
Chapter 5
Riemann’s Higher-Dimensional Geometry

5.1 The Legacy of Riemann

In mathematics we sometimes see striking examples of brilliant contributions or
completely new ideas that change the ways mathematics develops in a significant
fashion. A prime example of this is the work of Descartes [55], which completely
changed howmathematicians looked at geometric problems.But it is rare that a single
mathematician makes as many singular advances in his lifetime as did Bernhard
Riemann in the middle of the nineteenth century. In this section we will discuss in
some detail his fundamental creation of the theory of higher-dimensional manifolds
and the additional creation of what is now called Riemannian geometry. In Part III
we will review his contributions to complex analysis and complex geometry.

However, it is worth noting that he only published nine papers in his short lifetime
(he lived to be only 40 years old); and several other important works, including those
that concern us in this section, were published posthumously from thewritings he left
behind. His collected works (including in particular these posthumously published
papers) were edited and published in 1876 and are still in print today [200].

In Figs. 5.1 and 5.2 we have reproduced the table of contents of Riemann’s col-
lected works [200]. Looking through the titles one is struck by the wide diversity as
well as the originality. Let us give a few examples here. In Paper I (his dissertation) he
formulated and proved the Riemann mapping theorem and dramatically moved the
theory of functions of one complex variables in new directions. In Paper VI, in order
to study Abelian functions, he formulated what became known as Riemann surfaces
and this led to the general theory of complex manifolds in the twentieth century. In
Paper VII he introduced the Riemann zeta function as a tool for studying the Prime
Number Theorem and formulated the Riemann hypothesis, which is surely the out-
standing mathematical problem in the world today. In Paper XII he formulated the
first rigorous definition of a definite integral (the Riemann integral) and applied it to
trigonometric series, setting the stage for Lebesgue and others in the early twentieth
century to develop many consequences of the powerful theory of Fourier analysis.
In Papers XIII and XXII he formulated the theory of higher-dimensional manifolds,
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Fig. 5.1 Table of contents, p.VI, Riemann’s collected works [200]

including the important concepts of Riemannian metric, normal coordinates and
the Riemann curvature tensor, which we will visit very soon in the sections below.
Paper XVI contains correspondence with Enrico Betti leading to the first higher-
dimensional topological invariants beyond those Riemann had earlier developed for
two-dimensional manifolds.
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Fig. 5.2 Table of contents, p. II, Riemann’s collected works [200]
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This will suffice. The reader can glance at the other titles to see their further
diversity. His contributions to the theory of partial differential equations and various
problems in mathematical physics were also quite significant.

5.2 Higher-Dimensional Manifolds and a Quadratic Line
Element

Riemann’s paper “Ueber die Hypothesen, welche der Geometrie zu Grunde liegen”1

[201] (Paper XIII above) is a posthumously published version of a public lecture
Riemann gave as his Habilitationsvortrag in 1854. This was part of the process
for obtaining his Habilitation, a German advanced degree beyond the doctorate
necessary to qualify for a professorship in Germany at the time (such requirements
are still in place at most German universities today as well as in other European
countries, e.g., France and Russia; it is similar to the research requirements in the US
to be qualified for tenure). This paper, being a public lecture, has very few formulas,
is at times quite philosophical and is amazing in its depth of vision and clarity. On
the other hand, it is quite a difficult paper to understand in detail, as we shall see.

Before this paper was written, manifolds were all one- or two-dimensional curves
and surfaces in R3, including their extension to points at infinity, as discussed in
Chap.3. In fact, some mathematicians who had to study systems parametrized by
more than three variables declined to call the parametrization space a manifold or
give such a parametrization a geometric significance. In addition, these one- and
two-dimensional manifolds always had a differential geometric structure which was
induced by the ambient Euclidean space (this was true for Gauss, as well).

In Riemann’s paper [201] he discusses the distinction between discrete and con-
tinuous manifolds, where one can make comparisons of quantities by either counting
or by measurement, and gives a hint, on p. 256, of concepts from set theory, which
was only developed later in a single-handed effort by Cantor. Riemann begins his
discussion of manifolds bymoving a one-dimensional manifold, which he intuitively
describes, in a transverse direction (moving in some type of undescribed ambient
“space”) to obtain a surface, and inductively, generating an n-dimensional mani-
fold by moving an n − 1-manifold transversally in the same manner. Conversely,
he discusses having a nonconstant function on an n-dimensional manifold, and the
set of points where the function is constant is (generically) a lower-dimensional
manifold; and by varying the constant, one obtains a one-dimensional family of
n − 1-manifolds (similar to his construction above).2

Riemann formulates local coordinate systems (x1, x2, . . . , xn) on a manifold of
n dimensions near some given point, taken here to be the origin. He formulates

1“On the hypotheses, which are the basis for geometry”.
2He alludes to some manifolds that cannot be described by a finite number of parameters; for
instance, the manifold of all functions on a given domain, or all deformations of a spatial figure.
Infinite-dimensional manifolds, such as these, were studied in great detail a century later.
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a curve in the manifold as being simply n functions (x1(t), x2(t), . . . , xn(t)) of a
single variable t . The concepts of set theory and topological space were developed
only later in the nineteenth century, and so the global nature of manifolds is not
really touched on by Riemann (except in his later work on Riemann surfaces and his
correspondence with Betti, mentioned above). It seems clear on reading his paper
that he thought of n-dimensional manifolds as being extended beyond Euclidean
space in some manner, but the language for this was not yet available.

At the beginning of this paper Riemann acknowledges the difficulty he faces in
formulating his new results. Here is a quote from the second page of his paper (p. 255)
in [200]:

Indem ich nun von diesen Aufgaben zunächst die erste, die Entwicklung des Begriffs
mehrfach ausgedehnter Grössen, zu lösen versuche, glaube ich um so mehr auf eine
nachsichtige Beurtheilung Anspruch machen zu dürfen; da ich in dergleichen Arbeiten
philosophischer Natur, wo die Schwierigkeiten mehr in den Begriffen, als in der Construc-
tion liegen, wenig geübt bin und ich ausser einigen ganz kurzen Andeutungen, welche Herr
Geheimer Hofrath Gauss in der zweiten Abhandlung über die biquadratischen Reste in den
Göttingenschen gelehrten Anzeigen und in seiner Jubiläumsschrift darüber gegeben hat, und
einigen philosophischen Untersuchungen Herbart’s, durchaus keine Vorarbeiten benutzen
konnte.3

The paper of Gauss that he cites here [78] refers to Gauss’s dealing with the philo-
sophical issue of understanding the complex number plane after some thirty years
of experience with its development. We will mention this paper more explicitly in
Sect. 6.3. Hebart was a philosopher whose metaphysical investigations influenced
Riemann’s thinking. Riemann was very aware of the speculative nature of his the-
ory, and he used this philosophical point of view, as the technical language he needed
(set theory and topological spaces) was not yet available. This was very similar to
Gauss’s struggle with the complex plane, as we shall see later.

As mentioned earlier, measurement of the length of curves goes back to the
Archimedean study of the length of a circle. The basic idea there and up to the
work of Gauss was to approximate a given curve by straight line segments and take
a limit. The length of each straight line segment was determined by the Euclidean
ambient space, and the formula, using calculus for the limiting process, became, in
the plane for instance,

∫
�

ds =
∫ b

a

√
(x ′(t))2 + (y′(t))2dt,

3“In that my first task is to try to develop the concept of a multiply spread-out quantity [he uses
the word ‘Mannigfaltikeit’ (manifold) later], I believe even more in being allowed an indulgent
evaluation, as in suchworks of a philosophical nature, where the difficulties aremore in the concepts
than in the construction, wherein I have little experience, and except for the paper by Mr.Privy
Councilor Gauss in his second commentary on biquadratic residues in the Göttingen gelehrten
Anzeigen [1831] and in his Jubiläumsschrift and some investigations byHebart, I have no precedents
I could use.”
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where ds2 = dx2 + dy2 is the line element of arc length inR2. As we saw in Chap.4,
Gauss formulated in [81] on a two-dimensional manifold with coordinates (p, q) the
line element

ds2 = Edp2 + 2Fdpdq + Gdq2, (5.1)

where E, F, and G are induced from the ambient space. He didn’t consider any
examples of such a line element (5.1) thatweren’t induced froman ambient Euclidean
space, but his remarks (see Gauss’s quote in Sect. 4.2) clearly indicate that this could
be a ripe area for study, and this could well include allowing coefficients of the line
element (5.1) to be more general than induced from an ambient space.

Since Riemann formulated an abstract n-dimensionalmanifold (with a local coor-
dinate system) with no ambient space, and since he wanted to be able to measure the
length of a curve on his manifold, he formulated, or rather postulated, an independent
measuring system which mimics Gauss’s formula (5.1). Namely, he prescribes for a
given local coordinate system a metric (line element) of the form

ds2 =
n∑

i, j=1

gi j (x)dx
idx j , (5.2)

where gi j (x) is, for each x , a symmetric positive-definite matrix, and he postulates,
by the usual change of variables formulas,

ds2 =
n∑

i, j=1

g̃i j (x̃)dx̃
i d x̃ j , (5.3)

where g̃i j (x̃) is the transformed positive-definite matrix in the new coordinate system
(x̃1, . . . , x̃ n). This has the form

gkl(x) =
∑
i j

g̃i j (x̃(x))
∂ x̃i
∂xk

∂ x̃ j

∂xl
. (5.4)

Using the line element (5.2), the length of a curve is defined by

l(�) :=
∫ b

a

√√√√ n∑
i, j=1

gi j (x(t))
dxi

dt
(t)

dx j

dt
(t)dt.

The line element (5.2) is what is called a Riemannian metric today, and the two-form
ds2 is considered as a positive-definite bilinear form giving an inner product on the
tangent space Tp(M) for p a point on the manifold M . This has become the basis
for almost all of modern differential geometry (with the extension to Lorentzian type
spaces where gi j (x) is not positive-definite à laMinkoswki space). Riemann merely
says on p.260 of his paper (no notation here at all),
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ich beschränke mich daher auf die Mannigfaltigkeiten, wo das Linienelement durch die
Quadratwurzel aus einem Differentialausdruck zweiten Grades ausgedrückt wird.4

Earlier he had remarked that a line element should be homogeneous of degree 1 and
one could also consider the fourth root of a differential expression of fourth degree,
for instance. Hence his restriction in the quote above.

5.3 Geodesic Normal Coordinates and a Definition
of Curvature

The next step in Riemann’s paper is his formulation of curvature. This occurs on a
single page (p. 261 of [201], which we reproduce here in Fig. 5.3). It is extremely
dense and not at all easy to understand. In the published collected works of Riemann
one finds an addendum to Riemann’s paper which analyzes this one page in seven
pages of computations written by Julius Wilhelm Richard Dedekind (1831–1916).
This is an unpublished manuscript that appeared only in these collected works of
Riemann, pp. 384–391. In Volume 2 of Spivak’s three-volume comprehensive intro-
duction to and history of differential geometry [218], we find a detailed analysis of
Riemann’s paper (as well as Gauss’s papers that we discussed earlier and later impor-
tant works of the nineteenth century in differential geometry, including translations
into English of the most important papers).

We want to summarize what Riemann says on p.261 (again, see Fig. 5.3). He
starts by introducing near a given point p on his manifold M geodesic normal
coordinates, that is, coordinates which are geodesics emanating from the given point
and whose tangent vectors at p are an orthonormal basis for Tp (this orthogonality
and the geodesics use, of course, the given Riemannian metric). In this coordinate
system (x1, . . . , xn), the metric ds2 has a Taylor expansion through second-order
terms of the form

ds2 =
n∑

i=1

dxidxi + 1

2

n∑
i jkl

∂2gi j

∂xk∂xl
(0)xkxldxidx j . (5.5)

The first-order terms in this expansion involve terms of the form ∂gi j
∂xk (0), all of

which vanish, which follows from the geodesic coordinates condition. Letting now

ci jkl := ∂2gi j

∂xk∂xl
(0),

4“I restrict myself therefore to manifolds where the line element is expressed by the square root of
a differential expression of second degree.”
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Fig. 5.3 Page 261 of Riemann’s foundational paper on differential geometry [201]
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we have the natural symmetry conditions

ci jkl = c jikl = c jilk,

due to the symmetry of the indices in gi j and in the commutation of the second-
order partial derivatives. Moreover, and this is not easy to verify, the coefficients also
satisfy

ci jkl = ckli j ,
cli jk + cl jki + clki j = 0.

(5.6)

This is proved in six pages of computation in Spivak’s Vol. 2 (pp. 172–178 of
[218]), andwe quote from the top of p. 174: “Wenowproceed to the hardest part of the
computation, a hairy computation indeed.” These symmetry conditions use the fact
that the coordinates are specifically linked to the metric (our geodesic coordinates).
For instance, on p. 175 Spivak points out that

xi =
n∑
j=1

gi j x
j ,

illustrating vividly the relation between the coordinates and the metric.
Let now

Q(x, dx) :=
∑
i jkl

ci jkl x
k xldxidx j (5.7)

be the biquadratic form defined by the second-order terms in (5.5), then Riemann
asserts on p. 61 of [201] that Q(x, dx) can be expressed in terms of the n( n−1

2 )

expressions {(x1dx2 − x2dx1), (x1dx3 − x3dx1),…} (see Fig. 5.3), that is,

Q(x, dx) =
n∑

i jkl

Ci jkl(x
idx j − x jdxi )(xkdxl − dldxk). (5.8)

Spivak proves that the conditions (5.6) are necessary and sufficient for Q(x, dx) to
be expressed in the form (5.8), and he shows, moreover, that

Ci jkl = 1

3
ci jkl .

Riemann simply asserts that this is the case, which is, of course, indeed true!
The expression Q(x, dx) defined by (5.8) is Riemann’s definition of curvature

for the manifold at the point 0 defined by the metric (5.2) using geodesic normal
coordinates. This has become known as Riemannian curvature ever since.

Let’s look at the special case where the manifold has two dimensions. In this case
we see that there is only one coefficient of the nonzero term (x1dx2 − x2dx1)2 which
has the form
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Q(x, dx) = 1

3
[c2211 + c1122 − c2112 − c1221](x1dx2 − x2dx1)2.

Now using Gauss’s notation for the Riemannian metric (5.1), that is, g11 = E , g12 =
g21 = F , and g22 = G, we see that

c2211 = 1

2
Gxx ,

c1122 = 1

2
Eyy,

c2112 = 1

2
Fxy .

c1221 = 1

2
Fxy,

and thus we have

Q(x, dx) = 1

6
[Gxx + Eyy − 2Fxy].

Looking at Gauss’s formula for Gaussian curvature at the point 0 (4.10), we see
that, since the first derivatives of the metric vanish at the origin, the curvature at
x = 0 is

k = −1

2
(GxxGyy − 2Fxy), (5.9)

and hence

Q(x, dx) = −k

3
(x1dx2 − x2dx1)2. (5.10)

Thus the coefficient of the single term (x1dx2 − x2dx1)2 in the biquadratic form
Q(x, dx) is, up to a constant, the Gaussian curvature. As Riemann asserts it (and we
paraphrase here): ‘divide the expression Q(x, dx) by the square of the area of the
(infinitesimal) triangle formed by the three points (0, x, dx), and the result of the
division is− 4

3k’. The factor 4 appears since the square of the area of the infinitesimal
parallelogram5 is (x1dx2 − x2dx1)2, and thus the square of the area of the infini-
tesimal triangle is 1

4 (x
1dx2 − x2dx1)2. This yields the relation between Riemann’s

coefficient in (5.10) and Gaussian curvature (one can see this coefficient of − 3
4 near

the bottom of p. 261 in Fig. 5.3). Namely, except for a constant factor, Riemann’s cur-
vature expressed in normal coordinates on a two-dimensional manifold coincides
with Gaussian curvature.

Riemann then considers the biquadratic form Q(x, dx) in an n-dimensional
manifold M and its restriction to any two-dimensional submanifold N passing
through the point p, obtaining a curvature (constant multiple of the Gaussian

5Riemann visualizes the parallelogram formed by the points (0, x, dx, x + dx) in R2, and the area
of such a rectangle is simply given by the cross product ‖x × dx‖ = ‖x1dx2 − x2dx2‖, and the
area of the triangle formed (0, x, dx) is 1

2‖x1dx2 − x2dx1‖.

http://dx.doi.org/10.1007/978-3-319-58184-2_4
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curvature as we saw above) for the submanifold at that point. This is the sectional
curvature of Riemann, introduced on this same p.261.

In the remainder of the paper he discusses questions of flat manifolds, manifolds
of positive or negative constant curvature, and numerous other questions.

The coefficients {ci jkl} in (5.7) or Ci jkl in (5.8) are effectively the components of
the Riemannian curvature tensor for this special type of coordinate system (geodesic
normal coordinates). How does one define such a curvature tensor for n-dimensional
manifolds with a Riemannian metric in a general coordinate system (in the spirit of
Gauss’s curvature formula (4.10))? Clearly this will involve the first derivatives of the
Riemannian metric as well. In a paper written in Latin for a particular mathematical
prize in Paris (Paper No.XXII in Fig. 5.2), Riemann provides the first glimpse of
the general Riemann curvature tensor, and this is again translated and elaborated on
by Spivak [218]. The purpose of this paper was to answer a question in the Paris
competition dealing with the flow of heat in a homogeneous solid body.

Riemann’s ideas in these two posthumously published papers were developed
and expanded considerably in the following decades in the work of Christoffel,
Levi-Cevita, Ricci, Beltrami and many others. This is all discussed very elegantly
in Spivak’s treatise [218], and we won’t elaborate on this any further at this point.
The main point of our discussion has been that Riemann created on these few pages
the basic idea of an n-dimensional manifold not considered as a subset of Euclidean
space and of the independent concept of a Riemannian metric and the Riemann
curvature tensor. What is missing at this point in time is the notion of a topological
space on the basis of which one could formulate the contemporary concepts of a
differentiable manifold or a Riemannian manifold.

http://dx.doi.org/10.1007/978-3-319-58184-2_4
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