assembly pairs, or breakage of unstable assemblies, to form new
assemblies starting from the initial tile set. The producible assemblies are those
constructed in this way. Formally:

Definition 1 (2HAM Producibility). For a given 2HAM system Γ = (T, τ),
the set of producible assemblies of Γ , denoted PRODΓ , is defined recursively:

– (Base) T ⊆ PRODΓ

– (Combinations) For any A,B ∈ PRODΓ such that A and B are τ -combinable
into C, then C ∈ PRODΓ .

– (Breaks) For any assembly C ∈ PRODΓ that is τ -breakable into A and B, then
A,B ∈ PRODΓ .

Definition 2 (Terminal Assemblies). A terminal assembly of a 2HAM sys-
tem is a producible assembly that cannot break and cannot combine with any
other producible assembly. Formally, an assembly A ∈ PRODΓ of a 2HAM sys-
tem Γ = (T, τ) is terminal provided A is τ -stable (will not break) and not τ -
combinable with any producible assembly of Γ (will not combine).

Definition 3 (Unique Assembly - with bounded garbage). A 2HAM sys-
tem uniquely produces an assembly A if all producible assemblies have a forward
growth path towards the terminal assembly A, with the possible exception of some
O(1)-sized producible assemblies. Formally, a 2HAM system Γ = (T, τ) uniquely
produces an assembly A provided that A is terminal, and for some constant c for
all B ∈ PRODΓ such that |B| ≥ c, B →Γ A.

Self-assembly of Shapes at Constant Scale Using Repulsive Forces 87

Definition 4 (Unique Shape Assembly - with bounded garbage). A
2HAM system uniquely produces a shape S if all producible assemblies have a
forward growth path to a terminal assembly of shape S with the possible exception
of some O(1)-sized producible assemblies. Formally, a 2HAM system Γ = (T, τ)
uniquely assembles a finite shape S if for some constant c for every A ∈ PRODΓ

such that |A| ≥ c, there exists a terminal A′ ∈ PRODΓ of shape S such that
A →Γ A′.

Definition 5 (Kolmogorov Complexity). The Kolmogorov complexity (or
descriptional complexity) of a shape S with respect to some fixed universal Turing
machine U is the smallest bit string such that U outputs a list of exactly the
positions in some translation of shape S when provided the bit string as input.
We denote this value as K(S).

3 Concept/Construction Overview

This section presents a high-level overview of the shape construction process.
First, we will present the conceptual overview, which explains the fundamental
ideas behind our shape self-assembly process. Then, we will show a high-level
look at how our construction implements this process.

3.1 Conceptual Overview

Starting with the Kolmogorov-optimal description of a shape (as a base b string,
b > 2), we simulate a Turing machine which converts any base b string into
its equivalent base 2 representation (Sect. 7) We then simulate another Turing
machine that takes the binary description of a shape, finds a spanning tree for
that shape, and outputs a path around that spanning tree as a set of instructions
(forward, left, right) starting from a beginning node on the perimeter.

A simple depth-first search will find the spanning tree for any shape. Scaling
the shape to scale 2 creates a perimeter path that outlines the spanning tree, and
assembles the shape. Scaling again, this time by a multiple of 3, now allows space
for the perimeter path with an equal-sized space buffer on both sides (Fig. 2).
This buffer is required as it allows sufficient space for our construction gadgets
to “walk” along the perimeter path being built.

Process Overview:

1. Given the Kolmogorov-optimal description of a shape, run a base conversion
Turing machine to get its binary equivalent.

2. Given that binary string, run another Turing machine that outputs the
description of a path around the shape’s spanning tree as a set of instructions
(forward, left, right).

3. Given those instructions, build the path. Our construction begins with a tape
containing this path description for a scale 24 shape.

88 A. Luchsinger et al.

(a) Non-scaled shape X
with spanning tree.

(b) Shape X at scale 2
with spanning tree.

(c) Shape X at scale 6
with spanning tree.

Fig. 2. The Turing machine calculates a spanning tree of the tiles in the shape (a),
scales the shape in order to allow a path around the spanning tree (b), and further
scales the shape for the gadgets (c).

3.2 Construction Overview

The construction overview begins at step 3 of the conceptual overview, using the
output from step 2. Throughout this paper, we will be referring to this output
as the tape, meaning the fuel-efficient Turing machine tape with path-building
instructions encoded on it. This tape is detailed in Sect. 4.

Construction Steps Overview:

1. Overlay. The overlay process is the first step in shape construction.
Figure 3a–c shows an abstraction of how the output from step 2 in the con-
cept overview gets covered during the overlay process. The overlay initiator
gadget can only attach to a completed tape. This begins a series of coopera-
tive attachments that will cover the tape. Each bit of information on the tape
is covered by its corresponding overlay piece, and thus is readable on the top
of the overlay. The overlay process is finished once the entire tape is covered.

2. Reading. After the overlay process is complete, information can be extracted
from the tape through the read process (Figs. 3d–f). Information can only be
extracted from the covered leftmost section of the tape if it has not already
been read. When a tape section is read, information is extracted from the
tape and a corresponding information block is created.

3. Information Walking. Once the information block is created, it begins
walking until it reaches the end of the tape/path (Figs. 3g–i). Walking gadgets
allow the information to travel down the entire path.

4. Path Extension. When an information block cannot travel any further, the
path is extended (Figs. 3j–l). The path can be extended forward, left, or right.
The direction of the path extension is dependent on which information block
is at the end of the path. After the path is extended, the information block
is removed from the path.

5. Tape Reduction. Once information is extracted from the tape and sent
down the path, one tape section is removed (Figs. 3j–l). Only tape sections

Self-assembly of Shapes at Constant Scale Using Repulsive Forces 89

(a) Abstract tape (b) Overlay Process (c) Resulting Assem-
bly

(d) Begin Read (e) Continue Read (f) End Read

(g) Begin Walk (h) Continue Walk (i) End Walk

(j) Begin Extend (k) Continue Extend (l) End Extend

(m) Begin Reduction (n) Continue Reduction (o) End Reduction

Fig. 3. (a)–(c) The overlay process covers the tape while making the data readable
on top. (d)–(f) Reading the leftmost piece of data and creating an information block
(depicted in green). (g)–(i) Information Walking on the path to the end where the
information is used. (j)–(l) When the information block reaches the end of the path,
the block triggers a Path Extension. (m)–(o) Once the information has been read, Tape
Reduction removes that piece of the tape. (Color figure online)

that have been read are removed, which then allows the next section to be
read. This process continues until every section of the tape is read/removed.

6. Repeat. Repeat the tape read, information walk, path extend, and tape
reduction processes until all path instructions have been read (Figs. 4a–c).

7. Path Filling. The final tape section that gets read begins the shape fill
process (Figs. 4d–f). In this process, the path is padded with tiles which fill
it in and results in the final shape.

4 Construction Details

In this section, we detail the steps presented in the construction overview
(Sect. 3.2). This is the process by which information is read from the tape and
portions of the path are assembled.

We will also cover the gadgets required for each step, and review the tape
construction from the fuel-efficient Turing machine used in [15]. This construc-
tion uses pre-constructed assemblies called gadgets. These gadgets are designed

90 A. Luchsinger et al.

(a) Early Path
Construction

(b) Intermediate Path
Construction

(c) Final Path
Construction

(d) Begin Fill (e) Continue Fill (f) End Fill

Fig. 4. (a)–(c) The process is repeated until all information has been read/removed
from the tape. (d)–(f) The final step is Path Filling the shape.

to work in a temperature τ = 10 system. In our figures, a perpendicular black
line through the middle of the edge of two adjacent tiles indicates a unique
2τ = 20 strength bond2. Each gadget provides a different function to the shape
creation process.

(a)

(b) (c) (d)

Fig. 5. (a) A completed tape consisting of all forward instructions. (b) Overlay Initiator
gadget attaching to tape. (c–d) Overlay fillers begin covering all tape sections from right
to left.

Turing Machine Tape. A detailed look at a fuel-efficient Turing machine tape
is seen in Fig. 5a. Notice each tape section has a pair of tiles on top of it where
2 The strongest detaching force used in our construction is a τ strength detachment,

and since the internal bonds of our gadgets are meant to withstand even the strongest
repulsive force, it follows that those bonds must be of strength at least 2τ .

Self-assembly of Shapes at Constant Scale Using Repulsive Forces 91

the information is stored. When talking about the tape from Sect. 3.2, each pair
of dark grey tiles on top of the tape sections represents a piece of information
describing the path.

The Overlay Initiator Gadget attaches to the end of the completed tape, and
begins the overlay process (Fig. 5b–d). Each bit of information on the tape is
covered by a corresponding overlay section, allowing the information to be read
on top of the overlay. This process continues, section by section, until the entire
tape is covered. Once finished, the overlay layer will act as an interface, allowing
the gadgets to use the information on the tape.

(a) (b) (c)

Fig. 6. (a) The Read Gadget attaches (n + T + F = 2 + 7 + 1 ≥ τ). In (b) the
first form of an information block attaches (F + F + J2 = 1 + 1 + 8 ≥ τ). Since
the forward version of the read gadget was used, the forward information block is
placed. After the information block is placed, the penultimate read-helper attaches
(A2 + A2 + O1 = 2 + 2 + 7 ≥ τ). (c) After all read helpers have attached, the read
gadget becomes unstable (F +F +M +n+T +F +Q = 1+1+1+2+7+1− 7 ≤ τ).

Read. The read gadget is required for “reading” the Turing machine tape. Essen-
tially, this gadget extracts the information that is relayed from the tape through
the overlay blocks. The read process (Fig. 6a–c) can only begin if the leftmost
tape section has not previously been read. Once attached, the gadget allows
the attachment of an information block (corresponding to the information being
read) that will be used to carry the build instructions through the rest of our
construction. Once the information block is present, the remaining read-helpers
can attach. The final helper destabilizes the read gadget, allowing it to fall off
and expose the newly attached information block. The read gadget was designed
to produce this information block, alter the tape section that is being read (mak-
ing it unreadable), and then detach from the assembly. This design ensures that
each tape section is only read once, and allows us to transfer the instructions to
other locations in our construction via the walking gadgets.

Information Walking. The walking gadgets begin the information walking
process (Fig. 7), which allows instructions to travel throughout our construction.
After a tape section has been read and an information block has been placed,
a walking gadget can attach. Once attached, the walking gadget allows a new
information block (of the same type) to attach, while also detaching the previous

92 A. Luchsinger et al.

(a) (b) (c)

Fig. 7. (a) A Walking Gadget (specific to the information block) attaches to the overlay
and the information block (F + F + J1 = 1 + 1 + 8 ≥ τ). (b) The negative interaction
between the D glues destabilizes the old information block, along with the two walking-
helpers (J2 + A2 + A2 + F + F + D = 8 + 2 + 2 + 1 + 1 − 7 ≤ τ). Notice that two
helpers remain attached to the tape, as they will be used later in the construction.
(c) Once the second walking-helper is attached, the walking gadget becomes unstable
(F + O2 + J1 + D = 1 + 7 + 8 − 7 ≤ τ).

information block. Notice that this detachment will always be O(1) size. After the
previous information is removed, the walking gadget detaches as well, allowing
the new info block to interact with other gadgets. Thus, the same information
has traveled from the tape, through the overlay, and is now traveling along the
tape. This process is repeated until the information has traveled to the end of the
path, at which point it is used to construct the next path portion. This method is
desirable because it does not allow duplicate readable instructions to be attached
to the path at any time.

(a) (b) (c)

Fig. 8. (a) The forward-extension gadget attaches to the information block and Turing
tape (B + C + F + p = 3 + 4 + 1 + 2 ≥ τ). (b) The second extension-helper comes
with the negative D glue that causes targeted destabilization (X + p + J1 + X + D =
2+2+8+2−7 ≤ τ). The extension gadget and its helpers, along with the information
block and its helpers are no longer stable along their tape-overlay edges. (c) The final
result is a one path-pixel extension of the path.

Path Extension. After the information block has reached the end of the path,
a path extension gadget can attach to the assembly. Once attached, the gadget
allows the path extension process (Fig. 8) to begin, which extends the path in
a given direction (forward, left, or right) based on the instruction carried by
the information block. The extension gadget “reads” the information block, and
then extends the path in the given direction. Afterwards, the extension helpers
destabilize the information block and extension gadget, causing a O(1) sized

Self-assembly of Shapes at Constant Scale Using Repulsive Forces 93

detachment. We designed the extension gadget to essentially replace an instruc-
tion block with a corresponding path portion. This design allows us to attach a
O(1) sized path portion for each instruction read from the tape.

(a) (b) (c)

Fig. 9. (a) The tape reduction gadget attaches to the read-helpers (A2+U = 2+8 ≥ τ).
(b) Filler tiles attach (s+s = 8+8 ≥ τ), and create a strong bond to the tape reduction
gadget. (c) The two negative o glues cause a strong targeted destabilization of the
previously read tape section (e + u1 + u2 + o + o = 3 + 8 + 8 − 5 − 5 ≤ τ).

Tape Reduction. After a tape section has been read, we no longer need it.
Instead of continuing to grow the assembly, we can remove O(1) size portions
of the tape as it is being read. This is where the tape reduction gadget initiates
the tape reduction process (Fig. 9) mentioned in Sect. 3.2. The attachments left
behind by the read/walk processes allow the tape reduction gadget to attach to
a tape section that has already been read. The gadget then removes itself, along
with the previously read tape section, exposing the next section of the tape for
reading. This technique is desirable because it allows us to break apart the tape
into O(1) sized pieces as we use it. As the tape is reduced, the path continues to
grow until there are no more tape sections to be read.

Due to page constraints, some of the construction details have been omitted
(such as turning and filling). For complete details, please see the arXiv version
of this paper [7].

5 Constant Scaled Shapes

In this section, we formally state the results based on our construction.

Theorem 1. For any finite connected shape S, there exists a 2HAM system
Γ = (TS , 10) that uniquely produces S (with O(1) size bounded garbage) at a
O(1) scale factor, and |TS | = O(K(S)

log K(S)).

Proof. We show this by constructing a 2HAM system Γ = (TS , 10). One portion
of TS consists of the tile types which assemble a higher base Kolmogorov-optimal
description of S (Sect. 7). This portion of TS consists of O(K(S)

log K(S)) tile types,
as analyzed in Sect. 7. Another portion of TS consists of the tile types needed

94 A. Luchsinger et al.

to assemble a fuel-efficient Turing machine, as described by [15], that performs
a simple base conversion to binary using O(K(S)

log K(S)) tile types, as analyzed in
Sect. 7. The next portion of TS consists of the tile types required to assemble
another fuel-efficient Turing machine that finds and outputs the description of a
path around the spanning tree of S. This Turing machine is of O(1) size, and thus
adds O(1) tile types using the method from [15]. The final portion of TS consists
of the tile types that construct the gadgets and assemblies shown in Sect. 4.
With the number of tile types used for computing the path description and for
our construction process being O(1), our final tile complexity is O(K(S)

log K(S)).
Now, consider assembly A to be the fully constructed tape assembly (Sect. 4)

encoded with path-building instructions specific to S. Also, suppose assembly B
is some terminal assembly that has shape S at a constant scale factor.

Note that Γ follows the process detailed in Sect. 4. This system was designed
so that two assemblies are combinable only if at least one of those assemblies is
at most a constant size (70 tiles), and every breakable assembly can only break
into two subassemblies if one of those assemblies is at most another constant
size (118 tiles). In our construction, the only non-constant size assemblies are
A, B, or some intermediate assembly that consists of some portion of the tape,
and some partially assembled section of the final shape. Of these, B is the only
terminal assembly.

While A and the intermediate assemblies continue engaging in a series of
attachments and detachments, the tape continues to get smaller and the path
continues to grow. The attachment and detachment of O(1) size pieces with
these assemblies will continue until we reach the terminal assembly B, at which
time A will have been disassembled into smaller constant garbage. Therefore, we
see that A →Γ B. ��

6 Lower Bound

Here we present a brief argument for the lower bound of Ω(K(S)
log K(S)) on the tile

types needed to assemble a scaling of a shape S. This argument is essentially
the same as what is presented in [2,13,16], and we refer the reader there for a
more detailed explanation.

Theorem 2. The tile complexity in the 2HAM for self-assembling a scale-c ver-
sion of a shape S at constant temperature and constant garbage is Ω(K(S)

log K(S)).

Proof. Note that a 2HAM system Γ = (T, τ = O(1)) can be uniquely represented
with a string of O(|T | log |T |) bits. In particular, each tile may be encoded as a
list of its 4 glues, and each glue may be represented by a O(log |T |)-bit string
taken from an indexing of the maximum possible 4|T | distinct glue types of
the system. The constant bounded temperature incurs an additional additive
constant. Given this representation, consider a 2HAM simulation program that
inputs a 2HAM system, and outputs the positions of any uniquely produced
scale-c shape (with up to O(1) garbage), if one exists. This simulator, along

Self-assembly of Shapes at Constant Scale Using Repulsive Forces 95

with the O(|T | log |T |) bit encoding of a system Γ which assembles S at scale c,
constitute a program which outputs the positions of S, and is thus lower bounded
in bits by K(S). Therefore K(S) ≤ d|T | log |T | for some constant d, implying
|T | = Ω(K(S)

log K(S)). ��

7 Extension to K(S)

logK(S)

The starting assembly for our shape construction algorithm is the tape assembly
from [15] with a binary string as its value. For a binary string A = a0 . . . ak−1,
such an assembly can be constructed in a straightforward manner using O(k)
tile types (simply place a distinct tile for each position in the assembly, for
example). However, by using a base conversion trick, we can take advantage of
the fact that each tile type is asymptotically capable of representing slightly
more than 1 bit in order to build the string in O(k/ log k) tile types. To achieve
this, first we consider the base-b representation B = b0 . . . bd−1 of the string A
for some higher base b > 2. Note that the number of digits of this string is
d ≤ 	 k

�log2 b�
 = O(k
log b). We are able to assemble this shorter string (by brute

force with distinct tile types at each position) with only O(d) tile types.
Next, we consider a Turing machine which converts any base b string into

its equivalent base 2 representation. Such a Turing machine can be constructed
using O(b) transition rules. Therefore, we can apply the result of [15] to run
this Turing machine on the initial tape assembly representing string B to obtain
string A. The cost of this construction in total is O(d) tiles to construct the
initial tape assembly, plus O(b) tiles to implement the rules of the conversion
Turing machine3, for a total of O(d + b) tiles.

Finally, we select b = 	 k
log k
 = O(k

log k), which yields d = O(k
log k−log log k) =

O(k
log k), implying that the entire tile cost of setting up the initial tape assembly

representing binary string B is O(b + d) = O(k
log k) tile types. In our case k =

O(K(S)) where K(S) denotes the Kolmogorov complexity of shape S for some
given universal Turing machine, and so we achieve our final tile complexity of
O(K(S)

log K(S)).

8 Conclusion

In this work, we considered the optimal shape building problem in the neg-
ative glue 2-handed assembly model, and provided a system that allows the
self-assembly of general shapes at scale 24. Shape construction has been studied
in more powerful self-assembly models such as the staged RNA assembly model
and the chemical reaction network-controlled tile assembly model. However, our

3 The formal theorem statement of [15] cites the product of the states and symbols of
the Turing machine as the tile type cost. However, the actual cost is the number of
transition rules, which is upper bounded by this product.

96 A. Luchsinger et al.

result constitutes the first example of optimal general shape construction at con-
stant scale in a passive model of self-assembly where no outside experimenter
intervention is required, and system monomers are state-less, static pieces which
interact solely based on the attraction and repulsion of surface chemistry.

Our work opens up a number of directions for future work. We have not
considered a runtime model for this construction, so analyzing and improving the
running time for constant-scaled shape self-assembly in the 2-handed assembly
is one open direction. Another is determining the lowest necessary temperature
and glue strengths needed for O(1) scale shape construction. We use temperature
value 10 for the sake of clarity, and have not attempted to optimize this value.

References

1. Chalk, C., Demiane, E.D., Demaine, M.L., Martinez, E., Schweller, R., Vega, L.,
Wylie, T.: Universal shape replicators via self-assembly with attractive and repul-
sive forces. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2017) (2017)

2. Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.Y., Schweller, R.T., de
Espanés, P.M.: Complexities for generalized models of self-assembly. SIAM J. Com-
put. 34, 1493–1515 (2005)

3. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller,
R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes
with O(1) glues. Nat. Comput. 7(3), 347–370 (2008)

4. Demaine, E.D., Fekete, S.P., Scheffer, C., Schmidt, A.: New geometric algo-
rithms for fully connected staged self-assembly. In: Phillips, A., Yin, P. (eds.)
DNA 2015. LNCS, vol. 9211, pp. 104–116. Springer, Cham (2015). doi:10.1007/
978-3-319-21999-8 7

5. Demaine, E.D., Patitz, M.J., Schweller, R.T., Summers, S.M.: Self-assembly of
arbitrary shapes using RNAse enzymes: meeting the Kolmogorov bound with small
scale factor (extended abstract). In: Proceedings of the 28th International Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2011) (2011)

6. Doty, D., Kari, L., Masson, B.: Negative interactions in irreversible self-assembly.
Algorithmica 66(1), 153–172 (2013)

7. Luchsinger, A., Schweller, R., Wylie, T.: Self-assembly of shapes at constant scale
using repulsive forces (2016). arXiv:1608.04791

8. Mauch, J., Stacho, L., Stoll, C.: Step-wise tile assembly with a constant number
of tile types. Nat. Comput. 11(3), 535–550 (2012)

9. Patitz, M.J., Rogers, T.A., Schweller, R.T., Summers, S.M., Winslow, A.:
Resiliency to multiple nucleation in temperature-1 self-assembly. In: Rondelez, Y.,
Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 98–113. Springer, Cham (2016).
doi:10.1007/978-3-319-43994-5 7

10. Patitz, M.J., Schweller, R.T., Summers, S.M.: Exact shapes and turing universality
at temperature 1 with a single negative glue. In: Cardelli, L., Shih, W. (eds.) DNA
2011. LNCS, vol. 6937, pp. 175–189. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23638-9 15

11. Reif, J.H., Sahu, S., Yin, P.: Complexity of graph self-assembly in accretive systems
and self-destructible systems. Theoret. Comput. Sci. 412(17), 1592–1605 (2011)

12. Rothemund, P.W.K.: Using lateral capillary forces to compute by self-assembly.
Proc. Nat. Acad. Sci. 97(3), 984–989 (2000)

http://dx.doi.org/10.1007/978-3-319-21999-8_7
http://dx.doi.org/10.1007/978-3-319-21999-8_7
http://arxiv.org/abs/1608.04791
http://dx.doi.org/10.1007/978-3-319-43994-5_7
http://dx.doi.org/10.1007/978-3-642-23638-9_15
http://dx.doi.org/10.1007/978-3-642-23638-9_15

Self-assembly of Shapes at Constant Scale Using Repulsive Forces 97

13. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing, STOC 2000, pp. 459–468 (2000)

14. Schiefer, N., Winfree, E.: Universal computation and optimal construction in the
chemical reaction network-controlled tile assembly model. In: Phillips, A., Yin, P.
(eds.) DNA 2015. LNCS, vol. 9211, pp. 34–54. Springer, Cham (2015). doi:10.1007/
978-3-319-21999-8 3

15. Schweller, R., Sherman, M.: Fuel efficient computation in passive self-assembly. In:
SODA 2013: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1513–1525. SIAM (2013)

16. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Com-
put. 36(6), 1544–1569 (2007)

17. Summers, S.M.: Reducing tile complexity for the self-assembly of scaled shapes
through temperature programming. Algorithmica 63(1), 117–136 (2012)

http://dx.doi.org/10.1007/978-3-319-21999-8_3
http://dx.doi.org/10.1007/978-3-319-21999-8_3

Verification in Staged Tile Self-Assembly

Robert Schweller, Andrew Winslow(B), and Tim Wylie

University of Texas - Rio Grande Valley, Edinburg, TX 78539, USA
{robert.schweller,andrew.winslow,timothy.wylie}@utrgv.edu

Abstract. We prove the unique assembly and unique shape verifica-
tion problems, benchmark measures of self-assembly model power, are
coNPNP-hard and contained in PSPACE (and in Πp

2s for staged systems
with s stages). En route, we prove that unique shape verification problem
in the 2HAM is coNPNP-complete.

Keywords: DNA computing · Biocomputing · 2HAM · Hierarchical

1 Introduction

Here we consider the complexity of two standard problems in tile self-assembly:
deciding whether a system uniquely assembles a given assembly or shape. These
so-called unique assembly and unique shape verification problems are benchmark
problems in tile assembly, and have been studied in a variety of models, including
the aTAM [1,2], the q-tile model [6], and the 2HAM [3].

The unique assembly and unique shape verification problems ask whether a
system behaves as expected: does a given system yield a unique given assembly
or assemblies of a given unique shape? The distinct rules by which assemblies
form in various tile assembly models yield the potential for such problems to
have varying complexity. For instance, assuming P �= NP, the unique assembly
verification problem is known to be a strictly easier problem in the aTAM than
in the 2HAM.

However, several open questions remain. For instance, such a separation
between the aTAM and 2HAM for the unique shape verification problem had
not been known. Here we prove such a separation (see Table 1).

Additionally, a popular generalization of the 2HAM called the staged tile
assembly model [7] has been shown to be capable of extremely efficient assembly
across a range of parameters [4,7–9,14]. Does this power come from the increased
complexity of verifying that systems assemble intended assemblies and shapes?

We achieve progress on these questions, proving a separation between the
2HAM and staged model for the unique assembly verification problem (coNP-
complete versus coNPNP-hard) utilizing a promising technique that may lead to
proving a stronger separation for the unique shape verification problem (coNPNP-
complete versus a conjectured PSPACE-complete).

This research was supported in part by National Science Foundation Grants
CCF-1117672 and CCF-1555626.

c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 98–112, 2017.
DOI: 10.1007/978-3-319-58187-3 8

Verification in Staged Tile Self-Assembly 99

Table 1. Known and new results on the unique assembly and unique shape verification
problems.

Model Unique assembly Unique shape

aTAM P [1] coNP-complete [6]

2HAM coNP-complete [5] coNPNP-complete (Sect. 3)

Staged coNPNP-hard (Sect. 5), in PSPACE (Sect. 6)

The coNPNP-hardness results are also interesting as the first, to our knowl-
edge, verification problems in irreversible tile assembly that are decidable but
not contained in NP or coNP.

2 The Staged Assembly Model

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue
from a set Σ. Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength,
denoted str(g1, g2). Every set Σ contains a special null glue whose strength with
every other glue is 0. If the glue strengths do not obey str(g1, g2) = 0 for all
g1 �= g2, then the glues are flexible. Unless otherwise stated, we assume that
glues are not flexible.

Configurations, Assemblies, and Shapes. A configuration is a partial func-
tion A : Z2 → T for some set of tiles T , i.e., an arrangement of tiles on a square
grid. For a configuration A and vector u = 〈ux, uy〉 ∈ Z

2, A + u denotes the
configuration f ◦ A, where f(x, y) = (x + ux, y + uy). For two configurations A
and B, B is a translation of A, written B � A, provided that B = A+u for some
vector u. For a configuration A, the assembly of A is the set Ã = {B : B � A}.
An assembly Ã is a subassembly of an assembly B̃, denoted Ã 	 B̃, provided
that there exists an A ∈ Ã and B ∈ B̃ such that A ⊆ B. The shape of an
assembly Ã is {dom(A) : A ∈ Ã} where dom() is the domain of a configuration.
A shape S′ is a scaled version of shape S provided that for some k ∈ N and
D ∈ S,

⋃
(x,y)∈D

⋃
(i,j)∈{0,1,...,k−1}2(kx + i, ky + j) ∈ S′.

Bond Graphs and Stability. For a configuration A, define the bond graph GA

to be the weighted grid graph in which each element of dom(A) is a vertex, and
the weight of the edge between a pair of tiles is equal to the strength of the
coincident glue pair. A configuration is τ -stable for τ ∈ N if every edge cut of
GA has strength at least τ , and is τ -unstable otherwise. Similarly, an assembly is
τ -stable provided the configurations it contains are τ -stable. Assemblies Ã and
B̃ are τ -combinable into an assembly C̃ provided there exist A ∈ Ã, B ∈ B̃, and
C ∈ C̃ such that A

⋃
B = C, dom(A)

⋂
dom(B) = ∅, and C̃ is τ -stable.

Two-Handed Assembly and Bins. We define the assembly process via bins.
A bin is an ordered tuple (S, τ) where S is a set of initial assemblies and τ ∈ N

is the temperature. In this work, τ is always equal to 2 for upper bounds, and

100 R. Schweller et al.

at most some constant for lower bounds. For a bin (S, τ), the set of produced
assemblies P ′

(S,τ) is defined recursively as follows:

1. S ⊆ P ′
(S,τ).

2. If A,B ∈ P ′
(S,τ) are τ -combinable into C, then C ∈ P ′

(S,τ).

A produced assembly is terminal provided it is not τ -combinable with any other
producible assembly, and the set of all terminal assemblies of a bin (S, τ) is
denoted P(S,τ). That is, P ′

(S,τ) represents the set of all possible assemblies that
can assemble from the initial set S, whereas P(S,τ) represents only the set of
assemblies that cannot grow any further.

The assemblies in P(S,τ) are uniquely produced iff for each x ∈ P ′
(S,τ) there

exists a corresponding y ∈ P(S,τ) such that x 	 y. Unique production implies
that every producible assembly can be repeatedly combined with others to form
an assembly in P(S,τ).

Staged Assembly Systems. An r-stage b-bin mix graph M is an acyclic r-
partite digraph consisting of rb vertices mi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ b, and
edges of the form (mi,j ,mi+1,j′) for some i, j, j′. A staged assembly system is a
3-tuple 〈Mr,b, {T1, T2, . . . , Tb}, τ〉 where Mr,b is an r-stage b-bin mix graph, Ti

is a set of tile types, and τ ∈ N is the temperature. Given a staged assembly
system, for each 1 ≤ i ≤ r, 1 ≤ j ≤ b, a corresponding bin (Ri,j , τ) is defined as
follows:

1. R1,j = Tj (this is a bin in the first stage);
2. For i ≥ 2, Ri,j =

(⋃

k: (mi−1,k,mi,j)∈Mr,b

P(R(i−1,k),τi−1,k)

)
.

Thus, bins in stage 1 are tile sets Tj , and each bin in any subsequent stage
receives an initial set of assemblies consisting of the terminally produced assem-
blies from a subset of the bins in the previous stage as dictated by the edges of
the mix graph.1 The output of a staged system is the union of the set of termi-
nal assemblies of the bins in the final stage.2 The output of a staged system is
uniquely produced provided each bin in the staged system uniquely produces its
terminal assemblies.

3 The 2HAM Unique Shape Verification Problem
Is coNPNP-Complete

This section serves as a warm-up for the format and techniques used in later
sections. We begin by proving the 2HAM USV problem is in coNPNP by providing
1 The original staged model [7] only considered O(1) distinct tile types, and thus

for simplicity allowed tiles to be added at any stage (since O(1) extra bins could
hold the individual tile types to mix at any stage). Because systems here may have
super-constant tile complexity, we restrict tiles to only be added at the initial stage.

2 This is a slight modification of the original staged model [7] in that there is no
requirement of a final stage with a single output bin. This may be a slightly more
capable model, and so it is considered here. However, all results in this paper apply
to both variants of the model.

Verification in Staged Tile Self-Assembly 101

a (non-deterministic) algorithm for the problem that can be executed on such a
machine. This is followed by a reduction from a SAT-like problem complete for
coNPNP (∀∃SAT).

Definition 1 (2HAM unique shape verification (2HAM USV) prob-
lem). Given a 2HAM system Γ and shape S, does every terminal assembly of
Γ have shape S?

Theorem 1. The 2HAM USV problem (for τ = 2 systems) is coNPNP-hard.

Definition 2 (∀∃SAT). Given a 3-SAT formula φ(x1, x2, . . . , xk, xk+1, . . . , xn),
is it true that for every assignment of x1, x2, . . . , xk, there exists an assignment
of xk+1, xk+2, . . . , xn such that φ(x1, x2, . . . , xn) evaluates to T?

The ∀∃SAT problem was shown to be coNPNP-complete by Stockmeyer [13]
(see [12] for further discussion).

Proof. The reduction is from ∀∃SAT. Roughly speaking, the system output by
the reduction behaves as follows. First, a distinct assembly encoding each pos-
sible assignment of the variables of the ∀∃SAT instance is assembled. Further
growth “tags” each assembly as either a true or false assembly, based upon the
truth value of the input 3-SAT formula φ for the variable assignment encoded
by the assembly.

False assemblies further grow into a slightly larger target shape S. A sepa-
rate set of test assemblies are created, one for each variable assignment of the
variables x1, . . . xk. Each test assembly attaches to any true assembly with the
same assignment of these variables to form an assembly with shape S - the same
shape as false assemblies.

Terminal assemblies then consist of false assemblies and true-test assemblies
with shape S, and possibly test assemblies. A test assembly is terminal if and
only if there is no true assembly for it to attach to, i.e. the assignment of variables
x1, . . . , xk has no corresponding assignment of the variables xk+1, . . . , xn such
that φ(x1, . . . , xn) is “true”.

SAT Assemblies. Consider a given input formula C and input value k for the
∀∃SAT problem. From this input we design a corresponding 2HAM system Γ =
(T, 2) and shape S such that the terminal assemblies of Γ share a common
shape S if and only if the ∀∃SAT instance is “true”, i.e. each assignment of the
variables x1 through xk can be combined with some assignment of the variables
xk+1 through xm such that the 3-SAT instance is satisfied.

The system has temperature 2, and the tile set T of the system output by the
reduction is sketched in Fig. 1. The first subset of tiles is a minor modification
of the commonly used 3-SAT solving system from [11].

For each variable xi, the system has two tile subsets. These collections assem-
ble into 1 × 4 assemblies with exposed north and south glues representing the
values “0” and “1”, respectively, encoding the assignment of a specific variable
to true or false. These 1 × 4 assemblies further assemble into 1 × 4n assemblies
encoding complete assignments of the variables x1 to xn. The non-deterministic

102 R. Schweller et al.

Fig. 1. Steps of the 2HAM USV coNPNP-hardness reduction.

assembly process of 2HAM implies that such an assembly for every possible
variable assignment will be assembled.

An additional column is attached to this bar of height equal to m, the number
of clauses in the formula C (Fig. 1). An additional set of tiles are added that
evaluate the 3-SAT formula φ based upon the variable assignments encoded by
the initial 1 × 4n assembly following the approach of [11]. These tiles place a
tile in the upper right corner of the resulting assembly with exposed glue labeled
“T” or “F”, indicating the truth value of φ based upon the variable assignments.

The resulting assemblies are categorized as true and false assemblies. Addi-
tional tiles are added so that every false assembly further grows, extending the
left 4k columns (corresponding to the variables x1 to xk) southward by 3 rows,
and the remaining right 4(n − k) columns southward by 1 row (Fig. 1(c)). The
resulting shape is the shape S output by the reduction, i.e. the only shape assem-
bled by the system if the solution to the ∀∃SAT instance is “true”.

Test Assemblies. Additional tiles are also added so that true assemblies also
grow southward, but extending the left 4k columns by various amounts based
upon each variable assignment. The result is a sequence of geometric “bumps
and dents” that encode the truth values of these variables.

A set of test assemblies with complementary geometry for each possible
assignment of variables x1 through xk are assembled (Fig. 1(b)). Test assem-
blies use two strength-1 glues that cooperatively attach to any true assembly
with a matching assignment of variables x1 through xk (Fig. 1(d)). The assem-
bly formed by a test assembly attaching to a true assembly has shape S: the
same shape as a false assembly.

Terminal Assemblies. If the solution to the ∀∃SAT instance is “false”, there is
some truth assignment for variables x1 . . . xk with no corresponding assignment
of the variables xk+1 . . . xn such that φ(x1, . . . , xn) is “true”. Thus, the test
assembly with this assignment of variables x1, . . . , xk has no compatible true

Verification in Staged Tile Self-Assembly 103

assembly to attach to - and this test assembly is a terminal assembly of Γ with
shape not equal to S.

On the other hand, if the solution to the ∀∃SAT instance is “yes”, every test
assembly attaches to a true assembly and thus every terminal assembly (true-test
assemblies and false assemblies) has shape S.

Theorem 2. The 2HAM USV problem is in coNPNP.

Proof. The solution to an instance (Γ, S) of the 2HAM USV problem is “true”
if and only if:

1. Every producible assembly of Γ has size at most |S|.
2. Every assembly of size at most |S| and without shape S is not a terminal

assembly.

Algorithm 1 solves the 2HAM USV problem by verifying each of these condi-
tions, using an NP subroutine to verify the second condition. The algorithm is
executed by a coNP machine, implying that “false” is returned if any of the
non-deterministic branches return “false”, and otherwise returns “true”.

Algorithm 1. A coNPNP algorithm for the 2HAM USV problem
1: Non-deterministically select a τ -stable assembly A with |S| < |A| ≤ 2|S|.
2: if A is producible then � In P by Theorem 3.2 of [10]
3: return false.
4: end if
5: Non-deterministically select a τ -stable assembly B with |B| ≤ |S| and shape not

equal to S.
6: if not F(Γ, B, |S|) then � Algorithm 2
7: return false.
8: end if
9: return true.

Algorithm 2. An NP algorithm subroutine of Algorithm 1
1: procedure F(Γ, B, n) � Returns whether B is not terminal.
2: Non-deterministically select a τ -stable assembly C with |C| ≤ n.
3: if C cannot attach to B at temperature τ then
4: return false.
5: end if
6: if C is a producible assembly of Γ then � In P by Theorem 3.2 of [10]
7: return false.
8: end if
9: return true.

10: end procedure

104 R. Schweller et al.

Fig. 2. (a) The tile set used in the staged coNP-hardness reduction. (b) The subsets
of tiles included in separated initial bins within the first stage of the system. (Color
figure online)

4 Staged Unique Assembly Verification Is coNP-Hard

Definition 3 (Staged unique assembly verification (Staged UAV) prob-
lem). Given a staged system Γ and an assembly A, does Γ uniquely assemble A?

Theorem 3. The staged UAV problem (for τ = 2 4-stage systems) is coNP-
hard.

Proof. The reduction is from 3-SAT, outputting a staged system Γ and assembly
A such that the 3-SAT instance is satisfiable if and only if A is not the unique
terminal assembly of Γ . We reduce from 3-SAT: Given a 3-SAT formula φ, we
design a staged assembly system and an assembly A such that φ is not satisfied
if and only if A is uniquely assembled by Γ .

The Tileset. The tiles used in our construction are shown in Fig. 2(a). In par-
ticular, for each variable xi ∈ {x1, x2, . . . , xn} and clause cj ∈ {c1, c2, . . . , cm} in
φ, there is a block of tiles labeled ai,j , bi,j , ci,j , di,j , ei,j , fi,j , gi,j . The set of tile
types for each block is denoted blocki,j .

The strength-2 (τ = 2) glues connecting adjacent tiles are unique with respect
to adjacent tiles, and are unlabelled in the figures for clarity. Note that for each
block (i, j), the top four tiles of the block occupy the same locations as the
bottom four tiles of block (i, j+1). Finally, the tileset includes a length 4m chain
of green tiles, with each green tile sharing a strength-2 glue with its neighbors,
along with four light-grey tiles which together attach to the green assembly.

Stage 1: Variable Assignments. The specific formula φ is encoded within
the output staged system via the initial choice of tiles placed into a O(1)-sized
collection of stage-1 bins. For each variable xi and clause cj combination, we
select two subsets of the blocki,j tileset. The first subset encodes a variable choice
of “false” for xi. The tile sets in Fig. 2(b)(i) and (iv) are used if xi satisfies (and xi

Verification in Staged Tile Self-Assembly 105

Fig. 3. In stage 2, rows non-deterministically form encoding each of the 2n possible
variable assignments. In stage 3 the rows are combined allowing for geometrically com-
patible, sequential rows with exposed red glue to attach. (a) Combinable rows. (b)
Geometrically incompatible rows. (c) Rows with no glues for attachment. (Color figure
online)

does not satisfy) clause cj , respectively. Similarly, the tile sets in Fig. 2(b)(ii–iii)
are used if xi does not (and xi does satisfy) clause cj .

Beyond utilizing two types of blocki,j tile sets, tile sets are further distin-
guished between odd and even values of i and j. In total, 16 distinct bins (sat-
isfied or not, negated or not, odd or even i, odd or even j) are used.

We include the grey and green tiles of Fig. 2(a) separately in two additional
bins. An additional four bins are used in the construction to maintain a set of
single copies of all tiles used within the system. Separating these tile subsets into
four bins ensures that the tiles do no interact (until mixed with other assemblies
at a later stage).

Stage 2: Assembling Rows. In stage 2 we combine all blocki,j assemblies
for even j into one bin, and all blocki,j assemblies for odd j into a second
bin. Within each bin and for each value j, rows encoding each possible variable
assignment assemble non-deterministically via attaching 0 − blocki,j and 1 −
blocki,j assemblies for each i ∈ {1, 2, . . . , n}. We refer to these assemblies as
rowj assemblies. There are 2n such assemblies for each j - one per variable
assignment. Example rowj assemblies are shown in Fig. 3.

Stage 3: Combining Rows with Shared Assignments and Satisfied
Clauses. Stage 3 is where the real action happens. All rowj assemblies are
combined, along with the green and grey assemblies of Fig. 2.

Consider the possible assembly of a rowj and a rowj+1 assembly. If the two
respective rows encode distinct variable assignments, geometric incompatibility
prohibits any possible connection (Fig. 3(b)). If the rows encode the same truth
assignment, then the rows may attach if any of the rowj variable pieces expose
the extended tip via the red τ = 2 strength glues (Fig. 3(a)). Such an attachment
indicates that the variable assignment of both rows satisfies cj . If the variable

106 R. Schweller et al.

Fig. 4. (a) Non-satisfying variable assignments will not be able to grow from row
0 to row m. (b) Assemblies encoding satisfying variable assignments will allow for
complete assemblies with all rows, allowing for a green assembly to attach. (c) The
target assembly A given as output of the reduction. (Color figure online)

assignment encoding does not satisfy cj , no extended tip exists and the rows
cannot attach (Fig. 3(c)).

A satisfying assignment of φ corresponds to m rows attaching to form a
complete “satisfying” assembly (Fig. 4(b)). The green assembly attaches coop-
eratively to such assemblies using the rowm assembly glue and a glue from the
grey tiles, which attach uniquely to row0. The attachment of a green assembly
verifies that all rows are present and the variable assignment satisfies φ.

A second copy of the green assembly attaches to any assembly containing
row0, regardless of whether all rows are present or not (Fig. 4(a)). In a sepa-
rate bin, the green assembly tiles and grey assemblies are combined, yielding a
combined grey-green product (for mixing in stage 4).

Stage 4: Merging Assignments. In stage 4, the set of all blocki,j individual
tiles are added to the assemblies constructed in stage 3 as well as the grey-green
assembly produced in the previous stage. Note that the green assembly is not
an input assembly to this mixing.

Since all blocki,j assemblies are included, each terminal assembly from stage 3
may grow into the unique terminal assembly shown in Fig. 4(c) with one excep-
tion: assemblies from stage 3 encoding satisfying variable assignments. These
assemblies have one additional copy of the green bar assembly attached. There-
fore, the assembly of Fig. 4(c) is uniquely assembled if an only if no such satisfying
assembly exists.

5 Staged Unique Assembly Verification Is coNPNP-Hard

Theorem 4. The staged UAV problem (for τ = 2 7-stage systems) is coNPNP-
hard.

Proof. We reduce from ∀∃SAT by combining ideas from the reductions of
Theorem 1 and 3.

Verification in Staged Tile Self-Assembly 107

Fig. 5. The assemblies at respective stages for the coNPNP-hardness reduction for the
staged UAV problem. (Color figure online)

Stages 1–3: The SAT Assemblies. The first 3 stages follows those of the
reduction in Theorem3 but without the inclusion of the green assembly and light
grey tiles. The result is a collection of assemblies encoding satisfying variable
assignments with all m rows, as well as partial assemblies of less than m rows
encoding non-satisfying assignments. For clarity, the bottom half of the j = 0
blocks for values i > k are removed, exposing the “geometric teeth” only for the
first k variables.

Stages 1–3: The Test Assemblies. Additionally, in a separate set of bins,
we non-deterministically generate a set of test assemblies. The test assemblies
are similar to row assemblies and generated in a similar fashion. An example
test assembly is shown in Fig. 5 (Stages 1–4). A test assembly for each of the 2k

possible truth assignments of x1, x2, . . . , xk is grown, and a green bar assembly
is attached to the side of each test assembly.

Stage 4: The Magic Happens. The SAT assemblies and test assemblies are
combined in a bin. Test assemblies attach to SAT assesmblies encoding satis-
fying variable assignments by utilizing cooperative bonding based on the two
strength-1 green glues on the green assembly. SATassemblies encoding non-
satisfying assignments must each lack the topmost or bottommost row, and
therefore cannot attach to a test assembly.

Due to the geometric interlocking teeth from the test assembly and the bot-
tom of SAT assemblies, test assemblies may only attach to SAT assemblies that
encode the same variable assignment (of variables x1, x2, . . . , xk). Stages 1–4 of
Fig. 5 show an example test assembly and a attaching SAT assembly.

108 R. Schweller et al.

Note that if there exists a truth assignment for x1, x2, . . . , xk with no satis-
fying assignment of the remaining variables xk+1, xk+2, . . . , xn, then the corre-
sponding test assembly does not attach to any SAT assembly and is a terminal
assembly of this bin. On the other had, if every assignment of the variables
x1, x2, . . . , xk has at least one satisfying assignment of the remaining variables,
i.e. the solution ∀∃SAT instance is “true”, then there are no terminal test assem-
blies of this bin.

Stage 5: Tagging Non-satisfying Assignments. In Stage 5, we add pre-
assembled duples which attach to the bottom of any assembly containing row 0
and encodes a non-satisfying variable assignment. This attachment ensures that
in subsequent stages, these assemblies will be geometrically incompatible with
any remaining test assemblies from Stage 4.

It is possible that some duples have no non-satisfying SAT assembly to attach
to. As a solution, an additional height-1 assembly of the row-0 assembly that
“absorbs” each duple is added at this stage. The subsequent stages enable these,
as well as all other SAT assemblies, to grow into a single common (potentially)
unique assembly.

Stage 6: Attaching Test Assemblies. The result of Stage 5 is mixed with an
assembly consisting of:

– The light-grey bar of the test assemblies.
– A second complete layer of dark grey tiles.
– The green bar.

This assembly attaches to any non-satisfying SAT assembly that includes row 0,
ensuring that all assemblies containing row 0 now have a version of the test
assembly attached (Stage 6 in Fig. 5).

Stage 7: Merging. In the final stage, every individual tile of the target assembly
(seen in Stage 7 of Fig. 5) is added to the result of Stage 6, with the exception
of the green tiles and the tiles in rows 1 through 5 of the SAT assemblies.

These tiles complete each SAT assembly in the assembly in Fig. 5 (Stage 7).
Morever, the height-1 assembly used to absorb duples from Stage 5 grows into
the assembly from Fig. 5 (Stage 7). However, because of the lack of tiles from
rows 1 through 5, any leftover test assembly from Stage 4 remains terminal.

Thus the target assembly is the unique terminal assembly of the system if
and only if the solution to the ∀∃SAT instance is “yes”.

Observe that every staged system output by the reduction has the property
that if it does not have a unique terminal assembly, then it also does not have a
unique terminal shape. Thus the same reduction suffices to prove that the staged
USV problem is coNPNP-hard.

Corollary 1. The staged USV problem is coNPNP-hard.

Verification in Staged Tile Self-Assembly 109

6 Staged PSPACE Containment

Here we prove that the staged UAV and USV problems are in PSPACE. Parame-
terized versions of the results are also obtained; these prove that both problems
restricted to systems with any fixed number of stages lie in the polynomial hier-
archy. Both results are obtained via upper bounds on the complexities of the
following three problems:

Definition 4 (Stage-s producible-in-bin verification (PIBVs) problem).
Given a staged system Γ , a bin b in stage s of Γ , an assembly A, and an integer n:

1. is A a producible assembly of b?
2. and does every producible assembly of every bin in stage s − 1 of Γ have size

at most n?

Definition 5 (Stage-sundersized-in-bin verification (UIBVs) problem).
Given a staged system Γ , a bin b in stage s of Γ , and an integer n:

1. and does every producible assembly of b have size at most n?
2. and does every producible assembly of every bin in stage s − 1 of Γ have size

at most n?

Definition 6 (Stage-s terminal-in-bin verification (TIBVs) problem).
Given a staged system Γ , a bin b in stage s of Γ , an assembly A, and an integer n:

1. is A a terminal assembly of b?
2. and does every producible assembly of b have size at most n?
3. and does every producible assembly of every bin in stage s − 1 of Γ have size

at most n?

The statements and proofs of the following results use terminology related to
the polynomial hierarchy. For an introduction to the polynomial hierarchy, see
Stockmeyer [13]. As a reminder, ΣP

i+1 =NPΣP
i ,ΠP

i+1 =coNPΣP
i , and ΣP

0 = ΠP
0 = P.

Lemma 1. For all s ∈ N:

– The PIBVs problem is in ΣP
2s−2.

– The UIBVs and TIBVs problems are in ΠP
2s−1.

Due to space limitations, the proof of this lemma is omitted.

Definition 7 (Stage-s unique assembly verification (Stage-s UAV)
problem). Given a staged system Γ with s stages and an assembly A, is A
the unique terminal assembly of Γ?

Theorem 5. The stage-s UAV problem is in ΠP
2s.

Proof. We give an algorithm for the stage-s UAV problem. The stage-s UAV
problem may be restated as:

110 R. Schweller et al.

1. is every assembly B with |B| ≤ |A| and B �= A not a terminal assembly of
any bin in stage s?

2. and does every producible assembly of every bin in stage s − 1 of Γ have size
at most |A|?

In the algorithm below, Ts and Us are algorithms for the TIBVs and UIBVs

problems, respectively.

Algorithm 3. A ΠP
2s algorithm for the stage-s UAV problem

1: procedure UAVs(Γ, A) � Γ has s stages.
2: Non-deterministically select an assembly B with |B| ≤ n and A �= B.
3: for all bins b in stage s of Γ do
4: if Ts(Γ, b, B) then � Function call is in ΠP

2s−1

5: return no.
6: end if
7: end for
8: if not Us(Γ, b, |A|) then � Function call is in ΠP

2s−1

9: return no.
10: end if
11: return yes.
12: end procedure

The algorithm runs as a coNP machine, returning “no” unless every non-
deterministic branch returns “yes”. Lines 2–8 verify that A is a terminal assembly
of bin b (subproblem 1): A is not a terminal assembly if and only if (1) A is not
producible (lines 2–4), or (2) another producible assembly B can attach to A
(lines 5–8).

Every staged system has some number of stages s ∈ N, but there is no
limit to the number of stages a staged system may have. Thus the staged UAV
problem is not contained in any level of PH, but every instance can be solved
by an algorithm that runs at a fixed level (ΠP

2s) of the hierarchy. Since it is a
well-known that PH ⊆ PSPACE, this gives the desired result:

Corollary 2. The staged UAV problem is in PSPACE.

Next, we move to shape verification:

Definition 8 (Stage-s unique shape verification (Stage-s USV) prob-
lem). Given a staged system Γ with s stages and a shape S, is S the unique
terminal shape of Γ?

Theorem 6. The stage-s USV problem is in ΠP
2s.

Proof. The stage-s USV problem can be restated as:

1. is every assembly B with |B| ≤ |S| and shape not equal to S not a terminal
assembly of any bin in stage s?

2. and does every producible assembly of every bin in stage s − 1 of Γ have size
at most |S|?

Verification in Staged Tile Self-Assembly 111

Notice that the subproblems only differ from those of the stage-s UAV prob-
lem in that S replaces A and “equal shape” replaces “equals”. Thus the algo-
rithm differs from the ΠP

2s algorithm for the stage-s UAV problem on only line 5
(replace “A �= B” with “shape not equal to S”) and line 8 (replace |A| with |S|).

As for the UAV problem, since the stage-s USV problem is in PH for each
s ∈ N, the USV problem is in PSPACE.

Corollary 3. The staged USV problem is in PSPACE.

7 Open Problems

The most direct problem left open by this work is closing the gap in the bottom
row of Table 1 between the coNPNP-hardness and PSPACE containment of the
staged UAV and USV problems. We believe that the approach of differentiating
between satisfying and non-satisfying assignments, then checking for the exis-
tence of various partial assignments (the ∀ portion of ∀∃SAT) can be generalized
to achieve hardness for any number of quantifier alternations, using a number
of stages proportional to the number of alternations:

Conjecture 1. The staged UAV and USV problems are PSPACE-complete.

Conjecture 2. The stage-s UAV and stage-s USV problems are Πp
Ω(s)-hard.

The UAV and USV problems considered in this work are two variants of
the generic challenge of verification; considering the same problems limited to
temperature-1 systems or with different inputs is also interesting:

Problem 1. What are the complexities of the staged UAV and USV problems
restricted to temperature-1 systems?

Problem 2. What is the complexity (in any model) of the following UAV-like
problem: given a system Γ and an integer n, does Γ have a unique terminal
assembly of size at most n?

Finally, the results and techniques presented here might find use in the study
of other problems in staged and two-handed self-assembly, such as tile minimiza-
tion. The aTAM USV problem is coNP-complete, while the minimum tile set
problem of finding the minimum number of tiles that uniquely assemble into a
given shape is NPNP-complete [2]. We now know that the 2HAM USV problem
is coNPNP-complete (Sect. 3); does the corresponding optimization problem also
rise in the hierarchy?

Conjecture 3. The 2HAM minimum tile set problem is NPNPNP

-complete.

112 R. Schweller et al.

References

1. Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., de Espanés, P.M.,
Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In:
Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Com-
puting, pp. 23–32 (2002)

2. Bryans, N., Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: The power of nonde-
terminism in self-assembly. Theory Comput. 9(1), 1–29 (2013)

3. Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J., Schweller,
R.T., Summers, S.M., Winslow, A.: Two hands are better than one (up to constant
factors): self-assembly in the 2HAM vs. aTAM. In: STACS 2013. LIPIcs, vol. 20,
pp. 172–184. Schloss Dagstuhl (2013)

4. Chalk, C., Martinez, E., Schweller, R., Vega, L., Winslow, A., Wylie, T.: Opti-
mal staged self-assembly of general shapes. In: Proceedings of the 24th European
Symposium of Algorithms. LIPIcs, vol. 57, pp. 26:1–26:17. Schloss Dagstuhl (2016)

5. Chalk, C., Schweller, R., Winslow, A., Wylie, T.: Too hot 2HAMdle: high-
temperature two-handed self-assembly (2017, under submission)

6. Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T.,
de Espanés, P.M.: Complexities for generalized models of self-assembly. SIAM J.
Comput. 34, 1493–1515 (2005)

7. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller,
R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes
with O(1) glues. Nat. Comput. 7(3), 347–370 (2008)

8. Demaine, E.D., Eisenstat, S., Ishaque, M., Winslow, A.: One-dimensional staged
self-assembly. In: Cardelli, L., Shih, W. (eds.) DNA 2011. LNCS, vol. 6937, pp.
100–114. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23638-9 10

9. Demaine, E.D., Fekete, S.P., Scheffer, C., Schmidt, A.: New geometric algo-
rithms for fully connected staged self-assembly. In: Phillips, A., Yin, P. (eds.)
DNA 2015. LNCS, vol. 9211, pp. 104–116. Springer, Cham (2015). doi:10.1007/
978-3-319-21999-8 7

10. Doty, D.: Producibility in hierarchical self-assembly. In: Ibarra, O.H., Kari, L.,
Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 142–154. Springer, Cham
(2014). doi:10.1007/978-3-319-08123-6 12

11. Lagoudakis, M.G., Labean, T.H.: 2D DNA self-assembly for satisfiability. In: 5th
International Meeting on DNA Based Computers (1999)

12. Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy: a com-
pendium. SIGACT News 33(3), 32–49 (2002)

13. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22
(1976)

14. Winslow, A.: Staged self-assembly and polyomino context-free grammars. Nat.
Comput. 14(2), 293–302 (2015)

http://dx.doi.org/10.1007/978-3-642-23638-9_10
http://dx.doi.org/10.1007/978-3-319-21999-8_7
http://dx.doi.org/10.1007/978-3-319-21999-8_7
http://dx.doi.org/10.1007/978-3-319-08123-6_12

Self-Assembly of 4-Sided Fractals
in the Two-Handed Tile Assembly Model

Jacob Hendricks1(B) and Joseph Opseth2

1 Department of Computer Science and Information Systems,
University of Wisconsin - River Falls, River Falls, USA

jacob.hendricks@uwrf.edu
2 Department of Mathematics, University of Wisconsin - River Falls,

River Falls, USA
joseph.opseth@my.uwrf.edu

Abstract. In this paper, we consider the strict self-assembly of frac-
tals in one of the most well-studied models of tile based self-assembling
systems known as the Two-handed Tile Assembly Model (2HAM). We
are particularly interested in a class of fractals called discrete self-similar
fractals (a class of fractals that includes the discrete Sierpinski’s carpet).
We present a 2HAM system that strictly self-assembles the discrete Sier-
pinski’s carpet with scale factor 1. Moreover, the 2HAM system that we
give lends itself to being generalized and we describe how this system
can be modified to obtain a 2HAM system that strictly self-assembles
one of any fractal from an infinite set of fractals which we call 4-sided
fractals. The 2HAM systems we give in this paper are the first examples
of systems that strictly self-assemble discrete self-similar fractals at scale
factor 1 in a purely growth model of self-assembly. Finally, we give an
example of a 3-sided fractal (which is not a tree fractal) that cannot be
strictly self-assembled by any 2HAM system.

1 Introduction

The study of fractals has both a mathematical and a practical basis, as these
recursively self-similar patterns occur in nature in the form of circulatory systems
and branch patterns. Evidently many fractals found in nature are the result of
a process where a simple set of rules dictating how individual basic components
(such as individual molecules) interact to yield larger complexes with recursive
self-similar structure. One approach to understanding this process is to model
such a process with artificial self-assembling systems.

One of the first and also one of the most studied mathematical models of
self-assembling systems is Winfree’s abstract Tile Assembly Model (aTAM) [39]
where individual autonomous components are represented as tiles with glues
on their edges. The aTAM was intended to model DNA tile self-assembly,
where tiles are implemented using DNA molecules. There have been two main
reasons for considering the self-assembly of fractals. First, in [16,36], DNA-
based tiles are used to self-assemble Sierpinski’s carpet, showing the poten-
tial for DNA tile self-assembly to be used for the controlled formation of
c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 113–128, 2017.
DOI: 10.1007/978-3-319-58187-3 9

114 J. Hendricks and J. Opseth

complex nanoscale structures. Second, there are have been many proposed
theoretical models (and generalizations of these models) of DNA tile self-
assembly (see [1,5,8,11,13,22,25,32,39] for some examples). While mathe-
matical notions of simulation relations between systems in models continue
to further elucidate how these various models relate [3,9,12,20,30,31], many
“benchmark” problems have also been introduced, including the efficient self-
assembly squares and/or general shapes [10,33,37,38], the capacity to per-
form universal computation [6,14,15,17,21,32,33], and the self-assembly of frac-
tals [2,18,26,27,29,34,35]. When considering the self-assembly of discrete self-
similar fractals (dssf) such as the Sierpinski triangle one can consider either
“strict” self-assembly, wherein a shape is made by placing tiles only within the
domain of the shape, or “weak” self-assembly where a pattern representing the
shape forms as part of a complex of tiles that contains specially labeled tiles cor-
responding to points in the shape and possibly additional tiles not corresponding
to points of the shape. In this paper, we only consider strict self-assembly of
dssf’s. Previous work (including [2,26,27,29,34,35]) has shown the difficulty of
strict self-assembly of dssf’s in the aTAM as no nontrivial dssf has been shown to
self-assemble in the strict sense. In fact, the Sierpinski’s triangle [28] and similar
fractals [2] are known to be impossible to self-assemble in the aTAM; though
it is possible to design systems which “approximate” the strict self-assembly of
fractals [28,29,34]. Interestingly, it is unknown whether there exists a dssf which
strictly self-assembles in the aTAM. This includes the Sierpinski’s carpet dssf.

While the aTAM models single tile attachment at a time1, a more gener-
alized model and another of the most studied models of self-assembly called
the 2-Handed Assembly Model [5] (2HAM, a.k.a. Hierarchical Assembly Model)
allows pairs of large assemblies to bind together. The impossibility of strictly
self-assembling the Sierpinski triangle [3] has been shown; this impossibility is
due in part to the “tree-like” structure of Sierpinski’s triangle. In [4] it is shown
that Sierpinski’s carpet self-assembles in the 2HAM at temperature 2, but with
scale factor 3. That is, instead of self-assembling a structure with tiles corre-
sponding to the points of Sierpinski’s carpet, the structure that self-assembles
contains a 3 by 3 block of tiles that corresponds to a single point of Sierpinski’s
carpet. Here we show that not only does Sierpinski’s carpet self-assemble with
no scale factor, but a general class of fractals, which we call the 4-sided frac-
tals, self-assemble at temperature 2 in the 2HAM. Intuitively, 4-sided fractals are
fractals that have a generator (the set of points in the first stage of the fractal)
such that the generator is connected and consists of a rectangle of points and
points “inside” this rectangle. Informally, a 4-sided fractal is a fractal with a
generator that contains all 4 sides and one can define 0, 1, 2, and 3-sided frac-
tals analogously. (Definitions are given in Sect. 2.) Moreover, we show that there
exists a 3-sided fractal that cannot be strictly self-assembled by any 2HAM sys-
tem at any temperature. This is especially interesting considering that 3-sided
fractals are not tree fractals (a class of fractals that can be seen to not strictly
self-assemble in the 2HAM with no scale factor.)

1 or step in the self-assembly process.

Self-Assembly of 4-Sided Fractals in the Two-Handed Tile Assembly Model 115

Theorem 1 implies that one of the most well-known dssf’s strictly self-
assembles in one of the simplest and most studied models of self-assembly,
the 2HAM. It should be noted that any dssf can strictly self-assemble [18] in
the Signal-passing Tile Assembly Model (STAM) where tiles can change state
and even disassociate from an existing assembly, “breaking” an assembly into
two disconnected assemblies. That is, given any dssf, there is a STAM system
that strictly self-assembles this fractal.2 Additionally, in a model similar to the
STAM, the Active Signal Tile Assembly Model [23], infinite, self-similar sub-
stitution tiling patterns which fill the plane have been shown to assemble [24].
This may be considered a testament to the power of active tiles. Here we show
that it is still possible to strictly self-assemble an infinite class of fractals in the
2HAM even though tiles are not active and disassociation is not allowed. While
the positive result presented here pertains only to 4-sided fractals, preliminary
results discussed in Sect. 5 show that the techniques used here to prove this pos-
itive result may give rise to a much more general classification of which fractals
strictly self-assemble in the 2HAM. Due to space limitation, detailed proofs of
the results given here can be found in [19].

2 Preliminaries

Here we provide informal descriptions of the 2-Handed Tile Assembly Model
(2HAM). For more details see [5,7]. We also give the definition of discrete self-
similar fractals similar to the definitions found in [2,18].

2.1 Informal Description of the 2HAM

The 2HAM [5,7] is a generalization of the abstract Tile Assembly Model (aTAM)
[39] in that it allows for two assemblies, both possibly consisting of more than
one tile, to attach to each other. Since we must allow that the assemblies might
require translation before they can bind, we define a supertile to be the set of
all translations of a τ -stable assembly, and speak of the attachment of supertiles
to each other, modeling that the assemblies attach, if possible, after appropriate
translation. We now give a brief, informal, sketch of the 2HAM.

Given V ⊆ Z
2, the full grid graph of V is the undirected graph Gf

V = (V,E),
such that for all x,y ∈ V , {x,y} ∈ E iff ||x − y|| = 1, i.e., iff x and y are
adjacent and the 2-dimensional integer Cartesian space.

A tile type is a unit square with each side having a glue consisting of a label
(a finite string) and strength (a non-negative integer). We assume a finite set T
of tile types, but an infinite number of copies of each tile type, each copy referred
to as a tile. A supertile is (the set of all translations of) a positioning of tiles on
the integer lattice Z

2. Two adjacent tiles in a supertile interact if the glues on
their abutting sides are equal and have positive strength. Each supertile induces
a binding graph, a grid graph whose vertices are tiles, with an edge between two

2 Additionally, in [18] it is shown that a large class of fractals strictly self-assembles
in the STAM even with temperature restricted to 1.

116 J. Hendricks and J. Opseth

tiles if they interact. The supertile is τ -stable if every cut of its binding graph
has strength at least τ , where the weight of an edge is the strength of the glue
it represents. That is, the supertile is stable if at least energy τ is required to
separate the supertile into two parts. Note that throughout this paper, we will
use the term assembly interchangeably with supertile.

A (two-handed) tile assembly system (TAS) is an ordered triple T = (T, S, τ),
where T is a finite set of tile types, S is the initial state, and τ ∈ N is the
temperature. For notational convenience we sometimes describe S as a set of
supertiles, in which case we actually mean that S is a multiset of supertiles
with one count of each supertile. We also assume that, in general, unless stated
otherwise, the count for any single tile in the initial state is infinite. Commonly,
2HAM systems are defined as pairs T = (T, τ), with the initial state simply
consisting of an infinite number of copies of each singleton tile type of T , and
throughout this paper this is the notation we will use.

Given a TAS T = (T, τ), a supertile is producible, written as α ∈ A[T],
if either it is a single tile from T , or it is the τ -stable result of translating
two producible assemblies without overlap. A supertile α is terminal, written
as α ∈ A�[T], if for every producible supertile β, α and β cannot be τ -stably
attached. A TAS is directed if it has only one terminal, producible supertile.
A set, or shape, X strictly self-assembles if there is a TAS T for which every
assembly α ∈ A�[T] satisfies dom α = X. Essentially, strict self-assembly means
that tiles are only placed in positions defined by the shape. This is in contrast
to the notion of weak self-assembly in which only specially marked tiles can and
must be in the locations of X but other locations can perhaps receive tiles of
other types. All results in this paper are for strict self-assembly of shapes via
systems that are not directed.

2.2 Discrete Self-Similar Fractals

In order to state the main theorem, we need to provide a few definitions. The
definition of a discrete self-similar fractals and some of the notation used here
also appears in [2,18,34]. First we introduce some notation.

For g ∈ N and G ⊂ N
2
g, let lG, rG, bG, and tG denote the integers: lG =

min(x,y)∈G x, rG = max(x,y)∈G x, bG = min(x,y)∈G y, and tG = max(x,y)∈G y.
Moreover, let wG = rG − lG + 1 and hG = tG − bG + 1 denote the width and
height of G respectively. Finally, let LG = {(lG, y) | bG ≤ y ≤ tG}, RG =
{(rG, y) | bG ≤ y ≤ tG}, TG = {(x, tG) | lG ≤ x ≤ rG}, and BG = {(x, bG) |
lG ≤ x ≤ rG}. In other words, LG, RG, TG, and BG are the left, right, top, and
bottom line segments of a “bounding box” of G. We also use Ng to denote the
subset {0, . . . , g − 1} of N. Finally, if A and B are subsets of N

2 and (x, y) ∈ N
2,

then A + (x, y)B = {(xa, ya) + (x · xb, y · yb) | (xa, ya) ∈ A and (xb, yb) ∈ B}.
First we give the definition of a discrete self-similar fractal.

Definition 1. Let X ⊂ N
2. We say that X is a discrete self-similar fractal (or

dssf for short), if there is a set {(0, 0)} ⊂ G ⊂ N
2
g with at least one point in

every row and column, such that

1. the full grid-graph of G is connected,

Self-Assembly of 4-Sided Fractals in the Two-Handed Tile Assembly Model 117

2. wG > 1 and hG > 1,
3. G � NwG

× NhG
, and

4. X = ∪∞
i=1Xi, where Xi, the ith stage of X, is defined by X1 = G and

Xi+1 = Xi + (wi
G, hi

G)G.

Moreover, we say that G is the generator of X.

A connected discrete self-similar fractal is one in which every component is
connected in every stage, i.e. there is only one connected component in the grid
graph formed by the points of the shape.

Definition 2. [n-sided fractals] Let n ∈ {0, 1, 2, 3, 4}, 1 < g ∈ N and X ⊂ N
2.

We say that X is a n-sided fractal iff X is a g-discrete self-similar fractal with
generator G such that:

1. the full grid graph of G is connected,
2. S ∩ G = S for at least n distinct sets S in {LG, RG, TG, BG}.

Intuitively, the second condition in Definition 2 is saying that the fractal
generator contains all points of at least n of the left, right, top, and bottom line
segments of a “bounding box” of G. In particular, the generator of a 4-sided
fractal contains all of the points along the left, right, top, and bottom “sides” of
the fractal generator. Finally, for a fractal X with generator G, an enumeration
of the points in a generator G = {vi}|G|

i=1, and j ∈ N, the stages of X are S1 = G

and Sj+1 = Sj +(wj
G, hj

G)G. For i ∈ N such that 1 ≤ i ≤ |G|, we call the points
of the j + 1 stage given by Sj + (wj

G, hj
G)vi the jth stage at position i.

3 Four Sided Fractals

In this section we show how to strictly self-assemble the class of 4-sided discrete
self-similar fractals in the 2HAM (with scale factor of 1). The most well-known
example of a 4-sided fractal is Sierpinski’s carpet. This is the first example of a
non-trivial dssf shown to self-assemble in either the 2HAM (or the aTAM) with
no scale factor. Here we give an overview of the construction for the Sierpinski’s
carpet and the modifications needed to the Sierpinski’s carpet construction to
show that any 4-sided fractal strictly self-assembles in the 2HAM. For more detail
(including a depiction of the complete tile set for Sierpinski’s carpet) see [19].
Also, figures in this section contain color. Figures with color can be found in the
online version of the proceedings or in [19].

Theorem 1. Let X be a 4-sided fractal. Then, there exists a 2HAM TAS TX =
(T, 2) that strictly self-assembles X. Moreover, if G is the generator for X and
|G| = g, |T | is O(g3).

We build intuition for a construction showing Theorem1 by showing that
Sierpinski’s carpet strictly self-assembles in the 2HAM at scale factor 1. We
then describe the modifications needed to extend the construction for the carpet
to give an algorithm for obtaining a tile set T given a generator for a 4-sided
fractal, X, such that the 2HAM TAS (T, 2) strictly self-assembles X.

118 J. Hendricks and J. Opseth

(a) Stage 1 (b) Stage 2 (c) Stage 3

Fig. 1. Three stages of Sierpinski’s carpet

3.1 Sierpinski’s Carpet Construction Overview

The Sierpinski’s carpet dssf is the dssf with generator G = {(0, 0), (0, 1), (0, 2),
(1, 0), (1, 2), (2, 0), (2, 1), (2, 2)}. Fig. 1a depicts this generator, while Fig. 1b and
c depict the 2nd and 3rd stages of the dssf respectively. We denote this carpet
by S and for i ∈ N, we denote the ith stage of S as Si. We enumerate the points
of S1 as depicted in Fig. 1a and use this enumeration to reference the positions
of some substage within a subsequent stage of the carpet.

We now describe the tile set, T , that is used to strictly self-assemble S in the
2HAM at temperature τ = 2 at scale factor 1.

Overview of Stage 2 Assembly. We begin by distinguishing between two
classes of tile types called grout tile types (or grout tiles when referring to
actual tiles) and initializer tile types (or initializer tiles). Informally,

Fig. 2. The shape of
the portion of S2

that is self-assembled
by initializer tiles.

initializer tiles self-assemble to form 8 different super-
tiles, the domains of which are contained in the portion
of S2 depicted in Fig. 2. We call these 8 supertiles C2

i for
1 ≤ i ≤ 8. The main idea is that tiles that self-assemble
C2

i have been “hard-coded” (i.e. for any glue on the edge
of some tile, there exists a single matching glue on another
tile) to ensure that for each i, all tiles of C2

i self-assemble
before C2

i can be a subassembly in any other strictly larger
assembly. In other words, referring to Fig. 4a, the gray tiles
self-assemble one of the 8 different supertiles C2

i before any of the the aqua tiles
can attach. Figure 3 depicts C2

i for each i. Note that for each i, C2
i subassemblies

may expose glues of type gd or ĝd for d either n, s, e, or w, as well as possibly
gk or ĝk for 1 ≤ k ≤ 8. Informally, these glues encode which position (1 through
8) each C2

i assembly will end up in an assembly corresponding to stage 3 of
Sierpinski’s carpet, where C2

i will be in position i. We now explain the purpose
of these glues in more detail.

Overview of Stage 3 Assembly. For each i, C2
i exposes glues that allow

for the attachment of grout tiles. In Fig. 4, grout tiles are depicted in aqua.
The grout supertiles that bind to some C2

i before any other grout supertiles
are called start-gadgets. See Fig. 5. There are 8 different classes of grout tile

Self-Assembly of 4-Sided Fractals in the Two-Handed Tile Assembly Model 119

Fig. 3. The tiles that self-assemble a stage 2 supertile C2
i . The unlabelled strength 1

and 2 black and yellow glues shown on edges of two adjacent tiles in each of the 8
supertiles are defined to have matching type. Moreover, these glues do not match any
other glues of other tile types in T . (Color figure online)

(a) Stage 2 (b) Stage 2 with grout

Fig. 4. For i, j such that 1 ≤ i, j ≤ 8, grout tiles bind to C2
i and expose glues in

precise locations that allow the resulting assemblies (shown in (a)) to bind to form C3
j .

Moreover, j is determined by the grout class that binds to the assemblies C2
i .

Fig. 5. Left: The supertile that starts the
growth of grout for C2

1 . Right: The super-
tile that starts the growth of grout for Cs

1

for s > 2. Note that for each s ≥ 2, only
one of these supertiles can bind to tiles of
Cs

1 . Moreover, the supertile depicted on the
left can bind to some Cs

1 iff s = 2, and the
supertile depicted on the right can bind to
some Cs

1 iff s > 2.

types (with corresponding grout tiles)
which we enumerate with 1 through
8. Let j ∈ N such that 1 ≤ j ≤ 8
refer to a class of grout. Glues of
grout tiles have been defined so that
grout supertiles cooperatively bind to
C2

i assemblies, eventually surrounding
such an assembly. The grout super-
tiles other than start-gadgets that
cooperatively bind to C2

i are called c-
rawlers. Glues labeled gk or ĝk for
1 ≤ k ≤ 8 are called indicator glues
and these have a special purpose. A
grout tile that binds to an indica-
tor glue via a south glue (likewise

120 J. Hendricks and J. Opseth

for north, east, and west) of the grout tile may expose (depending on its
grout class) a strength-1 glue on its north edge that will eventually take part in a
cooperative binding event between C2

i and C2
i′ with a sufficient number of grout

tiles attached to each. The type of glue and whether or not a grout tile exposes
such a glue depends on the grout tiles class. We call these glues stage-binding
glues for the 3rd stage. For each i, grout tiles have been defined so that they
attach to C2

i and eventually bind to all indicator glues of C2
i before grout

tiles can no longer bind. We let C2
(i,j) denote the largest supertile (in terms of

the subassembly relation) consisting of C2
i and grout tiles of class j. Figure 6

depicts C2
(i,j) for i = 1 and 2 and j between 1 and 8. Moreover, for i, j, i′ and j′

between 1 and 8 (inclusive), glues are defined so that C2
(i,j) and C2

(i′,j′) can bind
iff j = j′. That is the grout tiles of C2

(i,j) and C2
(i′,j′) belong to the same class.

As grout tiles attach to each C2
i assembly, stage-binding glues are exposed

on specially designated grout tiles so that the supertiles C2
(i,j) can bind to form

the portion of S3 depicted in Fig. 4b. Note that stage-binding glues may be
exposed before C2

(i,j) completely assembles and therefore for some i and i′, two
subassemblies of C2

(i,j) and C2
(i′,j) may bind to form a subassembly of an assem-

bly, which we call C3
j , corresponding to stage 3. We define glues belonging to

grout tiles so that this does not prevent tiles from binding in locations corre-
sponding to points of stage 2 at positions i and i′ from completing assembly as
a subassembly of C3

j and note that this does not permit tiles to bind in loca-
tions outside of locations in dom (C3

j). Therefore, we assume that each C2
(i,j)

completely assembles before binding to some other supertile to become a sub-
assembly of a larger assembly. C3

j is depicted in Fig. 4b. Finally, for i′ such that
1 ≤ i′ ≤ 8, the glues that might allow (depending on i and i′) some super-
tile C2

(i,j) to bind to another supertile C2
(i′,j) are strength 1 glues separated

by a distance of 32−1 = 3. This distance is ensured by the locations of the
indicator glues and will prevent supertiles corresponding to different fractal

(a) (b)

Fig. 6. (a) A depiction of C2
(1,i) with stage-binding glues h1,i and ĥ1,i. (b) A depic-

tion of C2
(2,i) with stage-binding glues h1,i, ĥ1,i, h2,i, and ĥ2,i. Notice that the

stage-binding glues of C2
(1,i) and C2

(2,i) allow for the cooperative binding of C2
(1,i)

and C2
(2,i). Intuitively, the distance between these glues ensures proper assembly of

each stage of Sierpinski’s carpet.

Self-Assembly of 4-Sided Fractals in the Two-Handed Tile Assembly Model 121

stages from binding. Moreover, we define the grout tiles such that the C2
(i,j)

supertiles bind before the “next iteration” of grout tiles can attach. In other
words, C2

(i,j) supertiles bind for all i between 1 and 8 before a start-gadget

can bind to the resulting assembly C3
j .

Overview of Stage s assembly for s ≥ 4. For each j and all i, the supertiles
C2

(i,j) bind to form a supertile C3
j corresponding to a portion of S3. Just as i

corresponds to the position where the C2
i supertile will bind when C3

j forms, j

corresponds to the position where C3
j will bind when a supertile corresponding

to a portion of S4 self-assembles. This portion of S4 is essentially, S4 without
northernmost, southernmost, easternmost, and westernmost points, the absence
of which makes room for the assembly of more grout tiles. Informally, the posi-
tion in the C3

j supertiles of each C2
i supertile is determined by the glues exposed

by the supertiles C2
i . Moreover, the grout class j determines the grout tiles that

will bind to C3
j , which will in turn determine the position of the C3

j supertile
in S4. Finally, just as some super tile C2

i exposes some indicator glues the
supertile C3

j for i = j expose the same strength-1 indicator glues, only at a
distance of 32 = 9.

Repurposing i, we now let C3
j be denoted by C3

i . Now, for each i and j
with 1 ≤ i, j ≤ 8, the 8 different classes of grout tile types can attach to
each C3

i supertile to give supertiles C3
(i,j), and the glues of each different class

of grout tiles determine where the supertiles consisting of C3
(i,j) attach to self-

assemble supertiles, C4
j , corresponding to a portion of S4. C4

j is depicted in Fig. 7.

Fig. 7. A depiction of the portion of
S4 that is self-assembled by super-
tiles denoted by C3

i) for i and j
between 1 and 8 (inclusive) and
some class j of grout tiles.

Moreover, the glues that allow some supertile
C3

(i,j) to bind to another supertile C3
(i′,j), for

some i′ say, are strength 1 glues separated by
a distance of 9.

Repeating this process, we see that for
any i, j, s ∈ N such that 1 ≤ i, j ≤ 8 and
s > 2, we can self-assemble supertiles Cs−1

i

corresponding to a portion of Ss−1 (again, we
are leaving room for grout tiles), and super-
tiles Cs−1

(i,j) corresponding to Cs−1
i with the

attachment of grout tiles all belonging to the
jth class of grout tile types. Moreover, the
supertiles Cs−1

(i,j) expose strength 1 glues that
are at a distance of 3s−2 apart that allow for
the stable binding of these supertiles to form
a supertile Cs

i corresponding to Ss. For i′ ∈ N such that 1 ≤ i′ ≤ 8, since the
distance between the 2 glues that allow for two supertiles Cs−1

(i,j) and Cs−1
(i′,j) to

bind is 3s−2, one can observe that no erroneous supertiles can self-assemble.
In particular, glue distances ensure that for p, q ∈ N such that p, q > 2, Cp

(i,j)

subassemblies can bind to some Cq
(i,j) subassemblies iff p = q. Hence, one can

show that each supertile is a subassembly of such a Cn
i for some n ∈ N, and

122 J. Hendricks and J. Opseth

(a) Stage 1 (b) Stage 2

Fig. 8. Two stages of a 4-side fractal.

therefore for any producible assembly α ∈ A[T], there exists a stage s > 1
such that dom α ⊂ Ss. Moreover, one can observe that for any stage s ≥ 1,
Ss ⊂ Cs+1

i . Therefore, as this hierarchical growth continues indefinitely, the
domain of the terminal assembly of the 2HAM TAS T = (T, 2) is S. Thus, T
strictly self-assembles S.

3.2 4-Sided Fractals Construction Overview

The construction that shows that any 4-sided fractal strictly self-assembles in
the 2HAM at scale factor 1 (Theorem 1) is a generalization of the construction
given in Sect. 3.1. Let G be the generator for a 4-sided fractal and recall the
notation of LG, RG, BG, and TG. Moreover, let |G| = r, let X denote the dssf
with generator G, and let Xs be the s stage of X. We will describe a tile set
T such that X strictly self-assembles in the 2HAM system T = (T, 2). As an
example, consider the generator in Fig. 8a. Stage 2 of this fractal is depicted in
Fig. 8b. We also choose the convention of ordering the positions in G from top
to bottom and left to right. This enumeration is depicted in Fig. 8a.

To show Theorem 1, we first show the following lemma that follows from a
modification of the construction given in Sect. 3.1. Intuitively, this lemma states
that dssf’s with generators consisting only of points on the perimeter of a rec-
tangle strictly self-assemble in the 2HAM.

Lemma 1. Let X be a 4-sided fractal with generator G such that G \ (LG ∪
LG ∪ TG ∪ BG) = ∅. Then, there exists a 2HAM TAS TX = (T, 2) that strictly
self-assembles X.

Fig. 9. An example generator for
the 4-sided fractals considered in
Lemma 1.

To show Lemma 1, we show how to mod-
ify the construction given in Sect. 3.1. Given
a 4-sided fractal X with generator that sat-
isfies the assumptions of Lemma 1 (for exam-
ple, the generator depicted in Fig. 9), one
can see that each step in the construction in
Sect. 3.1 generalizes to give a tile set T such
that the 2HAM TAS TX = (T, 2) strictly
self-assembles X. The basic idea for proving
Lemma 1 is to “elongate” the initializer

Self-Assembly of 4-Sided Fractals in the Two-Handed Tile Assembly Model 123

and grout supertiles given in the Sierpinski’s carpet construction and most of
the remaining details are analogous.

We now give a high-level overview of the proof of Theorem1. To prove
Theorem 1, given any 4-sided fractal X with generator G, we consider a set
that consists of the points only on the perimeter of G and call this set G′. Then,
the fractal X ′ with generator G′ strictly self-assembles in the 2HAM by Lemma 1
and we denote the tile set given by this lemma by T ′. Then, to give a tile set
T such that the 2HAM TAS strictly self-assembles X we add additional tiles to
the set T ′ to account for points of G that are not on the perimeter of G and
modify the tiles of T ′ by adding strength-2 glues to particular edges of the tiles
of T ′ that allow for these additional tiles to attach. Additional initialize-
r tiles are added to T ′ to ensure that tiles are placed at points of G that are
not on the perimeter of G during the self-assembly of initializer supertiles.
For example, the gray tiles in Fig. 10 are the tiles of an initializer supertile.
Note the tiles corresponding to points of G that are not on the perimeter of G.
Additional grout tiles can be added so that as grout supertiles attach to an
assembly, tiles can attach in locations corresponding to points of G not on the
perimeter of G. For an example, consider the aqua tiles in Fig. 10. These are tiles
of grout supertiles. Note that as grout supertiles attach along the northernmost
tiles of the initializer supertile (shown in gray), strength-2 glue allow for the
self-assembly of complete stage-1 subassemblies.

Fig. 10. A depiction of supertile that
represents stage 2 of the fractal with gen-
erator given in Fig. 8a after grout super-
tiles have attached. (Color figure online)

Moreover, to ensure that stages at a
position, p say, corresponding to points
that are not on the perimeter of G cor-
rectly assemble, additional grout tiles
are added such that these additional gro-
ut supertiles always surround an entire
assembly corresponding to a stage, i say,
and expose glues such that the resulting
supertile will bind to an assembly that
(possibly after the binding of other super-
tiles) corresponds to an assembly corre-
sponding to stage i+1. Figure 10 depicts

a supertile that will bind at position 12 as a supertile corresponding to stage 3 of
the dssf self-assembles. Note the glues that are exposed on tiles adjacent to red
tiles. These glues will permit this supertile to bind in position 12 as a supertile
corresponding to stage 3 of the dssf self-assembles. Finally, we note that with
these modification to the tiles set given by Lemma 1 give a tile set that satisfies
Theorem 1. To see that the tile complexity is O(g3), note that hard-coding ini-
tializer supertiles, corner-gadgets, crawler supertiles, and start-gadgets
each require O(g3) tile types each. For example, initializer supertiles require

124 J. Hendricks and J. Opseth

O(g2) tiles to hard-code their stage 2 shape and g of them must assembly (one for
each point in G). For tile types making up corner-gadgets, crawler supertiles,
and start-gadgets, note that none of these supertiles consists of more than g
tiles. Therefore, to hard-code one of these these supertiles (requiring O(g) types)
that can bind to some Cs

i for i between 1 and 8 (requiring O(g) times more types)
that also belongs to one of g classes of grout (requiring O(g) times more types),
O(g3) tile types are required. Hence in total, O(g3) tiles types are required.

4 A 3-Sided Fractal that Does Not Strictly Self-Assemble

In this section we give a high-level sketch of the proof that there exist 3-sided
fractals that do not strictly self-assemble in the 2HAM. A detailed proof is given
in [19].

Theorem 2. There exists a 3-sided fractal X for which there is no 2HAM TAS
TX = (T, τ) that strictly self-assembles X.

To prove Theorem 2, we consider the fractal with generator given by the
points in Fig. 11a. Stage 2 of this fractal is shown in Fig. 11b. We refer to this
fractal as X and, similar to the convention in Sect. 3.1, we refer to the sth stage
of X as Xs. We refer to the ith position of Xs as Xs

i where 1 ≤ i ≤ 13 (Fig. 11a).
We call the assembly γs

i for which dom γs
i = Xs

i .
Consider any 2HAM TAS TX = (T, τ). Let g be the number of tiles in TX .

Consider a producible assembly α such that Xg+2 ⊆ dom α, and specifically
the subassembly γg+2

6 , which is an assembly γg+1. One can then show that γg+1

contains a sequence of g+1 strength τ cuts consisting of a single glue (Fig. 11b).

(a) Stage 1 (b) Stage 2

Fig. 11. The assemblies that form the first two stages of X . Strength τ cuts are shown
on Stage 2.

Self-Assembly of 4-Sided Fractals in the Two-Handed Tile Assembly Model 125

Fig. 12. An example of erroneous binding
within γ5. Because of the large number of
tiles some of the γ3 subassemblies are shown
as rectangles.

Let βk be the subassembly below the
kth cut in this sequence. Essentially,
because the cuts are strength τ , the
βk subassemblies can be removed
and the resulting subassemblies are
still producible, so the βk subassem-
blies cannot be guaranteed to attach
before any point in the construction
of α.

However, since there are g + 1
cuts and only g tiles, there is some
βi, βj with |βi| > |βj | that attach
with the same glue, and if other βk

subassemblies have not yet attached,
it is possible for βi to bind where βj

is needed (Fig. 12). Since the domain
of the resulting assembly
∈ X, TX

does not strictly self-assemble X.

5 Conclusion

Fig. 13. Do fractals
with generators like
the one depicted in
this figure strictly
self-assemble in the
2HAM?

Theorem 1 shows that any 4-sided dssf strictly self-
assembles in the 2HAM at temperature 2 and with no
scale factor. Theorem 2 shows that there exists a 3-sided
fractal that does not strictly self-assemble in any 2HAM
system at any temperature. Preliminary results seem to
show that similar techniques to those described in Sect. 3.2
can be used to give an example of a 3-sided fractal that
can strictly self-assemble in the 2HAM and though still
just an early investigation, the techniques used to give a
tile set that strictly self-assembles a given 4-sided fractal
may be modifiable to show that a much more general class of fractals strictly
self-assembles. In particular, a fractal belonging to this class can be described
as having a generator with a generating cycle.

Informally, a simple cycle C in G (technically defined in the full-grid graph
of G) is a generating cycle iff (1) G contains 2 distinct east points of contact
p1 and p2 with corresponding west points of contact p3 and p4, and 2 distinct
north points of contact p5 and p6 with corresponding south points of contact
p7 and p8, and (2) for i ∈ N such that 1 ≤ i ≤ n, C contains points p′

i and
paths Pi from p′

i to pi, (3) moreover, Pi ∩ Pi+1 = ∅ for i ∈ {1, 3, 5, 7}. Figure 13
depicts one of the simplest generators (for a dssf which we have been calling the
hashtag fractal) with a generating cycle.

126 J. Hendricks and J. Opseth

References

1. Abel, Z., Benbernou, N., Damian, M., Demaine, E., Demaine, M., Flatland, R.,
Kominers, S., Schweller, R.: Shape replication through self-assembly, RNAse
enzymes. In: SODA 2010: Proceedings of the Twenty-first Annual ACM-SIAM
Symposium on Discrete Algorithms, Society for Industrial and Applied Mathe-
matics, Austin (2010)

2. Barth, K., Furcy, D., Summers, S.M., Totzke, P.: Scaled tree fractals do not strictly
self-assemble. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS, vol.
8553, pp. 27–39. Springer, Cham (2014). doi:10.1007/978-3-319-08123-6 3

3. Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J.,
Schweller, R.T., Summers, S.M., Winslow, A.: Two hands are better than one (up
to constant factors): self-assembly in the 2HAM vs. aTAM. In: Portier, N., Wilke,
T. (eds.) STACS, LIPIcs, vol. 20, pp. 172–184. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2013)

4. Chalk, C.T., Fernandez, D.A., Huerta, A., Maldonado, M.A., Schweller, R.T.,
Sweet, L.: Strict self-assembly of fractals using multiple hands. Algorithmica
1–30 (2015)

5. Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T., de
Espanés, P.M.: Complexities for generalized models of self-assembly. SIAM J. Com-
put. 34, 1493–1515 (2005)

6. Cook, M., Fu, Y., Schweller, R.T.: Temperature 1 self-assembly: deterministic
assembly in 3D and probabilistic assembly in 2D. In: SODA 2011: Proceedings
of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM (2011)

7. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller,
R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes
with O(1) glues. Nat. Comput. 7(3), 347–370 (2008)

8. Demaine, E.D., Demaine, M.L., Fekete, S.P., Patitz, M.J., Schweller, R.T.,
Winslow, A., Woods, D.: One tile to rule them all: simulating any tile assem-
bly system with a single universal tile. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 368–379. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-43948-7 31

9. Demaine, E.D., Patitz, M.J., Rogers, T.A., Schweller, R.T., Summers, S.M.,
Woods, D.: The two-handed tile assembly model is not intrinsically universal. Algo-
rithmica (to appear)

10. Demaine, E.D., Patitz, M.J., Schweller, R.T., Summers, S.M.: Self-assembly of
arbitrary shapes using RNAse enzymes: meeting the kolmogorov bound with small
scale factor (extended abstract). In: Schwentick, T., Dürr, C. (eds.) 28th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2011),
volume 9 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 201–212,
Dagstuhl, Germany, 2011, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik

11. Doty, D., Kari, L., Masson, B.: Negative interactions in irreversible self-assembly.
In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp. 37–48. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-18305-8 4

12. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The
tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2012, pp. 302–310
(2012)

13. Doty, D., Patitz, M.J., Reishus, D., Schweller, R.T., Summers, S.M.: Strong fault-
tolerance for self-assembly with fuzzy temperature. In: Proceedings of the 51st
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp.
417–426 (2010)

http://dx.doi.org/10.1007/978-3-319-08123-6_3
http://dx.doi.org/10.1007/978-3-662-43948-7_31
http://dx.doi.org/10.1007/978-3-642-18305-8_4

Self-Assembly of 4-Sided Fractals in the Two-Handed Tile Assembly Model 127

14. Doty, D., Patitz, M.J., Summers, S.M.: Limitations of self-assembly at temperature
1. In: Proceedings of the Fifteenth International Meeting on DNA Computing and
Molecular Programming (Fayetteville, Arkansas, USA, 8–11 June 2009), pp. 283–
294 (2009)

15. Fekete, S.P., Hendricks, J., Patitz, M.J., Rogers, T.A., Schweller, R.T.: Univer-
sal computation with arbitrary polyomino tiles in non-cooperative self-assembly.
In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2015), San Diego, CA, USA, 4–6 January 2015, pp. 148–167
(2015)

16. Fujibayashi, K., Hariadi, R., Park, S.H., Winfree, E., Murata, S.: Toward reliable
algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern.
Nano Lett. 8(7), 1791–1797 (2007)

17. Gilber, O., Hendricks, J., Patitz, M.J., Rogers, T.A.: Computing in continuous
space with self-assembling polygonal tiles. In: Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), Arlington,
VA, USA, 10–12 January 2016, pp. 937–956 (2016)

18. Hendricks, J., Olsen, M., Patitz, M.J., Rogers, T.A., Thomas, H.: Hierarchical self-
assembly of fractals with signal-passing tiles (extended abstract). In: Proceedings
of the 22nd International Conference on DNA Computing and Molecular Program-
ming (DNA 22), Ludwig-Maximilians-Universität, Munich, Germany, 4–8 Septem-
ber 2016, pp. 82–97 (2016)

19. Hendricks, J., Opseth, J.: Self-assembly of 4-sided fractals in the two-handed tile
assembly model. Technical Report 1703.04774, Computing Research Repository
(2017). http://arxiv.org/abs/1703.04774

20. Hendricks, J., Patitz, M.J., Rogers, T.A.: Universal simulation of directed systems
in the abstract tile assembly model requires undirectedness. In: Proceedings of the
57th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2016),
New Brunswick, New Jersey, USA, 9–11 October 2016 (2016 to appear)

21. Hendricks, J., Patitz, M.J., Rogers, T.A.: Reflections on tiles (in self-assembly).
In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 55–70. Springer,
Cham (2015). doi:10.1007/978-3-319-21999-8 4

22. Jonoska, N., Karpenko, D.: Active tile self-assembly, self-similar structures and
recursion. Technical Report 1211.3085, Computing Research Repository (2012)

23. Jonoska, N., Karpenko, D.: Active tile self-assembly, part 1: universality at tem-
perature 1. Int. J. Found. Comput. Sci. 25(02), 141–163 (2014)

24. Jonoska, N., Karpenko, D.: Active tile self-assembly, part 2: self-similar structures
and structural recursion. Int. J. Found. Comput. Sci. 25(02), 165–194 (2014)

25. Kao, M.-Y., Schweller, R.T.: Reducing tile complexity for self-assembly through
temperature programming. In: Proceedings of the 17th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2006), Miami, Florida, January 2006, pp.
571–580 (2007)

26. Kautz, S., Shutters, B.: Self-assembling rulers for approximating generalized Sier-
pinski carpets. Algorithmica 67(2), 207–233 (2013)

27. Kautz, S.M. Lathrop, J.I.: Self-assembly of the Sierpinski carpet and related frac-
tals. In: Proceedings of the Fifteenth International Meeting on DNA Computing
and Molecular Programming (Fayetteville, Arkansas, USA, 8–11 June 2009), pp.
78–87 (2009)

28. Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski
triangles. Theor. Comput. Sci. 410, 384–405 (2009)

29. Lutz, J.H., Shutters, B.: Approximate self-assembly of the Sierpinski triangle. The-
ory Comput. Syst. 51(3), 372–400 (2012)

http://arxiv.org/abs/1703.04774
http://dx.doi.org/10.1007/978-3-319-21999-8_4

128 J. Hendricks and J. Opseth

30. Meunier, P.-E., Patitz, M.J., Summers, S.M., Theyssier, G., Winslow, A., Woods,
D.: Intrinsic universality in tile self-assembly requires cooperation. In: Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), (Portland,
OR, USA, 5–7 January 2014), pp. 752–771 (2014)

31. Meunier, P.-É., Woods, D.: The non-cooperative tile assembly model is not intrin-
sically universal or capable of bounded Turing machine simulation. In: STOC 2017:
Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Com-
puting (2017, to appear)

32. Padilla, J.E., Patitz, M.J., Schweller, R.T., Seeman, N.C., Summers, S.M., Zhong,
X.: Asynchronous signal passing for tile self-assembly: fuel efficient computation
and efficient assembly of shapes. Int. J. Founda. Comput. Sci. 25(4), 459–488
(2014)

33. Patitz, M.J., Schweller, R.T., Summers, S.M.: Exact shapes and turing universality
at temperature 1 with a single negative glue. In: Proceedings of the 17th Interna-
tional Conference on DNA Computing and Molecular Programming, DNA 2011,
pp. 175–189 (2011)

34. Patitz, M.J., Summers, S.M.: Self-assembly of discrete self-similar fractals. Nat.
Comput. 1, 135–172 (2010)

35. Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA
Sierpinski triangles. PLoS Biol. 2(12), 2041–2053 (2004)

36. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biol. 2(12), e424 (2004)

37. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: STOC 2000: Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing, pp. 459–468. ACM, Portland,
Oregon, United States (2000)

38. Summers, S.M.: Reducing tile complexity for the self-assembly of scaled shapes
through temperature programming. Algorithmica 63(1–2), 117–136 (2012)

39. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute
of Technology, June 1998

Self-assembled DC Resistive Circuits
with Self-controlled Voltage-Based Growth

Russell Deaton(B), Rojoba Yasmin, Tyler Moore, and Max Garzon

Electrical Engineering and Computer Science, The University of Memphis,
Memphis, TN 38152, USA

{rjdeaton,ryasmin,tgmoore,mgarzon}@memphis.edu

Abstract. A new model for analog self-assembly is introduced, the cir-
cuit Tile Assembly model (cTAM), in which a supply voltage creates
electric “glues” that attach small resistive circuits to a seed to form
larger circuits. Component circuits can only attach to the growing cir-
cuit if the voltage across the output terminals of the partial assembly
exceeds a given threshold. Thus, as the circuit grows, the supply voltage
progressively dissipates until additional circuit components can no longer
attach. Thus, the supply voltage acts as a finite resource that is used up
as the circuit assembles, like nutrientfor bacterial colonies. Assemblies
in the shape of resistive ladders and grids are analyzed. For ladder-like
circuits, the size of the assembled circuits remain within the order of
the logarithm of the ratio of the supply voltage to the threshold, and is
inversely proportional to the golden ratio φ, a universal constant perva-
sive in architecture, engineering, and biology. For grids, empirical results
are presented showing bounded growth and unique terminal assemblies.
The model exhibits intriguing properties, such as self-controlled growth
without glue or seed programming, and communication at a distance
within the assembly without signaling programming. In addition, a gen-
eralization of the model is proposed in which construction is driven by
energy minimization in response to boundary conditions on the perimeter
of the assembly.

1 Introduction

Self-assembly is the unsupervised aggregation of component parts through local
interactions to construct a material that is structured to have useful properties,
and promises new methods for manufacturing new materials. Algorithmic models
of self-assembly treat its products as the output of a computation. Because target
structures can be programmed with DNA sequence selection, DNA-guided self-
assembly is one of the more promising techniques to achieve asymmetric patterns
for a wide range of applications [16,20]. The assembly executes an algorithm that
is implemented through specific local interactions, for example, DNA template
matching reactions [16]. When cooperative effects are present in DNA tile assem-
bly, called temperature 2, the system is capable of universal computation [6,22].
Cooperation, however, is difficult to achieve and enforce experimentally. Systems

c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 129–143, 2017.
DOI: 10.1007/978-3-319-58187-3 10

130 R. Deaton et al.

that do not rely on cooperation to achieve pattern formation would be easier
to implement in practice, but it is not known whether they are computation-
ally universal in two dimensions [4]. More seriously, they frequently exhibit the
problem of uncontrolled growth and uncertain outcomes [6].

Motivated by Tile Assembly Models (aTAM) and their power and challenges,
a new assembly model and mechanism are proposed here, the circuit Tile Assem-
bly Model (cTAM), in which DC resistive circuits self-assemble under voltage
control. This model exhibits both self-assembly and self-control, in the sense
that attachments are controlled by local voltage differences and, as the assembly
grows, there always exists locations (binding domains) to which new compo-
nents might attach, but they do not because the external resource (voltage) that
is necessary for growth has been depleted. The resource can be thought of as
a source of energy that the growth reaction needs in order to proceed, and is
analogous to a source of energy or nutrient for a biological organism.

Electric phenomena are important in several examples of biological self-
assembly and organization. Galvanotaxis is the movement of cells under the
influence of an electric field, and is a mechanism for both wound healing, as
well as embryonic cell migration within embryos [17]. The biological molecules
that inspire artificial approaches to self-assembly, namely lipids, nucleic acids,
and amino acids, are charged molecules, and electric phenomena are directly
involved in their formation and stability [18], as in the role of counterion con-
densation in the formation of a stable DNA helix. Electric fields and associated
effects are used in additive manufacturing [5], electrospray technology [8], and
other nanomanufacturing technologies [9]. In addition, the study of networks
of resistors has a long history, from Kirchhoff [12] to present day. They have
applicability not only to electrical engineering, but also to the theory of random
media and random walks [7], as well as properties of materials like graphene [3].
Therefore, incorporating electrical effects into models of assembly inspired by
biology might elucidate alternative mechanisms for the algorithmic control of
growth. Moreover, if our conjecture below is true that the proposed cTAM may
be generalized into an assembly system that corresponds to a discrete version
of a Dirichlet (boundary value) problem [7,11], then, the range of platforms for
assembly and their applications substantially widens from electromagnetism to
gravitational, fluid, thermal, and mechanical systems.

In this paper, we introduce the cTAM and derive bounds on the sizes of
the circuits that it can assemble. The main result is that the assembled circuits
exhibit growth that is controlled by a voltage source, a threshold for attachment,
and the geometry of the assembled circuit. The paper is organized as follows.
In Sect. 2, some circuit analysis fundamentals are given. In Sect. 3, the cTAM
is formally defined. In Sects. 3.1 and 3.2, bounds on the size of self-assembled
circuits for resistive ladders and grids are characterized. In addition, in Sect. 3.1,
our general approach to solving this type of circuit is outlined. In Sect. 4, a
generalization of the assembly model is proposed to correspond to a discrete
Dirichlet problem, and empirical evidence is presented to support this general-
ization. Finally, conclusions and open questions are discussed in Sect. 5.

Self-assembled DC Resistive Circuits 131

2 Circuit Theory Background

For what follows we will consider DC resistive circuits exclusively.

Definition 1 (Circuit). Borrowing some notation from [2], a circuit is a
graph consisting of nodes N and edges E. For a connected path of edges
{e1, e2, . . . , ek} ⊆ E, there are mappings that identify the source s : E → N
and target t : E → N of the path, and for each edge, a label R : E → (0,∞) ∪
{V0,GND} that gives the value of the resistance on that edge, or identifies it as
one of two special circuits, a voltage source V0 or a point of zero potential (ground
GND.) Moreover, two finite subsets Nin, Nout ⊆ N identify the inputs and out-
puts to the circuit, respectively. The boundary or terminals of the circuit are
∂N = Nin∪Nout. Thus, a circuit is given by a tuple γ = (N,E, s, t, R,Nin, Nout).

Voltage is the electric potential energy difference per unit charge between
two nodes in a circuit. The ground node in the circuit has a potential of zero.
Thus, a voltage ν : N → R relative to ground is associated with each node in
the circuit. It is analogous to pressure in a water pipe because just as pressure
causes water to flow, voltage causes current to flow. Voltage is related to the
work necessary to move a positive charge against an electric field, and thus,
voltage gives rise to current in a circuit, i.e. the movement of charge per unit
time, with positive charge moving from regions of high voltage to those of low
voltage. Electrical resistance is analogous to the resistance produced by different
diameter pipes in a water system. Resistors are units of dielectric material that
impede current flow.

The voltage between two nodes in a circuit joined by a path ε = {e1, e2, . . . ,
ek} is

V (ε) = ν(s(e1)) − ν(t(ek)), (1)

which we will denote V (s, t), s, t ∈ N . The choice of the source s and target
t is somewhat arbitrary but should be consistent with the current flow s → t
from points of high voltage s to points of low voltage t. According to Kirchhoff’s
voltage law (KVL), the sum of the voltages around a closed circuit must be
zero, which is a statement of conservation of energy. Kirchhoff’s current law,
which is an expression for conservation of charge, holds for all nonterminal nodes
k ∈ N\∂N , ∑

l∈N

Ik,l = 0,

where Ik,l is the current flowing from node k to l. The relationship between
voltage (V) across a resistor and current (I) through a resistor R is given by
Ohm’s law, V = IR, where the units of current/resistance are the Ampere/Ohm
(A/Ω), respectively.

In this paper, two additional techniques are used for circuit analysis.
Thévenin’s theorem states that an electrical network can be replaced by an
equivalent voltage source Voc and a resistor in series Rth. Finally, circuits in a
Δ shape can be converted to an equivalent circuit in the shape of a Y through

132 R. Deaton et al.

the transformation in Fig. 1, where RA = (R1R3)/(R1 +R2 +R3), and similarly,
for RB and RC . A key topology for the self-assembled circuits which follow is
the voltage divider in Fig. 2. The two resistors, R1 and R2, divide the voltage
V0 as VR1 = V0

R1
R1+R2

and VR2 = V0
R2

R1+R2
. In the remainder, R1 = R2 = R are

assumed and units will be omitted where unnecessary. In addition, the equiva-
lent resistance as the circuit gets large will be denoted Req. Circuit simulations
were done using PSpice [1].

R1

R2R3

RA RB

RC

Fig. 1. Δ − Y transformation in which RA = (R1R3)/(R1 + R2 + R3), and similarly,
for RB and RC .

Fig. 2. Seed circuit tile for all assemblies.
V0 is the supply voltage. See text for
definition

Fig. 3. Circuit tile for the ladder cir-
cuit. See text for a precise definition.

3 Circuit Self-assembly Model

Since circuit assembly is inspired by tile assembly models, the notation for the
cTAM is adapted from aTAM notation [4,21]. Like tiles in aTAM models, rota-
tion is not allowed.

Definition 2 (Circuit Tile Assembly System). A circuit tile assembly sys-
tem is a tuple C = (Γ, S, τ, ν, ζ), where Γ is a finite set of circuit tile types, S ⊆ Γ
is a set of seed circuit tiles that includes a source and ground, and τ ∈ R is the
threshold voltage for attachment. ν : N → R is the electric potential energy at a
node relative to ground in the circuit, and ζ : Nin → Nout maps input nodes to
output nodes.

Self-assembled DC Resistive Circuits 133

A diode is a switch, which is one when the voltage across its terminals is
greater than a threshold voltage that is typically about 1 V. Therefore, the
threshold function can be implemented with diodes in series with the first resis-
tor in the voltage divider R1. Each diode in series would add about 1 V to the
threshold voltage τ .

Definition 3. An configuration of a cTAM is a mapping α : Z2 → Γ ∪ {λ}.
Thus, the circuit tile type at location (i, j) ∈ Z

2 is denoted α(i, j). λ is the null
circuit tile representing a vacancy. An assembly is a circuit that is obtained from
the seed tiles by a finite number of successive circuit tile attachments.

Thus, an assembly α describes an electric circuit. Intuitively, a new circuit
tile attaches to the circuit assembly if its chosen location is empty, and the
voltage difference between its input terminals would be greater than or equal
to τ after attachment. The assembly proceeds from the seed circuit tile, which
in this paper, will always refer to the source and ground. Input nodes of new
circuit tiles attach to output nodes of the assembly.

An assembly proceeds asynchronously and nondeterministically with new
circuit tiles γ ∈ Γ attaching to eligible locations (i, j). An eligible location is
unoccupied (contains the null tile λ) and one of its neighbors offers a significant
voltage difference between its output nodes to attach new circuit tiles, i.e., αi,j =
λ and V (ε) ≥ τ , where V (ε) (Eq. 1) is the voltage difference between the input
nodes of γ along the path ε at the grid location (i, j), assuming it is electrically
connected to an assembly α.

The mapping ζ identifies which input nodes connect to which output nodes,
and thus, serves a similar purpose to glues in the aTAM. In general, this is
ζ : N c

in → N b
out where b, c ∈ Γ , and c is the circuit tile attaching to the assembly

via output nodes on circuit tile b ∈ α. Moreover, the output node of the circuit
tile b should be a terminal of α, i.e., b ∈ ∂Nα. In general for the Euclidean grid,
if i = 1 (the first row), c is connected to the output nodes of the circuit tile in
the previous column (1, j − 1), N

α(1,j−1)
out , and if j = 1 (the first column), c is

connected to the output nodes of the circuit tile in the previous row (i − 1, 1),
N

α(i−1,1)
out . Otherwise, c connects to N

α(i,j−1)
out and N

α(i−1,j)
out . The notation k(i,j)

will represent ζ where k ∈ ∂N is the set of terminal nodes for the circuit tile
at grid location (i, j). Whether it is an input or output node will be clear from
the context, but in general will be given as input → output. For example,
referring to Fig. 3, suppose this circuit tile were attaching at the grid location
(1, 4). The input nodes for the circuit tile are Nin = {1, 4}. Therefore, the voltage
difference is across the path ε = {e(1,2), e(2,3), e(3,4)} with V (1, 4) = V (ε) =
ν(s(e(1,2))) − ν(t(e(3,4))). The voltage across the input nodes of the attaching
circuit tile will be equal to that across the output nodes of the circuit tile in
the assembly to which it attaches. The set of assemblies is A[C]. An assembly
α ∈ A[C] is terminal if no tile can be added that is stable under the attachment
conditions. The set of terminal assemblies is A�[C] ⊂ A[C].

134 R. Deaton et al.

3.1 Resistive Ladder

In order to demonstrate the model, the first example is a resistive ladder. Richard
Feynman in his Lectures on Physics [10] talked about this circuit. For an infinite
ladder, the equivalent resistance is related to φ, the golden ratio. The seed circuit
tile (Fig. 2) consists of the DC voltage source V0 in series with two resistors,
R1 and R2, with node 4 connected to ground. The configuration of the seed,
as well as the other circuit tiles, is a voltage divider, which results in a V0/2
drop across both resistors R. The seed circuit tile only has output nodes, which
are N seed

out = {2, 3, 4}. In what follows, a wire with resistance 0 is denoted R0,
and R1 = R2 = R > 0. In addition to the seed, there is one circuit tile c =
{N = {1, 2, 3, 4}, {e1,2 = R0, e2,3 = R, e3,4 = R}, N c

in = {1, 4}, N c
out = {2, 3}}

(Fig. 3). The assembly proceeds with the ladder tile c attaching to the seed
according to the rules {1}(1,2) → {2}(1,1) and {4}(1,2) → {3}(1,1), with the
successful attachment if V c(1, 4) ≥ τ . The subsequent attachment rules are
{1}(1,j) → {2}(1,j−1) and {4}(1,j) → {3}(1,j−1), with V c

in(1, 4) = V c
out(2, 3) ≥

τ . In these circuit calculations, we need to know the equivalent resistance at
different points in the assembly in order to calculate the voltage differences and
determine if a new circuit tile attaches or not. An important point is that as
new circuit tiles are added anywhere, the equivalent resistances and voltages in
the circuit change everywhere with essentially, the speed of light. First, as the
circuit assembly grows, we need to know how the equivalent resistances change.
Therefore, a recurrence relationship Req(m) = f(Req(m − 1)) is determined, as
depicted in Fig. 5. This recurrence starts at the growing interface and proceeds
toward the voltage source V0. In order to determine if the assembly grows, we
need to know the voltage across the nodes at the growing interface. Therefore,
using the expression for Req(m), a recurrence is calculated for the voltage at
nodes on the active boundary of the assembly in terms of the preceding nodes,
N(i) = N(i−1), where for a circuit of size n, m = n− i with m ∈ {1, 2, . . . n−1}
and i ∈ {0, 1, . . . , n} (Fig. 4). Thus, the recurrences for resistance and voltage
proceed in opposite directions from the exterior to the interior of the circuit, and
back out again. The calculation of the voltage might involve the determination
of Thévenin Equivalents and Δ − Y transformations. This is in general how we
proceed.

Theorem 1. The maximum size for a self-assembled ladder circuit is bounded
by B = 	log(V0/τ)/ log(1 + φ)
 where φ is the golden ratio, V0 is the source
voltage in the seed, and τ is the threshold voltage for attachment.

Proof. The proof proceeds by characterizing the equivalent resistance, and then,
the voltage for attachments as the size n (number of circuit tiles including the
seed) increases.

Referring to Fig. 5,

Req(m) =
R(R + Req(m − 1))
2R + Req(m − 1)

, (2)

Self-assembled DC Resistive Circuits 135

R

Req(m) V(i)

+

-

V(i-1)

Fig. 4. Circuit to compute voltage
recurrence for the ladder.

R

R

Req(m-1)
Req(m)

Fig. 5. Circuit to compute equivalent resis-
tance for the ladder.

with Req(0) = R. The circuit has Req(m − 1) in series with R. This series
combination is then in parallel with R resulting in Req(m). Letting x(m) =
Req(m)/R, and taking the limit so that x = Req/R, then, x = 1+x

2+x . Solving
the quadratic equation, and knowing that resistance cannot be negative, then,
x = −1+

√
5

2 = 1/φ, and with x = Req/R, then, Req = R/φ, where φ is the golden
ratio. Furthermore, referring to Fig. 4,

V (i) =
Req(m)

R + Req(m)
V (i − 1), (3)

where m = n − i, m = {0, 1, . . . , n − 1}, and i = {0, 1, . . . , n}, with V (0) = V0.
Assuming the circuit is large so that Req(m) → Req, then, V (n) = 1

1+φV (n −
1). Finally, the condition on the voltage to stop growth at the nth circuit tile
attachment, including the seed, is V (n) = (1/(φ + 1))n

V0 < τ . Solving for n
yields the result. ��
Simulations with PSpice indicated that self-assembled circuits conform to the
predicted bound B. Figure 6 shows a self-assembled circuit with V0 = 50 and
τ = 1. The size is n = 5, which matches the bound value B = 	4.1
. At size
n = 4, the voltage is still above the threshold; hence, one more tile will attach.
When the threshold voltage for growth is taken across only one resistor in the
voltage divider, the bound should hold for other circuits, such as column ladders,
diagonal ladders, and meandering paths.

1

1

1

1

1

1

1

1

1

1

50V
R

R R
R R

R R
R

R
R

Fig. 6. Ladder circuit assembly with V0 = 50 and τ = 1. The maximum size is n = 5,
which matches the predicted value of B = �4.1�.

3.2 Resistive Grid

The problems of calculating the resistance between two arbitrary points in a
resistor grid has a long history and continues to generate interest, whether the
grid is finite [23] or infinite [19]. These results relate to the equivalent resistance

136 R. Deaton et al.

of a graph as seen from a pair of nodes when 1 A of current is injected at one node
and removed at the other with the resistance of all edges equal to 1 Ω. Therefore,
from Ohm’s law, the equivalent resistance Rij = ν(i) − ν(j) is derived, which
is also known as the resistance distance. The resistance distance has interesting
properties, such as defining a metric space for which it is the distance func-
tion [13] and its relationship to random walks on the network [7]. The resistance
distance can also be calculated from the Laplacian matrix of the graph of the
electrical network. It seems clear that for highly symmetric graphs, the resistance
distance can be characterized combinatorially as a function of size, but it is not
clear how this relates to our assembly model. Our problem is slightly different
as we not only have to know the resistances, but also the voltage at a potential
attachment point.

To begin, we will consider a symmetric diagonal circuit assembly that is no
longer strictly one-dimensional, like the ladder, and requires that the threshold
voltage appears across two distinct circuit tiles, and both resistors in the voltage
divider (Fig. 8). The circuit tiles for this assembly are shown in Fig. 7. As with
the ladder, the seed (Fig. 2) is the circuit tile with the source voltage V0, the
voltage divider consisting of two identical resistors R, and ground. The three
other circuit tiles are c1 = {Nc1 = {1, 2, 3, 4}, {e1,2 = R0, e2,3 = R, e3,4 =
R}, N c1

in = {1, 4}, N c1
out = {3}}, c2 = {Nc2 = {1, 2, 3, 4}, {e1,2 = R, e2,3 =

R, e3,4 = R0, N
c2
in = {1, 4}, N c2

out = {2}}, and c3 = {Nc3 = {1, 2, 3}, {e1,2 =
R, e2,3 = R}, N c3

in = {1, 3}, N c3
out = {1, 2, 3}}. The connection rules are

{1}c1(i,j) → {1}c3(i,j−1), {4}c1(i,j) → {2}c3(i,j−1),

{1}c3(i,j) → {3}c1(i−1,j), {3}c3(i,j) → {2}c2(i,j−1),

{1}c2(i,j) → {2}c3(i−1,j), {4}c2(i,j) → {3}c3(i−1,j),

with corresponding voltage calculations. Figures 9 and 10 show the method for
calculating equivalent resistance and voltages, respectively. Moreover, for this
circuit, Thévenin’s theorem and several Δ − Y transformations were applied for
the calculation of the voltage for the nth attachment, Vn.

Theorem 2. The maximum size n of the self-assembled symmetric diagonal
circuit assembly is bounded by B = 	log(V0/τ)/ log(2 +

√
3)
 where V0 is the

source voltage in the seed, and τ is the threshold voltage for attachment.

Fig. 7. Circuit tiles for the symmetric diagonal circuit and grid circuit, c1, c2, and c3.
See text for definition.

Self-assembled DC Resistive Circuits 137

Fig. 8. Symmetric diagonal circuit. Fig. 9. Circuit to compute equivalent
resistance for the circuit in Fig. 8.

Proof. Following the same general procedure, the proof proceeds by first com-
puting the equivalent resistance, and then, the voltages for attachments as the
size n (in this case, the number of diagonal steps) increases.

Referring to Fig. 9,

Req(m) =
4R(R + Req(m − 1))
4R + 3Req(m − 1)

(4)

with Req(0) = 2R. Calculation of the equivalent resistance begins with a Δ −
Y transformation of the two Δ’s composed of three R resistors in symmetric
positions in the upper right and lower left of the circuit. Req(m) follows. Letting
x(m) = Req(m)/R, and taking the limit so that x = Req/R, then, x = 4+4x

4+3x .
Solving the quadratic equation, and knowing that resistance cannot be negative,
then, x = 2√

3
: and with x = Req/R, then, Req = 2R/

√
3.

To calculate the voltage relationship, the circuit in Fig. 10 is converted to
a Thévenin equivalent with a voltage source Voc = V (n − 1)/2, which is the
voltage present when the load is open circuit (location of V (n)) in series with
Rth = R, which is calculated with the input short circuited, (the location of
V (n − 1) replaced with a wire with resistance 0). Then, for a diagonal circuit of

R

Req(m)

R

R

R

R

R
V(n-1)

V(n)

+

-

V(oc) Req(m) V(n)

+

-

Rth

Fig. 10. Circuit to compute voltage recurrence for the circuit in Fig. 8.

138 R. Deaton et al.

size n and at the ith subcircuit,

V (i) =
Req(m)

Req(m) + R

(
V (i − 1)

2

)
, (5)

where V (0) = V0, Voc and Rth have been substituted, and m = n − i, with
m = {0, 1, . . . , n − 1} and i = {0, 1, . . . , n}. Assuming the circuit is large so that
Req(m) → Req, and substituting Req = 2R/

√
3, then, V (n) = 1

2+
√
3
V (n − 1).

Finally, the condition on the voltage to stop growth at nth circuit tile attach-
ment, including the seed, is V (n) = (1/(2+

√
3))nV0 < τ . Solving for n, the result

is obtained. ��
The bound was again verified by PSpice simulations.

We do not have a result, yet, that characterizes the size and shape of the resis-
tive grid with supply and threshold voltage. Nevertheless, there is little doubt
that the circuit assemblies are bounded since the supply voltage V0 is distrib-
uted along the growing interface of the grid. As the grid grows, this interface gets
longer, producing lower voltages across each resistor. Eventually, the perimeter
will get long enough that each voltage is below threshold, and growth will cease.
Our simulations also indicated that the terminal assemblies appear to be gener-
ally unique. In addition, because of the way the circuit tiles are defined for the
interior of the grid, there is no node (terminal) to which a new circuit tile can
attach unless the circuit has first grown by attachment in the first row or col-
umn. Therefore, the bounding box of the grid is determined by the length of the
first row and column, and thus, those voltages at the boundary are important
to characterize. For example, using KVL, for the 3× 3 grid, V (1, 3) = V0/3, and
for the 4× 4 grid, V (1, 4) = 0.241V0. Simulations reveal an approximately linear
relation between size of the first row and the supply voltage n ≈ 0.8V0, and for
V0 = 12 and τ = 1 produced the circuit assembly in Fig. 11, which shows the

12V

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R
R

R
R

R
R

R

R

R

R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R

R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R

R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

R
R

RR

R

R

RR

R

R
R R

RRR

R RR

R R R
R

R R

R

R

R

R

RR

R

R

R

R

R

R

R

R

R

R

R R

R

R

R

R

RR

R

R

R

R

R R R

RR

R

RR

R

R

R

Fig. 11. Grid assembly with V0 = 12,
τ = 1, and resistor value R.

Fig. 12. Contour map of voltages for Grid
assembly with V0 = 12 and τ = 1. The seed
is at the lower left corner at the origin. The
upper right region is zero voltage.

Self-assembled DC Resistive Circuits 139

general shape of the truncated square that we observe. A contour map of the
voltages for this circuit is shown in Fig. 12. Study of the grid problem, however,
has produced a proposal for a more general model that is discussed in the next
section.

4 Discrete Dirichlet Assembly Model

The Dirichlet principle states that a real-valued function f(x) over a region of
space Υ that satisfies Dirichlet boundary conditions f(x) = g(x) on ∂Υ is a
harmonic function with the lowest energy in Υ that satisfies Laplace’s equation
Δf = 0, and expresses the physical principle that systems at equilibrium seek
the lowest energy state. In a discrete setting [7,11], the combinatorial Laplacian
defined over a graph is

Lij =

⎧
⎨

⎩

di : if i = j,
−wij : if i, j adjacent,
0 : otherwise,

(6)

where di is the degree of node i, and −wij is the negative of the weight on the
edge (i, j). The harmonic function f(x) minimizes

D[f] =
1
2

∑

eij∈E

wij(fi − fj)2, (7)

subject to boundary conditions at certain nodes ∂N of the graph. In circuit
problems, as is well known [7], the voltage ν is a harmonic function that is a
solution to the Dirichlet problem for a resistive circuit. In particular, a cTAM
assembly should be a solution to a Dirichlet problem over the space of assemblies
A[C] where on the boundary ∂A, ν = V0 at the source node, ν = 0 at the ground
node, and V (e) < τ at the boundary of terminal assemblies ∂A�.

Therefore, we propose a discrete Dirichlet Assembly system (dDAS), of which
the CTAM is a particular case, as follows.

Definition 4 (Discrete Dirichlet Assembly System). A discrete Dirichlet
assembly system (dDAS) is a tuple D = (Γ, S, τ, ν, ζ), where Γ is a finite set of
weighted graph types, S ⊆ T is a set of initial graphs connected according to ζ,
and τ ∈ R is the threshold value of ν for attachment. ν is a real valued function
defined over the space of assemblies A[D] and defined for each graph in Γ . Thus,
ν : N → R where N are the nodes in the graphs of Γ ; ζ specifies the attachment
rules for the graphs in Γ (glues).

In the dDAS, the types Γ are weighted graphs, as are the assemblies A[D]. The
potential function ν should satisfy Δν = 0 by minimizing Eq. (7), subject to
boundary conditions on the terminal assemblies ∂A�[D], and thus, ν is hypoth-
esized to be a harmonic function on the assembly space.

It is an interesting possibility to have an assembly system in which the shape,
response in terms of ν, as well as dynamic behavior could be controlled by

140 R. Deaton et al.

Fig. 13. Contour plot of ν in the plane as
continuous solution to Laplace’s equation.

Fig. 14. Contour plot of ν (node volt-
ages) in the plane for assembly in
Fig. 11.

conditions on the boundary. In addition, we present a couple of conjectures
that depend upon ν being a harmonic function [7]. The first is that assemblies
produced by a dDAS would always terminate, or be controlled, based on the
fact that harmonic functions attain their minima and maxima on the boundary.
As a consequence, the second is that the assemblies produced by a dDAS would
be unique because ν, as a harmonic function, would be unique for a given set of
boundary conditions.

Finally, we present some empirical evidence that the proposed dDAM is valid.
In Fig. 13, we present the continuous solution to Δν = 0 in the x − y plane with
boundary conditions ν = 0 for x = 0 and ν = 12V for y = 0. This is the
continuous version of the grid assembly shown in Fig. 11, for which in Fig. 14,
the node voltages ν are shown. Taking into account discretization and truncation
because of τ , the results are similar. Thresholding the voltage on the perimeter
is seen to affect the equipotential lines in the discrete (Fig. 14) as compared to
the continuous version (Fig. 13).

5 Conclusions and Open Questions

In the aTAM, an assembly is terminal if no tile can be added that is stable
at threshold. Typically, since tile attachment is governed by the presence of
compatible glues on the sides of the tile, this is achieved programmatically so that
the terminal arrangement of tiles does not present a valid binding site for further
tile attachment at the given temperature. By contrast, in the cTAM valid binding
sites always exist. There is no programmatic control of the extent of the assembly
through a set of glues. For circuit tiles, the connections between input and output
nodes could be considered as “glues,” and in fact, for example, the ladder is
built with a single circuit tile with one set of glues. In aTAM terminology, which
may be strained in this case, the cTAM has similarities to a temperature 1

Self-assembled DC Resistive Circuits 141

assembly system, but with a different kind of control and cooperation. Control
of growth is determined by the source voltage, which represents a finite resource
that supplies the necessary energy for an attachment, and the threshold, which
represents the minimal rate at which the supply is depleted. Cooperation emerges
from the physical properties of electricity, which travels at the speed of light
throughout the circuit, modifying the properties everywhere when the circuit is
changed anywhere.

It is an open question how the cTAM relates in power to various aTAM
models, or how this “action at a distance” in the cTAM circuits can be controlled
in a programmatic way. In aTAM’s, cooperation (temperature 2) seems to be a
necessary feature for increased power, such as computation [4] universality in two
dimensions and intrinsic universality [15]. In the aTAM, a tile assembly system
is directed if there is a unique terminal assembly. It is conjectured that in the
dDAM, assemblies are unique. Complicating factors to understanding the power
of the cTAM are the fact that its voltages and equivalent resistances are real
numbers. Therefore, an interesting question might be, what is the computational
power of the cTAM by restricting its voltages and resistances to rational voltages
and thresholds. Another factor to consider is that the voltages and equivalent
resistances can be solved in polynomial time using the standard analysis tools
of linear circuit theory.

As presented here, the model uses a lumped circuit model in which the
electrical components are “lumped” into circuit elements. As far as potential
implementation in nanoscale systems, a distributed circuit model might be more
appropriate, such as transmission lines, in which properties like resistance are
distributed per unit length or area. One could imagine a nanoscale assembly
system consisting of components with designed electrical properties assembling
in the presence of an electric field, which dDAM would approximate. This also
might present a possible way to implement things like negative glues in restricted
glue tile assembly system [14] in which temperature 1 assembly is computation
universal, or if combined with DNA tiles, a way to enhance cooperation.

In this paper, voltage controls the growth of the circuit assembly in terms of
size. Only one fundamental circuit building block, the voltage divider with equal
resistances, has been presented. Preliminary simulations indicate that using dif-
ferent resistor values in the resistor divider produces different shapes. Certainly,
there are many circuits available within the cTAM. Therefore, it is an open
question as to the degree of control that can be exercised in the cTAM by vary-
ing resistor values and the topology of the fundamental circuit tile. In addition,
the cTAM could be extended to other passive elements, inductors and capaci-
tors, time-varying voltage sources, or even active, nonlinear elements, like diodes
and transistors, or additional sources. Finally, in this paper, once an element
attached, detachment was not allowed. The model could be extended to allow
dynamic detachment and attachment when the voltage across a circuit tile fell
below threshold, even if it is not on the boundary, resulting in oscillatory behav-
ior or rewriting of blocks of the circuit.

142 R. Deaton et al.

Finally, an assembly model is proposed, the dDAM, that describes assembly
systems, such as in the cTAM, as solving a discrete Dirichlet boundary value
problem, in which an energy source is depleted to match given boundary condi-
tions. Remaining unresolved questions include how the solutions to the discrete
Laplacian for the potential function ν can be systematically related to threshold
voltages, and thus, sizes and shapes of assembled structures. Nevertheless, it
is an intriguing possibility to have assembly systems “programmed” by bound-
ary conditions. Moreover, the dDAM extends discrete assembly models toward
important systems that are described by differential equations with boundary
conditions, such as electromagnetic, gravitational, thermal, fluid, and mechan-
ical systems. The dDAM also presents the opportunity for assembly systems
to describe dynamic assembly of time-varying systems by, for example in the
cTAM, supplying a time-varying voltage source to circuits containing active,
energy-storing elements, like inductors and capacitors.

Acknowledgements. This work was supported by the National Science Founda-
tion “EAGER: Self-Assembly of Complex Systems” (CCF-1049719) and “Engineering
Nano-Building Block Toolboxes for Programmable Self-Assembly of Nanostructures
with Arbitrary Shapes and Functions” (CMMI-1235100). We also thank the reviewers
for their comments.

References

1. PSPICE. www.pspice.com
2. Baez, J.C.: A Compositional framework for passive linear networks.

arXiv:1504.05625 [math.CT]
3. Cheianov, V.V., Falako, V.I., Altshuler, B.L., Aleiner, I.L.: Random resistor net-

work model of minimal conductivity in graphene. Phys. Rev. Lett. 99(17), 176801
(2007)

4. Cook, M., Fu, Y., Schweller, R.T.: Temperature 1 self-assembly: deterministic
assembly in 3D and probabilistic assembly in 2D. In: Proceedings of the 22nd
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011. SIAM
(2011)

5. Decker, B.Y., Gan, Y.X.: Electric field-assisted additive manufacturing polyaniline
based composites for thermoelectric energy conversion. J. Manuf. Sci. Eng. 137(2),
024504 (2015)

6. Doty, D., Patitz, M.J., Summers, S.M.: Limitations of self-assembly at temperature
1. Theoret. Comput. Sci. 412, 145–158 (2011)

7. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. Mathematical Asso-
ciation of America, Washington, DC (1984). https://math.dartmouth.edu/doyle/
docs/walks/walks.pdf

8. El-Khoury, P.Z., Khon, E., Gong, Y., Joly, A.G., Abellan, P., Evans, J.E., Brown-
ing, N.D., Hu, D., Zamkov, M., Hess, W.P.: Electric field enhancement in a self-
assembled 2D array of silver nanospheres. J. Chem. Phys. 141(21), 214308 (2014)

9. Englander, O., Christensen, D., Kim, J., Lin, L., Morris, S.J.: Electric-field assisted
growth and self-assembly of intrinsic silicon nanowires. Nano Lett. 5(4), 705–708
(2005)

www.pspice.com
http://arxiv.org/abs/1504.05625
https://math.dartmouth.edu/doyle/docs/walks/walks.pdf
https://math.dartmouth.edu/doyle/docs/walks/walks.pdf

Self-assembled DC Resistive Circuits 143

10. Feynman, R.P., Leighton, R.B., Sands, M.L.: The Feynman lectures on physics.
Addison-Wesley, Redwood City (1989). http://opac.inria.fr/record=b1131031

11. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 28(11), 1768–1782 (2014)

12. Kirchhoff, G.: Ueber die auflösung der gleichungen, auf welche man bei der unter-
suchung der linearen vertheilung galvanischer ströme geführt wird. Ann. Phys.
148(12), 497–508 (1847)

13. Klein, D.J., Randic, M.: Random distance. J. Math. Chem. 12, 81 (1993)
14. Patitz, M.J., Schweller, R.T., Summers, S.M.: Efficient squares and turing univer-

sality at temperature 1 with a unique negative glue. arXiv:1105.1215v2 (2012)
15. Meunier, P.E., Patitz, M.J., Summers, S.M., Theyssier, G., Winslow, A., Woods,

D.: Intrinsic universality in tile self-assembly requires cooperation. In: Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), Portland,
OR, USA, 5–7 January 2014 (2014, to appear)

16. Mirkin, C., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-based method
for rationally assembling nanoparticles into macroscopic materials. Nature 382,
607–609 (1996)

17. Nuccitelli, R.: A role for endogenous electric fields in wound healing. Curr. Top.
Dev. Biol. 58, 1–26 (2003)

18. Pereira, R.N., Souza, B.W., Cerqueira, M.A., Teixeira, J.A., Vicente, A.A.: Effects
of electric fields on protein unfolding and aggregation: influence on edible films
formation. Biomacromolecules 11(11), 2912–2918 (2010)

19. Venezian, G.: On the resistance between two points on a grid. Am. J. Phys. 62(11),
1000–1004 (1994)

20. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394, 539–544 (1998)

21. Winfree, E., Rothemund, P.: The program-size complexity of self-assembled
squares. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory
of Computing, STOC 2000, pp. 459–468. ACM, New York (2000)

22. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute
of Technology, June 1998

23. Wu, F.Y.: Theory of resistor networks: the two-point resistance. J. Phys. A: Math.
Gen. 37(26), 6653 (2004)

http://opac.inria.fr/record=b1131031
http://arxiv.org/abs/1105.1215v2

Morphogenetic and Homeostatic Self-assembled
Systems

Petr Sośık2(B), Vladimı́r Smolka2, Jan Drast́ık2, Tyler Moore1,
and Max Garzon1

1 The University of Memphis, Memphis, TN, USA
2 Research Institute of the IT4Innovations Centre of Excellence,

Faculty of Philosophy and Science, Silesian University, Opava, Czech Republic
petr.sosik@fpf.slu.cz

Abstract. As a natural evolution of developments in membrane com-
puting and self-assembly, the time appears ripe to hybridize their princi-
ples to explore models capable of exhibiting further properties exhibited
by living organisms, while preserving the primary advantages of mod-
els in physics, chemistry and computer science, e.g. arising from local
interactions of their components and implementable in silico and/or in
vitro. We introduce an abstract model named M system, capable of self-
assembly and a developmental process, that strikes a balance between
these conflicting goals, namely biological realism, physical-chemical real-
ism and computational realism. We demonstrate that such systems are
capable of being assembled from scratch from some atomic components,
undergo a process of morphogenesis by the unfolding of the self-assembly
rules defined by their local interactions, exhibit crucial properties of liv-
ing cells as the self-healing property or mitosis (cell division), and eventu-
ally enter a stable equilibrium of adulthood in which they will continue
to function as long as certain conditions in their environment remain.
We present some theoretical results on the model, as well as preliminary
simulations and experimental results of an M system simulator we have
developed to explore this kind of model.

1 Introduction

The relationship between the macrosciences (such as biology) and the micro-
sciences (such as quantum mechanics and physics) has been a topic of increasing
interest for decades. In a pioneering work, Schrödinger [21] explored this con-
nection and pointed to the future developments of a molecular basis for biology,
later fully validated by the discovery of the structure of DNA [25] in the 1950s,
the development of biotechnology in the 1980s, the genome projects (HGPs,
www.ornl.gov) of the 1990s, and the subsequent ∗-omics of the 21st century.

A fundamental distinction between biology and the other natural sciences
is that while physics and chemistry, for example, are governed by interactions

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-58187-3 11) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 144–159, 2017.
DOI: 10.1007/978-3-319-58187-3 11

www.ornl.gov
http://dx.doi.org/10.1007/978-3-319-58187-3_11
http://dx.doi.org/10.1007/978-3-319-58187-3_11

Morphogenetic and Homeostatic Self-assembled Systems 145

that appear immutable and perennial over time, the basic unit of life, a biologi-
cal organism, is conceived in the physics and chemistry of the world, undergoes
a growth process that turns it into an idiosyncratic adult, but eventually dies
back into the material world. In the process, the organism produces offspring
that inherit some of its uniqueness and perpetuate it over time, but in a very
mutable way that creates some sort of living memory and gives rise to evolution.
Understandably, the significance of the answers and the complexity of evolution
have led computer scientists, and perhaps even biologists, to focus their work
on the latter (primarily, natural selection and ∗-omics), which has resulted in
relatively poor attention devoted to the organisms themselves, e.g., the mor-
phogenetic growth processes, which may nonetheless play an equally important
role in the adult organism itself. A major aim of this work is to focus on mod-
els of morphogenesis and the transition into what we term homeostasis, i.e., a
sustainable, balanced functioning state as a “productive” organism.

The development of higher biological organisms from a fertilized zygote
can be logically split into three kinds of processes, namely, cellular differen-
tiation, control of cell growth and morphogenesis (e.g., how biological organ-
isms develop their specific shape). Morphogenesis is a classical, critical, yet
underdeveloped area in biology, computational studies and mathematical mod-
els, although its importance was realized by the early founding fathers of com-
puter science [12,24]. Turing’s paper [24] is perhaps the original most famous
attempt at producing a model to explain the memory pattern formation and
their resilience in biological organisms, such as the spots in a leopard skin [24].

There have been two notable attempts to address this gap, namely mem-
brane computing and virtual cells [23]. The original inspiring idea of membrane
computing, now usually referred to as P systems [17], was to develop models
that could begin to shed light on the role of membranes in the process of mor-
phogenesis of the living cell, while obtaining new insights and approaches to
solving difficult problems in computer science. A survey of membrane comput-
ing (see [18]) shows a number of works hinting at this kind of model. [7] studies
synchronized colonies of membrane-inspired agents, including their behavioural
robustness in cases of agent loss or rule failure. A Spatial P system embedded in a
2D lattice, partly resembling cellular automata, appears in [2]. The same authors
introduced the Spatial Calculus of Looping Sequences (Spatial CLS) [1], where
membranes may have assigned exclusive positions in 2D/3D space. Membrane
systems allowing self-assembly of graphs representing interconnected systems of
cells at their vertices were studied in [3]. A model of morphogenesis of a mul-
ticellular body based on abstract membranes displacement and attachment in
3D space was presented in [10] and applied to simulate the growth of colonies
of Dictyostelium discoideu. However, all these models assume an abstract cell
as an atomic assembly unit of an abstract nature. Here, we are interested in
exploring the developmental process from scratch, i.e., through self-assembly of
1D or 2D primitives allowing for self-assembly of 3D cell-like forms. To be sure,
we are not interested in cloning biological organisms (an exercise that sheds little
understanding of the key mechanisms at play), but in a deeper examination of

146 P. Sośık et al.

potential mechanisms or strategies whereby they may be achieved through a com-
plexification process distributed in space and time, emerging from the bottom-up
through local interactions among atomic components naturally available in an
environment. Specifically, the objective is to explore higher functions such as
internal dynamical homeostasis, self-reproduction, self-healing, for example, and
their relationships. (We must point out that, to the best of our knowledge, the
actual etiology of these process in biology is not fully known, but even if they
were, knowledge of such mechanisms or strategies may prove useful both within
biology and other fields such as artificial life.)

Perhaps the most appealing feature of membranes is that they bring into the
picture an obvious but most fundamental ingredient in the formation of a biolog-
ical cell, namely the walls that separate it from the external world or the various
parts of it. Less known is the more general and primary role of other spatial
relationships and constraints in the organization of biological systems, let alone
the role of geometric shape. An attempt at a general approach to formalization
of spatial and geometrical interaction in complex (biological) systems is the 3π
calculus [6] based on process algebra.

Recent research points to an increasingly important role in biological morpho-
genesis of topological and geometric features such as crevices and wrinkles (see
e.g., [22]). Another example of current interest is the formation of the mammalian
brain cortex. Mechanical and biochemical models have been used. Mechanical
models hypothesize that gyris (foldings) in the brain are the results of anisotropic
differential growth, while numerical solutions to chemically reaction-diffusion
(RD) systems have produced qualitatively approximate patterns in cortex for-
mation, both in 2D and 3D models. Genetic factors, particularly the protein
β-catenin recently, are also implicated in the process. These models can be used
for prognosis of brain malformations during development in terms of coefficients
in the RD model (e.g., polymicrogyria and lissencephaly). Biologists are also now
beginning to discover the importance of the role of even more elementary phys-
ical phenomena, such as electric fields and chemical gradients, including their
role in chemical signaling in the living cell [20], e.g. in critical mechano-sensitive
channels [4].

In parallel, from a separate direction, computational ideas from the field of
DNA Computing have developed models and theories of DNA self-assembly that
capture more directly a “morphogenetic” process of sorts in the form of models of
self-assembly of patterns and families of patterns and afford clues as to the nature
of and capabilities of morphogenesis [9]. However, once again, these models do
not directly afford new knowledge on the fundamental biological problem of
morphogenesis and homeostasis that would bring them anywhere near the kind
of contribution that other models in natural sciences like physics and chemistry
provide us about motion and matter transformation.

Inspired by these developments, the time appears ripe to hybridize P
systems and geometric self-assembly in order to explore models of mor-
phogenesis and homeostasis, balancing three somewhat conflicting proper-
ties to the best degree possible: biological realism, physical-chemical realism
and computational realism. To achieve physical-chemical realism, very critical

Morphogenetic and Homeostatic Self-assembled Systems 147

components and the corresponding dynamic process occurring in a living cell
will be specifically represented in the model by appropriate data structures and
algorithmic interactions. To achieve computational realism, all components and
processes must be modeled at the appropriate level of granularity in both time
and resources in order to maintain the computational feasibility of the model.
To achieve biological realism, the aggregate observables accumulated over time
and space in the model must reflect, to some degree, the corresponding macro-
scopic observables, e.g., must reflect to some level of scale or granularity known
properties of biological organisms at the observable (nano, micro or macro) level,
independently of whether they faithfully describe factual processes in biological
organisms.

Therefore, the desirable features of the model are self-assembly, self-
controlled growth and emerging global behavior that is consistent with observ-
able properties of biological organisms, but which arise from nondeterministic
local interactions of elementary components, also consistent with self-assembly
and P systems. We present the definition of the model, referred to as M systems,
in Sect. 2, as well as the relevant known biological knowledge (fairly incomplete
and mostly unavailable) that guided it. In Sect. 3, we discuss arguments that
show how these properties may be guaranteed or to what extent, including a
theoretical result and experimental evidence that these properties actually do
emerge with very high probability, and provide a characterization of their behav-
ior, consistent with recent probabilistic analysis of self-assembly systems [11].
Section 4 completes the view by demonstration of computational power of the
model in the Turing sense even under severe restrictions. Finally, in Sect. 5, we
present some discussion on the significance of the model, some of its implications,
and some interesting further problems that could be addressed with plausible
extensions of it.

2 M Systems

As mentioned above, introducing geometric features in P systems is a natural
an interesting idea of its own. First, it is an intriguing question that may help
realize the potential of the original idea of membrane computing, as spatial
arrangement is critical for information processing in living cells, colonies, tissues
and organisms. Second, it may also further our understanding of computation
beyond the scope of traditional computer science, where shape and geometry are
not native concepts, but rather that require enormous amounts of effort to build
back in, while on the other hand, our understanding of the world is inherently
dependent on it. Besides being able to compute in the Turing sense, a model
should be able to interact with and “sense” its physical environment, so as to
be capable of self-modification and unenthropical evolution, i.e., to increase its
fitness (however defined) in its embedding environment. Membrane systems seem
to be a good candidate, but a sufficient level of self-modification and evolution
of new features is hardly possible in the current amorphous level.

The basic model of a P system generally consists of a structure of (possibly
nested) membranes which delimit regions precisely identified by the membranes.

148 P. Sośık et al.

In addition, the system contains objects from a set O placed inside membranes
or in the surrounding environment, but which do not bear any information about
their location or shape within the membranes. Several copies of the same object
can be present in a region, so we work with multisets of objects. A primary
biological carrier of shape is a protein. This feature is explicitly used in P systems
with proteins on membranes [13,14].

The M system extends this concept with explicit geometric features and
self-assembly capabilities. The whole system is embedded in an nD Euclidean
space R

n (assume 3D space unless stated otherwise). There are three types of
objects present in the system: proteins, tiles and floating objects.

Floating objects are small shapeless atomic objects floating freely within the
environment, but having at each moment their specified position in space.
They can pass through protein channels and participate in mutual reactions
with other types of objects, in discrete time steps. This latter property ensures
that, if started empty, membranes will always contain a finite number of
objects regardless of time allowed to operate, and makes unnecessary the
specification of the finite volume they would occupy.

Tiles have their pre-defined size and shape, together with specified position
and orientation in space at each moment. Tiles can stick together along their
edges or at selected points. These edges/points are called connectors and they
are covered with glues. Their connection is controlled by a pre-defined glue
relation. Thus the tiles can self-assemble into interconnected structures.

Proteins are placed on tiles and, apart from acting as protein channels letting
floating objects pass through, they also catalyze their reactions.

Unlike current models of membrane systems, membranes are not present even
implicitly, but they can only be formed of tiles during the evolution of the M
system. Therefore, at the beginning of the evolution, typically no membranes are
present and they must be subsequently self-assembled. The connected tiles can
be also disconnected and/or destroyed under certain conditions. The following
definitions provide the elements to capture these properties in a formal model
(they can be skipped without hindering understanding of Sect. 3).

2.1 Polytopic Tiling

The cornerstone of our concept of morphogenetic self-assembly is an nD tile
shaped as a bounded convex polytope (n-polytope) [28], with faces of dimension
n−1 called facets. Hence, a 1D tile is an edge/rod whose facets are its endpoints,
a 2D tile is a convex polygon with its edges as facets, a 3D tile is a convex
polyhedron with polygons as facets, and so forth. Furthermore, tile may contain
connectors defining its connection to other tiles. Let G be a finite set of glues.
A connector of a tile forming an n-polytope Δ is a triple (Δc, g, ϕ), where

Δc ⊂ Δ is a bounded convex k-polytope where 0 ≤ k < n,
g ∈ G is a glue,
ϕ ∈ (−π, π〉 is the connecting angle.

Morphogenetic and Homeostatic Self-assembled Systems 149

We distinguish

– facet connectors with k = n − 1 where Δc is a facet of the polytope Δ;
– non-facet connectors with k < n − 1 placed anywhere on the tile.

Two or more connectors can share the same position on a tile. Formally, an
n-dimensional tile is defined as

t = (Δ, {c1, . . . , ck}, gs), for k ≥ 0,

where Δ is a bounded convex n-polytope, c1, . . . , ck are connectors and gs ∈ G
is the surface glue covering the entire surface of the tile except where connectors
are placed.

For an (n − 1)-dimensional tile embedded in R
n we denote its two sides by

in and out. A non-facet connector with positive connecting angle is placed on
side in, one with negative angle is placed on side out, and one with zero angle
can only be located on some facet of the tile.

Definition 1. A polytopic tile system in R
n is a construct T = (Q,G, γ, dg, S),

where

Q is the set of tiles of dimensions less than n;
G is the set of glues;
γ ⊆ G × G is the glue relation;
dg ∈ R

+
0 is the gluing distance (assumed to be small compared to the size of

tiles);
S is the finite multiset of seed tiles from Q randomly distributed in space.

A tile t2 with a connector c2 can connect to a connector c1 on a tile t1 at the
connecting angle of c1 if the following conditions are met:

– c1 and c2 are unconnected and have the same dimension and size;
– their glues g1 and g2 satisfy (g1, g2) ∈ γ;
– at least one of c1 or c2 is a facet connector.

If both t1 and t2 are (n − 1)-polytopes, then their in and out faces must match
and the connecting angle precisely determines their mutual position. Otherwise,
the connecting angle may provide one degree of freedom to t2 whose orientation
is then semi-random.

If t2 attaches to t1 and it still has free connectors now positioned within
the distance dg from free connectors on other tiles already in place, then the
pairs which can connect together would do so. Similarly, if a free connector
c = (Δc, gc, ϕ) of t2 lies within the distance dg from an existing tile t3 with
surface glue gs such that (gc, gs) ∈ γ, then t2 connects to the surface of t3.

Note that the relation γ is generally non-symmetric. So if c2 can connect to
c1 does not imply that also c1 can connect to c2. This is in accordance with
natural morphogenetic processes which are often irreversible [5].

150 P. Sośık et al.

Example 1. Consider a polytopic tile system in R
3 with a single glue g and

the glue relation γ = {(g, g)}. Let Q contain a 2D tile q shaped as a regular
pentagon, with five facet connectors on its edges, each with the glue g and with
the connecting angle ϕ = 2.0345 radians, which is the inner angle between two
faces in a dodecahedron. Let finally S = {q} be the only seed tile, see the leftmost
image. Then, provided that q is available in enough copies, the system assembles
as follows.

1. Five tiles q would connect to the five connectors of the seed tile in the first
phase, connecting also their five edges starting at vertices of the seed tile as
they stick together. The connecting angle determines them to shape as cup
with zig-zag rim with 10 edges (central-left image).

2. Another five tiles would connect to these edges, determined by the connecting
angle to form an almost-closed shape (central-right image).

3. Finally, the last attached tile encloses the dodecahedral “soccer-ball”. All
connectors on the tiles match and connect together, hence no further assembly
is possible (rightmost image).

2.2 Morphogenetic Systems

An M system naturally merges principles of both self assembly and membrane
computing. Geometrical structure and growth of each M system is determined by
its underlying polytopic tile system. Unlike usual tiling systems, the M system
does not assume availability of an unlimited number of copies of each tile. The
M system life cycle starts in an initial configuration where only seed tiles are
present. Further structures can only be created by the application of rules of the
M system.

Formally, for a multiset M we denote by |M |a the multiplicity of elements a
in M . A multiset M with the underlying set O can be represented by a string
x ∈ O∗ (by O∗ we denote the free monoid generated by O with respect to the
concatenation and the identity λ) such that the number of occurrences of a ∈ O
in x represents the value |M |a.
Definition 2. A morphogenetic system (M system) in R

n is a tuple

M = (F, P, T, μ,R, r, σ),

where

F = (O,m, e) is the catalogue of floating objects, where:

Morphogenetic and Homeostatic Self-assembled Systems 151

O is the set of floating objects;
m : O −→ R

+ is the mean mobility of each floating object in the environment;
e : O −→ R

+
0 is the concentration of each floating object in the environment:

e(o) copies of object o per spatial unit 1n;
P is the set of proteins;
T = (Q,G, γ, dg, S) is a polytopic tile system in R

n, with O,P,Q,G all pairwise
disjoint;

μ is the mapping assigning to each tile t ∈ Q a multiset of proteins placed on t
together with their positions: μ(t) ⊂ P ×Δ where Δ is the underlying polytope
of t;

R is a finite set of reaction rules;
r ∈ R

+
0 is the reaction radius; a reaction rule can be applied when all objects

entering the reaction are positioned within this radius;
σ : γ −→ O∗ is the mapping assigning to each glue pair (g1, g2) ∈ γ a multiset

of floating objects which are released to the environment within the reaction
radius from a new connection with (g1, g2), when the connection is established.

Unless stated otherwise, we consider M systems in R
3 in the rest of the paper.

A reaction rule from the set R has the form u → v, where u and v are
strings containing floating objects, proteins, glues and tiles due to types of rules
specified bellow. The necessary condition to apply the rule is that all objects in
u are present in the environment within radius r, while certain rules may specify
further conditions on the location of objects.

Metabolic Rules

Metabolic rules are of several types: simple and catalytic rules allowing mutual
reactions of floating objects, similarly as cooperative and catalytic rules in mem-
brane systems [16,17].

Symport and antiport rules allow the floating objects to pass through protein
channels, similarly as in P systems with proteins on membranes [13,14]. Let
u, v ∈ O+ be non-empty multisets of floating objects and p ∈ P be a protein.
The rules containing the symbol [are applicable only when p is placed on an
(n − 1)-dimensional tile, where object to the left of [in the string correspond to
the side “out” and those to the right correspond to the side “in” of the tile.

Type Rule Effect

Simple u → v Objects in multiset u react to produce v

Catalytic pu → pv Objects in u react in presence of p to produce v;

u[p → v[p Eventually, u, v must both appear on the side “out”

[pu → [pv Or on the side “in” of the tile on which p is placed

Symport u[p → p[u Passing of u through protein channel p

[pu → u[p To the other side of the tile

Antiport u[pv → v[pu Interchange of u and v through protein channel p

152 P. Sośık et al.

Note that these rules are rather powerful and we will mostly consider some
restrictions when studying M systems from the computational power point of
view.

Creation rules u → t,

where t ∈ Q and u ∈ O+. The rule creates tile t while consuming the floating
objects in u. It can be applied if the following holds:

(i) there already exists a tile (say s) in the environment with a free connector
cs such that t can connect to cs by some of its connectors, and

(ii) floating objects in u exist in the environment within the distance r from cs.

Then an attempt is made to create tile t and connect it to cs as specified in
Sect. 2.1. If t would intersect another existing tile, say s′, then s′ (together with
all tiles interconnected with it) is pushed away to make room for t. This may
cause a chain reaction of mutual pushing of tiles in the way. If it is impossible
to make enough room for t and t is a polygon, the rule is not applied, otherwise
t is shortened so that it just touches s′. Its connector(s) at the shortened end (if
any) are preserved.

Finally, free connectors of t automatically connect to existing tiles as
described in Sect. 2.1.

Destruction rules ut → v,

where t ∈ Q,u, v ∈ O+. Tile t is destroyed in the presence of the “destructor”
multiset of floating objects u. All connectors on other tiles connected to t are
released. The objects in u are consumed and the multiset v of “waste” objects
is produced.

Division rules g u h → g, h,

where g h is a pair of glues on connectors of two connected tiles. The connection
is released in the presence of the multiset u ∈ O+. The multiset u is consumed.
The tiles remain in their position but the pair of connectors is released so that
new tiles can possibly attach to them.

Configuration of the M system is determined by

– positions and Euler angles of all tiles in the environment;
– interconnection graph of connectors on these tiles;
– positions of all floating objects within the finite part of the environment occu-

pied by tiles; the rest of the (infinite) environment contains floating objects
randomly distributed due to their concentrations e.

The initial configuration contains only (unconnected) seed tiles in S and a ran-
dom distribution of floating objects given by their concentration e.

Morphogenetic and Homeostatic Self-assembled Systems 153

Computation of the M System

The system transits between configurations by application of rules in the set
R. At each step, each floating object can be subject to at most one rule, each
connector can be subject to at most one creation or division rule, and each
tile can be subject to at most one destruction rule. Since there may be trade-
offs between applicable rules, their selection is done in the following order: 1.
metabolic rules, 2. destruction rules, 3. creation rules, 4. division rules. The
rules within each group are chosen nondeterministically until their maximum
applicable multiset is obtained, so that no more rules can be added to it. Then
all the selected rules are applied in parallel to the actual configuration.

Finally, each floating object o with mean mobility m(o) changes randomly
its position at each step due to the Maxwell-Boltzmann distribution [27] with
parameter a =

√
π/8 m(o) corresponding to Brownian motion of particles in

liquid media.
A sequence of transitions of an M system between configurations is called a

computation. The computation can be finite (if an M system cannot apply any
rule, it halts) or infinite, and it is, by definition, nondeterministic. The reader is
referred to the proof of Proposition 2 for a simple example, or to supplementary
material for a more complex one (follow the link in the proof of Proposition 1).

We will mostly be interested in the general dynamics of the M system, as
the probability of reaching certain equilibrium or oscillatory states, growth of
certain spatial structures, evolution and emergence of new properties, mitosis
and division of cell-like structures. However, numerical input and output of the
system can be defined, too, demonstrating its computational capability in Turing
sense, as we show in Sect. 4.

3 Computational Morphogenesis and Homeostasis

In this section we demonstrate that M systems are indeed capable of being
assembled from scratch from some atomic components, undergo a process of
morphogenesis by the unfolding of the self-assembly rules defined by their local
interactions as given by the catalytic, creation and destruction rules, and even-
tually enter a stable dynamical equilibrium of adulthood in which they will
continue to function as long as certain conditions in their environment remain.

We illustrate with an example of an M system M0 shown at Fig. 1, that
demonstrates the ability of creation and self-reproduction (mitosis) of elemen-
tary cells and simultaneously building an internal cytoskeleton structure. The
geometrical structure of M0 builds on two sets of 2D pentagonal tiles: larger tiles
self-assembling in a cell-like membrane, and smaller tiles assembling a nuclear
membrane. These tiles are much alike that in Example 1 but with different glues
on their edges. Some of the larger tiles contain also point connectors on their
inner surface, connecting to rod-shaped 1D tiles. Endpoints of rods bear one
(straight-oriented) or two (fork-oriented) connectors, allowing the rods to assem-
ble a tree-like structure of cytoskeleton.

154 P. Sośık et al.

Proposition 1. Assuming discrete time and bounded finite resources in the
environment, an arbitrary run of the M system M0 crosses a critical time at
which it stops growing and enters a period of homeostasis, where it will remain
in functional equilibrium despite certain fluctuations in the environment and/or
damage to its internal structure.

Proof. (Sketch; full description of the M system and more proof details are
provided as a supplementary material at url sosik.zam.slu.cz/Msystem.html or
bmc.memphis.edu/cytos.)

As pointed out above, discrete time interactions guarantee that at any given
time, only a finite number of membranes and objects are contained therein
throughout the life of the model, (although they could potentially contain an
uncountable number of objects as a continuum). In the terminology of self-
assembly systems, M0 is locally deterministic and attachment of tiles proceeds
as in the aTAM model [26]. As illustrated by Example 1, the geometric structure
of the tiles forces them to curve as they are attached and to close upon them-
selves to eventually form a dodecahedron and present plain geometric blocking
for further growth, which thus finishes the membrane building phase when the
last keystone tile is attached. Simultaneously an analogous process creates a
much smaller nuclear membrane.

The attached tiles bear proteins triggering the formation of cytoskeleton
by rods, which can grow nondeterministically in various directions from both
“poles” of the membrane. Eventually, addition of rods is no longer possible for
excluded volume reasons, so the cytoskeleton, and hence morphogenesis is now
complete and M0 enters the “adult” homeostatic phase.

Even before this phase is fully completed, the contact of growing rods with
the nuclear membrane triggers the process of mitosis which proceeds to create
two copies of the cells and separate it into two identical parts, which will then
begin anew the entire process and continue while enough supplies and room for
growth remain. All this is fully controlled only by local interactions of tiles and
floating objects.

At any point in the morphogenetic process, any damage will either simply
undo a previous state, or detach a piece of the systems altogether, which will
reset it back to a previous state, from which it will further develop as it did
before, perhaps through a different run as a nondeterministic system. Because
the stable equilibrium is achieved again with similar characteristics, perhaps
the same original individual will not be formed again, but the new individual
will bear the characteristic features of the original one. Therefore, the original
organism is capable of sustaining injuries to some degree of severity to its internal
structure, without changing the overall structure of the adult organism.
�

This result has been verified experimentally using our M system simulator
(follow the link in the proof), some snapshots are provided at Fig. 1.

http://sosik.zam.slu.cz/Msystem.html
http://bmc.memphis.edu/cytos

Morphogenetic and Homeostatic Self-assembled Systems 155

Fig. 1. (Left) A cell wall tile, (middle-left) a completed cell wall structure in a mem-
brane context among free-floating objects, (middle-right) an interior view of a cell
where yellow rods grow inward from dark grey connectors on the cell wall in order to
support an interior nuclear membrane, and (right) two complete cells emerging from
a single complete cell that divided by mitosis in a membrane context. (Color figure
online)

4 Computational Universality

Although M systems are primarily designed to study natural computing in a
broad sense (see Sect. 1), and not as a tool for solving “classical” computational
problems, we show that the model is theoretically capable of universal computing
in the Turing sense too.

We define the result of a computation of an M system as the number of
floating objects produced by the M system at the halting configuration. Only
objects not present originally in the environment (with e(o) = 0) are considered.
The result is undefined if M never halts. Collecting all possible results, we obtain
a set of nonnegative integers denoted by N(M). The family of all sets of integers
computed by M systems of a certain type is denoted by NOM (type). Particularly,
if the M system uses only creation rules and metabolic rules restricted to forms
a → u and pa → pu, for p ∈ P, a ∈ O and u ∈ O∗, we denote the resulting family
NOM (catk, crea), where k is the number of proteins. Let further NRE denote
the family of all recursively enumerable sets of nonnegative integers.

The following result relies on a simulation of a catalytic P system by an M
system. Catalysts in P systems are a specific kind of objects which allow for
reactions of objects but remain themselves unchanged. Recall that a catalytic P
system [8] uses evolution rules of the forms a → v and ca → cv where c is a
catalyst, a is an object from O \ C, and v ∈ (O \ C)∗ are objects produced by
the rule.

Proposition 2. For any catalytic P system Π with a single membrane and k≥1
catalysts there is a 2D M system M with k proteins, using only metabolic rules
of the form a → u, pa → pu and creation rules, such that N(Π) ∪ {0} = N(M).

Proof. Consider a polytopic tile system T = (Q,G, γ, dg, S) in R
2, where

Q contains three types of equally-shaped segments of length 1, each with a
connector with connecting angle π/2 at each endpoint. Formally, let

156 P. Sośık et al.

t1 = (〈0, 1〉, {({0}, g1, π/2), ({1}, g1, π/2)}, gs);
t2 = (〈0, 1〉, {({0}, g2, π/2), ({1}, g2, π/2)}, gs);
t3 = (〈0, 1〉, {({0}, g3, π/2), ({1}, g4, π/2)}, gs);

G = {g1, g2, g3, g4, gs};
γ = {(g1, g2), (g2, g3), (g4, g2)};
dg = 0.1;
S = {t1}.

The only tiling this tile system allows for is a single square with edges t1 − t2 −
t3 − t2. This tiling provides the geometrical base for the M system we construct
in the next step.

Let Π be a catalytic P system with a set of objects O, a set of catalysts
C, a set of rules R, a single membrane containing initially a multiset of objects
w ∈ (O \ C)∗. We show how to simulate Π by morphogenetic systems. Consider
the M system M = (F, P, T, μ,R′, r, σ) in R

2, where:

F = (O′,m, e), where:
O′ = O \ C ∪ {a, b}, where a, b �∈ O are new floating objects;
m(o) = 1 for each o ∈ O′;
e(a) = 1000 and e(o) = 0 for all other o ∈ O′;

P = C;
T is the polytopic tile system described above;
μ(t1) = P , the set of proteins arbitrarily positioned on the tile, and
μ(t2) = μ(t3) = ∅;
R′ = {d → u | d → u ∈ R} ∪ { [cd → [cu | cd → cu ∈ R} ∪ {aaa → t2, aaa →

t3, [pb → [pw}, where p is a single protein arbitrarily chosen from P ;
r = 2;
σ(g4, g2) = {b} and σ(gi, gj) = ∅ for all other (gi, gj) ∈ γ.

The initial configuration of the M system M contains the seed tile (segment)
t1 and a high concentration of objects a in the environment. Typical computation
proceeds in the following steps:

1. Two instances of the rule aaa → t2 are applied, adding two perpendicular
segments t2 to both ends of the seed segment t1 (as the connecting angle is
π/2. No other rule is applicable.

2. Rule aaa → t3 adds segment t3 bridging both loose ends of segments t2 and
enclosing a square. No further growth of segments is possible as all their
connectors are occupied. All their sides in are facing inwards the square, as
determined by the assembly principles in Sect. 2.1. At that moment, since
σ(g4, g2) = {b}, object b is released in the proximity of the square corner
connecting t2 and t3.

3. If the object b appears outside the square, the computation halts with result
0. Otherwise, rule [pb → [pw is applied and the initial multiset w of the P
system Π is produced inside the square.

Morphogenetic and Homeostatic Self-assembled Systems 157

4. From this step on, the system M applies inside the square the rules of Π in
exactly the same manner as Π would, while proteins in P act as catalysts of
Π. This happens with certainty as the reaction radius encompasses the whole
interior of the square. No rule is applicable outside the square as there are
only objects a not appearing in these rules.

Hence, if Π eventually halts, so does M, with equal content of objects within
the square, and so N(Π)∪{0} = N(M). Note that M (as any other M system)
uses random distribution of floating objects, so in an unlikely case no object a
is located within reaction radius from existing tiles at steps 1 and 2, hence no
rule is applicable and the system may halt prematurely with result 0.
�

Let us denote by NRE 0 the class of all recursively enumerable set of integers
containing 0, i.e., NRE 0 = {A ∪ {0} | A ∈ NRE}.

Corollary 1. NOM(cat2, crea) = NRE 0.

Proof. It is demonstrated in [8] that a catalytic P system Π with a single mem-
brane and two catalysts can generate any recursively enumerable set of integers.
Then the statement follows by Proposition 2.
�

Note that, from the computational complexity point of view, the M system
M in the above proof is inefficient as it simulates the P system Π which, in turn,
simulates a register machine. However, we conjecture that a more efficient way
of computation is possible, allowing to simulate a Turing machine or a cellular
automaton in polynomial time. Proof of Proposition 1 even suggests an unlimited
exponential growth of cells which might eventually allow the model to solve NP-
hard problems in polynomial time. This, however, is subject of further research.

5 Conclusions

We have introduced a geometric model, M systems, that exhibit properties of
self-assembly and controlled growth akin to those observed in cell biology. The
model is inspired by P systems and the new properties are obtained by intro-
ducing geometric concepts of shape and arrangement of atomic objects at spe-
cific locations. Basic abstract operations in the model include reactions among
objects, their transport through protein channels, and their mutual interconnec-
tion, leading to construction and destruction of complex geometric structures,
which are cell-inspired in the examples we have provided, but which can adopt
virtually any geometric forms.

We have shown that M systems are computationally universal in the Turing
sense, even if restricted to very simple shape and operations, based on sim-
ilar results in P systems. This result suggests many research avenues in this
direction, as the relation of M systems to other models of P systems, e.g., with
symport/antiport [15], with proteins on membranes [13] or with active mem-
branes [19]. How can the geometrical and morphological structure of the M sys-
tem increase/restrict its computational potential? This question is especially

158 P. Sośık et al.

relevant in connection with an unlimited membrane division in P systems, which
the M system is capable of, but with more realistic spatial and concentration
constraints.

We have also shown that M systems are universal in a perhaps more restricted
but more biological sense, i.e., they exhibit a morphogenetic and homeostatic
structure in their life cycle and can live forever by replication. We have also
demonstrated their capability to grow complex cell-inspired information process-
ing structures, providing a model of the cytoskeleton growth which in turn con-
trols a process akin to biological mitosis. We have also developed a software
simulator of M systems to continue research on this models that is available at
url sosik.zam.slu.cz/Msystem.html or bmc.memphis.edu/cytos.

This direction of research raises some interesting questions. First, can other
systems exhibit similar characteristics with simpler rules? Second, what is the
extent of their self-repair properties? What kind of “injuries” will harm the
model beyond repair? How exactly can injury be properly defined to establish
more specific properties and limitations of self-healing? Third, adding evolu-
tionary properties to the model is an intriguing possibility – the capability to
evolve unenthropically towards more efficient behavior related to its specific
goals, which can be of many kinds. To this end, the model should be equipped
with a kind of abstract genetic code defining shapes of tiles and placement of
connectors and other proteins on them. Perhaps the evolution of new floating
objects and proteins and their mutual reactions should be allowed, too, reflect-
ing the evolution of new “organic” molecules. This evolution may produce new
development of models in silico, a kind of artificial life closer to biological life as
we know it.

Acknowledgements. This work was supported by the Ministry of Education, Youth
and Sports Of the Czech Republic from the National Programme of Sustainability
(NPU II) project IT4Innovations Excellence in Science - LQ1602, and by the Sile-
sian University in Opava under the Student Funding Scheme, project SGS/13/2016.
We are grateful to anonymous reviewers whose valuable comments helped to improve
the paper.

References

1. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Spatial calculus of
looping sequences. Theor. Comput. Sci. 412(43), 5976–6001 (2011)

2. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial P
systems. Nat. Comput. 10(1), 3–16 (2011)

3. Bernardini, F., Brijder, R., Cavaliere, M., Franco, G., Hoogeboom, H.J., Rozen-
berg, G.: On aggregation in multiset-based self-assembly of graphs. Nat. Comput.
10(1), 17–38 (2011)

4. Blount, P., Sukharev, S.I., Moe, P.C., Schroeder, M.J., Guy, H., Kung, C.: Mem-
brane topology and multimeric structure of a mechanosensitive channel protein of
escherichia coli. EMBO J. 15(18), 4798–4805 (1996)

5. Bourgine, P., Lesne, A.: Morphogenesis: Origins of Patterns and Shapes. Springer
Complexity. Springer, Heidelberg (2010)

http://sosik.zam.slu.cz/Msystem.html
http://bmc.memphis.edu/cytos

Morphogenetic and Homeostatic Self-assembled Systems 159

6. Cardelli, L., Gardner, P.: Processes in space. In: Ferreira, F., Löwe, B., Mayordomo,
E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13962-8 9

7. Cavaliere, M., Mardare, R., Sedwards, S.: A multiset-based model of synchroniz-
ing agents: computability and robustness. Theoret. Comput. Sci. 391(3), 216–238
(2008)

8. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally universal P systems
without priorities: two catalysts are sufficient. Theoret. Comput. Sci. 330, 251–266
(2005)

9. Krasnogor, N., Gustafson, S., Pelta, D., Verdegay, J.: Systems Self-Assembly: Mul-
tidisciplinary Snapshots. Studies in Multidisciplinarity. Elsevier Science, Amster-
dam (2011)

10. Manca, V., Pardini, G.: Morphogenesis through moving membranes. Nat. Comput.
13(3), 403–419 (2014)

11. Moore, T., Garzon, M., Deaton, R.: Probabilistic analysis of pattern formation in
monotonic self-assembly. PLoS One 10(9), 1–23 (2015). doi:10.1371/journal.pone.
0137982

12. von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from
unreliable components. Ann. Math. Studies 34, 43–98 (1956)

13. Păun, A., Popa, B.: P systems with proteins on membranes. Fundamenta Infor-
maticae 72(4), 467–483 (2006)

14. Păun, A., Popa, B.: P Systems with proteins on membranes and membrane divi-
sion. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 292–303.
Springer, Heidelberg (2006). doi:10.1007/11779148 27

15. Păun, A., Păun, G.: The power of communication: P systems with sym-
port/antiport. New Gener. Comput. 20(3), 295–305 (2002)

16. Păun, G.: Computing with membranes. J. Comput. System Sci. 61, 108–143 (2000)
17. Păun, G.: Membrane Computing - An Introduction. Springer, Berlin (2002)
18. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, Oxford (2010)
19. Păun, G.: P systems with active membranes: attacking NP-complete problems. J.

Automata Lang. Comb. 6(1), 75–90 (2001)
20. Robinson, K., Messerli, M.: Left/right, up/down: the role of endogenous electrical

fields as directional signals in development, repair and invasion. BioEssays 25,
759–766 (2003)

21. Schrödinger, E.: What Is Life? The Physical Aspect of the Living Cell. Trinity
College, Dublin (1944)

22. Tangirala, K., Caragea, D.: Generating features using burrows wheeler transforma-
tion for biological sequence classification. In: Pastor, O., et al. (ed.) Proceedings of
the International Conference on Bioinformatics Models, Methods and Algorithms,
pp. 196–203. SciTePress (2014)

23. Tomita, M.: Whole-cell simulation: a grand challenge of the 21st century. Trends
Biotechnol. 19(6), 205–210 (2001)

24. Turing, A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B
237, 7–72 (1950)

25. Watson, J., Crick, F.: A structure for deoxyribose nucleic acid. Nature 171, 737–
738 (1953)

26. Winfree, E.: Models of experimental self-assembly. Ph.D. thesis, Caltech (1998)
27. Maxwell-Boltzmann distribution, Wikipedia (cit 2017-1-29). https://en.wikipedia.

org/wiki/Maxwell-Boltzmann distribution
28. Ziegler, G.: Lectures on Polytopes. Graduate Texts in Mathematics. Springer, New

York (1995)

http://dx.doi.org/10.1007/978-3-642-13962-8_9
http://dx.doi.org/10.1371/journal.pone.0137982
http://dx.doi.org/10.1371/journal.pone.0137982
http://dx.doi.org/10.1007/11779148_27
https://en.wikipedia.org/wiki/Maxwell-Boltzmann_distribution
https://en.wikipedia.org/wiki/Maxwell-Boltzmann_distribution

Superposition as Memory: Unlocking Quantum
Automatic Complexity

Bjørn Kjos-Hanssen(B)

University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
Bjoern.Kjos-Hanssen@hawaii.edu

https://math.hawaii.edu/wordpress/bjoern/

Abstract. We define the semi-classical quantum automatic complexity
Qs(x) of a word x as the infimum in lexicographic order of those pairs
of nonnegative integers (n, q) such that there is a subgroup G of the
projective unitary group PU(n) with |G| ≤ q and with U0, U1 ∈ G such
that, in terms of a standard basis {ek} and with Uz =

∏
k Uz(k), we have

Uxe1 = e2 and Uye1 �= e2 for all y �= x with |y| = |x|. We show that Qs is
unbounded and not constant for strings of a given length. In particular,

Qs(0
212) ≤ (2, 12) < (3, 1) ≤ Qs(0

60160)

and Qs(0
120) ≤ (2, 121).

Keywords: Finite automata · Security · Quantum automata · Auto-
matic complexity

1 Introduction

Quantum Locks. Imagine a lock with two states, “locked” and “unlocked”,
which may be manipulated using two operations, called 0 and 1. Moreover, the
only way to (with certainty) unlock using four operations is to do them in the
sequence 0011, i.e., 0n1n where n = 2. In this scenario one might think that the
lock needs to be in certain further states after each operation, so that there is
some memory of what has been done so far. Here we show that this memory
can be entirely encoded in superpositions of the two basic states “locked” and
“unlocked”, where, as dictated by quantum mechanics, the operations are given
by unitary matrices. Moreover, we show using the Jordan–Schur lemma that a
similar lock is not possible for n = 60.

Quantum Security. A problem with traditional padlocks is that a clever lock-
breaker can seek to detect what internal state the lock is in part-way through
the entering of the lock code. This problem disappears when the internal states
are just superpositions of “locked” and “unlocked”. Of course, there may be a
positive probability that the system when observed part-way through the enter-
ing of the lack code is observed in the “unlocked” state. To remedy this, one
could use a sequence of many locks, say 10k for a suitable positive integer k,
c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 160–169, 2017.
DOI: 10.1007/978-3-319-58187-3 12

Superposition as Memory: Unlocking Quantum Automatic Complexity 161

and add a third “permanently locked” state which, once reached, cannot be left.
Then observing the lock will likely eventually result in landing in the perma-
nently locked state. (In the case of the code 0n1n, the permanently locked state
might be implemented as having a probability related to the difference in the
number of 0s and 1s entered in the code so far.) Note that in theory this is a
purely quantum phenomenon: any simulation of the quantum device using clas-
sical hardware will be subject to the original problem that a lock-breaker may
try to discern the internal states of the classical hardware.

Quantum Automata. One of the fascinating aspects of quantum mechanics
is how our understanding of states is enriched, with observable states, pure
states, and mixed states. The notion of state of a finite automaton begs for
a generalization to the quantum realm. Indeed, quantum finite automata have
been studied already [1].

On the other hand automatic complexity introduced by Shallit and Wang [2]
has been related it to model selection in statistics [3] and to pseudorandomness
generation with linear feedback shift registers [4]. Other approaches to automatic
complexity [5–7] yield better insight into infinite words.

We shall consider complexity with respect to an arbitrary semigroup before
considering the quantum case of the projective unitary group PU(n).

Definition 1. Let TX denote the set of all transformations of the set X; TX =
{f | f : X → X}. The complexity of a string x ∈ {0, 1}n, n ≥ 0, is the class of
all semigroup actions ϕ : G → TX for semigroups G and sets X, with

– two1 elements δ0, δ1 ∈ G, inducing δy =
∏|y|

k=1 δy(k) for each y ∈ {0, 1}n,
y = y(1) · · · y(|y|);

– an initial state α ∈ X; and
– a final state ω ∈ X,

such that x is the only y ∈ {0, 1}n for which δyα := ϕ(δy)α = ω.
In this case we say that x has complexity at most ϕ, or, if ϕ is understood,

complexity at most G.

1.1 Quantum Automatic Complexity

Let e
(n)
j , 1 ≤ j ≤ n be the standard basis for C

n. Let U(n) be the group of
unitary complex n × n matrices and let PU(n) be the projective unitary group.

For n × n matrices U0 and U1 and a binary string x, we define

Ux =
|x|∏

k=1

Ux(k).

1 Noncommuting, unless x is a unary string like 0n.

162 B. Kjos-Hanssen

Definition 2. A quantum deterministic finite automaton (quantum DFA) M
with q states consists of an initial state α ∈ CP

q, a final state ω, and δ0, δ1 ∈
PU(q). We say that M accepts a word x ∈ {0, 1}n, n ≥ 0 if

δxα = ω.

Let x ∈ {0, 1}n, n ≥ 0. The quantum automatic complexity of x, Q(x), is the
least q such that there exists a quantum DFA M with q states such that for all
y ∈ {0, 1}n, M accepts y iff y = x.

– If we additionally require that δ0, δ1 generate a finite subgroup of PU(q), we
obtain the finite quantum automatic complexity Qf (x).

– If we require α = e1 and β = e2 then we obtain semi-classical quantum
automatic complexity Qs.

– If we require both of the extra requirements for Qs and Qf , we get Qsf .

We can write Qs(x) ≤ (n,∞) if Qs(x) ≤ n, and Qs(x) ≤ (n, f) if Qsf (x) ≤ n
as witnessed by a finite group of order f . This way we see Aperm, the automatic
complexity [2] with the added restriction that the transition functions be per-
mutations, as an upper bound for n and a lower bound for f . Ordering these
pairs lexicographically, we shall show that

(3, 121) ≤ Qs(060160) ≤ (121,∞)

assuming the following conjecture.

Conjecture 3. Aperm(x) = |x| + 1 for all x.

Remark 4. We have verified Conjecture 3 for binary strings of length up to 9.

Theorem 5. (1) If Qs(x) > (n,∞) then Qs(x) ≥ (n + 1, Aperm(x)). (2) We
always have Qs(x) ≤ (Aperm(x), Aperm(x)).

Proof. For (1) we note that the quantum states can be considered as states,
so that the Cayley graph of any group witnessing Qsf can be thought of as a
witness for Aperm. For (2) we note that we can restrict attention to only the
states e

(q)
j , 1 ≤ j ≤ q, refusing to use superposition.

Matrices M of dimension n × n whose entries are 0 and 1, with exactly one
1 per column, act on X = [n] = {1, . . . , n} by matrix multiplication in the
following way:

ϕ(M)(j) = k, where Me
(n)
j = e

(n)
k .

If M is additionally invertible then it thus induces an element of the symmet-
ric group Sn and belongs to O(n), the group of orthogonal matrices M (satisfying
M−1 = MT).

Theorem 6. For each string x, Qf (x) is finite.

Superposition as Memory: Unlocking Quantum Automatic Complexity 163

Proof. By the embedding of Sn into O(n) above, and then inclusion of O(n) into
U(n) (simply because U−1 = UT for a real matrix U implies U−1 = U†), we
have Qf (x) ≤ (Aperm(x), Aperm(x)) ≤ (x + 1, x + 1).

We also have Q ≤ Qf ≤ Qsf and Q ≤ Qs ≤ Qsf . For our quantum lock analogy
we want distinct initial and final states, whereas for automatic complexity A(x)
or Aperm(x) it is natural to not require that.

2 Bounds on Qs

Arbitrary q-state DFA transition functions δ0, δ1 can be considered to belong to
the matrix algebra Mq of all q × q matrices. They are then exactly the matrices
whose entries are 0 and 1, with exactly one 1 per column. And the nondetermin-
istic case just corresponds to 0–1 valued matrices with not necessarily exactly
one 1 per column. Moving to arbitrary real matrices we can significantly reduce
the required dimension, from n/2 + 1 [8] to 2, as we now explain.

The following Theorem 7 indicates how any binary string can be encoded, in
a sense, by two 2 × 2 matrices.

Theorem 7. For each binary string x there exist U0, U1 ∈ GL2(R) such that
Uxe1 = e2 and for any y �= x, |y| = |x|, Uye1 �= e2.

We omit the proof.

Theorem 8. Q(x) ≤ 2 for all strings x.

Proof. It suffices to show that there is a free group generated by two unitary
matrices. It is well-known [9] that a generic pair of unitaries in U(2) generates
a free group. Indeed, the existence of free subgroups of SO(3) (and hence its
double cover SU(2)) was already known to Hausdorff [10]; see also [11] and
explicit examples in [12].

Unfortunately, perhaps, free groups are incompatible with the “semi-classical”
e1 �→ e2 property in the following way:

Theorem 9. There is no word x of length >0 and pair of unitary matrices U0,
U1 such that U0 and U1 generate a free group and Uxe1 = e2 in projective space.

3 Unboundedness of Qf

As usual we denote by H � G that H is a normal subgroup G, and by [G : H]
the index of H in G.

Theorem 10 (Jordan–Schur). There is a function f(n) such that given a
finite group G that is a subgroup of Mn(C), there is an abelian subgroup H � G
such that [G : H] ≤ f(n).

164 B. Kjos-Hanssen

Corollary 11. For each n there exists an m such that for any u, v ∈ U(n) which
generate a finite group, we have [um, vm] = 1, i.e., umvm = vmum.

Proof (Proof of Corollary from Theorem). If G is a finite group generated by u
and v, and H a normal abelian subgroup of index [G : H] = m, then umH = H
and vmH = H (since any group element raised to the order of the group is the
identity) and so um and vm belong to H, hence, H being abelian, they commute.

Theorem 12. For each n there is a binary string x with Qf (x) > n.

Proof. Let x = 0m1m where m is as in Corollary 11. Given δ0, δ1 ∈ PU(n) =
U(n)/U(1), choose x and y in U(n) such that δ0 = xU(1) and δ1 = yU(1). Then
δ0m1m = (xU(1))m(yU(1))m = xmymU(1) = ymxmU(1) = δ1m0m .

The extent to which 2×2 matrices suffice for quantum automatic complexity
is indicated in Table 1.

Table 1. Supremum of quantum automatic complexity over all strings. In the case
where e1 �→ e2 is required (semi-classical quantum automatic complexity Qs) but
finiteness (Qf) is not, we at least know that free groups cannot answer the question,
by Theorem 9.

e1 �→ e2 required Not required

Finite group required ∞ ∞
Not required Unknown 2

Theorem 13. Qsf (060160) > 2.

Proof. Note that we may assume our finite subgroups are primitive as there is
no point in having a separate automaton disconnected from the witnessing one.
Collins [13] then shows that for n = 2, the optimal value is m = 60.

On the other hand, we show below in Theorem19 that Qsf (0212) = 2, leaving a
gap (2, 60) for the least n such that Qsf (0n1n) > 2. The state of our knowledge
of finiteness of quantum automatic complexity is given in Table 1.

4 Calculating Qs(0011) ≤ (2, 12)

The group SU(2) is the group of unit quaternions with the matrix representa-
tion [14]

1 =
[
1 0
0 1

]

, i =
[
i 0
0 −i

]

, j =
[

0 1
−1 0

]

, k =
[
0 i
i 0

]

where i is the imaginary unit. We shall consider its order 24 subgroup the binary
tetrahedral group

{

±1,±i,±j,±k,
1
2
(±1 ± i ± j ± k)

}

,

also known by isomorphism as SL(2, 3). Moreover we shall consider the order 12
quotient PSL(2, 3) which is isomorphic to the alternating group Alt(4).

Superposition as Memory: Unlocking Quantum Automatic Complexity 165

Theorem 14. There exist a,b ∈ SU(2) such that

aabb �∈ {a,b}4 \ {aabb}.

Proof. It turns out we can use the binary tetrahedral group to realize 0011 within
SU(2). Namely, let

a = δ0 = (1 + i + j − k)/2, b = δ1 = (1 + i + j + k)/2

in the quaternion representation,

a =
1
2

[
1 + i 1 − i

−i − 1 1 − i

]

, b =
1
2

[
1 + i 1 + i
i − 1 1 − i

]

.

We can check that aabb = −j is unique among 4-letter words in a,b.

Theorem 15. For x = 0011, there exist δ0, δ1 ∈ SO(3) such that for all y ∈
{0, 1}4, δy = δx iff y = x.

Proof. Another way to express a and b in Theorem 14 is as

eiϕ

[
eiΨ 0
0 e−iΨ

] [
cos θ sin θ

− sin θ cos θ

] [
eiΔ 0
0 e−iΔ

]

where ϕ = 0, θ = π/4, and a has (Ψ,Δ) = (0, π/4) and b has (Ψ,Δ) = (π/4, 0).
Thus

a =
1 − i

2

[
1 1

−1 1

] [
i 0
0 1

]

=
(

1√
2

[
1 1

−1 1

]) (
1 − i√

2

[
i 0
0 1

])

is a product of two matrices rs in SU(2). The first one, r, corresponds [15] to
the SO(3) rotation

⎡

⎣
0 0 −1
0 1 0
1 0 0

⎤

⎦

which is a 90-degree rotation in the xz-plane, and the second one, s, to a
90-degree rotation

⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦

in the xy-plane in SO(3). We have

b =
1 − i

2

[
i 0
0 1

] [
1 1

−1 1

]

= sr.

One remaining wrinkle, taken care of in Theorem19, is to make sure the
other words are not only distinct from aabb, but map the start state to distinct
vectors from what aabb does.

166 B. Kjos-Hanssen

Theorem 16. (well known). The order 24 group SL(2, 3) is given by a3 =
b3 = c2 = abc, or equivalently a3 = b3 = abab.

Theorem 17. [16]. SL(2, 3) is isomorphic to the binary tetrahedral group, a
subgroup of U(2).

The group Alt(4) does serve as complexity bound for 0011. It is not a subgroup
of U(2) [16], but:

Theorem 18. There is a faithful, irreducible representation of Alt(4) ∼= PSL
(2, 3) as a subgroup of SL(2, 3) of index 2 and as a subgroup of PU(2).

Proof. Let a be as in Theorem 16. We define an equivalence relation ≡ by u ≡
v ⇐⇒ u ∈ {v, a3v}. It is required to show that each element of our SL(2, 3) is
equivalent to an element of Alt(4). This is done in detail in Fig. 1.

The representation from Theorem 18 is used in the proof of Theorem19.

1, (1)

a, (2)

b, (3)

a2 = bab, (4)

ab, (5)

ba, (6)

b2 = aba, (7)

a3 = b3 = baba = abab ≡ 1, (8)

a2b = bab2, (9)

ab2 = a2ba, (10)

ba2 = b2ab = aba2b, (11)

b2a = aba2 = ab2ab, (12)

a4 = ab3 = b3a = a2bab = ababa ≡ a, (13)

a3b = ba3 = b4 = abab2 ≡ b, (14)

a2b2 = a3ba ≡ ba, (15)

ab2a = a2ba2, (16)

ba2b ≡ abba, (17)

b2a2 = a4b = aba3 = ab4 ≡ ab, (18)

a5 = a2b3 = ab3a ≡ a2, (19)

a3b2 ≡ b2, (20)

a2b2a ≡ baa, (21)

ab2a2 ≡ aab, (22)

ba2b2 ≡ bba, (23)

b2a2b ≡ abb. (24)

Fig. 1. The 24 elements of SL(2, 3). All strings of length at most 2 are unique of their
length. By symmetry, words of length 5 starting with b are not written down.

Superposition as Memory: Unlocking Quantum Automatic Complexity 167

Theorem 19. Qsf (0011) = 2.

Proof. Let v =
[
v1
v2

]

with v1, v2 ∈ R. Let

E0 = a =
1
2

[
1 + i 1 − i

−1 − i 1 − i

]

, E1 = b =
1
2

[
1 + i 1 + i

−1 + i 1 − i

]

.

Let

D =
[
v1 −v2
v2 v1

]

= [v | E0011v], C =
1√

det D
D.

Let
Uj = C−1EjC, j ∈ {0, 1}.

0

16
13 − 15

13 i− 9
13 + 20

13 i

16
13 + 15

13 i 9
37 + 20

37 i

3
4

− 4
3∞

− 16
37 − 15

37 i9
37 − 20

37 i

− 9
13 − 20

13 i− 16
37 + 15

37 i

Fig. 2. Quantum complexity witness having the shape of a cuboctahedron. The label
α represents the projective point [1 : α]. The initial state is [1 : 0] denoted by 0 and
the accept state is [0 : 1] denoted by ∞. Dashed lines indicate multiplication by U0.
Solid lines indicate multiplication by U1.

168 B. Kjos-Hanssen

Then it follows that

CU0011

[
1
0

]

= E0011C

[
1
0

]

= E0011

[
v1
v2

]

= C

[
0
1

]

.

Hence

U0011

[
1
0

]

=
[
0
1

]

.

Since fortunately our E0 and E1 satisfy E0011 = −j, C is orthogonal, and in

particular C is unitary. If we now choose v =
[
1
2

]

, then v is sufficiently generic

that Uye1 �= e2 as elements of CP1 for all y ∈ {0, 1}4 \ {x}. We have verified as
much with an Octave computation (see Figs. 2 and 3). We have

C =
1√
5

[
1 −2
2 1

]

, C−1 =
1√
5

[
1 2

−2 1

]

,

I, (ab)2, (ba)2

a2a4, b3a, ab3

abaa bbab

abba, baab

bbaaaabb

ba3, b4, a3bb2

babbaaba

Fig. 3. Another view of the quantum complexity witness having the shape of a cuboc-
tahedron of Fig. 2.

Superposition as Memory: Unlocking Quantum Automatic Complexity 169

U0 =
1
10

[
5 + i 5 + 7i

−5 + 7i 5 − i

]

and U1 =
1
10

[
5 − 7i 5 + i
−5 + i 5 + 7i

]

.

Remark 20. It is still a question what the nature of the “complexity” Q and
Qs are picking out is. If it is anything like Aperm it may be less than intuitive.
However, there is some reason to believe that quantum automatic complexity
is better than permutation automatic complexity at distinguishing strings of the
same length. For permutation automatic complexity we do not know any exam-
ple of strings of the same length having distinct complexity, but for quantum
automatic complexity, 060160 and 0120 form such an example. The latter has
complexity at most 2 whereas the former does not (Theorem13).

References

1. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
38th Annual Symposium on Foundations of Computer Science, FOCS 1997, Miami
Beach, Florida, USA, 19–22 October 1997, pp. 66–75 (1997). http://dx.doi.org/10.
1109/SFCS.1997.646094

2. Shallit, J., Wang, M.-W.: Automatic complexity of strings. J. Autom. Lang. Comb.
6(4), 537–554 (2001). 2nd Workshop on Descriptional Complexity of Automata,
Grammars and Related Structures, London, ON, 2000

3. Kjos-Hanssen, B.: Few paths, fewer words: model selection with automatic struc-
ture functions. Exp. Math. (2018). Conditionally accepted. arXiv:1608.01399

4. Kjos-Hanssen, B.: Shift registers fool finite automata. ArXiv e-prints, July 2016
5. Shen, A.: Automatic Kolmogorov complexity and normality revisited. ArXiv e-

prints, January 2017
6. Becher, V., Carton, O., Heiber, P.A.: Normality and automata. J. Comput. Syst.

Sci. 81(8), 1592–1613 (2015). http://dx.doi.org/10.1016/j.jcss.2015.04.007
7. Calude, C.S., Salomaa, K., Roblot, T.K.: Finite state complexity. Theor. Comput.

Sci. 412(41), 5668–5677 (2011). http://dx.doi.org/10.1016/j.tcs.2011.06.021
8. Hyde, K., Kjos-Hanssen, B.: Nondeterministic automatic complexity of overlap-

free and almost square-free words. Electron. J. Comb. 22(3), paper 3.22, 18 p.
(2015)

9. Thom, A.: Convergent sequences in discrete groups. Canad. Math. Bull. 56(2),
424–433 (2013). http://dx.doi.org/10.4153/CMB-2011-155-3

10. Hausdorff, F.: Bemerkung über den Inhalt von Punktmengen. Math. Ann. 75(3),
428–433 (1914). http://dx.doi.org/10.1007/BF01563735

11. Świerczkowski, S.: On a free group of rotations of the Euclidean space. Nederl.
Akad. Wetensch. Proc. Ser. A 61 = Indag. Math. 20, 376–378 (1958)

12. Świerczkowski, S.: A class of free rotation groups. Indag. Math. (N.S.) 5(2), 221–
226 (1994). http://dx.doi.org/10.1016/0019-3577(94)90026-4

13. Collins, M.J.: On Jordan’s theorem for complex linear groups. J. Group Theory
10(4), 411–423 (2007). http://dx.doi.org/10.1515/JGT.2007.032

14. Yuan, Q.: SU(2) and the quaternions, February 2011. https://qchu.wordpress.com/
2011/02/12/su2-and-the-quaternions/

15. Gelfand, I.M., Minlos, R.A., Sapiro, Z.J.: Predstavleniya gruppy vrashcheni i
gruppy Lorentsa, ikh primeneniya. Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow
(1958)

16. Parattu,K.M., Wingerter, A.: Tribimaximal mixing from small groups (2011).
https://arxiv.org/pdf/1012.2842v2.pdf

http://dx.doi.org/10.1109/SFCS.1997.646094
http://dx.doi.org/10.1109/SFCS.1997.646094
http://arxiv.org/abs/1608.01399
http://dx.doi.org/10.1016/j.jcss.2015.04.007
http://dx.doi.org/10.1016/j.tcs.2011.06.021
http://dx.doi.org/10.4153/CMB-2011-155-3
http://dx.doi.org/10.1007/BF01563735
http://dx.doi.org/10.1016/0019-3577(94)90026-4
http://dx.doi.org/10.1515/JGT.2007.032
https://qchu.wordpress.com/2011/02/12/su2-and-the-quaternions/
https://qchu.wordpress.com/2011/02/12/su2-and-the-quaternions/
https://arxiv.org/pdf/1012.2842v2.pdf

Solving the Bin-Packing Problem by Means
of Tissue P System with 2-Division

Hepzibah A. Christinal1(B), Rose Rani John1, D. Abraham Chandy1,
and Miguel A. Gutiérrez-Naranjo2

1 Karunya University, Coimbatore, Tamilnadu, India
hepzia@yahoo.com, roseranijohn@karunya.edu, abrahamdchandy@gmail.com

2 Department of Computer Science and Artificial Intelligence,
University of Seville, 41012 Seville, Spain

magutier@us.es

Abstract. The ability of tissue P systems with 2-division for solving
NP problems in polynomial time is well-known and many solutions can
be found in the literature to several of such problems. Nonetheless, there
are very few papers devoted to the Bin-packing problem. The reason may
be the difficulties for dealing with different number of bins, capacity and
number of objects by using exclusively division rules that produce two
offsprings in each application. In this paper we present the design of a
family of tissue P systems with 2 division which solves the Bin-packing
problem in polynomial time by combining design techniques which can
be useful for further research.

1 Introduction

Membrane computing was born from the assumption that the processes taking
place within the compartmental structure of a living cell can be interpreted
as computations [26]. From the beginning, the computational complexity of the
membrane algorithms has been a vivid research area [25]. In particular, there is a
large amount of papers dealing with the P versus NP problem in the framework
of membrane computing [22]. The P versus NP problem is one of the most
important unsolved problem in computer science and it was chosen as one of the
seven Millennium Prize Problems [11]. The precise statement of the problem was
introduced in 1971 by Stephen Cook [1], although it was essentially mentioned
in a personal communication between Gödel and von Neumann [10].

The problem of deciding whether P and NP complexity classes are same
or not is not yet solved but the efforts for solving it have contributed to the
development of new research areas full of interesting open questions. One of
them is the research of frontiers of tractability, i.e., to identify some features of
the computational models such that the corresponding device is able to solve
NP problems or not depending on the endowment of such features.

In membrane computing there exists an extensive literature devoted to this
type of problem (see [22] and the references therein) and the present paper is a
novel contribution in such research line. We consider here a variant of one of the
c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 170–181, 2017.
DOI: 10.1007/978-3-319-58187-3 13

Solving the Bin-Packing Problem by Means of Tissue P System 171

most popular P systems architectures: tissue P systems. Such model was firstly
presented in [16,17] by placing the cells in a general graph instead of a tree-like
graph as in the cell-like model. Under the hypothesis P�=NP, Zandron et al.
[33] established the limitations of P systems that do not use membrane division
concerning the efficient solution of NP-complete problems.

From this premise, Păun et al. presented in [28] the model of tissue P sys-
tems endowed with cell division, which can solve NP-problems. Since then, many
other variants have been presented, e.g., [6,12,13,18,19]. In this way, all solu-
tions of NP-complete problems in membrane computing rely on the possibility
of P systems to obtain exponential space in polynomial time1. Besides creating
an exponential amount of cells in polynomial time, to solve NP-complete prob-
lems, we need to be able to effectively use that workspace, by making objects
interact. For instance, it is known that, even with membrane division, without
polarizations and without dissolution only problems in P may be solved [9].

The cell division proposed in [28] was inspired in the mitosis of alive cells and
consists on the division of one cell into two offsprings. The most extended use of
this type of rules is obtaining an exponential amount of cells in linear time, since
2n cells can be obtained from an initial one after n steps. The ability of tissue P
systems with 2-division for solving NP problems is well known [19], nonetheless,
the study of new problems requires the effort of solving specific designs which,
on the one hand, makes stronger the theory and on the other hand, can provide
new ideas for unsolved problems in membrane computing.

In particular, the design of a solution for the Bin-packing problem by using 2-
division presents important subproblems whose solution can be useful for further
development of the theory. The intrinsic difficulty of this problem explains that
there are very few papers [23,24] devoted to this problem in the vast literature
of solutions for NP problems in membrane computing.

The problem can be stated as follows: Given a set A = {s1, . . . , sn}, a weight
function ω : A → N and two constants b ∈ N, c ∈ N decide whether or not there
exists a partition of A into b subsets such that their weights do not exceed c. The
traditional strategy for designing a solution of an NP-problem has a first stage
where an exponential amount of cells is created and each feasible candidate to
be a solution is placed into one of the exponential amount of available cells.
In the Bin-packing problem, this generation of feasible candidates consists on
considering all the possibilities for distributing the n objects among the b bins.
This means that bn feasible candidates should be encoded in the corresponding
multisets and placed into bn different cells.

The 2-division proposed in [28] fits perfectly when the exponential growth of
the number of candidates is on basis 2, as in the SAT problem (e.g., [2,7]) or
the Partition problem [5,8] or even on basis 3 by performing a new division on

1 Such solutions are technically correct, but, of course, the exponential generation of
new working space has evident limits from a practical point of view. Any practical
implementation of P systems solving NP-problems with physical support only could
solve small instances of the problem.

172 H.A. Christinal et al.

one of the offsprings, as in the 3-COL problem [4]. In our case, the problem is
different, since the number of necessary membranes depends on the parameter b.
In this way, the designed family of tissue P systems must be able to build bn

membranes in polynomial time on b and n for each b and n by using 2-division.
This leads us to solve two subproblems: The first one is place each of the n

objects in one of the b bins (if the distribution condition of objects is satisfied).
This means that we need to represent each of the symbols in {0, . . . , b−1} with a
2-division process for each object si with i ∈ {1, . . . , n}. And the second problem
is to implement such distribution of n objects, one for each object in the set A.
In the next sections, we explain the details of the corresponding solutions.

The paper is organized as follows. In Sect. 2, the formal description of the used
model of P systems is recalled. Section 3 is devoted to the main ideas related to
recognizer P systems, the framework for solving decision problems. Our solution
is presented in Sect. 4 and the paper ends with some conclusions and hints for
future work.

2 Tissue P Systems with Cell Division

In the first definition of the model of tissue P systems [16,17] the membrane
structure did not change along with the computation. Based on the biological
mitosis, Păun et al. presented in [28] a tissue P system model endowed with
2-division is one of the most used and well-known P system models nowadays.
We briefly recall their syntax and semantics.

Formally2, a tissue P system with cell division of degree q ≥ 1 is a tuple of
the form

Π = (Γ, E , Σ,w1, . . . , wq,R, iin, iout),

where:

1. Γ is a finite alphabet, whose symbols will be called objects.
2. E ⊆ Γ is the alphabet of the environment.
3. Σ ⊂ Γ is the input alphabet.
4. w1, . . . , wq are strings over Γ .
5. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈{0, 1, 2, . . . , q}, i �= j, u, v∈Γ ∗.
(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ .

6. iin, iout ∈ {0, 1, 2, . . . , q} are the input and output labels, respectively.

A tissue P system with cell division of degree q ≥ 1 can be seen as a set of q
cells (each one consisting of an elementary membrane) labelled by 1, 2, . . . , q. We
shall use 0 as the label of the environment, and iin and iout denote, respectively,
the input and output regions (which can be a region inside a membrane or the
environment).

2 The reader is supposed to be familiar with the basic concepts of membrane comput-
ing. See [29] for details.

Solving the Bin-Packing Problem by Means of Tissue P System 173

The communication rules determine an implicit net of channels, where the
nodes are the cells and the edges indicate if it is possible for pairs of cells to
communicate directly. This is a dynamic graph, in which new nodes can be
produced by the application of division rules. Note also that the connections
only depend on the label of the cell, and thus when a cell is divided, the two new
cells will have identical connections. Nevertheless, this graph is just an intuition,
we shall not handle it explicitly along the computations.

The strings w1, . . . , wq describe the multisets of objects placed in the q cells
of the system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells i and j such
that u is contained in cell i and v is contained in cell j. The application of
this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells.

The division rule [a]i → [b]i[c]i can be applied over a cell i containing object a.
The application of this rule divides this cell into two new cells with the same
label. All the objects in the original cell are replicated and copied in each of the
new cells, with the exception of the object a, which is replaced by the object b
in the first new cell and by c in the second one.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way. In one step, each object in a membrane can only be used
for one rule (non-deterministically chosen when there are several possibilities),
but any object which can participate in a rule of any form must do it, i.e., in
each step we apply a maximal set of rules. This way of applying rules has only
one restriction when a cell is divided, the division rule is the only one which is
applied for that cell in that step; the objects inside that cell do not evolve in
that step.

3 Recognizer P Systems

The notion of recognizer P system is general enough to cover many P system
variants. Such P systems are a well-known model of P systems which are basic
for the study of complexity aspects in membrane computing. Roughly speaking,
a recognizer P system is a P system which takes some information as input and
outputs a distinguished object which can be considered as a decision on the
input. Of course, some other conditions are imposed, but the general framework
does not depend on the type of rules or the membrane structure of the P system.

Next, we briefly recall some basic ideas related to them. A detailed descrip-
tion, is given in [21,22]. In recognizer P systems all computations halt; there
are two distinguished objects traditionally called yes and no (used to signal the
result of the computation), and exactly one of these objects is sent out to the
environment (only) in the last computation step.

Let us recall that a decision problem X is a pair (IX , θX) where IX is a
language over a finite alphabet (the elements are called instances) and θX is
a predicate (a total Boolean function) over IX . Let X = (IX , θX) be a deci-
sion problem. A polynomial encoding of X is a pair (cod, s) of polynomial time

174 H.A. Christinal et al.

computable functions over IX such that for each instance w ∈ IX , s(w) is a
natural number representing the size of the instance and cod(w) is a multiset
representing an encoding of the instance. Polynomial encodings are stable under
polynomial time reductions.

Let R be a class of recognizer P systems with input membrane. A decision
problem X = (IX , θX) is solvable in a uniform way and polynomial time by a
family Π = (Π(n))n∈N of P systems from R – we denote this by X ∈ PMCR –
if the family Π is polynomially uniform by Turing machines, i.e., there exists a
polynomial encoding (cod, s) from IX to Π such that the family Π is polynomi-
ally bounded with regard to (X, cod, s); this means that there exists a polynomial
function p such that for each u ∈ IX every computation of Π(s(u)) with input
cod(u) is halting and, moreover, it performs at most p(|u|) steps; the family Π
is sound and complete with regard to (X, cod, s).

4 The Solution to Bin Packing Problem

In this section we provide a family of tissue P systems with 2-division which
solves the Bin-packing problem in polynomial time. Before giving the formal
description of the P system, we provide some hints about how the problem has
been solved.

As pointed out in the Introduction, each of the n objects can potentially be
placed on one of the b bins. In such way, bn candidates (and hence bn cells) should
be built in polynomial time by using 2-division. The solution needs the pre-
process of the parameter m, where m is the least integer which satisfies b ≤ 2m,
i.e., m = 	log2 b
. In the same way, by generating 2m cells with m 2-division
steps we can assure that at least b cells are generated. The idea of considering
a number of logarthmic steps is not new in the design of membrane computing
solutions (see, e.g., [3]). Nevertheless, the mere generation of b (or more) cells are
not enough. Each object si of the set A = {s1, . . . , sn} must be placed in one of
the bins {0, . . . , b − 1}, where each membrane encoding a different bin has been
generated by 2-division. In this way, the natural encoding of each number in
{0, . . . , b − 1} is performed by a binary representation Cm−1Cm−2 . . . C0 where3

Ci ∈ {Ti, Fi} for i ∈ {0, . . . , b − 1}. In this way, each 2-division will produce
an object Ti or Fi in each offspring and the value i will control the number of
the division in the iterative process of building 2m cells. This process will be
controlled by the set of rules R1 (see below).

From the 2m generated cells, only b of them are necessary in our solution.
The remaining 2m−b cells (if any) will remain inactive. This means that we only
need rules for control b different values {0, . . . , b − 1}. Such values are originally
represented via a binary representation by using m objects. Nonetheless, for the
sake of readability, in our solution we propose to take a decimal representation
by a unique symbol object bj with j ∈ {0, . . . , b − 1}. The trick for recovering
such notation is controlled by the set of rules R2 (see below).
3 Ti and Fi stand for True and False in the i− th position and, as usual, represents

1 and 0 in a binary representation.

Solving the Bin-Packing Problem by Means of Tissue P System 175

The key idea of such set of rules consists of keeping in each cell of label
1 an object bk which acts as an accumulator in the index i (with b0 at the
beginning). The different values of the binary representation Cm−1Cm−2 . . . C0

with Ci ∈ {Ti, Fi} arrive sequentially to the cell:

– If the object Ti arrives and k + 2i does not exceed the value b − 1 then,
the objects Ti and bk are traded against a new object bk+2i . If k + 2i ≥ b,
then the corresponding membrane does not encode one of the possible bins
(enumerated from 0 to b − 1) and it stays inactive during the remaining
computation steps.

– If the object Fi arrives, nothing is added to the accumulator and the object
bk does not change.

Bearing in mind these considerations, the proposed solution can be split in to
the following stages:

– Generation and Calculation stage: In this stage the bn candidates for solution
are generated (each of the n objects in A = {s1, . . . , sn} can go to one of the
b bins). For each si, 2m + 3 steps are performed and the number of steps in
this stage is O(m · n).
During the generation stage, the process of assigning an object si to a bin
is performed n times. After each assignment, the free capacity of the corre-
sponding bin (represented by objects pj) is decreased in an amount equal to
the weight w(si) if it is possible. This decrement is performed by the set of
rules R4 which send pairs of objects representing unit of weights and units
of free capacity to the environment. If there is no free capacity enough for
such assignment, some objects representing weights will not be sent to the
environment.

– Checking stage: This stage is performed in parallel in the all bn cells which
represent candidates (let us recall that the 2m−b cells extra generated in each
construction process keep inactive). This stage consists on checking if all the
objects representing weights have been sent to the environment. If there is
no such objects in the corresponding cell, then the candidate placed in such
membrane represents a solution to the Bin-packing problem. Otherwise, if
there is one or more object in the cell, then the assignment of objects to cells
does not satisfy the restriction and it is not a solution to the problem.

– Output stage: Finally, the output stage controls that only one object yes or
only one object no is sent to the output cell in the last step of computation.

Each instance of the Bin-packing Problem is stated by a set of n objects,
A = {s1, . . . , sn}, a set of weights ω(A) = {ω(s1), . . . , ω(sn)} and two constants
b ∈ N (the number of bins) and c ∈ N (the capacity). We propose a family of
tissue P systems with 2-division which solves the Bin-packing Problem where
each tissue P system of the family depends on the parameters n, b and c. For the
sake of simplicity, we will consider a pre-computed extra parameter m = 	log2 b

which only depends on b. Let us notice that the set of objects A = {s1, . . . , sn}
is encoded as the multiset s

w(s1)
1 , . . . , s

wsn
n , i.e., the weight of the object si is

176 H.A. Christinal et al.

represented in its multiplicity. Such multiset is placed in the input cell in the
initial configuration and the computation starts.

Each tissue P system of the family is of the following form4:

Π(n, b, c,m) = (Γ, E , Σ,w1, w2, R, iin, inout)

where:

– Γ is the alphabet of objects used in the computation

Γ = E ∪ Σ ∪ {A0, b0, d1, z1, x0} ∪ {pi : i ∈ {0, . . . , b − 1}}
– E is the set of objects initially placed in the environment.

E = {yes, no, g, f0, f1, y0, y1,#}
∪ {Ti, ki ki, ri : i ∈ {0, . . . , m − 1}}
∪ {Ai : i ∈ {0, . . . , m}}
∪ {bi : i ∈ {0, . . . , b − 1}}
∪ {qi, hi : i ∈ {0, . . . , b − 1}}
∪ {zi, di : i ∈ {2, . . . , n}}
∪ {xi : i ∈ {1, . . . , n ∗ (2m + 3) + 1}
∪ {ki,j : i ∈ {0, . . . , b − 1} j ∈ {0, 1}}

– Σ = {si : i ∈ {1, . . . , n}} is the input alphabet.
– Initially, the initial configuration has only two cells. The initial multisets are

w1 = A0 b0 d1 zc1 pc0 . . . pcb−1 and w2 = x0,1

– The following are the set of rules R :
R1. [Ai]1 → [Ti]1[Fi]1 : 0 ≤ i ≤ m − 1
These rules control the generation of new membranes by division. Since
b ≤ 2m, it is guaranteed that after m applications of 2-division rules, the
number of membranes is enough for encoding b bins. Each of the offsprings
has an object Ti or Fi of the corresponding number in binary encoding.
Cm−1Cm−2 . . . C0 with Ci ∈ {Ti, Fi}.

R2. (1, Ti bk−2i/bk Ai+1, 0) : 0 ≤ i ≤ m − 1, 0 ≤ k ≤ min{b − 2i, 2i} − 1
(1, Fi/Ai+1, 0) : 0 ≤ i ≤ m − 1

As pointed out above, the binary number Cm−1Cm−2 . . . C0 with Ci ∈ {Ti, Fi}
is not stored in such form in the cells. Each cell with label 1 has an object
bk (initially b0) which can be considered as an accumulator for the decimal
representation of the number Cm−1Cm−2 . . . C0 with Ci ∈ {Ti, Fi}. If a new
object Ti arrives to the cell by the application of a division rule, then Ti and
bk are traded against one object bk+2i if bk+2i is the index of one of the bins,

4 As usual, we omit the parameters in the description for the sake of readability.

Solving the Bin-Packing Problem by Means of Tissue P System 177

i.e., if it belongs to {0, . . . , b − 1}. Let us remark that the application of the
rule also brings an object Ai+1 and the cell is prepared for a new division. If
k + 2i ≥ b, then the rule is not applied, the object Ai+1 is not brought into
the cell and the cell remains inactive. If an object Fi arrives, the accumulator
bk is not modified.

R3. (1, Am br/qcr kr,0) : r ∈ {0, . . . , b − 1}
When the object Am arrives to a cell 1, the calculus of br has finished. This
means that the corresponding object si from A = {s1, . . . , sn} is placed on
the r − th bin. In order to help in the subtraction of the weight of the object
si from the free capacity of the bin r, c objects qr are brought into the cell.
An object kr,0 is also brought for technical reasons.

R4. (1, zi si qr pr/#) : i ∈ {1, . . . , n} r ∈ {0, . . . , b − 1}
This set of rules is the key in the calculus of the total weigh associated to
each bin. Its usage exploits the massive parallelism of P systems and the
maximal application of the rules. Let us notice that in each application of
the rule only one object of the four kind zi, si, qr and pr is sent out of the
cell, so the number of applications correspond to the minimum of amounts of
these objects. Since there are exactly c objects of type zi and qr, the number
of applications corresponds to the minimum between the multiplicities of si
and pr. Let us remark that if the weight of the object si (encoded in their
multiplicity) is greater than the free capacity of the r-th bin (encoded in the
multiplicity of objects pr) then at least one object si will remain in the cell
after the application of these rules.

R5. (1, kr,0/hc
r, kr,1, 0)

(1, hr qr/#, 0)

}
for r ∈ {0, . . . , b − 1}.

These rules can be considered as cleaning rules. After the subtraction per-
formed by the set of rules R4, the leftovers objects qr (if any) must be sent
out of the cells with label 1 in order to avoid undesired interactions. This is
the technical reason of the objects kr,0 and kr,1.

R6. (1, kr,1 di/A0 b0 zci+1 di+1, 0) : i ∈ {1, . . . , n − 1} r ∈ {0, . . . , b − 1}
(1, kr,1 dn/f0 g, 0) : r ∈ {0, . . . , b − 1}

When the object kr,1 appears in a cell with label 1, the cleaning process
performed by the set of rules R5 has finished and the cell is prepared for
starting the process of a new object si+1 This set of rules R6 brings the
objects A0 and b0 for starting newly the division together with the objects
zi+1 and di+1. When all the objects si, i ∈ {1, . . . , n} are processed, the
objects f0 and g are brought into the cells 1 which remain active.

R7. (2, xi/xi+1, 0) : 0 ≤ i ≤ n ∗ (2m + 3) − 1
(2, xn∗(2m+3)/xn∗(2m+3)+1, y0, 0)

The objects xi in the cell 2 act as a counter. When it reaches xn∗(2m+3)+1, a
new object y0 is also brought into the cell 2 for controlling the output process.

178 H.A. Christinal et al.

R10. (1, g si/#, 0) : i ∈ {1, . . . , n}
(1, f0/f1, 0)
(1, f1 g/xn∗(2m+3)+1, 2)
(2, y0/y1, 0)
(2, g, y1/yes, 0)
(2, xn∗(2m+3)+1 no, 0)

These rules control the output process. Two cases must be considered:
• Case 1: In all the active cells with label 1, there is at least one object si.

This means that all the possible assignment of objects to bins exceed the
capacity. In this case, a rule (1, g si/#, 0) is applied in such membranes
and g is sent out to the environment, the rule (1, f1 g/xn∗(2m+3)+1, 2) is
not applied and finally, the rule (2, xn∗(2m+3)+1 no, 0) sends an object no
to the cell with label 2.

• Case 2: There is at least one of the cells with label 1, where there are no
objects si. This means that all the assignment of objects encoded in such
membrane does not exceed the capacity and it represents a solution for the
problem. In this case, a rule (1, g si/#, 0) is not applied in such membrane
and, in the next step of computation, the rule (1, f1 g/xn∗(2m+3)+1, 2)
is applied, the object g is sent to the cell with label 2 and finally, the
application of (2, g, y1/yes, 0) sends an object yes to the output cell.

– Finally, the input cell has label 1, iin = 1 and the output cell has label 2,
iout = 2.

4.1 A Short Overview

Next, we provide some hints on the computation. The initial configuration C0

contains an object A0 which starts the division process, an object b0 which works
as an accumulator initially set to 0 and objects d1 and z1, where the index a
denotes that the first object in the set A = {s1, . . . , sn} will be process at the
beginning. According to the process described above, the cells with label 1 are
divided and, in parallel, the counted br is increased. The configuration C2m

contains an object Am and an object br encoding that the first object of the set
A is placed into the r-th bin. In the next three steps, rules from the sets R3, R4
and R5 perform the subtraction between the weight of the processed object and
the free capacity of the r-th bin (represented by the multiplicity of the object
pr). The first set of rules from R6 is also applied and in C2m+3 the corresponding
cells 1 contain new objects A0 and b0 and objects d2 and z2, denoting that the
second object of the set A will be processed.

This sequence of 2m + 3 steps is repeated n times (as many times as objects
in A). In the configuration Cn∗(2m+3) all the objects in A have been processed
and the objects f0 and g appear. Only three steps later, in output stage with two
possible cases described above, the halting configuration Cn∗(2m+3)+3 is reached.

4.2 Computational Resources

Each tissue P system of the family described above depends on three parameters:
n, the number of object to distribute among the bins; c, the capacity of the bins;

Solving the Bin-Packing Problem by Means of Tissue P System 179

and b the number of the bins. For the sake of simplicity, the description also
includes a forth parameter m, which only depends on the parameter b, m =
	log2 b
. Each P system Π(n, b, c,m) processes all the input set A = {s1, . . . , sn}
regardless the weight function ω : A → N.

Initially, the P system has only two membranes and the number of objects of
the alphabet is O(nm + b). The set of rules is O(nb) and the number of steps of
the computation is O(nm). Let us remark the special case of rules of the set R2.
In spite of a potential exponential number of cells can be built, not all of them
encode an object br with r ∈ {0, . . . , 2m−1}, which would lead to an exponential
amount of initial resources. In our solution, we only deal with objects bi with
i ∈ {0, . . . , b − 1}, so the initial amount of resources are polynomial function on
the input parameters.

5 Conclusions

The complexity theory of membrane computing is full of interesting open prob-
lems. The most important is the Păun conjecture [14,20,27] which ask if a con-
crete P system model is able to solve or not NP-problems in polynomial time.
The question has been open for more than ten years and even today nobody
knows the answer. If the answer is that NP-problems can be solved in the such
model, a simple way to prove is by providing the design of a family which effec-
tively solves an NP-complete problem. In this way, or it is impossible to find such
design or we need to make new efforts and finding new techniques for designing
solutions to NP-problems which allow us to get the skills for solving the conjec-
ture. In this research line, the design presented in this paper can help to make
the theory stronger and provide new ideas for dealing with open questions.

Finally, let us remark the important role of the definition for recognizer P
systems we have used in this paper. On the one hand, this definition is quite
restrictive, since only one object yes or no is sent to the environment in any
computation. In the literature one can find other definitions of recognizer P
systems and therefore other definitions of what it means to solve a problem in the
framework of Membrane Computing. On the second hand, the synchronization of
the processes in the different membranes plays a key role in the design presented
in this paper, but in the literature one can find some solutions to NP-problems
in time free membrane computing models (e.g., [15,30–32]). The study of the
complexity classes in membrane computing deserves a deep revision under these
new definitions.

References

1. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC 1971, NY, USA,
pp. 151–158. ACM, New York (1971)

2. Cordón-Franco, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Sancho-
Caparrini, F.: A prolog simulator for deterministic P systems with active mem-
branes. New Gener. Comput. 22(4), 349–363 (2004)

180 H.A. Christinal et al.

3. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.:
A logarithmic bound for solving subset sum with P systems. In: Eleftherakis, G.,
Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol.
4860, pp. 257–270. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77312-2 16

4. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.:
A uniform family of tissue P systems with cell division solving 3-COL in a linear
time. Theoret. Comput. Sci. 404(1–2), 76–87 (2008)

5. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.:
A linear time solution to the partition problem in a cellular tissue-like model. J.
Comput. Theor. Nanosci. 7(5), 884–889 (2010)

6. Freund, R., Păun, G., Pérez-Jiménez, M.J.: Tissue P systems with channel states.
Theoret. Comput. Sci. 330(1), 101–116 (2005)

7. Gazdag, Z., Kolonits, G.: A new approach for solving SAT by P systems with active
membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A.,
Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 195–207. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-36751-9 14

8. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A fast P system
for finding a balanced 2-partition. Soft. Comput. 9(9), 673–678 (2005)

9. Gutiérrez–Naranjo, M.A., Pérez–Jiménez, M.J., Riscos–Núñez, A., Romero–
Campero, F.J.: On the power of dissolution in P systems with active membranes.
In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS,
vol. 3850, pp. 224–240. Springer, Heidelberg (2006). doi:10.1007/11603047 16

10. Hartmanis, J.: Gödel, von Neumann and the P =? NP problem. In: Rozenberg, G.,
Salomaa, A. (eds.) Current Trends in Theoretical Computer Science - Essays and
Tutorials, World Scientific Series in Computer Science, vol. 40, pp. 445–450. World
Scientific, Singapore (1993)

11. Jaffe, A.M.: The millennium grand challenge in mathematics. Not. Am. Math. Soc.
53(6), 652–660 (2006)

12. Krishna, S.N., Lakshmanan, K., Rama, R.: Tissue P systems with contextual and
rewriting rules. In: PĂun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.)
WMC 2002. LNCS, vol. 2597, pp. 339–351. Springer, Heidelberg (2003). doi:10.
1007/3-540-36490-0 22

13. Lakshmanan, K., Rama, R.: On the power of tissue P systems with insertion and
deletion rules. In: Alhazov, A., Mart́ın-Vide, C., Păun, G. (eds.) Preproceedings
of the Workshop on Membrane Computing, pp. 304–318, Tarragona, 17–22 July
2003

14. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating ele-
mentary active membranes - with an application to the P conjecture. In: Membrane
Computing - 15th International Conference, CMC 2014, Prague, Czech Republic,
20–22 August 2014, Revised Selected Papers, pp. 284–299 (2014)

15. Liu, X., Suo, J., Leung, S.C.H., Liu, J., Zeng, X.: The power of time-free tissue P
systems: attacking NP-complete problems. Neurocomputing 159, 151–156 (2015)

16. Mart́ın-Vide, C., Pazos, J., Păun, G., Rodŕıguez-Patón, A.: A new class of symbolic
abstract neural nets: tissue P systems. In: Ibarra, Oscar H., Zhang, Louxin (eds.)
COCOON 2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002). doi:10.
1007/3-540-45655-4 32

17. Mart́ın-Vide, C., Pazos, J., Rodŕıguez-Patón, A.: Tissue P systems. Theoret. Com-
put. Sci. 296(2), 295–326 (2003)

18. Pakash, V.: On the power of tissue P systems working in the maximal-one mode.
In: Alhazov, A., Mart́ın-Vide, C., Păun, G. (eds.) Preproceedings of the Workshop
on Membrane Computing, pp. 356–364, Tarragona, 17–22 July 2003

http://dx.doi.org/10.1007/978-3-540-77312-2_16
http://dx.doi.org/10.1007/978-3-642-36751-9_14
http://dx.doi.org/10.1007/11603047_16
http://dx.doi.org/10.1007/3-540-36490-0_22
http://dx.doi.org/10.1007/3-540-36490-0_22
http://dx.doi.org/10.1007/3-540-45655-4_32
http://dx.doi.org/10.1007/3-540-45655-4_32

Solving the Bin-Packing Problem by Means of Tissue P System 181

19. Pan, L., Pérez-Jiménez, M.J.: Computational complexity of tissue-like P systems.
J. Complex. 26(3), 296–315 (2010)

20. Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A., Gutiérrez-Naranjo, M.A.,
Rius-Font, M.: On a partial affirmative answer for a Păun’s conjecture. Int. J.
Found. Comput. Sci. 22(1), 55–64 (2011)

21. Pérez-Jiménez, M.J.: An approach to computational complexity in membrane com-
puting. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A.
(eds.) WMC 2004. LNCS, vol. 3365, pp. 85–109. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-31837-8 5

22. Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, A., Woods, D.: Com-
plexity - membrane division, membrane creation. In: Păun et al. [29], pp. 302–336

23. Pérez-Jiménez, M.J., Romero-Campero, F.J.: An efficient family of P systems for
packing items into bins. J. Univ. Comput. Sci. 10(5), 650–670 (2004)

24. Pérez-Jiménez, M.J., Romero-Campero, F.J.: Solving the binpacking problem by
recognizer P systems with active membranes. In: Păun, G., Riscos-Núñez, A.,
Romero-Jiménez, Á., Sancho-Caparrini, F. (eds.) Second Brainstorming Week on
Membrane Computing, pp. 414–430. Fénix Editora, Sevilla (2004)

25. Pérez-Jiménez, M.J., Romero-Jiménez, Á., Sancho-Caparrini, F.: Complexity
classes in models of cellular computing with membranes. Nat. Comput. 2(3), 265–
285 (2003)

26. Păun, G.: Membrane Computing: An Introduction. Springer, Berlin (2002)
27. Păun, G.: Further twenty six open problems in membrane computing. In: Third

Brainstorming Week on Membrane Computing, pp. 249–262. Fénix Editora,
Sevilla, Spain (2005)

28. Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Tissue P systems with cell divi-
sion. Int. J. Comput. Commun. Control 3(3), 295–303 (2008)

29. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

30. Song, B., Song, T., Pan, L.: A time-free uniform solution to subset sum problem
by tissue P systems with cell division. Math. Struct. Comput. Sci. 27(1), 17–32
(2017)

31. Song, T., Luo, L., He, J., Chen, Z., Zhang, K.: Solving subset sum problems by
time-free spiking neural P systems. Appl. Math. Inf. Sci. 8(1), 327–332 (2014)

32. Song, T., Maćıas-Ramos, L.F., Pan, L., Pérez-Jiménez, M.J.: Time-free solution
to SAT problem using P systems with active membranes. Theoret. Comput. Sci.
529, 61–68 (2014)

33. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P
systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J.
(eds.) UMC 2000. DMTCS, pp. 289–301. Springer, London (2000). doi:10.1007/
978-1-4471-0313-4 21

http://dx.doi.org/10.1007/978-3-540-31837-8_5
http://dx.doi.org/10.1007/978-1-4471-0313-4_21
http://dx.doi.org/10.1007/978-1-4471-0313-4_21

Universal Matrix Insertion Grammars
with Small Size

Henning Fernau1, Lakshmanan Kuppusamy2, and Sergey Verlan3(B)

1 Fachbereich 4 – Abteilung Informatikwissenschaften, Universität Trier,
54286 Trier, Germany
fernau@uni-trier.de

2 School of Computer Science and Engineering, VIT University,
Vellore 632 014, India
klakshma@vit.ac.in

3 Laboratoire d’Algorithmique, Complexité et Logique,
Université Paris Est - Créteil Val de Marne, 94010 Créteil, France

verlan@u-pec.fr

Abstract. We study matrix insertion grammars (MIS) towards repre-
sentation of recursively enumerable languages with small size. We show
that pure MIS of size (3; 1, 2, 2) (i.e., having ternary matrices insert-
ing one symbol in two symbol context) can characterize all recursively
enumerable languages. This is achieved by either applying an inverse
morphism and a weak coding, or a left (right) quotient with a regu-
lar language or an intersection with a regular language followed by a
weak coding. The obtained results complete known results on insertion-
deletion systems from DNA computing area.

Keywords: Insertion grammars · Matrix insertion grammars · Recur-
sively enumerable sets · Homomorphism · Regular intersection and
quotient

1 Introduction

Insertion grammars were initially known as semi-contextual grammars intro-
duced by Galiukschov [8], as opposed to context-sensitive grammars (rewrit-
ing nonterminals in given contexts) and Marcus contextual grammars (contexts
are adjoined to given strings). In an insertion grammar, strings are inserted
in given contexts. Beside the motivation from the linguistics, such grammars
have a biological inspiration. As pointed out in [26], the process of mismatched
annealing of DNA strands can be seen as an insertion or a deletion of a string
in a specified context. A similar process happens in the case of the RNA edit-
ing [1], where the uracil base U is inserted or deleted in some left context. These
observations led to the intense study of insertion-deletion systems (considering
insertion and deletion operations together) in the framework of DNA comput-
ing [13,15,19,20,27,28].

c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 182–193, 2017.
DOI: 10.1007/978-3-319-58187-3 14

Universal Matrix Insertion Grammars with Small Size 183

There are several related models using a similar principle of insertion or dele-
tion of a string in a specified context. We cite guided-insertion systems [2] used
to model RNA editing, leftist grammars [21] used to model accessibility problems
in protection systems, restarting automata [12] used to model the analysis by
reduction and the insertion operation from [10] introduced as a generalization of
the concatenation (and which corresponds to a context-free insertion grammar).

We consider here matrix insertion grammars, where the insertion rules are
given in a matrix form and if a matrix is chosen for application in a derivation,
then all the rules of the matrix are applied in the given order. This model was
first considered in [18]. Related models like matrix insertion-deletion systems and
graph-controlled insertion-deletion systems were considered in [3,4,16,17,24,26].

Given an insertion grammar, the size of the system is defined as (i, l, r), where
i is the maximal length of the insertion string of all rules and l (r, respectively)
is the maximal length of the left (right, respectively) context of all rules.

In the literature, there are several results related to characterization of recur-
sively enumerable languages using insertion grammars. As observed in [26], inser-
tion grammars form a subclass of context-sensitive languages. So, in order to
obtain a characterization of recursively enumerable languages additional squeez-
ing mechanisms are used. Traditionally, an inverse morphism and a weak coding
are used, as well as an intersection with a (sub-)regular language, followed by a
weak coding. Another used possibility is the left or right quotient with a regular
language.

In [26], it is shown that insertion grammars of size (4, 7, 6) can generate
any recursively enumerable language (using an inverse morphism and a weak
coding). In [22], this result was improved to the size (3, 5, 4). The size was further
decreased to (3, 3, 3) in [14,23]. A related result was obtained in [25], where
it is shown that any recursively enumerable language can be obtained as the
intersection of a Dyck language (with arbitrarily many parenthesis types) with
the language generated by a context-free insertion grammar of size (3, 0, 0).

In [16], graph-controlled insertion grammars were considered, where rules are
grouped into components. A characterization of the recursively enumerable lan-
guages was obtained with rules of size (2, 2, 2), grouped into three components.

We consider insertion grammars along with matrix control. Alongside the
above discussed size of an insertion grammar, the length parameter is added,
which refers to the maximal number of rules of any matrix. We show a charac-
terization of the recursively enumerable languages by matrix insertion grammars
with size (3; 1, 2, 2) by applying an inverse morphism and weak coding to the gen-
erated language. We also show that the same result can be obtained by using an
intersection with a regular language from LOC(2), the family of locally testable
languages of size 2, and a weak coding, as well as using a left/right quotient with
a regular language from LOC(2).

2 Definitions

We introduce the basic notations and definitions that are necessary for under-
standing the paper. Given a alphabet V (finite set of symbols), let V ∗ denote

184 H. Fernau et al.

the set of all strings over V , i.e., the free monoid generated by V ; the operator
symbol · (for concatenation) is mostly omitted. For a string x ∈ V ∗, we denote
the length of x by |x| and the empty string is written as λ. If not explicitly stated
otherwise, the notion of a morphism refers to a (homo)morphism mapping from
the free monoid over some alphabet to the free monoid over some (other) alpha-
bet. Weak codings are special morphisms h : V ∗ → W ∗, where W ⊆ V and the
restriction of h to W is the identity, and h(x) = λ for x ∈ V \W . We write |x|W
if we first apply the weak coding h : V ∗ → W ∗ to x ∈ V ∗ and then the length
function | · |. Following [6], let LOC(2) denote the class of strictly two-testable
languages, a quite restricted form of regular languages. L ∈ LOC(2), L ⊆ T ∗, if
there is a triple (P, I, S), with P, I, S ⊆ T 2, such that w ∈ L iff the prefix of
length two of w is in P , the suffix of length two of w is in S, and all factors (or
infixes) of length two of w lie in I.

We now discuss the normal form for type-0 grammar needed in our proofs.
Following [5,11,24], based on [9], a type-0 grammar G = (N,T, S, P) is said to

be in special Geffert normal form, or SGNF for short, if the set of non-terminals
N decomposes as N = N ′ ∪ N ′′, N ′ ∩ N ′′ = ∅, where N ′′ = {A,B,C,D} and
N ′ is the set of non-terminals containing S, S′ and some other auxiliary non-
terminals, and if it only has two (non-context-free) erasing rules, AB → λ and
CD → λ, and several context-free rules of one of the following forms:

X → bY, where X,Y ∈ N ′, b ∈ T ∪ N ′′,X �= Y,

X → Y b, where X,Y ∈ N ′, b ∈ N ′′,X �= Y,

S′ → λ.

Moreover, it may be assumed without loss of generality that, for any two
rules X → w and U → w in P , where the first symbol of w is different from
S or S′, we have U = X. We remark that the terminals are generated at the
left-hand side of the string. This observation is necessary for proving the main
theorem later. Moreover, the generation of a string using a grammar in SGNF
is performed in two stages. During the first stage, only context-free rules can
be applied; in the second stage, only context-sensitive deletion rules are applied.
The transition between the stages is done by the rule S′ → λ. All sentential
forms are always of form T ∗{A,C}∗(N ′ ∪ {λ}){C,D}∗.

We are now going to define the crucial notions of this paper.

Definition 1. Let V be an alphabet. An insertion rule over V is given by a triple
r = (u, x, v), where u, x, v ∈ V ∗. We can associate to r the derivation relation
⇒r⊆ V ∗ × V ∗ by defining, for y, z ∈ V ∗, y ⇒r z iff there are y1, y2 ∈ V ∗ such
that y = y1uvy2 and z = y1uxvy2.

In terms of rewriting rules, this is equivalent to specify uv → uxv.

Definition 2. A pure insertion grammar is described by a triple γ = (V,A,R),
where V is an alphabet, A ⊆ V ∗ is the finite set of axioms, R is a finite set of
insertion rules of form ri = (ui, xi, vi), 1 ≤ i ≤ t. We define ⇒γ :=

⋃
r∈R ⇒r

and write ⇒∗
γ for the reflexive transitive closure of ⇒γ . Now, L(γ) := {w ∈ V ∗ |

∃z ∈ A (z ⇒∗
γ w)}.

Universal Matrix Insertion Grammars with Small Size 185

Definition 3. A pure matrix insertion grammar with matrices of size at most
n is described by a triple Π = (V,A,M), where

– V is an alphabet,
– A ⊆ V ∗ is the finite set of axioms,
– M is a finite set of sequences of rules, also called matrices, of the form m =

[r1, . . . , rn(m)], where each ri = (ui, xi, vi), 1 ≤ i ≤ n(m) ≤ n is an insertion
rule over V ; n(m) is also called the length of m.

For a matrix m = [r1, . . . , rn(m)], we will also write m.i = ri. Let RΠ = {m.i |
m ∈ M, 1 ≤ i ≤ n(m)} ⊆ 2V ∗×V ∗

. Recall that (2V ∗×V ∗
, ◦, id) forms a monoid.

Consider the monoid morphism given by m.i �→⇒m.i that allows to identify
sequences of rules with some derivation relation, hence defining in particular
⇒m for m ∈ M. This way, we can set ⇒Π :=

⋃
m∈M ⇒m and write ⇒∗

Π for the
reflexive transitive closure of ⇒Π . Now, L(Π) := {w ∈ V ∗ | ∃z ∈ A(z ⇒∗

Π w)}.
The descriptional complexity measures of a matrix insertion system Π =

(V,A,M) are defined by the parameters (n; i, l, r), also called the size of Π,
where

n = max{n(m) : m ∈ M}, i = max{|x| : (u, x, v) ∈ RΠ},
l = max{|u| | (u, x, v) ∈ RΠ}, r = max{|v| | (u, x, v) ∈ RΠ}.

The family of languages generated by matrix insertion grammars of size (n; i, l, r)
(and sometimes also the grammar family itself) is denoted by MIS(n; i, l, r).

The next example shows the power of matrix insertion grammars compared
to (pure) insertion grammars.

Example 1. The language L1 = {anban | n ≥ 1} can be generated by the matrix
insertion grammar Π1 = ({a, b}, {aba},m1 = [(λ, a, b), (b, a, λ)]). Starting from
the axiom aba, one can apply m1 repeatedly, which will introduce every time one
a to the left of b and one a to the right of b. It is easy to see that L(Π1) = L1.
Note that L1 cannot be generated by any insertion grammar [26]. The size of
the grammar Π1 is (2; 1, 1, 1). ��

3 Main Results

Before presenting the proof of the main result, we would like to discuss the
mark-and-migration technique introduced in [26] to obtain the computational
completeness result. This technique is based on simulating a type-0 grammar, in
some special normal form. The main idea is that the deletion of a non-terminal
symbol X is simulated by adding special marker $ to its left (in [26] two mark-
ers #$ were used). Such a sequence can be later easily filtered by an inverse
morphism. The contexts of the insertion rules verify that symbol X from the
sequence $X is not considered for any grammar derivation anymore, so it is
treated as non-existing. We will also call a symbol X with a $ to its left a dead
symbol. Such an approach works perfectly for the simulation of context-free rules.

186 H. Fernau et al.

However, for context-sensitive rules like AB → λ (and CD → λ), it may happen
that symbols A and B (likewise, C and D) are separated by a sequence of dead
symbols. To address this issue, the “migration” of B towards the left until it is
placed right to its partner A is performed (likewise, D is moved towards left until
it is placed right to its partner C). During this migration, a substring $XB is
transformed to Bw1$Xw2$B, with w1, w2 ∈ ($Z)∗, with Z being an alphabet of
some additional symbols. The iteration of this process allows to obtain an adja-
cent pair of symbols A and B (likewise, C and D is paired) that can be further
used for the simulation of an application of the corresponding rule AB → λ, by
turning the neighboring symbols A, B into dead symbols (similarly with C, D).

As shown in [14,23], contexts of size 3 allow to implement the aforementioned
technique. Two stages are used for the migration of B over $X: “jumping” over
$X and marking B as dead. When decreasing the size of contexts down to 2, an
additional constraint is added – it is not possible anymore to “jump” over the
sequence $X, as there is no sufficient context. We solve this problem by splitting
the corresponding “jump” into two sub-stages, so finally we need three stages to
perform this operation. In order to ensure the integrity of the operation (that
inserts only one symbol), matrices of size 3 are used. During the first two stages
$XB is transformed to $B̄1$X$B, where the sequence $B̄1 denotes that we are
in the process of migrating B to the left. Next, $B̄1$X$B is transformed to
B$∇$̄B̄2$̄B̄1$X$B, where ∇ is a new separator symbol. Hence, the migration of
B over $X was performed. However, such a migration introduced the sequence
$̄B̄i, 1 ≤ i ≤ 2. A symmetrical group of rules allows to perform a migration over
sequences $̄X̄.

Now we are ready to state the main result of the paper.

Theorem 1. For each recursively enumerable language L there exists a mor-
phism h, a weak coding g and a language L1 ∈ MIS(3; 1, 2, 2) such that L =
g(h−1(L1)).

Proof. Let G = (N ′ ∪N ′′, T, P, S) be a type-0 grammar in SGNF. We construct
the following matrix insertion grammar Π = (V,A,M). We define the alphabet
V as follows (we assume that all added symbols are new and do not belong to
N ′ ∪ N ′′ ∪ T).

V = N ′ ∪ N ′′ ∪ T ∪ {¢,KAB ,KCD} ∪ {x, x̄ | x ∈ {∇, $, B1, B2,D1,D2}}.

The set of axioms is defined as A = {¢¢S}.
Consider following sets:

L = T ∪ {A,C, ¢},

N = N ′ ∪ N ′′ ∪ {KAB ,KCD,∇, B1, B2,D1,D2},

N̄ = {B̄1, D̄1, B̄2, D̄2, ∇̄},

F = L2 ∪ {$X | X ∈ N} ∪ {$̄Ȳ | Ȳ ∈ N̄}.

We assume that ¯̄X = X.

Universal Matrix Insertion Grammars with Small Size 187

The rules M of the matrix insertion system are given as follows:

– For any rule X → bY ∈ P , we add the following matrix to M:

m1.α = [(α, Y,X), (Y, $,X), (α, b, Y)], α ∈ L.

– For any rule X → Y b ∈ P , we add the following matrix to M:

m2.α = [(α, Y,X), (Y, $,X), (αY, b, $)], α ∈ L.

– Rule S′ → λ is simulated by the following matrix:

m3.α = [(α, $, S′)], α ∈ L.

– The move of symbols B and D to the left of the sequence $X, where X ∈ N ,
is performed using following matrices (Z ∈ {B,D} and α ∈ F):

m4 = [($, Z̄1,XZ), (Z̄1X, $, Z), ($Z̄1, $,X$)].
m5.α = [($, Z̄2, Z̄1), (α,Z, $Z̄2), ($,∇, Z̄2)].

m6 = [(∇, $̄, Z̄2Z̄1), ($̄Z̄2, $̄, Z̄1)].

– The move of symbols B and D to the left of the sequence $̄Ȳ , where Ȳ ∈ N̄ ,
is performed using following matrices (Z ∈ {B,D} and α ∈ F):

m′
4 = [($̄, Z1, Ȳ Z), (Z1Ȳ , $, Z), ($̄Z1, $̄, Ȳ $)].

m5′.α = [($̄, Z2, Z1), (α,Z, $̄Z2), ($̄, ∇̄, Z2)].
m′

6 = [(∇̄, $, Z2Z1), ($Z2, $, Z1)].

We remark that matrices m′
4 −m′

6 are very similar to m4 −m6 (basically, the
·̄ operator is applied to most of the symbols in the contexts and the insertion
string).

– Rules AB → λ and CD → λ are simulated by the following matrices, where
(Z,Z ′) ∈ {(A,B), (C,D)} and α ∈ L. As no deletion takes place in the
matrix insertion grammar, the factor ZZ ′ is replaced by ZKZZ′$Z ′ and
hence marked as dead.

m7.α = [(αZ,KZZ′ , Z ′), (ZKZZ′ , $, Z ′), (α, $, ZKZZ′)],
m8 = [(Z, $,KZZ′)].

Finally, let h : T ∪ {¢} ∪ N ∪ N̄ → V ∗ be the morphism defined by

h(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

$x, x ∈ N ,

$̄x, x ∈ N̄ ,

x, x ∈ T,

¢, x = ¢.
and g : T ∪ {¢} ∪ N ∪ N̄ → T be the weak coding defined by

g(x) =

{
x, x ∈ T,

λ, otherwise.

188 H. Fernau et al.

Now we show that L(G) = g(h−1(L(Π)).
We start with the inclusion L(G) ⊆ g(h−1(L(Π)). In the matrix rules mi.α,

whenever α is not a matter for discussion, we refer the matrix without the α. By
using matrices m1 − m3, Π simulates all derivations of the first stage of G, the
sequence $X meaning that the symbol X is erased. Now in order to simulate the
second stage, matrices m8 and m9 are used, allowing to erase adjacent symbols
AB or CD. Because of the derivation in the first stage, the first pair A,B or
C,D is separated by a sequence of $X. Thus, we need to move the symbols B
and D (in order of their appearance) to the left of $S′ and to match them with
their partner A or C. Matrices m4 − m6 allow to move the symbols Z ∈ {B,D}
to the left over a sequence $X, X ∈ N . In fact, in m4, we copy the Z to be
Z̄1 and in m5 we copy the Z̄1 to Z (see m5.2) and place it to the left of $. The
dummy symbol ∇ is introduced between $ and Z̄ (see m5.3) in order to avoid
the repetition of using m5 again and $̄ is introduced to the left of Z̄ to mark Z̄
as dead (see m6). Thus, an application of matrices m4 − m6 to a (sub)string
$XZ derives the following:

$XZ ⇒m4 $Z̄1$X$Z ⇒m5 Z$∇Z̄2Z̄1XZ ⇒m6 Z$∇$̄Z̄2$̄Z̄1$X$Z.

Since such a derivation introduces a pair of symbols $̄Z̄i, 1 ≤ i ≤ 2, it should be
also necessary to be able to move B or D over such a barred pair. This is done
using matrices m′

4 − m′
6, which work in a symmetrical manner:

$̄Ȳ Z ⇒m′
4

$̄Z1$̄Ȳ $Z ⇒m′
5

Z$̄∇̄Z2Z1$Ȳ $Z ⇒m′
6

Z$̄∇̄$Z2$Z1$Ȳ $Z.

We can notice from the two derivations above that $ is placed to the left of the
symbols of N ′ ∪ {B,D,∇} (except for the copied Z) and $̄ is placed to the left
of the symbols of N̄ . The purpose of placing $ and $̄ and ∇ is to inactivate the
symbols N ′ ∪N̄ temporarily in the substring and these symbols have to wait till
some other B or D are copied from the right to get the substring to one of the
forms $XZ or $∇Z or $̄X̄Z or $̄∇̄Z for activation.

Using the above discussed rules, the symbol B or D is moved up to A or C
that can be seen to the left of $S′ (or up to the last matched pairs). Now the
task is to match B or D with its partner and then place $ in between symbols
to mark them dead. The partner matching is done by introducing a KZZ′ in
between the pair Z and Z ′ and then $ is placed between the symbols (so that
when the next Z is copied from the right, it can move across these symbols,
too). The application of matrices m7 and m8 for the matched string ZZ ′ is
shown below:

αZZ ′ ⇒m7 α$ZKZZ′$Z ′ ⇒m8 αZKZZ′$Z ′, α ∈ L.

Now, having the morphism and weak coding defined above, with the help of
inverse morphism, we can see that L(G) ⊆ g(h−1(L(Π)).

In the following, we prove the converse inclusion, g(h−1(L(Π)) ⊆ L(G). We
will show that no additional, unintended words can be generated.

Universal Matrix Insertion Grammars with Small Size 189

Consider following regular languages:

L0 = {$X | X ∈ N} ∪ {$̄Ȳ | Ȳ ∈ N̄}.
L1 = L0 {B,D, λ}.

L2 = {$Z̄1, $̄Z1 | Z ∈ {B,D}}.

L3 = {$∇Z̄2Z̄1, $̄∇̄Z2Z1 | Z ∈ {B,D}}.
L4 = {$ZKZZ′ | (Z,Z ′) ∈ {(A,B), (C,D)}}.
Lb = {¢¢}T ∗ {A,C}∗

Le = (L1 ∪ L2 ∪ L3)∗

L5 = Lb N ′{B,D, λ} Le

L6 = Lb (L4 ∪ {λ}){B,D, λ} Le

The computation in Π follows the two computational stages from SGNF. The
transition between the stages is performed by the matrix m3, corresponding to
the simulation of the rule S′ → λ. However, during both stages the total or
partial migration to the left of symbols B and D can be performed. However,
neither of the matrices m7 or m8 can be applied without prior application of m3.

We claim that during the first stage (using matrices m1, m2, but also m4−m6,
m′

4−m′
6) the string is of a form given by L5, i.e., ¢¢S ⇒∗ w implies that w ∈ L5.

We will prove this statement by induction. The axiom ¢¢S is contained in L5.
Let w1 ∈ L5 and w1 ⇒mk

w2, 1 ≤ k ≤ 7. We will consider the case of each
matrix in the following to prove the induction step.

Recall that in SGNF, only one non-terminal from N ′ is present during the
first phase. This corresponds exactly to the N ′ part of the L5 expression. All
other non-terminals from N ′ are preceded by a $ symbol, marking them as dead.

The Case of m1: By the remark above, the unique site for the application of the
first rule from the matrix is the leftmost non-terminal X from N ′ which has the
required context LX (below α ∈ Lb and β ∈ {B,D, λ}Le):

α X β ⇒m1.1 α Y X β ⇒m1.2 α Y $X β ⇒m1.3 α bY $X β

We recall that according to the Geffert normal form construction, the terminals
are generated before A and C. Hence, b ∈ T implies that |α|{A,C} = 0.

The sites of the application of the second and third rules of the matrix: Y X,
X,Y ∈ N ′ and LY are also unique. It can be easily seen that the resulting string
belongs to L5.

The Case of m2: As in the previous case, the matrix can be applied to the
leftmost non-terminal from N ′ (the context LX). Next, the contexts Y X, X,Y ∈
N ′ and LY $ are unique in the string, which proves the assertion (below α ∈ Lb

and β ∈ {B,D, λ}Le):

α X β ⇒m2.1 α Y X β ⇒m2.2 α Y $X β ⇒m2.3 α Y b$X β

The Case of m4: Clearly, for a string w1 ∈ L5, if the string $XZ,X ∈ N , Z ∈
{B,D} is a factor of w1 then it is a factor of Le. But this implies that this string

190 H. Fernau et al.

is a factor of L1 (i.e., there could not be the situation where $XZ is not the
prefix of L1Lk, with 1 ≤ k ≤ 3).

The string can have several sites matching $XZ (because there can be several
copies of B and D generated using the rules from m2). Consider one of them.
Then we can have the following derivation (below, α ∈ LbN

′{B,D, λ}Le and
β ∈ Le):

α$XZβ ⇒m4.1 α$Z̄1XZβ ⇒m4.2 α$Z̄1X$Zβ ⇒m4.3 α$Z̄1$X$Zβ.

We claim that this is the only possible derivation. Indeed, the application of m4.1
yields to the insertion of Z̄1, producing the substring Z̄1XZ, which is used as a
context for rule m4.2. Clearly, this context is unique (no other place from Le can
have 3 consecutive symbols not containing the symbols $ or $̄). The application
of m4.2 produces the substring $Z̄1X$, which is also unique in the string (L2

should be followed by $ or $̄). Observe that the resulting string is from L5.

The Case of m5: Using similar arguments as above, we deduce that a factor $Z̄1

can be only in the L2 part of Le. Now consider the following derivation (below,
α ∈ LbN

′{B,D, λ}Le and β ∈ Le):

α$Z̄1β ⇒m5.1 α$Z̄2Z̄1β ⇒m5.2 αZ$Z̄2Z̄1β ⇒m5.3 αZ$∇Z̄2Z̄1XZβ.

The use of m2.2 implies that α = α′α′′, with α′ ∈ LbN
′{B,D, λ}Le and α′′ ∈ L1.

We claim that this is the only possible derivation. Indeed, the application of m5.1
yields to the insertion of Z̄2, producing the substring $Z̄2, which is used as a
context for rules m5.2 and m5.3. Clearly, this context is unique (no other place
from Le can have such a sequence). We also remark that the application of m5.2
requires F as its left context. Since F ∩Le = L1, this application guarantees the
context L1 at the left of $Z̄2. Hence, the resulting string is from L5.

The Case of m6: Using similar arguments as above, we deduce that a factor $Z̄1

can be only in the L3 part of Le. Now consider the following derivation (below,
α ∈ LbN

′{B,D, λ}Le and β ∈ Le):

α$∇Z̄2Z̄1β ⇒m6.1 α$∇$̄Z̄2Z̄1β ⇒m6.2 α$∇$̄Z̄2$̄Z̄1β.

We claim that this is the only possible derivation. Indeed, the application of
m6.1 yields to the insertion of $ producing the substring $Z̄2Z̄1, which is used
as a context for rule m6.2. It can be easily seen that this context is unique (the
sequence Z̄2Z̄1 can be only present in L3, but it does not have symbol $ in front
of it). Finally, we remark that the resulting string is from L5.

The Case of m′
4 − m′

6: The corresponding matrices are similar to m4 − m6

(changing $ to $̄ and Zk to Z̄k), 1 ≤ k ≤ 2, so similar arguments hold.
This concludes the inductive proof for the claim concerning stage one. We

now consider the transition from stage one to stage two.

The Case of m3: The application of this rule (m3) on a string from L5 yields a
string in L6.

Universal Matrix Insertion Grammars with Small Size 191

We are now in the discussion of stage two. As before we show by induction
that any string in L6 using matrices m7,m8 and m4 − m6,m

′
4 − m′

6 also yields
a string in L6. We do not discuss the case of the last six matrices, as it is the
same as in the discussion above, because the presence of a symbol from N ′ was
immaterial.

The Case of m7: Using similar arguments as above, we deduce that a factor ZZ ′

can be obtained only when the L4 part is absent. Now consider the following
derivation (below, α ∈ Lb and β ∈ Le):

α ZZ ′ β ⇒m7.1 α ZKZZ′Z ′ β ⇒m7.2 α ZKZZ′$Z ′ β ⇒m7.3 α $ZKZZ′$Z ′ β.

We claim that this is the only possible derivation. Indeed, the application of
m7.1 yields to the insertion of KZZ′ producing the substring ZKZZ′Z ′, which
is used as a context for rule m7.2. Clearly, this context is unique. Next, the
context LZKZZ′ is used for rule m7.3. Because of L, it can only be present at
the beginning of the string, which concludes the argument.

The Case of m8: Using similar arguments as above, we deduce that a factor
ZKZZ′ can be obtained only when the L4 part is present. Now, consider the
following derivation (below, α ∈ Lb and β ∈ Le):

α $ZKZZ′ β ⇒m8.1 α ZKZZ′ β

Hence, all strings that can be obtained in Π and that can be arguments of h−1

are of form ¢¢wL0, where w ∈ L(G). This concludes the proof. ��
As in [14,26] we show that the inverse morphism and the weak coding can

be replaced by a right (left) quotient with a regular language.

Theorem 2. For each recursively enumerable language L there exists a language
L1 ∈ MIS(3; 1, 2, 2) and a language RL1 ∈ LOC(2) such that L = L1R

−1
L1

.

Proof. Let G be a grammar in SGNF such that L(G) = L. The construction
from Theorem 1 shows that for any w ∈ L the word ¢¢wL0 is produced in Π.
It can be easily verified that L0 ∈ LOC(2). Now we will show that the leading
symbols ¢¢ can be omitted. Indeed, let L′

2 = {w ∈ L | |w| ≤ 2} and let

F = {wSw′ | S ⇒∗ wSw′, w ∈ T ∗, |w| ≥ 2 and there is no derivation
S ⇒∗ uSu′ ⇒∗ wSw′with u ∈ T ∗ and |u| ≥ 2}

Observe that F is finite. Then it is clear that by replacing the axiom ¢¢S by
the axiom set L′

2 ∪ F the corresponding insertion grammar Π ′ will generate
the words wL0, w ∈ L. Hence, L = L(Π ′)L−1

0 . Notice that the language L0 is
dependent on the number of non-terminal symbols from Π and hence from G.

��
Following [6,7] we consider another squeezing mechanism consisting of an

intersection with a regular language followed by a weak coding.

192 H. Fernau et al.

Theorem 3. For each recursively enumerable language L there exists a language
L1 ∈ MIS(3; 1, 2, 2), a language RL1 ∈ LOC(2) and a weak coding g such that
L = g(L1 ∩ RL1).

Proof. Consider the construction from Theorem1. In addition to the matrices
of M, we add the matrices mt.α.β = [(α, $, β)] to M, where α, β ∈ T ∪ {¢}.

We also replace the axiom by $¢¢S and denote the obtained system Π ′. Let
R = {$X | X ∈ N ∪ L} ∪ {$̄Ȳ | Ȳ ∈ N̄}. Clearly, R allows to test if the
computation in Π ′ arrived at the end. Hence, it is sufficient to take a weak
coding keeping terminals only to obtain the result. ��

4 Conclusion

We considered insertion grammars with matrix control and we have shown that
MIS(3; 1, 2, 2) is computationally complete using different squeezing mechanisms.
We introduced a novel technique based on the mark-and-migration technique
that allowed us to perform the migration using contexts of size two.

A natural open question is whether a similar result can be obtained using
only binary matrices. Another open question concerns the power of insertion
grammars with contexts of size 2: can our technique be also helpful in this case?

References

1. Benne, R. (ed.): RNA Editing: The Alteration of Protein Coding Sequences of
RNA. Series in Molecular Biology. Ellis Horwood, Chichester (1993)

2. Biegler, F., Burrell, M.J., Daley, M.: Regulated RNA rewriting: modelling RNA
editing with guided insertion. Theoret. Comput. Sci. 387(2), 103–112 (2007)

3. Fernau, H., Kuppusamy, L., Raman, I.: Descriptional complexity of graph-
controlled insertion-deletion systems. In: Câmpeanu, C., Manea, F., Shallit, J.
(eds.) DCFS 2016. LNCS, vol. 9777, pp. 111–125. Springer, Cham (2016). doi:10.
1007/978-3-319-41114-9 9

4. Fernau, H., Kuppusamy, L., Raman, I.: Generative power of matrix insertion-
deletion systems with context-free insertion or deletion. In: Amos, M., Condon, A.
(eds.) UCNC 2016. LNCS, vol. 9726, pp. 35–48. Springer, Cham (2016). doi:10.
1007/978-3-319-41312-9 4

5. Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-
deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings Twelfth
Annual Workshop on Descriptional Complexity of Formal Systems, DCFS. EPTCS,
vol. 31, pp. 88–98 (2010)

6. Fujioka, K.: Morphic characterizations of languages in Chomsky hierarchy with
insertion and locality. Inf. Comput. 209(3), 397–408 (2011)

7. Fujioka, K.: Morphic characterizations with insertion systems controlled by a con-
text of length one. Theoret. Comput. Sci. 469, 69–76 (2013)

8. Galiukschov, B.S.: Semicontextual grammars (in Russian). In: Matematika Logica
i Matematika Linguistika, pp. 38–50. Kalinin University (1981)

9. Geffert, V.: Normal forms for phrase-structure grammars. RAIRO Informatique
théorique et Applications/Theor. Inform. Appl. 25, 473–498 (1991)

http://dx.doi.org/10.1007/978-3-319-41114-9_9
http://dx.doi.org/10.1007/978-3-319-41114-9_9
http://dx.doi.org/10.1007/978-3-319-41312-9_4
http://dx.doi.org/10.1007/978-3-319-41312-9_4

Universal Matrix Insertion Grammars with Small Size 193

10. Haussler, D.: Insertion languages. Inf. Sci. 31(1), 77–89 (1983)
11. Ivanov, S., Verlan, S.: Random context and semi-conditional insertion-deletion sys-

tems. Fundamenta Informaticae 138, 127–144 (2015)
12. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.

(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995). doi:10.
1007/3-540-60249-6 60

13. Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing,
formal languages: characterizing recursively enumerable languages using insertion-
deletion systems. In: Rubin, H., Wood, D.H. (eds.) DNA Based Computers III.
DIMACS Series in Discrete Mathematics and Theretical Computer Science, vol.
48, pp. 329–338 (1999)

14. Kari, L., Sośık, P.: On the weight of universal insertion grammars. Theoret. Com-
put. Sci. 396(1–3), 264–270 (2008)

15. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

16. Krassovitskiy, A.: On the power of insertion P systems of small size. In: Mart́ınez
del Amor, M.A., Orejuela-Pinedo, E.F., Păun, G., Pérez-Hurtado, I., Riscos-Núñez,
A. (eds.) Seventh Brainstorming Week on Membrane Computing, vol. II, pp. 29–43.
Fénix Editora, Sevilla (2009)

17. Kuppusamy, L., Mahendran, A.: Modelling DNA and RNA secondary structures
using matrix insertion-deletion systems. Int. J. Appl. Math. Comput. Sci. 26(1),
245–258 (2016)

18. Marcus, M., Păun, G.: Regulated Galiukschov semicontextual grammars. Kyber-
netika 26(4), 316–326 (1990)

19. Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-
deletion systems. Theoret. Comput. Sci. 330(2), 339–348 (2005)

20. Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-sided
contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664,
pp. 205–217. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74593-8 18

21. Motwani, R., Panigrahy, R., Saraswat, V., Ventkatasubramanian, S.: On the decid-
ability of accessibility problems (extended abstract). In: Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, STOC, pp. 306–315.
ACM (2000)

22. Mutyam, M., Krithivasan, K., Reddy, A.S.: On characterizing recursively enumer-
able languages by insertion grammars. Fundamenta Informaticae 64(1–4), 317–324
(2005)

23. Onodera, K.: A note on homomorphic representation of recursively enumerable
languages with insertion grammars. Trans. Inf. Process. Soc. Japan 44(5), 1424–
1427 (2003)

24. Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theoret. Comput. Sci. 456,
80–88 (2012)

25. Păun, G., Pérez-Jiménez, M.J., Yokomori, T.: Representations and characteriza-
tions of languages in Chomsky hierarchy by means of insertion-deletion systems.
Int. J. Found. Comput. Sci. 19(4), 859–871 (2008)

26. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Para-
digms. Springer, New York (1998)

27. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion
systems. Nat. Comput. 2(4), 321–336 (2003)

28. Verlan, S.: On minimal context-free insertion-deletion systems. J. Autom. Lang.
Comb. 12(1–2), 317–328 (2007)

http://dx.doi.org/10.1007/3-540-60249-6_60
http://dx.doi.org/10.1007/3-540-60249-6_60
http://dx.doi.org/10.1007/978-3-540-74593-8_18

Deduplication on Finite Automata and Nested
Duplication Systems

Da-Jung Cho, Yo-Sub Han(B), and Hwee Kim

Department of Computer Science, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu,
Seoul 03722, Republic of Korea

{dajungcho,emmous,kimhwee}@yonsei.ac.kr

Abstract. Motivated by work on bio-operations on DNA sequences, a
string duplication system S consists of an initial string over Σ and a set
of duplication functions that iteratively generate new strings from exist-
ing strings in the system. As the main result we introduce the concept of
a deduplication—a reverse function of duplication—on an nondetermin-
istic finite-state automaton (NFA) and propose the deduplication oper-
ation on an NFA that transforms a given NFA to a smaller NFA while
generating the same language in the string duplication system. Then,
we introduce a nested duplication, which is similar to tandem duplica-
tion but depends on the information of the nested duplication in the
previous step. We propose an NFA construction for an arbitrary nested
duplication system, analyze its properties and present an algorithm that
computes the system capacity.

Keywords: Bio-inspired operations · Tandem duplication · String
duplication systems · Capacity · Automata theory

1 Introduction

A tandem duplication—a subsequence of a DNA sequence is placed next to the
original position of a DNA sequence—occurs during DNA replication, indeed,
more than half of the human genome consists of repetitive sequences [4]. Tan-
dem duplications are well-studied in both DNA computing and formal language
theory. From a formal language framework, a tandem duplication of a string xyz
generates a new string xyyz, where x, y, z ∈ Σ∗. Many researchers [1–3,7,8,11,
13,15–17,20] considered the duplication operation and investigated their proper-
ties under formal language theory. Searls [17] introduced a formal representation
of DNA recombination events. Dassow et al. [2,3] and Ito et al. [7] considered the
duplication operation and investigated their closure properties of languages in
the Chomsky hierarchy. Several researchers [8,11,13,14] considered (uniformly-)
bounded duplication, which has an restriction on the length of duplicated fac-
tor and investigated closure properties with several conditions on the size of
alphabet and length of duplicated factor. Both Mart́ın-Vide and Păun [15] and
Mitrana and Rozenberg [16] investigated the generative power of context-free
c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 194–205, 2017.
DOI: 10.1007/978-3-319-58187-3 15

Deduplication on Finite Automata and Nested Duplication Systems 195

and context-sensitive duplication grammars. Recently, Cho et al. [1] defined an
extended variant of duplication and investigated their closure properties.

From an information theory viewpoint, Jain et al. [9] and Farnoud et al. [5]
investigated the string duplication system that generates all strings obtained by
applying the duplication function to an initial string a finite number of times,
and computed the exact or bounded capacity of duplication systems considering
several different alphabets, initial string and length of duplication. They sug-
gested a concept of the deduplication operation, which is a reverse function of a
duplication operation, on a regular expression.

A1

A2

A3

A1 A2 A2 A3 A1 A3

y y

x z

(a) A partial tandem duplication (b) An internal tandem duplication

x y zA

Fig. 1. Given a gene sequence A = A1A2A3, (a) an internal tandem duplication dupli-
cates a subsequence y generating A1xyyzA3, internal to A2, (b) a partial duplication
duplicates a junction A2 to the end of A2.

In molecular biology, a tandem duplication is classified to a partial tandem
duplication (PTD) or an internal tandem duplication (ITD) [18]. Figure 1 shows
an example of partial and internal tandem duplications on a gene. The inter-
nal tandem duplication has an restriction on the position of duplicated factor,
and it motivates us to define a nested duplication, which can be viewed as a
generalization of an internal tandem duplication. A nested duplication considers
the position and the size of the duplication segment of the previous duplica-
tions while general tandem duplications occur independently. Figure 2 shows
that when duplication segments overlap each other, the size of nested duplica-
tion segments decreases over time whereas tandem duplication segments do not.
Note that the size of a nested duplication segment is dependent on the nested
duplication segment of the previous duplication step.

We can compute the capacity of a language L using Perron-Frobenius the-
ory [6] if L is regular, or Chomsky-Schützenberger enumeration theorem [10] if
L is unambiguously context-free. However, the language generated from a tan-
dem duplication system turns out to be context-free in general cases [14]. On
the other hand, a nested duplication system with an arbitrary seed and (fixed)
duplication lengths always gives a regular language L even with the expanded
cases of seed and duplication length.

We suggest the concept of deduplication on NFAs that reduces the size of an
NFA while maintaining the same resulting language from the duplication system
and give a formal construction, which was implicit in the previous research [9].
Then, we suggest an NFA construction that recognizes the language generated
from a nested duplication system, and prove that there exists the case when
the constructed NFA is the minimal DFA. We also propose an algorithm that
computes the capacity of a nested duplication system using the construction.

196 D.-J. Cho et al.

(b) overlapping nested duplications on w

k

h ≤ k

k

l

(a) overlapping tandem duplications on w

w

w1
t

w2
t

w

w1
n

w2
n

i ≤ h

w3
t w3

n
m

Fig. 2.An example of overlapping tandem and nested duplications on an initial string w
of length n. Let wi

t be the string generated by the ith tandem duplication from w, and
wi

n be the string generated by the ith nested duplication from w, where i = {1, 2, 3}. (a)
For a string w, a tandem duplication segment of length k is duplicated w1

t , where k ≤ n.
The second and third duplications, w2

t and w3
t , show that a duplication segment that

overlaps the previous duplication segment is not dependent to the size of previously
duplicated segment. (b) A nested duplication segment of length k is duplicated w1

n,
where k ≤ n. The second and the third nested duplications have a smaller fragment
size than the first and the second duplications, respectively. In other words, let h, i be
the size of the second and the third duplication fragment, respectively. Then, 1 ≤ i ≤
h ≤ k ≤ n.

2 Preliminaries

The reader may refer to Wood [19] for more knowledge in finite automata and
formal languages. The symbol Σ denotes a finite alphabet, Σ∗ is the set of
strings over Σ, |w| is the length of a string w ∈ Σ∗ and λ is the empty string.
A string x = x[1]x[2] · · · x[n] ∈ Σn is a finite sequence of n symbols over x[i] ∈ Σ.
We denote a string x = x[1] · · · x[n] by x[1 : n] according to indices of each
characters of x. For two strings x = x[1 : n] and y = y[1 : m] we denote the
catenation of x and y by x[1 : n]·y[1 : m]. We use wn to denote the string resulted
from catenation of n consecutive w’s. We refer to a string x ∈ N

n as a natural
number array, or simply an array, where N is the set of non-negative integers.
A nondeterministic finite-state automaton (NFA) is a tuple M = (Q,Σ, δ, q0, F),
where Q is the finite set of states, Σ is the alphabet, δ ⊆ Q × Σ → 2Q is the
multivalued transitions function, q0 ∈ Q is the initial state and F ⊆ Q is the
set of final states. Note that we can regard states as vertices and δ(p, a) = q as
a labeled directed edge between two vertices p and q. Let |Q| be the number of
states in Q and |δ| be the number of transitions in δ. Then, the size of M is
|M | = |Q|+ |δ|. Given a transition δ(p, a) = q, we say that q has an in-transition
and p has an out-transition. A string w is accepted by A if there is a labeled path
from q0 to a final state and we call this path an accepting path. The language
accepted by M is L(M) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅}. The automaton M
is a deterministic finite-state automaton (DFA) if δ is a single valued partial
function. A sequence q0, q1, · · · , qn of states denotes a path, and a path has a
cycle if it has an occurrence of the same state twice in the path. We define the
size of a cycle by the number of distinct states in the cycle.

Deduplication on Finite Automata and Nested Duplication Systems 197

1 i

n n

1 k

n n nn

1 i 1 k

u v w

1 k

n n nn

u v v w

A nested
duplication k k

x

d

y

d

n n nnk k

u′ v′ w′

1 j 1 j 1 j

u′ v′ w′v′

z

dn n k k

y

d j j n n
A nested

duplication

Fig. 3. An example of nested duplications on x = uvw, where |u| = i, |v| = k, |x| = n,
and d[1 : n] = n · · · n. A substring v = x[i+1 : i+k] is duplicated if d[i+1] ≥ k,
which implies that x = uvw transforms into y = uvvw and the corresponding array d
is updated as d[i+1 : 2k] = k2k. From y = u′v′w′, a nested duplication of length j
occurs on the position i′ + 1 of y, where |u′| = i′, |v′| = j and d[i′ + 1] ≥ j. Then, the
corresponding array d[i′+1 : i′+j] is updated to j2j .

A tandem duplication function D
tan
i,k is defined as follows:

D
tan
i,k (x) =

{
uvvw for x = uvw, |u| = i, |v| = k,
x otherwise.

Note that D
tan
i,k (x) allows substring of length k starting at position i + 1 to be

duplicated next to its original position. Similarly, Dtan
≤k allows substring of length

at most k to be duplicated.
We propose a new duplication function called the nested duplication. A nested

duplication function has two inputs—a string x to duplicate and an array d
indicating the duplication depth of each character in the string (See Fig. 3 for
an example). The function D

nes
i,k is defined as follows:

D
nes
i,k (x, d) =

⎧⎪⎪⎨
⎪⎪⎩

(uvvw, d[1 : |u|] · |v|2|v| · d[|u|+|v|+1 : |x|])
for x = uvw, |u| = i, |v| = k,
d[j] ≥ |v| for |u| + 1 ≤ j ≤ |u| + |v|,
(x, d) otherwise.

A string duplication system consists of three tuples S = (Σ, s, τ), where
s ∈ Σ∗ is a finite length string called seed, an initial string of finite length, and
τ is the set of rules that generate new strings from existing strings in the sys-
tem [5]. We call the set of all strings generated by the system S the language
generated by the system, and denote the language by L(S). In the rest of paper,
the nested duplication function D

nes
≤k refers to the rule τ , and the term nested

duplication system refers to the string duplication system over nested duplication
function. We assume that the duplication length array for the seed is initialized
as |s| for all indices. We call a system S = (Σ, s,Dnes

≤k) a bounded system if
k ≤ n. We extend the nested duplication system to a language S = (Σ,L,Dnes

≤k)
that generates all duplicated strings from a given initial language L. Note that
L(Σ, s,Dnes

≤k) ⊆ L(Σ, s,Dnes
≤k). For example, let S1 = ({a, b, c, d}, abcd,Dnes

≤4) and

198 D.-J. Cho et al.

S2 = ({a, b, c, d}, abcd,Dtan
≤4). A string abcdacadacacdabcd is in L(S2) but not

in L(S1). In S2, the system can generate the string by a sequence of duplica-
tions abcd → abcdabcd → abcdacdabcd → abcdacacdabcd → abcdacadacacdabcd.
However, the last duplication is not possible in S1 due to the condition of the
duplication depth array. Namely, the last duplication duplicates a substring of
length 4 within the duplicated substring of length 2, which is not allowed in a
nested duplication system.

The capacity of a duplication system S represents how many strings the
system produces compared to Σn, where n goes to infinity, and it is defined by

cap(S) = lim
n→∞ sup

log|Σ| |S ∩ Σn|
n

.

3 D-Cycle Deduplication on Finite Automata

A duplication (both tandem and nested) on a string w = xyz allows a sub-
string y to be duplicated next to its original position in w and generate a
string w′ = xyyz, where x, y, z ∈ Σ∗. A deduplication of length k is an operation
that transforms a substring yy into y, where |y| = k. Namely, a deduplica-
tion of w′ = xyyz is w = xyz. The operation was defined in various names by
researchers [7,12]. Note that both duplication systems with the same duplication
rule and different seeds w′ and w generates the same language, where |w′| > |w|.
Based on these aspects, a deduplication on a language is defined as follows: Given

a language L1, L1
dd≤k−→ L2 denotes a deduplication on L1 when two duplication

systems with duplication length up to k and two seeds L1 and L2 are same, and
there is a metric S to measure the size of the language such that S(L1) > S(L2).

For instance, L(a+) can be transformed into L(a) by L(a+)
dd≤3−→ L(a) when the

size of the language is measured by the number of states of the minimal DFA
that recognizes the language.

Though a deduplication on a string is straightforward, it is hard to do a
deduplication on infinite languages such as regular languages or context-free
languages. Now, we introduce a special deduplication on an NFA called D-cycle
deduplication that transforms a given NFA to a smaller NFA while generating
the same language in the duplication system by removing cycles in the NFA that
satisfies special conditions. For the following description, we assume that a given
NFA has no λ-transition and all states are reachable. For a cycle C in an NFA,
we call the cycle D-cycle if C satisfies the following conditions:

(i) The cycle C is defined by a sequence of states (qin, q′
1, q

′
2, . . . , q

′
i, qout,

q1, q2, . . . , qj , qin), where i, j ≥ 0. All states except qin and qout have one
in-transition from the previous state and one out-transition to the follow-
ing state. The state qin has more than one in-transition, which implies that
there exists an in-transition from a state outside of the cycle. The state qout
has also more than one out-transition.

Deduplication on Finite Automata and Nested Duplication Systems 199

(ii) There exist positive integers k and l that satisfy the following conditions:
(a) All paths of size k + 1 from qout yield a same set of strings.
(b) All paths of size l + 1 to qin yield a same set of strings.
(c) k + l = j+1.

We are now ready to introduce D-cycle deduplication on an NFA (See Fig. 4
for an example).

Definition 1. Given an NFA M = (Q,Σ, δ, s, F) with a D-cycle (qin, q′
1, q

′
2, . . . ,

q′
i, qout, q1, q2, . . . , qj , qin), we define a D-cycle deduplication by M

D
−1
≤h−→ M ′, where

i + j = h to be

M ′ = (Q \ {q1, q2, . . . , qj}, Σ, {δ(p, σ) → q | p, q /∈ {q1, q2, . . . , qj}}, s, F).

We say that the cycle (qin, q′
1, q

′
2, . . . , q

′
i, qout, q1, q2, . . . , qj , qin) is removed

from M .

qin qoutq′
1 q′

2
1 2 3

1

3

2

1
1

3
2

3

2
q1

q2
q3

q4

1

3

3

1

Fig. 4. An example of a D-cycle (qin, q′
1, q

′
2, qout, q1, q2, q3, q4, qin). All states of the

cycle except qin and qout have one in-transition from the previous state and one out-
transition to the following state. All paths of size 4 from qout yield the same string 132
and all paths of size 3 to qin yield the same string 13. Also, the size of the path from
qout to qin in the cycle is 6. Then, all states and transitions in the dashed line can be
eliminated.

We use S(L(M)) = |M | = |Q| + |δ|. By this measure, it is straightforward
that the size of the automaton is reduced. We now prove that the resulting
automaton generates the same language in the tandem duplication system. Let
Stan

≤h (A) = (Σ,L(A),Dtan
≤h) be the tandem duplication system for an NFA M .

Lemma 1. Given an NFA M = (Q,Σ, δ, s, F) and its deduplication M ′ such

that M
D

−1
≤h−→ M ′, L(Stan

≤h (M)) = L(Stan
≤h (M ′)).

From Lemma 1, we prove that D-cycle deduplication satisfies the conditions
of deduplication on a language. Using D-cycle deduplication, we can reduce the
size of the seed regular language for a tandem duplication system.

200 D.-J. Cho et al.

4 An NFA Construction for a Nested Duplication System

We introduce an NFA construction for a nested duplication system with an arbi-
trary seed and (fixed) duplication lengths. First, we show that the construction
can be applied to a system with a designated set of duplication lengths, not only
for a bounded system. Second, we show that the construction can be applied to
a system with the maximum duplication length greater than the length of the
seed. Then, we give a procedure of computing the capacity of a nested duplica-
tion system.

We first introduce an NFA construction for a nested duplication system
with an arbitrary seed s and duplication length up to k = |s|. For a bounded
nested duplication system S = (Σ, s,Dnes

≤n) where |s| = n, we define an
NFA MS = (Q,Σ, δ, 00, {n0}) as follows: The set of states is defined as Q =
{q = l[1]d[1]l[2]d[2] · · · l[t]d[t] | 1 ≤ t ≤ n, d[1] = 0, d[i] = n − i + 2, l[i] < d[i] for
2 ≤ i ≤ n}, and transitions are defined by the following.

(i) For a pair of states (i−1)0 and i0 where 1 ≤ i ≤ n,
(a) δ((i−1)0, s[i]) = i0.

These transitions make the path for the seed.
(b) δ(20, s[1]) = 10.

This transition makes a cycle of size 2 for the duplication of s[1 : 2].
(c) δ(i0, s[1]) = i01i.
(d) δ(i0(j−1)i, s[j]) = i0ji for 1 ≤ j ≤ i − 2.
(e) δ(i0(i−2)i, s[i−1]) = (i−1)0.

These transitions make a cycle of size i for the duplication of s[1 : i].
(ii) For a state q = l[1]0l[2]d[2] · · · l[t]d[t], let the string y(q) be recursively defined

as follows:
(a) For i = 1, y(q) is initialized as s[1 : l[1]].
(b) While increasing i up to t, let new y(q) be y(q) · y(q)[|y(q)|−d[i]+1 :

|y(q)|−d[i]+l[i]].
For example, if s = abcd and q = 402413, then y(q) = abcdabd.
Then, for an integer d′ ≤ n,

(a) δ(q, y(q)[|y(q)|−d′+1]) = l[1]0l[2]d[2] · · · l[t]d[t]1d′ when d′ < d[t] or t = 1.
(b) δ(l[1]0l[2]d[2] · · · l[t]d[t](j−1)d′ , y(q)[|y(q)|−d′+j]) = l[1]0l[2]d[2] · · · l[t]d[t]jd′

for 2 ≤ j ≤ d′ − 1.
(c) δ(l[1]0l[2]d[2] · · · l[t]d[t](d′−1)d′ , y(q)[|y(q)|]) = q.

These transitions make a cycle of size d′ < d[t] for the duplication of a
string y(q).

(d) δ(q, y(q)[|y(q)|]) = q except for q = 00.
These transitions make a self loop for the duplication of single character.

We give a description for the semantics of the states. For a state q =
l[1]d[1]l[2]d[2] · · · l[t]d[t], t represents the depth of a duplication. For each depth i,
there can be arbitrary many duplications of length d[i], and l[i] represents how
many characters are so far duplicated by the last duplication in depth i. Note
that d[i] > d[i+1] for i > 1, which indicates that the duplication length decreases
as the depth increases. This property indicates that the automaton accepts the

Deduplication on Finite Automata and Nested Duplication Systems 201

language generated from a nested duplication system, not a tandem duplication
system. The first length d[1] is always 0, which indicates the original seed. Once
the construction is given, y(q) is equal to the string that is yielded by the short-
est path from the start state. For a state q, we define the largest duplication
length (LDL) to be the size of the largest simple cycle that includes the state. If
q = l[1]0, then LDL(q) = l[1]+1 except for the start state, where LDL(00) = 0.
In all other cases, LDL(q) = d[t] (See Fig. 5 for an example).

10 20 30 40
a b c d

40133013

40144024

402413

402423

401413

401423

301312 401312

4012

40142312

4014131240241312

40242312

401412

3012

a

a

a

a

a

a

b

b

b

b

c

c

c

c

c

d

d

d

dd

d

d

c

b

b

a
b

c

d
a

a

d

a

a

b

a

c

b

d

c

d
c

b

b

c

d

d

c

ab

d

a

00

4023

402312

cb
c

b

c

d

402412

a

b

a

Fig. 5. An example of an NFA MS = (Q, Σ, δ, 00, {40}) for S = (Σ, abcd,Dnes
≤4). Note

that y(402413) = abcdabd, which is equal to the string that is yielded by the shortest
path from the start state. Also note that LDL(30) = 4 and LDL(401413) = 3.

Theorem 1. For a string s of length n, the NFA MS = (Q,Σ, δ, 00, {n0}) recog-
nizes the language generated by the nested duplication system S = (Σ, s,Dnes

≤n).
Namely, L(MS) = L(S).

Proof. We first prove that if a string x ∈ L(S), then x ∈ L(MS). We start from
the following claim:

Claim. For a state q in Q, let y be a string yielded by a path of length less than
or equal to LDL(q) that ends at q. Then there always exists a cyclic path from
q to q that yields y.

202 D.-J. Cho et al.

We have two observations from the construction: First, for each string y yielded
by a non-cyclic path p of length less than or equal to LDL(q) to q, there always
exists a cyclic path p′ from q to q that yields y. Second, for each string y′ yielded
by a cyclic path pc of length less than or equal to LDL(q) with a state in p,
there always exists a cyclic path p′

c that yields y with a state in p′. From two
observations, we know that the claim holds.

Now, we use induction on the duplication step of x. We add another claim
to the theorem: For a string x, let the path (q0, q1, . . . , q|x|) be the path that
yields x and dx be the duplication length array for x. Then, for all 1 ≤ i ≤ |x|,
dx[i] ≤ LDL(qi).

Base Case. Suppose x = s. It implies that x ∈ L(MS). For all 1 ≤ i ≤ |x|,
dx[i] = LDL(qi) = n.

Inductive Step. Suppose for a string x = uvz ∈ S, x ∈ L(MS) and dx[i] ≤
LDL(qi) for all x with k duplication steps. Now, assume that x′ = uvvz ∈ S
is duplicated from x and v is yielded by a path that ends at the state p. Since
dx[i] ≤ LDL(qi) for all 1 ≤ i ≤ |x|, |v| ≤ LDL(p). Thus, from the previous
claim, we know that there exists a cyclic path from p to p that yields v.
Therefore, x′ = uvvz ∈ L(MS).

Second, we prove that if a string x ∈ L(MS), then x ∈ L(S). For a string x ∈
L(MS), let p be the path that yields x. We recursively generate a series of paths pi
and strings xi as follows: The path p1 is the string generated by removing all
self loops in p, and the path pi is the string generated by removing all cycles of
size i in pi−1. The string xi is yielded by the path pi. From the construction,
it is straightforward that xn = s. Now, let di be an array of size |xi| and dn =
nn. Then, we can successfully duplicate xi from xi+1 in the nested duplication
system S, since i represents the duplication length. Therefore, xi ∈ L(S) for
1 ≤ i ≤ n and x ∈ L(S). ��
Theorem 2. If all characters in a string s of length n are distinct, then the
NFA MS constructed from the nested duplication system S = (Σ, s,Dnes

≤n) is
indeed the minimal DFA with n! + 1 states and enΓ (n, 1) + 1 transitions, where
Γ is the partial Gamma function.

Proof. Let s be a string where s[i] �= s[j] if i �= j. Note that the number of
out-transitions from a state q is equal to LDL(q). Thus, if LDL(p) �= LDL(q),
then p and q are distinct. We also observe that for any simple cycle in MS , all
transitions in the cycle have pairwise distinct labels. Thus, any pair of states
in a simple cycle (with the same LDL) is distinct. Now, suppose there are two
states p and q where LDL(p) = LDL(q), p and q are in a different simple cycle
and p and q are equivalent. Then there should be two paths from p and q that
end at the same state r and yields the same string. Since all characters in s are
pairwise distinct, states before r in two paths should have different LDLs. Then,
there exists two paths from p and q that end at distinct states and yield the
same string. Thus, p and q are distinct.

Deduplication on Finite Automata and Nested Duplication Systems 203

We now compute the number of states and transitions in MS by induction
on a given n. We call the constructed DFA MS(n).

Base Case. For n = 2, |Q| = 3 = 2! + 1 and |δ| = 5 = 2e × 2
e + 1.

Inductive Step. Assume that the statement holds for n = k. For n = k + 1,
there exists one simple cycle of size k +1 in the DFA, where each state in the
cycle has the same topologic structure as MS(k) without 00. Therefore, the
number of the states becomes (k + 1)(k! + 1 − 1) + 1 = (k + 1)! + 1, and the
number of the transitions becomes (k + 1)(ekΓ (k, 1) + 1 − 1) + (k + 1) + 1 =
(k + 1)e(kΓ (k, 1) + 1

e) − (k + 1) + (k + 1) + 1 = (k + 1)eΓ (k + 1, 1) + 1. ��
Theorem 2 shows that there exists a case where MS is the minimal DFA that

recognizes L(S). Note that for all other cases, where there exist i, j such that
w[i] = w[j], MS is an NFA.

The construction of MS for the system S can be generalized to the following
cases:

1. The seed can be given as a finite seed language. Since L is finite, we can
construct NFAs for all strings in L and make an union NFA for S.

2. The bound k can be generalized to any positive integer. When k ≤ |s| and
all characters in a string s of length n are distinct, the NFA MS becomes the
minimal DFA with k!(n = k + 1) + 1 states and ek(n − k + 1)Γ (k, 1) + n −
k + 1 transitions, where n is the length of the seed.

3. The duplication length can be given as a set L of possible duplication
lengths, not an inequality. Suppose ki ≤ n and ki−1 < ki for L = {ki},
2 ≤ i ≤ m = |L|. If all characters in a string s of length n are distinct, the

NFA MS becomes the minimal DFA with (n − km + 1)km
m−1∏
i=1

(ki − 1) +

m−1∑
i=1

⎛
⎝kiαi

i−1∏
j=1

(kj − 1)

⎞
⎠ + k1 − 1 states and km(n − km + 1) +

m−1∑
i=1⎛

⎝ki

⎛
⎝(n − km + 1)km

i−1∏
j=1

(kj − 1) +
i−1∑
j=1

(
kjαj

j−1∏
l=1

(kl − 1)

)
+ αi

⎞
⎠

⎞
⎠ +n−m

transitions, where

αi =

{
1 ifki+1 − ki > 1,

0 otherwise.

Using the construction, we can design an algorithm to compute the capacity
of S. Once the NFA MS is generated, we first construct an equivalent DFA
by the subset construction, and modify the DFA so that the DFA has at most
one transition for every pair of states. This modification can be done by making
copies of states that have multiple in-transitions from a state. From the resulting
DFA, we can compute the capacity of the language recognized by the DFA using
Perron-Frobenius Theory [6,9].

204 D.-J. Cho et al.

Procedure. ComputeCap(s)
1 Construct an NFA MS for S = (Σ, s,Dtan

≤n). /* s is a seed of length n */

2 Convert MS to a DFA M ′, where there exists at most one transition for every
pair of states.

3 Find the maximal connected component in M ′ and compute its adjacency
matrix M.

4 Return the maximum eigenvalue of M.

5 Conclusions

We have suggested the concept of deduplications—removing duplications—in an
NFA and proposed an example of deduplications. Then, we have proposed a new
duplication operation called the nested duplication: The operation is motivated
by the internal tandem duplication phenomenon, which restricts the duplication
length and position according to the previous duplication step. For a nested
duplication system, we proposed an NFA construction that recognizes the sys-
tem, and proved that this construction can be expanded to systems with various
conditions. Using the constructed NFA, we have also proposed a procedure to
compute the capacity of the given nested duplication system.

Although the concept of deduplications in an NFA is proposed, it is still open
to find more duplication conditions applicable in an NFA. Finding deduplication
conditions for other classes of FA, including pushdown automata, is one of the
future works. For the nested duplication system, the tight bound of the size of
the minimal DFA is an open problem. Inspection of subword closure properties
on a nested duplication system is also one of the possible future works.

References

1. Cho, D.-J., Han, Y.-S., Kim, H., Palioudakis, A., Salomaa, K.: Duplications and
pseudo-duplications. Int. J. Unconv. Comput. 12, 145–167 (2016)

2. Dassow, J., Mitrana, V., Paun, G.: On the regularity of duplication closure. Bull.
EATCS 69, 133–136 (1999)

3. Dassow, J., Mitrana, V., Salomaa, A.: Operations and language generating devices
suggested by the genome evolution. Theoret. Comput. Sci. 270(1–2), 701–738
(2002)

4. de Koning, A.J., Gu, W., Castoe, T.A., Batzer, M.A., Pollock, D.D.: Repetitive
elements may comprise over two-thirds of the human genome. PLoS Genet. 7(12),
e1002384 (2011)

5. Farnoud, F., Schwartz, M., Bruck, J.: The capacity of string-duplication systems.
IEEE Trans. Inf. Theory 62(2), 811–824 (2016)

6. Immink, K.: Codes for Mass Data Storage Systems. Shannon Foundation Publish-
ers, Denver (2004)

7. Ito, M., Kari, L., Kincaid, Z., Seki, S.: Duplication in DNA sequences. In: Ito, M.,
Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 419–430. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85780-8 33

http://dx.doi.org/10.1007/978-3-540-85780-8_33

Deduplication on Finite Automata and Nested Duplication Systems 205

8. Ito, M., Leupold, P., Shikishima-Tsuji, K.: Closure of language classes under
bounded duplication. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036,
pp. 238–247. Springer, Heidelberg (2006). doi:10.1007/11779148 22

9. Jain, S., Farnoud, F., Bruck, J.: Capacity and expressiveness of genomic tandem
duplication. In: Proceedings of the 23rd IEEE International Symposium on Infor-
mation Theory, pp. 1946–1950 (2015)

10. Kuich, W., Salomaa, A.: Semirings, Automata and Languages. Springer, New York,
Inc. (1985)

11. Leupold, P.: Languages generated by iterated idempotencies. Ph.D. thesis, Univer-
sity Rovira i Virgili (2006)

12. Leupold, P.: Duplication roots. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.)
DLT 2007. LNCS, vol. 4588, pp. 290–299. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-73208-2 28

13. Leupold, P., Mart́ın-Vide, C., Mitrana, V.: Uniformly bounded duplication lan-
guages. Discret. Appl. Math. 146(3), 301–310 (2005)

14. Leupold, P., Mitrana, V., Sempere, J.M.: Formal languages arising from gene
repeated duplication. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of
Molecular Computing. LNCS, vol. 2950, pp. 297–308. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-24635-0 22

15. Mart́ın-Vide, C., Păun, G.: Duplication grammars. Acta Cybern. 14(1), 151–164
(1999)

16. Mitrana, V., Rozenberg, G.: Some properties of duplication grammars. Acta
Cybern. 14(1), 165–177 (1999)

17. Searls, D.B.: The computational linguistics of biological sequences. Artif. Intell.
Mol. Biol. 2, 47–120 (1993)

18. Swanson, L., Robertson, G., Mungall, K.L., Butterfield, Y.S., Chiu, R., Corbett,
R.D., Docking, T.R., Hogge, D., Jackman, S.D., Moore, R.A., et al.: Barnacle:
detecting and characterizing tandem duplications and fusions in transcriptome
assemblies. BMC Genom. 14(1), 550 (2013)

19. Wood, D.: Theory of Computation. Wiley, New York (1987)
20. Yokomori, T., Kobayashi, S.: DNA evolutionary linguistics, RNA structure model-

ing: a computational approach. In: Proceedings of the 1st International Symposium
on Intelligence in Neural and Biological Systems, pp. 38–45 (1995)

http://dx.doi.org/10.1007/11779148_22
http://dx.doi.org/10.1007/978-3-540-73208-2_28
http://dx.doi.org/10.1007/978-3-540-73208-2_28
http://dx.doi.org/10.1007/978-3-540-24635-0_22

Descrambling Order Analysis in Ciliates

Nazifa Azam Khan(B) and Ian McQuillan

Department of Computer Science, University of Saskatchewan,
Saskatoon, SK, Canada

nak310@mail.usask.ca, mcquillan@cs.usask.ca

Abstract. Certain genera of ciliates undergo a large genomic transfor-
mation, where many segments get rearranged and removed. A topic of
interest is to predict a (partial) order on the rearrangement of segments
to descramble. Similar to phylogenetic analysis, this prediction can be
based on the principle of parsimony, whereby the smallest sequence of
operations is likely close to the actual number. The Oxytricha trifallax
genome is analyzed, providing evidence that multiple parallel recombina-
tion operations occur during descrambling, with alignment of interleaving
segments in a manner that can be captured with the shuffle operation.
Two similar systems involving shuffle are created, an optimal algorithm
for each is created, and executed on the genomic data. One system can
descramble 96.63% of the scrambled micronuclear chromosome fragments
by 1 or 2 applications of shuffle, and every sequence can be descrambled
with at most seven operations.

Keywords: Ciliates · Macronucleus · Micronucleus · Scrambled genes ·
Shuffle · Parsimony

1 Introduction

Ciliated protozoa are a group of unicellular organisms, where each cell has two
types of nuclei; the micronucleus (MIC) and the macronucleus (MAC). When
two cells mate, they exchange haploid micronuclei, destroy their own macronu-
clei, and then develop a new MAC from the genetic material in the new MIC. In
the MIC of stichotrichs (a group of ciliates), less than 5% of the DNA actually
encodes genes, with a large amount of non-coding DNA both between genes,
and also within genes. In contrast, the MAC largely consists of single gene chro-
mosomes, and the intragenic spacer is not present. Indeed, certain segments
get removed when converting to MAC chromosomes, called internal eliminated
segments (IESs), while certain segments remain, called macronuclear destined
segments (MDSs); see Fig. 1. Even stranger, many genes have the MDSs in a
different order between the MIC and MAC version of a gene, and these MDSs
become rearranged, or descrambled, during the conversion of the MIC to the
MAC in a process known as the gene assembly process [17].

I. McQuillan—Supported, in part, by a grant from the Natural Sciences and Engi-
neering Council of Canada.

c© Springer International Publishing AG 2017
M.J. Patitz and M. Stannett (Eds.): UCNC 2017, LNCS 10240, pp. 206–219, 2017.
DOI: 10.1007/978-3-319-58187-3 16

Descrambling Order Analysis in Ciliates 207

Fig. 1. Simplified conversion of a MAC chromosome fragment from a MIC chromosome
fragment.

The process of gene assembly is a fascinating example of computing taking
place in nature [17]. An extensive amount of parallel computation occurs during
the gene assembly process. In fact, descrambling MDSs is a computationally hard
problem, as even the problem of aligning a micronuclear gene to a macronuclear
gene to partition it into segments is an NP-complete problem [8], meaning that
very likely no optimal polynomial time algorithm exists to solve it. Knowledge
about how nature is solving these computationally complex problems may assist
computer scientists to construct new algorithms and techniques, and conversely,
computational results could be used to infer biological conclusions.

There are a variety of biological and computational models and hypotheses
that have been created to explain the gene assembly process in ciliates. Origi-
nally, a model known as the intermolecular model viewed this gene descrambling
as a computational process, consisting of one intramolecular and two intermole-
cular operations of DNA recombination on pointers [10]. Another theoretical
model for gene assembly, known as the intramolecular model was introduced by
Prescott et al. [16] and Ehrenfeucht et al. [5]. It consists of three unary mole-
cular operations based on pointers: loop excision, hairpin excision, and double
loop deletion, that explains IES excision and MDS rearrangements during gene
assembly. In 2009, the notion of assembly graphs was introduced to model the
DNA structure during the recombination process [1]. They introduced another
model in 2012 that describes rearrangement pathways of DNA recombination
events with three rewriting rules: insertion, deletion, and inversion [2].

In 1980, Meyer et al. studied Stylonychia mytilus by means of electron
microscopy and observed that at the very beginning of the gene assembly process,
IESs are eliminated in the form of chromatin rings (loops) [12]. Then, micronu-
clear chromatin becomes organised into coiled, lampbrush patterns, or loop-like
structures (Fig. 2) that might be a necessary prerequisite for later IES elimina-
tion and MDS rearrangement [13,14]. Chromatin consists of DNA that is tightly
coiled around proteins called histones that condenses to form chromosomes. In
2008, Matthias et al. concluded that multiple descrambling pathways may pro-
duce functional macronuclear molecules [15], and that there are occurrences of
multiple parallel inversion and transposition events through each pathway during
assembly [15]. Inversion takes a particular segment of MDSs in a MIC gene and

208 N.A. Khan and I. McQuillan

puts it back in the opposite direction, whereas transposition excises a segment
of DNA and puts it back in a different position.

Fig. 2. Coiled structure (a) lampbrush pattern (b) loop, or ring shape (c).

The Oxytricha trifallax MIC genome has been recently sequenced, allowing
for deeper analysis that what was previously possible. Very recently, Burns et al.
investigated the scrambled gene architectures in the Oxytricha trifallax genome
[3]. For scrambled genes, they identified the precursor scrambled patterns with
so-called sequence rearrangement maps, and assembly graph representations.
From their analysis of the MIC and MAC genes, they deduced that 87.2% of
the MIC loci is non-scrambled, and among the scrambled MIC contigs, 81.7%
follow a pattern involving either a sequence of consecutive odd numbered MDSs,
followed by a sequence of consecutive even numbered MDSs, or vice versa [3].
These statistics are very similar to those we independently calculated [9].

The order of MDSs in the MIC genome provides evidence that multiple par-
allel transpositions occur, where the structure allows for interleaving between
two sections that can be captured with a string operation called shuffle. The
shuffle operation on two strings results in new strings by weaving together the
first two, preserving the order within each string. For example, if x = 2 4 5 6 7
and y = 1 3 8 9 are two strings of numbers, then the shuffle of x and y is any
permutation r of 1 2 3 · · · 9 where the order of the members of x and y is followed
in r as well (for example r = 2 4 1 3 5 6 7 8 9). The sequences in Fig. 3a can be
rearranged computationally by shuffle between two segments, 1 3 5 7 10 12 and
2 4 6 8 9 11 13 14 15 16 17, as 1 2 3 · · · 17 is one of the results of the shuffle of the
two segments. Figure 3b is even more complex, but the result can be obtained
by splitting the whole sequence into two segments and applying shuffle once.

Shuffle is nondeterministic, and therefore multiple strings can be in the shuf-
fle of two strings, however it is thought that structural components allow the
developing MAC to align in a shuffle-like fashion, similar to the coiled and lamp-
brush patterns in Fig. 2. Furthermore, the sheer number of genes that can be
rearranged with very few applications — as seen in Sects. 3 and 4 — yields
evidence that this type of behaviour is occurring.

Predicting the order to descramble a gene or chromosomal segment, can be
based on the principle of parsimony, whereby the smallest sequence of oper-
ations is likely close to the actual number of operations that occurred [7,15].
The genome rearrangement problem similarly uses the principle of parsimony
for predicting genomic rearrangement operations [7]. This is now a well-studied

Descrambling Order Analysis in Ciliates 209

Fig. 3. (a) MDS organization found in the scrambled alpha-telomere-binding protein
genes of Oxytricha trifallax [15]. (b) A schematic alignment of the micronuclear genes
encoding the large catalytic subunit of DNA-polymerase α in Oxytricha nova [11]
(inverted MDSs indicated by green MDSs). (Color figure online)

problem, and indeed is quite similar to gene assembly [6]. Similarly, maximum
parsimony is also an established method for phylogeny reconstruction.

This study aims to determine the order of parallel rearrangements by exam-
ining the number of applications of shuffle needed to assemble MIC genes.

2 Preliminaries

First, some notation that is used will be described.
An alphabet is a finite, non-empty set of symbols. Given an alphabet A, A∗

is the set of all words over A, and A+ is the set of all non-empty words over
A. Let N be the natural numbers. Let n ∈ N. Then Z+(n) = {1, 2, . . . , n} and
Z−(n) = {−n, . . . ,−1}, and Z+−(n) = Z+(n) ∪ Z−(n) (0 is not in this set). For
i ∈ Z+−(n), let sgn(i) be +1 if i > 0 and −1 otherwise. It is also common to
examine sequences of numbers represented in the form of words with numbers
for the alphabet. Therefore, Z+−(n)+ is the set of all non-empty strings over the
alphabet Z+−(n). A string π = π1 · · · πn, π1, . . . , πn ∈ Z+−(n) is positive if π ∈
Z+(n)+, and negative if π ∈ Z−(n)+. Also, π is increasing if π1 < π2 < · · · < πn,
and is decreasing if π1 > π2 > · · · > πn (here, < and > are the usual orderings
of the integers). A subword of π is any word πiπi+1 · · · πj , 1 ≤ i ≤ j ≤ n. The
inversion of π, πI , is the string obtained by reversing π and switching the sign
of each number (this is the reverse complement). For i ∈ Z+−(n), let Ψ(π, i) be
the number of i’s in π. If π ∈ Z+(n)+ ∪ Z−(n)+, then let π be equal to π if
π is positive, and the inversion of π if π is negative (by reversing the numbers
and making them all positive). Then π is always positive for every such π. For
n ∈ N, let idn = 1 2 · · · n, which we call the identity permutation.

210 N.A. Khan and I. McQuillan

A sequence π ∈ Z+−(n)+ is called a permutation if, for each i ∈ Z+(n),
Ψ(π, i)+Ψ(π,−i) = 1. π is a partial permutation if, for each i ∈ Z+(n), Ψ(π, i)+
Ψ(π,−i) ≤ 1.

Let u, v ∈ Z+−(n)+ be two sequences of integers. Then the shuffle of u and
v, u v, is the set

{x1y1x2y2 · · · xryr | u = x1x2 · · · xr, v = y1y2 · · · yr, xi, yi ∈ Z+−(n)∗, 1 ≤ i ≤ r}.

Given two words u, v ∈ Z+−(n)∗, u is a subsequence of v if v = v0u1v1u2v2
· · · unvn, and u = u1u2 · · · un, where ui, vi, v0 ∈ Z+−(n)∗, 1 ≤ i ≤ n. Notice
that in the definitions of shuffle and subsequence, the variables xi, yi, ui refer
to words of any length.

3 Data Preprocessing

The main purpose of this section is to preprocess the Oxytricha trifallax genome
in order to obtain a sufficiently large data set for the analysis of parsimony.
Although this does involve calculating some basic statistical properties of the
genome, we refer to [3] for a more thorough investigation.

The data used was raw genome data from Oxytricha trifallax retrieved from
NCBI on May 20, 2015 in the form of 22,363 MAC contigs and 25,720 MIC
contigs (a contiguous sequence of DNA created by repeatedly assembling over-
lapping sequenced fragments of a chromosome). The procedure for determining
the order of MDSs on the micronuclear chromosomes was chosen to be the same
as Chen et al. [4] for the same purpose. The MAC contigs were aligned against the
MIC contigs by using Nucleotide BLAST (parameters of [-ungapped -word size
20 -outfmt 10]). For each MAC contig (almost all containing a single gene [4]),
the MIC contig that matched with the lowest E-value (Expect value) was cho-
sen and defined to be a MAC/MIC sequence pair (a MIC contig could then be
matched with many MAC contigs). Of the 22,363 MAC contigs, only 9 of these
sequences did not match with a MIC contig. Other MIC contigs that matched
with lower scoring values were ignored as only the best matches were needed for
the parsimony analysis.

Then, for each MAC contig, if n subwords matched a MIC contig, then a
permutation of 1 2 · · · n was determined giving the order of the matching seg-
ments on the matching MIC segment. The MIC MDS sequence of a MAC contig
is the order of MDSs in the contig as determined by this procedure. Among the
22,354 matching sequences, the MIC MDS sequence of 18, 315 MAC contigs were
unscrambled of the form 1 2 · · · n for some n, or equivalently, −n −(n−1) · · ·−1
(here the ‘−’ sign represents that the MDS is oriented in the opposite direction).
These are called the unscrambled sequences. There are 4039 other MAC contigs
called the scrambled sequences.

Every scrambled sequence was divided into two categories: one with MDSs
only in one direction, called the unidirectional sequences (2443 total) and those
with MDSs in both direction, the bidirectional sequences (1596 total). Of the bidi-
rectional sequences, each is divided into its two subsequences, one containing the

Descrambling Order Analysis in Ciliates 211

non-inverted MDSs, and one containing the inverted subsequences. These were
treated separately for the next part of the analysis and will be managed later.
The set of unidirectional sequences produced is called the extracted unidirec-
tional sequences. Then, the total number of scrambled sub-sequences for further
analysis is 5635 (2443 scrambled unidirectional sequences, and 3192 scrambled
extracted unidirectional sequences).

Next, the 5635 scrambled sequences were processed by collapsing all consec-
utive numbers, to one number (removing unused numbers). Henceforth, only
these sequences will be used. This was done to investigate more about the
scrambled patterns of the data. There is also some evidence that IESs between
consecutive MDSs are removed first [15]. Of the 2443 unidirectional sequences
after removing consecutive numbers from the unidirectional sequences, these are
called renumbered unidirectional sequences, and of the 3192 extracted unidirec-
tional sequences, after removing consecutive numbers, these are called renum-
bered extracted unidirectional sequences. Consecutive even-odd and odd-even pat-
terns were common. Of the 2443 renumbered unidirectional sequences, there were
986 consecutive odd-even sequences, and, 985 consecutive even-odd sequences,
and 472 others, called complex scrambled sequences. This is consistent with the
analysis from [3]. From the 3192 renumbered extracted unidirectional sequences,
there were 2443 unscrambled sequences, 280 consecutive odd-even sequences, 302
consecutive even-odd sequences, and 167 other complex scrambled sequences.

4 Parallel Descrambling Order Analysis

As discussed in Sect. 1, the patterns of the order of MDSs in micronuclear genes
(Fig. 3) shows evidence of some parallel operations that can be computationally
described with shuffle. The order of MDSs of a MIC chromosome correspond-
ing to a MAC chromosome is represented by a permutation π = π1π2π3 · · · πn

(as defined in Sect. 2). Informally, the descrambling order analysis problem is
to determine the minimum number of “parallel steps” required to transform an
input permutation π into the identity permutation. This attempts to predict the
descrambling order at a higher level of abstraction suggested by the patterns
occurring in ciliate MIC data, instead of changes at the molecular level. Thus,
the operations do not represent any single molecular level biological operation
(inversions, or loop deletion operations); instead, it represents a parallel oper-
ation. Because we do not know the exact mechanism by which descrambling
takes place, we will study two similar systems involving shuffle to see how the
minimum number of operations differs. If one system of moves gives significantly
lower numbers of required moves, then there are advantages to this system in
terms of parsimony.

As seen in Sect. 3, there are a number of sequences with consecutive odd-even
(even-odd) patterns. When the odd and even numbers are in consecutive order, it
only requires a single application of shuffle to transform the permutation into the
identity permutation. For example, the permutation of alpha-telomere-binding
protein genes of Sterkiella histriomuscorum is 1 3 5 7 2 4 6 (Fig. 3), which can be

212 N.A. Khan and I. McQuillan

descrambled in one step by taking the shuffle of two subwords 2 4 6 with 1 3 5 7.
In that case, there is a possibility that recombinations take place in parallel (or
without significantly changing the structure between individual recombination)
to descramble the MIC chromosome, and therefore a structural component is
partially enforcing an alignment of appropriate MDSs so that the operation is
applied correctly. Note that the this operation applies shuffle to segments of the
same input string rather than on two separate strings. The two systems will be
described next.

– Contiguous Increasing System (CIS): Given an input permutation π =
π1 · · · πn, πi ∈ Z+−(n), 1 ≤ i ≤ n, a CIS partition of π is a set of subwords
{u1, . . . , um} of π, with each ui ∈ Z+(n)+ ∪ Z−(n)+, with ui increasing for
each i, 1 ≤ i ≤ m, such that π = u1u2 · · · um.

– Non-contiguous Increasing System (NIS): For a given input permuta-
tion π = π1 · · · πn, πi ∈ Z+−(n), 1 ≤ i ≤ n, a NIS partition of π is a set
of subsequences {u1, . . . , um}, with each ui ∈ Z+(n)+ ∪ Z−(n)+, and ui is
increasing for each i, 1 ≤ i ≤ m, such that π ∈ u1 u2 · · · um.

Notice that for every CIS partition {u1, . . . , um}, the identity permutation
is in u1 · · · um. This system allows the shuffle on increasing subwords (each
either positive or negative). The smallest number of increasing subwords of the
input permutation such that the input permutation is the concatenation of the
subwords is desired. In such a case, the identity is in the shuffle of the subwords
after taking the inversion of any negative subwords. For example, the permuta-
tion 5 6 2 − 8 − 7 − 4 − 3 − 1 can be split into three increasing subwords,
u = 5 6, v = 2, w = −8 −7 −4 −3 −1, the input is indeed uvw, and the identity
is in u v w. For every NIS partition, the input permutation is in the shuffle of
the segments, and the identity permutation is in u1 · · · um. In this case, both the
input permutation, and the identity permutation are strings of numbers derived
from shuffle. For example, the permutation 5 6 2 1 3 4 7 8 can be split into
three increasing subsequences, u = 5 6 7 8, v = 2, and w = 1 3 4, with the input
permutation in u v w, and the identity in u v w. For both of the systems, we
are interested in calculating the number of segments, which corresponds to the
number of shuffle applications plus one. A CIS partition of π can be thought
of as a parallel recombination of different subwords, where the inversion of a
subword can occur before a parallel recombination. The NIS system is intended
as an investigation as to whether the number of operations can be reduced by
adding an addition layer of the shuffle operation.

Proposition 1. Given an input permutation π of n elements. Let m be the
smallest such that there exists u1, . . . , um with π = u1 · · · um and idn ∈ u1 · · ·
um. Then m − 1 is the size of a smallest CIS partition.

Proof. Given any two positive increasing words u, v which use disjoint numbers,
then there is a positive increasing word in u v. Similarly, if both are negative
and increasing then there is a positive increasing word in u v. If u is positive
and v is negative, then there is a positive increasing sequence in u shuffled with

Descrambling Order Analysis in Ciliates 213

v. And in general, given π = π1 · · · πn and a CIS partition u1, . . . , um, then the
identity must be in u1 · · · um. That is, if there is a partition of size m, then the
identity can be obtained with m − 1 shuffle operations.

Conversely, if π = u1 · · · um, and the identity is in u1 · · · um, the each ui,
1 ≤ i ≤ m is either positive increasing or negative increasing. Hence, counting
the number of segments in a CIS partition is always exactly one more than
counting the number of applications of shuffle. ��

4.1 Contiguous Increasing System

Next, an algorithm to determine the minimum sized CIS partition will be given.
In an input permutation π = π1π2 · · · πn, a pair of adjacent elements πi and
πi+1, 1 ≤ i ≤ n − 1, are called neighbours if πi < πi+1 and either π, πi+1

are both positive or both negative; otherwise the pair is called a cut-off point.
Then c(π) is the number of cut-off points in π. If π has an increasing positive
or negative subword πi · · · πj , i.e. πi < · · · < πj all the same sign, then each
adjacent pair in πi, πi+1, . . . , πj are neighbours. Thus, in an increasing positive
or negative permutation π = π1 < π2 < π3 < · · · < πn, c(π) = 0. In contrast, if
π is a positive or negative decreasing permutation, then c(π) = n − 1, because
π = π1 > π2 > π3 > · · · > πn. The size of the smallest CIS partition depends on
the number of cut-off points.

Proposition 2. Let π be an input permutation. The size of the smallest CIS
partition is c(π) + 1.

Proof. Let π = π1π2π3 · · · πn have c(π) cut-off points after positions (in order)
c1, . . . , cm of π. Then, it is impossible to have an increasing segment that includes
a number from both before and after a cut-off point, as the identity must be in
the shuffle of the potentially inverted segments. Therefore, any CIS partition
has at most m + 1 elements in it. Furthermore, there exists a CIS partition
with m + 1 elements in it, because there is one increasing positive or negative
subword that has the elements in between π1 and the element at position c1,
and an increasing positive or negative subword between positions ci +1 and ci+1

for each i, 1 ≤ i < m, and one last increasing positive or negative subword that
has the elements starting from cm + 1 to πn. As m = c(π), the smallest number
of increasing subwords in π will always be c(π) − 1 + 2 = c(π) + 1. ��

Therefore, we constructed an optimal algorithm called IncreasingSubwords
(Algorithm 1) that determines the minimum size of a CIS partition of an input
permutation π by simply counting the number of cut-off points c(π) for each
input permutation π which can be done in linear time (the algorithm is optimal
in the sense that it finds the smallest segments). For example, 1 3 5 7 9 2 4 6 8 10
has one cut-off point between 9 and 2, and two increasing subwords: 1 3 5 7 9,
and 2 4 6 8 10. The sequences having consecutive odd-even patterns (or even-odd
patterns) will always have two increasing subwords — one with the consecutive
odd numbers, and the other with the even numbers, as these sequences will
always have a single cut-off point.

214 N.A. Khan and I. McQuillan

Algorithm 1. Minimum number of segments in CIS.
1: procedure IncreasingSubwords(π = π1 · · · πn)
2: segments ← 0;
3: cut off points ← 0;
4: for i ← 1 to n − 1 do
5: if πi > πi+1 or sgn(πi) �= sgn(πi+1) then
6: cut off points ← cut off points + 1;
7: end if
8: end for
9: segments ← cut off points + 1;

10: return segments;
11: end procedure

Fig. 4. Relationship between the number of segments (increasing subwords) and the
number of sequences in the dataset achieving that for renumbered unidirectional
sequences and renumbered extracted unidirectional sequences.

The graph in Fig. 4 shows the number of segments versus the number of
sequences achieving that minimal number of segments from the preprocessed
Oxytricha data. The sequences that have only 1 increasing subword are already
unscrambled, and only the sequences having the consecutive odds and evens will
have 2 increasing subwords. In the graph, the rest of the sequences have at least 3
increasing subwords. The following sequence 1 4 6 8 10 12 2 5 7 11 13 3 9 requires
at least 3 increasing subwords, as the identity is in 1 4 6 8 10 12 2 5 7 11 13 3 9.

Descrambling Order Analysis in Ciliates 215

Table 1. Increasing subword statistics with Contiguous Increasing System for renum-
bered unidirectional sequences (and renumbered extracted unidirectional sequences in
parentheses).

Sequence
patterns

No. of
sequences

Avg.
number of
increasing
subwords

Max.
number of
increasing
subwords

Avg. length
of increasing
subwords

Max. length
of increasing
subwords

Consecutive
odd-even
patterns

986 (280) 2 (2) 2 (2) 2.300 (2.323) 36 (20)

Consecutive
even-odd
patterns

985 (302) 2 (2) 2 (2) 2.305 (2.488) 37 (25)

Complex
scrambled
patterns

472 (167) 3.619 (4.126) 20 (25) 2.741 (3.452) 43 (86)

Table 1 shows the average number of increasing subwords determined by
Algorithm 1, along with the maximum number of increasing subwords, the
number of sequences in each sequence pattern, the average length of increas-
ing subwords, and the maximum length of increasing subwords.

4.2 Non-contiguous Increasing System

This system allows shuffle on increasing subsequences (i.e. non-contiguous)
instead of increasing subwords only. As discussed above, if π = π1 · · · πn is a
given input permutation, then a NIS partition of π is a set of increasing subse-
quences {s1, . . . , sm}, such that π ∈ s1 s2 · · · sm, and the identity is in s1 · · · sm.
For example, consider π = 6 1 7 2 8 3 4 9 10 11 5. Then both the input per-
mutation and the identity permutation is in 6 8 9 10 11 1 2 3 4 5. Next, an
optimal algorithm is described for determining the segments within this system.
At first, it adds the first element of π to an increasing subsequence s. Then it
finds the next larger element to the right, adds it to increasing subsequence s,
and continues doing this until reaching the end of π. Then s becomes the first
increasing subsequence. Next, the algorithm deletes the elements of s from π,
and repeats until π becomes empty. The final number of increasing subsequences
is the size of the smallest NIS partition.

We will prove that Algorithm2 calculates an optimal NIS partition, but first,
an intermediate lemma is needed.

Lemma 1. Let π be a positive or negative input permutation. If π has a decreas-
ing subsequence of length m, then every NIS partition of π has at least m
elements.

216 N.A. Khan and I. McQuillan

Algorithm 2
1: procedure NextIncreasingElement(π = π1 · · · πn)
2: segments ← 0;
3: while π is not empty do
4: element ← π1;
5: append element in subsequence s;
6: for i ← 2 to n do
7: if element < πi then
8: element ← πi;
9: append element in subsequence s;

10: end if
11: end for
12: if s is not empty then
13: segments ← segments + 1;
14: delete the elements of s from π;
15: end if
16: Clear s;
17: end while
18: return segments;
19: end procedure

Proof. Let π = π1 · · · πn be an input permutation, and assume that there exists
i1, . . . , im such that 1 ≤ i1 < · · · < im ≤ n, but πi1 > πi2 > · · · > πim

. Assume,
by contradiction that there exists some NIS partition X with k < m elements.
Then there has to be two of πiα

and πiβ
, α < β such that πiα

and πiβ
are in the

same sequence s of X. But, then the identity cannot be in the shuffle of s with
other elements. ��

Proposition 3. Let π be a positive or negative input permutation. Then Algo-
rithm2 calculates the minimum size of an NIS partition.

Proof. Let π = π1 · · · πn be an input permutation, and assume first that π is
positive (similarly if π is negative). Let X = {s1, . . . , sm} be the output from
Algorithm 2, such that s1, . . . , sm is the order as determined by the algorithm.

Let k be the size of the smallest NIS partition. It is clear then that k ≤ m. Let
i satisfy 1 ≤ i ≤ n. Let f(i) be the number at position i of π, and also for 1 ≤ j ≤
m, let gi(j) be the largest position x of π such that x < i and π(x) is in sj . By
the algorithm, s2(1), at position i2 say of π, must be smaller than the number at
position gi1(1) of π (a letter of s1). More generally, let im be the position of sm(1)
in π. Then notice that f(gim

(1)) > f(gim
(2)) > · · · > f(gim

(m − 1)) > sm(1),
otherwise, the smallest α such that f(gim

(α)) < f(gim
(α+1)) would have caused

Algorithm 2 to include f(gim
(α+1)) in sα. Thus, π has a decreasing subsequence

of length m, and therefore by the lemma above, m is the smallest size of an NIS
partition, and k = m. Hence, Algorithm 2 is optimal. ��

Also notice that even though Algorithm2 is not linear time, there is a linear
time variation whereby, whenever it is determined that the current sequence s1

Descrambling Order Analysis in Ciliates 217

should not contain the next element, in line 7, it starts a new sequence s2, and
then preferably adds new elements to s1, and if not s2, and if not start s3, etc.
Therefore, an optimal linear time algorithm exists to solve this problem.

Table 2 shows the average number of increasing subsequences determined by
Algorithm 2, along with other properties. The graph in Fig. 5 shows the number

Table 2. Increasing subsequence statistics with Non-contiguous Increasing System
for renumbered unidirectional sequences (and renumbered extracted unidirectional
sequences in parentheses).

Sequence
patterns

No. of
sequences

Avg.
number of
increasing
subse-
quences

Max.
number of
increasing
subse-
quences

Avg. length
of increasing
subse-
quences

Max. length
of increasing
subsequences

Consecutive
odd-even
patterns

986 (280) 2 (2) 2 (2) 2.301 (2.323) 36 (20)

Consecutive
even-odd
patterns

985 (302) 2 (2) 2 (2) 2.306 (2.488) 38 (26)

Complex
scrambled
patterns

472 (167) 2.915 (3.221) 6 (7) 3.403 (4.421) 43 (87)

Fig. 5. Relationship between the number of segments (increasing subsequences) and
the number of sequences in the dataset achieving that for renumbered unidirectional
sequences and renumbered extracted unidirectional sequences.

218 N.A. Khan and I. McQuillan

of segments (minimum size of NIS partitioning) versus the number of sequences
achieving that number of segments. Most of the complex scrambled sequences
were partitioned into only 3 increasing subsequences by this algorithm, and the
maximum number of increasing subsequences is only 7.

5 Result Analysis and Discussion

NIS often gives a much smaller number of applications of shuffle versus CIS. The
largest of the minimum CIS partition sizes for CIS is 20 and 35, for renumbered
unidirectional and extracted unidirectional sequences respectively, whereas for
NIS, this number is 6 and 7, respectively (Tables 1 and 2).

There are 986 consecutive odd-even and 985 consecutive even-odd sequences
in the renumbered unidirectional dataset, and 280 consecutive odd-even and
302 consecutive even-odd sequences in the renumbered extracted unidirectional
dataset. Thus, there are a total of 1266 consecutive odd-even, and 1287 consecu-
tive even-odd sequences among the 3192 scrambled input sequences. Algorithm 2
partitioned all of these 2553 consecutive odd/even sequences into 2 increasing
segments, which is optimal. There are 472 categorized as complex scrambled
sequences in the renumbered unidirectional dataset, and 167 complex scrambled
sequences in the renumbered extracted unidirectional dataset. Thus, there are
a total of 639 complex scrambled sequences among the 3192 scrambled input
sequences. Algorithm 2 partitioned 136 sequences of these, into size 2, and 405
sequences into 3 segments. There are 98 sequences that have an NIS partition
size between 4 and 7, and there is none higher than 7.

Each parallel step, represented by an application of shuffle, can descramble a
section of MDSs that might or might not reside beside each other. As the chro-
mosomes fold mostly in a coiled and lampbrush structures, such an alignment
of the non-contiguous MDSs subsequently via structural component, might be
practical. Hence, the NIS has potential advantages in terms of parsimony. How-
ever, the feasibility of any such hypothesis needs experimental validation.

Recall that bidirectional sequences were separated into two sub-subsequences:
one holding non-inverted MDSs, and one holding inverted MDSs. The NIS system
determines the minimum number of applications of shuffle to descramble its
two subsequences, separately. To combine the two, it requires exactly one extra
application of shuffle, as the identity permutation of the bidirectional sequences
is in the shuffle of its two descrambled subsequences. However, it could be more
for CIS. For example, 1 −6 2 −5 3 −4 has 5 cut-off points, because an individual
segment cannot contain both positive and negative numbers, and the minimum
CIS partition is 6. But if positive and negative parts are separated, then it is 1
2 3 and −6 −5 −4, each having no cut-off points.

The analysis shows that 96.63% of the scrambled MIC chromosome fragments
of Oxytricha trifallax can be partitioned into 2 to 3 segments, and therefore can
be descrambled by only 1 or 2 applications of shuffle, where each application of
shuffle corresponds to a parallel recombination. This small number lends the-
oretical evidence that some structural component is enforcing the shuffle-like
behaviour, by properly aligning segments in an interleaving fashion, and then

Descrambling Order Analysis in Ciliates 219

parallel recombination is taking place for MDS rearrangement. The sheer number
of MIC chromosome fragments that can be rearranged with very few applications
of shuffle yields evidence that this type of behaviour could be occurring, using
parsimony. Indeed, the number of applications of shuffle is far lower than the
number of MDSs, and therefore the principle of parsimony dictates that there is
significant computational advantages to such a system, as the arrangement of the
large number of MDSs do not need a large number of parallel steps to descramble.

References

1. Angeleska, A., Jonoska, N., Saito, M.: DNA recombination through assembly
graphs. Discret. Appl. Math. 157(14), 3020–3037 (2009)

2. Angeleska, A., Jonoska, N., Saito, M.: Rewriting rule chains modeling DNA
rearrangement pathways. Theoret. Comput. Sci. 454, 5–22 (2012)

3. Burns, J., Kukushkin, D., Chen, X., Landweber, L.F., Saito, M., Jonoska, N.:
Recurring patterns among scrambled genes in the encrypted genome of the ciliate
Oxytricha trifallax. J. Theor. Biol. 410, 171–180 (2016)

4. Chen, X., Bracht, J.R., Goldman, A.D., Dolzhenko, E., Clay, D.M., Swart, E.C.,
Perlman, D.H., Doak, T.G., Stuart, A., Amemiya, C.T., Sebra, R.P., Landweber,
L.F.: The architecture of a scrambled genome reveals massive levels of genomic
rearrangement during development. Cell 158(5), 1187–1198 (2014)

5. Ehrenfeucht, A., Prescott, D.M., Rozenberg, G.: Computational aspects of gene
(un)scrambling in ciliates. In: Landweber, L.F., Winfree, E. (eds.) Evolution as
Computation. Natural Computing Series, pp. 216–256. Springer, Heidelberg (2002)

6. Herlin, J.L., Nelson, A., Scheepers, M.: Using ciliate operations to construct chro-
mosome phylogenies. Involv. J. Math. 9(1), 1–26 (2015)

7. Jones, N.C., Pevzner, P.: An Introduction to Bioinformatics Algorithms. MIT
Press, Cambridge (2004)

8. Keil, J.M., Liu, J., McQuillan, I.: Algorithmic properties of ciliate sequence align-
ment. Theoret. Comput. Sci. 411(6), 919–925 (2010)

9. Khan, N.A.: Chromosome descrambling order analysis in ciliates. Master’s thesis,
University of Saskatchewan, Saskatoon (2016)

10. Landweber, L.F., Kari, L.: The evolution of cellular computing: nature’s solution
to a computational problem. Biosystems 52(1), 3–13 (1999)

11. Landweber, L.F., Kuo, T.C., Curtis, E.A.: Evolution and assembly of an extremely
scrambled gene. PNAS 97(7), 3298–3303 (2000)

12. Meyer, G., Lipps, H.: Chromatin elimination in the hypotrichous ciliate Stylonychia
mytilus. Chromosoma 77(3), 285–297 (1980)

13. Meyer, G., Lipps, H.: The formation of polytene chromosomes during macronuclear
development of the hypotrichous ciliate Stylonychia mytilus. Chromosoma 82(2),
309–314 (1981)

14. Meyer, G., Lipps, H.: Electron microscopy of surface spread polytene chromosomes
of Drosophila and Stylonychia. Chromosoma 89(2), 107–110 (1984)

15. Möllenbeck, M., Zhou, Y., Cavalcanti, A.R., Jönsson, F., Higgins, B.P., Chang,
W.J., Juranek, S., Doak, T.G., Rozenberg, G., Lipps, H.J., et al.: The pathway to
detangle a scrambled gene. PLoS One 3(6), e2330 (2008)

16. Prescott, D.M., Ehrenfeucht, A., Rozenberg, G.: Molecular operations for DNA
processing in hypotrichous ciliates. Eur. J. Protistol. 37(3), 241–260 (2001)

17. Prescott, D.M., Rozenberg, G.: How ciliates manipulate their own DNA–a splendid
example of natural computing. Nat. Comput. 1(2–3), 165–183 (2002)

Author Index

Blair, Enrique P. 56
Braun, Jasper 69

Chandy, D. Abraham 170
Cho, Da-Jung 194
Christinal, Hepzibah A. 170
Costa, José Félix 3
Cruz, Daniel 69

Deaton, Russell 129
Drastík, Jan 144
Durand-Lose, Jérôme 8

Fernau, Henning 182

Garzon, Max 129, 144
Gutiérrez-Naranjo, Miguel A. 170

Han, Yo-Sub 194
Hendricks, Jacob 113
Huang, Xiang 29

John, Rose Rani 170
Jonoska, Nataša 69

Khan, Nazifa Azam 206
Kim, Hwee 194

Kjos-Hanssen, Bjørn 160
Klinge, Titus H. 29
Kuppusamy, Lakshmanan 182

Lakin, Matthew R. 41
Lathrop, James I. 29
Li, Xiaoyuan 29
Luchsinger, Austin 82
Lutz, Jack H. 29

McQuillan, Ian 206
Moore, Tyler 129, 144

Opseth, Joseph 113

Schweller, Robert 82, 98
Smolka, Vladimír 144
Sosík, Petr 144
Stefanovic, Darko 41

Verlan, Sergey 182

Winslow, Andrew 98
Wylie, Tim 82, 98

Yasmin, Rojoba 129

	Preface
	Organization
	Invited Talks
	The Power of Analogue-Digital Machines (Extended Abstract)
	Computing with Glue, Balls, and Recycled Bits: New Physical Models of Computing
	Ways to Compute in Euclidean Frameworks
	High-Speed AFM Imaging of Synthetic Nanomachines and Nanostructures
	Decision Making by Photonics: Experiment and Category Theoretic Foundation
	Contents
	Invited Talks
	The Power of Analogue-Digital Machines
	References

	Ways to Compute in Euclidean Frameworks
	1 Introduction
	2 Three Models Operating on Euclidean Geometry
	2.1 Ruler and Compass
	2.2 Mondrian Automata
	2.3 Piece-Wise Constant Derivative

	3 Signal Machines
	3.1 Turing Computability
	3.2 Malleability of Space-Time and the Black Hole Model
	3.3 Build and Use Fractals
	3.4 Analog Computation

	4 Conclusion
	References

	Contributed Papers
	Real-Time Computability of Real Numbers by Chemical Reaction Networks
	1 Introduction
	2 Chemical Reaction Networks
	3 Real-Time CRN Computability
	4 Algebraic Numbers Are Real Time CRN Computable
	5 Discussion
	References

	Towards Temporal Logic Computation Using DNA Strand Displacement Reactions
	1 Introduction
	2 A Logic of Temporal Relationships for Sequential Signals
	3 DNA Circuits for Analyzing Temporal Relationships
	4 Simulation Results
	5 Discussion
	References

	Quantum-Dot Cellular Automata: A Clocked Architecture for High-Speed, Energy-Efficient Molecular Computing
	1 Introduction
	2 Overview of QCA
	2.1 Implementing QCA
	2.2 Clocked Molecular QCA Devices
	2.3 Challenges in Molecular QCA: Circuit Layout and Bit Readout

	3 Modeling Electron Transfer Rates in Molecular QCA
	4 Conclusion
	References

	Platform Color Designs for Interactive Molecular Arrangements
	1 Introduction
	1.1 Preliminaries

	2 Simulation
	3 Communication
	4 Checkerboard Coloring and Directions of Communication
	References

	Self-assembly of Shapes at Constant Scale Using Repulsive Forces
	1 Introduction
	2 Definitions and Model
	3 Concept/Construction Overview
	3.1 Conceptual Overview
	3.2 Construction Overview

	4 Construction Details
	5 Constant Scaled Shapes
	6 Lower Bound
	7 Extension to K(S)logK(S)
	8 Conclusion
	References

	Verification in Staged Tile Self-Assembly
	1 Introduction
	2 The Staged Assembly Model
	3 The 2HAM Unique Shape Verification Problem Is coNPNP-Complete
	4 Staged Unique Assembly Verification Is coNP-Hard
	5 Staged Unique Assembly Verification Is coNPNP-Hard
	6 Staged PSPACE Containment
	7 Open Problems
	References

	Self-Assembly of 4-Sided Fractals in the Two-Handed Tile Assembly Model
	1 Introduction
	2 Preliminaries
	2.1 Informal Description of the 2HAM
	2.2 Discrete Self-Similar Fractals

	3 Four Sided Fractals
	3.1 Sierpinski's Carpet Construction Overview
	3.2 4-Sided Fractals Construction Overview

	4 A 3-Sided Fractal that Does Not Strictly Self-Assemble
	5 Conclusion
	References

	Self-assembled DC Resistive Circuits with Self-controlled Voltage-Based Growth
	1 Introduction
	2 Circuit Theory Background
	3 Circuit Self-assembly Model
	3.1 Resistive Ladder
	3.2 Resistive Grid

	4 Discrete Dirichlet Assembly Model
	5 Conclusions and Open Questions
	References

	Morphogenetic and Homeostatic Self-assembled Systems
	1 Introduction
	2 M Systems
	2.1 Polytopic Tiling
	2.2 Morphogenetic Systems

	3 Computational Morphogenesis and Homeostasis
	4 Computational Universality
	5 Conclusions
	References

	Superposition as Memory: Unlocking Quantum Automatic Complexity
	1 Introduction
	1.1 Quantum Automatic Complexity

	2 Bounds on Qs
	3 Unboundedness of Qf
	4 Calculating Qs(0011)<=(2,12)
	References

	Solving the Bin-Packing Problem by Means of Tissue P System with 2-Division
	1 Introduction
	2 Tissue P Systems with Cell Division
	3 Recognizer P Systems
	4 The Solution to Bin Packing Problem
	4.1 A Short Overview
	4.2 Computational Resources

	5 Conclusions
	References

	Universal Matrix Insertion Grammars with Small Size
	1 Introduction
	2 Definitions
	3 Main Results
	4 Conclusion
	References

	Deduplication on Finite Automata and Nested Duplication Systems
	1 Introduction
	2 Preliminaries
	3 D-Cycle Deduplication on Finite Automata
	4 An NFA Construction for a Nested Duplication System
	5 Conclusions
	References

	Descrambling Order Analysis in Ciliates
	1 Introduction
	2 Preliminaries
	3 Data Preprocessing
	4 Parallel Descrambling Order Analysis
	4.1 Contiguous Increasing System
	4.2 Non-contiguous Increasing System

	5 Result Analysis and Discussion
	References

	Author Index

