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To my friend, Howard Resnikoff



Preface

About ten years ago, I had the idea of writing up a survey of the major embedding
theorems of the twentieth century. This book represents the culmination of this idea,
and I’m quite happy to be able to finally publish it after all this time. The
embedding theorems represent important ideas in the modern fields of differential
topology, differential geometry, complex manifold theory, and the general theory of
functions of several complex variables, as well as the overall concept of manifolds
in general. I thought it would be useful to review the origins of these various
concepts as a way of hoping to give a deeper understanding of the theorems
themselves.

Consequently, I spent a fair amount of time these past years looking at a number
of contributions by mathematicians during the seventeenth through the nineteenth
centuries, where almost all of these concepts first appeared and then developed. In
my book, I have tried to give the reader some sense of the language and under-
standing of these earlier mathematicians as they gave voice to the many issues at
hand. For instance, the developments of projective geometry and intrinsic differ-
ential geometry both evolved at the same time in the first half of the nineteenth
century, but in reading the literature of the time, it seems as if they were hardly
aware of each other. Only in the last half of the nineteenth century did these
seemingly disparate sets of ideas come to be part of a mathematical whole.

I would not have been able to peruse these papers and books from these earlier
times had it not been for the Internet and the fact that the great libraries of the world
put time and effort into digitizing their collections. I am very thankful that these
ideas can be so readily shared today.

I have had the support of three academic institutions over the past decades,
where it has been my privilege to hold various academic appointments, and I want
to thank them all for their continued support over the years: Rice University in
Houston; Jacobs University in Bremen, Germany; and the University of Colorado
in Boulder, Colorado, where I now live.

Springer is the publisher of two of my earlier books, and I am very happy that
they are bringing this new work of mine to the public. I want to thank, in particular,
Rémi Lodh, who encouraged me and helped bring this book to fruition.
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The comments of his reviewers were very helpful to me. Anne-Kathrin
Birchley-Brun, also in the London Springer office, has been very helpful in the
process of managing the digital files and ushering them into the production process.

I want to thank Ina Mette, formerly of Springer and now an editor for the
American Mathematical Society, for her encouragement for this project over many
years now.

I have dedicated this book to my very close friend, Howard Resnikoff. He has
been an inspiration for me for over fifty years, and we have shared many things
together. His reading of various drafts of this book and his encouraging words have
been very important to me.

Finally, I want to thank my wife, Rena, for her continuous support in so many
ways. In particular, she read a final draft and her comments and editorial pen were
so very useful, as always.

Boulder, CO, USA Raymond O. Wells, Jr.
March 2017
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Introduction

In 1913, Hermann Weyl wrote a very influential book that one can perceive of as a
bridge between the geometry of earlier centuries and the geometry that evolved in
the twentieth century. More specifically, using the newly discovered theories of set
theory and point set topology, he created a theory of differentiable and complex
manifolds, in particular, in the case of Riemann surfaces. In 1936, Hassler Whitney
ushered in a new era of geometry when he formulated and proved the first
embedding theorem for differentiable manifolds. Namely, he showed that any
differentiable manifold can be embedded as a closed submanifold of a
higher-dimensional Euclidean space.

This was followed up over the next two decades by various mathematicians who
provided similar characterizations: real-analytic submanifolds of Euclidean space
(Grauert 1958), differentiable submanifolds with a Riemannian metric induced from
the ambient Euclidean space (Nash 1956), complex submanifolds of complex
Euclidean space (Remmert, Narasimhan, Bishop, 1956–1961), and complex sub-
manifolds of complex projective space (Kodaira 1954). All of these were embed-
ding theorems of one sort or another. Their formulations and proofs depended on a
variety of mathematical ideas, many of which had also evolved in the twentieth
century.

This book outlines a survey of roughly three centuries of mathematical work
concerned with differential and complex geometry, culminating in the
twentieth-century embedding theorems. The book is divided into four parts, which
are described below in more detail. In Parts I–III, we provide an overview of many
of the geometric ideas that play an important role in the twentieth-century
embedding theorems and which arose in various guises in the previous three cen-
turies, and Part IV describes the embedding theorems in some detail. Our major
source for this survey of mathematical ideas has been to look in some detail at the
original papers and monographs of the principal authors whose works are the
cornerstones of these developments. We have tried to look at the writings of these
authors in the context of the mathematical knowledge known at the time.

Part I looks at the way the geometry of curves and surfaces in two- and
three-dimensional Euclidean space began to interact with the simultaneously
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evolving theories of analysis that grew out of the late seventeenth century with the
discoveries of differential and integral calculus. Here, the notion of tangent vectors
and tangent spaces, first-order approximations to curves and surfaces, and curva-
ture, measuring how far curves and surfaces deviated from straight lines and planes,
all evolved in a systematic fashion. This became the essence of what we now call
extrinsic differential geometry, where the notion of the distance between points is
inherited from the ambient Euclidean space.

Part II describes two parallel theories that evolved in the nineteenth century. The
first was the discovery of intrinsic differential geometry that has become the foun-
dation of contemporary differential geometry (Gauss, Riemann). The second was the
creation of projective geometry, a generalization of classical Euclidean geometry
that transcended the usual two- and three-dimensional space by asking new types of
geometric questions and introducing points at infinity (Monge, Poncelet, and many
others). This evolved into our contemporary notion of projective space and became
the basis for much of algebraic geometry in the twentieth century.

Part III is an outline of the origins of what became known in the twentieth
century as complex geometry. It has its roots in the generalizations of trigonometric
functions and their properties: Euler’s addition theorems for elliptic integrals
(Legendre, Abel), elliptic functions, and their generalizations, Abelian functions
(Abel, Jacobi, Weierstrass, Riemann). Moreover, the development of function
theory over many decades, starting with the pioneering work of Cauchy in the
1820s (Riemann, Weierstrass), and in the innovative work of Riemann in his cre-
ation of the theory of Riemann surfaces in the mid-nineteenth century, led to the
developments of algebraic topology and the theory of manifolds in general at the
end of the nineteenth century (Riemann, Betti, Poincaré, Weyl). The work of Klein
and Lie on transformation groups in the latter half of the century was a very
important contribution for modern geometry as well.

Part IV of this book outlines in some detail the major twentieth-century
embedding theorems. They are all philosophically related: A manifold of some sort
can be embedded as a submanifold in some higher-dimensional Euclidean space or
projective space, and the embedding characterizes all such submanifolds.
Technically, they involve a broad range of mathematical tools and, for the most
part, solved problems that had been formulated earlier and involved quite technical
and often very difficult proofs. More specifically, they involve differentiable and
real-analytic manifolds, arising from the work in Part II, and they involve complex
manifolds, arising from the work in Part III.

Each Part of this book has its ownmore detailed introduction to the material in that
set of chapters. Here, we have given only a very brief overview of the whole book.

This survey over several centuries tries to show how these various strands of
mathematical thought have culminated in the powerful embedding theorems of the
mid-twentieth century. Of course, there were many other areas of development of
geometric ideas in the same time period which are not included in our survey, but
we feel we have chosen a coherent family of ideas that have contributed greatly to
our mathematical culture in the twentieth century.

xiv Introduction



Part I
Geometry in the Age of Enlightenment

Introduction

The Age of Enlightenment is a term that refers to a time of dramatic changes in
Western society in the arts, in science, in political thinking, and, in particular, in
philosophical discourse. It is generally recognized as being the period from the mid-
seventeenth century to the latter part of the eighteenth century. It was a successor to
the Renaissance and Reformation periods and was followed by what is termed the
Romanticism of the nineteenth century. In his book A History of Western Philosophy
[205], BertrandRussell (1872–1970) gives a very lucid description of this time period
in intellectual history, especially in Book III, Chapter VI–Chapter XVII. He singles
out René Descartes as being the founder of the era of new philosophy in 1637 and
describes other philosophers who made significant contributions to mathematics,
such as Newton and Leibniz. This time of intellectual fervor also included literature
(e.g., Voltaire), music, and the world of visual arts. One of the most significant
developments was perhaps in the political world: Here, the absolutism of the church
and of the monarchies were questioned by the political philosophers of this era,
ushering in the Glorious Revolution in England (1689), the American Revolution
(1776), and the bloody French Revolution (1789). All of these were culminations
of this Age of Enlightenment, which permanently changed the shape of Western
civilization from the absolutism of the Middle Ages. A most important development
of this time was the rise of science as it began to play an increasingly important role
in the world at large, along with the technological advances which accompanied it.
Russell describes this advance in science very succinctly in his book.

Mathematics experienced, as a part of this intellectual development, exciting
growth with numerous new sets of ideas. In this Part I of our book, we outline
some of the important developments and new ideas in geometry which were a part of
this era. There were, of course, many important mathematical developments during
this period, such as in analysis, number theory, algebra, appliedmathematics. In Parts
II and III, we have described a number of the very innovative geometric ideas that
arose in the fertile nineteenth century and which extended beyond the usual study of



2 Geometry in the Age of Enlightenment

geometry in two- and three-dimensional space that was inspired by the mathemati-
cians of the Greek era. However, in the Age of Enlightenment there were crucial new
discoveries concerning curves and surfaces in the plane and in ordinary three space
which became crucial building blocks for nineteenth-century geometry.

Between the time of the Greeks (which lasted about one millennium from c. 600
BCE until c. 400 CE) and the rise of mathematical thought in Western Europe, in the
seventeenth and eighteenth centuries, there were numerous mathematical develop-
ments in the Arabic and Indian cultures, primarily in arithmetic and algebra. One of
the most significant accomplishments of the Arabic world after the fall of the Roman
empire and preceding the time of the Renaissance was the actual preservation of a
substantive amount of the accomplishments of the Greek mathematicians. Pappus,
whose work plays an important role in this context, came toward the very end of
Greek mathematical culture in the fourth-century CE. For more than 1000 years,
mainly from the time of Pappus to the extraordinarily original work of Descartes in
the seventeenth century, geometry seemed to be at a standstill.

There are several major areas of contemporary geometry which have their roots
in the Age of Enlightenment. Projective geometry was primarily developed in the
nineteenth century. Its roots stemmed from works of Pascal from 1639 and from
Desargues in 1642, and their contributions were rediscovered by the nineteenth-
century geometers.Algebraic topologywas hinted at in a letter of Leibniz to Huygens
in 1679, which was cited by Euler in his famous paper on the Königsberg bridges.
Leibniz and then Euler used the phrase “analysis situs” to describe a relationship
between geometric and algebraic quantities. The final paper worth mentioning from
this period, and which is very important for algebraic topology, was Euler’s singular
paper [62] from 1752, which described for the first time what has become known as
the Euler characteristic for a surface.

All of these ideas from the seventeenth and eighteenth century are described in
their context in Parts II and III.

We will consider in this Part I two important areas of geometry developed in this
time period, namely algebraic geometry and differential geometry, both of which
had substantive growth in the eighteenth century.

Section 1.2 describes some of the work of Pappus which played an important role
in these geometric developments. We then turn to Descartes, whose work includes
a solution to a problem posed by Pappus, and included his celebrated coordinate
geometry, which transformed mathematics in so many ways. Both Descartes and
Fermat were able to successfully classify the algebraic curves of degree two, as
described in this section. Fermat’s work on number theory is muchmore well known,
but he also contributed significantly to the study of curves in the plane.

Following up on the work of Descartes and Fermat, Newton gave a detailed
classification of real-algebraic curves of degree three in the plane. Some 50 years
later, Euler gave a similar classification. Here, analysis played an important role in
both the work of Newton and the work of Euler, in particular in their use of infinite
series in their descriptions of asymptotic behavior. Section 1.3 gives a brief overview
of this initial work of Newton.

http://dx.doi.org/10.1007/978-3-319-58184-2_1
http://dx.doi.org/10.1007/978-3-319-58184-2_1


Geometry in the Age of Enlightenment 3

In Chap. 2, we note how the study of transcendental functions led to many geo-
metric objects which were not necessarily defined algebraically (this was pointed out
quite explicitly in Euler’s Introductio in 1748) [61]. Earlier, Newton first formulated
the notion of curvature of a curve in the plane in terms of calculus, which followed
up on ideas of Apollonius who looked at curvature of conic sections and the more
general work of Huygens from the seventeenth century. These ideas are all discussed
in Sect. 2.2. The curvature of curves in space was initiated by Clairaut in the early
eighteenth century and brought into its final form in the mid-nineteenth century by
Frenet and Serret (Sect. 2.3). The final topic in this chapter considers the work of
Euler from 1767, who studied the curvature of a surface by analyzing the curvature of
the curves arising from intersections of planes normal to the surface with the surface
itself.

The ideas discussed above all play a major role in modern mathematics. For
instance, the classification of algebraic curves in the plane of degree two and three
is an important predecessor of what has become a major theme of contemporary
geometry: to classify geometric objects. Moduli of Riemann surfaces and classifica-
tion of topological and differentiable manifolds of various dimensions, including the
famousPoincaré conjecture, Thurston’s classification conjecture for three-manifolds,
Kodaira and Spencer’s classification of compact two-dimensional complex mani-
folds, and many other examples, are all instances of the classification of geometric
objects.

The work on differential geometry for curves and surfaces in three space that
we describe here was an important prelude to the work of Gauss and Riemann on
curvature of differentiable manifolds in the nineteenth century, which we describe
in Part II. This has developed into the very rich field of differential geometry of the
twentieth century. We note that, for instance, Grigori Perelman’s recent solution of
the three-dimensional Poincaré conjecture used as a tool the full power of differential
geometry to solve this topological problem.

http://dx.doi.org/10.1007/978-3-319-58184-2_2
http://dx.doi.org/10.1007/978-3-319-58184-2_2
http://dx.doi.org/10.1007/978-3-319-58184-2_2


Chapter 1
Algebraic Geometry

1.1 Introduction

One of the last major figures in Greek mathematics was Pappus of Alexandria (ca.
290 CE–350 CE), who published a major work entitled the Collection. Book I and
the introduction to Book VII of this work are missing, but that which has been
preserved gives a good survey of manymathematical discoveries of his predecessors,
the originals of which have been lost, and, in addition, he contributed significantly
to solutions of a number of geometric and arithmetic problems (see e.g., Boyer [25],
pp. 205–213, for a summary of the important contributions in the Collection). We
want to single out one particular contribution that has played such an important role
in the history of geometry. This is now referred to as the problem of Pappus and was
described in the beginning of Book VII of the Collection. This problem was treated
by Euclid, Apollonius and others who preceded Pappus, and, as will be seen later,
Descartes.

Apollonius (c. 262 BCE–c. 190 BCE), one of the great geometers of the Greek
era of mathematics, wrote in the preface to his Conics [98] the following (using the
translation in Boyer [25], p. 167):

The third book contains many remarkable theorems useful for the synthesis of solid loci
and determinations of limits; the most and prettiest of these theorems are new and, when I
had discovered them, I observed that Euclid had not worked out the synthesis of the locus
with respect to three and four lines, but only a chance portion of it and that not successfully:
for it was not possible that the synthesis could have been completed without my additional
discoveries.

Here Apollonius was referring to his discoveries concerning conic sections, which
transcended substantially the work of the earlier Greek mathematicians. The “syn-
thesis of the locus with respect to three and four lines” is a special case of what has
come to be called the problem of Pappus, which is discussed more explicitly in the
following paragraphs.

We first formulate the original version, which was solved by Apollonius, and
then later its generalizations. The Problem of Pappus: given three or four lines in
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the Euclidean plane, find the locus of points such that the square of the distance to
one line (in the three-line case) is proportional to the product of the distances to the
remaining two lines. In the case of four lines, one asks for the locus of points with
the property that the product of the distances to two of the lines is proportional to
the product of the distances to the remaining two lines.1 In all cases the distance to a
given line is measured at a given angle to the given line (thus the given data is the set
of lines, the set of angles and the proportionality factor). Apollonius shows that the
resulting curves are indeed given by conic sections, which, of course, is the primary
topic of his book. He implies in the quote above that Euclid did not have the detailed
results needed concerning conic sections in order to solve this problem.

Using the language and ideas of analytic geometry, one can easily verify Apollo-
nius’s result (see Boyer [25], pp. 167–168). If, in the case of three lines given by the
equations

A1x + B1y + C1 = 0,

A2x + B2y + C2 = 0,

A3x + B3y + C3 = 0,

and if the angles used for measuring distance are given by θ1, θ2, and θ3, then the
locus is given as the set of points (x, y) satisfying:

(A1x + B1y + C1)
2

(A2
1 + B2

1 ) sin
2 θ1

= K
(A2x + B2y + C2)√

A2
2 + B2

2 sin θ2

· (A3x + B3y + C3)√
A2
3 + B2

3 sin θ3

.

Since the locus is the solution of a quadratic equation in the plane, it follows that it
is a conic section, which is what Apollonius had discovered using his methodology.

The general problem of Pappus is to be given an arbitrary number of lines and
angles and to ask the same question. Here is a quote from Pappus concerning the
more general problem. First he notes (following Boyer [25], p. 209) that for six lines,
the locus can be considered as a solid which is in fixed ratio to another solid (here
“solid” refers to products of three lengths, i.e., homogeneous polynomial terms of
degree three, usingmodern language). However, higher-degree terms were amystery
to him, as (quoting Pappus)

there is not anything contained by more than three dimensions

and, he continued,

men a little before our time have allowed themselves to interpret such things, signifying
nothing at all comprehensible, speaking of the product of the content of such and such lines
by the square of this or the content of those. These things might however be stated and shown
generally by means of compounded proportions.

1This set of problems is similar in spirit to the characterization of a circle being the locus of all
points (in the plane) whose distance to a given point is constant, or an ellipse being the set of all
points such that the sum of the distances to two distinct points is constant.
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Pappus did not study the higher-degree case (higher than six), but he did make the
important observation that the loci were curves in the plane. As Boyer observes, Pap-
puswas a geometer andDiophantus, a contemporary, was an algebraist (who did con-
sider higher powers and who had the notation to tackle the higher-degree problems),
but it required a mathematician who was familiar with both algebra and geometry to
make the next step, and that turned out to be Descartes, some 1300 years later.

1.2 Descartes and Fermat

René Descartes (1596–1650) published a slim volume in 1637 entitled La Géomé-
trie [55], which initially was an appendix to a longer work in philosophy but was
also published independently. Descartes’s work turned out to be revolutionary, and
when the next generation of mathematicians began to write general texts concerning
what today is called analytic geometry the impact of his work spread throughout the
mathematical world of Europe and became fully developed in the eighteenth century.
Until Descartes, and actually long after as well, Euclid’s Elements were definitive
on almost all things concerning geometry. Descartes’s new view of geometry was
very important, but Euclid’s ideas were still very valid. Only with non-Euclidean
geometry in the nineteenth century was Euclid challenged in a fundamental way. A
very brief but succinct survey of Descartes’s Géométrie is given by Serfati [213].

Descartes is most well known to mathematicians for having discovered analytic
geometry or probably more appropriately named coordinate geometry, which has
been taught in twentieth-century high schools and on up to the present day around the
world. The label “analytic geometry” as applied to Descartes is slightly a misnomer.
What Descartes showed was how common problems of geometry as described by
Greek geometers could be described by using algebraic equations and conversely.
The most important historical example of this is Descartes’s theorem that solutions
of algebraic equations of degree two in two variables corresponds precisely to the
conic sections studied byApollonius and others. What was much more important,
aside from the new coordinate system point of view, was that he defined geometric
objects to be solutions of algebraic equations. In particular, he considered algebraic
equations in two variables of arbitrary degree, which became the nucleus of algebraic
geometry, andwhich, in its modern form as developed in the nineteenth and twentieth
centuries, is definitely not taught in high schools around the world.

However, the way analytic geometry is taught today involves not only algebraic
functions, but also the standard transcendental functions, sin x , ex , etc., as well,
and students also learn about the curves that these functions can represent in the
plane. This is something that Descartes absolutely rejected. He had learned from
Greek authors that there were three types of curves studied by mathematicians:
plane curves, i.e., curves that could be described with a straight edge and compass
in the plane; solid curves, that is curves that could be described in three-space by
intersections of simple surfaces with a plane, the simplest being the full family of
conic sections, i.e., intersections of a cone with a plane; and the third category was
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Fig. 1.1 The quadratrix (trisectrix) curve of Hippias of Elis and the spiral of Archimedes. In polar
coordinates, r = 2aθ

π sin θ , r = aθ, respectively

linear curves, i.e., everything else. This last category included the quadratrix (often
called the trisectrix), the spiral of Archimedes, and other transcendental curves (to
use modern language). These are illustrated in Fig. 1.1.

Of course, this terminology (which one finds in Euclid, Apollonius and Pappus)
would be totally confusing today. Descartes pleads for his reader to have only two
categories of curves: geometric and mechanical. His definition of geometric was
simply anything described by algebra, i.e., algebraic curves (and surfaces, which
he did not really address in his book), and mechanical being all others. Hence he
extended the Greeks planar and solid curves to include curves of arbitrary degree.
On the other hand, he excluded from the study of geometry the mechanical curves
which include the quadratrix and spiral. The conchoid is an example of an algebraic
curve of higher degree

(x − a)2(x2 − y2) = b2x2,

and this curvewas used for cube duplication and angle trisection problems. The squar-
ing of the circle required trigonometric functions (for instance, using the quadratrix).
Today one uses the terminology of Leibniz: algebraic curves and transcendental
curves.

Themain reasonDescartesmade this distinctionwas that he thought that one could
always calculate solutions to algebraic equations but not solutions of transcendental
equations. He was familiar with the formulas for solutions of the third- and fourth-
degree equations of Cardano, and it seems that he assumed that such formulas were
true in general. Descartes spent almost all of Book III (the third and final chapter
of La Géométrie) discussing the explicit solution of equations, and in particular he
developed a theory of roots of polynomial equations in one variable. But in any event,
if he had a polynomial equation of degree d of the form P(x, y) = 0, he argued that
if you fixed a particular value of the variable y then you obtained a polynomial in
one variable which could always be solved (he believed the fundamental theorem
of algebra was indeed true, but he also believed roots could be found simply by
extracting roots, which Abel and Galois later showed to be false, in general). He
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then argued that one could not compute the values of the function whose graph is the
quadratrix curve for arbitrary values of the variable in question, but only for certain
special values. Fundamentally, this is equivalent to the fact that one can compute
by elementary geometry special values of the trigonometric functions, but not all
of them. This was beyond the scope of Descartes at the time, and for this reason he
rejected the study of transcendental functions as an object of study in geometry. In the
eighteenth century this would change radically. Also Descartes excluded solutions
of equations which involved complex numbers with nonzero imaginary part, and
said simply there were no solutions in those cases. It would be two more centuries
before mathematicians became comfortable with complex numbers (we discuss this
in some detail in Chap.6).

Descartes had strong opinions on what was true (or worthy of study) and what
was not. One more example, which is of historic importance, concerns arc length.
In the development of trigonometric functions, arc length is a critical ingredient (the
relation between the length of an arc to the length of the chord subtended by it is how
trigonometry was originally introduced, and the sine and cosine functions are simply
modern variations of this). Descartes was convinced that for no algebraic curve (e.g.,
the circle) could one ever find precisely the length of the arc in terms of the length
of the chord (this clearly relates to the difficulty of computing π). As he put it on p.
32 of La Géométrie,

...car encore qu’on n’y puisse recevoir aucunes lignes qui semblent à des cordes, c’est-à-
dire qui deviennent tantôt droites et tantôt courbes, à cause que la proportion qui est entre
les droites et les courbes n’étant pas connue, et même, je crois, ne le pouvant être par les
hommes, on ne pourroit rien conclure de là qui fût exact et assuré.2

What Descartes did do, and it seems to have been a major part of the inspiration
for writing his book, was to give a new and extensive solution to the Problem of
Pappus (both Books I and II of Descartes’s book are devoted to this topic, among
other things). He showed that for an arbitrary number of straight lines and associated
angles in the plane the locus of points such that the products of the distances to half
the set of lines is proportional to the products of the distances to the other half of the
set of lines, all distances being measured at the given angles, is an algebraic curve in
the plane.3 He computes that, for the classical case of three or four lines (the original
problem solved byApollonius), the curve is an algebraic curve of degree 2, for the
case of 5–9 lines the curve is an algebraic curve of degree 4, and for 10–13 the curve
is of degree 6, etc. He refers to the curves of degree 2, 4, and 6, etc., as curves of
genre 1, 2, and 3, etc. Descartes considered various special cases where odd degree
polynomials could appear, but he lumped them in his genre classification with the
even degree cases.

2“... because one should not be able to consider lines (or curves) that are like strings, in that they
are sometimes straight and sometimes curved, since the ratios between straight and curved lines are
not known, and I believe cannot be discovered by human minds, and therefore no conclusion based
upon such ratios can be accepted as rigorous and exact”.
3For the case of an odd number of lines, one takes the distance to one of the lines twice in this
proportionality.

http://dx.doi.org/10.1007/978-3-319-58184-2_6
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But, in addition to showing that the solution to the problem was algebraic curves,
for the classical case where he obtained algebraic curves of degree two, he showed
that all of these curves were conic sections. In his proof he showed how each of
the polynomials of degree two arising in this context could be put in a normal form
by a suitable change of coordinates, and then he was able to use Apollonius’s char-
acterization of the conic sections in terms of suitable coordinates to determine that
the solutions were indeed conic sections. The major distinction between Apollonius
and Descartes in this context was that Apollonius started with a given conic section
and produced coordinates which helped describe it, while Descartes started with the
coordinate system and the equation and was able to put it in canonical form and
identify it in a suitable manner. This work of Descartes is equivalent to Apollonius’s
result that any section of a skew cone is one of the three classical conic sections (see
Heath’s translation of Apollonius’s book on conic sections [98]).

Descartes recognized that different equations could describe the same geometric
curve, and he pointed out the need to find the “simplest” algebraic function that could
represent a given curve. This, of course, was the key question for the classification of
algebraic curves (and later higher-dimensional manifolds in a variety of categories,
to use a small pun), which has been a consistent and important theme in the follow-
ing centuries. Descartes classified the algebraic curves of degree two, and Newton
followed up with his major work on the classification of algebraic curves of degree
three [166] which will be discussed in more detail in the next section.

Pierre de Fermat (1601–1665) played an important and less recognized role in this
development of geometric ideas. First, in his only published paper in his lifetime,4

he showed that one could explicitly compute the arc length of a specific algebraic
curve, which, as noted above, Descartes claimed was impossible. More precisely, he
showed that for the algebraic curve y2 = x3, the semicubical parabola, the arc length
could be explicitly computed. Namely, if one takes the positive branch of this curve
y = x

3
2 on the interval [0, b], then one can verify that the arc length integral is

∫ b

0

√
1 + [y′(x)]2dx = 8

27
[(1 + 9b/4)

3
2 − 1],

as any calculus student today can do (and is often asked to do!). However, Fermat,
who played a major role in the development of differential and integral calculus,
was not aware of the fundamental theorem of calculus or of this arc-length formula,
which makes the calculation somewhat more difficult!

Moreover, Fermat also proved, independently of Descartes, that algebraic curves
of degree two are conic sections (see his biography, which discusses this, among
many other things [150]; see also [194]). A major difference between these two
historic figures on this particular point was that Fermat expressed his work in the
classical language of Euclidean geometry O A, O B, etc., representing the lengths

4See [150], p. 267 for this reference De linearum curvarum cum lineis rectis comparatione disser-
tatio geometrica (Geometrical dissertation on the comparison of curved lines with straight lines),
which appears as an appendix in a book by Antoine de Lalouvère from 1660.
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of the line segments O to A or O to B in the Euclidean plane. Descartes used
this notation as well, but he adroitly introduced the variables x , y, and z to denote
unknown quantities (lengths of segments in the problems he was considering), and
symbols a, b, c, etc., from the first part of the alphabet to represent known quantities
in a given computation, a practice that has been followed ever since. In this way
he reduced geometric problems to algebraic problems. He was very concerned that
his new way of looking at things should be well connected with classical Greek
geometry. As an example in Book I of La Géométrie he goes to great pains to show
that solutions of a quadratic equation such as

z2 = az + b2

can be constructed by straight edge and compass. Figure1.2 illustrates his construc-
tion.

We want to mention one final historical note that is not that well known to the
mathematical public (or public in general). One of the most important innovations
in Descartes’s La Géométrie was the invention of exponential notation. He used
x3, x4, etc., freely throughout the book. In the 1886 edition we have been quoting
from, the editors point out two modernizations that they introduced to make the
book more readable for the nineteenth-century reader. The first was the use of the
“=” sign instead of the symbol ∞ that Descartes used for equality, and the second,
surprisingly, was the use of x2 instead of Descartes’s preferred notation xx . This
certainly seems strange to a modern reader, as he used the higher-power exponential
notation with no hesitation. Before this innovation of Descartes mathematicians used
different symbols for different powers of the unknown variable x , which would make
a formula like the law of exponents

xm+n = (xm)(xn)

somewhat difficult to formulate (see, e.g., [194] and the references therein).

1.3 Newton and Euler

The development of differential and integral calculus and other ideas in analysis
(e.g., the theory of infinite series) in the late seventeenth century by Isaac Newton
(1642–1746) and Gottfried Wilhelm Leibniz (1646–1716) and their successors have
been some of the most important developments in all of mathematics. These ideas
have been well documented (see, e.g. Boyer [25], Kline [125], and other such ref-
erences). We won’t try to give any historical background on this important topic, as
we want to concentrate on the interaction between analysis and the developments
in geometry as it evolved in this Age of Enlightenment. Newton published in 1704
for the first time two pivotal works on geometry and calculus which were quite
independent of each other and which were chapters in a larger book on optics [167].
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Fig. 1.2 Page 5 of Descartes’s La Géométrie

Figure1.3 shows the title page of this very important work; here the two mathe-
matical treatises are labeled “Also Two Treatises of the Species and Magnitude of
Curvilinear Figures.”

The first of these mathematical treatises deals with the classification of alge-
braic curves of degree three [166], and the second concerns itself with calculus and
measuring the area under a curve [168]. Both of thesemathematical chapters arewrit-
ten in Latin, whereas the main part of the book is written in English, and concerns
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Fig. 1.3 Title Page of Newton’s Opticks from 1704

itself with physics, and optics in particular. Note that Newton’s Principia Mathemat-
ica was published earlier in 1687 and the definitive third edition was published in
1726 (see the annotated copy of this third edition of Newton’s most important work
[170], edited by Khoyré and Cohen, which was published in 1972). This book uses
the ideas of calculus in a fundamental way, even if the language used to express them
is somewhat cumbersome, describing everything in terms of limiting processes of
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Fig. 1.4 Page 143 of Newton’s Linearum from 1704

Euclidean geometric objects. His work on algebraic curves is, however, not a part of
Principia Mathematica.

Newton gave a quite precise classification of algebraic curves of degree three.
This is a direct generalization of the case of curves of degree two, the conic sections.
The basic tool used was to analyze the highest-order homogeneous terms of degree
three and their possible factorizations over the real numbers. This led to various types
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Fig. 1.5 First page of Newton’s figures from Linearum including Fig. 1 referenced on p. 143 of
the same book

of branches that are unbounded (and to various types of asymptotes) that can arise,
and they become an important part of the classification. For instance, for curves of
degree two, one can see that an ellipse has no infinite branches, a parabola has two
infinite branches, and a hyperbola has four infinite branches including two straight
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lines which are asymptotes. This behavior at infinity completely distinguishes these
three classes of curves.

Newton’s analysis yielded the classification of 78 different types of curves. In
fact, he only described 72, having missed six types. He classified them algebraically,
and then provided beautiful drawings of the typical curve of the specified classifi-
cation type. In Figs. 1.4 and 1.5 we see some examples of the classification and the
corresponding drawings. His analysis of how he arrived at the classification is very
terse indeed. In fact, there is very little description of his analysis. The monograph
is not much more than a simple listing of his findings. Proofs of his results were
published later by mathematicians who analyzed and generalized his results. He also
indicates that one can carry out such an analysis for curves of higher degree by the
same method of analysis.

Many mathematicians over the centuries have, of course, analyzed Newton’s
results in great detail and one can find the classification in a variety of monographs
(see, for example, Walker [227] for a modern treatment of real algebraic curves).
However, one of the most beautiful and thorough analyses of Newton’s work from
the classical literature is that of Leonhard Euler (1707–1783) in [62]. This very influ-
ential book, Introductio in Analysin Infinitorum, was first published in Latin in 1748
and then reappeared later in many editions and in various languages.

What we have described above very briefly is Newton’s classification of algebraic
curves of degree three from the beginning of the eighteenth century. Such devel-
opments carried on into modern times, in particular with similar classifications of
Riemann surfaces (considered as algebraic curves of complex dimension one of var-
ious degrees), and complex manifolds of higher complex dimension. In general the
study of complex manifolds or complex algebraic varieties of various dimensions
has turned out to be simpler than the study of real algebraic manifolds and varieties
over the real numbers due to the closure of the field of complex numbers. But it all
started in the real algebraic setting, as that’s what the mathematical community was
familiar with in the early eighteenth century. They knew about complex numbers,
but they were not yet familiar with complex geometry.



Chapter 2
Differential Geometry

2.1 Introduction

A second major development in geometry in the eighteenth century was the study
of curves and surfaces in R2 and R3 defined by not necessarily algebraic functions.
These included two not quite independent developments that took place more or
less simultaneously. The first was the development of the now standard elementary
transcendental functions: the trigonometric, exponential, and logarithmic functions.
In Euler’s textbook from 1748 [62] these functions and their algebraic and analytic
properties (e.g.,

d

dx
sin x = cos x, sin(x + y) = sin x cos y + cos x sin y.

etc.) were fully developed and correspond to what one learns in contemporary precal-
culus and calculus courses in high school today. The second development involved the
solution of differential equations (primarily ordinary differential equations) which
provided a large variety of functions for analysis and geometrical representation. This
led to a large class of special functions that went by the names of the mathematicians
who created and developed them: Hermite, Legendre, Bessel, Euler’s Gamma func-
tion and many others. These functions were tabulated for computational use and their
various algebraic and analytical properties were developed, similar to those prop-
erties illustrated above for trigonometric functions. Over the course of time these
mathematical tools became very important for the applications of mathematics to
the worlds of chemistry, physics, biology and other areas of scientific understand-
ing. These methods preceded by one or two centuries contemporary techniques for
scientific analysis made available through the use of computers and simulation tools
involving modern numerical analysis, which were to diminish the once important
role of special functions.

In the latter half of the eighteenth century the differential geometry of curves and
surfaces began to develop and flourish. First we consider the development of what
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became known as planar curves and space curves (i.e., smooth curves in R2 and R3).
Differential geometry was named as a concept by Bianchi in 1894 (as noted by Kline
[125] on p. 554). This naming of the discipline came long after the most signifi-
cant developments in the field. It came to mean precisely manifolds equipped with
a Riemannian (or more general) metric, or more generally a connection, and where
the concepts of curvature played a central role. Indeed, the interaction of differential
analysis (i.e. calculus, differential equations, all aspects of analysis involving infinite
processes) with geometry is much older and broader than the more precise notion of
differential geometry as it is employed today. For instance, the notion of differential
topology, which developed in the mid-twentieth century, certainly involves mani-
folds and analysis, but doesn’t formally use the notion of a differential-geometric
metric as in differential geometry per se. Archimedes knew how to compute areas by
the method of exhaustion, and Fermat understood both differentiation of functions
(finding maxima and minima and tangents) and how to compute the area under some
curves, but he did not know the fundamental theorem of calculus (see [194] for a
discussion of these issues). All of these are indeed an interaction of analysis with
geometry, and are parts of the foundation of what became differential geometry two
centuries later.

2.2 Huygens and Newton

The first important task in differential geometry was to be able to efficiently compute
the tangent line to a given curve at a given point and, as any beginning student of
calculus knows, this is one of the first applications of the notion of the derivative. A
deeper question that we explore in greater detail in this section is: what is curvature?
More precisely, what is the curvature of a curve in a plane or in three-dimensional
space? What is the curvature of a surface in three-dimensional space? Finally, what
is curvature of an abstract two-dimensional or higher-dimensional manifold? This
last question is a key part of the geometric developments in the nineteenth century
and will be discussed in Part II.

Consider first the simple case of a curve in the plane defined by the graph of a
function as in Fig. 2.1. Then one learns in calculus that the curvature of the curve at
P = (x, y) is given by

K P = ± f ′′(x)

[1 + ( f ′(x)2] 3
2

, (2.1)

where the sign is chosen to be positive if the normal vector to the curve at P intersects
the approximating circle and is negative otherwise. In the illustration in Fig. 2.1, the
normal vector to the curve at P using the usual orientation would be pointing upwards
in the figure, away from the approximating circle, whose radius is 1/|K P |, and hence
in this case the curvature would be negative.
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P = (x , y) = (x , f (x))

y = f (x)
1

   Kp

Fig. 2.1 Radius of curvature of a curve at a point

This formula is given for the first time in Newton’s monograph of 1736 [169],
which was published as an English translation of his original Latin manuscript from
1671, which was never published, but was privately circulated among some of New-
ton’s colleagues. This monograph, published in 1736 after Newton’s earlier death,
was part of the basis for the controversy between adherents of Newton and Leibniz
on who had first invented (or discovered) calculus. Figure 2.2 shows the cover page
of this singular monograph, and Fig. 2.3 shows the table of contents, where the cur-
vature of a curve stands out so very distinctly as an object of study. The formula (2.1)
appears in the text of Newton’s monograph.

The first published account of the curvature of a general curve was due to Chris-
tiaan Huygens (1629–1695) in 1673 [114]. In both Newton and Huygens the funda-
mental definition of the center of curvature (center of the osculating circle at a given
point) is the intersection of normal lines to the curve near the given point on the curve
(see the figures in Huygens p. 84 [114] and Newton on p. 60 [169], reproduced here
in Figs. 2.4 and 2.5).

Huygens didn’t have calculus per se at his disposal, but he made estimates in terms
of normals at an approximating point (like the estimates of slopes of an approximating
secant to a tangent line in differential calculus), and using these estimates he was able
to compute the curvature for a variety of examples (cycloid, conic sections, etc.).

An interesting historical point is how Huygens came to study this phenomenon.
Some 16 years before the appearance of his monograph [114] he had built one of the
most important clocks in history: a pendulum whose motion is isochronous. That is,
the swing of the pendulum has a constant period of repetition. Huygens showed that
a simple pendulum, whose pendant moves in a circular arc, has a period that depends
on the size of the oscillations, whereas if the pendant moves in the arc of a cycloid,
then the period is fixed independent of the size of the oscillation.

The method Huygens used for making the pendant move in a cycloidal path
(which he patented in 1657) was to have the path be the involute of a curved plate
(which was also a cycloid), i.e., the curve traced out by a fixed string moving from a
center attached to a given curve, where initially the fixed string lies along the given
curve and moves away from it, with the free straight line portion of the string being
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Fig. 2.2 Title page of Newton’s 1736 Monograph on Fluxions
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Fig. 2.3 Table of contents of Newton’s 1736 monograph on fluxions
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Fig. 2.4 Huygens’s center of curvature from Horologium Oscillatorium
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Fig. 2.5 Newton’s center of curvature from Method of Fluxions
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Fig. 2.6 An involute being generated by a string attached to the curve C (called the evolute)

continuously tangent to the given curve (see the illustration in Fig. 2.6). The curve C
in Fig. 2.6 is called the evolute (which generates the involute traced out by the point
Q by the motion of the string). The problem Huygens posed and solved was: given
the involute, find the evolute, i.e., find the generating curve. Now the straight line T
is normal to the involute at the point Q (as Huygens showed), and, at the point of
contact at point R, T is tangent to C . Thus T is normal to the involute at Q, and R
can be seen to be the intersections of the normals close to Q (as both Huygens and
Newton showed). Hence R is the center of curvature of the involute at the point Q,
and the evolute C is the locus of centers of curvature of the involute at points near
Q.

In the second illustration of an involute in Fig. 2.7, one sees two “parallel” invo-
lutes, the curves C ′ and C ′′ being generated from the curve C , and one can see that
the involutes are orthogonal to the generating string at the intersection points (as
was proved by Huygens). Looking at the illustration from p. 4 (Fig. 2.8) of Huy-
gens’s book [114] one sees in Fig. II of the diagrams in Fig. 2.8 the cycloid-shaped
curve from which the pendant of the pendulum sweeps out the involute, which is the
cycloidal motion of the pendant. Huygens calculated the evolutes for a number of
examples, independent of the specific example he used in the design of his clock.
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Fig. 2.7 Involutes are orthogonal to the generating string

Some 2000 years earlier, in Book V of his famous work Conics, Apollonius was
able to compute the curvature of the classical conic sections. Apollonius was in fact
trying to solve a different set of problems, and curvature was not explicitly discussed.
In Heath’s translation [98], he shows what Apollonius did in modern notation. More
particularly, on p. 171 one finds that for the parabola of the form

1

2a
y2 = x,

the evolute (locus of centers of curvature) of this parabola has the form:

27ay2 = 4(x − 2a)3,

which is a semicubical parabola. He finds similar formulas for the ellipse and hyper-
bola.

Here Apollonius was studying the behavior of normals to conic sections. He
showed that each conic section has a unique normal passing through each point. He
defined a normal as being a straight line which was either a local maximum or a local
minimum-length straight line from some point not on the curve. He then showed
that such a line was indeed perpendicular to the tangent line at the given point. This
leads, by an interesting argument, to the conclusion that Apollonius has calculated
the points of the evolute, as Heath points out very explicitly.
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Fig. 2.8 Page 4 of Huygens’s book Horologium Oscillatorium [114]
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2.3 Curves in Space: Courbes à double courbure

Since the time of Newton, curvature of a curve in the plane became a standard
object of mathematical investigation. The first step in investigating the differential
geometry of curves in R3 was taken by Alexis Claude Clairaut (1713–1765) in his
book Recherches sur les courbes à double courbure [48], written when he was only
16 years old and published two years later, following up on work he had started
when he was 12 years old. We know this from the “Approbation” at the beginning
of the book, written by two of the reviewers of the book; and the page where this
appears, following the Preface, is the only place Clairaut’s name appears in the book,
not on the title page! See Fig. 2.9. Clairaut called curves in R3 “courbes à double
courbure”,1 and he says in his book that he was inspired by Descartes, who suggested
space curves could be studied in terms of their projections on two orthogonal planes.
Clairaut studied the tangent line to a curve, its arc length and the infinite variety of
normal lines in the plane perpendicular to the tangent line.

The next steps in the study of space curves were taken by Euler, who primarily
looked at space curves which were defined as the intersections of surfaces in R3 (see
Volume 2 of Euler’s Introductio of 1748 [62]). Michel Ange Lancret (1774–1807)
singled out in 1806 the three principal directions of a space curve at any point (tangent,
normal, and binormal), and formulated the additional notion of torsion of a curve
[132].

The final steps in the study of space curves were taken by Augustin-Louis Cauchy
(1789–1857) in 1826 in his Leçons sur les Applications du Calcul Infinitésimal à la
Géométrie [38], and by Serret [216] and Frenet [75] in their back-to-back papers
in 1851 and 1852. Cauchy gave us the formulation of space curves we use today
(without the vector notation), and Serret and Frenet gave the final form to the structure
equations (which today bear their name, the Frenet–Serret equations), which brought
together the formal characterization of space curves in terms of the three principal
directions of a curve and its curvature and torsion.

2.4 Curvature of a Surface: Euler in 1767

The concept of the curvature of a curve in R3 was well understood at the end of
the eighteenth century, and the later work of Cauchy, Serret and Frenet completed
this set of investigations begun by the young Clairaut a century earlier. The problem
arose: how can one define the curvature of a surface defined either locally or globally
in R3? An important contribution is made by Euler in his paper entitled “Recherches
sur la courbure des surfaces”2 [65] from 1767 (note this article is written in French,

1“curves with double curvature”. The expression “courbes à double courbure” was used to describe
space curves for a long time by many mathematicians after the initial impetus of Clairaut.
2“Research on the curvature of surfaces”.
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Fig. 2.9 Excerpt from the beginning of Clairaut’s book Recherches sur les courbes à double
courbure [48]

not like his earlier works, most of which were written in Latin). Figure 2.10 shows
the first page of the article and we quote the translation here:

In order to know the curvature of a curve, the determination of the radius of the osculating
circle furnishes us the best measure, where for each point of the curve we find a circle whose
curvature is precisely the same. However, when one looks for the curvature of a surface, the
question is very equivocal and not at all susceptible to an absolute response, as in the case
above. There are only spherical surfaces where one would be able to measure the curvature,
assuming the curvature of the sphere is the curvature of its great circles, and whose radius
could be considered the appropriate measure. But for other surfaces one doesn’t know even
how to compare a surface with a sphere, as when one can always compare the curvature of a
curve with that of a circle. The reason is evident, since at each point of a surface there are an
infinite number of different curvatures. One has to only consider a cylinder, where along the
directions parallel to the axis, there is no curvature, whereas in the directions perpendicular
to the axis, which are circles, the curvatures are all the same, and all other oblique sections
to the axis give a particular curvature. It’s the same for all other surfaces, where it can
happen that in one direction the curvature is convex, and in another it is concave, as in those
resembling a saddle.
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Fig. 2.10 The opening page of Euler’s work on curvature [65]

In this paper Euler describes quite clearly the problem of formulating a concept
of curvature of a surface in R3. In particular, in the quote above one sees that Euler
recognized the difficulties in defining curvature for a surface at any given point. He
does not resolve this issue in this paper, but he makes extensive calculations and
several major contributions to the subject. He considers a surface S in R3 defined as
a graph

z = f (x, y)
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near a given point P = (x0, y0, z0). At the point P he considers planes in R3 passing
through the point P which intersect the surface in a curve in that given plane. For
each such plane and corresponding curve he computes explicitly the curvature of the
curve at the point P in terms of the given data.

He then restricts his attention to planes which are normal to the surface at P
(planes containing the normal vector to the surface at P). There is a one-dimensional
family of such planes Eθ , parametrized by an angle θ . He computes explicitly the
curvature of the intersections of Eθ with S as a function of θ , and observes that there
is a maximum and minimum κ1 and κ2 of these curvatures at P , corresponding to
two planes E1 and E2. These curvatures are called the principal curvatures of the
surface at the point P . In the generic case, Euler shows that the two planes E1 and
E2 are orthogonal to each other. Moreover, he shows that the curvature κθ for the
plane Eθ can be computed in terms of the principal curvatures, namely

κθ = κ1 cos2 θ + κ2 sin2 θ.

This is as far as he goes, but it is a great step forward in understanding the curvature
of a surface. He does not use this data to define what we now call the curvature of the
surface S at the point P . This step was taken by Gauss in a visionary and extremely
important paper some 60 years later [81].



Part II
Differential and Projective Geometry in the

Nineteenth Century

Introduction

In the nineteenth century, there were a number of parallel developments of innovative
ideas all of which played a major role in twentieth-century mathematics. In this part,
we want to discuss two major themes that are important for our study of embedding
theorems in the mid-twentieth century.

The first theme is that of projective geometry, which began in 1799 with the
work of Monge in Paris and culminated with the work of many mathematicians in
the second half of the nineteenth century. This led to our contemporary notion of
projective space, an important adjunct to the classical Euclidean space that came to us
from our Greekmathematical heritage.We survey in Chap. 3 the work of a number of
mathematicians involved in developing projective geometry. There were two schools
of thought: synthetic projective geometry (the French school) and analytic projective
geometry (the German school), which came together towards the end of the century
to be the projective geometry we understand today.

Our second theme is the creation of intrinsic differential geometry, the concept
of higher-dimensional manifolds, and the introduction of a metric and a curvature
tensor on a manifold. This is primarily the work of Carl Friedrich Gauss (1777–
1855) in 1828 and of Bernhard Riemann (1826–1866) in 1854. We outline their two
fundamental papers inChaps. 4 and 5. This is the foundationalwork for contemporary
differential geometry.

In Part III, we will examine a third major theme of the nineteenth century, namely
the origin of complex geometry.

http://dx.doi.org/10.1007/978-3-319-58184-2_3
http://dx.doi.org/10.1007/978-3-319-58184-2_4
http://dx.doi.org/10.1007/978-3-319-58184-2_5


Chapter 3
Projective Geometry

The first major development that we want to discuss, having its beginnings at the
start of the nineteenth century, is the creation of projective geometry; which led in the
latter half of the nineteenth century to the important concept of a projective space Pn

over the real or complex numbers (or more general fields). This became at that time
a centerstage for many developments in algebraic geometry and complex manifolds
which carried over vigorously into the twentieth century. In this chapter we will
outline the very interesting story of how and why projective geometry developed.

Projective geometry started as a school of mathematics in France around 1800.
Throughout the eighteenth century, as wementioned above, coordinate geometry and
its interaction with differential and integral calculus—what became known later as
differential geometry—dominated mathematical research in geometry. In particular,
the classical ideas of what became known as synthetic geometry in the spirit of
Euclid’s Elements began to fall to the wayside in mathematical research, even though
Newton and others had often resorted to synthetic geometric arguments early in the
eighteenth century as a complement to (and often as a check on) the analytic methods
using coordinates.

Some of the proponents of projective geometry wanted to create a type of geome-
try that could provide an important alternative to coordinate geometry for a variety of
interesting geometric problems. This led to new considerations of geometric equiv-
alence for geometric figures, and led to an extension of Euclidean space to include
points at infinity, as well as other important innovations. A parallel development
in projective geometry was the use of coordinate systems of various types to pro-
vide alternative proofs of some of the fundamental results in the subject. This led in
particular to the concept of homogeneous coordinates.

© Springer International Publishing AG 2017
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3.1 Monge and Descriptive Geometry

It is generally recognized that projective geometry is the singular creation of Ernst
Gaspard Monge1 (1746–1818) and his pupils, principally Carnot, Poncelet, and
Chasles, to mention just three of them. Monge published a book [159], Geométrie
Descriptive, which inspired major developments by his pupils and, in turn, resulted
in several substantive books; Poncelet’s book Propriétés Projectives [190] in 1822
being perhaps the most influential. The book by Michel Chasles (1793–1880) [43]
is a two-part work, the first of which is a brilliant historical treatise on the whole his-
tory of geometry up to that point in time, 1831. The second part is his own treatment
of projective geometry, following up on the work of Monge, Carnot, Poncelet and
others.

Lazare Nicolas Marguerite Carnot (1753–1823) wrote in 1803 a significant book;
Géométrie de Position2 [31], which played an important role in projective geometry.
This book, along with Monge’s original book on descriptive geometry from 1799
[159], was a major influence on Poncelet. We will say more about this later, but first
we want to give an overview of how and why projective geometry came to be and
what these first authors believed they had achieved.

It is quite fascinating to read the 1827 edition of Monge’s book [159], which was
edited by his pupil Bernabé Brisson and published after Monge’s death in 1818. This
was the fifth edition of the book which first appeared in 1799 and was the result of his
lectures at the École Normale, which were very inspirational, according to several
testimonials published in this edition. Monge was very concerned about secondary
education and the creation of a new generation of educated citizens who could help
in the development of the Industrial Revolution in France.

He believed that descriptive geometry, which he developed in this book, would be
a tool for representing three-dimensional objects in terms of their projections onto
one or more planes in three-dimensional space, and that this should be a major part of
the educational development of students. The applications he uses as examples came
from architecture, painting, the representation of military fortifications, and else-
where. Monge was also interested in developing an alternative approach to classical
synthetic geometry in the three-dimensional setting in order to develop a geometric
method which would be useful in engineering. Today we use his ideas in the form
of blueprints for industrial design with such two-dimensional drawings representing
horizontal and vertical projections of the object being designed or manufactured.

The basic thesis of plane geometry as formulated by the Greeks and brought down
to us in the book of Euclid is a solution of geometric problems in the plane by the use
of the straight edge and compass.Monge’s fundamental thesis in his book is to reduce
problems of geometry in three-dimensional space to plane geometry problems (in
the Euclidean sense) on the projections of the problems to two (or more) independent

1Monge was a major scientific advisor to Napoleon on his Egyptian expedition and helped create
the Ecole Polytechnique, the first engineering school in France, as well as the metric system.
2“Geometry of Position”.
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Fig. 3.1 Figure1 in Monge’s Géométrie Descriptive [159]

planes. Considering the straight edge and compass as engineering tools, a designer or
engineer couldwork on three-dimensional problems in the two-dimensionalmedium.

Let us illustrate this with a simple example from his book. In Fig. 3.1 we see
the projection of the line segment AB in R3 onto the line segment ab in the plane
L M N O . Let us visualize these line segments as representing straight lines extended
infinitely in both directions. Let’s change notation slightly from that used by Monge
in this figure. Let L be the given line in R3 and let E1 and E2 be two non-parallel
planes in R3. Let L1 and L2 be the perpendicular projections of the line L onto the
planes E1 and E2, respectively. We see that L1 and L2 represent L in this manner.
Can we reverse the process? Indeed, given L1 and L2, two lines in E1 and E2, let
H1 and H2 be the planes in R3 which are perpendicular to E1 and E2 and which
pass through the lines L1 and L2. Then the intersection H1 ∩ H2 is the desired line
in R3 whose projections are L1 and L2. This simple example is the main idea in the
projection of a point inR3 onto the three orthogonal axes (x-axis, y-axis, and z-axis),
giving the Cartesian coordinates (x, y, z) of a given point.

Monge formulates and solves a number of problems using these types of ideas.
Here is a quite simple example from his book, paralleling a similar question in plane
geometry. Given a line L inR3 and a point P not on the line, construct a line through
P parallel to L . One simply chooses two reference planes E1 and E2, as above, and
projects orthogonally L and P onto the planes, obtaining lines L1 and L2 and points
P1 and P2 in the reference planes. Then, in this plane geometry setting, find parallel
lines l1 ⊂ E1 and l2 ⊂ E2 to the lines L1 and L2 passing through the points P1 and
P2. The lines l1 and l2 determine a line l ⊂ R3, which solves the problem.
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Monge considers in great depth for most of his book much more complicated
problems concerning various kinds of surfaces in R3 and shows how to construct
tangents, normals, principal curvatures and solutions to many other such problems.
He uses consistently the basic idea of translating a three-dimensional problem into
several two-dimensional problems. This is the essence of descriptive geometry, but
it becomes the basis for the later developments in projective geometry, as we will
now see.

3.2 Poncelet’s “Propriétés Projectives”

The most influential figure in the development of projective geometry in the first half
of the nineteenth century (aside from the initial great influence ofMonge, as described
above) was undoubtedly Jean-Victor Poncelet (1788–1867). He was an engineer and
mathematician who served as Commandant of the Ecole Polytechnique in his later
years. Hismajor contributions to projective geometrywere his definitive booksTraité
des Propriétés Projectives des Figures, Volumes 1 and 2 [190, 191], which were first
published in 1822 and 1824 and reappeared as second editions in 1865 and 1866.

In addition, he published in 1865 a fascinating historical book Applications
d’Analyse et de Géométrie [189], the major portion of which is the reproduction
of notebooks Poncelet wrote in a Russian prisoner-of-war camp in Saratov 1813–
1814. He was interned there for about two years after a major battle (at Krasnoi)
which Napoleon lost in November of 1812 towards the end of his disastrous Russian
campaign to Moscow, and where Poncelet and others had been left on the field as
dead. Poncelet had been serving as an Officier de génie (engineering officer). He
had no books or notes with him and wrote out and developed further ideas he had
learned from the lectures and writings of Monge and Carnot, in particular the works
cited above [31, 159]. He attributes the long time between his first book (1822) and
their revisions and his historical book which appeared some 40–50years later to the
extensive time commitment his administrative career demanded. He also published
numerous mathematical papers early in his career, most of which play an important
role in his books on geometry. Moreover, he was the author of several engineering
monographs as well.

Poncelet promoted in his writings a specific doctrine for the development of
geometry which became, with time, known as projective geometry, a term we didn’t
see him using in our reading of his works. He always used the expression “propriétés
projectives” (projective properties) of figures, by which he meant those geometric
properties of geometric figures that could be derived via projection methods by the
new methodology that he was developing. He believed that the use of coordinate
systems for the study of geometric problems was overvalued and led to difficulties of
geometric understanding when negative and imaginary (complex) numbers appeared
as solutions to equations. A real positive number could represent the length of a
segment, or an area or volume of the figure, but what did negative and complex
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numbers represent geometrically? Only in the latter half of the nineteenth century
did satisfactory answers to these questions arise.

As an example of this questioning of the use of algebra and geometry it is inter-
esting to point to the opening 30 pages or so of the book by Carnot [31], which is
solely dedicated to showing that negative numbers do not exist. Towards the end of
his polemical assertions about the non-existence of negative numbers, Carnot intro-
duces the notions of “direct” and “inverse” of numbers to justify the proliferation of
plus and minus signs (the usual formulas of algebra and trigonometry) in his book.
He also gives tantalizing hints of what became “analysis situs” in the late nineteenth
century, which is now called simply topology. This early work of Carnot included
specifically the notion of points and lines at infinity as well as the notion of duality
and dual problems, which we will say more about later.

An important theorem of Apollonius that we discussed earlier in Sect. 1.2 asserts
that any section of a skew cone could be considered as a section of a right circular
cone, i.e. one of the classical conic sections (this is mathematically equivalent to
the work of Newton and Fermat representing second-degree curves in the plane as
one of the three classical conic sections). Now let’s use the same picture but from a
different perspective. Let E1 and E2 be two (non-parallel) planes in R3, let �1 be a
circle in E1, let P be a point not on either plane, and let C be the cone formed by the
pencil of lines emanating from P , the point of perspective, and passing through the
points of �1. Consider the intersection �2 of the cone C with the second plane E2.
Then, according to Apollonius, this curve is again a conic section.

From the point of view of projective geometry; one says that the curves �1 and �2

are projectively equivalent, and that they represent the “same curve” projected onto
different planes. One can imagine a figure being projected onto one plane from one
perspective point and also being in the same plane from a different perspective point,
and then from the second perspective point being projected onto a third version of
the figure on a different plane. All of these changes of perspective and projections
correspond to the natural mappings of projective space onto itself in modern terms,
but this was the initial way these things were looked at by Poncelet and his school.

They also took the time to represent these changes of perspective and projection
onto different planes as fractional-linear mappings of one plane onto another in terms
of coordinate systems. For instance; in a supplementary article in Poncelet’s book
[189], written by one of his collaborators (M. Moutard, presumably a student), one
finds the diagram on p. 512 (see Fig. 3.2) which shows a typical projection onto
two different planes with coordinate systems (x, y) on the one plane and (x ′, y′) on
the second plane. After three pages of calculations; the author finds the coordinate
transformations on p. 515 as given in Fig. 3.3.

This use of coordinate systems was used in this context as a way of making sure
the computations done via projections (without coordinates) agreed with the results
being obtained by Möbius, Plücker and others (with coordinates). In fact, the title
of the article by Moutard (see p. 509 of [189]) is: “Rapprochement divers entre le

http://dx.doi.org/10.1007/978-3-319-58184-2_1


38 3 Projective Geometry

Fig. 3.2 Figure26 in Poncelet’s Applications d’Analyse et Géométrie, p. 512 [189]

Fig. 3.3 Equation2 on p. 615 in Poncelet’s Fig. 1 in Applications d’Analyse et Géométrie [189]

principales méthodes de la géométrie pure et celles de l’analyse algébrique”.3 Here
“rapprochement” means reconciliation, and note the use of “géométrie pure” for
what later became known as synthetic projective geometry.

The equivalence of geometric objects as being different projections of the same
object is one of the essential points of Poncelet’s geometry. In the introductory
remarks in his books, he formulates the basic principle that guides his investigations:
given a particular geometric configuration and an associated problem in this context

3“Various reconciliations between the principal methods of pure geometry and those of analytic
algebra”.
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Fig. 3.4 Figures on Plate 1 in Poncelet’s Traité des Propriétés Projectives des Figures, Tome 1
[190]

(often in a planar context), find the simplest projective representation of this figure,
by means of which one can resolve the problem, and thus it becomes resolved for
all other configurations, including the one in the initial context. We want to illustrate
this principle by looking at two simple examples of projectively equivalent figures
from Poncelet’s book [190] (Figs. 1 and2 on plate 1, reproduced here in Fig. 3.4).

In the first figure (Fig. 1); we see that the quadrilateral (assumed in a plane)
ABC D is projectively equivalent to the quadrilateral A′ B ′C ′ D′ (again in a plane).
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In Fig. 2 the segmented line ABC D is projectively equivalent to the segmented line
A′ B ′C ′ D′. Moreover, Poncelet (and many others in the time period) proved that the
cross-ratios of these two sets of collinear points satisfy

AB

C B

C D

C E
= A′ B ′

C ′ B ′
C ′ D′

A′ D′ . (3.1)

That is, this numerical quantity doesn’t change for these variable projective views of
this segmented interval.

It turns out that the cross-ratio is one of the most important numerical invariants
of projective geometry. It was first described as lengths of intervals as in (3.1) (and
was used by the Greeks in their mathematics work; see the book by Milne [153] for
a history of its use in geometry). Initially it was simply the ratio of lengths of line
segments and later was extended to lengths with a sign (when a line was assigned a
direction and the order of the points determined the sign, as was introduced by Carnot
[31]). This cross-ratio in this context was called in French rapport anharmonique
and in German Doppelverhältnis. The modern English terminology cross-ratio was
introduced by Clifford in his study of mechanics [50].

Most contemporary students of mathematics first come across the term cross-
ratio in a first course on complex analysis, where for four points z1, z2, z3, z4 on the
extended complex plane C (= C ∪ ∞), the cross-ratio is defined by4

z1 − z2
z1 − z4

z3 − z4
z3 − z2

.

This cross-ratio of four points in the extended complex plane is invariant under
fractional-linear mapping transformations (Möbius transformations) of the form

w = az + b

cz + d
,

as one learns in a first course in complex analysis (see, e.g., Ahlfors [5]). These
fractional-linear mapping transformations are simply reformulations of the projec-
tive-linear transformations of the projective space P1(C) ∼= C.

Poncelet used theword homologous to describe figures that are projectively equiv-
alent in the sense that we are using here.5 A second fundamental principle of Poncelet
was that of the loi de continuité (law of continuity). On p. xiii of the introduction
in his basic monograph [190] he formulates this principle as an “axiom” used by

4Note that there are 24 permutations of these four symbols, and each is called a cross-ratio and
satisfies the properties outlined here. For each such permutation, there are three others with the same
values, and hence there are 6 cross-ratios with distinct values. For more details see, for instance,
the very informative book by Milne [153].
5Note the similarity to themodern use of the word “homologous” in topology, whichwas introduced
by Poincaré [185]. In both cases these mathematicians wanted to describe two objects as being
similar in their topological or graphical aspects, but not necessarily in their metric aspects (à la
“congruence” or later “isometry”).
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illustrious mathematicians of the past. In fact, he formulates it as a question, as we
see in this excerpt from this page:

Considérons une figure quelconque, dans une position générale et en quelque sorte indéter-
minée, parmi toutes celles qu’elle peut prendre sans violer les lois, les conditions, la liaison
qui subsistent entre les diverses parties du système; supposons que, d’après ces données, on
ait trouvé une ou plusieurs relations ou propriétés, soit métriques, soit descriptives, appar-
tenant à la figure, en s’appuyant sur le raisonnement explicite ordinaire, c’est-à dire par cette
marche que, dans certains cas, on regarde comme seule rigoureuse. N’est-il pas évident que
si, en conservant ces mêmes données, on vient à faire varier la figure primitive par degrés
insensibles, ou qu’on imprime à certaines parties de cette figure un mouvement continu
d’ailleurs quelconque, n’est-il pas évident que les propriétés et les relations, trouvées pour
le premier système, demeureront applicables aux états successifs de ce système, pourvu
toutefois qu’on ait égard aux modifications particulières qui auront pu y survenir, comme
lorsque certaines grandeurs se seront évanouies, auront changé de sens ou de signe, etc.,
modifications qu’il sera toujours aisé de reconnaître à priori, et par des règles sùres?6

This is indeed the definition of the law of continuity Poncelet used in his book, and
from our point of view, we would say that this definition is very vague (to be kind
to M. Poncelet), but nineteenth-century authors used this principle in very many
particular cases to derive new results which were later established by more rigorous
means. There were indeed critics of this at the time, e.g. Cauchywas such a critic, and
he, during the same period of time, was primarily responsible for formulating many
of our current ideas concerning continuity for functions and mappings in general.

We want to give an important historical example which illustrates both projective
equivalence and the law of continuity, and this is the well-known Desargues’s the-
orem. In Fig. 3.5 we see an illustration of the theorem in the plane. Namely, if the
two triangles are in perspective with respect to a perspective point (in this case the
“center of perspectivity” in Fig. 3.5), then the intersections of the homologous line
segments lie on a straight line (called the axis of perspectivity in the figure). This is
Desargues’s theorem, and the converse is also true. Let us use Fig. 22 of Poncelet’s
book ([190], reproduced in Fig. 3.6) to illustrate the proof. In this figure we see that
the two triangles ABC and A′ B ′C ′ are in perspective with respect to the point S and
we assume that they are located in two non-parallel planes E and E ′ in R3. Since
both of the lines represented by AB and A′ B ′ lie in the plane represented by the
triangle ASB, then they must necessarily intersect (and for simplicity we assume
the intersection is not at infinity). This intersection is denoted by M K (and the point

6“Consider an arbitrary figure in a general position and in some sense indeterminant, among all
those that one can take without violating the laws, the conditions, the relations that takes place
among the various parts of the system; suppose that, according to this given data, one can find one
or more relations or properties, either metric or descriptive, pertaining to the figure, using ordinary
explicit reasoning, that is to say, by those steps that, in certain cases, one regards as completely
rigorous. Isn’t it evident that if, in preserving the same given data, one can make the figure vary
by imperceptible degrees, or where one imposes to certain parts of that figure a movement that is
continuous and moreover arbitrary, isn’t it evident that the properties and the relations, found for
the first system, remain applicable to the successive states of the system, provided that one takes
regard of particular modifications that could arise when certain quantities vanish, having a change
of directions or sign, etc., modifications that will always be easy to recognize à priori, and according
to well-determined rules?”.
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Fig. 3.5 Illustration of Desargues’s theorem

M is not pictured in Fig. 22 in Fig. 3.6, since the scan of this page cut off some of
the left-hand side of the page, but the intersection is clear on this page). This inter-
section point M lies on the intersection of the two planes E ∩ E ′, since AB ⊂ E
and A′ B ′ ⊂ E ′. The same is true for the intersections L of the lines represented by
BC and B ′C ′ and for the intersection K of the lines represented by AC and A′C ′.
Thus K , L and M all lie on the intersection E ∩ E ′, which is a straight line. This is
simply Desargues’s theorem in this three-dimensional setting. Now suppose we have
two triangles in perspective in a plane, and we envision them as being continuous
limits of triangles in perspective in three-dimensional space, not in the same plane,
as above, then the limit of the axes of perspectivity for the three-dimensional case
will yield the desired axis of perspectivity in the two-dimensional case.

This fundamental result of projective geometry is due to Girard Desargues (1591–
1661) in the seventeenth century. Unfortunately, most of his work was lost. However,
fragments, reworkings and references to his work by others were discovered in the
beginning of the nineteenth century, in particular after his theorem had been redis-
covered by the projective geometry school. Onework byDesargues is available today
[54], which is a draft of three small articles, the first dealing with geometry.

The basic ideas of Desargues are contained in a series of books published from
1643 to 1648 by Abraham Bosse (1603–1676), who was a student of Desargues
learning about architecture and engraving. We cite the last of this series here [24],
as it is the most mathematical and contains at the end of the book a proposition
géométrique which is Desargues’s theorem as discussed above. Poncelet gives great
credit to Desargues and Blaise Pascal (1623–1662), whose work we discuss below,
for having the initial ideas in projective geometry (see, in particular, p. xxv in the
Introduction in [190]).

The final principle of projective geometry we want to mention is that of duality.
This was first introduced formally in the work of Carnot in 1803 [31]. In the simplest
case in the plane, by using a nondegenerate quadratic form, one can associate in a
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Fig. 3.6 Figures on Plate III in Poncelet’s Traité des Propriétés Projectives des Figures, Tome 1.
[190]

one-to-one manner points to lines and conversely. Namely, two points determine a
line, and two lines intersect in a point (adding points at infinity here). Propositions
utilizing these concepts have dual formulations.

A very classical example of this is illustrated by Pascal’s theorem and its dual
formulation due toBrianchon. Pascal’s theoremasserts that ifwe consider a hexagram
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Fig. 3.7 Illustration of Pascal’s theorem

inscribed in a conic section on a plane, then the intersections of the opposite sides of
the hexagon lie on a straight line (see Fig. 3.7 for an illustration of the theorem).

The first published reference to Pascal’s theorem is in his collected works, Vol. 5
[178], published in 1819. This volume contains a letter of Leibnizwritten in 1676 (pp.
429–431 in [178]) discussing Pascal’s papers which he had access to, and including
the statement and a proof of Pascal’s theorem. Pascal had written some years earlier
a set of essays on conic sections that Leibniz had access to and which he wrote about
in this same letter.7

The dual of Pascal’s theorem is the theorem of Brianchon (Charles-Julien Bri-
anchon (1783–1864)) [27], which asserts that a circumscribing hexagon to a conic
section has diagonals that intersect at a point (see Fig. 3.8 for an illustration of this
theorem). Brianchon’s monograph [28] published a decade later discusses this and
related theorems and gives a succinct history of the subject, including references to
the work of Pascal (the reference here is simply the title of the paper discussed by
Leibniz) and Desargues (there was no mention of Pascal in his paper [27]). Note that
the tangent lines in Fig. 3.8 correspond to the points on the conic section in Pascal’s
setting, and the intersections of the diagonals, a point, corresponds to the line on
which the intersections of opposite sides in Pascal’s setting lie.

7The editor (unnamed) of the volume [178] said that he searched for these papers referred to by
Leibniz (written in the mid-seventeenth century) and was not able to find them for this volume of
the collected works in 1819.
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Fig. 3.8 Illustration of Brianchon’s theorem

3.3 Analytic Projective Geometry

The final point we want to discuss with respect to projective geometry is the use
of coordinate systems. In the first decades of the nineteenth century two schools of
projective geometry developed in parallel. The first school, championed by Poncelet
andwhatwemight call theFrench school, developedwhat becameknown as synthetic
projective geometry, which was a natural extension of classical Euclidean geometry
in its methodology, notation, etc. (with the added emphasis on the new ideas in
projective geometry, as outlined in the previous section). The second school was
interested in using coordinate systems and analytic notation to prove the essential
projective-geometric theorems. This was called analytic projective geometry (in the
spirit of analytic geometry being the alternative to Euclidean geometry in schools).
These two schools complemented each other, competed in a scholarly manner in the
academic publications of the time, and learned from each other. The primary authors
in the analytic schools happened to be German, and this could be called the German
school. We will discuss several prominent German contributions in the following
paragraphs, and we have mentioned the primary participants in the French school
earlier.

August Ferdinand Möbius (1790–1868) is the first of the German school we want
tomention. In his book published in 1827,Der barycentrische Calcul8 [158],Möbius
was very interested in showing that coordinate systems could be useful in proving
the primary theorems of projective geometry (as well as some new results of his
own). He saw the difficulty of using only the standard (x, y, z) coordinate system,
which could often be too cumbersome or not as elegant as possible (one of the
complaints of the French school). Möbius developed a new coordinate-type system
which in its details is very much like the representation of vectors in a vector space
using linear combinations of vectors. In R3 he took four points not lying on a plane
and took “linear combinations” of these points (using the notion of center of mass
from mechanics). Using the formalism he developed, he was able to successfully
develop the fundamental results in projective geometry. Today his ideas are still used
in barycentric subdivision in the triangulation of topological spaces, and it is a quite

8The Barycentric Calculus.
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original, very readable, and interesting book to peruse. In this book he classifies
geometric structures according to:

• congruence (he uses the word “Gleichheit”), that is, equivalent under Euclidean
motions (translations and rotations),

• affine equivalence, that is, equivalence under translations and linear transforma-
tions of R3, and

• collinearity, equivalence under mappings preserving lines, projective equivalence
as described earlier in the previous section.

The second author we turn to, whose work turned out to be very fundamental, is
Julius Plücker (1801–1868). He wrote two books, Analytisch-geometrische Entwick-
lungen Vol. 1 [180] in 1828 and Vol. 2 [182] in 1831. In the first volume Plücker
developed an abridged analytic notation tomake the analytic proofs more transparent
and more concise (abridgment of the classical coordinate system notation in R3). In
Vol. 2 from 1831, he excitedly told his readers that he had developed yet another
and new notation which simplified the understanding of projective geometry, and
this was his introduction of homogeneous coordinates, which he had announced in
a research paper in Crelle’s Journal in 1830 [181].

Later, after a successful career in the spectroscopyof gases, he returned to the study
of geometry and developed the notion of line geometry, the study of the lines inR3 as
basic objects of study, andwhich could be parametrized as a quadric surface inP5(R).
This work was first developed in a paper published in 1865 [183] and developed into
a two-part monograph as a newway of looking at geometrical space. Thismonograph
[184] was published after Plücker’s death and was edited by A. Clebsch with a great
deal of assistance by the young Felix Klein, who was a student at the University of
Bonn studying with Plücker at the time. The fundamental idea was to make lines
and their parametrizations the principal object of study (in contrast to having points
in space being the primary objects). One obtained points as intersections of lines,
just as in classical geometry one obtained a line passing through two points. This
led naturally (among many other things) to the definition of two-dimensional real
projective space as the space of all lines passing through a given point in R3.

The most original contribution to the analytic side of projective geometry (indeed
to geometry itself!) in this time period was that of Hermann Grassmann (1809–1877)
[84], who, in a singular work, formulated what became known today as exterior
algebra. His work also laid the foundation for the theory of vector spaces, one of the
building blocks of exterior algebra. Hiswork led to the development ofGrassmannian
manifolds, which regarded all of the planes of a fixed dimension in a Euclidean space
as a geometric space, which was a generalization of the line geometry of Plücker.
His lengthy philosophical introduction to his work is both a challenge and at the
same time a pleasure to read. His work was not that well recognized in his lifetime
(as so often happened in the history of mathematics), but turned out in the hands of
Elie Cartan (1869–1951), for instance, to be a powerful tool for studying geometric
problems in the twentieth century.



3.3 Analytic Projective Geometry 47

Finally, we note that Felix Klein in his writings put projective geometry on the
firm footing we see today. In particular, his Erlangen Program9 [121] from 1872 and
his lectures on non-Euclidean geometry from the 1890s, published posthumously in
1928 [123], are marvels of exposition and give us, for instance, the use of the term
projective space as a concept.

9This was written as his research program when he took up a new professorship in Erlangen in
1872.



Chapter 4
Gauss and Intrinsic Differential Geometry

4.1 Gaussian Curvature

In 1828 Gauss published his landmark paper concerning the differential geometry of
surfaces entitled Disquisitiones circa superficies curvas1 [81]. He had published the
year before a very readable announcement and summary (written in German) [80]
of his major results in the much longer paper [81], which was written in Latin. We
will quote from this announcement paper somewhat later, letting Gauss tell us in his
own words what he thinks the significance of his discoveries is. For the moment,
we will simply say that this paper laid the foundation for doing intrinsic differential
geometry on a surface and was an important first step in the creation of what has
become known as Riemannian geometry on a manifold.

We now want to outline Gauss’s study of curvature of a surface as presented in
his original paper. We consider a locally defined surface S in R3 which, as Gauss
points out, can be represented in one of three ways (he uses all three methods in his
extensive computations). We will follow his notation so that the interested reader
could refer to the original paper for more details. First we consider S as the zero set
of a smooth function

w(x, y, z) = 0, w2
x + w2

y + w2
z �= 0.

Secondly, we consider S as the graph of a function

z = f (x, y),

by the implicit function theorem.2 Finally, we consider S to be the image of a para-
metric representation

1“Investigations of curved surfaces”.
2Gauss used here simply z = z(x, y), and we have modified his notation in this one instance for
clarity.

© Springer International Publishing AG 2017
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x = x(p, q),

y = y(p, q),

z = z(p, q).

In his computations, Gauss freely goes back and forth between the three representa-
tions, using what he needs and has developed previously.

At each point P of the surface S, there is a unit normal NP associated with a given
orientation of the surface, and we define the mapping

g : S → S2 ⊂ R3,

where S2 is the standard unit sphere in R3,

S2 = {(x, y, z) : x2 + y2 + z2 = 1},

and where

g(P) := NP .

This mapping, first used in this paper, is now referred to as the Gauss map. If U is
an open set in S, then the area on the two-sphere of g(U ) is called by Gauss the total
curvature ofU . For instance, ifU is an open set in a plane, then all the unit normals
to U would be the same, g(U ) would be a single point, its measure would be zero,
and thus the total curvature of the planar set would be zero, as it should be.

Gauss then defines the curvature of S at a point P to be the derivative of the
mapping g : S → S2 at the point P . He expresses this as the ratio of infinitesimal
areas of the image to the infinitesimal area of the domain, and this is, as Gauss
shows, the same as the Jacobian determinant of the mapping in the language of
classical calculus. Today we refer to the curvature at a point of a surface as defined
by Gauss to be the Gaussian curvature. Note that this definition is a priori extrinsic
in nature, i.e., it depends on the surface being embedded inR3 so that the notion of a
normal vector to the surface at a point makes sense.Gauss proceeds to compute the
curvature of a given surface in each of the three representations above. In each case
he expresses the normal vector in terms of the given data and explicitly computes the
required Jacobian determinant. We will look at the first and third cases in somewhat
more detail.

We start with the simplest case of a graph

z = f (x, y),

and let

d f = tdx + udy,
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where t = fx , u = fy . Similarly, we have

dt = Tdx +Udy,

du = Udx + Vdy,

where

T := fxx ,U := fxy, V := fyy .

Thus the unit normal vectors to S have the form

(X,Y, Z) = (−t Z ,−uZ , Z),

where

Z2 = 1

1 + t2 + u2
.

By definition the curvature is the Jacobian determinant

k = ∂X

∂x

∂Y

∂y
− ∂Y

∂x

∂X

∂y
,

which Gauss computes to be

k = T V −U 2

(1 + t2 + u2)
,

or in terms of f ,

k = fxx fyy − f 2xy
(1 + f 2x + f 2y )2

, (4.1)

and we see a strong similarity to the formula for the curvature of a curve in the case
of a graph of a function as given by Newton (2.1).

Gauss considers the case where the tangent plane at (x0, y0) is perpendicular to
the z-axis (i.e., fx (x0, y0) = fy(x0, y0) = 0), obtaining

k = fxx fyy − f 2xy,

and by making a rotation in the (x, y) plane to get rid of the term fxy(x0, y0), he
obtains

k = fxx fyy,

http://dx.doi.org/10.1007/978-3-319-58184-2_2
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which he identifies as being the product of the two principal curvatures of Euler (as
discussed in Sect. 2.4).

Next Gauss proceeds to compute the curvature of S in terms of an implicit repre-
sentation of the formw(x, y, z) = 0, and he obtains a complicated expression which
we won’t reproduce here. It has the form

(w2
x + w2

y + w2
z )k = h(wx , wy, wz, wxx , wxy, wyy, wxz, wyz, wzz),

where h is an explicit homogeneous polynomial of degree 4 in 9 variables. Here,
of course, w2

x + w2
y + w2

z �= 0 on S, so this expresses k as a rational function of the
derivatives of first and second order ofw, similar to (4.1) above. This explicit formula
is given on p. 232 of [81].

Then Gauss moves on to the representation of curvature in terms of a parametric
representation of the surface. This we present in more detail, as we did with the first
case. He starts with the representation of the local surface as

x = x(p, q),

y = y(p, q),

z = z(p, q),

and he gives notation for the first and second derivatives of these functions. Namely,
let

dx = adp + a′dq,

dy = bdp + b′dq,

dz = cdp + c′dq,

where, of course, a = xp(p, q), b = yp(p, q), etc., using the subscript notation for
partial derivatives. In the same fashion we define the second derivatives

α := xpp, α′ := xpq , α′′ := xqq ,
β := ypp, β′ := ypq , β′′ := yqq ,
γ := z pp, γ′ := z pq , γ′′ := zqq .

Now the vectors (a, b, c), (a′, b′, c′) inR3 represent tangent vectors to S at (x(p, q),

y(p, q), q(p, q)) ∈ S, and thus the vector

(A, B,C) := (bc′ − cb′, ca′ − ac′, ab′ − ba′) (4.2)

is a normal vector to S at the same point (cross product of the two tangent vectors).
Hence one obtains

Adx + Bdy + Cdz = 0

http://dx.doi.org/10.1007/978-3-319-58184-2_2
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on S, and therefore we can write

dz = − A

C
dx − B

C
dy,

assuming that C �= 0, i.e., we have the graphical representation z = f (x, y), as
before. Thus

t := zx = − A

C
, (4.3)

u := zy = − B

C
. (4.4)

Now since

dx = adp + a′dq,

dy = bdb + b′dq,

we can solve these linear equations for dp and dq, obtaining (recalling that C is
defined in (4.2))

Cdp = b′dx − a′dy, (4.5)

Cdq = −bdx + ady. (4.6)

Now we differentiate the two Eqs. (4.3) and (4.4), and using (4.5) and (4.6) one
obtains

C3dt =
(
A

∂C

∂ p
− C

∂A

∂ p

)
(b′dx − a′dy) +

(
C

∂A

∂q
− A

∂C

∂q

)
(bdx − ady),

and one can derive a similar expression for C3du.
Using the expression for the curvature in the graphical case (4.1), and by setting

D = Aα + Bβ + Cγ,

D′ = Aα′ + Bβ′ + Cγ′,
D′′ = Aα′′ + Bβ′′ + Cγ′′,

Gauss obtains the formula for the curvature in this case

k = DD′′ − (D′)2

(A2 + B2 + C2)2
, (4.7)

where again this is a rational function of the first and second derivatives of the para-
metric functions x(p, q), y(p, q), z(p, q). Note that the numerator is homogeneous
of degree 4 in this case, and again this formula depends on the explicit representation
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of S in R3. One might think that he was finished at this point, having obtained three
different representations for curvature corresponding to the three representations of
the locally defined surface. But he goes on to make one more very ingenious change
of variables that leads to his celebrated discovery.

4.2 Gauss’s Theorema Egregrium

Continuing with the computations of the previous section, Gauss defines new func-
tions of the previously defined functions of the first and second derivatives of the
defining functions (in terms of the various representations of the surface). We simply
list them here as Gauss did in his paper. He defines

E = a2 + b2 + c2,

F = aa′ + bb′ + cc′,
G = (a′)2 + (b′)2 + (c′)2,
� = A2 + B2 + C2 = EG − F2,

and additionally,

m = aα + bβ + cγ,

m ′ = aα′ + bβ′ + cγ′,
m ′′ = aα′′ + bβ′′ + cγ′′,
n = a′α + b′β + c′γ,

n′ = a′α′ + b′β′ + c′γ′,
n′′ = a′α′′ + b′β′′ + c′γ′′.

He is able to show that (using the subscript notation for differentiation again, i.e.,
Ep = ∂E

∂ p , etc.)

Ep = 2m, Eq = 2m ′,
Fp = m ′ + n, Fq = m ′ + n′,
Gp = 2n′, Gq = 2n′′,

from which one obtains, by solving these linear equations,

m = 1
2 Ep, n = Fo − 1

2 Eq ,

m ′ = 1
2 Eq , n′ = 1

2Gp,

m ′′ = Fq − 1
2Gp, n′′ = 1

2Gq .

Gauss also showed that the numerator which appears in (4.7) can be expressed in
terms of these new variables as
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DD′′ − (D′)2 = �[αα′′ − ββ′′ + γγ′′ − (α′)2 − (β′)2 − (γ′)2]
+E([(n′)2 − nn′′] + F[nm ′′ − 2m ′n′ + mn′′]
+G[(m ′)2 − mm ′′]. (4.8)

Finally, one confirms that

∂n

∂q
− ∂n′

∂ p
= ∂m ′′

∂ p
− m ′

∂q

= αα′′ − ββ′′ + γγ′′ − (α′)2 − (β′)2 − (γ′)2. (4.9)

Substituting (4.9) and (4.8) into the curvature formula (4.7) Gauss obtains the
expression for the curvature he was looking for:

4(EG − FF)2k = E(EqGq − 2FpGq + G2
p)

+F(EpGq − EqG p − 2Eq Fq + 4FpFq − 2FpG p)

+G(EpG p − 2EpFq + E2
q)

−2(EG − FF)(Eqq − 2Fpq + Gpp). (4.10)

If we consider the metric on S induced by the metric on R3, we have, in terms of
the parametric representation,

ds2 = dx2 + dy2 + dz2

= (adp + a′dq)2 + (bdp + b′dq)2 + (cdp + c′d1)2

= Edp2 + 2Fdpdq + Gdq2. (4.11)

We can now observe that in (4.10) Gauss has managed to express the curvature of
the surface in terms of E, F,G and their first and second derivatives with respect to
the parameters of the surface; that is, the curvature is a function of the line element
(4.11) and its first and second derivatives.3

Gauss called this his Theorema Egregrium (see pp. 236 and 237 from [81] given
in Figs. 4.1 and 4.2, where the formula (4.10) is on p. 236 and the statement of the
theorem is on p. 237). What the text on p. 237 of Gauss’s paper says, in so many
words, is that if two surfaces can be represented by the same parametrization such
that the inducedmetrics are the same, then the curvature is preserved. Inmoremodern
language, an isometric mapping of one surface to another will preserve the Gaussian
curvature.

Gauss understood full well the significance of his work and the fact that this was
the beginning of the study of a new type of geometry (which later generations have

3Wenote that the three representations of curvature in Sect. 4.1 depend onfirst and second derivatives
of the defining functions for the surface, whereas the Gaussian curvature in (4.10) depends on three
derivatives of the defining functions. This comes about since the change of variables in (4.9) involves
first derivatives.
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Fig. 4.1 The formula for Gaussian curvature in its intrinsic form
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Fig. 4.2 The Theorema Egregrium of Gauss
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called intrinsic differential geometry). We quote here from his announcement of his
results published some months earlier (in his native German) from pp. 344–345 of
[80]:

Diese Sätze führen dahin, die Theorie der krummenFlächen aus einemneuenGesichtspunkte
zu betrachten, wo sich der Untersuchung ein weites noch ganz unangebautes Feld öffnet.
Wenn man die Flächen nicht als Grenzen von Körpern, sondern als Körper, deren eine
Dimension verschwindet, und zugleich als biegsam, aber nicht als dehnbar betrachtet, so
begreiftman, dass zweierleiwesentlich verschiedeneRelationen zu unterscheiden sind, theils
nemlich solche, die eine bestimmte Form der Fläche im Raum voraussetzen, theils solche,
welche von den verschiedenen Formen, die die Fläche annehmen kann, unabhängig sind.
Die letztern sind es, wovon hier die Rede ist: nach dem, was vorhin bemerkt ist, gehört dazu
das Krümmungsmaass; man sieht aber leicht, dass eben dahin die Betrachtung der auf der
Fläche construirten Figuren, ihrer Winkel, ihres Flächeninhalts und ihrer Totalkrümmung,
die Verbindung der Punkte durch kürzeste Linien u. dgl. gehört. 4

The results described in this short announcement (and the details in the much longer
Latin papers on the subject) formed the basis of most of what became modern dif-
ferential geometry. An important point that we should make here is that Gauss
did significant experimental work on measuring the curvature of the earth in the area
around Göttingen, where he spent his whole scientific career. This involvedmeasure-
ments over hundreds of miles, and involved communicating between signal towers
from one point to another. He developed his theory of differential geometry as he
was conducting the experiments, and at the end of all of his papers on this subject
one finds descriptions of the experimental results (including, in particular, the short
paper in German [80]).

4“These theorems lead us to consider the theory of curved surfaces from a new point of view,
whereby the investigations open to a quite new undeveloped field. If one doesn’t consider the
surfaces as boundaries of domains, but as domains with one vanishing dimension, and at the same
time as bendable but not as stretchable, then one understands that one needs to differentiate between
two different types of relations, namely, those which assume the surface has a particular form in
space, and those that are independent of the different forms a surface might take. It is this latter
type that we are talking about here. From what was remarked earlier, the curvature belongs to this
type of concept, and moreover figures constructed on the surface, their angles, their surface area,
their total curvature as well as the connecting of points by curves of shortest length, and similar
concepts, all belong to this class.”



Chapter 5
Riemann’s Higher-Dimensional Geometry

5.1 The Legacy of Riemann

In mathematics we sometimes see striking examples of brilliant contributions or
completely new ideas that change the ways mathematics develops in a significant
fashion. A prime example of this is the work of Descartes [55], which completely
changed howmathematicians looked at geometric problems.But it is rare that a single
mathematician makes as many singular advances in his lifetime as did Bernhard
Riemann in the middle of the nineteenth century. In this section we will discuss in
some detail his fundamental creation of the theory of higher-dimensional manifolds
and the additional creation of what is now called Riemannian geometry. In Part III
we will review his contributions to complex analysis and complex geometry.

However, it is worth noting that he only published nine papers in his short lifetime
(he lived to be only 40 years old); and several other important works, including those
that concern us in this section, were published posthumously from thewritings he left
behind. His collected works (including in particular these posthumously published
papers) were edited and published in 1876 and are still in print today [200].

In Figs. 5.1 and 5.2 we have reproduced the table of contents of Riemann’s col-
lected works [200]. Looking through the titles one is struck by the wide diversity as
well as the originality. Let us give a few examples here. In Paper I (his dissertation) he
formulated and proved the Riemann mapping theorem and dramatically moved the
theory of functions of one complex variables in new directions. In Paper VI, in order
to study Abelian functions, he formulated what became known as Riemann surfaces
and this led to the general theory of complex manifolds in the twentieth century. In
Paper VII he introduced the Riemann zeta function as a tool for studying the Prime
Number Theorem and formulated the Riemann hypothesis, which is surely the out-
standing mathematical problem in the world today. In Paper XII he formulated the
first rigorous definition of a definite integral (the Riemann integral) and applied it to
trigonometric series, setting the stage for Lebesgue and others in the early twentieth
century to develop many consequences of the powerful theory of Fourier analysis.
In Papers XIII and XXII he formulated the theory of higher-dimensional manifolds,
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Fig. 5.1 Table of contents, p.VI, Riemann’s collected works [200]

including the important concepts of Riemannian metric, normal coordinates and
the Riemann curvature tensor, which we will visit very soon in the sections below.
Paper XVI contains correspondence with Enrico Betti leading to the first higher-
dimensional topological invariants beyond those Riemann had earlier developed for
two-dimensional manifolds.



5.1 The Legacy of Riemann 61

Fig. 5.2 Table of contents, p. II, Riemann’s collected works [200]
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This will suffice. The reader can glance at the other titles to see their further
diversity. His contributions to the theory of partial differential equations and various
problems in mathematical physics were also quite significant.

5.2 Higher-Dimensional Manifolds and a Quadratic Line
Element

Riemann’s paper “Ueber die Hypothesen, welche der Geometrie zu Grunde liegen”1

[201] (Paper XIII above) is a posthumously published version of a public lecture
Riemann gave as his Habilitationsvortrag in 1854. This was part of the process
for obtaining his Habilitation, a German advanced degree beyond the doctorate
necessary to qualify for a professorship in Germany at the time (such requirements
are still in place at most German universities today as well as in other European
countries, e.g., France and Russia; it is similar to the research requirements in the US
to be qualified for tenure). This paper, being a public lecture, has very few formulas,
is at times quite philosophical and is amazing in its depth of vision and clarity. On
the other hand, it is quite a difficult paper to understand in detail, as we shall see.

Before this paper was written, manifolds were all one- or two-dimensional curves
and surfaces in R3, including their extension to points at infinity, as discussed in
Chap.3. In fact, some mathematicians who had to study systems parametrized by
more than three variables declined to call the parametrization space a manifold or
give such a parametrization a geometric significance. In addition, these one- and
two-dimensional manifolds always had a differential geometric structure which was
induced by the ambient Euclidean space (this was true for Gauss, as well).

In Riemann’s paper [201] he discusses the distinction between discrete and con-
tinuous manifolds, where one can make comparisons of quantities by either counting
or by measurement, and gives a hint, on p. 256, of concepts from set theory, which
was only developed later in a single-handed effort by Cantor. Riemann begins his
discussion of manifolds bymoving a one-dimensional manifold, which he intuitively
describes, in a transverse direction (moving in some type of undescribed ambient
“space”) to obtain a surface, and inductively, generating an n-dimensional mani-
fold by moving an n − 1-manifold transversally in the same manner. Conversely,
he discusses having a nonconstant function on an n-dimensional manifold, and the
set of points where the function is constant is (generically) a lower-dimensional
manifold; and by varying the constant, one obtains a one-dimensional family of
n − 1-manifolds (similar to his construction above).2

Riemann formulates local coordinate systems (x1, x2, . . . , xn) on a manifold of
n dimensions near some given point, taken here to be the origin. He formulates

1“On the hypotheses, which are the basis for geometry”.
2He alludes to some manifolds that cannot be described by a finite number of parameters; for
instance, the manifold of all functions on a given domain, or all deformations of a spatial figure.
Infinite-dimensional manifolds, such as these, were studied in great detail a century later.
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a curve in the manifold as being simply n functions (x1(t), x2(t), . . . , xn(t)) of a
single variable t . The concepts of set theory and topological space were developed
only later in the nineteenth century, and so the global nature of manifolds is not
really touched on by Riemann (except in his later work on Riemann surfaces and his
correspondence with Betti, mentioned above). It seems clear on reading his paper
that he thought of n-dimensional manifolds as being extended beyond Euclidean
space in some manner, but the language for this was not yet available.

At the beginning of this paper Riemann acknowledges the difficulty he faces in
formulating his new results. Here is a quote from the second page of his paper (p. 255)
in [200]:

Indem ich nun von diesen Aufgaben zunächst die erste, die Entwicklung des Begriffs
mehrfach ausgedehnter Grössen, zu lösen versuche, glaube ich um so mehr auf eine
nachsichtige Beurtheilung Anspruch machen zu dürfen; da ich in dergleichen Arbeiten
philosophischer Natur, wo die Schwierigkeiten mehr in den Begriffen, als in der Construc-
tion liegen, wenig geübt bin und ich ausser einigen ganz kurzen Andeutungen, welche Herr
Geheimer Hofrath Gauss in der zweiten Abhandlung über die biquadratischen Reste in den
Göttingenschen gelehrten Anzeigen und in seiner Jubiläumsschrift darüber gegeben hat, und
einigen philosophischen Untersuchungen Herbart’s, durchaus keine Vorarbeiten benutzen
konnte.3

The paper of Gauss that he cites here [78] refers to Gauss’s dealing with the philo-
sophical issue of understanding the complex number plane after some thirty years
of experience with its development. We will mention this paper more explicitly in
Sect. 6.3. Hebart was a philosopher whose metaphysical investigations influenced
Riemann’s thinking. Riemann was very aware of the speculative nature of his the-
ory, and he used this philosophical point of view, as the technical language he needed
(set theory and topological spaces) was not yet available. This was very similar to
Gauss’s struggle with the complex plane, as we shall see later.

As mentioned earlier, measurement of the length of curves goes back to the
Archimedean study of the length of a circle. The basic idea there and up to the
work of Gauss was to approximate a given curve by straight line segments and take
a limit. The length of each straight line segment was determined by the Euclidean
ambient space, and the formula, using calculus for the limiting process, became, in
the plane for instance,

∫
�

ds =
∫ b

a

√
(x ′(t))2 + (y′(t))2dt,

3“In that my first task is to try to develop the concept of a multiply spread-out quantity [he uses
the word ‘Mannigfaltikeit’ (manifold) later], I believe even more in being allowed an indulgent
evaluation, as in suchworks of a philosophical nature, where the difficulties aremore in the concepts
than in the construction, wherein I have little experience, and except for the paper by Mr.Privy
Councilor Gauss in his second commentary on biquadratic residues in the Göttingen gelehrten
Anzeigen [1831] and in his Jubiläumsschrift and some investigations byHebart, I have no precedents
I could use.”

http://dx.doi.org/10.1007/978-3-319-58184-2_6
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where ds2 = dx2 + dy2 is the line element of arc length inR2. As we saw in Chap.4,
Gauss formulated in [81] on a two-dimensional manifold with coordinates (p, q) the
line element

ds2 = Edp2 + 2Fdpdq + Gdq2, (5.1)

where E, F, and G are induced from the ambient space. He didn’t consider any
examples of such a line element (5.1) thatweren’t induced froman ambient Euclidean
space, but his remarks (see Gauss’s quote in Sect. 4.2) clearly indicate that this could
be a ripe area for study, and this could well include allowing coefficients of the line
element (5.1) to be more general than induced from an ambient space.

Since Riemann formulated an abstract n-dimensionalmanifold (with a local coor-
dinate system) with no ambient space, and since he wanted to be able to measure the
length of a curve on his manifold, he formulated, or rather postulated, an independent
measuring system which mimics Gauss’s formula (5.1). Namely, he prescribes for a
given local coordinate system a metric (line element) of the form

ds2 =
n∑

i, j=1

gi j (x)dx
idx j , (5.2)

where gi j (x) is, for each x , a symmetric positive-definite matrix, and he postulates,
by the usual change of variables formulas,

ds2 =
n∑

i, j=1

g̃i j (x̃)dx̃
i d x̃ j , (5.3)

where g̃i j (x̃) is the transformed positive-definite matrix in the new coordinate system
(x̃1, . . . , x̃ n). This has the form

gkl(x) =
∑
i j

g̃i j (x̃(x))
∂ x̃i
∂xk

∂ x̃ j

∂xl
. (5.4)

Using the line element (5.2), the length of a curve is defined by

l(�) :=
∫ b

a

√√√√ n∑
i, j=1

gi j (x(t))
dxi

dt
(t)

dx j

dt
(t)dt.

The line element (5.2) is what is called a Riemannian metric today, and the two-form
ds2 is considered as a positive-definite bilinear form giving an inner product on the
tangent space Tp(M) for p a point on the manifold M . This has become the basis
for almost all of modern differential geometry (with the extension to Lorentzian type
spaces where gi j (x) is not positive-definite à laMinkoswki space). Riemann merely
says on p.260 of his paper (no notation here at all),

http://dx.doi.org/10.1007/978-3-319-58184-2_4
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ich beschränke mich daher auf die Mannigfaltigkeiten, wo das Linienelement durch die
Quadratwurzel aus einem Differentialausdruck zweiten Grades ausgedrückt wird.4

Earlier he had remarked that a line element should be homogeneous of degree 1 and
one could also consider the fourth root of a differential expression of fourth degree,
for instance. Hence his restriction in the quote above.

5.3 Geodesic Normal Coordinates and a Definition
of Curvature

The next step in Riemann’s paper is his formulation of curvature. This occurs on a
single page (p. 261 of [201], which we reproduce here in Fig. 5.3). It is extremely
dense and not at all easy to understand. In the published collected works of Riemann
one finds an addendum to Riemann’s paper which analyzes this one page in seven
pages of computations written by Julius Wilhelm Richard Dedekind (1831–1916).
This is an unpublished manuscript that appeared only in these collected works of
Riemann, pp. 384–391. In Volume 2 of Spivak’s three-volume comprehensive intro-
duction to and history of differential geometry [218], we find a detailed analysis of
Riemann’s paper (as well as Gauss’s papers that we discussed earlier and later impor-
tant works of the nineteenth century in differential geometry, including translations
into English of the most important papers).

We want to summarize what Riemann says on p.261 (again, see Fig. 5.3). He
starts by introducing near a given point p on his manifold M geodesic normal
coordinates, that is, coordinates which are geodesics emanating from the given point
and whose tangent vectors at p are an orthonormal basis for Tp (this orthogonality
and the geodesics use, of course, the given Riemannian metric). In this coordinate
system (x1, . . . , xn), the metric ds2 has a Taylor expansion through second-order
terms of the form

ds2 =
n∑

i=1

dxidxi + 1

2

n∑
i jkl

∂2gi j

∂xk∂xl
(0)xkxldxidx j . (5.5)

The first-order terms in this expansion involve terms of the form ∂gi j
∂xk (0), all of

which vanish, which follows from the geodesic coordinates condition. Letting now

ci jkl := ∂2gi j

∂xk∂xl
(0),

4“I restrict myself therefore to manifolds where the line element is expressed by the square root of
a differential expression of second degree.”
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Fig. 5.3 Page 261 of Riemann’s foundational paper on differential geometry [201]
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we have the natural symmetry conditions

ci jkl = c jikl = c jilk,

due to the symmetry of the indices in gi j and in the commutation of the second-
order partial derivatives. Moreover, and this is not easy to verify, the coefficients also
satisfy

ci jkl = ckli j ,
cli jk + cl jki + clki j = 0.

(5.6)

This is proved in six pages of computation in Spivak’s Vol. 2 (pp. 172–178 of
[218]), andwe quote from the top of p. 174: “Wenowproceed to the hardest part of the
computation, a hairy computation indeed.” These symmetry conditions use the fact
that the coordinates are specifically linked to the metric (our geodesic coordinates).
For instance, on p. 175 Spivak points out that

xi =
n∑
j=1

gi j x
j ,

illustrating vividly the relation between the coordinates and the metric.
Let now

Q(x, dx) :=
∑
i jkl

ci jkl x
k xldxidx j (5.7)

be the biquadratic form defined by the second-order terms in (5.5), then Riemann
asserts on p. 61 of [201] that Q(x, dx) can be expressed in terms of the n( n−1

2 )

expressions {(x1dx2 − x2dx1), (x1dx3 − x3dx1),…} (see Fig. 5.3), that is,

Q(x, dx) =
n∑

i jkl

Ci jkl(x
idx j − x jdxi )(xkdxl − dldxk). (5.8)

Spivak proves that the conditions (5.6) are necessary and sufficient for Q(x, dx) to
be expressed in the form (5.8), and he shows, moreover, that

Ci jkl = 1

3
ci jkl .

Riemann simply asserts that this is the case, which is, of course, indeed true!
The expression Q(x, dx) defined by (5.8) is Riemann’s definition of curvature

for the manifold at the point 0 defined by the metric (5.2) using geodesic normal
coordinates. This has become known as Riemannian curvature ever since.

Let’s look at the special case where the manifold has two dimensions. In this case
we see that there is only one coefficient of the nonzero term (x1dx2 − x2dx1)2 which
has the form
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Q(x, dx) = 1

3
[c2211 + c1122 − c2112 − c1221](x1dx2 − x2dx1)2.

Now using Gauss’s notation for the Riemannian metric (5.1), that is, g11 = E , g12 =
g21 = F , and g22 = G, we see that

c2211 = 1

2
Gxx ,

c1122 = 1

2
Eyy,

c2112 = 1

2
Fxy .

c1221 = 1

2
Fxy,

and thus we have

Q(x, dx) = 1

6
[Gxx + Eyy − 2Fxy].

Looking at Gauss’s formula for Gaussian curvature at the point 0 (4.10), we see
that, since the first derivatives of the metric vanish at the origin, the curvature at
x = 0 is

k = −1

2
(GxxGyy − 2Fxy), (5.9)

and hence

Q(x, dx) = −k

3
(x1dx2 − x2dx1)2. (5.10)

Thus the coefficient of the single term (x1dx2 − x2dx1)2 in the biquadratic form
Q(x, dx) is, up to a constant, the Gaussian curvature. As Riemann asserts it (and we
paraphrase here): ‘divide the expression Q(x, dx) by the square of the area of the
(infinitesimal) triangle formed by the three points (0, x, dx), and the result of the
division is− 4

3k’. The factor 4 appears since the square of the area of the infinitesimal
parallelogram5 is (x1dx2 − x2dx1)2, and thus the square of the area of the infini-
tesimal triangle is 1

4 (x
1dx2 − x2dx1)2. This yields the relation between Riemann’s

coefficient in (5.10) and Gaussian curvature (one can see this coefficient of − 3
4 near

the bottom of p. 261 in Fig. 5.3). Namely, except for a constant factor, Riemann’s cur-
vature expressed in normal coordinates on a two-dimensional manifold coincides
with Gaussian curvature.

Riemann then considers the biquadratic form Q(x, dx) in an n-dimensional
manifold M and its restriction to any two-dimensional submanifold N passing
through the point p, obtaining a curvature (constant multiple of the Gaussian

5Riemann visualizes the parallelogram formed by the points (0, x, dx, x + dx) in R2, and the area
of such a rectangle is simply given by the cross product ‖x × dx‖ = ‖x1dx2 − x2dx2‖, and the
area of the triangle formed (0, x, dx) is 1

2‖x1dx2 − x2dx1‖.

http://dx.doi.org/10.1007/978-3-319-58184-2_4
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curvature as we saw above) for the submanifold at that point. This is the sectional
curvature of Riemann, introduced on this same p.261.

In the remainder of the paper he discusses questions of flat manifolds, manifolds
of positive or negative constant curvature, and numerous other questions.

The coefficients {ci jkl} in (5.7) or Ci jkl in (5.8) are effectively the components of
the Riemannian curvature tensor for this special type of coordinate system (geodesic
normal coordinates). How does one define such a curvature tensor for n-dimensional
manifolds with a Riemannian metric in a general coordinate system (in the spirit of
Gauss’s curvature formula (4.10))? Clearly this will involve the first derivatives of the
Riemannian metric as well. In a paper written in Latin for a particular mathematical
prize in Paris (Paper No.XXII in Fig. 5.2), Riemann provides the first glimpse of
the general Riemann curvature tensor, and this is again translated and elaborated on
by Spivak [218]. The purpose of this paper was to answer a question in the Paris
competition dealing with the flow of heat in a homogeneous solid body.

Riemann’s ideas in these two posthumously published papers were developed
and expanded considerably in the following decades in the work of Christoffel,
Levi-Cevita, Ricci, Beltrami and many others. This is all discussed very elegantly
in Spivak’s treatise [218], and we won’t elaborate on this any further at this point.
The main point of our discussion has been that Riemann created on these few pages
the basic idea of an n-dimensional manifold not considered as a subset of Euclidean
space and of the independent concept of a Riemannian metric and the Riemann
curvature tensor. What is missing at this point in time is the notion of a topological
space on the basis of which one could formulate the contemporary concepts of a
differentiable manifold or a Riemannian manifold.

http://dx.doi.org/10.1007/978-3-319-58184-2_4


Part III
Origins of Complex Geometry

Introduction

One of the most beautiful and profound developments in the nineteenth century is
complex geometry. We mean by this a constellation of discoveries that led to the
modern theory of complex manifolds (and more generally complex spaces: complex
manifolds with specified types of singularities) and modern algebraic geometry, both
of which have played an important role in the twentieth century.

The primary aspects of the theory of complex manifolds are the geometric struc-
ture itself, its topological structure, coordinate systems, etc., and holomorphic func-
tions and mappings and their properties. Algebraic geometry over the complex
number field uses polynomial and rational functions of complex variables as the pri-
mary tools, but the underlying topological structures are similar to those that appear
in complex manifold theory, and the nature of singularities in both the analytic and
algebraic settings is also structurally very similar.

Algebraic geometry uses the geometric intuition which arises from looking at
varieties over the complex and real case to deduce important results in arithmetic
algebraic geometrywhere the complex number field is replaced by the field of rational
numbers or various finite number fields. This has led to important results in the latter
half of the twentieth century, most notably Wiles’s proof of Fermat’s Last Theorem.

Complex geometry includes such diverse topics as Hermitian differential geom-
etry, which plays an important role in Chern classes of holomorphic vector bundles,
for instance, Hermitian symmetric domains or more generally homogeneous spaces
with complex structure, or real differentiable manifolds with some complex structure
in the tangent bundle such as almost complex manifolds and CR (Cauchy–Riemann)
manifolds, and many other examples. Of course, a domain1 in the complex plane
C was an initial example of a complex manifold, much studied in the nineteenth
century, and that will be an important part of the story.

1We will use the generic word domain to mean a connected open set.
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As we saw in Part I of this book, during the seventeenth and eighteenth centuries,
mathematics experienced major developments in geometry and analysis, specifi-
cally the geometry of curves and surfaces in R3, following the pioneering work of
Descartes and Fermat, and the flourishing of analysis after the creation of differential
and integral calculus byLeibniz, Newton and others. In all of thiswork, geometrywas
restricted to real geometric objects in the Euclidean plane and three space. Complex
numbers, on the other hand, were developed and referred to as imaginary numbers,
as they were called for several centuries, and they arose as solutions of specific
polynomial algebraic equations. In the eighteenth century, they became part of the
standard tools of analysis, especially in the development of fundamental elemen-
tary functions, which is epitomized in Euler’s famous formulation of the complex
exponential function

ez := ex (cos y + i sin y),

for a complex variable z = x+ iy. However, the study of the geometry of curves and
surfaces inR3 did not include complex numbers in any substantive manner, whereas
in the twentieth century, complex geometry has become one of the main themes of
twentieth-century mathematical research.

The purpose of this part of the book is to highlight key ideas developed in the
nineteenth century which became the basis for twentieth-century complex geometry.
We shall do this by looking in some detail at some of the innovators and their initial
publications on a selection of research topics that, in the end, contributed in various
ways to what we now call complex geometry.

In Chap. 6, we discuss the work of the Norwegian surveyor Wessel, the French
mathematician Argand and the German astronomer and mathematician Gauss, all of
whom contributed to our understanding of the complex plane as the usual Euclidean
plane with complex coordinates z = x + iy, including its polar coordinate represen-
tation and expressing the distance between points in terms of complex coordinates.
Over the course of the century, this understanding became universally adopted, but
at the beginning of the century, it was quite unknown.

In Chap. 7, we look in some detail at Abel’s fundamental paper concerning what
is now known as Abel’s theorem, which generalizes the addition theorem for elliptic
integrals due to Euler. This paper became a primary motivation for major work by
Riemann, Weierstrass and many others in the second half of the nineteenth century,
as we discuss later in this part.

In the next chapter (Chap. 8), we discuss two fundamental papers by Abel and
Jacobi which created the theory of elliptic functions, the nineteenth-century gen-
eralization of trigonometric functions. These new functions were doubly periodic
(in two independent directions in the complex plane). Elliptic functions utilized the
geometry of the complex plane in a fundamental manner, for instance in the role of
the period parallelogram, whose translates cover the complex plane. This theory was
developed further in the work of Cauchy, Liouville and Weierstrass, among many
others, and we trace this development in some detail, as it became quite standard
material in texts at the end of the century.

http://dx.doi.org/10.1007/978-3-319-58184-2_6
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A key development in the nineteenth century was the creation of a theory of
complex-valued functions that were intrinsically defined on domains in the complex
plane, and this is the theory of holomorphic and meromorphic functions. The major
steps in this theorywere taken byCauchy, in his theory of theCauchy integral theorem
and its consequences, by Riemann, in his use of partial differential equations, in
particular, the study of harmonic functions, and byWeierstrass with his powerful use
of power series (pun intended!). The unification of all three points of view towards the
endof the nineteenth century had createdwhatwas then called function theory andhas
in the meantime over the course of the twentieth century become known as complex
analysis. It is now a standard part of the contemporary mathematical curriculum. In
Chap. 9, we shall look at some of the initial papers by these innovators and see how
the point of view for this important topic evolved over time.

Finally, in Chap. 10, we come to a pivotal development in complex geometry,
namely Riemann’s creation of Riemann surfaces. Riemann’s paper of 1857, which
we discuss in some detail in this section, takes some of the main ideas from Abel’s
paper on Abel’s theorem concerning multivalued functions of one real variable and
creates a theory of single-valued holomorphic functions on an abstractly defined
surface with complex coordinates. These surfaces are looked at from the point of
view of analysis, from algebraic geometry as the solution of algebraic equations
of two complex variables and from the point of view of topology, including the
important notion of connectivity of a surface, which led to later developments in
algebraic topology.

The concluding chapter of this part outlines some topicswhich are today important
for complex geometry and which were also developed during the latter part of the
nineteenth century. These include the theory of transformation groups of Lie and
Klein, the development of set theory by Cantor and the subsequent developments
of topological spaces by Hausdorff and Kuratowski, and the fundamental work on
the foundations of algebraic topology by Poincaré. We conclude this chapter by
discussing briefly the creation of abstract topological, differentiable and complex
manifolds in the definitive book by Hermann Weyl in 1913, who used all of the
topics discussed above, and which became the cornerstone of what became complex
geometry in the twentieth century.

http://dx.doi.org/10.1007/978-3-319-58184-2_9
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Chapter 6
The Complex Plane

6.1 Introduction

The well-known quadratic formula

x = −b ± √
b2 − 4ac

2a
,

as a solution to the quadratic equation

ax2 + bx + c = 0,

is attributed to the Babylonians during their very creative period of mathematical
discovery (circa 1800 BCE to 300 BCE) (see [194, 223] for discussions of the
splendid mathematical accomplishments of the Babylonians, mostly preceding and
greatly influencing the Greek mathematicians and astronomers). Of course they used
different notation, but their understanding was clear. This formula led to the problem
of understanding what one means by the square root in the cases where b2 − 4ac
happens to be negative. This problem has been a part of mathematical culture ever
since. By the eighteenth century numbers involving

√−1 were used by numerous
mathematicians in the solutions of a variety of problems, and Euler introduced the
well-knownnotation of i to represent1

√−1 andgaveus his famous formula involving
our basic mathematical constants

eπi = −1.

1However, we note that in the work of a number of several nineteenth-century mathematicians, the
notation

√−1 was used for emphasis, for instance in the well-known dissertation of Riemann from
1851 [199], which we will discuss below.
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These numbers became known as imaginary numbers, indicating clearly that they
were figments of the imagination in some sense, but weren’t real mathematical
objects. The mathematicians of the eighteenth century, many of whom were very
interested in questions of geometry, including Euler, missed the opportunity to come
up with a geometric interpretation of these imaginary numbers. This opportunity was
not missed at the beginning of the nineteenth century.

There were three independent contributions to the creation of the complex plane
at the beginning of the nineteenth century, namely by Caspar Wessel (1745–1818) in
1797 [240], Jean-Robert Argand (1768–1822) in 1806 [9], and Carl Friedrich Gauss
in 1831 [78]. We can cite this creation of the geometric complex plane as having
been the birth of complex geometry, and it took some time for this new perspective
to become an ordinary part of mathematical discourse.

Wessel and Argand both wrote definitive papers on the geometric representation
of complex numbers in the Cartesian plane R2, and neither paper was recognized
at the time of publication for the great breakthrough they both represented. In the
extreme case, Wessel’s paper was not recognized until a century later when it was
translated into French (from the original Danish). Today this paper is available in a
beautiful book [240] (translated into English), along with a personal and mathemat-
ical biography of Wessel. 2

6.2 Caspar Wessel’s Cartography

Wessel was a geographical and trigonometrical surveyor who surveyed large parts of
Denmark and one section of Germany (Duchy of Oldenburg, northwest of Bremen, at
the time under control of the Danish crown). In fact, Gauss, in his survey of the land
southeast of Oldenburg (Bremen to Göttingen), used some ofWessel’s survey data to
lend accuracy to his own measurements. Wessel came upon his idea of representing
complex numbers3 in a geometric manner as a tool for simplifying trigonometrical
calculations, which were so prevalent in his surveying work. He described a complex
number as a length and a direction from a given point and a given axis passing
through that point, just as we do today. More importantly, he described how to add
and multiply numbers using this language. In Fig. 6.1 we see Wessel using a polar
coordinate system involving complex numbers as coordinates, and in Fig. 6.2 we

2In addition, the book contains an excellent detailed article by Kirsti Andersen entitled Wessel’s
Work on Complex Numbers and its Place in History, which concerns the history of the use of
the plane to represent complex numbers from Wessel to Hamilton, including the contributions of
numerous other mathematicians including Argand and Gauss.
3The term complex numbers was introduced by Gauss in 1831 [78], although the term imaginary
numbers was used till the latter half of the nineteenth century by many mathematicians, including,
in particular, Cauchy.
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Fig. 6.1 A figure taken from a manuscript of Wessel called Trigonometric Calculations from 1779
(on p. 46 of [240]) illustrating the use of complex coordinates. This illustration is reprinted with
the permission of The Royal Danish Academy of Sciences and Letters

show a page of the English translation from his paper of 1797, where he describes
addition and multiplication of complex numbers. Note that at the bottom of the page
in Fig. 6.2 he identifies his geometric quantity ε, a unit vector perpendicular to the
real axis, as

√−1. He uses this representation to give a complete description of the
n roots of unity of degree n in the form:

{1, cos(2π/n) + ε sin(2π/n), cos(4π/n) + ε sin(4π/n), · · · },

where ε is his notation for
√−1. Finally, his main task in the remainder of this paper

is to tackle problems of spherical geometry in three dimensions. We note that his
product of two directed line segments (see Fig. 6.2) from a common point lies on a
plane spanned by the two segments, indicating that he has been conceptualizing his
ideas in three dimensions from the beginning. We conclude this discussion ofWessel
by including in Fig. 6.3 a beautiful map from his earlier work, showing his skill as
a cartographer.
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Fig. 6.2 Wessel’s notion of sum and product of complex numbers from his paper of 1797 (English
translation [240], p. 106). This illustration is reprinted with the permission of The Royal Danish
Academy of Sciences and Letters
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Fig. 6.3 Wessel’s map of Denmark from 1768 ([240], plate following p. 21). This illustration is
reprinted with the permission of The Royal Danish Academy of Sciences and Letters

6.3 Argand and Gauss

We turn now to Argand, who published a small pamphlet [9] in a limited print
edition in 1806 entitled Essai sur un manière de représenter les quantités imagi-
naires dans les constructions géométrique.4 This was later reprinted in an influential
mathematical journal edited by Joseph Diaz Gergonne (Annales de Mathématiques
pures et appliquées) in 1813, which included papers by Jacques-Frédéric Français
(1775–1833), François Joseph Servois (1768–1847), responses by Argand, and some
commentary by Gergonne concerning the new ideas in Argand’s work.5 Argand also
gave in this paper the first definitive proof of the fundamental theorem of algebra
using his geometric representation. Indeed, he formulated the theorem in the form
that for any polynomial equation of degree n with complex numbers as coefficients,

4Essay on a manner to represent imaginary quantities in a geometric construction.
5See the article by Andersen [7] for a detailed analysis of this interesting mathematical discussion
in Gergonne’s journal.
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p(z) = a0 + a1z + . . . + anz
n = 0, a j ∈ C,

there exists at least one complex number z0 ∈ C such that p(z0) = 0. This proof is
not constructive and is a proof by contradiction, like many other proofs given later by
others, and it utilizes substantively the notion of the modulus of a complex number,

|x + iy| :=
√
x2 + y2,

which was first introduced by Argand in his paper and is the length of the directed
line segment used by Wessel.

Gauss had thought about the issue of the geometric representation of complex
numbers for some decades at the beginning of the nineteenth century, but didn’t
publish anything on the subject until his “Theoria residuorum biquadraticorum,
Commentatio secunda”6 [78] in 1831, in which he specifically defined a complex
number z of the form x + iy to correspond to the point (x, y) in the Euclidean
two-plane R2, and the usual arithmetic (addition and multiplication) of complex
numbers

(a + ib) + (c + id) = (a + c) + i(b + d)

(a + ib)(c + id) = (ac − bd) + i(ad + bc)

corresponded to new specific points in the plane. In this paper, he did not consider
a polar coordinate representation of complex numbers, so that multiplication corre-
sponded to multiplying moduli and adding angles of complex numbers as didWessel
and Argand, although he surely was aware of this by this time. He was more con-
cerned with emphasizing that this relation of arithmetic and geometry was a valid
way of doing mathematics, and that had such numbers not been called “imaginary”
centuries earlier, they would have been accepted much earlier. His main purpose in
this short note is to indicate that a number of his number-theoretic results from his
well-known treatise on number theory from 1801, Disquistiones Arithmeticae [77],
could be extended to the setting of complex numbers; and specifically he discusses
complex numbers of the form a+ ib, where a and b are integers (Gaussian integers),
but emphasizing that such numbers were points in a two-dimensional plane. The
only earlier reference by Gauss to a geometric representation of complex numbers
was in a detailed letter from Gauss to Bessel in 1811.

Here is what Gauss had to say in that letter [82]:

Was soll man sich nun bei
∫

ϕx ·dx für x = a+bi denken? Offenbar, wenn man von klaren
Begriffen ausgehen will, muss man annehmen, dass x durch unendlich kleine Incremente
(jedes von der Form α + βi) von demjenigen Werthe, für welche das Integral 0 sein soll,
bis zu x = a + bi übergeht und dann alle ϕx · dx summiert. So ist der Sinn vollkommen
festgesetzt. Nun aber kann der Übergang auf unendlich viele Arten geschehen: so wie man
sich das ganze Reich aller reellen Grössen durch eine unendliche gerade Linie denken kann,

6“Second Commentary on Quadratic Residues”; note: the title is in Latin, referring to his earlier
work on quadratic residues, and the paper itself is written in German.
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so kann man das ganze Reich aller Grössen, reeller und imaginärer Grössen sich durch
eine unendliche Ebene sinnlich machen, worin jeder Punkt, durch Abcisse = a, Ordinate
= b bestimmt, die Grösse a + bi gleichsam repräsentiert. Der stetige Übergang von einem
Werthe von x zu einem andern a+bi geschieht demnach durch eine Linie und ist mithin auf
unendlich viele Arten möglich. Ich behaupte nun, dass das Integral

∫
ϕx · dx nach zweien

verschiednenÜbergängen immer einerleiWerth erhalte,wenn innerhalb des zwischen beiden
die Übergänge repräsentirenden Linien eingeschlossenen Flächenraumes nirgends ϕx = ∞
wird. Dies ist ein sehr schöner Lehrsatz, dessen eben nicht schweren Beweis ich bei einer
schicklichen Gelegenheit geben werde. 7

In this quote we also see Gauss’s quite specific understanding of what became
known as the Cauchy integral theorem, which we will discuss later in Chap. 9.

7“What should one understand by
∫

ϕx · dx for x = a + bi? Obviously, if we want to start from
clear concepts, we have to assume that x passes from the value for which the integral has to be 0 to
x = a + bi through infinitely small increments (each of the form x = a + bi), and then to sum all
the ϕx · dx . Thereby the meaning is completely determined. However, the passage can take place
in infinitely many ways: Just like the realm of all real magnitudes can be conceived as an infinite
straight line, so can the realm of all magnitudes, real and imaginary, be made meaningful by an
infinite plane, in which every point, determined by abscissa = a and ordinate = b, represents the
quantity a+bi . The continuous passage from one value of x to another a+bi then happens along a
curve and is therefore possible in infinitely many ways. I claim now that after two different passages
the integral

∫
ϕx · dx acquires the same value when ϕx never becomes equal to ∞ in the region

enclosed by the two curves representing the two passages. This is a very beautiful theorem whose
not exactly difficult proof I shall give at a suitable occasion.” (This reference is from Andersen [7].)

http://dx.doi.org/10.1007/978-3-319-58184-2_9


Chapter 7
Elliptic and Abelian Integrals

7.1 Introduction

In the eighteenth century, trigonometric functions (often called circular functions),
and the related logarithmic and exponential functions, became fundamental tools
of analysis. The trigonometric functions first appeared in the work of Hipparchus
of Nicaea (c. 190 BCE – c. 120 BCE) in the context of spherical trigonometry for
use in astronomy, and later plane trigonometry was developed and used for practical
engineering and building problems. In Euler’s well-known text on analysis from
1748 [62] we see these functions used in the form we are familiar with today. These
functions and others like them were called transcendental functions in that they
were a more general class of functions than the rational functions, which were ratios
of polynomial functions or algebraic functions, which are solutions of algebraic
equations, such as y = √

x . It is important to note that almost all of the important
transcendental functions of the eighteenth century, including many of the newer
transcendental functions of the nineteenth century (e.g., Bessel functions, Riemann
zeta function, etc.) were accompanied by numerical tables of their values, so that they
could be used in applied computational settings. Only with the advent of computers
in the mid-twentieth century did the use of such tables become obsolete.

Calculus became an important tool involving calculating with symbols which
could often reduce a complicated problem to a simpler one before tables of values
or approximation tools (such as power series) had to be used. As was known from
the beginning of the use of calculus, it was most often much simpler to differentiate
a given function than to find its integral, i.e., a formula for its antiderivative. Definite
integrals of specific functions which didn’t seem to have an antiderivative were stud-
ied extensively in the first half of the nineteenth century by the means of integration
in the complex plane using Cauchy residue theory, as we will see in Chap. 9. But
toward the end of the eighteenth century and the first half of the nineteenth century a
great deal of effort went into understanding specific classes of indefinite integrals. In
fact, the notation most often used,

∫
f (x)dx , meant

∫
f (x)dx was a function whose

© Springer International Publishing AG 2017
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derivative was f (x), and often a constant of integration was implied or explicitly
mentioned.

In the eighteenth century it was well known that the trigonometric functions and
logarithm and exponential functions can be defined as integrals of specific rational
or algebraic functions or inverses of such functions. For instance,

log(x) =
∫

dx

x
, arcsin(x) =

∫
dx√
1 − x2

, arctan(x) =
∫

dx

1 + x2
, (7.1)

i.e., the derivatives of these transcendental functions are these specific rational and
algebraic functions. A function such as

√
1 − x2 was often referred to in the literature

of the time as an irrational function, i.e., an algebraic function (involving possible
roots of a rational function) which was not rational.1

The question of understanding integrals of various classes of functions became
an important topic in the eighteenth and first half of the nineteenth century, and this
led to very important work in complex geometry, as we shall see.

First, since the creation of calculus and the fundamental theorem of calculus, it
was well known how to integrate a polynomial, i.e.,

∫
xndx = 1

n + 1
xn+1.

Moving up one step in complication, let

r(x) = p(x)

q(x)

be a rational function of one real variable x , where p and q are polynomials. Then,
by basic algebra, namely, using the fact that any polynomial with real coefficients
could be factored into linear and irreducible quadratic terms,2 and the method of
partial fractions, one was able to write:

∫
r(x)dx =

∫
p(x)dx +

∫ ∑ a j dx

x − b j
+

∫ ∑ (ek x + dk)dx

x2 + ek x + fk
, (7.2)

where p(x) is a polynomial. Hence each integral of the form
∫

r(x)dx can be reduced
to a rational function and integrals of the form:

∫
dx

x
= log(x),

∫
dx

1 + x2
= arctan(x),

1The notion of irrational function as used at the time didn’t seem to refer to transcendental functions,
which, of course, are also not rational functions.
2This was well known and used regularly throughout the eighteenth century, but the proofs of the
fundamental theorem of algebra didn’t appear until the nineteenth century.
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two transcendental functions. This general principle was formulated by Johann
Bernoulli (1667–1748), who published a short paper on this topic in 1703 [15] in
which he outlined the process described above as a general algorithm for integrals
of rational functions.3

7.2 Euler’s Addition Theorem

If we now consider a rational function r(x, y) of two real variables (again a ratio of
two polynomials p(x, y), q(x, y) of the two variables x and y), and let x and y be
related by the quadratic equation

y2 = a + bx + cx2,

and hence,
y(x) = ±

√
a + bx + cx2,

then the question arose in the eighteenth century: can one reduce an integral of the
form ∫

r(x, y(x))dx (7.3)

to a sum of rational and elementary transcendental functions (i.e., trigonometric and
logarithmic functions)?

Special cases of this were known for some time, as in (7.1) for
∫

dx√
1−x2 , for

instance, where r(x, y) = 1/y and y2 = 1 − x2. These kinds of problems arose
in a variety of problems in elasticity, astronomy, and other sciences, and provided
an important motivation for finding general solutions (see Kline [125], Chap. 19,
for an overview of this intertwined scientific and mathematical development in the
eighteenth century).

In 1768 Euler published an important book on integral calculus [68],4 which
solved this particular problem and also set the stage for the work of Abel and Jacobi
some 50 years later. Euler proved, by making a judicious change of variables of the
form x = x(t), where x(t) was an explicit rational function of t , that the integral
(7.3) became ∫

r(x, y(x))dx =
∫

g(t)dt, (7.4)

3In fact, in this paper Bernoulli assumed simple complex roots of a polynomial reducing (7.2) to
simply logarithmic terms.
4This was the first of three volumes; Vol. 2 was published in 1769 and Vol. 3 was published in 1770.
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where g(t) was a rational function, and hence the problem was reduced to the older
one. Thus, such an integral reduced to a sum of a rational function and elementary
functions, as before.

This change of variables, due to Euler, later became known as the rational para-
metrization of an algebraic curve of degree two, which we want to illustrate here
due to its simplicity. Suppose we have an algebraic curve in R2 of degree two of the
form:

ax2 + bxy + cy2 + dx + ey + f = 0.

First, we use a translation in the plane to make the constant term vanish, and we then
have (in the new coordinates)

ax2 + bxy + cy2 + dx + ey = 0. (7.5)

Thus, the origin (0, 0) is a point on the curve, and we can consider the one-parameter
family of straight lines of the form

y = t x, for t ∈ R,

which will intersect the curve at both the origin and one other point on the curve for
a fixed t . Substituting y = t x into (7.5), we obtain

ax2 + btx2 + ct2x2 + dx + etx = 0. (7.6)

Solving for x in terms of t , we find the parametrization of the curve in terms of t to
be:

x(t) = −(d + et)

a + bt + ct2
, (7.7)

y(t) = t

( −(d + et)

a + bt + ct2

)

. (7.8)

From (7.7), we see that dx(t) = s(t)dt , where s(t) is a rational function of t . It
follows then that ∫

r(x, y)dx =
∫

r(x(t), y(t))s(t)dt, (7.9)

when x and y are related by (7.5). This verifies that such an integral is computable
in terms of rational functions and elementary functions, Euler’s result from 1768.

An algebraic curve which has a parametrization in terms of rational functions of
the form (7.7) and (7.8) is called a rational curve, and there are many examples of
polynomials f (x, y) of degree higher than two which also define rational curves.5

5For instance, there is the folium of Descartes given by x3 + y3 −3axy = 0,which is parametrized

by the rational functions x = 3at
1+t3

, y = 3at2

1+t3
.
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In the same book from 1768 [69] Euler discussed the more difficult problem of
the form ∫

dx√
A + Bx + Cx2 + Dx3 + Ex4

, (7.10)

or, more generally, ∫
r(x, y)dx, (7.11)

where
y2 = A + Bx + Cx2 + Dx3 + Ex4,

and r(x, y) is a rational function.
Functions of the type (7.11) have been known since the eighteenth century as

elliptic integrals, as they originally arose in the context of computing via integration
the lengths of arcs of an ellipse, just as the classical trigonometric functions arose in
conjunction with measuring the lengths of circular arcs. Note that elliptic integrals
are functions of the variable x , indeed, they are transcendental functions, just as the
elementary functions are, even though they are referred to as integrals.

In his original paper in [66] and in the text [69], Euler discovered algebraic
relations between elliptic integrals having the same form.For instance, the differential
equation

dx√
A + Bx + Cx2 + Dx3 + Ex4

= dy
√

A + By + Cy2 + Dy3 + Ey4
(7.12)

has a solution as a complete algebraic integral (an algebraic one-parameter family
of algebraic curves in R2 which satisfies the differential equation).

Let’s give an outline of Euler’s solution to this problem. First Euler makes a
change of variables of the form

x = αt + β

γt + δ
,

to get rid of the linear and cubic terms, reducing the problem to

dx
√

A + Cx2 + Ey4
= dy

√
A + Cy2 + Ey4

. (7.13)

Then, by several more quite nontrivial (and nonlinear) changes of variables and
integrating, he is able to produce the integral of this equation as a very specific
polynomial function of degree 4 with coefficients which depend on A,C, and E and
an arbitrary constant f . His solution has the form

A(x2 + y2) = f 2(A + Ex2y2) + 2xy
√

A(A + C f 2 + E f 4), (7.14)
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where f is a constant of integration. See §15 of [66], and he has a number of variations
of this solution in this paper; we shall see a special case of this below. This type of
relationship between these variables (solution of the differential equation (7.13))
became known as an Euler addition theorem for elliptic integrals.

Let’s illustrate this concept in the simpler case of

dx√
A + Cx2

= dy
√

A + Cy2
,

which Euler had discussed earlier in his text [70]. He obtained a solution of the form

y = x

√
A + Cb2

A
+ b

√
A + Cx2

A
, (7.15)

having solved for y in termsof the other variables (hereb is the constant of integration)
from his solution. Let’s assume the special case of A = 1,C = −1, and then we
have the function

y = x
√
1 − b2 + b

√
1 − x2 (7.16)

is the solution of
dx√
1 − x2

= dy
√
1 − y2

. (7.17)

If we integrate both sides we find that

∫ y

0

dt√
1 − t2

=
∫ x

0

dt√
1 − t2

+ constant. (7.18)

But from (7.16) we see that for x = 0, we must have y = b, and thus the constant in
(7.18) has the form

constant =
∫ b

0

dt√
1 − t2

,

and hence ∫ y

0

dt√
1 − t2

=
∫ x

0

dx√
1 − t2

+
∫ b

0

dt√
1 − t2

,

where x, y, and b are related by (7.16). By relabeling the variables, as did Euler, we
find the familiar formula

∫ x

0

dt√
1 − t2

+
∫ y

0

dt√
1 − t2

=
∫ b

0

dt√
1 − t2

,

where
b = x

√
1 − y2 + y

√
1 − x2. (7.19)
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This is the classical addition formula for the inverse sine function:

arcsin(x) + arcsin(y) = arcsin(b),

where (x, y, b) satisfies (7.19). This is, in turn, the same as the classical addition
formula for the sine function

sin(x + y) = cos(x) sin(y) + sin(x) cos(y). (7.20)

Thus Euler’s solution of the Eq. (7.17) yields the classical addition formula (7.20) for
circular functions, whichwas known to the ancient trigonometers. The corresponding
half-angle formulas allowed the Greek astronomers to compute the trigonometric
tableswhichwere so critical for their astronomical research. Euler’s generalization of
(7.19) for the elliptic integrals preceded any knowledge of elliptic functions (inverse
functions to the elliptic integrals), which were discovered considerably later. As we
will see in Chap.8, where we discuss the discovery of elliptic functions, Euler’s
addition theorems for elliptic integrals did then provide addition formulas for elliptic
functions similar to (7.20).

7.3 Abel’s Addition Theorem

Niels Henrik Abel (1802–1829) in his very short lifetime6 wrote a number of quite
important papers, several of which came to play a significant role in the development
of complex geometry. We will discuss two of these papers in some detail. The first
paper from 1826 [2] concerns what is now known as Abel’s theorem in algebraic
geometry, and we will explore this paper in this section. Abel’s second paper [3] is
his foundational paper on elliptic functions, which wewill discuss in the next chapter
(Chap. 8).

Both of these papers were influenced by the work of Euler that was described
in the previous section, as well as the follow-up to Euler’s work by Adrien-Marie
Legendre (1752–1833) in his several-decades-long study of elliptic integrals and
their applications.

Legendre’s principal contributions were contained in three monographs he pub-
lished in the decade before Abel’s work. These three volumes were entitledExercices
de Calcul Intégral. Volume 1 [138] in 1811 was his major theoretical work on elliptic
integrals, which showed how all elliptic integrals of a general kind could be reduced,
via algebra and calculus, to three specific types of integrals, which Legendre referred
to as integrals of the first, second and third kind, which we shall see shortly. Volume
2 [140] from 1817 contained a major survey of approximation methods, methods
of creating tables and numerous applications to geometry and applied mathematics,
in particular to mechanics. Volume 3 [139] (which was actually published in 1816

6He was not yet 27 years old when he died.

http://dx.doi.org/10.1007/978-3-319-58184-2_8
http://dx.doi.org/10.1007/978-3-319-58184-2_8
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before Volume 2) contains detailed tables for elliptic functions of the first and second
kind and their logarithms, as well as a discussion of the issues of reducing computa-
tions of some integrals of the third kind to those of the first and second kind (there
were too many free parameters in these transcendental functions of the third kind
to allow the creation of reasonable tables). After the groundbreaking work of Abel
and Jacobi in 1826 and 1827 Legendre continued his surveys of the development of
what has now become the theory of elliptic functions, which we describe in the next
chapter.

Wewill now look atAbel’s 1826paper, “Mémoire sur une propriété générale d’une
classe trés étendue de fonctions transcendantes”7 [2]. This paper was presented to
the French Academy of Science in 1826 and was finally published posthumously in
1841. It gives a vast generalization of Euler’s addition formula for elliptic integrals,
which was discussed in the previous section, and is now called Abel’s theorem in
algebraic geometry.8

Let us preface our formulations of Abel’s theorem9 with a specific version of
Euler’s addition formula for elliptic integrals. Namely, in 1761 [64] Euler studied
the differential equation

dx√
1 − x4

= dy
√
1 − y4

, (7.21)

a special case of (7.12) discussed briefly above, and he finds the complete algebraic
integral to be

x2 + y2 + c2x2y2 = c2 + 2xy
√
1 − c2, (7.22)

where c is the constant of integration.
Now consider the specific elliptic integral

E(x) :=
∫ x

0

dx√
1 − x4

, (7.23)

where we choose the lower limit of integration to be x = 0. Then one finds by
integrating each side of (7.21) that

E(x) = E(y) + C,

7“Memoir concerning a general property of a very extended class of transcendental functions”.
8There are a number of theorems known as Abel’s Theorem in different parts of mathematics, e.g.,
on the convergence of power series, on the unsolvability of quintic polynomial equations, etc.
9There ismore than one algebraic-geometric theorem referred to historically over the past century as
Abel’s theorem. The very informative paper by Stephen Kleiman entitled “What is Abel’s Theorem
anyway?” [119] discusses four variants of what have been called Abel’s theorem. This paper is an
article in a beautiful book [10] representing the proceedings of a conference held in honor of the
mathematical legacy of Abel in 2002, 200 years after his birth in 1802.
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where C is a constant. From the complete integral of (7.21) given by (7.22) we see
that when x = 0, then y = c (we take the positive square root in this case, for
convenience), and hence

0 = E(0) = E(c) + C,

and hence C = −E(c), yielding

E(x) = E(y) − E(c),

or
E(x) + E(c) = E(y).

Changing the names of the variables x3 = y, x1 = x, x2 = c, we obtain the addition
theorem for this particular elliptic integral of the form

E(x1) + E(x2) = E(x3), (7.24)

where
x1

2 + x3
2 + x1

2x2
2x3

2 = x2
2 + 2x1x3

√
1 − x22,

which gives after squaring

4x1
2x3

2(1 − x2
2) = (x1

2 + x3
2 + x1

2x2
2x3

2 − x2
2)2,

a polynomial relation of degree 12 among the arguments of the three transcenden-
tal functions E(x1), E(x2), E(x3) (see [119], p. 20 for various references to this
formula).

Note that for the arcsine addition formula (7.2), which we can write as

∫ x1

0

dx√
1 − x2

+
∫ x1

0

dx√
1 − x2

=
∫ x3

0

dx√
1 − x2

,

we have the same sort of algebraic relation which takes the (familiar) form

x3 = x1
√
1 − x22 + x2

√
1 − x12,

which we discussed earlier, and which when squared twice yields a polynomial
relation among the three arguments of these three transcendental functions of degree
six.

Let now r(x, y) be a rational function, let f (x, y) be a polynomial, and let y(x)
be the implicit (multivalued) function defined by f (x, y) = 0. Then the general
Abelian integral is defined to be

A(x) :=
∫ x

x0

r(x, y(x))dx, (7.25)
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for some lower limit of integration x0. What Abel originally meant by this was an
antiderivative (as did Euler), i.e. A(x) is a function whose derivative is r(x, y(x)),
and we are expressing this as a definite integral from an initial point x0 to an upper
limit x , using the same symbol x as the variable of integration.

Let us now formulate a first version of Abel’s theorem.

Theorem 7.1 Let A(x) be an Abelian integral as defined in (7.25). If g(x, y) is an
auxiliary polynomial, and if the curve g(x, y) = 0 intersects the curve f (x, y) = 0
in the points (x1, y1), · · · , (xN , yN ), then there are rational functions u, v1, · · · , vr

of the variables x1, · · · , xN and the coefficients of the polynomial g(x, y) such that

A(x1) + A(x2) + . . . + A(xN ) = u + k1 log v1 + . . . + kr log vr , (7.26)

where k1, · · · , kr are constants.

This says that the left-hand side of (7.26), a sum of N transcendental functions, is
an elementary function, i.e., in this case a sum of a rational function and logarithmic
terms. Thus (7.26) says that such a sumofAbelian integrals is an elementary function.
Note that this is a generalization of the much simpler case where the integral

∫ x

x0

r(x, y(x))dx

is the sum of elementary functions, when r(x, y) = 1/y and y2 = Ax2 + Bx + C ,
i.e., in the trigonometric case (Euler’s theorem, see (7.9)).10 This version of Abel’s
theorem (7.26) is sometimes referred to as the elementary addition theorem, i.e., a
specific sum of Abelian integrals is an elementary function (see Kleiman [119]).

The more general version of Abel’s theorem, often known as the Abel addition
theorem (see again [119]) has the following form:

Theorem 7.2 Let A(x) be given by (7.25), defined in terms of the rational func-
tion r(x, y) and the polynomial function f (x, y), then there is an integer p ≥ 0,
depending only on f , such that, for any set of points {x1, , · · · , xα}, there are points
{y1, · · · , yp} so that

A(x1)+A(x2)+. . .+A(xα) = e(x1, · · · , xα)+A(y1)+A(y2)+. . .+A(yp), (7.27)

where e is an elementary function of (x1, · · · , xα), and y1, · · · , yp are algebraic
functions of (x1, · · · , xα).

Note that in (7.26) we have only elementary functions on the right-hand side, and
in the special elliptic integral case r(x, y) = 1/y, f (x, y) = y2 − x4 − 1, (7.24),
there is only one elliptic integral on the right-hand side (no elementary functions).
In this case we had α = 2, but we could have iterated (7.24) and had any number
of terms on the left-hand side and still had one term on the right-hand side. Thus, in

10Note that there is no auxiliary polynomial g(x, y) in this simple case.
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this case, p, for f = x2 − x4 − 1, seems to be equal to 1, and that indeed turns out
to be the case. We will discuss the significance of the integer p in Abel’s theorem
(7.27) somewhat later in this section.

There is one important issue in understanding or interpreting Abel’s two theorems
here. The first is the multivalued nature of y(x) as implicitly defined by the equation
f (x, y) = 0, and the second is: what does the integral

∫ x

x0

r(x, y(x))dx (7.28)

mean? Here we are now thinking of the integral in (7.28) as a definite integral from
some fixed point x0 to some variable end point x . Namely, the implicitly defined
function y(x) defined by the equation f (x, y) = 0 is a priori a multivalued function,
and hence the integral (7.28) is also a multivalued function.

Abel dealtwith these issues in a straightforwardmanner, and, aswementioned ear-
lier, he thought in terms of antiderivatives and differentiation, and his proofs involve
differentiation; the fundamental theorem of calculus; the implicit function theorem;
and, quite importantly, the general fact, apparently quite well known at the time, that
a rational symmetric function of the roots of a polynomial is a rational function of
the coefficients of the polynomial. This is a result due to Vandermonde [224], as
pointed out by Kleiman [119]. It was used repeatedly by Abel to reexpress various
(symmetric) functions of the multivalued functions as single-valued functions.

Abel’s work in this early part of the nineteenth century led to vigorous work in the
latter half of that same century to understand better this issue ofmultivalued functions
appearing in his work; the most decisive next steps were taken by Bernhard Riemann
(1826–1866) [202] in 1857, as we shall see later in Chap. 10. One aspect of the
integration issue that was recognized by Abel, and which was definitively pursued
by Riemann, was the fact that the integral

∫ x
x0

r(x, y(x))dx could have different
values depending on the path one took from the initial point x0 to the final point x .
On the real line there seems to be only one path, but one could specify which signs to
use in any formula for y(x) involving various combinations of radicals, for instance.

The possible ambiguities in this integral became known as periods of the integral,
as differences of two such integrals were specific multiples of fixed entities. At the
time of Riemann and later, the variables (x, y)were interpreted as complex numbers,
and the integral (7.28) was considered as a complex path integral from x0 to x along
some complex path γ. Whether the integral along two different paths was the same or
not became a major subject of study in complex analysis (Cauchy’s integral theorem
and residue theory) and in what became algebraic topology (whether the two paths
bounded a simply-connected domain or not). Both topics became major research
areas in the second half of the nineteenth century.

Finally, we want to discuss the significance of the integer p in Abel’s theorem
(7.27), which is the number ofAbelian integrals on the right-hand side of (7.27). First,
let us quote from p. 172 of Abel’s paper [2], where he denoted the Abelian integrals
A(x j ) as ψ j x j , and p was the difference of the two integers: μ, the total number of
Abelian integrals appearing in the theorem (on both sides of the equation in (7.27)),

http://dx.doi.org/10.1007/978-3-319-58184-2_10
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and the integer α, the number of Abelian integrals appearing on the left-hand side of
the theorem. In Abel’s words:

Dans cette formule les nombre des fonctions ψα+1xα+1,ψα+1xα+2,...,ψμxμ est très-
remarquable. Plus il est petit, plus la formule est simple. Nous allons, dans ce qui suit,
chercher la moindre valeur dont ce nombre, qui est eprimé par μ − α, est susceptible.11

Strangely enough, Abel never expressed this number, which we have called p, by
a single symbol, in spite of the significance he attributed to this integer, which only
depended on the polynomial f (x, y). Note that Abel asserts that p is small. What he
means by this is that the left-hand side of (7.27) can have an arbitrarily large number
of Abelian integral terms relative to the right-hand side, which has a fixed number, p,
of Abelian integrals. Abel proceeds to derive formulas which allow him to compute
this number in various special cases, and we mention three such cases here.

The first is the most complex. Namely, consider a polynomial f (x, y) of degree
13, i.e.,

f (x, y) = p0 + p1y + p2y2 + . . . + p12y12 + y13,

where the degrees of the polynomials (in the variable x) p0, p1, · · · , p12 are

2, 3, 2, 3, 4, 5, 3, 4, 2, 3, 4, 1, 1.

In this case, after four pages of computation (pp. 181–185 of [2]), Abel obtains
p = 38.

This number p turns out to be the celebrated genus of the algebraic curve defined
by f (x, y) = 0, and is a topological invariant of theRiemann surface (and topological
manifold) defined by the algebraic curve. Riemann formulated the genus in the more
modern sense a half-century later. Note that the definition of genus as defined by
Abel was an invariant of the analytical data he had at his disposal, and later became
a topological invariant in the hands of Riemann.

In the case when
f (x, y) = y2 − ϕ(x),

the hyperelliptic case, which was studied extensively by Abel in [4], one finds that
if d = degϕ, where we assume that ϕ has distinct roots, then

p =
{
(d − 1)/2, if d is odd,
(d − 2)/2, if d is even.

So, if we have an elliptic curve in this hyperelliptic case, i.e., d = 3 or 4, then
p = 1, which means topologically (as we learn later from Riemann [202]) that the
elliptic curve is a two-dimensional torus. In this case any sum of Abelian integrals

11In this formula the number of functions ψα+1xα+1,ψα+1xα+2, ...,ψμxμ is very remarkable.
Moreover, it is small and the formula is simple. We shall, in that which follows, search for the
smallest value for which this number, which is expressed by μ − α, can be attained.
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(these would be now elliptic integrals) is the sum of one such elliptic integral plus
an elementary function (as in the special case of (7.24) above).

Our final and simplest example is the case y2 = Ax2 + Bx + C , which gives
p = 0. This means that the underlying Riemann surface is the Riemann sphere,
which is, topologically, a simple two-sphere. We mention again in this very special
hyperelliptic case that since p = 0, the right-hand side of Abel’s theorem (7.27)
contains noAbelian integrals, only elementary functions, as we know from the earlier
work of Euler discussed earlier (7.9) on the rational parametrization of an algebraic
curve of degree two.

One final note is that an Abelian integral is called of the first kind if the integral is
finite for all x . This terminology was introduced by Legendre in the case of elliptic
integrals in [138]. For instance, the following Abelian integrals in the hyperelliptic
case (where f (x, y) = y2 − ϕ(x) and ϕ(x) has distinct roots) are of the first kind,
where p is again the genus of the hyperelliptic curve f (x, y) = 0,

∫ x

xo

dx√
ϕ(x)

,

∫ x

xo

xdx√
ϕ(x)

, ...,

∫ x

xo

x p−1dx√
ϕ(x)

. (7.29)

In this case these p Abelian integrals of the first kind in (7.29) are linearly inde-
pendent and they span the space of all such Abelian integrals of the first kind (see
Markushevich [151]). We will see these Abelian integrals in greater detail later in
Chap.10. Note that the genus p appears here explicitly, and the dimension of this
vector space of all Abelian integrals of the first kind can be used as a second and
equivalent definition of genus in this case.

http://dx.doi.org/10.1007/978-3-319-58184-2_10


Chapter 8
Elliptic Functions

8.1 Introduction

Abel’s second major work [3], which we are exploring in this book, published in
Volumes 2 and 3 of Crelle’s journal in 1827 and 1828, was a definitive and founda-
tional paper on elliptic functions. The title of this paper, Recherches sur les fonctions
elliptiques, is misleading, and at the same time, so very appropriate. What he meant
in the title by “elliptic functions,” as he explains in his paper, were the transcendental
functions studied by Euler and Legendre, etc., which were defined by and known
as elliptic integrals, and which he generalized in the concept of what we now call
Abelian integrals, as described in our previous chapter. In this paper Abel introduced,
for the first time, the inverses of the elliptic integral functions, and these became the
now familiar doubly-periodic meromorphic functions on the complex plane known
as elliptic functions, which we will discuss in the forthcoming sections. So the title
is absolutely correct in modern times, even if Abel didn’t know it at the time!

This was followed one year later by the equally definitive and independent work
of Carl Gustav Jacob Jacobi (1804–1851) [116] on precisely the same subject (Jacobi
had published a shorter introduction to his work at the end of 1827 [115]). These
two long papers by Abel and Jacobi laid the foundation for the rich development
of the theory of doubly-periodic functions in the complex plane that was pursued
by numerous mathematicians throughout the nineteenth century in a wide variety of
forms (complex analysis, algebraic geometry, number theory, etc.).

However, before we look at Abel’s and Jacobi’s work, let’s briefly review what
functions of a complex variable meant to mathematicians at the beginning of the
nineteenth century. As we saw in Chap.6, the geometric representation of complex
numbers in the complex plane had not yet been developed. Complex numbers were
simply algebraic combinations of real numbers with the imaginary unit i = √−1
of the form a + ib manipulated according to the well-known rules of addition and
multiplication of such numbers. In reading through the work of Euler from the mid-
eighteenth century [62], which we have cited in Chap.6, one sees that imaginary
numbers arose from solving algebraic equations and were manipulated by the usual
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rules of algebra. A rational function f of a complex variable x + iy computed
f (x + iy) by algebra, i.e.,

(x + iy)2 = x2 − y2 + i(2xy),

and a series of the form ∞∑

n=0

an(x + iy)n

would be expressed in terms of its real and imaginary parts by term-by-term algebra.
For transcendental functions we find a pregnant remark of Euler on p. 96 of [67]

(the 1796 French edition of his analysis book from 1748) which says (in English
translation), where here x is a real number:

Since sin2 x + cos2 x = 1, in decomposing into factors, one would have

(cos x + √−1 sin x)(cos x − √−1 sin x) = 1. (8.1)

These factors, although imaginary, are of great usage in the combination and multiplication
of arcs [radian angles].

A few pages later in the same book Euler observes that (now letting i = √−1, for
convenience), by letting

eix = cos x + i sin x,

the first factor in (8.1), then

cos x = eix + e−i x

2
,

sin x = eix − e−i x

2i
.

Using the addition formula for exponentials he then obtains (by definition)

ex+iy := exeiy = ex (cos x + i sin y),

with similar expressions for the transcendental functions of a complex variable
sin(x + iy), cos(x + iy), etc. These are then examples of transcendental functions of
a complex variable represented as algebraic combinations (involving the imaginary
unit i) of real-valued functions of real variables.

This was the stage that was set for Abel and Jacobi as they set out to create
their theories of elliptic functions (which would also be formulated initially as alge-
braic combinations of real-valued functions, just as Euler did with the trigonometric
functions).

Let us now formulate what an elliptic function is in the standard language of
complex analysis. Namely, let ω1 and ω2 be two fixed complex numbers such that
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Im (ω1/ω2) �= 0, then an elliptic function f (z) with the two periods ω1 and ω2 is a
meromorphic function on the complex plane C such that

f (z + mω1 + nω2) = f (z), for all n,m ∈ Z,

where Z denotes the ring of integers. We say that such a function is doubly-periodic
with the two periods ω1 and ω2. This is completely analogous to the simply-periodic
functions from trigonometry, where, for instance,

sin(x + 2πn) = sin(x), for all n ∈ Z,

with the period 2π.
This formulation of an abstract family of functions with double-periodicity is

due to the work of Joseph Liouville (1809–1882). In 1844 he announced [147] the
theorem that a doubly-periodic function which is holomorphic must be a constant;
and in the same issue of the journal, Cauchy gave a proof of Liouville’s theorem
using his Cauchy integral theorem. Liouville published considerably later, in 1880
[148], an in-depth paper that he had written in 1847, which included many properties
of doubly-periodic functions including the theorem just mentioned.

In Sect. 9.5 we give a brief outline of Weierstrass’s theory of doubly-periodic
functions that he presented in the second half of the nineteenth century, primarily in
his Berlin lectures in 1863, which were published in 1915 [235], but which included
results from earlier in his career as well.

Abel and Jacobi gave the first examples of such doubly-periodic functions (that is,
there are doubly-periodic functions as defined above), and they proved many of their
important properties, as well as giving a variety of ways to represent such functions
(power series, infinite products, etc.). The theory of trigonometric functions was a
model for both of them. In Sect. 8.2 we look at Abel’s work on elliptic functions, and
then in Sect. 8.3 we will see how Jacobi covered most of the same material with one
important innovation, namely the theory of theta functions.

8.2 Abel’s Recherches sur les fonctions elliptiques

Let’s start with Abel’s paper [4], and we will follow the notation and normalizations
used in his paper, although the formalism and notation of Jacobi became the standard
in the literature in the following decades. Due to Abel’s early death, he was not able
to participate in the later developments. The basic idea of both mathematicians was
to study the inverse of the elliptic integral functions that had been studied extensively
by their predecessors. In this manner the addition theorems for elliptic integrals, à
la Euler, became addition formulas for the elliptic functions, which generalized the
addition formulas for trigonometric functions.

http://dx.doi.org/10.1007/978-3-319-58184-2_9
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Let us note that if one starts with the transcendental function

arcsin(x) :=
∫ x

0

dx√
1 − x2

,

then one can define its inverse sin(x) and obtain the full theory of trigonometric
functions. This is, in effect, what Abel and Jacobi do in the elliptic integral context.

Abel begins in [4] by recalling the work of Euler and Legendre that we discussed
in the preceding paragraphs. He notes that every elliptic integral of the form

∫
R(x)dx√

α + βx + γx2 + δx3 + εx4
,

where R(x) is a rational function, can be reduced to

∫
P(y)dy√

a + by2 + cy4
,

where P(y) is a rational function of y2. This can, in turn, be reduced to the form

∫
A + By2

C + Dy2
dy√

a + by2 + cy4
,

and by yet one more change of variables, this can be reduced to the trigonometric
form ∫

A + B sin2 θ

C + D sin2 θ

dθ√
1 − c2 sin2 θ

,

where c is real and |c| < 1. Finally, Abel notes that (all of this is from Legendre’s
book [138]), every elliptic integral, by this type of reduction, can be reduced to the
three cases:

∫
dθ√

1 − c2 sin2 θ
,

∫
dθ

√
1 − c2 sin2 θ,

∫
dθ

(1 + n2 sin2 θ)
√
1 − c2 sin2 θ

,

whichLegendre calls elliptic integrals of the first, second and third kind.Abel decides
to concentrate on the elliptic integrals of the first kind; and on p.164 of [4], after the
brief introduction outlined above, he says;

Je me propose, dans ce mémoire, de considérer le fonction inverse, c’est à dire la fonction
ϕα, detérminée par les équations1

α = ∫ dθ√
1−c2 sin2 θ

,

sin θ = ϕα = x .

1“I propose, in thismemoir, to consider the inverse function, that is to say the functionϕα determined
by the equations”.
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Abel then considers specifically the elliptic integral of the first kind in the form

α(x) =
∫ x

0

dtx√
1 − t2

√
1 − c2t2

, (8.2)

in terms of the variable x , where again c2 > 0.2 Now Abel makes two changes in
notation to suit his purposes. He replaces c2 by −e2 and replaces the term

√
1 − x2

by
√
1 − c2x2 for symmetry, and finally considers the specific elliptic integral of the

first kind in the form

α(x) =
∫ x

0

dt√
1 − c2t2

√
1 + e2t2

. (8.3)

We let x(α) be the inverse of α(x) given by (8.3), which is well defined near x = 0,
and Abel definesϕ(α) to be this inverse x(α) on a suitable interval containing x = 0.
The derivative of α(x) is simply given by

α′(x) = 1√
1 − c2x2

√
1 + e2x2

;

and, by the inverse function theorem, the derivative of ϕ(α) is given by

ϕ′(α) =
√
1 − c2ϕ(α)2

√
1 + e2ϕ(α)2. (8.4)

Then Abel introduces two additional functions of α defined by

f (α) :=
√
1 − c2ϕ(α)2, F(α) :=

√
1 + e2ϕ(α)2, (8.5)

which appear in (8.4), yielding ϕ′(α) = f (α)F(α). These three functions of a real
variable3 α are the generalizations of the two trigonometric functions sin(α) and
cos(α), and, as Abel says on p.265 of his paper:

Plusieurs propriétés de ces fonctions se dédusierent immédiatement des propriétés con-
nues de la fonction elliptique [elliptic integral] de la première espèce, mais d’autres sont
plus cachées. Par exemple on démontre que les équations ϕα = 0, f α = 0, Fa = 0
ont un nombre infini de racines, qu’on peut trouver toutes. Une des les plus remarquables
est qu’on peut exprimer rationellement ϕ(mα), f (mα), F(mα) (m un nombre entier) en
ϕα, f α, Fa. Aussi rien n’est plus facile que de trouver ϕ(mα), f (mα), F(mα), lorsqu’on
connaît ϕα, f α, Fα; mais le problème inverse, savoir de déterminer ϕα, f α, Fα en
ϕ(mα), f (mα), F(mα), est plus difficile, parcequ’il dépend d’une equation d’un degré
élevé (savoir du degré m2).

2Abel doesn’t distinguish between the upper limit of the integral and the variable of integration, but
we do to clarify the discussion.
3The inverse function ϕ(α) and its related functions f (α) and F(α) are well defined locally near
α = 0 by the inverse function theorem. The extension to the full real line is discussed later in this
section.
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La résolution de cette équation est l’objet principal de ce mémoire. D’abord on fera voir,
comment on peut trouver toutes les racines, au moyen des fonctions ϕ, f, F . On traitera
ensuite de la résolutions algébrique de l’équation en question, et on parviendra à ce résultat
remarquable, que ϕ α

m , f α
m , F α

m peuvent être exprimées en ϕα, f α, Fα, par une formule
qui, par rapport à α, ne contient d’autre irrationalité que des radicaux. Cela donne une classe
très générale d’équations qui sont résoluble algébriquement.4

Wenote that this last comment ofAbel’s about solvability of high-degree equations
by means of extracting roots relates to one of his first papers [1] in which he shows
for the first time the unsolvability in terms of radicals of generic algebraic equations
of degree 5 or higher, a problem that had been outstanding for a long time. The
definitive work on whether a given polynomial equation was solvable in terms of
radicals was due to Évariste Galois (1811–1832) in his work which established the
now well-known Galois theory. This was published in 1846 [71], 14 years after his
very early death at the age of 20.

Let us now turn to Abel’s construction of his version of elliptic functions and
their first fundamental properties. He first defines each of these functions for all real
values of α in a specific interval around the origin, and then proceeds to define them
as functions of a complex variable α + iβ on the entire complex plane in a sequence
of steps. First he sets

ω

2
:=

∫ 1
c

0

dt√
1 − c2t2

√
1 + e2t2

,

where it is simple to verify that the limiting integral at the singular point x = 1
c iswell-

defined. Thus one sees that ϕ(α) > 0 on (0,ω/2), and ϕ(0) = 0 and ϕ(ω/2) = 1/c.
Also, from the definition of ϕ(α), one sees that ϕ(−α) = −ϕ(α), and thus we have
ϕ(α) well defined on [−ω/2,ω/2], and similarly for f (α) and F(α). Now Abel
wants to define these functions for imaginary numbers of the form iβ.

For this he formally substitutes iy for x in (8.3) and integrates the integrand of
the elliptic integral in (8.3) on the imaginary axis from 0 to iy, obtaining

i
∫ y

0

dt√
1 + c2t2

√
1 − e2t2

,

4“Several properties of these functions are deducible immediately from the known properties of the
elliptic function [elliptic integral] of the first kind, but others are more hidden. For example, one
can show that the equations ϕα = 0, f α = 0, Fa = 0 have an infinite number of roots, where
one can find all of them. One of the most remarkable properties is that one can express rationally
ϕ(mα), f (mα), F(mα) (m an integer) in ϕα, f α, Fa. Also, nothing is more simple than to find
ϕ(mα), f (mα), F(mα), when one knows ϕα, f α, Fα; but the inverse problem, to know how to
determineϕα, f α, Fα inϕ(mα), f (mα), F(mα), is more difficult, since it depends on an equation
of high degree (more specifically of degree m2).

The solution of this equation is the principal object of this memoir. At first one can see how
one can find all the roots, by means of the functions ϕ, f, F . Then one treats the algebraic solution
of the equation in question, and one comes to this remarkable result, that ϕ α

m , f α
m , F α

m can be
expressed in ϕα, f α, Fα, by a formula, which, with respect to α, doesn’t contain any irrationality
except radicals. This gives a very general class of equations which are solvable algebraically.”
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where we see that the roles of e and c have been interchanged. Let

β(y) :=
∫ y

0

dt√
1 + c2t2

√
1 − e2t2

,

which is again a monotone increasing function on the interval [− ω̃
2 , ω̃

2 ], where

ω̃

2
:=

∫ 1
e

0

dx√
1 + c2x2

√
1 − e2x2

,

and we let the inverse of β(y) on this interval be denoted by y(β).
We have already defined ϕ(α) to be x(α) on [−ω/2,ω/2], and now we define

similarly ϕ(iβ) := iy(β) on the interval [−i ω̃
2 , i ω̃

2 ] on the imaginary axis. We then
define on this same interval

f (iβ) := F(β), and F(iβ) = f (β),

using the interchange of c and e in the definition of α(x) and β(y). We note that
ϕ(±ω

2 ) = ± 1
c and ϕ(±i ω̃

2 ) = ±i 1e .
Thus, at this point ϕ(α) and ϕ(iβ) are defined for ω/2 ≤ α ≤ ω/2, and −ω̃/2 ≤

β ≤ ω̃/2. The problem remains to define ϕ(α) and ϕ(iβ) for all α and β, and to then
define ϕ(α + iβ) for all complex numbers α + iβ.

For both of these tasks Abel needs a tool, and that is a specific generalization of
the usual addition formulas for sines and cosines. Abel formulates these new addition
formulas for the three functions ϕ(α), f (α), F(α) as follows:

ϕ(α + β) = ϕ(α) f (β) + ϕ(β) f (β) f (α)F(α)

1 + e2c2ϕ2(α)ϕ2(β)
, (8.6)

f (α + β) = f (α) f (β) − c2ϕ(α)ϕ(β)F(α)F(β)

1 + e2c2ϕ2(α)ϕ2(β)
, (8.7)

F(α + β) = F(α)F(β) + e2ϕ(α)ϕ(β) f (α) f (β)

1 + e2c2ϕ2(α)ϕ2(β)
. (8.8)

We recall briefly the classical formulas for trigonometric functions (as one finds in
Euler’s Introductio [62] from 1748, for instance):

sin(α + β) = sin(α) cos(β) + cos(α) sin(β), (8.9)

cos(α + β) = cos(α) cos(β) − sin(α) sin(β), (8.10)

tan(α + β) = tan(α) + tan(β)

1 − tan(α) tan(β)
, (8.11)

which have the same type of rational expressions as in (8.6), (8.7), and (8.8).
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Abel points out that these addition formulas follow from Legendre’s theory of
elliptic integrals [138], which follows up on the Euler addition theorem for elliptic
integrals that we discussed earlier. He also gives a simple and elegant proof which
we can sketch here (the same proof will work for the trigonometric formulas listed
above as well). First, using the fact that

f 2(α) = 1 − c2ϕ2(α),

F2(α) = 1 + e2ϕ2(α),

then, by differentiating, we obtain

f (α) f ′(α) = −c2ϕ(a)ϕ′(α), (8.12)

F(α)F ′(α) = 1 + e2ϕ(α)ϕ′(α), (8.13)

and from (8.3) we have

ϕ′(α) =
√
1 − c2ϕ2(α)

√
1 + e2ϕ2(α) = f (α)F(α). (8.14)

Substituting (8.14) in (8.12) and (8.13), we find that

ϕ′(α) = f (α)F(α),

f ′(α) = −c2ϕ(α)F(α),

F ′(α) = c2ϕ(α) f (α),

the elliptic function analogue to (sin(α))′ = cos(α), etc.
Now for the proof of, for instance (8.6), we denote the right-hand side of (8.6)

by r(α,β), and compute both ∂r
∂α

and ∂r
∂β

using the differentiation formulas above. It
turns out thatα and β appear symmetrically in these expressions and that one verifies
by inspection that

∂r

∂α
= ∂r

∂β
. (8.15)

As was known at the time, a solution of the partial differential equation (8.15) is a
function of the sum α + β, and hence there is a function ψ of one variable such that

r(α,β) = ψ(α + β).

One can find ψ by looking at particular values, and for instance, for β = 0, we have
ϕ(0) = 0, f (0) = 1, F(0) = 1, and hence

r(α, 0) = ϕ(a) = ψ(α),

so
r(α,β) = ψ(α + β) = ϕ(α + β),
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and (8.6) is proved. The addition formulas (8.7) and (8.8) can be proved in the same
manner.5

Abel uses these addition formulas to define in a natural manner the evaluation of
the elliptic functions on the real line for |α| > ω/2| and on the imaginary axis for
|iβ| > ω̃/2. Then he also invokes the addition formula to define, for instance,

ϕ(α + iβ) = ϕ(α) f (iβ) + ϕ(iβ) f (iβ) f (α)F(α)

1 + e2c2ϕ2(α)ϕ2(iβ)
,

= ϕ(α)F(β) − iϕ(β)F(β) f (α)F(α)

1 − e2c2ϕ2(α)ϕ2(β)
,

and similarly for the other two elliptic functions f and F .
After having used the addition formulas in this manner, Abel says on p.279 of

[4],

Des formules (8.6), (8.7), (8.8) on peut déduire une foule d’autres.6

In Fig. 8.1 we see a sample of the plethora of formulas that he derives from the basic
addition theorems. Here he has used the abbreviation

R = 1 + e2c2ϕ2(α)ϕ2(β).

After two more pages of calculations we find on p.272 of his paper (reproduced in
Fig. 8.2) the first formulation of the doubly-periodic nature of his elliptic functions.
This is equation no. 20 on this page in Fig. 8.2. At the top of the same page we see in
the second equation that these elliptic functions all have a pole at the point (ω

2 , i ω̃
2 )

(and at the suitable translates of this point as well). This is the first instance in the
literature of a doubly-periodic function of a single complex variable.

What is significant for us here is that one cannot formulate this notion of double-
periodicity without the use of complex variables, and in the decades that followed,
these functions and others related to them, became important objects in the study of
meromorphic functions in the complex plane. Later in his paper Abel found many
different kinds of representations of these functions. An important historical point is
that these functions played a role in applied mathematics as well.

In the remainder of his paper [4]Abel goes on to establish a variety of identities and
properties for the elliptic functions he created in this paper, along with applications
to the transformations of elliptic integrals and to the special case of the elliptic
integral ∫

d√
1 − x4

5Of course this proof depends on knowing what the right-hand side of such an addition formula
looks like, and this knowledge stems from the work of Euler and Legendre.
6“From the formulas (8.6), (8.7), (8.8) one can deduce many others”.
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Fig. 8.1 Page 270 of Abel’s paper on elliptic functions [4]

that Euler had studied, which describes the arc length of a leminiscate ([4], pp. 361–
362). In addition, he obtains a variety of representations of theelliptic functions in
terms of infinite series and infinite products.
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Fig. 8.2 Page 272 of Abel’s paper on elliptic functions [4]
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8.3 Jacobi’s Fundamenta Nova

As we mentioned earlier, Jacobi had announced his discovery of elliptic functions
in a short paper in December of 1827 [115] and followed up with his foundational
190 page paper [116]. Interestingly, both of these papers were published in the
Astronomische Nachrichten, edited by Heinrich Christian Schumacher (1780–1850),
an important astronomer at that time. Applications to astronomy of this new theory
seemed to have been an important motivation for Jacobi.

We will look at some of the innovations in Jacobi’s paper [116]. First, he proceeds
in a similar manner to what Abel did at roughly the same time. Namely, he considers
the inverse of the elliptic integral

u(x) =
∫ x

0

dx√
(1 − x2)(1 − k2x2)

(8.16)

to be

ϕ = am u,

x = sin am u.

Jacobi defines

K :=
∫ π

2

0

dϕ√
1 − k2 sin2 ϕ

,

using the substitution x = sinϕ. He then defines a number of other functions related
to sin am(u), which have now become standard in the theory of elliptic functions.

We discuss the most important ones here briefly. Namely, we have the two addi-
tional functions cos am u and

� am u := d

du
(am u) =

√
1 − k2 sin am2u.

This was the notation of Jacobi, and towards the end of the nineteenth century it has
become standard to write

sn u := sin am u,

cn u := cos am u,

dn u := � am u,

for these three functions, which are the analogues of the three elliptic functions of
Abel, ϕ, f , and F . These satisfy the properties

sn 2u + cn 2u = 1,

sn 2u + k2dn 2u = 1,
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the analogues of sin2 x + cos2 x = 1 in this context, and they satisfy addition
formulas, which are formulated explicitly by Jacobi for these three functions and
other related functions (see [247] or [113] for proofs of these addition formulas).
Jacobi does not prove these formulas, but depends on the earlier work of Legendre
on elliptic integrals [138] for proofs in this elliptic-functions context.

Jacobi then defines sn iv, cn iv, and dn iv, in the same manner as Abel, and using
the addition formulas extends his elliptic functions to be functions of a complex
variable, e.g., sn (u + iv). These functions are doubly-periodic, which follows easily
from the addition formulas. For instance, letting K ′ be defined by

K 2 + (K ′)2 = 1,

one finds that

sn (u + iv + 4K ) = sn (u + iv), and sn (u + iv + i2K ′) = sn (u + iv),

which shows that sn (u + iv) has two independent periods, 4K along the real axis,
and i2K ′ along the imaginary axis. One can find a complete set of these period
relations for all of the Jacobi elliptic functions in [247].

8.4 Jacobi’s Theta Functions

In his Fundamenta Nova paper Jacobi obtains an extensive set of properties for the
elliptic functions, many of which are similar to those derived by Abel (representation
in terms of power series, infinite products, solutions of certain differential equations,
etc.). Thenonp.198of [116] he defines for thefirst time anewconcept,which gives an
important method of representing the Jacobi elliptic functions, and which becomes
intrinsically very important in mathematics, independent of the theory of elliptic
functions. This is Jacobi’s discovery of theta functions, as they have been called
ever since. A theta function is a rapidly convergent Fourier series with quasiperiodic
properties, and the quotient of two such functions can represent an elliptic function.
In Fig. 8.3 we see his definition of �(u) in the middle of p. 198 in his Fundamenta
Nova paper [116].

Let us give an example of two such theta functions whose quotient is an ellip-
tic function. Our notation differs from that used byJacobi, but it is the same thing
mathematically. Let

θ(z; τ ) :=
∞∑

n=−∞
eπin2τ+2πi z

be a theta function which is defined for z ∈ C, τ ∈ C with Im (τ ) > 0. We consider
θ(z; τ ) as a function of z, with τ as a parameter. Since Im τ > 0, it follows that
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Fig. 8.3 Jacobi’s introduction oftheta functions, p. 198 of his Fundamenta Nova paper [115]
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|eπin2τ | ≤ e−πn2Im τ ,

which shows that, for fixed τ , the coefficients of the Fourier series converge to zero
very rapidly, and hence θ(z; τ ) is a holomorphic function of z for fixed τ . Moreover,
it is clear from the definition that

θ(z + m; τ ) = θ(z; τ ),

so θ(z; τ ) is periodic with period 1 with respect to its first argument.
Now we compute the behavior of θ with respect to the τ direction in the complex

plane, which is not along the real axis. Namely, we want to calculate θ(z + kτ ; τ ).
We find

θ(z + kτ ; τ ) =
∞∑

n=−∞
eiπn

2τ+2πin(z+kτ ),

= e−iπτk2
∞∑

n=−∞
eiπτ (n2+2nk+k2)+2πinz,

and letting l = n + k, we have

θ(z + kτ ; τ ) = e−iπτk2−2πikz
∞∑

l=−∞
eiπτ l2+2πilz,

= e−iπτk2−2πikzθ(z; τ ). (8.17)

This is the quasiperiodicity alluded to above. Except for the factor e−iπτk2−2πkz ,
θ(z; τ ) seems to be periodic in the direction τ . How can we exploit this?

Let’s consider a second such function

θ1(z; τ ) := θ(z + 1

2
,mτ ).

This is also holomorphic and periodic with period 1 in z. What is the periodicity in
the direction τ? Again we compute and find

θ1(z + kτ ; τ ) =
∞∑

n=−∞
eπin2+2πin(z+ 1

2 +kτ ),

= e−πik2
n∞∑

n=−∞
eπiτ (n2+2nk+k2)+2πin(z+ 1

2 ),

which gives, letting n = l − k, as before,



112 8 Elliptic Functions

θ1(z + kτ ; τ ) = e−πiτk2−2πikz ė−πikθ1(z; τ ),

= (−1)ke−πiτk2−2πikzθ1(z; τ ).

Thus the multiplicative factor here is the same as in (8.17), except for the factor
of (−1)k . Therefore, if we form the quotient

e(z; τ ) := θ(z, τ )

θ1(z; τ )
,

we see that
e(z + m + k2τ ; τ ) = e(z; τ ).

Thus we see that e(z; τ ) is a doubly-periodic function with periods (1, 2τ ), where
Im τ > 0. Bymodifying suitably the choice of such theta functions, one can construct
all of the Jacobi elliptic functions (again, see either [247], or [113] or any other
standard reference on elliptic functions).



Chapter 9
Complex Analysis

9.1 Introduction

So far in this Part of the book we have seen the development of the complex plane,
Abel’s theorems concerning the generalization of elliptic integrals and the creation
of the theory of elliptic functions of a complex variable. We now turn to a set of ideas
which also started in the early decades of the nineteenth century and which would
develop into a subject of great importance. This was the creation of what was often
called function theory at the time, but which we call today complex analysis The
fundamental concept is the study of special classes of complex-valued functions of a
complex variable which are now known as holomorphic and meromorphic functions.
We will see how these concepts arose out of the work of various mathematicians
over a long period of time.

The fundamental innovators in the creation of function theory were Cauchy,
Riemann and Karl Weierstrass (1815–1897), and we will discuss their respective
contributions in some detail below. Today a course in complex analysis is considered
an essential part of undergraduate education, and over the course of the twentieth
century (and indeed towards the end of the nineteenth century) a number of texts
evolved to explain this important subject, for instance, Hurwitz and Courant from
1922 [113], the classic text by Ahlfors [5], and there are many other fine more recent
texts on the subject.

9.2 Cauchy in 1814

We start with the fundamental contributions of Cauchy, who contributed to the devel-
opment of complex analysis throughout most of his very productive career. His col-
lected works consist of two series, each with about 12 volumes and approximately
500 pages per volume; this includes his published papers as well as a number of
monographs and textbooks. He worked on numerous fields of mathematics, includ-
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ing differential geometry, number theory, mathematical physics, and a variety of
other areas. His first paper in complex analysis [37] was presented to the Academie
des Sciences in 1814 and finally published in 1827. Several footnotes added to the
published version indicate some conceptual progress he had made in going from the
real to the complex setting.

In this paper [37] Cauchy considers a function f of a real variable z, and shows
that if z is considered to be a function of two other real variables x and y,1 then

∂

∂x

(
f (z)

∂z

∂y

)
= ∂

∂y

(
f (z)

∂y

∂x

)
, (9.1)

which is easy to verify. Namely,

∂

∂x

(
f (z)

∂z

∂y

)
= f ′(z)

∂z

∂x

∂z

∂y
+ f (z)

∂2z

∂x∂y
, (9.2)

∂

∂y

(
f (z)

∂y

∂x

)
= f ′(z)

∂z

∂y

∂z

∂x
+ f (z)

∂2z

∂y∂x
, (9.3)

and since
∂2z

∂x∂y
= ∂2z

∂y∂x
,

we see that (9.1) is satisfied.
Now we let z be a particular function of the two real variables x and y using

complex numbers, namely let
z = x + iy,

where i = √−1, and let f (z) take on complex values, so that

f = u + iv,

for real-valued functions u and v. Then (9.1) becomes, noting that ∂z
∂x = 1, and

∂z
∂y = i ,

i
∂ f

∂x
(z) = 1

∂ f

∂y
(z), (9.4)

that is,

i
∂

∂x
(u + iv) = 1

∂

∂y
(u + iv),

which becomes, upon setting real and imaginary parts equal to each other,

1We’ve used the now standard notation z, x , and y for these variables, where z = x + iy; Cauchy
used y, z and x with y = z + √−1x in this paper. In his later papers he used the now standard
notation, and in his earlier papers he used

√−1 instead of the symbol i for the imaginary unit,
which he also used later.
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∂u

∂x
= ∂v

∂y
, (9.5)

∂v

∂x
= −∂u

∂y
, (9.6)

and this is the first appearance in Cauchy’s work of thewell-knownCauchy–Riemann
equations.2 Cauchy remarks at this point in his paper (p. 338):

Ces deux équations renferment toute la théorie du passage du réel à l’imaginaire, et il ne
nous reste plus qu’à indiquer la manière de s’en servir.3

Thus Cauchy indicates that he understood the significance of these equations, and
his work over the next 30 years certainly bears this out. The implicit assumption
that Cauchy makes here is that the derivative f ′(z) in (9.2) and (9.3) exists, as a
generalization of f ′(z), when z was a real variable. This means that the limit

f ′(z) = lim
ε→0

f (z + ε) − f (z)

ε

exists and is well defined, for small complex-valued ε. Functions which have this
property became known in time as holomorphic functions, as we will see later in the
book. We shall return to this point later when we look at Riemann’s work.

The next step Cauchy takes is to integrate both sides of (9.4) over a rectangle in
R2, which we take to be the rectangle R defined as the product of the two intervals
[0, X ] on the x-axis and [0, Y ] on the y-axis, as pictured in Fig. 9.1. Thus we have

i
∫

R

∂ f

∂x
dxdy =

∫
R

∂ f

∂y
dxdy,

and, assuming that these partial derivatives are continuous on the rectangle R, we
can evaluate these area integrals in terms of iterated integrals, obtaining,

i
∫ Y

0

(∫ X

0

∂ f

∂x
dx

)
dy =

∫ X

0

(∫ Y

0

∂ f

∂y
dy

)
dx,

which gives, using the fundamental theorem of calculus,

i
∫ Y

0
[ f (X, y) − f (0, y)]dy =

∫ X

0
[ f (x, Y ) − f (x, 0]dy. (9.7)

2These equations had appeared earlier in the work of d’Alembert in the context of fluid dynamics
and in the work of Euler and Laplace for the evaluation of certain definite integrals. See Kline [125],
pp. 626–628 for a discussion of this point. This is the beginning of his very interesting chapter on
the history of function theory.
3“These two equations contain all the theory of passing from the real to the imaginary, and it only
remains for us to indicate how this can be used”.
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Fig. 9.1 A rectangle R in the complex plane

If we denote by �1 + �2 and �3 + �4 the two paths along the edges of the rectangle
from 0 to X + iY as indicated in Fig. 9.1, then we see that (9.7) becomes

∫ X

0
f (x, 0)dx +

∫ Y

0
f (X, y)d(iy) =

∫ Y

0
f (0, y)d(iy) +

∫ X

0
f (x, Y )dx,

which is the same as ∫
�3+�4

f (z)dz =
∫

�1+�2

f (z)dz. (9.8)

This equation says that the path integrals of f (z) in the complex plane along the
two paths �1 + �2 and �3 + �4 have the same value. If we let � be the closed path
�1 + �2 − �3 − �4 around the boundary of the rectangle R, then we have

∫
�

f (z)dz. (9.9)

This is the famous Cauchy integral theorem in this important special case.
Cauchy expressed this theorem in terms of the real-valued functions u and v, and

only later, when this 1814 paper was printed in 1827, he added footnotes indicating
how the work could be simplified using the complex variable notation, as we have
done here. He used these results to compute various examples of definite integrals,
usually of the form

∫ ∞
−∞ f (z)dz, where, for instance, the vertical integrals vanished

asymptotically, and one was left with something like

∫ ∞

−∞
f (x + ib)dx =

∫ ∞

−∞
f (x)dx,

the integration being shifted from the x-axis to a translate of the x-axis in the complex
plane, which could often be simpler to compute. He also concerned himself with a
variety of singular integrals, and proper values of integrals. In Fig. 9.2 we see a
sampling of the evaluation of such integrals.
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Fig. 9.2 Page 348 of Cauchy’s paper of 1814 [37] showing the evaluation of definite integrals
using the first version of Cauchy’s integral theorem
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9.3 Cauchy’s 1825 Mémoire

Cauchy wrote a number of papers and books on this topic over the decades following
his seminal 1814 paper, and his writings became the basis for a significant amount
of what became known as function theory. We will briefly discuss some of these
in this section. Perhaps his most important paper is a fundamental paper written in
1825 entitled Mémoire sur les intégrales, définies entre les limites imaginaires4 [36],
which, due to its significance, was reprinted in 1874. Curiously, it doesn’t appear in
his collected works. We recall that at this time mathematicians still used the term
“imaginary number” for what we now call complex numbers.

Cauchy considered in [36] complex-valued functions of a complex variable to
have a well-defined derivative at each point where it had a finite value: and at any
point where the function became infinite, he considered the function to be locally
the reciprocal of a function with a zero of finite order. Today we call such a function
a meromorphic function. For such a function f (z), he defined the path integral

∫ Z

z0

f (z)dz

to be ∫ T

t0

f (ϕ(t))ϕ′(t)dt,

where ϕ(t) is a smooth curve in the complex plane parametrized by a parameter
t varying between t0 and T , and where z0 = ϕ(t0), and Z = ϕ(T ), provided the
function is finite at all points of the path.5

Then Cauchy shows by a calculus of variations technique that, if one perturbs
the path suitably, then the first variation of the perturbation vanishes, indicating to
Cauchy that the path integral for the perturbed paths are the same as for the original
unperturbedpath, an infinitesimal version, so to speak, of theCauchy integral theorem
in this case. Then Cauchy considers the case where the path encounters a point where
f (z) becomes infinite, and he introduces the notion of the proper value for such a
singular integral, being a limit of a specific perturbation of the integral.

For a function which is infinite at a point z0 of finite order, which means that f (z)
can be represented near z0 in the form

f (z) = a−m

(z − z0)m
+ · · · + a−1

(z − z0)
+ g(z), (9.10)

where g(z) is finite at z0, Cauchy defines the residue of f (z) at z0 to be the coefficient
a−1 in (9.10). Let us denote this residue by Res f (z0) (a notation similar to that which
Cauchy uses in his later papers).

4“Memoir concerning integrals defined between imaginary limits”.
5Recall Gauss’s letter to Bessel from 1811 quoted at the end of Sect. 6.3.

http://dx.doi.org/10.1007/978-3-319-58184-2_6
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Using various perturbations of path integrals, he formulates the Cauchy residue
theorem for a large rectangle R containing a finite number of singular points of f (z),
z0, z1, . . . , zN , to be ∫

∂R
f (z)dz = 2πi

N∑
k=0

Res f (zk).

He uses this for numerous examples of calculations of specific definite integrals,
similar to what he had done in his 1814 paper.

This was a very important breakthrough for complex analysis, and he further
developed this theory with numerous examples in his four-volume work Exercices
de Mathématiques [38], published between 1826 and 1829. In a slightly later work,
Exercices d’Analyse et de Physique Mathématique [42], he developed the Cauchy
integral formula as

f (z0) = 1

2πi

∫
∂�

f (z)dz

z − z0
,

where � is a small circular disc centered at z0, and where f (z) has finite values on
the closure of the disc. In addition, he created similar integral formulas for all of the
coefficients of the Laurent series of a function f (z) with an isolated singularity at
z0. Such a series was first formulated for an isolated singularity by Pierre Alphonse
Laurent (1813–1854) in 1843 [134], and was developed in full in a paper published
posthumously in 1863 [135]. The series has the form

∞∑
n=−∞

an(z − z0)
n,

and the coefficients can be computed by

an = 1

2πi

∫
∂�

f (z)dz

(z − z0)n+1
,

which became an alternative to the usual formula for the Taylor series coefficients
f (n)(z0)

n! in terms of derivatives, which don’t make any sense when f (z) is singular at
z0.

In 1846 [40] Cauchy formulated but did not prove what has become known as
Green’s theorem,6 namely, for two continuously differentiable real-valued functions
P(x, y) and Q(x, y) defined on the closure of a bounded domain D in R2,

∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫
∂D

Pdx + Qdy. (9.11)

6George Green (1793–1841) in [89] formulated and proved a version of Green’s theorem in three
dimensions, now known as the “divergence theorem” or often Gauss’s theorem, all of which are
special cases of the general Stokes’s theorem in n-dimensions, see e.g., [217].
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He showed that this formula will imply a proof of the Cauchy integral theorem, and,
as it is so simple and instructive, we indicate its proof here. Let f (z) be a function
which satisfies the Cauchy–Riemann equations on the closure of a domain D, then
we see that∫

∂D
f (z)dz =

∫
∂D

(u + iv)(dx + idy)

=
∫

∂D
(udx − vdy) + i

∫
∂D

(vdx + udy)

=
∫

D

(
∂v

∂x
+ ∂u

∂y

)
dxdy + i

∫
D

(
∂u

∂x
− ∂v

∂y

)
dxdy

= 0 + i0,

by Green’s theorem (9.11) above. This shows the direct relationship between a func-
tion satisfying the Cauchy–Riemann equations and the Cauchy integral theorem.
Riemann proved Green’s theorem, and hence the Cauchy integral theorem, in his
dissertation [199].

Finally, wemention that Cauchy wrote several papers dealing with the generaliza-
tions of his ideas to the case of multivalued functions, including applications to the
study of elliptic integrals and functions (see, e.g., [39]) and in 1851 (the same year
Riemann’s dissertation appeared, as we discuss in the next section), Cauchy extended
[41] his theory of multivalued function to be single-valued functions spread over a
complex plane, a concept that Riemann introduced at the same time. Cauchy intro-
duced the notion of branch points and branch cuts, which again Riemann would
develop more fully later. Cauchy’s paper is one of several in which he dealt with path
integrals of multivalued functions.

9.4 Riemann’s Dissertation from 1851

Riemann’s doctoral dissertation from1851 [199]was a foundationalwork in complex
analysis, and we will survey a number of its most important results. Riemann starts
his paper with the introduction of surfaces spread over domains in the complex plane
(branched coverings), and elementary notions of connectedness for open sets of such
surfaces. This was followed up in his 1857 paper on Abelian functions [202], and
this became the theory of Riemann surfaces and eventually developed into the theory
of complex manifolds in general, as we will discuss in some detail later in the book.

He starts, as did Cauchy, by considering the class of complex-valued functions of
a complex variable on an open set that have a well-defined derivative at each point.
He computes the derivative of a function f (z) = u(z) + iv(z) as

d(u + iv)

dx + iy
=

(
∂u

∂x
+ i

∂v

∂x

)
dx + i

(
∂v

∂y
− i

∂u

∂y

)
dy

dx + idy
, (9.12)
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and he argues that this is a well-defined complex number if and only if

∂u

∂x
= ∂v

∂y
and

∂v

∂x
= −∂u

∂y
. (9.13)

This gives

f ′(z) = d f

dz
= d(u + iv)

dx + iy
= 1

2

(
∂u

∂x
+ ∂v

∂y

)
+ i

1

2

(
∂v

∂x
− ∂u

∂y

)

as the value of the derivative at the point z in terms of the real-valued partial deriva-
tives, when this derivative exists. This is Riemann’s version of the Cauchy–Riemann
equations. Riemann says simply in his paper that a function f which satisfies the
Cauchy–Riemann equations (9.13) or which has a well-defined derivative at each
point is a “function of a complex variable.” Today, we say that a function that satis-
fies these equations is a holomorphic function.

A holomorphic function w = f (z) can be considered as a mapping from a region
in the z-plane to a subset of the w-plane. We will often refer to a holomorphic
function viewed geometrically like this as a holomorphic mapping. Riemann shows
early in his dissertation that a holomorphic function f is conformal and orientation-
preserving at each point of the domain where f ′(z) �= 0. Conformal means that if
two smooth curves meet at a point z0, then the angle between their tangents at that
point is preserved under the mapping of the plane to the plane by the functions f (z)
near the point z0. We say in this context that such an f is a conformal mapping.7

The mapping preserves orientation if the direction from one tangent line to another
is also preserved. Gauss had found necessary and sufficient conditions for a local
mapping of R2 to be conformal in 1825 [79], which turned out, in the language of
holomorphic mappings, à la Riemann in the paper we are discussing here, to mean
a holomorphic (or anti-holomorphic) mapping.8

That a holomorphic mapping f at a point where f ′(z0) is not zero preserves
orientation is, as Riemann points out, easy to prove, since the Jacobian determinant
of the mapping at that point is given by

∂(u, v)

∂(x, y)
=

∣∣∣∣∣
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣ ,

which, by the Cauchy–Riemann equations (9.13), has the value

7Conformality was called by Gauss [79] and by Riemann [199] “in kleinsten Theilen ähnlich,” or
in English we might say “infinitesimally similar”.We will use the now common term conformal.
8A conformal mapping in this same context could also be an anti-holomorphic mapping, i.e., a
mapping f (z), such that ∂ f

∂z is zero, instead of the holomorphic mapping where ∂ f
∂z vanishes, using

the contemporary notation that ∂
∂z = 1

2

(
∂
∂x − i ∂

∂y

)
and ∂

∂z = 1
2

(
∂
∂x + ∂

∂y

)
.
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(
∂u

∂x

)2

+
(

∂u

∂y

)2

=
(

∂v

∂y

)2

+
(

∂v

∂x

)2

> 0,

unless f ′(z0) = 0. Riemann proves later in this paper that a holomorphic mapping
from an open set inC toC has an image which is an open set. Anymapping that maps
open sets to open sets is called an open mapping, and this theorem of Riemann is
often referred to in function theory as the open mapping theorem. In this context, one
speaks of a holomorphic function defined on a domain where f ′(z) �= 0 as providing
a conformal mapping from one domain to another.

Riemann stated and gave a proof of Green’s theorem (9.11) for a domain inR2 and
showed, as Cauchy had done, that the Cauchy integral theorem is valid and that an
integral of a holomorphic function in a simply-connected domain is path independent.
He also used a version of Green’s theorem to develop some fundamental properties
of harmonic functions, which play an important role in his later development in
this same paper of what we now call the Riemann mapping theorem, which we will
discuss shortly. Harmonic functions are solutions of the equation

�u = 0,

where

� := ∂2

∂x2
+ ∂2

∂y2

is the Laplacian differential operator in two dimensions. This terminology, which is
now standard, was not used by Riemann and was introduced by William Thomson
(Lord Kelvin, 1824–1907) in the mid-nineteenth century (see Kline [125], p. 685).

The main tool Riemann uses is a variation of what are now known as Green’s
formulas, which he proved as a consequence of Green’s theorem. Namely, let X and
Y be two continuously differentiable functions on a domain T ⊂ R2, which satisfies
on T the equation

∂X

∂x
+ ∂Y

∂y
= 0.

It then follows from Green’s theorem (9.11) that the boundary integral

∫
∂T

Y dx − Xdy = 0.

Riemann introduces normal and tangential coordinates along a neighborhood of
the boundary curve ∂T in the following manner. He lets s be the arc length from a
fixed point on the boundary to a variable point P on the boundary and lets p be the
distance from that point P along an inner directed normal to a point z = x + iy on the
interior of T . Then, by letting ξ be the angle the normal at P makes with the x-axis,
and η the angle the normal makes with the y-axis, the version of Green’s theorem
that Riemann uses becomes
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∫
T

(
∂X

∂x
+ ∂Y

∂y

)
dT = −

∫
∂T

(X cos ξ + Y cos η)ds.

Riemann then computes the change of variables formulas

∂x

∂ p
= cos ξ,

∂y

∂ p
= cos η,

∂x

∂s
= cos η,

∂y

∂s
= − cos ξ,

using a positive orientation of the coordinates (s, p) with respect to the standard
orientation of the (x, y) plane. Green’s theorem then becomes

∫
T

(
∂X

∂x
+ ∂Y

∂y

)
dt = −

∫
∂T

(
X

∂x

∂ p
+ Y

∂y

∂ p

)
ds (9.14)

=
∫

∂T

(
X

∂y

∂s
− Y

∂x

∂s

)
ds. (9.15)

If ∂X
∂x + ∂Y

∂y = 0 in T , then these boundary integrals are zero. If ∂X
∂x or ∂Y

∂y have
singular points at some finite set of points in T , say z1, . . . , zN , and

∂X

∂x
+ ∂Y

∂y
= 0 on T − {z1, . . . , zN },

then

∫
∂T

(
X

∂x

∂ p
+ Y

∂y

∂ p

)
ds = −

N∑
j=1

∫
∂� j

(
X

∂x

∂ p
+ Y

∂y

∂ p

)
ds, (9.16)

where� j are small nonintersecting discs centered at z j , such that the closure of each
disc is contained in the open set T . This is quite parallel to Cauchy’s residue theorem
in this context, where Cauchy gave meaning to the localized integrals in terms of
residues of the holomorphic functions at such singular points.

Riemann then considers two functions u and ũ which are C2 on T and which have
a continuous extensions along with their first derivatives to ∂T .9 Now suppose that
both u and ũ are harmonic on T , then setting

X = u
∂ũ

∂x
− ũ

∂u

∂x
,

Y = u
∂ũ

∂y
− ũ

∂u

∂y
,

9Here we use the notation Ck to denote functions which have continuous derivatives of order k, and
C∞ will mean continuously differentiable of all orders.
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it follows that
∂X

∂x
+ ∂Y

∂y
= u�ũ − ũ�u,

and using Green’s theorem (9.15) above gives

∫
∂T

(
u

∂ũ

∂ p
− ũ

∂u

∂ p

)
ds = 0. (9.17)

Riemann considers two particular cases for ũ, which lead to interesting and useful
results. The first case is to simply take ũ ≡ 1, and it follows that

∫
∂T

∂u

∂ p
ds = 0. (9.18)

In the second case, for any particular point z0 ∈ T, Riemann chooses polar coordi-
nates z − z0 = r iϕ and sets

ũ(z) := log r = log |z − z0|.

Then using the extension of Green’s theorem to the case of singularities (9.16), it
follows that

∫
∂T

(
u

∂ log r

∂ p
− log r

∂u

∂ p

)
ds =

∫
�ε

(
u

∂ log r

∂ p
− log r

∂u

∂ p

)
ds,

where �ε is a small disc of radius ε, centered at z0. Note that on the boundary of �ε,

∂ log r

∂ p
= −∂ log r

∂r
= −1

r
,

and thus

∫
∂T

(
log r

∂u

∂ p
− u

∂ log r

∂ p

)
ds =

∫ 2π

0
u(εeiϕ)d f + log r

∫
�ε

∂u

∂ p
ds

=
∫ 2π

0
u(εeiϕ)dϕ, (9.19)

since the second term on the right-hand side vanishes by (9.18) (where we let T be
�ε).

Now letting ε → 0 in (9.19), Riemann obtains the following formula

u(z0) = 1

2π

∫
∂T

(
log |z − z0| ∂u

∂ p
− u

∂ log |z − z0|
∂ p

)
ds, (9.20)
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which represents the value of the harmonic function u(z) at an interior point z0 of
T in terms of the boundary integral on ∂T .10 This result and the use of the potential
function log r is similar to the work of Green from 1828 [89], in which the three-
dimensional potential function 1/r is used in R3.

Suppose we restrict the harmonic function u(z) above to a disc �ε of radius ε
centered at z0 whose closure is contained in the domain T . Then the formula (9.20)
becomes

u(z0) = 1

2π
log r

∫
∂�ε

∂u

∂ p
ds + 1

2π

∫ 2π

0
u(εeiϕ)dϕ

= 1

2π

∫ 2π

0
u(εeiϕ)dϕ, (9.21)

since the first term on the right-hand side vanishes, by (9.18). Thus u(z0) is the mean
value of its values on the boundary of the disc �ε. Equation (9.21) is known as the
mean-value theorem for harmonic functions (and this is true in all dimensions). It
has numerous consequences, as Riemann shows in his paper, and we list some of
them here. We refer the reader to, e.g., Ahlfors [5], for proofs of these results, as well
as to this paper of Riemann.

Let u be a harmonic function in a domain T .

• Removable singularity theorem: If u is potentially singular or undefined at a point
z0, and if ρ is the distance from a neighboring point z to z0, and if

ρ
∂u

∂x
and ρ

∂u

∂y
→ 0, as ρ → 0,

then u can be continued as a continuous function to z0 and u is harmonic in a
neighborhood of z0.

• Smoothness: The harmonic function u is C∞ in all of T (this follows from (9.20)
by differentiation under the integral sign).

• Maximum principle: The harmonic function u cannot have a local maximum or
minimum at any interior point of T unless u is a constant function near that point.

• Identity theorem: The harmonic function u in T is determined by the values of u
and ∂u

∂ p on any arc segment in T , and moreover, if on a segment of an arc in T

u ≡ 0 and ∂u
∂ p ≡ 0, then u ≡ 0 in T .

Riemann remarks that many of these properties of harmonic functions carry over
to holomorphic functions in a natural manner. For instance,

• Riemann removable singularity theorem: If f is holomorphic on a punctured disc
centered at z0, � − {z0}, and if (z − z0) f (z) → 0, as z → z0, then f extends as
a holomorphic function to �.

10In more contemporary literature, the normal derivative of data along ∂T is usually denoted by
∂
∂n .
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• Smoothness: A holomorphic function in a domain is infinitely differentiable.
• Maximum principle: The modulus of a holomorphic function f in a domain can
take on a local maximum in the interior of the domain only if f is constant in the
domain.11

In Sect. 15 of his paper ([199], p. 28), Riemann formulates and proves the open
mapping theorem for holomorphic functions, mentioned earlier. Namely, let T be a
domain in C, and U be any open subset of T , and let f : U → C be a nonconstant
holomorphic function defined on U , then f (U ), the image of f under the mapping
f , is an open set in C.12 This is a strong property of holomorphic functions, and it is
also proved in any standard complex analysis text (again, e.g., Ahlfors [5]). We note
that, in contrast, this is not true for real-valued smooth (or real-analytic) functions.
As a simple example, the mapping f (x) : R → R given by f (x) = sin x has as the
image of the open set R the closed set [−1, 1].

In the last section of this very innovative paper Riemann comes towhat is undoubt-
edly its deepest result, the Riemann mapping theorem. We note first that in the begin-
ning of the paper, Riemann formulated the concept of what is now known as a
Riemann surface spread over a region of the complex plane, a branched covering of
an open set in C, and most of his results in this paper are formulated in this more
general context. We have chosen to formulate his results for domains in the complex
plane, as that is simpler.

In Sects. 9.5 and 9.6 of Riemann’s dissertation he formulates and proves a num-
ber of elementary results concerning the Riemann surfaces he introduces. These
include the important notions of connectedness of domains in the plane, for instance,
simply-connectedness, which we have already had occasion to use, and more general
connectedness of order n; we will come back to these concepts in Chap.10. Riemann
defines a domain in the plane to be simply-connected if it has the property that any
curve in the plane joining any two boundary points will split the domain into two
parts that are not connected to each other (he always means path-wise connected).

Now we can give, in his own words, Riemann’s formulation of the Riemann
mapping theorem:

Zwei gegebene einfach zusammenhängende ebene Flächen können stets so auf einander
bezogen werden, dass jedem Punkte der einen Ein mit ihm stetig fortrückender Punkt der
andern entspricht und ihre entsprechenden kleinsten Theile ähnlich sind; und zwar kann zu
Einem innern Punkte und zu EinemBegrenzungspunkte der entsprechende beliebig gegeben
werden; dadurch aber ist für alle Punkte die Beziehung bestimmt.13

11We recall that a domain is a connected open set.
12At the time of Riemann, the notion of open set was not yet a mathematical concept. He formulated
his theorem in terms of neighborhoods of points. We are giving the modern formulation of this
important result.
13“Two given simply-connected domain plane surfaces can always be related to one another, so that
each point of one corresponds in a continuous manner to each point of the other and such that the
corresponding smallest parts are infinitesimally similar [conformal]; and indeed such that a given
inner point and a given boundary point correspond to a specified interior and boundary point; with
this last condition, the relationship is determined for all points”.

http://dx.doi.org/10.1007/978-3-319-58184-2_10
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Riemann immediately reduces this formulation to the simpler statement that any
simply-connected domain can be conformally mapped onto the unit disc, with one
interior point mapping to the center of the disc, and a boundary point mapping to a
specified boundary point of the unit disc (e.g., z = 1).

The proof that Riemann gives is based on what he terms the Dirichlet principle,
a name he gave to this principle in his follow-up paper on Abelian functions (which
used the same principle for additional results) in 1857 [202]. We will discuss this
principle here, and then indicate how it became a problem for Riemann and his
proof of the Riemann mapping theorem, and how it was finally resolved some 50
years later by David Hilbert (1862–1943). We will return to the Riemann mapping
theorem in Sect. 11.2.

We first formulate an important special case of the Dirichlet principle. Let T
be a bounded domain in R2 with a smooth boundary, and let f be a continuous
function on ∂T . Consider the familyF of real-valued functions that are continuously
differentiable in T and continuous on T , such that u|∂T = f. This is an infinite-
dimensional family of functions. Consider the Dirichlet integral

D(u) :=
∫

T

[(
∂u

∂x

)2

+
(

∂u

∂y

)2
]

dxdy, for u ∈ F . (9.22)

From the definition it is clear that

0 ≤ D(u) < ∞.

It follows that
m := inf

u∈F
D(u)

is well defined and m ≥ 0. The Dirichlet principle asserts that there exists a unique
u ∈ F such that

D(u) = m,

andmoreover, that u is harmonic (henceC∞ on T ), and that u is continuous on T and
that u|∂T = f . This last statement says that u is a solution to the Dirichlet problem:
find a harmonic function with given boundary values on ∂T .

Today, there are many different proofs of the solution to the Dirichlet problem, but
in the mid-nineteenth century, these did not exist, and mathematicians and physicists
used this principle to solvemany difficult problems. Specifically,Green andThomson
formulated and used this principle: Green in 1835 [90] in the context of gravitational
attraction, and Thomson in 1848 [221] as a general mathematical principle (called
Thomson’s principle in England for some time, see Kline [125], p. 685). In lectures
in Göttingen in 1856 concerning inverse square forces, which very likely Riemann
attended, Peter Gustav Lejeune Dirichlet (1805–1859) used this minimization prin-
ciple for the existence and uniqueness of specific harmonic functions, i.e., to solve
the Dirichlet problem. As noted above, Riemann used this principle in both his 1851

http://dx.doi.org/10.1007/978-3-319-58184-2_11
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dissertation [199] and his seminal paper on Abelian functions [202], wherein he
denoted this principle as the Dirichlet principle, and it has been called that ever since
(in spite of the earlier work of Green and Thomson).

Then in 1870Weierstrass gave a lecture at the Berlin Academy of Sciences (which
was published in his collected works in 1895 [231]) entitled “Über das sogennante
Dirichlet’sche Princip”.14 As Weierstrass notes in this paper, he had a handwritten
copy of lecture notes fromDirichlet’s lectures, which he had received fromDedekind.
Weierstrass quotes several pages from these notes, and then points out that Dirichlet’s
proof of the Dirichlet principle (namely the proof of the existence of a minimizing
function) was incomplete and not rigorous, and then produces an example of a similar
type of calculus of variations problem in one dimension in which he showed that the
minimum value of a specific energy integral was not assumed by any function in the
class of functions being considered.

In the same year as Weierstrass’s lecture, Hermann Amandus Schwarz (1843–
1921), a student of Weierstrass, published a paper [212] which included a rigorous
proof of the Riemann mapping theorem in the special case of simply-connected
domains in the complex plane (as stated above). This proof did not apply to the more
general case of a simply-connected domain in a Riemann surface, which Riemann
had formulated but also did not prove. This was proved later in the uniformization
theorem of Koebe, a student of Schwarz, and we will discuss this in Sect. 11.2.
Schwarz followed the outline of Riemann’s proof, replacing the Dirichlet-principle
argument with a convergent iterative argument involving a sequence of harmonic
functions defined on specified open subsets of the given domain. Finally, in 1904
Hilbert [102] gave a proof of this disputed Dirichlet principle in the special context
of one of Riemann’s existence theorems in his paper on Abelian functions [202],
thus justifying Riemann’s original argument.

9.5 The Lectures of Weierstrass

Now we turn more specifically to the third of our major contributors to function
theory, whom we have mentioned several times already, namely, Karl Weierstrass.
His work stretched over a number of decades in the latter half of the nineteenth
century and set standards of rigor and methodology that became a major force in
how function theory (and more generally limiting processes and analysis in general)
was perceived and used in the twentieth century. The first papers of Weierstrass in the
1840s concerned themselves with specific problems in the theory of elliptic functions
following up on the pioneering work of Abel and Jacobi. During these early years
Weierstrass wrote several fundamental papers which were published only later.

The main influence of Weierstrass in function theory came via his lecture courses
in Berlin in the 1860s, which were published at the time, and which are all included

14“On the so-called Dirichlet principle”.

http://dx.doi.org/10.1007/978-3-319-58184-2_11
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in his collected works. The first three volumes of his collected works [229, 232, 234]
contain primarily his original papers over his professional lifetime (including those
papers mentioned earlier that weren’t published when they were written), and the
following three volumes contain reprints of his lecture notes from his lectures on
Abelian functions [233], his lectures on elliptic functions [235], and his lectures on
applications of elliptic functions [236].

Let us mention here some of his principal results which have become part of the
standard repertoire in function theory. Weierstrass defined a holomorphic function15

to be a locally defined function of a complex variable defined near a point z0 ∈ C of
the form

f (z) =
∞∑

n=0

an(z − z0)
n,

which converges in some disc of radius R centered at z0. If two such functions f1
and f2 are defined in discs �1 and �2 centered at two points z1 and z2, and if these
two discs intersect, and if

f1|�1∩�2 = f2|�1∩�2 ,

then f2 is said to be the analytic continuation of f1, and vice versa. Moreover,

f :=
{

f1, z ∈ �1,

f2, z ∈ �2,

is a holomorphic function in �1 ∪ �2. More generally, a holomorphic function in a
domain D is a function which admits such a power-series expansion near each point
of D.16 This definition of holomorphic as formulated by Weierstrass is equivalent
to the definition used by Cauchy and Riemann as solutions of the Cauchy–Riemann
equations.

Weierstrass brought much needed rigor to mathematical analysis, not only in
function theory. For instance, he showed that a sequence of continuous functions on
a domain D ⊂ Rn ,

f1(x), f2(x), . . . , fk(x), . . .

which converges uniformly on compact subsets of the domain D has a limit that is
continuous on D. In the holomorphic setting he showed that if

f1(z), f2(z), . . . , fk(z), . . .

15Weierstrass used the term analytic function instead of holomorphic function, which was used
regularly in the twentieth century as well. Later these became known as complex-analytic functions
to contrast with the similarly defined real-analytic functions defined as a locally convergent real
power series of real variables. Today holomorphic refers to the complex-analytic case, and one still
uses the term real-analytic for the case of analytic functions of a real variable or variables.
16This definition extends naturally to Riemann surfaces spread over domains in C as well.
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is a sequence of holomorphic functions in a domain D ⊂ C which converges uni-
formly on compact subsets of D, then the limiting function is holomorphic in D.

Although our emphasis in this section has been on holomorphic functions of one
variable, Weierstrass (and others) considered holomorphic functions of several vari-
ables as well. For instance, the definition of a holomorphic function f (z1, . . . , zn) of
several complex variables (z1, . . . , zn) can either be that the function has a convergent
power-series expansion of the form

f (z1, . . . , zn) =
∑

i1,...,in

ai1...in zi1
1 . . . zin

n ,

near each point of a domain, where (z1, . . . , zn) are coordinates in Cn , or, alter-
natively, one can require that the Cauchy–Riemann equations in Cn are satisfied,
i.e.,

∂ f

∂z j
(z1, . . . , zn) = 0,

where
∂

∂z j
:= 1

2

(
∂

∂x j
+ i

∂

∂y j

)
, j = 1, . . . , n.

Riemann,Weierstrass and others were very interested in Abelian functions, which
were functions of several complex variables in Cn which generalized elliptic func-
tions of one complex variable and which we will encounter in the next chapter.

A given holomorphic function with a power series expansion at a given point has
a radius of convergence for the series, and there are various criteria and descriptions
of how to compute this due to Cauchy and others. In particular, if the radius of
convergence of a function f at a given point z0 is a finite number R < ∞, then there
is a least one boundary point z1 on the disc of radius R centered at z0 where f is
singular and doesn’t admit any analytic continuation to a larger open set containing
that point. For instance, the function

f (z) = 1

z − 1

has an expansion in the unit disc (the geometric series), and this does not converge
at the point z = 1, and the function cannot be analytically continued beyond (or
through) that point.However, this functiondoes have an analytic continuation through
all other points on the boundary of the unit disc, as is very easy to see, since f (z) is
holomorphic on C−{1}.Weierstrass was the first to describe a function holomorphic
on the unit disc which is singular at every boundary point of the unit disc.

Here’s a simple example of such a function given by a lacunary series,

f (z) =
∞∑

n=0

z2
n
,
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and it easy to see that the series is divergent on the dense set of roots of unity of all
orders on the boundary of the unit disc. Namely, for z = 1,

f (1) = 1 + 1 + 1 + · · · + 1 · · · ,

which diverges, and for the two roots ε1, ε2 of z2 = 1,

f (ε j ) = ε1j + ε2j + ε4j + · · · + ε2
n

j + · · ·
= ε j + 1 + 1 + · · · + 1 + · · · ,

and for the four roots ε1, ε2, ε3, ε4 of z2
2 = 1 we see that

f (ε j ) = ε1j + ε2j + ε4j + ε8j + 1 + · · · + ε2
n

j + . . .

= ε j + e2j + 1 + 1 + · · · + 1 + · · · .

Using an induction argument, we see the series is divergent on this dense set, and
hence at each of the boundary points (since no point where a function is holomorphic
can be a limit point of singular points).

By the Riemann mapping theorem, it follows that any simply-connected domain
has a function singular at every boundary point, and by results of Weierstrass and
Gösta Mittag-Leffler (1846–1927), which we discuss in the next section, this is
true for all domains in C. However, a striking result for holomorphic functions of
several complex variables, due to Friedrich Moritz Hartogs (1874–1943) [96] at the
beginning of the twentieth century, shows that this is not true for functions of two or
more variables, and this led to a major new direction of research in complex analysis
for functions of several complex variables. In Sect. 15.2 in Part IV of the book, we
give an overview of this subject, which became an important area of research in the
twentieth century.

As we mentioned earlier, Weierstrass started his mathematical career by studying
elliptic functions as were formulated by Jacobi, and we met these functions earlier as
sn z, cn z, and dn z. In his later work on elliptic functionsWeierstrass (see his lectures
on elliptic functions [235]) introduced a newway to describe elliptic functions, which
has now become one of the two standard approaches to these functions (the other
being that of Jacobi).

Let us now briefly summarize how Weierstrass approached elliptic functions,
which is quite different from the original constructions of Abel and Jacobi.

If ω1,ω2 are two complex numbers with I mω1/ω2 �= 0, then Weierstrass defines
the Weierstrass ℘-function as

℘(z) := 1

z2
+

∑
m2+n2>0

1

(z − mω1 − nω2)2
− 1

(mω1 + nω2)2
. (9.23)

The series converges due to the extra term

http://dx.doi.org/10.1007/978-3-319-58184-2_15
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1

(mω1 + nω2)2
,

which is added to insure convergence. It is easy to see that this function has the
following properties (assuming the convergence, which requires some work):

• ℘(z + mω1 + nω2) = ℘(z), i.e., ℘(z) is doubly-periodic in C with periods ω1

and ω2.
• ℘(z) is a meromorphic function on C with a single double pole in each period
parallelogram.17

• The derivative ℘ ′(z) of the Weierstrass ℘-function is also a doubly-periodic func-
tion with periods ω1 and ω2.

The two functions ℘(z) and ℘ ′(z) play an analogous role in elliptic-function theory
to the original doubly-periodic functions sn (z) and cn (z) of Jacobi. A classical
reference for this infinite-series approach to elliptic functions is the text by Karl
Boehm [23]. See Hurwitz and Courant [113] or Whittaker and Watson [247] for
a complete discussion of classical elliptic-function theory, including Weierstrass’s
contributions.

The final result of Weierstrass we want to mention in this section is often referred
to as theWeierstrass factorization theorem or theWeierstrass product theorem, which
was published in 1876 [228]. This result is an important generalization of the fun-
damental theorem of algebra, which asserts that any polynomial can be expressed in
terms of factors

p(z) = c(z − a1)
m1 · · · (z − ak)

ml , (9.24)

wherea1, . . . , ak are the roots of the polynomialwithmultiplicitiesm1, . . . , mk , and c
is a constant. Let f (z) be a holomorphic function in the complex planeC (such an f is
called an entire function) with zeros at a possibly infinite set of points a1, . . . , ak, . . .,
then the Weierstrass factorization theorem asserts that f can be represented as an
infinite product similar to the finite product in (9.24),

f (z) = zmeg(z)
∞∏

n=1

(
1 − z

an

)
e
(

z
an

)
+ 1

2

(
z

an

)
+···+ 1

mn

(
z

an

)mn

, (9.25)

where m, mn are integers, and g is an entire function (see Ahlfors [5] or any standard
complex-analysis text for a discussion and proof of this theorem). The result is often
formulated in the following manner. Let a1, . . . , ak, . . . be any sequence of points
in the plane such that lim ak = ∞, then there exists an entire function with zeros at
precisely these points (namely use the formula (9.25)). Weierstrass introduced the
exponential factors in the infinite product to insure its convergence.

17The period parallelograms defined by the periods ω1,ω2 are the translates in the complex plane
by integers of the form m + in of the fundamental period parallelogram with the four vertices
0,ω1,ω2, and ω1 + ω2 (see, e.g., [113]).
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9.6 The Mittag-Leffler Theorem

A consequence of theWeierstrass factorization theorem, as observed by Weierstrass,
is that any meromorphic function in C can be expressed as the quotient of two entire
functions. These results of Weierstrass were generalized by Mittag-Leffler in 1884
[157] from the case of the complex plane to an arbitrary domain in the following
sense. Let D be a domain in the complex plane and let a1, . . . , ak, . . . be an infinite
sequence of points in D with no accumulation points in D, i.e., each point ak is
isolated in D, then there exists a function f (z) holomorphic in D which has zeros
precisely at the points ak . If we consider a domain D with a boundary ∂D, and let
ak be a set of points in D again with no accumulation points in D and which is
dense on the boundary of D, then the Weierstrass function with these zeros has no
analytic continuation beyond any boundary point (a result we alluded to above in the
context of the Riemann mapping theorem and lacunary series for simply-connected
domains).

We now turn to the final topic of this section on holomorphic functions, theMittag-
Leffler theorem. As we just saw, the Weierstrass factorization theorem showed that
for given prescribed zeros, one can find a holomorphic function with those zeros. By
taking reciprocals, one could find a meromorphic function with poles of a certain
order at those same points by prescribing the multiplicity of the zeros or the order of
the poles.A variation on this questionwas raised and solved in two ofMittag-Leffler’s
earlier papers in 1877 [155, 156], which we formulate here.

A meromorphic function f (z) near a pole at a point z0 of order m has a Laurent
expansion at z0 of the form

a−m

(z − z0)m
+ · · · + a−1

(z − z0)
+

∞∑
n=0

an(z − z0)
n,

where the infinite series converges in the neighborhood of z0, and the finite number
of terms of powers of 1

(z−z0)
all converge to ∞ at z0 and represent what is called

the principal part of the meromorphic function at z0. We saw this earlier, when
we identified a−1 as the residue of f (z) at z0. More generally, if the meromorphic
function f (z) has poles at zk in a domain D ⊂ D, then there are functions pk(z) and
gk(z) defined near each point zk where pk(z) has the form

pk(z) = ak−mk

(z − zk)mk
+ · · · + ak

−1

(z − zk)
, (9.26)

where pk(z) is the principal part of the meromorphic function f (z) at zk , and f (z)−
pk(z) := gk(z) is holomorphic near zk .

The questionMittag-Leffler raisedwas the following: given a discrete set of points
zk in a domain D and, for each point zk , given a polynomial of the form (9.26),
does there exist a meromorphic function f (z) in D and locally defined holomorphic
functions gk(z) defined near each point zk such that near zk one has
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f (z) − pk(z) = gk(z)?

Mittag-Leffler showed that this was true, and the result is known as theMittag-Leffler
theorem.

Let us sketchMittag-Leffler’s proof of this in the simple case where zk is a discrete
sequence in the complex plane and the principal parts which are given are simple
poles of the form

pk(z) = ak

(z − zk)
.

Assume the points zk are ordered such that

|z1| ≤ |z2| ≤ · · · ≤ |zk | · · · ,

and let �k be concentric discs centered at the origin whose radii increase in such a
fashion that

z j /∈ �k, for j ≥ k,

where we use the standard notation K to mean the closure of a set K in Rn . Thus
each pk(z) is holomorphic on a neighborhood of �k . This implies that pk(z) can be
expanded in a power series centered at the origin which converges on a neighborhood
of �k , and hence pk(z) can be approximated on �k by a polynomial hk(z) such that

|pk(z) − hk(z)| <
1

2k
, for z ∈ �k .

It follows that the series

f (z) =
∞∑

k=1

(pk(z) − hk(z))

=
N∑

k=1

(pk(z) − hk(z)) +
∞∑

k=N+1

(pk(z) − hk(z))

converges uniformly on �n, N = 1, 2, . . . , and f (z) is a well-defined meromorphic
function on C with principal parts pk(z) near each pole zk .

Mittag-Leffler first proved this result in his two papers (written in Swedish) [155,
156] for the case of D = C, and in his longer Acta Mathematica paper18 [157] for
arbitrary domains. Carl Runge (1856–1927) gave a new and simpler proof of Mittag-
Leffler’s theorem in 1885 [205], which involved a new approximation theorem, now
called Runge’s theorem or the Runge approximation theorem, which showed how
one can approximate holomorphic functions on a multiply-connected domain D
uniformly on compact subsets of the domain by rational functions with poles in the

18Acta Mathematica was founded by Mittag-Leffler in 1882, and initially, for a number of years,
all the papers were in French, the principal international language of its time.
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bounded components of the complement of D. If D is simply-connected, then the
function can be approximated by a polynomial in the same manner. These results
of Weierstrass, Mittag-Leffler, and Runge all have generalizations to holomorphic
functions of more than one complex variable, and they play an important role in the
further development of this field of research as it developed in the twentieth century.
In particular, the question of when a theorem of Mittag-Leffler type might be true
for domains in Cn , for n > 1, became an important research topic.

The work of Cauchy, Riemann, and Weierstrass generated immense interest in
the mathematicians of the second half of the nineteenth century. Initially there were
more or less three schools of thought following these three innovators (the integral
theorems of Cauchy, the differential equations of Riemann, and the power series of
Weierstrass), but at the end of the nineteenth century the concept of function theory,
the theory of holomorphic functions of a complex variable, reached a significant stage
of maturity and used all of the tools available to study new levels of problems which
arose. At the turn of the nineteenth to the twentieth century various mathematicians
began the study of holomorphic functions of several complex variables, and new
phenomena (Hartogs’s theorem) changed the direction of research in this higher-
dimensional setting.



Chapter 10
Riemann Surfaces

10.1 Riemann’s Multilayered Surfaces

One of themost importantmilestones in our study of the origins of complex geometry
is the creationof the theoryofRiemann surfaces. This singular creationbyRiemann in
his dissertation of 1851 [201] and his papers onAbelian functions in 1857 [195–198]1

developed over the next century into the very rich subject of complex manifolds of
arbitrary dimension (Riemann surfaces being the case of a one-dimensional complex
manifold), with strong overlaps with algebraic geometry, as we will indicate later.

Riemann’s motivation for his creation of Riemann surfaces arose from the study
of multivalued functions, and in particular in the multivalued functions that arose
in Abel’s work on generalizations of elliptic integrals that we discussed in Sect. 7.3.
Multivalued functions had been a topic that had occupied mathematicians a great
deal during the several centuries preceding Riemann’s work, and the ambiguities
that arose were a major concern. A fundamental example that arose in Abel’s work
was the study of a y(x) which occurred as a solution of the algebraic equation

yn + an−1yn−1 + . . . + a0(x) = 0,

where the ak(x) are polynomials in x . A different and familiar set of examples is given
by the inverses of elementary transcendental functions such as ez and sin z, which
we denote by log z and arcsinz, and which were intensely studied in the eighteenth
century. These particular multivalued functions have an infinite number of different
values at a given point.

A key ingredient in Riemann’s creation of Riemann surfaces was the notion of
analytic continuation of a holomorphic function, which we discussed briefly earlier.

1In Riemann’s collected works [200] these four papers are published together under the heading of
a single paper entitled Theorie der Abel’schen Functionen. The first three papers summarize and
clarify concepts developed in his dissertation from 1851 as tools for his detailed study of Abelian
integrals and Abelian functions in the fourth paper. We will often refer simply to his Abelian
functions paper of 1857.
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As Riemann observes on p. 102 of his Abelian functions paper [196], the function
log(z−a), a well-knownmultivalued function, when continued analytically on a sim-
ple closed path around the point a, increases or decreases its value by 2πi , depending
on the direction of the path. If we let z − a = reiθ be polar coordinates at the point
a, then

log(z − a) = log reiθ = log r + iθ,

and as θ varies from 0 to 2π, log(z − a) varies from log r to log r + 2πi . This
well-known phenomenon played a major role in Riemann’s work.

Riemann considered the possible different analytic continuations of a given holo-
morphic function to be branches (Zweige) of the function, and he defines a branch
point (Verzweigungsstelle) as a point around which one branch moves into another
(in our example a is a branch point for the multivalued function log(z − a)). He then
describes (on pp. 103–104) of [196] the surfaces he wants to consider:

FürmancheUntersuchungen, namentlich für dieUntersuchung algebraischer undAbel’scher
Functionen ist es vortheilhaft, die Verzweigungsart einer mehrwerthigen Function in folgen-
der Weise geometrisch darzustellen. Man denke sich in der (x, y)-Ebene eine andere mit ihr
zusammenfallende Fläche (oder auf der Ebene einen unendlich dünnenKörper) ausgebreitet,
welche sich so weit und nur so weit erstreckt, als die Function gegeben ist. Bei Fortsetzung
dieser Function wird also diese Fläche ebenfalls weiter ausgedehnt werden. In einem Theile
der Ebene, für welchen zwei oder mehrere Fortsetzungen der Function vorhanden sind,
wird die Fläche doppelt oder mehrfach sein; sie wird dort aus zwei oder mehreren Blät-
tern bestehen, deren jedes einen Zweig der Function vertritt. Um einen Verzweigungspunkt
der Function herum wird sich ein Blatt der Fläche in ein anderes fortsetzen, so dass in der
Umgebung eines solchen Punktes die Fläche als eine Schraubenfläche mit einer in diesem
Punkte auf der (x, y)-Ebene senkrechten Axe und unendlich kleiner Höhe des Schrauben-
ganges betrachtet werden kann. Wenn die Function nach mehren Umläufen des um den
Verzweigungswerth ihren vorigen Werth wieder erhält (wie z.B. (z − a)

m
n , wenn m, n rel-

ative Primzahlen sind, nach n Umläufen von z um a), muss man dann freilich annehmen,
dass sich das oberste Blatt der Fläche durch dieübrigen hindurch in das unterste fortsetzt.

Die mehrwerthige Function hat für jeden Punkt einer solchen ihre Verzweigungsart darstel-
lendenFläche nur einen bestimmtenWerth und kann daher als eine völlig bestimmteFunction
des Orts in dieser Fläche angesehen werden.2

2“For many investigations, namely for the investigation of algebraic and Abelian functions it is
advantageous to geometrically represent the branching nature of a multivalued function in the
following manner. One imagines a surface (or an infinitesimally thin body) coinciding with and
spread over the (x, y)-plane, which is extended as far as, and only as far as, the function is given.
As the function is analytically continued, the surface will be further extended. In a region of the
plane, for which two or more continuations are present, the surface will be covering twice or more
times the region; it will consist of two or more sheets, each of which will represent a branch of
the function. Around a branch point the function will continue from one sheet of the surface so
that in the neighborhood of such a point the surface can be considered as a helicoid with a vertical
axis through this point, and infinitesimally small heights of the screw thread from one revolution
to another. If the function comes back to its same value after several such revolutions (as happens,
for instance with (z − a)

m
n , if m, n are relatively prime numbers, after n cycles of z around a), then

one has to assume that the upper sheet moves through the other sheets to the bottom sheet.
The multivalued function has, for every point of such a surface representing its branching, only

one definite value, and can thereby be a completely well-determined function of position on this
surface.”.
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This description of a Riemann surface and Riemann’s further use of it in these
four papers became the standard way (a branched covering) to describe Riemann
surfaces for the next half century until Hermann Weyl (1885–1955) introduced the
first abstract version of a Riemann surface as a topological manifold with a complex
structure in 1913 [241]. Fundamentally, the Riemann surface as a branched covering
of the extended complex plane gave local coordinates at each point of the surface
except at the branch points, and at a branch point a of the type described in the quote
above from Riemann one can use ζ = (z − a)

1
n as a local coordinate chart at this

point. Riemann also added the point at infinity, ∞, to each sheet of the Riemann
surface, thus giving rise to a closed or compact Riemann surface, with the local
coordinate system ζ = 1/z at the point at infinity. The system of local coordinate
charts for points of a Riemann surface was formalized by HermannWeyl in his book
mentioned above, but the nineteenth century mathematicians worked quite well with
the structure Riemann set up and which we have summarized here.

10.2 The Analysis Situs of Riemann

Riemann’s second paper in this series of four [198] has the title “Lehrsätze aus der
analysis situs für die Theorie der Integrale von zweigliedrigen vollständigen Differ-
entialen”.3 Analysis situs was a somewhat common name in the nineteenth century
for what became topology (or what became algebraic topology, more specifically)
in the twentieth century (we will discuss the origin of the word “topology” shortly).
The term analysis situs originated in work of Leibniz which was contained in corre-
spondence between Leibniz and Huygens, with the first and most fundamental letter
being from Leibniz to Huygens on 8 September 1679 [141] in which he compared
the geometry of magnitude with the geometry of position (situm), and felt that he
could contribute to this new way of thinking by expressing positions of geometric
objects and their relationshipswith symbols, just as algebra used symbols to represent
relationships between numbers. Leibniz felt this was very important, but Huygens
remained skeptical of this optimistic young mathematician’s ideas in this direction,
while recognizing the significance of his work on infinitesimal analysis. The recent
book by Vincenzo Risi, Geometry and Monadology [203], has a very interesting
analysis of Leibniz’s work on analysis situs.

The work of Leibniz forms part of the inspiration for the book Géométrie de
Position by Carnot [31], which had a major influence on projective geometry and
where an important impulse was to investigate geometric phenomena that were not
dependent on measurement of distances. The first definitive work on topology after
the initial impetus by Leibniz came from Euler in 1735 in his famous solution of the
Seven Bridges of Königsberg problem [61]. Note the title of this paper, Solutio prob-
lematis ad geometriam situs, contains the phrase geometriam situs, almost exactly
the term used by Leibniz, which Euler cited and which Carnot used in the title of his

3“Theorems from analysis situs for the theory of integrals of two-fold complete differentials”.
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Fig. 10.1 The Königsberg Bridges problem

book. Euler was able to abstract the problem (Can one find a path crossing all seven
bridges precisely once? See Fig. 10.1) to be a problem in what became graph theory
and showed there was no such path.

Somewhat later Euler gave the first example of what became the Euler char-
acteristic of a polyhedral surface [63]. Euler used a triangulation of a two-sphere
in three-space, a covering of the sphere by triangles (faces), edges, and vertices.
Figure10.2 shows a number of illustrations of such triangulations from his paper. In
all cases, the Euler characteristic χ, defined to be

χ = F − E + V,

was equal to 2, where F is the number of faces, E is the number of edges, and V
is the number of vertices in the triangulation. This Euler characteristic, and all of
its generalizations in algebraic topology and other forms of geometry, has played an
important role in mathematics.

In the nineteenth century Johann Benedict Listing (1808–1882) published a short
book entitled Vorstudien zur Topologie [149], which followed up on the work of
Euler and developed a theory of knots, a special topic in algebraic topology today
concerning curves embedded in (usually) some Euclidean space, and in Listing’s
case, inR3. Then a few years later came Riemann’s work that we are discussing here
on the algebraic topology of surfaces.
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Fig. 10.2 Page 33 of Euler’s paper on triangulations of a two-sphere [63]

Riemann defined both in his dissertation [199] and in the second paper in the
Abelian functions series [198] the notion of connectivity of a surface. First he defined
a simply-connected surface S to be any surface such that the complement of any closed
curve (or a curve from one boundary point to another for a surface with a boundary)
in the surface consisted of two components. He then defined an n + 1-connected
surface to be a surface S whereby n suitably chosen curves deleted from the surface
would give a simply-connected subdomain S′ ⊂ S. He showed that this concept was
well defined and used it extensively in the remainder of his Abelian functions papers.
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In his dissertation he had used the notion of a simply-connected domain to for-
mulate his Riemann mapping theorem, which we discussed earlier. In his Abelian
functions paper, the non-simply-connected compact surfaces play themost important
role, as that is where the theory of Abelian functions can be developed. In Fig. 10.3
we see diagrams from Riemann’s paper [198], which illustrate the notion of connec-
tivity. Note that the illustration at the bottom of Fig. 10.3 shows the possibility of two
sheets of a surface overlapping as described in his definition of a Riemann surface
as a branched covering.

Let’s consider a simple example illustrating the topology of a compact Riemann
surface arising from an algebraic function. Let the Riemann surface S be defined by
the polynomial

w2 = (z − a1)(z − a2)(z − a3)(z − a4), (10.1)

where the points a1, a2, a3, a4 are distinct, and letλ andμ be two nonoverlapping cuts
joining a1 to a2 and a3 to a4, as illustrated in the top part of Fig. 10.4. Here λ±,μ±
indicate the two sides of the cuts λ and m. By opening the cuts as indicated in the
bottom portion of Fig. 10.4, we see that we can glue the two copies of the Riemann
sphere E and E ′ along cylinders joining them to create the torus on the lower right-
hand side of the figure. Thus we conclude that the topology of the Riemann surface
defined by (10.1) is that of a torus.

In the third of these preliminary papers [197] Riemann revisits the Dirichlet
principle and shows that there exist meromorphic functions with prescribed poles or
logarithmic singularities. Strictly speaking, a meromorphic function, by definition,
does not have logarithmic singularities, but Riemann is interested also in the integrals
of meromorphic functions from a specified point to an indefinite point. That is, he is
interested in Abelian integrals on a Riemann surface, and such integrals can have a
logarithmic singularity, e.g.,

∫ z

z0

dz

z
= log(z − z0).

This is an important existence theorem for Riemann surfaces, which is considered in
some detail by later authors, in particular in the book by Hermann Weyl [241]. We
will discuss Riemann’s existence theorem for meromorphic functions on a Riemann
surface in Sect. 10.4.

10.3 Abelian Integrals and Abelian Functions

In the fourth paper in this series, Theorie der Abel’schen Functionen [195], Riemann
develops his theory of Abelian functions, a vast generalization of elliptic functions
which are defined as several-variable inverses of Abelian integrals on Riemann sur-
faces of genus >1. Riemann’s work followed up on some announced results of
Weierstrass whose proofs hadn’t yet appeared at the time Riemann wrote his paper.
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Fig. 10.3 Riemann’s connectivity in his analysis situs paper [198]
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Fig. 10.4 Example of the Riemann surface of w2 = (z − a1)(z − a2)(z − a3)(z − a4) from pp.
236–237 ofHurwitz andCourant [113]. This illustration is reprinted with the permission of Springer

The basic theory which evolved became known as the theory of Abelian functions
(this name was adopted by Riemann in the paper we are discussing), and was further
developed by numerous mathematicians in the following century. We will discuss
this briefly later in this section.

We want to discuss some aspects of this paper which directly relate to the theory
of complex manifolds in the twentieth century. Let now S be a Riemann surface
defined as a branched covering defined by the polynomial function

F(z, w) = wn + an−1(z)w
n−1 + . . . + a0(z) = 0, (10.2)

where F(z, w) is an irreducible polynomial of degree n in w and of degree m in z.
Then the function w(z) defined by (10.2) is a single-valued function on S, and S is a
compact Riemann surface, where we have added a point at infinity to each sheet of
the Riemann surface, as did Riemann. Let us suppose that S is (2p + 1)-connected,
for p ≥ 0, and we say that S has genus p. This is the topological definition of genus.
That the connectivity is odd for compact Riemann surfaces was shown by Riemann
in his paper. In Fig. 10.5 we see illustrations of surfaces of genus 0, 1, 2, and 3.

Now consider the Abelian integral

A(z) =
∫ z

z0

r(z, w(z))dz,

along any path in S joining z0 to z, where r(z, w) is a rational function of z and
w, as we discussed in Sect. 7.3. Note that in Sect. 7.3 we dealt with real integrals
(with singularities in the integrand), and here we are dealing with path integrals in

http://dx.doi.org/10.1007/978-3-319-58184-2_7
http://dx.doi.org/10.1007/978-3-319-58184-2_7
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Fig. 10.5 Surfaces of genus 0, 1, 2, and 3

the complex plane or on a Riemann surface spread over the complex plane (also with
possible singularities in the integrand, depending on the path).

As before, we define A(z) to be an Abelian integral of the first kind if A(z) is
finite for all points z ∈ S. We will see examples of this momentarily. We note also
that A(z) is in principle a multivalued function if the genus p > 0, since different
paths along portions of a cycle which is not homologous to zero can have different
values.

If p = 0, then there are no Abelian integrals of the first kind. To see this, suppose
that A(z) is an Abelian integral on S, where p = 0. Then S is simply-connected and
hence A(z) is single-valued and holomorphic at each point of S. But S is compact
and therefore at some point of S, by continuity, |A(z)| assumes a maximum value,
which is necessarily an interior point, and hence, by the maximum principle that
Riemann proved in his dissertation (Sect. 9.4), A(z) must be constant. However, a
constant cannot be an Abelian integral, since its derivative would be zero, which
cannot be the integrand of an Abelian integral as defined above.

Abelian integrals of the second kind are characterized by A(z) having poles at
some points of S, and Abelian integrals of the third kind are characterized by A(z)
having logarithmic singularities at some points of S. We will not be discussing these
further here, but we will see that Abelian integrals of the first kind are intimately
connected to the topology of the surface S.

Riemann shows in his paper [195] that on the Riemann surface S of genus p as
defined above, there are precisely p linearly independent Abelian integrals of the
first kind A1(z), A2(z), · · · , Ap(z), and that if A(z) is any Abelian integral of the
first kind on S, then there are constants α1, · · · ,αp such that

A(z) = α1A1(z) + . . .αp Ap(z) + const.

Thus the number of linearly independent Abelian integrals of the first kind4 is the
genus p. Let’s give a couple of examples to illustrate this.

4In a later text on Abelian functions by Clebsch and Gordan written some 10 years after Riemann’s
work [49], they compute the number p for a Riemann surface defined by a polynomial of the type
F(z, w) in terms of degrees of the polynomial and numbers of double points and cusps, and refer
to this simply as the number of Abelian integrals of the first kind.

http://dx.doi.org/10.1007/978-3-319-58184-2_9
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We consider F(z, w) to be of the form, for some k > 0, |k| �= 1,

F(z, w) = w2 − (z2 − 1)(z2 − k2). (10.3)

We let R(z, w) = 1/w, and we define

A1(z) =
∫ z

0

dz

w(z)
,

(this is the elliptic integral considered by Abel (8.2) in our discussion of Abel’s work
on elliptic functions). If z �= ±1,±k, then A1(z) is finite.

To see this, let γ be a path from 0 to ∞ not passing through these same points,
then

lim
z→∞ A(z) = v, and |v| < ∞,

which is easy to verify. Namely, any path γ going from 0 to∞ and missing the points
±1,±(1/k) can be modified to be a path from 0 to a point R0 > max{1, 1/k} and
from R0 to ∞ via a path on the positive real axis. Then the resulting path integral
part on the real axis would be

∫ ∞

R0

dx√
(x2 − 1)(x2 − k2)

.

But, for x ∈ [R0,∞), there is a constant K such that

1√
(x2 − 1)(x2 − k2)

≤ K
1

x2
,

and thus limz→∞ A1(z) exists and is finite.
Now we have to examine the behavior of A1(z) at the singular points of the

integrand. Consider the point z = 1. We want to show that limz→1 A1(z) exists and
is finite. To do this we make a change of variable at this point of the form

ζ = (z − 1)
1
2 ,

then

dζ = 1

2
(z − 1)−

1
2 dz,

which gives

dz = 2ζdζ,

z = 1 + ζ2,

http://dx.doi.org/10.1007/978-3-319-58184-2_8
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and hence

A1(z) = A1(1 + ζ2) =
∫ 1+ζ2

i

2ζdζ√
ζ2(ζ2 + 2)(ζ2 + 1 + k)(ζ2 + 1 − k)

=
∫ 1+ζ2

i

2dζ√
(ζ2 + 2)(ζ2 + 1 + k)(ζ2 + 1 − k)

,

which has a nonsingular integrand near ζ = 0, and hence A1(z) is holomorphic in
a neighborhood of z = 1. A similar argument holds for the other singular points
{−1, k,−k}, and hence A1(z) is finite at all points of S, as Legendre and others
knew, long before Riemann, but in the real variable context.

Now the Riemann surface for the polynomial (10.3) has genus p = 1, as we
discussed earlier, and thus, according to Riemann, the only Abelian integrals of the
first kind in this case are constant multiples of A1(z) plus a possible constant.

A second example is the case of a hyperelliptic curve (hyperelliptic Riemann
surface) defined by an equation of the form

F(z, w) = w2 − (z − a1)(z − a2) · · · (z − a2p),

where ak �= 0 are distinct complex numbers, then

Ak(z) :=
∫ z

0

zkdz

w(z)
, k = 0, · · · , p − 1, (10.4)

are p distinct Abelian integrals of the first kind, as we mentioned in our discussion
of Abel’s work in Sect. 7.3. The proof that these are Abelian integrals of the first
kind is similar to that given above in the elliptic case, and it is easy to verify that the
genus for this Riemann surface is also p. Namely, there are 2p branch points for this
two-sheeted Riemann surface. Hence the Abelian integrals in (10.4) form a basis for
the vector space of Abelian integrals of the first kind.

Let’s look at the integrands of these Abelian integrals of the first kind. Notice
that originally in the work of Euler, Legendre, Abel and others, the integrals were
integrals on the real axis with singularities (with the inherent multivaluedness). For
instance, consider the integral

A1(x) =
∫ x

0

dx√
(x2 − 1)(x2 − k2)

,

in the elliptic case. The integrand is

dx√
(x2 − 1)(x2 − k2)

,

http://dx.doi.org/10.1007/978-3-319-58184-2_7
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and this becomes, going to the complex plane,

dz√
(z2 − a)(z2 − k2)

,

which has the form
f (z)dz, (10.5)

where f (z) is a multivalued meromorphic function on C. We shall see below how
(10.5) can be interpreted as a single-valued and, in fact, holomorphic one-form on
the Riemann surface defined by w2 = (z2 − 1)(z2 − k2).

Let S be a Riemann surface spread over the extended complex plane of the type
described by Riemann with local coordinates: ζ = z − a at nonbranching points a,
ζ = (z − a)

1
k at a branching point a of order k, and ζ = 1/z at ∞, assuming, for

simplicity that the point at infinity is not a branch point. A meromorphic one-form
on S is a one-form defined with respect to any local coordinate chart ζ as above to
be of the form

ω = f (ζ)dζ,

where f (ζ) is meromorphic in ζ. And, if we transform from one coordinate system
z to another by a change of coordinates ζ̃(ζ), then there is a meromorphic function
f̃ (ζ̃) such that

ω = f̃ (z̃)d ζ̃ = f (ζ)dζ,

where d ζ̃ = ζ̃ ′(ζ)dζ, and ζ̃ ′(ζ) is a holomorphic function of ζ.
We will say that a meromorphic one-form ω on S is a holomorphic one-form on

S if, for each local coordinate ζ, ω = f (ζ)dζ, where the coefficient function f (ζ)
is holomorphic.

If we look at the integrands of the examples of Abelian integrals that we discussed
above, then it is easy to check that

ω1 = dz√
(z2 − 1)(z2 − k2)

,

ωk = zkdz√
(z − a1)(z − a2) · · · (z − a2p)

, k = 0, . . . , p − 1

are indeed holomorphic one-forms on the respectiveRiemann surfaces of genus 1 and
genus p. First of all, these are indeed meromorphic one-forms as they are defined,
and it remains to show that they are holomorphic near any of the singular points
(where these one-forms have potential poles). The calculations are essentially the
same as those we used to show that these integrals had well-defined values at the
singular points.

For instance, near the singular point z = a1 for the one form ωk in the second
case, we have



10.3 Abelian Integrals and Abelian Functions 149

ζ = (z − a1)
1
2 ,

dζ = 1

2
(z − a1)

− 1
2 dz,

which gives

z = ζ2 + a1,

dz = 2ζdζ,

and hence

ωk = 2(ζ2 + a1)
kdζ√

(ζ2 + a1 − a2)(ζ2 + a1 − a3) · · · (ζ2 + a1 − a2p)
,

which is holomorphic near z = 0. It still has to be checked that ωk is holomorphic at
∞, and this is a similar calculation.

Using this terminology we see that the number of linearly independent Abelian
integrals of the first kind on a Riemann surface S is the same as the number of
linearly independent holomorphic one-forms on S. This point of view became stan-
dard in modern treatments of Riemann surfaces using differential forms to represent
the connectivity (the genus) using de Rham’s theorem, and using the holomorphic
one-forms to be a way of representing this topology when the complex structure is
assumed. This is part of the essence of Hodge theory on general Kähler manifolds,
as we see in Sect. 14.4.

In the remainder of his main Abelian function paper [195], Riemann formulated
and solved several geometric problems which have come to have major significance
in the subsequent development of Riemann surfaces, algebraic geometry and com-
plex manifolds. In addition, he formulated and gave his version of a solution to
the Jacobi inversion problem. This was concerned with the generalizations of the
inverses of elliptic integrals to inverses of Abelian integrals, which are now called
Abelian functions. Finally, he showed that on any compact Riemann surface there
exist nonconstant meromorphic functions. This important result became the basis for
the Riemann–Roch theorem that we outline in the following section. We will look
at the geometric problems first, return to the Jacobi inversion problem, and conclude
with our next section concerned with the Riemann–Roch theorem.

The first geometric problem he formulated and resolved was to show that the
Riemann surfaces of the kind he had described as a branched covering of C could
be realized as the Riemann surface defined by a polynomial function F(z, w). In
modern terms the question he raised could be reformulated to ask if a compact
Riemann surface could be realized as a projective algebraic submanifold of complex
projective space. The answer to this question is that it is indeed possible, and this is a
special case and simple consequence of the Kodaira embedding theorem for compact
complex manifolds (see Chap.14).

http://dx.doi.org/10.1007/978-3-319-58184-2_14
http://dx.doi.org/10.1007/978-3-319-58184-2_14
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The second problem he formulated was to consider the birational equivalence of
solutions of equations of the form F(z, w) = 0 for different choices of the polynomial
F(z, w). Let’s formulate this question somewhat more precisely. Let

C = {(z, w) ∈ C2 : F(z, w) = 0},

where F(z, w) is a polynomial in the variables z andw.We call such aC an algebraic
curve, and we include in C points at infinity (which is easy to do using homogeneous
coordinates, and became standard in algebraic geometry shortly after the time of
Riemann).5

Two algebraic curves

C = {F(z, w) = 0},
C1 = {F1(z1, w1) = 0}

are birationally equivalent if there exist rational mappings

z1(z, w), z2(z, w),

with inverse rational mappings

z(z1, w1), w(z1, w1),

such that
F1(z1, w1) = F(z(z1, w1), w(z1, w1))

and
F(z, w) = F1(z1(z, w),w1(z, w)).

Riemann formulated the problemof classifying equivalence classes of birationally
equivalent algebraic curves, and, by dimensional analysis of the parameters, he
concluded that for a given algebraic curve of genus p (defined by an equation
F(z, w) = 0):

• For p = 0, all curves are birationally equivalent.
• For p = 1, there is a one-complex-parameter family of birationally inequivalent
algebraic curves.

• For p > 1, there is a 3p−3-complex-parameter family of birationally inequivalent
algebraic curves.

Riemann termed these parameters the moduli of the algebraic curves, and a major
problem in mathematical research over the next century became to understand

5For instance, the text by Clebsch and Gordan on Abelian functions [49], published in 1866, nine
years after Riemann’s fundamental papers of 1857, formulated this theory in terms of homogeneous
coordinates.
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the nature and representations of these moduli. For Riemann the classification of
algebraic curves was equivalent to the classification of Riemann surfaces associated
to these algebraic curves.

In algebraic geometry the classification of algebraic varieties of one or more
dimensions has been a very important research topic ever since the time of Riemann.
In the theory of complex manifolds (most complex manifolds do not correspond to
solutions of algebraic equations), the deformations of complex structures on mani-
folds of one ormore dimensions has been an equally rich field of research. The theory
of Teichmüller spaces plays an important role in the contemporary theory of moduli
of Riemann surfaces (an abstraction of Riemann’s moduli of algebraic curves; see
Bers [18] for an overview of moduli theory in the mid-twentieth century).

Finally, we discuss briefly the main topic Riemann was addressing in this series
of papers, the Jacobi inversion problem. Namely, let

F(z, w) = 0

define a Riemann surface S of genus p, and let A1(z), · · · , Ap(z) be p linearly
independent Abelian integrals of the first kind on S. Each of these are multivalued
functions and the value of each of these functions at a given point z depends on
the path of integration from some fixed initial point to the point on the Riemann
surface whose coordinate in the extended complex plane is z, which is implicit in
the definition of each Ak . Define the functions

v1(z1, · · · , z p) = A1(z1) + . . . + A1(z p),

v2(z1, · · · , z p) = A2(z1) + . . . + A2(z p),
...

vp(z1, · · · , z p) = Ap(z1) + . . . + Ap(z p).

(10.6)

The Jacobi inversion problem is to find an inverse to this mapping and determine
its properties. An inverse mapping here would be p functions

z1(v1, · · · , vp),

z2(v1, · · · , vp),
...

z p(v1, · · · , vp),

(10.7)

which provide an inverse to the mapping described in (10.6).
For the case of p = 1, we have only one Abelian integral to deal with, and this is

an elliptic integral, and its inverse is an elliptic function as discovered by Abel and
Jacobi, and which we discussed at length in Chap.8.

Thus the inverse functions

{z1(v1, · · · , vp), z2(v1, · · · , vp), · · · , z p(v1, · · · , vl p)}

http://dx.doi.org/10.1007/978-3-319-58184-2_8
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in (10.7) would each be a function of p complex variables which would then be
generalizations of elliptic functions, presumably with some periodicity properties of
the same sort as elliptic functions have. We shall see that the inverse functions do
exist and are meromorphic functions in Cp with 2p independent periods. Riemann
called such functions Abelian functions in honor of Abel, who had studied in the
various versions of Abel’s theorem sums of Abelian integrals of the sort that appear
in (10.6) (as we discussed in Sect. 7.3).

One measure of the multivalued nature of the Abelian integrals used in (10.6) is
to use what are called the periods of an Abelian integral, and these will turn out
to be the periods of the corresponding Abelian functions described briefly above.
Let Ak(z) be k linearly independent (over the real numbers) Abelian integrals of the
first kind on a Riemann surface S of genus p, k = 1, · · · , p, and let γ1, · · · , γ2p be
closed curves (cycles) on S which represent cuts which reduce the Riemann surface
S to a simply-connected open subset S′ ⊂ S. Then let

ω
j
k :=

∫
γ j

αk(z), (10.8)

where αk(z) is the integrand of Ak(z) considered as a holomorphic one-form on S,
as was illustrated in our examples earlier. These are the periods of these Abelian
integrals Ak(z) for this choice of cycles γ1, · · · , γ2p. It follows that if γ and γ̃ are any
two paths joining an initial point z0 to a variable point z on S, and if Ak(z) represents
the value of the Abelian integral along the path γ, and Ãk(z) represents the value of
the same Abelian integral along the path γ̃, then

Ãk(z) = Ak(z) + m1
kω

1
k + . . . + m2p

k ω
2p
k ,

where m j
k are integers. Thus, theperiods ω1

k , · · · ,ω2p
k represent precisely the multi-

valued nature of the Abelian integral Ak(z).
We nowdefine a meromorphic function f (z) = f (z1, · · · , z p) on an open domain

D ⊂ Cp, p ≥ 1, to be a holomorphic function on D − S, where S is a closed lower-
dimensional subset of D such that near any point z0 = (z01, . . . , z0p) of D, f can
be represented as the quotient of two holomorphic functions. The singular points S
correspond to the points where the local holomorphic function in the denominator
is zero. Thus the set S is generically a p − 1-dimensional locally defined complex
submanifold of Cp. For instance, if we set

f (z1, z2) = z1 − z01
z2 − z02

,

then f (z) is meromorphic on C2, it has zeros on the line z1 = z01, it has poles along
the line z2 = z02, and it has no well defined value at the singular point (z01, z02).

Consider a meromorphic function f (z) on Cp. Let ω ∈ Cp be a fixed complex
p-tuple, (ω1, · · · ,ωp) �= 0. Then we say the function f (z) is periodic with respect

http://dx.doi.org/10.1007/978-3-319-58184-2_7
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to the period ω if
f (z + ω) = f (z), for all z ∈ Cp.

Let us define the vectors

ω j = (ω
j
1 , · · · ,ω j

p), j = 1, · · · , 2p,

where theω
j
k are defined as the periods of theAbelian integrals as in (10.8). Riemann,

Weierstrass and others showed that there exist meromorphic functions f (z) on Cp,
such that

f (z + m1ω
1 + · · · + m2pω

2p) = f (z), z ∈ Cp,

where the m j are arbitrary integers. More precisely, there exist functions with 2p
independent periods (namely, the periods defined above are linearly independent
over the real numbers), and they also showed there are no functions with more than
2p periods.

Riemann used theta functions in [195] to demonstrate the existence of Abelian
functions, in a manner similar to our discussion of the use of theta functions to
represent elliptic functions in Sect. 8.4. Weierstrass formulated (by differentiation)
(10.6) as differential equations and solved these using power-series methods. Both
solutions gave great impetus to further research in the rich theory ofAbelian functions
during the latter half of the nineteenth century. We recommend highly the interesting
book by Markushevich [151] which gives a detailed and very well written history of
the early development of both elliptic and Abelian functions.

10.4 The Riemann–Roch Theorem

The final topic in Riemann’s Abelian function paper [202] that we want to discuss is
the question of the existence of meromorphic functions on a compact Riemann sur-
face. If we look at Riemann’s construction of a Riemann surface S as a multisheeted
branched covering of the extended complex plane C, then the covering mapping
π : S → C is indeed a meromorphic function on S. Riemann asked if there were
any other meromorphic functions6 on S.

We note first that there cannot be any nonconstant holomorphic functions on a
compact Riemann surface. This follows from the maximum principle, just as in our
proof in the previous section that there are no Abelian functions of the first kind on
a Riemann surface of genus 0.

6The Riemann surfaces Riemann considered when he wrote his paper were all solutions of an
algebraic equation F(z, w) = 0, solving for w in terms of z, the variable in the complex plane. In
this context,w(z)was a multivalued function of z which yielded the Riemann surface S with branch
points. Riemann was looking for “gleich-verzweigte algebraische Funktionen” on the complex
plane, i.e., functions of z with the same branching pattern as w(z), and thus were single-valued
functions on S.

http://dx.doi.org/10.1007/978-3-319-58184-2_8


154 10 Riemann Surfaces

For the remainder of this section, we assume that S is a compact connected
Riemann surface of genus p. The Abelian integrals A1, . . . , Ap that we discussed in
the previous section are all multivalued holomorphic functions on S. Riemann’s con-
struction of nonconstant meromorphic functions on S involve linear combinations
of specific multivalued meromorphic functions on S and these Abelian integrals.
We recall that Abel often used the fact that a symmetric rational function of the
roots of a polynomial (multivalued function) is a symmetric rational function of the
coefficients of the polynomial (single-valued function). Riemann’s construction is
similar in spirit: constructing single-valued functions from combinations of multi-
valued functions.

Riemann uses the Dirichlet principle to construct specific multivalued meromor-
phic functions that we will utilize. Let p1, · · · , pm denote m distinct points on S. At
one such point pl , he uses the Dirichlet principle to construct a function uλ which is
harmonic on S − {pl} and which has the local behavior at pl (in a local coordinate
system centered at pl),

ul(z) = Re

(
1

z

)
+ ϕl(z),

where ϕl(z) is harmonic near z = 0.
Let now z = x + iy be any local coordinate system on S, and define the one-form

∗ul := ∂ul

∂x
dy − ∂ul

∂y
dx .

It is easy to check that this one-form is independent of the coordinate system. It has a
singularity at the point pl . Let now x0 be a fixed point on S, disjoint from the points
p1 · · · , pm , and let γ be a smooth path from x0 to any point x ∈ S −{pl}, then define
the harmonic conjugate of ul on S − {pl} to be the integral of ∗u along the path
γ from the point x0 to the point x . The function vl is then a multivalued harmonic
function7 defined on S − {pl}, and such that

fl := ul + ivl

is a well-defined multivalued meromorphic function on S with a simple pole with
residue 1 at the point pl .

We can assume that the 2p cycles γ j that describe the topology8 of S do not
intersect the m points p1, · · · , pm , and we can define the periods of fl to be the
integrals

c j
l :=

∫
γ j

d fl , (10.9)

7Riemann uses cuts (curves) C j on S so that S −∪ j C j is simply-connected, and defines the values
of vl on a cut to be a limit from one side or another of a given cut, making the function vl harmonic
and multivalued on S − {pl }.
8This is the (2p + 1)-connectedness in Riemann’s language, or a basis of the homology group in
more modern terms.
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and the values of fl at any given point differ from one another by integral multiples
of these periods.

Now Riemann considers the sum

f := a1 f1 + . . . + am fm + b1 A1 + . . . + bp Ap, (10.10)

which is a new multivalued meromorphic function on S. Let us denote the periods
of f by π

j
f , defined as in (10.9). These are linear combinations of the periods of fl

and the periods of Ak , namely,

π
j
f = a1c j

1 + . . . bmc j
m + b1ω

j
1 + . . . + bpω

j
p. (10.11)

Thus if we let (π1
f , . . . ,π

2p
f ) be a vector in C2p, then the linear equation (10.11)

defines a linear mapping
L : Cm+p → C2p

given by
(a1, · · · , am, b1, · · · , bp) �→ (π1

f , · · · ,π2p
f ).

Riemann observes that, for m + p > 2p, then necessarily ker L �= 0, and hence
there are coefficients al , bk in (10.10) such that all of the periods of f are zero. It
follows that f is a nonconstant single-valued meromorphic function on S, which
was what Riemann had set out to prove. Namely, on any Riemann surface of genus
p, there exist nonconstant meromorphic functions. For genus p = 0, these are, of
course, the rational functions on the extended complex plane C, which were well
known. Also, for genus p = 1, the elliptic functions of Abel, Jacobi andWeierstrass,
whichwe discussed in Chap.8, were all nonconstant meromorphic functions on these
Riemann surfaces (now called, almost universally, elliptic curves).

Looking at the coefficients al in (10.10), which yield such a nonconstantmeromor-
phic function f , one sees that at least one, but not necessarily all, of these coefficients
must be nonzero (linear combinations of the Abelian integrals alone could not yield
a nonconstant single-valued function, as we saw above by the maximum principle).
Thus f is a meromorphic function with simple poles at some of the points pl . Rie-
mann asks the question: how many meromorphic functions on S are there with at
most simple poles at the points pl? This question and the variety of answers to this
question became the basis for the Riemann–Roch theorem in its various formulations
over the past century and a half.

In the late nineteenth century, language from algebraic number theorywas adapted
to the geometry of Riemann surfaces to describe the formulation of this type of
problem (this was first described in the monograph of Hensel and Landsberg [100],
later used by Weyl in 1913 [241], and has been standard ever since). We will now
use this language to describe the results of Riemann’s solution to this problem.

Let pl be a discrete set of points on S. We let the formal sum

http://dx.doi.org/10.1007/978-3-319-58184-2_8
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D =
∑

l

nl pl, nl ∈ Z,

be a divisor 9 on S. We can add divisors by concatenating the points and adding the
corresponding coefficients. Thus the divisors form an Abelian group. We define the
degree of the divisor D to be the sum of the coefficients in D, namely,

deg(D) :=
∑

l

nl .

Let nowM(S) denote themeromorphic functions on S. Although the fact that this
set of functions has the structure of a field will not be that important for us here, it is
an important concept in the algebraic study of Riemann surfaces defined by algebraic
functions, for instance. We note that the degree function in this context is additive,
i.e., deg(D1 + D2) = deg(D1) + deg(D2). We say that a divisor is nonnegative or
positive if all of its coefficients are nonnegative or positive.

If f ∈ M(S) is a meromorphic function on S, then we let z1, · · · , zm be the
zeros of f with multiplicities μ1, · · · ,μn , and we let p1, · · · , pn be the poles of f
with multiplicities ν1, · · · , νn . Then we let ( f ) denote the divisor associated to f
defined by

( f ) :=
∑

k

μk zk +
∑

l

νl pl .

We note that the number of zeros of f , counting multiplicities, must be the same as
the number of poles of f , also counting multiplicities. This is a consequence of the
Cauchy residue theorem. Thus, it follows that deg(( f )) = 0.

Now, for any divisor D on S, we can let L(D) be the vector space defined by

L(D) := { f ∈ M(S) : ( f ) + D ≥ 0}.

It is straightforward to verify that this is indeed a vector space. Riemann’s funda-
mental contribution to what we now know as the Riemann–Roch theorem was a
lower-bound estimate on the dimension of this vector space in terms of the degree
of the divisor D and the genus of the Riemann surface, which we formulate in the
following theorem.

Theorem 10.3 (Riemann [202]) Let S be a compact Riemann surface of genus p,
then, for any divisor D on S,

dim L(D) ≥ deg(D) − p + 1.

We note that if deg(D) < p, then this theorem has no content, of course.

9We will see divisors again in Chaps. 14 and 15.

http://dx.doi.org/10.1007/978-3-319-58184-2_14
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Let’s look at the situation we discussed earlier, and let D be the divisor defined
by our system of m points p1, · · · , pm on S,

D =
m∑

l=1

pl,

where m > p. Then deg(D) = m, and Riemann’s inequality in Theorem 10.3 gives
us

dim L(D) ≥ m − p + 1 ≥ 2,

which again shows that there are nonconstant meromorphic functions with at least
simple poles at the points pl .

A fewyears after Riemann published hisAbelian functions paperwith the inequal-
ity in Theorem 10.3, Gustav Roch (1839–1866) published a significant improvement
on this result. We will formulate his result below, but first we need to introduce one
additional concept which is critical for Roch’s work.

Suppose that α is a meromorphic one-form on S. For instance, since we know
there are nonconstant meromorphic functions f on S, simply taking the exterior
derivative d f will be an example of such a meromorphic one-form. The one-form α
will have poles and zeros with multiplicities and will define a divisor K , which we
will call a canonical divisor on S. Suppose that α1 and a2 are any two meromorphic
one-forms on S, then one can form the quotient α1/α2 (do this in local coordinates),
and this quotient yields a nonconstant meromorphic function f . Let K1 and K2 be
the divisors (canonical) of α1 and α2, then we have α1 = f α2, and it follows that

K1 = K2 + ( f ),

which implies that
deg(K1) = deg(K2) + deg(( f )),

but as we noted earlier, deg(( f )) = 0, and hence deg(K1) = deg(K2).
Thus the canonical divisors on S all have the same degree and are considered

equivalent in the sense that any two of them differ from each other by the divisor of
a meromorphic function (this is referred to as linear equivalence in the literature).
One refers to “the canonical divisor K ” on S as being any divisor associated to a
meromorphic one-form in this fashion.

An important ingredient in understanding the proof of theRiemann–Roch theorem
is the following lemma, which provides a link between the canonical divisor and the
genus of the surface S.

Lemma 10.4 Let K be the canonical divisor on the Riemann surface S with genus
p, then

deg(K ) = 2 − 2p.
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There are many different proofs of this, going back to Roch, but we won’t include
this in our discussion here. See, for instance, Weyl’s book from 1913 [241]. We give
a proof of this in our discussion of themodern version of the Riemann–Roch theorem
in Sect. 14.7.

We can now formulate the Riemann–Roch theorem, which replaces the equality
in Theorem 10.3 with an equality, making the result much more precise.

Theorem 10.4 (Riemann–Roch theorem) Let S be a compact Riemann surface of
genus p, and let D be a divisor on S, then,

dim L(D) − dim L(K − D) = deg(D) − p + 1, (10.12)

where K is the canonical divisor on S.

We see here that Roch supplied the missing information in Riemann’s inequality,
and the canonical divisor plays a critical role.

We note that the left-hand side of (10.12) involves dimensions of vector spaces of
functions and the right-hand side involves topological invariants of the divisor and the
Riemann surface. In Sect. 14.7, we will see how this theorem evolved in the twentieth
century to higher-dimensional manifolds and settings and became an important part
of complex geometry relating analysis and topology on complex manifolds. Weyl’s
1913 book on Riemann surfaces [241] has a complete proof of the results above as
well as many modern references (e.g. Farkas and Kra [72], and the lecture notes by
Bers [16] and Gunning [92]).

http://dx.doi.org/10.1007/978-3-319-58184-2_14
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Chapter 11
Complex Geometry at the End
of the Nineteenth Century

11.1 Klein and Lie

In the preceding sections of this Part III of the book, we have seen how the complex
plane evolved into the concept of a Riemann surface and how the special class of
holomorphic functions began to play an important role in analysis. Therewere several
other significant ideas which arose in the nineteenth century which play an important
role in complex geometry.

The first of these was the development of projective geometry and more specif-
ically the notion of projective space, a generalization of classical Euclidean space
which evolved over numerous decades of the nineteenth century. This was described
in Chap.3 in Part II. For an outstanding historic reference to this development, we
recommend Felix Klein’s beautiful lectures on non-Euclidean geometry from the end
of the nineteenth century, which were published in 1928 [123]. In modern complex
geometry, complex n-dimensional projective space Pn(C) plays a very important
role.

At the end of the nineteenth century all the ingredients had been developed which
allowed HermannWeyl (1885–1955) to develop in 1913 the first theory of manifolds
in the important special case of abstract Riemann surfaces. We will discuss this
in more detail towards the end of this chapter. We now discuss some fundamental
developments that preceded Weyl’s work.

The first development, the theory of transformation groups, has become more
well-known under its modern appellation of Lie groups. The first study of Lie groups
arose as transformation groups of specific geometric spaces in various papers of Felix
Klein (1849–1925) and Sophus Lie (1842–1899). For instance, in 1871 they wrote a
joint paper [124], which referred to two earlier papers each of them had written that
dealt with transformation groups on quite specific geometric spaces [120, 144]. In
1872 Klein wrote his famous Erlangen Program paper [121], in which he outlined,
among other things, the role he foresaw for transformation groups, or more generally,
continuous groups and their subgroups (in particular discrete subgroups) to play in
geometry. This turned out to be a very significant paper, and the study of the action
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of Lie groups on manifolds became an important topic in the twentieth century. In
1880 Lie published the first of his fundamental papers on what became the theory
of Lie groups entitled “Theorie der Transformationsgruppen I”1 [145]. In this paper
he classified the Lie groups acting on Euclidean spaces of one and two dimensions
and developed the tools of Lie algebras as a means of determining the classification.
He gives a summary in this paper of all earlier references known to him at the time
concerning this generic topic. One can leaf through the collected works of both Lie
and Klein [122, 146], which are all available on-line today, to get a good overview
of the development of transformation groups and their role in studying geometry in
a wide variety of contexts.

11.2 The Uniformization Theorem for Riemann Surfaces

A very important relation between transformation groups and complex geometry
came at the end of the nineteenth century in what became known as the uniformiza-
tion theorem of Riemann surfaces, representing all compact Riemann surfaces as
quotients of the three distinct simply-connected Riemann surfaces (the Riemann
sphere, the complex plane, and the unit disc) by discrete groups of the biholomor-
phic automorphisms of these spaces. Let us give a brief summary of this important
work, which became a role model for many similar questions in higher dimensions.

The history of non-Euclidean geometry has been well documented (see the clas-
sical treatment by Klein [123], for instance). In the nineteenth century there were
various discoveries of geometries that were not Euclidean with abstract axiomatic
systems which had variations on the parallel axiom and, more particularly, specific
models of a given geometry. Here we will only mention that the developments of
complex geometry in the nineteenth century led to three very specific models of the
three types of geometries that have evolved.

Namely, first the complex plane C with its Euclidean metric

ds2 = dzdz = dx2 + dy2

is a model for the classical Euclidean plane plane geometry, with its geodesics being
the classical straight lines, and the Euclidean translations and rotations being given
by z �→ z + a, and rotations z �→ zeiθ .

The second case of elliptic geometry is represented in terms of the two-sphere S2,
which can be described in complex terms as the Riemann sphere, that is, the one-
point compactification of the complex planeC = C ∪ ∞, which is biholomorphic to
one-dimensional complex projective space P1(C). If we let the complex plane be the
standard coordinate chart (the complement of the point at infinity) with the metric

1“Theory of transformation groups”.
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ds2 = dzdz

(1 + |z|2)2 = dx2 + dy2

(1 + (x2 + y2))2

then the geodesics are the great circles, and the transformation group of (holo-
morphic) isometries is the orientation-preserving rotations of the sphere SO(3) ∼=
PSU (2), in terms of real and complex coordinates, respectively. As a model for
non-Euclidean geometry, it is necessary to consider the two-sphere with antipodal
points identified (which gives two-dimensional real projective space, so that through
any two points there is only one geodesic joining them, one of the axioms of all the
geometries). This projective space structure doesn’t preserve the complex structure.

Finally, we have the very important case of hyperbolic geometry, which can be
modeled in terms of the Poincaré disk �, which is the unit disk in the complex plane

� := {z ∈ C : |z| < 1},

equipped with the Poincaré metric

ds2 = dzdz

(1 − |z|2)2 = dx2 + dy2

(1 − (x2 + y2))2
.

Here the geodesics are the arcs of circles in the unit disc which have endpoints on
the unit circle and which are orthogonal to the unit circle at those points. The trans-
formation group of holomorphic isometries is SU(1, 1), which can be represented as
the set of Möbius transformations of the form

z �→ eiθ
(

z − a

−az + 1

)
, θ ∈ R, |a| < 1.

As is well known, these three two-dimensional models of Euclidean and non-
Euclidean geometry C, C, and �, also give the complete classification of the con-
nected and simply-connected complexmanifolds of dimension one,whichwasfinally
proved satisfactorily at the beginning of the twentieth century by Henri Poincaré
(1854–1912) [186] and Paul Koebe (1882–1945) [129]. This theorem is referred to
in the literature as the uniformization theorem.2 Moreover, any compact Riemann
surface of genus 1 is equivalent to the quotient of the complex plane by a lattice (a
complex torus of dimension one), and any compact Riemann surface of genus g > 1
is equivalent to �/�, where � is a properly discontinuous subgroup of SU(1, 1),
the automorphisms of the unit disc (see, e.g., the extensive survey paper by Lipman
Bers [18]).

2See the very informative historical paper by Jeremy Gray [88] on the history of both the Riemann
mapping theorem and the uniformization theorem.
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11.3 Point Set and Algebraic Topology

The final developments of the nineteenth century critical for complex geometry pri-
marily concerned the development of topology, both point set topology and algebraic
topology, and finally the abstraction of the notion of a manifold.

First came the development of set theory by Georg Cantor (1845–1918) in the
1870s, which led to the development of abstract topological spaces in the early
twentieth century. Cantor’s work turned out to be revolutionary for all ofmathematics
as well as leading to the famous continuum hypothesis and fundamental questions
in the foundations of mathematics which we won’t discuss here (see, for instance,
the collected works of Cantor [30] with its interesting introduction by Ernst Zermelo
(1871–1953), as well as modern surveys of this important topic).

This led to the development of abstract topological spaces. Maurice Fréchet
(1878–1973) was the first to formulate an abstract topological space [74] (he used the
notion of spaces of type (L), which had axiomatically sequences of elements which
either converged or didn’t); and a few years later more general notions of a topo-
logical space were formulated by Felix Hausdorff (1868–1942) [97] using axioms
of neighborhoods as the fundamental notion, including, in addition, his Hausdorff
separation axiom. Then in 1922 Casimir Kuratowski (1896–1980) [131] provided
the most general theory of topological spaces (using axioms concerning closed sets
as a basis for the theory). Today we use axioms for open sets as the basis for the
theory of topological spaces, which is equivalent to Kuratowski’s theory.

Second was the development of the algebraic topology of manifolds. This started
with the work of Riemann on Riemann surfaces (as discussed in Chap. 10), where
he developed the notion of connectivity for Riemann surfaces. This was extended
by Enrico Betti (1823–1892) in 1871 [19], who generalized Riemann’s connectivity
for two-dimensional manifolds to what are now called Betti numbers of higher-
dimensional manifolds. Finally, Poincaré, in a fundamental series of papers at the end
of the nineteenth century, formulated the fundamental principles of what has become
known as algebraic topology (see the collection of papers on topology in Volume
VI of Poincaré’s collected works [187] and in particular the translation of Poincaré’s
topology papers into English by John Stillwell [188] with its lucid introduction to
the whole topic). In these papers Poincaré considered manifolds which were smooth
submanifolds of Euclidean space of any dimension with or without boundary, and
if with boundary, the boundaries were piece-wise smooth, all defined in terms of
defining functions in the ambient space.

11.4 Weyl’s Book, Die Idee der Riemannschen Fläche,
in 1913

The final geometric development of this time period concerns the creation of the
notion of an abstract manifold in a mathematically satisfactory way. In Riemann’s

http://dx.doi.org/10.1007/978-3-319-58184-2_10
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original paper concerning higher dimensional manifolds [201], he discussed this
concept in a philosophical but not technical manner. For Riemann at the time it
was simply something (not defined) which had local coordinate charts with suitable
transition functions, and he worked from there.

The fundamental creation of an abstract manifold (with topological, differentiable
or complex structures) was taken by Hermann Weyl in the first edition of his famous
book on Riemann surfaces (Die Idee derRiemannschenFläche [241]).He formulates
for the first time in a rigorous manner the notion of an abstract topological manifold
in the two-dimensional setting. He notes that he could work in more dimensions,
but he was concerned with a new way of looking at Riemann surfaces. He describes
a (two-dimensional) manifold as any set M with a set of neighborhoods satisfying
suitable axioms and such that for each point p ∈ M there is a neighborhood U of p
which is homeomorphic to a disc in R2.3

The key here is that he starts with an abstract set, and this would have been
possible only after Cantor created set theory in a manner that could be used in all
parts of mathematics. He makes a further assumption to those made above, namely
that the manifold is triangulated.4 He goes on to define a Riemann surface to be a
triangulated topological manifold which has local coordinate systems which map
to discs in the complex plane whose overlap transformations are holomorphic. He
makes a point that algebraic topology will play an important role in the theory of
manifolds (hence the use of triangulations), noting the earlier work of Riemann and
Poincaré. The notion of a triangulation of a surface went back at least to Euler’s
first description of an Euler characteristic of a surface of a two-sphere in R3, as we
described in Sect. 10.2.Weylworked in the context of a real two-dimensional surface,
and his triangulation consisted of a covering of the surface with a disjoint union of
(homeomorphic copies of) open triangles (faces), open line segments (edges), and
point (vertices), where the edges and vertices formed the boundaries of the triangles
in a natural manner. In Fig. 11.1 we see how Weyl introduced triangulation in his
1913 book.

His second edition [242] uses the nowmore commonversionof being a topological
space (set with neighborhoods satisfying axioms) which is Hausdorff and has a
countable basis for the topology.5

Part IV of this book concerns itself with differentiable, real-analytic, and complex
manifolds, all of which are twentieth-century generalizations of Weyl’s definition
of a Riemann surface in 1913.

We close by quoting from Weyl’s 1913 book about his new way of looking at
what has become known as the theory of manifolds.

3Weyl had the key to an abstract topological space here, but he did not pursue it further.
4We discuss this triangulation hypothesis in more detail in the Introduction to Part IV of this book,
which immediately follows this section.
5A topological space is Hausdorff if for any two distinct points x and y there are two open sets
U � x and V � y such thatU ∩ V = ∅ and is second countable or has a countable basis if there is
a countable set of open sets which generates (by countable unions) all open sets.

http://dx.doi.org/10.1007/978-3-319-58184-2_10
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Fig. 11.1 Page 22 of Weyl’s 1913 book on Riemann surfaces [241]
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Eine solche strenge Darstellung, die namentlich auch bei Begründung der fundamentalen,
in die Funktionentheorie hineinspielenden Begriffe und Sätze der Analysis situs sich nicht
auf anschauliche Plausibilität beruft, sondern mengentheoretisch exakte Beweise gibt, liegt
bis jetzt nicht vor. Die wissenschaftliche Arbeit, die hier zu erledigen blieb, mag vielleicht
als Leistung nicht sonderlich hoch bewertet werden. Immerhin glaube ich behaupten zu
können, daß ichmit Ernst und Gewissenhaftigkeit nach den einfachsten und sachgemäßesten
Methoden gesucht habe, die zu dem vorgegebenen Ziele führen; und an manchen Stellen
habe ich dabei andere Wege einschlagen müssen als diejenigen, die in der Literatur seit dem
Erscheinen von C. Neumanns klassischem Buche “Über Riemanns Theorie der Abelschen
Integrale” (1865) traditionell geworden sind.6

6“Such a rigorous presentation, which, namely by establishing the fundamental concepts and theo-
rems in function theory and using theorems of the analysis situs which don’t just depend on intuitive
plausibility, but have set-theoretic exact proofs, does not exist. The scientific work that remains to
be done in this regard may perhaps not be particularly highly valued. But, nevertheless, I believe I
can maintain that I have tried in a serious and conscientious manner to find the simplest and most
appropriate methods that lead to the asserted goal; and at many points I have had to proceed in a
different manner than that which has become traditional in the literature since the appearance of
C. Neumann’s classical book about Riemann’s theory of Abelian Integrals.”



Part IV
Twentieth-Century Embedding Theorems

Introduction

In the first three Parts of this book, we have seen how the differential-geometric
study of curves and surfaces in Euclidean two- and three-dimensional space in the
seventeenth and eighteenth centuries evolved into several threads of abstraction in
the nineteenth century, leading to the modern theory of manifolds: topological, dif-
ferentiable, and complex manifolds, to mention the prominent families. In addition,
the ideas of Riemannian geometry from the work of Gauss and Riemann became
part of mainstream mathematics as well.

A major problem arose in the early twentieth century: Could these abstractions
of various kinds be realized as submanifolds of Euclidean space of some dimension,
and thus, in effect, philosophically return to the extrinsic geometry of the eighteenth
century that was looked at in some detail in Part I of this book? To be sure, this would
not revert to the two- and three-dimensional problems studied at that time.

This became the question of embedding a manifold with specific properties and
a specific dimension into a Euclidean space of some higher dimension, preserving
these same properties. For some cases, such as compact complex manifolds, it was
necessary to consider embedding into a suitable projective space, a natural compact-
ification of Euclidean space.

The first such embedding questions arose in the late nineteenth century in the con-
text of locally defined Riemannian manifolds, following up on the work of Riemann
from a few years earlier. After the first formulation of the notion of a globally defined
abstract manifold byWeyl in 1913, the embedding question extended to the full range
of geometries that evolved during the first decades of the twentieth century.

Part IV of this book provides a detailed survey of five different embedding the-
orems that were formulated and proved in the mid-twentieth century. These five
theorems are all philosophically very similar, as we shall see: a given manifold of a
certain class could be embedded as a submanifold of Euclidean or projective space,
and the embedding provided a characterization of all such submanifolds. However,
these theorems are technically very diverse in the nature of the mathematical tools
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utilized for their proofs. In fact, the mathematical ideas that evolved during this
period of time and which were used in proving these theorems consisted of certainly
many of the most important developments in geometry of the first half of the twen-
tieth century. In our survey of these theorems, we will introduce a number of these
concepts and show how they link together to prove these theorems. In the remainder
of this introduction, we will introduce these theorems and we will describe some of
the basic language and concepts for embedding theorems in general.

In 1936,HasslerWhitney (1907–1989) initiated the newera ofwhat are nowcalled
embedding theorems. As we discussed above, the overall question that he raised was
the following: Given a particular class of manifolds with a given geometric structure,
could any suchmanifold be embedded into a Euclidean space as a submanifoldwhich
inherits the given geometric structure from the Euclidean space?

In summary form, we formulate these fundamental theorems here.

• In 1936, Hassler Whitney proved that any differentiable (C∞) manifold can be
embedded as a closed differentiable submanifold of RN [245].
• In 1954, Kunihiko Kodaira proved that any compact complex manifold with a
Hodge metric can be embedded as a complex submanifold of complex projective
space PN (C) [127].
• In 1956, John Nash showed that any smooth Riemannian manifold can be isomet-
rically embedded onto a smooth submanifold of an open subset ofRN equipped with
the induced Riemannian metric from RN [164].
• In 1956, Reinhold Remmert announced the result that any Stein manifold can be
holomorphically embedded as a closed complex submanifold of CN , and this was
subsequently proved independently by Raghavan Narasimhan in 1960 and Errett
Bishop in 1961 [20, 162, 192].
• In 1958, Hans Grauert proved that any real-analytic manifold can be real-
analytically embedded as a closed real-analytic submanifold of RN using methods
of several complex variables, and Charles B. Morrey proved in the same year the
special case of compact real-analytic manifolds using methods of partial differential
equations [85, 159].

In the theorems listed above, N is a sufficiently large positive integer, depending
on the given manifold. Each of these theorems gave a complete characterization in
the abstract setting of the submanifolds described.

In the following chapters, we will give some background and a discussion of
the key ideas that went into the proofs of these theorems. Each of the results men-
tioned above generated numerous refinements, new proofs, and special variations
of these theorems over the last half-century, and we do not attempt to follow these
developments up to the present time. We indicate some advances in proofs in certain
cases, but we do not attempt to be conclusive on subsequent developments after these
fundamental theorems were proven.

We start with the work ofWhitney and Nash in Chaps. 12 and 13, which we group
together as they use fundamental concepts in real analysis, including, in particular,
developments in Lebesgue measure theory and functional analysis (Banach spaces,
etc.) which were also developed in the early part of the twentieth century. These have

http://dx.doi.org/10.1007/978-3-319-58184-2_12
http://dx.doi.org/10.1007/978-3-319-58184-2_13


Twentieth-Century Embedding Theorems 169

become quite standard tools for most students of mathematics these days, and we
assume the reader is familiar with these concepts.

In the final two chapters of the book, we outline the proofs of the complex
geometry-oriented embedding theorems. There were significant developments in
twentieth century complex analysis and geometry which may be less familiar to the
reader, and we have included sections which outline the principal developments in
the theory of several complex variables and the theory of compact complexmanifolds
which are essential tools in the proofs of these embedding theorems, all of which
involve complex analysis and complex geometry in one way or another.

As we discussed in Sect. 3.3, Grassmann and Plücker first studied the family
of manifolds now known as projective space or Grassmannian manifolds. None
of these examples, due to Plücker, Grassmann and others (except projective space
itself) are defined as submanifolds of either Euclidean or projective space. Plücker
showed in his book [183] that the set of planes in C4 (which is the same as the set
of lines in the projective space P3(C)) is equivalent to a quadric1 in P5(C). Here,
we mean homeomorphic (and in this case biholomorphic, achieved by an algebraic
equivalence). This is the first instance of what will later be known as the Kodaira
embedding theorem, which we will discuss later in Chap. 14, and this is one of the
first examples of the type of embedding theorem we are discussing in this Part IV of
the book.

We now want to discuss two other developments concerning the general structure
of manifolds which followed up on the work of Hermann Weyl.

Weyl included in the 1913 edition of his book [241] an additional hypothesis
that a Riemann surface should be triangulated, whereas in his 1955 edition of the
same book [242], he made the hypothesis that a Riemann surface should have a
countable basis for its topology, and he proved later in this same edition that one
did not need this countable basis hypothesis.2 What had happened in the meantime
was that T. Radó in 1925 [191] asked the question as to why Weyl had made the
hypothesis of triangulation, as that did not seem in the spirit of the philosophy
of Weyl’s topological space formulation of a Riemann surface. Radó noted that
for a connected two-dimensional topological manifold, having a triangulation was
equivalent to having a countable basis for its topology. He pointed out that various
contemporary authors sometimes assumed that manifolds had a countable basis and
sometimes they did not.

He posed the question: Can a Riemann surface, defined as Weyl did, but without
the triangulation hypothesis, be triangulated? He answered this question in his paper
affirmatively, a landmark result in the theory of Riemann surfaces. In the introduction
to this paper, he noted that the “concrete” Riemann surfaces described by Riemann,
and used by mathematicians for decades before Weyl’s book came out, were all
triangulated. Namely, they were all finite or countable sheets over the complex plane.

1A hypersurface defined by a quadratic equation in homogeneous coordinates. This equivalence is
true for the real numbers and other fields as well.
2Recall that a topological space X is said to have a countable basis (base) for its topology if there is
a countable family C of open sets in X such that every open set in X is a union of open sets from C.
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He also included in his paper an example of a two-manifold which does not have
a countable basis for its topology, and he attributed this example to a colleague
of his, Heinz Prüfer. He further noted that the insight that he obtained from this
example was critical for the proof of his theorem. He alluded also to the “long line”
paper of Alexandroff, which had appeared a year earlier [6]. This was an example
of a one-dimensional topological manifold without a countable basis (the long line
is essentially an uncountable number of copies of the interval (0,1] glued together
appropriately).

Following upon this thread of ideas, Calabi and Rosenlicht showed in 1953
[29] that there exist two-dimensional complex manifolds without a countable basis.
Thus, one-dimensional complex manifolds (Riemann surfaces) differ from higher-
dimensional complex manifolds in this important topological sense, just as one-
dimensional complex function theory differs from the theory of functions of several
complex variables due to Hartogs’s theorem [95]. This theorem asserts, among other
things, that there are no isolated singularities for holomorphic functions of two or
more complex variables. Hartogs’s theorem and its consequences are discussed in
more detail in Sect. 15.2.

The three basic target spaces for our embedding theorems areRn ,Cn , and Pn , and
these all have a countable topology. If a manifold M is to be embedded into any of
these spaces as a closed submanifold homeomorphic to M (as we will be considering
in this book), then M must necessarily have had a countable basis for its topology.
In this book, we will assume from here on that all manifolds we consider have a
countable basis for its topology. As we have seen above, not all manifolds have this
property.

The notion of paracompactness of a topological space was introduced in 1944
by Dieudonné [55]. A topological space S is paracompact if any covering of S by
open sets has a locally finite subcover, i.e., any point x ∈ S is an element of only a
finite number of the open sets in the subcover. Dieudonné showed that a connected
topological manifold is paracompact if and only if it has a countable basis. This will
allow us to use partitions of unity for the manifolds we consider, which is a very
useful concept, as we will see later.

A final step in the creation of a suitable formulation of differentiable or complex
manifolds during this period is the important paper of Veblen and Whitehead in
1931 [225], which was followed up by their monograph [226] in 1932. This became
the framework for the theory of manifolds for the twentieth century, and we briefly
present here the formal language of manifolds as introduced by them, all of which
is a natural generalization of the work of Weyl from 1913.

We define a topological manifold M of dimension n to be a topological space
with a covering of open sets Uα such that there are homeomorphisms

hα:Uα → Bα ⊂ RN ,

where Ba is an open ball in Rn with coordinates (x1, . . . , xn), which is referred to
as a local coordinate system or simply local coordinates for the manifold M at any
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point of Uα. The open sets Uα and the mappings hα are referred to as coordinate
charts for M . We define the transition functions

hαβ := hα ◦ h−1
β :hβ(Uα ∩Uβ) → hα(Uα ∩Uβ),

defined for all nontrivial intersections Uα ∩Ub �= ∅.
The coordinate charts can often be chosen to have various kinds of smoothness

properties of the transition functions, and that is howwe define the types ofmanifolds
we are interested in. A priori the transition functions are homeomorphisms, and this
is then the definition of a topological manifold. If we require the transition functions
to be Ck diffeomorphisms (i.e., the transition functions and their inverses have k
continuous derivatives), then we have a Ck manifold. If the transition functions and
their inverses are C∞ functions (an infinite number of continuous derivatives), then
we have a C∞ manifold, and we will simply say in this book differentiable manifold
for a C∞ manifold. We define a real-analytic manifold in the same way, where we
require the transition functions and their inverses to be real-analytic functions.

If the transition functions are required to have positive Jacobian matrices, then
the manifold is said to be orientable. If n is even, say n = 2m, and if R2m is
given a complex structure isomorphic to Cm , and if the transition functions are
biholomorphic,3 then the manifold is said to be a complex manifold, and there are
numerous other examples. This last example is an explicit generalization of Weyl’s
definition of a Riemann surface. The main purpose of Veblen andWhitehead’s paper
and monograph is to illustrate how to formulate and study Riemannian geometry
on a differentiable manifold, and in doing so, they provided the background for the
study of a large class of manifolds of different types, an important elaboration on the
original work of Weyl from 1913.

One final note here is that this family of manifolds as described in the previous
paragraph and put forward by Veblen and Whitehead is completely consistent with
Riemann’s definition of a manifold in 1854 [200] and his definition of Riemann
surfaces in 1857 [201]. In his 1854 paper on manifolds and differentiable geometry,
he explicitly used transition functions, but did not have a set where the coordinate
charts Uα could be defined or located. In the case of Riemann surfaces in 1857, he
did have the full notion of coordinate charts since the global manifold (the Riemann
surface) in that case was described as sheets covering parts of the complex plane,
and the Uα were subsets of the sheets.

We have seen many examples of manifolds, but the simplest class of manifolds
are simply submanifolds of a domain in Rn or Cn . To make things more precise, we
say that a subset S of a domain D ⊂ Rn is a differentiable submanifold of D of
dimension k if S is a closed subset of D such that, for each point x ∈ D, there is a
neighborhood U of x in D and n − k differentiable functions f1, . . . , fn−k defined
in U such that

3A biholomorphic mapping is a holomorphic mapping with an inverse which is also holomorphic.
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S|U = {x ∈ U : f j (x) = 0, j = 1, . . . , n − k},

and where the Jacobian matrix

∂( f1,..., fn−k )

∂(x1,...,xn)

has rank n−k at each point of S|U . We define real-analytic submanifolds in the same
manner, and the definition of a complex submanifold ofCn has the same formulation,
where one uses holomorphic functions in the place of differentiable or real-analytic
functions.

At the close of this introduction, we come now to the Whitney embedding4 theo-
rem of 1936 [245], the first of the major embedding theorems we want to consider in
this book. In Fig. 12.1 we see how Whitney formulated the first general embedding
theorem. The first paragraph set the stage with two different definitions of manifolds,
and then, in the first sentence of the second paragraph, we read:

The first fundamental theorem is that the first definition is no more general than the second;

any differentiable manifold may be imbedded in Euclidean space.

In this paper, Whitney discusses and proves embedding theorems of this type
for C1,C2, . . . ,C∞ manifolds. We will concentrate on the C∞ case, which we
are calling differentiable manifolds. We will discuss more of what he did in the
next chapter, but first, we want to formulate the more general embedding theorem
problems that we consider in this book. We will be interested in the embedding of
differentiable manifolds, complex manifolds, and real-analytic manifolds into real
or complex Euclidean space or complex projective space, depending on the context.

Let M be an n-dimensional differentiable manifold, and let f : M → RN be
a continuous mapping. Then, f is a proper mapping if the inverse image of any
compact set K ⊂ RN is compact in M . If M itself is compact, then any such f will,
of course, be proper. But in general, not all such continuous mappings are proper.5

An important lemma that is used in many of the embedding theorems, and which is
not that difficult to prove, is that if f is proper, then the image f (M) is closed inRN .

We will be considering mappings from a given n-dimensional manifold M into
Euclidean space RN , and we want to establish some terminology that we will use
throughout the remainder of the book (the same terminology would apply for a
mapping from one manifold to another, but we choose to concentrate on this family
of mappings, as it is the setting for most of the embedding theorems). A mapping

f = ( f1, . . . , fN ):M → RN

4The spelling “embedding” has now come to be standard instead of the spelling “imbedding” used
by Whitney and several of his contemporaries; see [217].
5This is easy to see by simple examples of the form f : R1 → R1, e.g., take f to be a branch of
tan−1.

http://dx.doi.org/10.1007/978-3-319-58184-2_12
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is differentiable if the components f j of f are C∞ functions on M (this means that
they are infinitely differentiable in terms of any local coordinate system on M). If
we consider any other type of smoothness (e.g., Ck) in a given context, then this will
be made explicit at the time. A real-analytic mapping is defined in the same manner.

Let M be an n-dimensional differentiable manifold, then a differentiable mapping
f : M → RN is said to be a regular mapping at x ∈ M if the derivative d fx of
the mapping f at x has maximal rank (in local coordinates at x the Jacobian matrix
∂( f1,..., fN )
∂(x1,...,xn)

has maximal rank). We say that f is a regular mapping on M if f is

regular at each point of M . If f : M → RN is a regular mapping on M and if N ≥ n,
then we say that f is a differentiable immersion, or often, simply an immersion, the
smoothness being clear from the context. The notion of regularity and immersion is
defined for a real-analytic mapping in the same manner.

We will also consider holomorphic mappings of the form

f = ( f1, . . . , fN ):X → CN ,

where X is an n-dimensional complex manifold and the components f j of the map-
ping f are holomorphic functions on X (i.e., holomorphic with respect to the local
coordinate systems on X ). Such a holomorphic mapping is said to be a regular map-
ping at x ∈ X if, in a local coordinate system at x , say (z1, . . . , zn), the Jacobian
matrix ∂( f1,..., fN )

∂(z1,...,zn)
has maximal rank, and the mapping f is regular on X if it has

maximal rank at each point of X . As before, a holomorphic mapping f : X → CN

is a holomorphic immersion if f is regular on X , and dimC X ≤ N .
We note that we are using the same word “regular” to denote this maximal rank

condition in all three contexts (differentiable, real-analytic, or holomorphic), and its
use will be clear in context.

The implicit function theorem is valid in all three categories we are considering,
and thus, if f : M → RN is a differentiable or real-analytic immersion, then the
image of a neighborhood of each point x ∈ M is a differentiable or real-analytic
submanifold of a neighborhood of f (x) ∈ RN . Similarly, by the implicit function
theorem for holomorphic functions, if f : X → CN is a holomorphic immersion,
then f , restricted to a suitable neighborhood U of a given point x ∈ M , maps onto
a holomorphic submanifold defined in a neighborhood of f (x) in CN .

If f is a differentiable immersion and is a homeomorphism onto its image in RN ,
then it is an embedding into RN . The same definition of embedding can be made for
real-analytic mappings into RN or holomorphic mappings into CN . Finally, if f is
a proper mapping and an embedding (in any of the three categories), then its image
is a closed submanifold of RN or CN . This final result, again not very difficult to
prove, is used in almost all of the embedding theorems we discuss.

InChap. 14,wewill discuss the somewhatmore subtle nature ofmappings of com-
plex manifolds into complex projective spaces, since mappings defined by vector-
valued functions, which we have used up till now, are not adequate, as will then
become apparent.

http://dx.doi.org/10.1007/978-3-319-58184-2_14


Chapter 12
Differentiable Manifolds

12.1 Introduction

In this chapter we want to describe Whitney’s proof of the differentiable embedding
theorem. First we outline two different tools which play an important role in this
theorem and which will be useful later as well.

The first tool is that of Lebesgue measure theory, which plays such an important
role inmany branches ofmathematics today. This was the creation of Henri Lebesgue
(1875–1941) in 1902 [136] (see also his important monograph from 1904 [137]).
The study of Lebesgue measure and integration theory is now a standard subject
in undergraduate curricula. All we need from this theory is the concept of a set
of measure1 zero in Rn , which Whitney and others used very effectively in their
embedding theorems. Let’s define a ball of radius r at a point x ∈ Rn to be

B(x, r) := {y ∈ Rn : |x − y| < r}.

Consider any set S ⊂ Rn , then we say that S has measure zero if, for any ε > 0,
there is a countable cover of S by balls Bi = B(xi , ri ) such that

∑

i

Vol(Bi ) < ε,

where Vol(B) is the volume of a ball B ⊂ Rn . We note that if B is a ball of radius r ,
then Vol(B) = Knrn , where Kn is a constant2 depending only on the dimension n.
An important property of sets of measure zero is that if S ⊂ Rn has measure zero,
then the complement of S (Rn − S) is dense in Rn , which is easy to verify.

We nowwant to mention a keymeasure-theoretic result which is very useful in the
various embedding theorems, and which is quite easy to prove. Whitney describes

1Here we refer only to Lebesgue measure in Rn .
2In fact, Kn = π

n
2

�( n2 +1) .

© Springer International Publishing AG 2017
R. O. Wells, Jr., Differential and Complex Geometry: Origins,
Abstractions and Embeddings, DOI 10.1007/978-3-319-58184-2_12

175



176 12 Differentiable Manifolds

this explicitly in Sect. 17 of his paper ([245], pp. 660–661). Namely, let

f : Rn → Rn

be a C1 mapping, and let S be a set of measure zero in Rn , then the image set f (S)

under the mapping f has measure zero in Rn .
To prove this, simply show first that for any compact set K ⊂ Rn , the measure of

f (K ∩ S) is 0, and since S can be covered by a countable number of such compact
sets K, and the measure of a countable union of sets of measure zero is also measure
zero, then f (S)would necessarily havemeasure zero. Now fix such a compact subset
K of Rn , then there exists a Lipschitz estimate of the form

| f (x) − f (y)| ≤ M |x − y|, for all x, y ∈ K

for some constant M which depends on estimates of the first derivatives of the
mapping f on the compact set K . Then if Bi are balls of radius ri in Rn such that
{Bi } cover S ∩ K and ∑

i

Vol(Bi ) < ε,

then, for any two points x, y in Bi , we see that

| f (x) − f (y)| ≤ M |x − y| < Mri .

It follows that
f (S ∩ K ) ⊂

⋃

i

f (Bi ) ⊂
⋃

i

B( f (xi ), Mri ),

and

meas f (S ∩ K ) <
∑

i

KnM
nrni ,

< Mn
∑

i

Vol(Bi ),

< Mnε,

and hence f (S ∩ K ) has measure zero since ε was arbitrarily small.
A simple corollary of this which we will use later is to note that if S ⊂ Rm and f

is a C1 mapping,
f : Rm → Rn, where m < n,

then meas (S) = 0 in Rn . Consider the inclusion i : Rm → Rn given by

i(x) = (x, 0) ∈ Rm × Rn−m .
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Since i(Rm) has measure zero in Rn (it is a lower-dimensional subspace!), then
defining

F : Rn → Rn by F(x, y) = ( f (x), y),

we see that f (S) = F(i(S)), which must have measure zero since i(S) has measure
zero.

A second tool that arose in the first half of the twentieth century, and which
has been used in a wide variety of contexts, is the concept of a cut-off function.
We will give here a simple example of how this is useful in Whitney’s proof of
the embedding theorem, but the concept has many broad applications (smoothing
operators in partial differential equations, the theory of distributions, and in the
general theory of differential topology, as a few examples).

Let us define the function

χ(x) =
{
0 if x ≤ 0,

e− 1
x2 if x > 0.

The function χ has the properties that it is C∞ on R and at the point x = 0, χ is
not real-analytic. Whitney has a similar construction in his 1936 paper [245]. This
type of example shows that the class of C∞ functions is different from the class of
real-analytic functions, and was likely known in the nineteenth century.3 However,
the study of C∞ functions and mappings was primarily developed in the twentieth
century (e.g., by studying manifolds of varying degrees of smoothness as initiated
in the book by Veblen and Whitehead [226]).

Consider now three concentric balls in Rn , centered at the origin:

B(0, 1) ⊂ B(0, 2) ⊂ B(0, 3).

We want to find a C∞ function ϕ(x), symmetric about the origin such that:

ϕ(x) ≡ 1 for |x | ≤ 1,
ϕ(x) ∈ (0, 1) for 1 < |x | < 2,
ϕ(x) ≡ 0 for |x | > 2.

(12.1)

Such a function is called a cut-off function in this particular geometric setting. We
simply define

ϕ(x) := χ(2 + |x |)χ(2 − |x |)
χ(2 + |x |)χ(2 − |x |) + χ(|x | − 1)

, (12.2)

and one can verify easily that ϕ(x) ∈ C∞(Rn) and satisfies the desired properties in
(12.1). There are, of course, many such examples of cut-off functions.

3We have not been able to ascertain who first described such an example, but we recall that
Weierstrass formulated in 1872 an example of a continuous functionwhich is nowhere differentiable
[230], so he or others at that time might have known such an example.
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Fig. 12.1 First page from Whitney’s 1936 embedding paper for differentiable manifolds [245].
Reprinted with the permission of the Annals of Mathematics
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We now want to formally state Whitney’s embedding theorem, and then we will
outline the key steps in the proof.

Theorem 12.6 (Whitney 1936 [245]) Let M be an n-dimensional differentiable
manifold, then there exists a proper differentiable embedding

f : M → R2n+1.

In Fig. 12.1 we see the first page of Whitney’s embedding theorem paper.
The proof of this theorem splits into several natural parts, which we discuss in the
following sections.

12.2 The Local Immersion Approximation

The first step in the proof of the embedding theorem is to show that any differentiable
mapping f : M → RN can be approximated near a given point of M by a mapping
which is an immersion near that same point, provided that N ≥ 2n. As we have seen
earlier, any immersion of a manifold into Euclidean space is locally a differentiable
embedding into the same Euclidean space, so our first step here will provide a local
differentiable embedding into R2n , and we will see why the hypothesis that N ≥ 2n
becomes an important part of the proof at this local level.

By restricting to a local coordinate system, we can formulate the following prob-
lem in Euclidean space. We consider a neighborhood U of 0 ∈ Rn and any differen-
tiable mapping

f : U ⊂ Rn → RN , N ≥ 2n.

For instance, f could be simply a constant mapping. For convenience, we represent
points in Rn and RN as column vectors and we consider a perturbation of the given
mapping f by a linear mapping represented by an N × n matrix A, i.e., let

F(x) := f (x) + Ax,

where A is to be determined.
Our goal is to choose A sufficiently small in size (e.g., ‖A‖ < ε), for any small

ε, and such that
DF(x) = Df (x) + A

is regular (has rank n in this case) at each point of U . Here DF(x) and Df (x) are
the N × n Jacobian matrices of the two mappings at the point x ∈ U . The way we
do this is to choose A so that it avoids the cases where DF(x) might have less than
maximal rank.

Let M(N , n) be the set of all N × n matrices. It is clear that as differentiable
manifolds (or simply as vector spaces)
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M(N , n) ∼= RNn .

Let
Mk(N ,m) := {A ∈ M(N , n) : rank A = k}.

We claim that Mk(N , n) is a submanifold of M(N , n) of dimension k(n − k + N ).
This is easy to verify by observing that a local coordinate system for a point in
Mk(N , n) ⊂ M(N , n) can be described by matrices of the form

(
A B
C 0

)
,

where A has rank k. We note that these dimensions increase from 0, for k = 0, to
(n − 1)(N + 1), for k = n − 1. Therefore,

dim Mk(N , n) ≤ (n − 1)(1 + N ) for k < n. (12.3)

Now consider the mapping

�k : U × Mk(N , n) → M(N , n)

defined by
�k(x, B) := B − Df (x).

The dimension of the image space here is dim M(N , n) = Nn. How large is

dim(U × Mk(N , n))?

By our estimate (12.3) above, we see that, for each k = 0, . . . , (n − 1),

dimU × Mk(N , n) ≤ n + (n − 1)(N + 1),

≤ nN + (2n − N ) − 1,

< nN ,

since N ≥ 2n.
Thus the images

�k(U × Mk(N , n)) ⊂ M(N , n), k = 0, . . . , n − 1,

all have measure zero, and their finite union must have measure zero as well. Hence
we can choose a matrix A arbitrarily small and such that

A /∈ Im�k, for k = 0, . . . , n − 1.
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For this choice of A it follows that

DF(x) = Df (x) + A

is regular for all x ∈ U . Thus F is an immersion on U , as desired.

12.3 Whitney’s Embedding Theorem

Let M be a differentiable manifold of dimension n and consider an arbitrary differ-
entiable mapping

f : M → RN , N ≥ 2n.

The next step in the proof of the embedding theorem is to show that f can be
approximated on M by a mapping f̃ which is a differentiable immersion of M into
RN . As we saw in the previous section it was useful to have N ≥ 2n in order to find
an approximation of a local mapping by a local immersion, and we make the same
assumption here.

To start this process, we need a convenient method of approximating mappings
of a manifold M into Euclidean space RN . There are many such methods of approx-
imating, but in this case we choose a simple pointwise approximation. Namely, let
η(x) be a continuous function defined on M such that η(x) > 0 for all x ∈ M . We
say that a function f̃ is an η approximation to f if

| f (x) − f̃ (x)| < η(x), x ∈ M,

where |y| is the usual Euclidean norm of a vector in RN .
We now define a specific countable locally finite covering {Ui } of the manifold

M , where
hi : Ui → Rn

is a coordinate mapping (diffeomorphism) onto the ball B(0, 3). We define

Vi = h−1
i (B(0, 2)),

Wi = h−1
i (B(0, 1)),

and we require further that {Wi } is also a countable locally finite covering4 of M .

4It is easy to see that such a covering exists. Simply take any countable covering {Ũ j } of M with
coordinate chart mappings

h̃ j : Ũ j → Rn,

and then consider the countable collection of balls {Bμ j } in the open set

h̃ j (Uj ) ⊂ Rn
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Let ϕ be a cut-off function for

B(0, 1) ⊂ B(0, 2) ⊂ B(0, 3),

as we constructed earlier (see (12.1)), and let

ϕi := ϕ ◦ hi , (12.4)

which are differentiable functions on M with compact support in Ui .
We now use this covering {Ui } and the associated cut-off functions ϕi to define a

sequence of local approximations which will converge to the desired global immer-
sion. We will simply illustrate one simple step in the approximation procedure.
Suppose that f is given as an immersion on an open set U ⊂ M . Let the sets {Ui }
be indexed by integers i ∈ Z, and suppose that for i < 0,

Wi ⊂ U,

and for i ≥ 0, this is not the case. We restrict our attention to U0 ∪ U , which is an
extension of U to a somewhat larger open set, and define an approximation to f by

f̃ := f + ϕ0h
−1
0 (Ax), (12.5)

where A is an N × n matrix to be chosen, and again the vector x is considered as a
column vector in Rn .

We want to choose A small enough so that

| f̃ (x) − f (x)| < η(x),

for a given measure of approximation η(x). Expressing this perturbation in terms of
the local coordinates x ∈ Rn , we have

f̃ (x) = f (x) + ϕ(x)Ax,

and we require the Jacobian matrix

D f̃ = Df + Ax · Dϕ(x) + ϕ(x)A

to have maximal rank on B(0, 1) (here Dϕ(x) is a row vector). Note that on B(0, 1),
ϕ(x) ≡ 1, and Dϕ(x) ≡ 0, so that using the arguments as in Sect. 12.2 we can
choose an A small enough to ensure that D f̃ has maximal rank on a neighborhood

(Footnote 4 continued)
of rational radii and rational center points. The collection of open sets {h̃ j (Bμ j )} will provide a
covering of M from which one can construct the desired locally finite covering.
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of B(0, 1). Hence on M , f̃ is regular on a neighborhood of W0. This argument can
be extended5 inductively to all of M .

There is a similar argumentwith a slightly different local perturbation that provides
a proof that an immersion can be modified to become a differentiable embedding,
provided that N ≥ 2n + 1. Suppose that we have an immersion

f : M → RN ,

where N ≥ 2n+1, then we want to indicate how to show that it can be approximated
by an embedding.

Suppose that f is one-to-one on an open setU ⊂ M , and let us use the same type
of covering

Wj ⊂ Vj ⊂ Uj

aswas used in the previous paragraphs,wherewe assume that f is an embedding onU
and when restricted to eachUi (any immersion is an embedding on the neighborhood
of each point, as we have seen earlier). Let us consider the first approximation inU0

to be of the form
f̃ (x) := f (x) + ϕ0(x)b,

where b is a vector in Rn to be chosen and ϕ0 is the cut-off function for W0 ⊂ V0 ⊂
U0. Let

N := {(x, y) ∈ M × M : ϕ0(x) �= ϕ0(y)}.

Consider the mapping
� : N → RN

defined by

�(x, y) = f (x) − f (y)

ϕ0(x) − ϕ0(y)
.

Since dim N = 2n, and N > 2n, if follows that

meas�(N ) = 0 in RN .

By choosing a vector b sufficiently small and not in the image of �, it follows easily
that themapping f̃ is an embedding onU∪V0. This can then be extended step-by-step
inductively to the remaining elements of the covering Ui , i > 0.

The final step of the proof of the embedding theorem is to show that there is a
proper embedding of amanifold of dimension n in the Euclidean spaceRN .We recall
that the sequence of approximations above started with a given arbitrary continuous
mapping

5The lecture notes on differential topology by Milnor [154] have a very readable and simplified
account of Whitney’s original arguments in [245].
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f : M → RN ,

where N ≥ 2n+1, and we obtained an approximation which was an embedding. We
noted at the time that the initial mapping could well have been a constant mapping.

Let us consider a somewhat different initial mapping as a starting point, namely
a proper mapping of a specific kind. Let {Ui } be a locally finite covering of the type
used above, where now we assume the index set consists of the positive integers, and
let ϕi (x) be the cut-off functions as in (12.4). Let

f (x) :=
∑

n

nϕn(x)

be a differentiable function defined on M and let f denote the mapping

f : M → R ⊂ RN

given by the natural inclusion of the real line R in the higher-dimensional Euclidean
space RN .

It is easy to verify that f is a proper mapping. Namely, any compact set K in
RN is bounded, and if |y| ≤ L for y in K where L a positive integer, then evidently
| f (x)| ≤ L , for any x in f −1(K ). It follows that

f −1(K ) ⊂
L⋃

i=0

Wi ⊂
L⋃

i=0

Wi ,

since f (x) > L on all other Wi , and hence f −1(K ) is compact, as desired.
Now taking this f as our initial mapping and finding an approximation f̃ of f

which is an embedding as in the previous paragraphs such that

| f (x) − f̃ (x)| < 1 on M,

it will follow that f̃ is also a propermapping. This completes our outline ofWhitney’s
original proof of his embedding theorem from 1936.

12.4 Concluding Remarks

There were several unanswered questions which arose out of the fundamental results
of Whitney’s 1936 embedding paper. First of all, we remark that there were many
aspects of this wide-ranging paper that we have not discussed here. For instance, he
was able to show that a differentiable submanifold ofRN can be deformed inRN in a
differentiable manner to a real-analytic submanifold ofRN . Hence, his paper gives a
proof that an abstract real-analytic manifold M of dimension n has a C∞ embedding
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of M onto a real-analytic submanifold of R2n+1. However, he was not able to find a
real-analytic embedding. We quote from the first page of his paper ([245], p. 645):

A fundamental problem is the following:Can any analyticmanifold bemapped in an analytic
manner into Euclidean space?

This problem remained unresolved until 1958, when Hans Grauert (1930–2011)
provided a complete solution, as we will see in Sect. 15.7.

A second problem arose naturally from Whitney’s paper. Could the embedding
dimension 2n+1 for an n-dimensionalmanifold be diminished, and if so, howmuch?
In 1944 Whitney [246] was able to show that if an n-dimensional manifold M were
immersed inR2n in a manner that the two intersecting submanifolds at a double point
were transversal (which is the generic case, and which he had proved in his 1936
paper), then by an ingenious sequence of deformations of the immersed submanifold,
called the “Whitney trick,” he was able to deform the immersed submanifold to
an embedded submanifold, having removed the double points. Hence the strong
Whitney embedding theorem asserts: any n-dimensional differentiable manifold can
be embedded in R2n .

It had been known for some time at the time ofWhitney’swork that theKlein bottle
and real two-dimensional projective space could not be embedded in R3, but could
be embedded in R4, consistent with Whitney’s general work (this related to their
non-orientable nature). A later result of Franklin Peterson in 1957 [179] generalized
these examples. Namely, he showed that real projective space of dimension 2n cannot
be embedded in R2n+1−1. Hence it is not true that any n-manifold embeds in R2n−1,
and the embedding dimension 2n is the best possible in general.

There are, however, many examples of embedding and non-embedding theorems
of a more specialized nature. These questions are mostly related to problems in
algebraic topology (more specifically, characteristic class questions of the associated
vector bundles arising in the embedding problems). The survey paper by Sanderson
in 1964 [207] illustrates a number of such embedding results. There is a listing on the
Internet of a large number of such embedding and immersion theorems (including
the paper by Sanderson, just quoted, for instance) by DonDavis of Lehigh University
[51].

http://dx.doi.org/10.1007/978-3-319-58184-2_15


Chapter 13
Riemannian Manifolds

13.1 Introduction

In the previous chapter, we have described how a differentiable manifold can be
embedded in a Euclidean space. In this chapter, we want to discuss the isometric
embedding theorem of John Nash (1928–2015) [165]. First we recall that a Rie-
mannian manifold is a differentiable manifold M with a Riemannian metric g which
is a smoothly varying inner product on the tangent space Tx (M) at each point x ∈ M ,
which we denote by g(X,Y )x , where X and Y are tangent vectors at x . Locally such
ametric is represented by a symmetric positive-definite matrix of differentiable func-
tions

gi j (x) = g

(
∂

∂xi
,

∂

∂x j

)
x

,

where ∂
∂xi

and ∂
∂x j

are tangent vectors at x in terms of local coordinates (x1, . . . , xn).

Let now RN be equipped with its usual Euclidean structure, which makes it into
a Riemannian manifold as described above. Classically this is described by

ds2 =
N∑

j=1

dy2j ,

where (y1, . . . , yN ) are coordinates in RN . In this case the matrix gi j is the constant
identity matrix, and we designate this Riemannian structure on RN by the symbol ρ.

If f : M → N is a differentiable mapping from a differentiable manifold M to
a differentiable manifold N , and N is equipped with a Riemannian metric g, then
there is a natural pullback Riemannian metric on M defined by

f ∗(g)(X,Y ) = g(D f X, D f Y ) f (x),

© Springer International Publishing AG 2017
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where D f X and D f Y represent the derivative of f mapping tangent vectors at x ∈ M
to tangent vectors at f (x) ∈ N .

If
f : M → RN

is a differentiable mapping, then the pullback Riemannian metric on M induced by
the mapping f = ( f1, . . . , fN ) and the Euclidean metric ρ on RN is given by

g f := f ∗(ρ) =
∑

α

(d fα)
2,

or in local coordinates (x1, . . . , xn) on M

(g f )i j =
∑

α

∂ fα
∂xi

∂ fα
∂x j

.

The isometric embedding problem is: given a Riemannian manifold (M, g), find a
differentiable embedding

f :→ RN ,

so that
f ∗(ρ) = g.

In other words, can an embedding f be found so that the given metric g on M is
the same as the metric induced by the ambient Euclidean metric on the submanifold
f (M) ⊂ RN?
This question in its global form could not have been formulated until we had the

notion of an abstract manifold as discussed earlier in this book. However, local Rie-
mannian geometry has been a subject of intense study since the advent of Riemann’s
innovative paper of 1954 [201]. In 1871 Ludwig Schaefli (1814–1895) formulated
and announced a theorem that a local Riemannian manifold M of dimension n could
be locally isometrically embedded in R

n(n+1)
2 [208]. This was the first instance of an

isometric embedding theorem,which then became an object of focussed investigation
in the twentieth century.

In the local situation, where we have an n-dimensional manifold with coordinates
(x1, . . . , xn) to be embedded in RN , if we look at the equation

gi j (x) =
N∑

α=1

∂ fα(x)

∂xi

∂ fα(x)

∂x j
,

where gi j is given and the embedding functions ( f1, . . . , fN ) are unknown, then we
see that there are n(n+1)

2 differential equations (recalling that gi j is a symmetric n × n
matrix) with N unknowns.
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So, in principle, the optimal number of unknown functions defining an embedding
would be N = n(n+1)

2 , and this is what Schaefli formulated in his paper. This result
was proved in the real-analytic case for n = 2 by Maurice Janet (1888–1983) in
1926 [117] and immediately generalized in 1927 to the general case of a local real-
analytic isometric embedding theorem by Elie Cartan [32]. Cartan utilized the theory
of Pfaffian systems as a tool which yielded this result quite simply. The analytic basis
for solving these types of geometric families of partial differential equations was the
Cauchy–Kovalevskaya theorem, which required real-analyticity of the differential
equations involved.

Hermann Weyl attempted to solve a global type of isometric embedding problem
when he tried to show that a Riemannian two-sphere with positive curvature could be
isometrically embedded into R3. He was not successful, but he outlined a method of
proof that he thought could some day yield a proof if carried out completely. Louis
Nirenberg (1925–) was able to completeWeyl’s proof in 1953 [171]. There were also
results developed during this time period which showed that isometric embeddings
for specific dimensional situations were not possible if certain curvature constraints
were imposed. For instance, Hilbert showed in 1901 that a two-dimensional surface
of constant negative curvature could not be isometrically embedded inR3 as a smooth
hypersurface [101]. For other such references, we refer to Nash’s paper [165].

Now we turn to Nash’s paper of 1956, where he proved a quite general isometric
embedding theorem [165], which we formulate here. In Fig. 13.1 we see the opening
page of Nash’s celebrated paper.

Theorem 13.1 (Nash 1956 [165])Let (M, g)be an n-dimensional Riemannian man-
ifold, then there is an integer N > n and an embedding

f : M → RN

such that
g = f ∗(ρ),

where ρ is the Euclidean metric on RN .

In the next section we will give a summary of the key ideas in the proof of Nash’s
theorem. The principal theorem was first proved by Nash in his paper for the case
of a compact Riemannian manifold, and then at the end of his paper, he shows by
a relatively simple device how he was able to extend this result to the noncompact
case. We will mention this briefly at the end of the next section. However, we will
only consider the isometric embedding theorem for the case of compact Riemannian
manifolds in the remainder of this chapter.
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Fig. 13.1 First page from Nash’s 1956 isometric embedding paper [165]. Reprinted with the per-
mission of the Annals of Mathematics
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13.2 Summary of the Proof of Nash’s Embedding Theorem

There are three key steps in the proof of Nash’s theorem, and the second step is by
far the most difficult. We will outline these steps here and show how this proves
the embedding theorem. Then we will discuss each of them in more detail in the
concluding three sections of this chapter.

We assume now that an n-dimensional compact Riemannian manifold M with a
Riemannian metric g are given, and then consider the ideas leading to the proof of
the embedding theorem.

Step 1: Nondegenerate Embeddings. Nash’s first step is to formulate and show
the existence of a particular kind of nondegenerate embedding of M into a Euclidean
space. Let

f : M → RN

be a given embedding that we know exists by Whitney’s embedding theorem (we
could take N to be 2n, for instance). As an embedding, we know that the Jacobian
matrix (in local coordinates (x1, . . . , xn))

∂( f1, . . . , fN )

∂(x1, . . . , xn)
(13.1)

has maximal rank at each point of M . Here we consider this Jacobian matrix as
having N columns indexed by the fi and n rows indexed by the first-order partial
derivatives ∂

∂x j
.

We nowwant to generalize themaximum rank condition involving first derivatives
to take into account nondegeneracy involving second derivatives as well. Now we
assumewe have an embedding f of M into a Euclidean space of dimension N , where
N ≥ n + n(n+1)

2 , and consider the following generalization of the Jacobian matrix
(13.1) ⎛

⎝
∂ fα
∂xi

∂2 fα
∂xi ∂x j

⎞
⎠ , (13.2)

for i ≤ j . Here the columns are indexed by the embedding functions ( f1, . . . , fN )

as in (13.1), the first n rows are given by the first-order partial derivatives (again as in
(13.1)), and the next n(n+1)

2 rows are given by the second-order derivatives in some
specific order. We say that f is nondegenerate if the generalized Jacobian matrix in
(13.2) has rank n + n(n+1)

2 at each point of M . It is not difficult to check that this
condition is valid under changes of coordinate systems on M .

Nash showed that there exist nondegenerate embeddings of M into a Euclidean
space RN , where N = (n/2)(n + 5), and we will describe his proof below. This is
the simplest of his three steps, as we will see.
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Step 2:APerturbationTheorem. Nowwewant to discuss a topological structure
on the vector space of allCs functions on M , for s ≥ 1. Let us choose a finite covering
of M by coordinate charts Ui of the form

χi : Ui → B(0, 3)

and such that if Vi = χ−1
i (B(0, 2)), then {V i } also covers M (as we did in Sect. 12.2).

We define, for any f ∈ Cs(M),

‖ f ‖s = sup
i
( sup
|α|≤s

sup
x∈V i

|Dα f (x)|),

where

Dα f (x) = ∂|α| f

∂xα1 · · · ∂xαn
(x),

and where α is a multiindex of the form α = (α1, . . . ,αn) and |α| = α1 + · · · + αn .
The norm ‖ · ‖ makes Cs(M) into a Banach space.1 This norm depends on the
choice of coordinate charts on M , but any other choice of coordinate charts gives an
equivalent topology on the vector space Cs(M).

We can create the same sort of normon the vector space of vector-valued functions,
and we let Maps(M,RN ) be the Banach space of Cs mappings from M to RN . We
can denote the Cs embeddings of M into RN by Ems(M,RN ) and similarly the
nondegenerate embeddings of M intoRN can be denoted by NDs(M,RN ). Thus we
have inclusions:

NDs(M,RN ) ⊂ Ems(M,RN ) ⊂ Maps(M,RN ),

and it is easy to see that (assuming that s ≥ 2) each of these inclusions is an open
subset of the next Banach space in this series, since the regularity and one-to-one
nature of these mappings is preserved under C2 perturbations.

Let us now consider the vector space of covariant symmetric two-tensors on
M , and let us denote this vector space by Sym(M) for convenience.2 Our given
Riemannian metric g is a tensor of this type. We can put a Banach space structure

1We refer to any standard text on real analysis that describes the basic concepts of elementary
functional analysis that we need in this book, i.e., Banach spaces and Hilbert spaces are natural
generalizations to infinite dimensions of Euclidean space that we utilize. See, for instance, the
classic text by Royden [204], which has the basic language of Banach spaces and Hilbert spaces
that we need in this book.
2Tensor fields in geometry are generalizations of vector fields and differential forms and go back
to Riemann’s original description of a Riemannian metric, as described in Sect. 5.2. In particular,
a covariant symmetric two-tensor is simply, in terms of a local coordinate system x1, . . . , xn),
a differentiable matrix ti j (x) which is symmetric and behaves under coordinate transformations
just as a Riemannian metric does, as described in (5.4). See Helgason’s excellent monograph on
differential geometry [99] for a description of tensor fields in terms of multilinear algebra and vector
fields on a differentiable manifold, along with their varied local descriptions, as we have used here.

http://dx.doi.org/10.1007/978-3-319-58184-2_12
http://dx.doi.org/10.1007/978-3-319-58184-2_5
http://dx.doi.org/10.1007/978-3-319-58184-2_5
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with a specific degree of smoothness on these tensors, just as we did for the smooth
functions above. We note that a given tensor on a coordinate chart is a vector-valued
function. We can put a Cs norm on each Vi in the same manner as we did for
scalar functions in the previous paragraph and then maximize over all coordinate
charts obtaining a Cs norm on a given tensor t , which we denote again by ‖t‖s . Let
Syms(M) be the space of Cs tensors on M . This again depends on the coordinate
charts, but the topology does not. The set of Riemannian metrics on M which are
locally Cs vector-valued functions on M is then an open set in Syms(M), which we
denote by Mets(M). Thus we have the inclusion

Mets(M) ⊂ Syms(M).

We see that if f ∈ Maps(M,RN ), then

g f = f ∗(ρ) ∈ Mets−1(M),

since f ∗(ρ) involves first derivatives of the mapping f . So, in particular, there is a
mapping

F : NDs(M,RN ) → Mets−1(M). (13.3)

Nash’s second step in his proof is to show that the mapping (13.3) is an open map-
ping (provided s ≥ 3). In particular, if g0 = f ∗

0 (ρ) is a particular Riemannian metric
in Mets−1(M) induced by a nondegenerate embedding f0, then every Riemannian
metric in a neighborhood of g0 is induced by a nondegenerate embedding as well.
That is, all metrics in such a neighborhood come from isometric embeddings into
RN . This perturbation result of Nash is the deepest and most difficult part of his
paper, and we will discuss it in greater detail below.

Step 3: An Approximation Theorem. The third step in the proof is to show that
for a given metric g on M , one can find a C3-approximation to g by a metric g̃ which
is induced by some mapping y : M → RL , i.e., g̃ = gy , where L = 2n2 + 3n (note
that a mapping can induce a metric even if the mapping is not an embedding!).

Outline of Proof: Putting these three steps together, as Nash does, involves a very
nice trick which we outline briefly here, and then we will discuss each of these steps
in more detail below. By the hypothesis in Nash’s theorem, we are given a metric
g on the manifold M . By Step 1, we can find a nondegenerate embedding f which
induces a second metric g f on M . But the two metrics on M , g and g f , have no a
priori relation to each other, and, for instance, the distance between them ‖g − g f ‖
in some Ck-norm might be quite large. We know from Step 2 that metrics close to g f

can be induced by an embedding, so we need to find a way of reducing the problem
to this situation.

Nash solves this problem by considering a suitable additional mapping y into
a perhaps different dimensional Euclidean space which can effectively move the
problem into a suitable neighborhood of g f , as we will see. Suppose we have two
such differentiable mappings
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f : M → RN ,

y : M → RL ,

where f is an embedding.3 Then we can define a new mapping, which is then also
an embedding:

e : M → RN+L

by
e = ( f1, . . . , fN , y1, . . . , yL).

It then follows that there is an addition of induced metrics on M , namely,

e∗(ρ) = f ∗(ρ) + y∗(ρ)
= g f + gy .

Nash chooses f to be a nondegenerate embedding as above, with the additional
property that g − g f is positive-definite (which is possible by changing the scale in
RN for the mapping f ). Then he chooses the mapping y so that

g f + gy approximates g.

More specifically, he chooses the mapping y so that

gy approximates g − g f ,

which is possible by Step 3, since g − g f is a metric on M . We choose this approxi-
mation in the C3-norm.

Putting this together, we now have

‖(g − gy) − g f ‖3 < ε,

and hence g − gy is realizable as an embedding

g − gh = g f̃ ,

for a nondegenerate embedding
f̃ :→ RN ,

by Step 2. Consequently,
g = g f̃ + gy = gẽ,

3Nash uses the notation (z, y) for this pair of mappings, where z is an embedding. We have used
the notation f in general in this book to denote an embedding.
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where
ẽ = ( f̃ , y) : M → RN+L ,

which shows that the given metric g on M is given as an induced metric from the
embedding ẽ, and this concludes Nash’s proof of his theorem (assuming Steps 1, 2,
and 3 above).

In Step 1, Nash was able to find N = (n/2)(n + 5), and in Step 3, he obtained
L = 2n2 + 3n, obtaining for a compact Riemannian manifold of dimension n an
isometric embedding of the form

f : M → RN+L = R(n/2)(3n+11).

For noncompact manifolds his embedding dimension is larger, and it is of the form

f : M → R(n/2)(n+1)(3n+11).

13.3 Nondegenerate Embeddings

As we have seen in Sect. 12.3, Whitney’s embedding theorem tells us that if M is an
n-dimensional differentiable manifold, then there is an embedding

f : M → RT ,

for some T > n (in fact, T can be taken to be 2n). We want to show that there exist
nondegenerate embeddings in the sense described in (13.2). Consider the following
embedding which uses the mapping functions from f . Namely, let

e = (e1, . . . , eN ) : M → RN

be given by

e = ( f1, . . . , fT , f 21 , . . . , f 2T , f1 f2, . . . , f1 fT ,

f2 f3, . . . , f2 fT , . . . , fT −1 fT ),

where we see that N = T + T (T +1)
2 . We claim that e is a nondegenerate embedding.

To see this, we let p ∈ M , and let (x1, . . . , xn) be local coordinates near p =
(0, . . . , 0). Suppose, by reordering the mapping functions ( f1, . . . , fT ), the first n
functions have nonzero Jacobian determinant

∂( f1, . . . , fn)

∂(x1, . . . , xn)

http://dx.doi.org/10.1007/978-3-319-58184-2_12


196 13 Riemannian Manifolds

near p. By the implicit function theorem, we can express the mappings f and e
locally near p as a graph over the coordinate chart with coordinates x = (x1, . . . , xn).
Namely, f becomes

(x1, . . . , xn) 	→ (x1, . . . , xn, fn+1(x1, . . . , xn), . . .)

or
x 	→ (x, fn+1(x), . . . , fT ),

and the mapping e becomes, in the same manner,

x 	→ (x, fn+1(x), . . . , fT (x), x2
1 , . . . , x2

n , f 2n+1(x), . . .).

By reordering again, and starting with the explicit linear and quadratic terms, we
have that e has the form

x 	→ (x1, . . . , xn, x2
1 , . . . , x2

n , x1x2, . . . , x1xn, x2x3, . . . , xn−1xn, fn+1(x), . . .).

The second-order matrix of derivative of this mapping will have the form

⎛
⎝

∂ f α

∂xi

∂2 f α

∂xi ∂x j

⎞
⎠ ,

as described above in (13.2). There are n + n(n+1)
2 rows in this generalized Jacobian

matrix, and using the explicit form of the mapping above, when we compute this
matrix at x = 0, we obtain ⎛

⎝ I ∗ ∗ ∗
0 2I ∗ ∗
0 0 I ∗

⎞
⎠ ,

where I denotes an identity matrix of the appropriate size. This shows that the
mapping e is nondegenerate near the point p ∈ M , and since this argument is valid
for any such point on M , we see that the mapping is nondegenerate, as desired.

This argument shows that there exist nondegenerate embeddings of the form

f : M → R2n+n(2n+1) = R2n2+3n .

Nash has a perturbation of this argument4 in his paper which lowers this embedding
dimension substantively, and he obtains a nondegenerate embedding of the form

f : M → R2n+ n(n+1)
2 = R(n/2)(n+5).

4 In Sect. 13.5 there is a perturbation argument which lowers the mapping dimension in that context,
which is very similar to the argument which is omitted here.
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13.4 Nash’s Implicit Function Theorem

In our summary of the proof of Nash’s isometric embedding theorem in Sect. 13.2,
we discussed what we called Step 2 of this proof, namely that the mapping

F : NDs(M,RN ) → Mets−1(M),

as formulated in (13.3), is an open mapping. This specific result is now referred to
as the Nash implicit function theorem, and its proof has been adapted to many other
contexts, as wewill brieflymention later.Wewant to understand this in the context of
more classical implicit function theorems, and then we will proceed to a discussion
of the proof itself.

The mapping F in (13.3) is actually defined on the Banach spaces which include
the specific open sets NDs(M,RN ) and Mets−1(N ). Namely,

F : Maps(M,RN ) → Syms−1(M) (13.4)

is given by the same local coordinates formula

(F( f1, . . . , fN ))i, j =
N∑

α=1

∂ fα
∂xi

∂ fα
∂x j

, i, j = 1, . . . , n, (13.5)

which is a nonlinear mapping from one Banach space to another. Note that it is
nonlinear simply because F(λ f ) = λ2F( f ).

In the finite-dimensional situation, if we have a smooth mapping

F : U ⊂ Rn → Rm, n ≥ m,

where U is an open subset ofRn , then the classical implicit function theorem asserts
that if DF , the derivative of the mapping F , is surjective at a point x ∈ U , then a
neighborhood of x is mapped by F onto a neighborhood of F(p).

It follows that in the infinite-dimensional casewe are led to look at the derivative of
themapping F . There are several notions of differentiation in the infinite-dimensional
case, but a common and very important one is the Fréchet derivative, which is pat-
terned for Banach spaces after the finite-dimensional case. Namely, let V and W be
Banach spaces, and if F : V → W , then the Fréchet derivative F ′(u) is defined to
be a bounded linear operator5 A : V → W such that

lim
h→0

‖F(u + h) − F(u) − Ah‖
‖h‖ = 0.

5A bounded linear operator is a linear mapping L : V → W , where V and W are Banach spaces,
and such that there is a constant K such that ‖L(v)‖ ≤ K‖v‖, for all v ∈ V .
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We will consider a special case of mappings of Banach spaces which serves our
purpose here. Namely, F is said to be a quadratic form on V if

B(u, v) := F(u + v) − F(u) − F(v)

is bilinear and
F(λu) = λ2F(u).

It follows easily that such an F has a continuous Fréchet derivative at each point of
V and that

F ′(u)h = B(u, h).

Going back to our mapping F in the Nash setting (13.4), we easily see that F
is a quadratic form on Maps(M,RN ), and the Fréchet derivative is given in local
coordinates by

(F ′( f )h)i, j =
∑

α

∂ fα
∂xi

∂hα

∂x j
+

∑
α

∂hα

∂xi

∂ fα
∂x j

, 1 ≤ i, j ≤ n. (13.6)

Let us now give an example of an infinite-dimensional implicit function theorem
which is a model for the more difficult Nash implicit function theorem (see Theorem
2.1 in [210]).

Theorem 13.2 Let B be the unit ball in a Banach space V and let

F : B → V

be a mapping with first and second Fréchet derivatives which are bounded by a
constant M > 2, and suppose that there is a mapping

L : B → B(V ),

where B(V ) denotes the bounded operators on V , such that

F ′(u)L(u)h = h, u ∈ B, h ∈ B, (13.7)

|L(u)h| ≤ M |h|, u ∈ B, h ∈ V . (13.8)

Then, if
|F(0) ≤ M−5,

it follows that F(B) contains a neighborhood of the origin.

Equation (13.7) in Theorem 13.2 asserts that the derivative F ′(u) of F has a right
inverse at each point of B. This is the same as hypothesizing that the derivative
mapping should be surjective, as was hypothesized in the finite-dimensional setting.
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It is easy to see, by using translations in both the domain and image Banach spaces,
that this theorem implies that if F(u0) = v0, for a given u0 ∈ B, then the image of B
in V contains a neighborhood of v0 ∈ V , just as in the finite-dimensional case, i.e.,
that F is an open mapping.

The proof of Theorem 13.2, as given in Schwartz’s lecture notes [210], uses an
infinite-dimensional version of the classical Newton method for approximating the
roots of a function in one variable. Let us recall the classical situation to clarify this.
Suppose we are given a suitable function f : R → R, and we want to find a root,
i.e., a point x on the real line where f (x) = 0. Assume the derivative of f �= 0 and
choose an initial approximation x0, and let

x1 := x0 − f (x0)
f ′(x0) ,

...

xn+1 := xn − f (xn)

f ′(xn)
.

Under appropriate hypotheses this set of successive approximations converges to
a point x on the real line where f (x) = 0. We note that each of the reciprocals
of the derivative used in these approximations, 1/ f ′(xn), is the inverse to the one-
dimensional linear mapping f ′(xn) : R → R.

We can mimic this procedure for a proof of Theorem 13.2 by using the right
inverses L(un) to the linear mappings F ′(un) : B → B. Namely, we obtain a set of
successive approximations of the form

un+1 := un − L(un)F(un), (13.9)

where we set u0 = 0. This does indeed provide a proof of the theorem, as shown in
[210], pp. 42–44.

Let us return to the Nash mapping (13.4), whose derivative is given in the formula
(13.6). We write this symbolically as

F ′( f )h = k, (13.10)

and we need to try to solve this linear equation for h ∈ Map(M,RN ), for a given
k ∈ Sym(M) (ignoring the orders of differentiability for the moment). This is a
linearization (at a specific point) of the original problem: given a metric g, find an
embedding f such that F( f ) = g.

To try to use the ideas in the Banach space implicit theorem above (Theorem
13.2), we need to try to find a right inverse to the linear mapping (13.10). In order to
do this, Nash introduces additional linear equations to this under-determined set of
linear equations to simplify the problem. Namely, consider the additional constraint
on the vector h, in our given local coordinate system:

∑
α

∂ fα
∂xi

hα = 0, i = 1, . . . , n. (13.11)
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Nash phrases this condition as: “requires the perturbation {hα} to be normal to the
imbedding” ([165], p. 31). This condition can be expressed in a coordinate-free
manner, but we won’t bother with that here. Thus we are trying to solve the system
of equations:

∑
α

∂ fα
∂xi

∂hα

∂x j
+ ∂hα

∂xi

∂ fα
∂x j

= ki j , 1 ≤ i, j, n, (13.12)

∑
α

∂ fα
∂xi

hα = 0, i = 1, . . . , n. (13.13)

Again, here we are trying to solve for hα for a given ki j . Note this set of equations
involves derivatives of the unknown functions hα.

By differentiating (13.11) we obtain

∑
α

∂2 fα
∂xi∂x j

hα +
∑

α

∂ fα
∂xi

∂hα

∂x j
= 0, 1 ≤ i, j ≤ n. (13.14)

We can now substitute (13.14) into (13.12) and obtain a set of equations of the form

−2
∑

α

∂2 fα
∂xi∂x j

hα = ki j,, 1 ≤ i, j ≤ n, (13.15)

∑
α

∂ fα
∂xi

hα = 0, (13.16)

which is a linear algebraic system of equations relating hα and ki j for a fixedmapping
f . Most importantly, there are no derivatives of hα in these equations. A solution h
of this second system (13.15) and (13.16) yields a solution of (13.12) and (13.13),
and conversely.

Let us write the equations (13.15) and (13.16) as a matrix equation of the form

AH = K , (13.17)

where K =
(

ki j

0

)
is a vector in R

n(n+1)
2 +n and H = (hα). We now assume that our

given mapping f is a nondegenerate embedding, f ∈ NDs(M,RN ), and we see that
this implies that the matrix A in (13.17) has maximal rank (of rank n + n(n+1)

2 ). Since
the matrix A has maximal rank, we know that there is at least one solution to the
Eq. (13.17). By the linearity of the equation, the set of all solutions is therefore a
nonempty convex set. There is a unique solution to (13.17) which satisfies

|H |2 =
∑

α

h2
α is a minimum, (13.18)
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as is easy to show.
We now want to find an explicit formula for this unique solution in order to see its

dependence on the embedding function f . Since A is maximal rank, it follows that
the associated Grammian matrix AAt is nonsingular. Let D be the unique solution
to

(AAt )D = K ,

and let
H = At D.

Then we see that H satisfies (13.17). Namely, D = (AAt )−1K and hence

AH = A(At D) = AAt (AAt )−1K = K .

It is also true that H = At D has minimal norm. To see this, let (·, ·) be the
Euclidean inner product on RN , and suppose that H̃ is any other solution. We see
that

(H̃ , H̃) − (H, H) = (H̃ , H̃) − (H, H) − 2(H, H̃ − H)

= (H̃ − H, H̃ − H) − 2(At D, H̃ − H)

= (H̃ − H, H̃ − H) − 2(D, AH̃ − AH)

= (H̃ − H, H̃ − H) − 2(D, 0)

≥ 0,

and hence H is indeed the minimum norm solution, as desired.
This solution H determines a solution h of F ′( f )h = k in this coordinate system.

If we had two overlapping coordinate systems U1 and U2 and solutions h1 and h2 in
each such coordinate system, then on the overlapping open set (U1 ∩ U2), these two
solutions would have to coincide, by the minimal norm condition, and hence there is
a globally defined and well-defined solution h to the Eq. (13.10). Note that the local
solution H involves second derivatives of f , since the coefficients of the matrix A
involve second derivatives of f , and the solution H involves linear combinations of
the coefficients of A as well as the reciprocal of its determinant (which is nonzero). In
conclusion, if k ∈ Syms(M), and if f ∈ NDs+2(M,RN ), then h ∈ Maps(M,RN ).
We define the right inverse L( f ) to F ′( f ) to be this solution h, and we have

F ′( f )L( f )k = k, for k ∈ Syms(M).

It would be nice if we could use this right inverse L( f ) for F ′( f ) as we did above
in the proof of the Banach space implicit function theorem using Newton’s method
of successive approximations as in (13.9). However, there is a big problem in doing
this. Namely, L( f ) involves a loss of two derivatives, i.e.,
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L( f ) : Syms(M) → Maps−2(M), (13.19)

so a sequence of approximations such as in (13.9) would successively become less
and less smooth, and it would not be possible to obtain a limit of such a sequence
which was smooth. This was the problem that Nash attacked in a subtle and powerful
manner. He introduced smoothing operators acting on the various function spaces
that are involved.

Let’s briefly review the idea of a smoothing operator. A simple first-order differ-
ential operator reduces the smoothness of a function, for instance

d

dx
: Ck(R) → Ck−1(R)

decreases the differentiability as in the right inverse L( f ) in (13.19). Let now ϕ be
a C∞ compactly-supported function in Rn (such as in (12.2)), and let

S( f )(x) :=
∫
R

f (y)ϕ(x − y)dy

be the convolution of ϕ with a function f . If f is, for instance, simply continuous
on Rn , then S( f ) is C∞ on Rn , i.e., S is a smoothing operator, and we have

S : C0(Rn) → C∞(Rn).

In 1938, Sergei Sobolev (1908–1989) created the theory of Sobolev spaces and,
in that context, introduced a large variety of smoothing operators. A Sobolev space
W s(Rn) can be defined intuitively as the space of generalized functions (distribu-
tions) with distributional derivatives of order s which are in L2(Rn), the Lebesgue
square-integrable functions in Rn . The Sobolev spaces are a generalization of the
spaces Cs(Rn) for s being a nonnegative integer, to s being an arbitrary real num-
ber. Sobolev’s fundamental theorem asserts that the spaces of smooth functions are
embedded in his general family of Sobolev spaces. Namely,

W s(Rn) ⊂ Ck(Rn), for s > [n/2] + k + 1. (13.20)

Sobolev spaces are most simply defined by using the Fourier transform. There
are many references for the theory of Sobolev spaces (e.g., Hörmander’s classic
monograph on partial differential equations [111]; in Chap. IV of Wells [239], the
theory of Sobolev spaces, operators of various orders, and the theory of differen-
tial and pseudodifferential operators that is suitable for studying elliptic differential
operators on manifolds is developed). We will see the use of this theory for compact
differentiable manifolds in the next chapter of this book. In our context here, an
operator of order r is defined to be a continuous linear mapping

L : W s(Rn) → W s−r (Rn), r ∈ R.

http://dx.doi.org/10.1007/978-3-319-58184-2_12
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Note that r can be any real number here. Differential operators of order k, for k
a positive integer, are operators of order k in this context (so operators of order r
are generalizations of differential operators, and the notion of order of an operator
generalizes the concept of order of a differential operator).

This language allows one to easily define a smoothing operator in this context.
Quite simply, a smoothing operator is an operator6 of order k, where k < 0. Namely,
the smoothing operator increases the smoothness of a given function, and the order
indicates the amount of smoothing. This is what Nash introduced in order to create a
sequence of successive approximationswhich converged to a solution of his problem.
In particular, Nash introduced suitable smoothing operators Tn so that he could use
successive approximations of the following form:

fn+1 = fn − Tn L( fn) fn. (13.21)

He was then able to show that such a sequence converged to a solution of

f ∗(ρ) = g,

as desired, where g is a metric on N sufficiently close (in the C3-norm) to the metric
f ∗
0 (ρ), for the initial nondegenerate embedding we started with.
The details of this convergence process, as carried out by Nash in his paper,

are quite detailed and complex (pp. 37–42 of [165]), involving numerous delicate
estimates. The successive approximation sequence (13.21) is a simplification of the
set of estimates that Nash actually formulated and used in his proof. We illustrate
this by reproducing p. 43 of his paper in Fig. 13.2.

After Nash’s paper appeared, J.T. Schwartz (1930–2009) [209] gave a general-
ization and somewhat simpler proof of Nash’s implicit function theorem. This was
followed a year later by Jürgen Moser (1928–1999) [161], who gave a substantive
generalization of this theorem. Today this implicit function theorem is referred to
as the Nash–Moser implicit function theorem. Both Schwartz and Moser showed
the utility of this type of implicit function theorem for solving a broad variety of
nonlinear partial differential equations. Nash’s original work on this type of implicit
function theorem, which we have outlined here, involved solving the very specific
and quite difficult partial differential equation

F( f ) = g,

or, in local coordinates, ∑
α

∂ f α

∂xi

∂ f α

∂x j
= gi j ,

for |g| being sufficiently small.

6The word operator is used in functional analysis to indicate a continuous linear mapping or
transformation from one topological vector space to another, most often a Banach or Hilbert space.
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Fig. 13.2 Page 43 from Nash’s 1956 paper [165]. Reprinted with the permission of the Annals of
Mathematics
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We give here a more precise example of a formal statement of this type of implicit
function theorem in a special case (this is from Schwartz’s lecture notes [210], which
illustrates the complexity of the estimates involved).We continue to assume that M is
a compact differentiable manifold of dimension n, and we let Cm denote the Banach
space of Cm real-valued functions on M .

Theorem 13.3 Let F be a mapping from the unit ball B in Cm into Cm−α. Suppose
that:

• F has two continuous Fréchet derivatives, both bounded by M.
• There exists a mapping L with domain B and range in the space B(Cm,Cm−α) of

bounded operators from Cm to Cm−α, such that:

|L( f )h|m−α ≤ M |h|, f ∈ B, h ∈ Cm, (13.22)

F ′( f )L( f )h = h, f ∈ B, h ∈ Cm+α, (13.23)

|L( f )F( f )|m+9α ≤ M(1 + | f |m+10α), f ∈ Cm+10α. (13.24)

Then, if
|F(0)|m+9α ≤ 2−40M−202,

F(B) contains a neighborhood of the origin.

The proof of this theorem (see [210]) uses a family of suitably-defined smoothing
operators Tn indexed by an integer n and the successive approximations (13.21) and
the initial estimate f0 = 0.

13.5 Approximation of a Metric by an Induced Metric

Step 3 of Nash’s proof of his embedding theorem consists of showing that a given
Riemannian metric g on a compact differentiable manifold M of dimension n can be
approximated in theC3-normby aRiemannianmetric y∗(ρ) inducedby amapping y :
M → RL ,whereρ is theEuclideanmetric onRL .Wewill outline this approximation,
following Nash’s exposition in his paper.

First, Nash uses an aspect of Whitney’s embedding theorem that we mentioned
earlier in Sect. 12.4. Namely, Whitney not only showed that a Ck-manifold could be
embedded by a Ck-mapping

f : M → R2n,

as a Ck-submanifold of R2n , but that the image f (M) could be realized as a real-
analytic submanifold ofR2n . Even if M had a real-analytic structure, it was unknown
until 1958 if there was a real-analytic mapping onto its image f (M), as wewill see in
Sect. 15.7. However, we will use (as Nash did) the real-analytic structure of its image

http://dx.doi.org/10.1007/978-3-319-58184-2_12
http://dx.doi.org/10.1007/978-3-319-58184-2_15
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f (M), i.e., represented by the zeros of real-analytic functions with nonvanishing
Jacobian determinants at each point of f (M) ⊂ R2n .

We now suppose that this is the case, and we let A denote the image f (M) as a
real-analytic submanifold of Ra , where for convenience, we let a = 2n. Our given
metric g then becomes a Ck-metric on the submanifold A, and we need to find a
mapping y of A into RL , for some L , which induces a metric g̃ on A that is a C3

approximation of g on A.
The metric g on A is a symmetric two-tensor, represented in terms of local coordi-

nates (x1, . . . , xn) on A as a symmetric matrix gi j (x). Let (u1, . . . , ua) be Euclidean
coordinates in the ambient space Ra . We want to use the ambient coordinates to
create a basis at each point of A for the symmetric tensors at that point, and this will
then yield a specific representation of the metric gi j in terms of this basis and the
ambient coordinates. We will continue to work in the coordinate chart on A with the
coordinates (x1, . . . , xn), but the assertions we will be making will hold for all points
of the submanifold A.

Let us illustrate the kind of basis for symmetric two-tensors we will be using by
giving a simple example in R2. Suppose that (u1, u2) are coordinates in R2, and
consider the functions

f i j = ui + u j , i ≤ j.

Wecan enumerate these three functionswith a single index r in the followingmanner:

ψ1 = f 11 = u1 + u1,

ψ2 = f 12 = u1 + u2,

ψ3 = f 22 = u2 + u2.

Each of the functions ψr (u) induces a symmetric two-tensor of the form

Mr
i j = ∂ψα

∂ui

∂ψα

∂u j
, α = 1, 2, 3, 1 ≤ i, j ≤ 2.

Writing this out explicitly in this case, we see that

M1
i j =

(
2 0
0 0

)
,

M2
i j =

(
1 1
1 1

)
,

M3
i j =

(
0 0
0 2

)
.

It is clear that these matrices are a basis at each point ofR2 for the three-dimensional
vector space of all symmetric 2 × 2 matrices. This will be a model for what we now
proceed to carry out in the general case.

For A ⊂ Ra , we let ψ̃r (u) be a denumeration of the a(a+1)
2 functions on Ra ,
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f kl := uk + ul , 1 ≤ k ≤ l ≤ a. (13.25)

We can restrict the functions ψ̃r to the submanifold A and by differentiation create
the symmetric matrices

M̃r
i j = ∂ψ̃r

∂xi

∂ψ̃r

∂x j
. (13.26)

Let

s = n(n + 1)

2
.

This integer denotes the dimension of the vector space of symmetric two-tensors at
each point of A. Note that in (13.26) we are differentiating the ambiently defined
functions ψ̃r with respect to the local coordinates on A (in the intrinsic geometry of
A), and these symmetric matrices span the s-dimensional vector space of symmetric
two-tensors at each point of this coordinate chart on A (one can choose n of the
coordinate functions uk to be coordinates for the submanifold A near each point of
A).

At this point we could use these functions {ψ̃r } and the associated tensors {M̃r
i j } to

conclude Nash’s proof of Step 3 of his embedding theorem proof, but, as he remarks,
this would increase the embedding dimension for the final theorem unnecessarily.
Therefore he introduces an analogously defined, but smaller set of functions ψr ,
which will work just as well.

Namely, Nash proposes to use a more general set of linear combinations of the
coordinate functions7 of the form

ψr =
∑

ρ

Cr
ρu p, r = 1, . . . , n + s,

where β = 1, . . . , a, and s = n(n+1)
2 , as above. The coefficients Cr

ρ ∈ R are yet to be
chosen.We choose these coefficients so that the n + s functionsψr have the property
that

Mr
i j := ∂ψr

∂xi

∂ψr

∂x j

forms a spanning set of vectors for Sym(A) at each point of A. By a careful dimen-
sional analysis, Nash shows that there are a sufficient number of coefficientsCr

ρ ∈ R,
so that the tensors Mr

i j forms a basis at each point of A. We omit this argument here.

We note that the number of ψα is n + s = n + n(n+1)
2 , which is less than the number

of ψ̃α, which is a(a+1)
2 = 2n(2n+1)

2 .
We can use the Mr

i j to represent our given metric gi j at each point of A, namely,

7This is the same sort of perturbation Nash used in Step 1 to lower the embedding dimension for a
nondegenerate embedding.
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gi j (x) =
∑

r

αr (x)Mr
i j ,

where the αr (x) are to be chosen as smooth Ck-coefficients of this pointwise repre-
sentation. There is a priori not a unique set of such coefficients, but if we proceed
as we did in Sect. 13.4 (see Eq. (13.18)), we can choose the coefficients {αr } so that

∑
r

|αr |2 is minimum.

Minimizing the norm in this way gives a unique set of coefficients well defined on
all of A.

Since A is a real-analytic compact submanifold of Ra , it follows by an approxi-
mation theorem ofWhitney [244] that each of theCk-functionsαr (x) can be approx-
imated by real-analytic functions ar (x) in the C3 norm. Thus we obtain a C3 approx-
imation to the metric gi j of the form

g̃i j =
∑

r

ar Mr
i j =

∑
r

ar
∂ψr

∂xi

∂ψr

∂x j
≈ gi j . (13.27)

Now we need to find a mapping of A to a Euclidean space that will in turn yield a
good approximation to g̃i j .

Nash introduces a nice trick at this point. Consider the 2(n + s) functions of the
form

yr = (ar )
1
2

λ
sin(λψr ),

ỹr = (ar )
1
2

λ
cos(λψr ),

where λ is a positive parameter and ar and ψr are defined as above. The mapping

y = (yr , ỹr ) : A → R2(n+s)

induces a metric on A of the form

gy =
∑

r

∂yr

∂xi

∂yr

∂x j
+

∑
r

∂ ỹr

∂xi

∂ ỹr

∂x j
.

Expanding this expression, there is a nice cancellation: the λ−1 terms involve
sin(λψr ) cos(λψr ) and− sin(λψr ) cos(λψr ) and these terms cancel; and the remain-
ing terms combine using sin2 + cos2 = 1. This yields
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gy =
∑

r

ar
∂ψr

∂xi

∂ψr

∂x j
+ λ−2hi j ,

where {hi j } are real-analytic functions on A. Then we have, from (13.27),

(gy))i j = g̃i j + λ−2hi j .

By choosing λ sufficiently large, we find that

gy ≈ g̃,

in the C3-norm.
Thus we have the sequence of C3 approximations

g ≈ g̃ ≈ gy,

and we obtain the final result that our given metric g on M can be approximated on
M in the C3-norm by a metric on M induced from a mapping. Note that for this final
step, we are composing the two mappings:

M
f−→ A

y−→ R2(n+s),

where A = f (M) ⊂ R2n and f is our original Whitney embedding that started this
argument. This completes our outline of Step 3 of Nash’s proof and hence finishes
our summary of Nash’s proof of the isometric embedding theorem for a compact
Riemannian manifold M .

We conclude by observing that for a compact n-dimensional Riemannian mani-
fold, we have obtained in this Step 3 a mapping of the form

y : M → R2(n+s) = Rn2+3n.

13.6 Closing Remarks

In this section, we have concentrated on Nash’s embedding theorem paper of 1956
[165]. Twoyears earlierNash published a proof of aC1 isometric embedding theorem
[164] whichwas simpler and did not involve his deep implicit function theorem. Note
that the paper we have considered yielded Ck embeddings for all k ≥ 3, including
k = ∞.

In 1962 Serge Lang (1927–2005) presented a simplification in a Seminaire Bour-
baki lecture [133] of the proof of the embedding theorem (Lang concentrated on the
implicit function theorem), and he used an idea that had been suggested by Adriano
Garsia that one could consider the special case of an isometric embedding of a torus
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(all of this is for the compact case). Namely, if one is given a Riemannian manifold
M , then one can, by Whitney, embed it as a submanifold of a Euclidean space R2n

(which we continue to call M), and one can consider this Euclidean space to be an
affine piece of a real 2n-torus T . The differentiable metric g on M can be extended as
a smooth metric g̃ to all of T by the usual partition of unity8 arguments. If one then
had an isometric embedding f of the torus T with the extended metric g̃ into some
Euclidean space RN , then the restriction of the mapping f to M yields the desired
isometric embedding of M . Any such torus has one coordinate chart covering the
manifold (using the periodicity), and this simplifies some of the arguments involving
smoothing operators, etc., which Lang exploits.

In 1964–65Schwartz gave lectures atNYUon nonlinear functional analysis [210],
in which he surveyed earlier infinite-dimensional implicit function theorems and
gave a complete proof of Nash’s implicit function theorem as well as the embedding
theorem. He also exploited the idea of embedding a torus.

In themeantime, there have been, of course, many other developments concerning
such isometric embedding theorems, which we won’t try to discuss here. See, for
instance, the recent survey by Andrews [8] and the book by Han and Hong [95].

8See, e.g., Milnor [154], Hirzebruch [104], Wells [239], or other references concerning manifolds,
for a description of partition of unity and its use in geometry.



Chapter 14
Compact Complex Manifolds

14.1 Introduction

In the previous two chapters, we have looked at the embedding of real smooth man-
ifolds into Euclidean space: Whitney in the general case and Nash for the case of
isometric embeddings. In this and the following chapter, we are going to be dealing
with complex manifolds and holomorphic embeddings. The case of real-analytic
embeddings will be considered as the restriction of holomorphic mappings to real-
analytic submanifolds of suitable types, as we will see in Sect. 15.7.

We will consider in this and the next chapter two fundamentally different kinds of
holomorphic embedding theorems.We note that if X is a compact complexmanifold,
then there cannot be an embedding into a complex Euclidean space, as any holomor-
phic function on a compact complex manifold is necessarily a constant (a simple
consequence of the maximum principle for holomorphic functions). And yet, there
are many important examples of compact complex manifolds, most notably compact
Riemann surfaces. The simplest examples of compact complex manifolds are simply
closed holomorphic submanifolds of complex projective space PN .

So the question arose: which compact complexmanifolds of dimension n could be
embedded into a projective space of some dimension, as this is the natural extension
of complex Euclidean space to a compact complex manifold. In 1954 Kunihiko
Kodaira (1915–1997) gave a necessary and sufficient condition on a compact complex
manifold that it be embeddable holomorphically into PN , which we will describe in
some detail in this chapter. This had been conjectured by William Vallance Douglas
Hodge (1903–1975) at the International Congress of Mathematicians in 1950 [110].

Kodaira published his embedding theorem in 1954, and the very same year Fritz
Hirzebruch announced his generalization of the Riemann–Roch theorem for projec-
tive algebraic manifolds of arbitrary dimension. Both Kodaira and Hirzebruch used
extensively the new tools of sheaf cohomology theory that developed after the second
world war and which we survey in Sect. 14.3 below.

In Sect. 14.7 we show how the classical Riemann–Roch theorem from the nine-
teenth century that we reviewed in Sect. 10.4 can be reformulated in terms of sheaf
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cohomology. In particular, we outline Serre’s elegant proof of this theorem from
1955. We then give Hirzebruch’s theorem, which is formulated in terms of sheaf
cohomology and which used the theory of Chern classes of holomorphic vector bun-
dles to represent the algebraic topological part of the theorem. We conclude this
section with a description of the Atiyah–Singer index theorem from 1963 which
shows as a special case that Hirzebruch’s theorem is valid for arbitrary compact
complex manifolds.

The remaining question as to which noncompact complex manifolds can be holo-
morphically embedded in CN was solved a few years later by Reinhold Remmert
(1930–2016), where again a complete characterization of such manifolds was given.
We will discuss this in the concluding chapter of the book, Chap.15.

We will need to introduce some mathematical concepts and results in order to
formulate Kodaira’s and Hirzebruch’s theorems. Our main interest will be compact
complexmanifolds, which are a special case of oriented compact differentiablemani-
folds. Let M be a connected compact orientable differentiablemanifold of dimension
m. As we discussed in Sect. 11.3, Poincaré introduced at the end of the nineteenth
century the fundamental concepts of algebraic topology that were to play such an
important role in the theory of manifolds in the twentieth century. This includes
the theory of homology, cohomology and homotopy, in particular. The fundamen-
tal cohomology groups of M can be described in terms of triangulations, or more
commonly, singular homology (and numerous other methods of describing these
topological invariants). For our purposes, we want to consider cohomology groups
with integral coefficients1 as well as with complex coefficients, which are denoted
by

Hq(M,Z)
i

↪→ Hq(M,C), q = 0, . . . , m, (14.1)

where the injective mapping i is the natural inclusion mapping, and all higher-degree
cohomology groups vanish. Since M is orientable, and using Poincaré duality, we
know that

H 0(M,Z) ∼= H m(M,Z) ∼= Z. (14.2)

In 1931 Georges de Rham (1903–1990) formulated and proved his well-known
and important de Rham theorem for differentiable manifolds [52], which we will
discuss shortly (he discussed this and other topics at length in his later monograph
[53]). In 1933ErichKähler (1906–2000) introduced aHermitianmetric on a complex
manifold with a “remarkable” property (“Über eine bemerkenswerte Hermitsche
Metrik”,2 [118]), which we now call a Kähler metric on a complex manifold. Using

1See, for instance, the classic textbook by Eilenberg and Steenrod [59] or any standard text on
algebraic topology for the concepts and theory of cohomology groups with constant coefficients;
we will discuss and use extensively sheaf cohomology, a substantive generalization of classic
cohomology, in these last two chapters of this book.
2“Concerning a remarkable Hermitian metric”.

http://dx.doi.org/10.1007/978-3-319-58184-2_15
http://dx.doi.org/10.1007/978-3-319-58184-2_11
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this special type of metric, Kähler was able to derive an interesting set of properties
for the algebraic topology of projective algebraic manifolds.3

One year later, Hodge published the first in a series of three papers [106–108],
which, using the work of de Rham, created a theory of harmonic differential forms
that could represent cohomology in a unique manner using the additional structure
of a metric on a given differentiable manifold. This work was used by Hodge in his
important monograph applying his theory of harmonic forms to projective algebraic
manifolds [109], and this was then extended to the more abstract setting by later
authors to Kähler manifolds, in particular in the work of Kodaira, which we are
discussing in this chapter.

We now summarize some of the results we need concerning de Rham’s theorem
and Kähler geometry to formulate the statement of Kodaira’s embedding theorem.4

Let M be a compact orientable differentiable manifold of dimension m as before,
and let Ek(M) denote the differential forms of degree k on M . Locally such a differen-
tial formϕ(x) is represented in a coordinate chartU with coordinates (x1, . . . , xn) as

ϕ(x) =
∑

ai1...ik (x)dxi1 ∧ · · · ∧ dxxk , (14.3)

where

1 ≤ i1 < · · · < ik ≤ m

are increasing multiindices and ai1...ik (x) are complex-valued differentiable (C∞)

functions on U . Let d represent the exterior differentiation operator which maps
k-forms to k + 1-forms. We have the complex

0 → E0(M)
d→ E1(M)

d→ E2(M)
d→ · · · d→ Em(M)

d→ 0, (14.4)

where we recall that the exterior derivative is defined by

dϕ =
∑

d(ai1...ik (x)) ∧ dxi1 . . . dxik , (14.5)

and

d f =
∑

i

∂ f

∂xi
dxi ,

3In 1949Wei-Liang Chow (1911–1995) [47] showed that any holomorphic submanifold of complex
projective space is, in fact, algebraic, i.e., defined by algebraic functions on projective space. We
will simply say projective algebraic manifold for any such holomorphic submanifold of complex
projective space.
4Basic references for Hodge theory on Kähler manifolds for this chapter concerning Kodaira’s
embedding theorem include the books by Weil [238], Griffiths and Harris [91], and Wells [239].
These last two references include proofs of Kodaira’s embedding theorem.
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for a function f , and the multiplication in (14.5) is carried out using exterior algebra
products.

We define the closed k-forms on M to be

Zk(M) := { f ∈ Ek(M) : dϕ = 0},

and the exact k-forms on M to be

Bk(M) := {ϕ ∈ Ek(M) : ϕ = dψ for some ψ ∈ Ek−1(M)}.

It is well known that the composed differential operator d2 = 0 in the sequence
(14.4), which is also easy to verify (which is why we called the sequence (14.4) a
complex).

We now define the de Rham groups on M to be

H k
dR(M) := Zk(M)/Bk(M). (14.6)

The fundamental de Rham theorem in his 1931 paper [52] asserts that

H k(M,C) ∼= H k
dR(M). (14.7)

Note that this differential forms representation of cohomology is sufficient for com-
puting the Betti numbers of the manifold M , but it does not detect the more subtle
torsion elements of cohomology over the integers.

We nowmove back to the complexmanifold setting, and we consider a local coor-
dinate system (z1, . . . , zn) on our given complex manifold X . We have the standard
conventions for real and complex coordinates and differentiation:

zμ = xμ + iyμ,

zμ = xμ − iyμ,

dzμ = dxμ + idxμ,

dzμ = dxμ − idxμ,

∂

∂zμ
= 1

2

(
∂

∂xμ
− i

∂

∂yμ

)
,

∂

∂zμ
= 1

2

(
∂

∂xμ
+ i

∂

∂yμ

)
,

and the standard exterior derivative operators:

d = ∂ + ∂,



14.1 Introduction 215

where

∂ =
∑

μ

∂

∂zμ
dzμ,

∂ =
∑

μ

∂

∂zμ
dzμ.

If a real differential form on X is expressed as a linear combination (with smooth
coefficients) of wedge products of the real differentials dxμ and dyμ as in (14.3), then
this can be reexpressed in terms of the differentials dzμ and dzμ. Thus it follow that
any differential form ϕ of degree k on X can be expressed as a sum of differential
forms of type (p, q), where p + q = k, as in the following expression:

ϕ =
∑

aμ1...μpν1...νq dzμ1 · · · ∧ dzμp ∧ dzν1 ∧ · · · ∧ dzνq , (14.8)

with the increasing double multiindex μ1 . . . μpν1 . . . νq . We will have occasion to
use this concept again further below, and we introduce here the simplified multiindex
notation,

ϕ =
∑

aM,N dzM ∧ dzN , (14.9)

where M = (μ1, . . . ,μp) and N = (ν1, . . . , νq) represent the increasing multi-
indices in a natural manner. We will let |M | = p, |N | = q, as is customary.

We define the vector space of all forms of type (p, q) on X to be E p,q(X), and
we have the direct sum decomposition

Ek(X) =
∑

p+q=k

E p,q(X). (14.10)

This direct sum will play an important role in the theory of Kähler manifolds, which
we will be discussing shortly. Note that it only depends on the complex structure of
the complex manifold X . The exterior derivative operator ∂ maps (p, q)-forms to
(p, q + 1) forms, i.e.,

∂ : E p,q(X) → E p,q+1(X), (14.11)

as is easy to verify.
We let �p(X) denote the holomorphic p-forms on X , 0 ≤ p ≤ n. Locally

ϕ ∈ �p(X) has the form

ϕ(x) =
∑

|I |=p

aI (x)dzI ,
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where the coefficients aI (x) are holomorphic functions. In particular,

�p(X) = ker ∂ : E p,0(X) → E p,1(X).

We now suppose that our complex manifold X is equipped with a Hermitian
metric. This is simply a smoothly varying Hermitian inner product h(X, Y )x on
the tangent space Tx (X) at each point x ∈ X (which is a complex vector space
of dimension n). On Cn the standard Hermitian metric is given by (using matrix
multiplication where z ∈ Cn is a row vector)

(z, w) = zwt ,

and a more general and varying Hermitian metric on Cn is given by

(z, w)x = zH(x)wt ,

where H(x) is a smoothly varying Hermitian matrix on Cn . Such local Hermitian
metrics can be patched together on any complex manifold with a partition of unity,
just as in the case of Riemannian manifolds, and any complex manifold can therefore
be equipped with a Hermitian metric.

If X has a Hermitian metric h, which we express locally by

ds2 =
∑

μ,ν

hμν(x)dzμdzν,

where hμν(x) is a smoothly varyingHermitianmatrix, thenwedefine the fundamental
two-form � associated to h to be

� = i

2

∑

μν

hμν(x)dzμ ∧ dzν . (14.12)

This is a globally defined two-form on X uniquely associated to the given Hermitian
metric h on X . Note that it is a two-form of type (1, 1). One can formulate both the
Hermitian metric and its associated two-form in an invariant manner, and we leave
such a description to the reference books we mentioned earlier.

An Hermitian metric h on a complex manifold X is said to be a Kähler metric if
the fundamental two-form � is a closed form, that is

d� = 0. (14.13)

We say that a complex manifold is a Kähler manifold if it is equipped with a Kähler
metric. The standard Hermitian metric on Cn has the associated fundamental two-
form
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� = i

2

∑

μ

dzμ ∧ dzμ,

and this satisfies d� = 0, since the coefficients of � are constants. This is therefore,
trivially, a Kähler manifold.

A more complicated example is given by the standard Fubini–Study metric on
Pn (letting wμ = ξμ

ξ0
be affine coordinates in the coordinate chart on Pn defined by

ξ0 �= 0 in the homogeneous coordinates (ξ0, . . . , ξn)):

�(w) = i

2

(1 + |w|2)∑n
μ=1 dwμ ∧ dwμ − ∑n

μ,ν=1 wμwνdwμ ∧ dwν

(1 + |w|2)2 . (14.14)

This can also be shown to be a closed two-form of type (1, 1) on Pn (see p. 190
of [239]). Thus complex Euclidean space and complex projective space provide two
fundamental examples of Kähler manifolds. It is easy to verify that any complex sub-
manifold of a Kähler manifold is a Kähler manifold, providing many more examples
(in particular, any projective algebraic manifold is a Kähler manifold).

We now define an important special case of a type of Kähler manifold called a
Hodge manifold. The formulation of the notion of a Hodge manifold is due to André
Weil (1906–1998) [237] and it plays a critical role in Kodaira’s theorem, as we will
see shortly. Namely, if X is a Kähler manifold with fundamental form �, then �

defines by the deRham theorem an element of the cohomology groupω ∈ H 2(X,C),
and we say that it is aHodge metric on X ifω is in the image of the inclusionmapping

H 2(X,Z)
i

↪→ H 2(X,C).

We say then that a Hodge manifold is a complex manifold equipped with a Hodge
metric h. We can now formulate Kodaira’s embedding theorem.

Theorem 14.1 (Kodaira Embedding Theorem [128]) Let X be a compact complex
manifold. Then there is an embedding of X into PN (C) for some integer N if and
only if X is a Hodge manifold.

In Fig. 14.1 we present the first page of Kodaira’s embedding theorem paper.
If X is a projective algebraic manifold, then restricting the fundamental Fubini–

Study two-form� on projective space (14.14) to X makes X into a Hodge manifold.
To show that a Hodge manifold admits an embedding is much more difficult, and

we will outline the proof of that in the next several sections. In Sect. 14.6 we will
outline the basic embedding proof, which uses sections of specific line bundles to
realize the embedding. This will depend on the existence of sufficient numbers of
sections of the line bundles to ensure an embedding, just as in the Whitney theorem,
we needed a sufficient number of smooth functions for the embedding. The existence
of a sufficient number of sections of such bundles depends on a specific theorem,
also due to Kodaira, which is outlined in Sect. 14.5 and is referred to as the Kodaira
vanishing theorem and depends on the use of curvature estimates and Hodge’s theory
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Fig. 14.1 First page fromKodaira’s projective algebraicmanifold characterization paper from1954
[128]. Reprinted with the permission of the Annals of Mathematics
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of harmonic differential forms. Sheaf theory and sheaf cohomology play a critical
role in this proof along with Hodge theory on Kähler manifolds, and these will be
outlined in Sects. 14.3 and 14.4, as needed for the development of the proof.

Remark At the beginning of this Introduction we noted that embedding theorems
for complex manifolds consisted of two distinct cases: compact complex manifolds
(Kodaira’s embedding theorem) and noncompact complexmanifolds (the Stein man-
ifold embedding theorem, which will be discussed in the next chapter). There are
many examples of compact complex manifolds which do not satisfy the Hodge man-
ifold criterion in Kodaira’s theorem, and there are many examples of noncompact
complex manifolds that do not satisfy the criterion to be a Stein manifold.

However, in the important case of a complexmanifold X of complex dimension 1,
a Riemann surface, one of the two criteria is always satisfied. Namely, for some
suitable N ≥ 3:

1. If X is compact, then X is a Hodgemanifold, and hence is embeddable as a closed
submanifold of PN .

2. If X is noncompact, then X is Stein, and hence is embeddable as a closed sub-
manifold of CN .

More simply put, a Riemann surface X is embeddable as a closed submanifold of
either PN or CN , depending on whether X is compact or not.

For a compact Riemann surface X , this is quite easy to see, as was pointed out in
Kodaira’s original paper [128]. Namely, if h is any Hermitian metric on X (which,
as we have seen before, always exists), then let � be its associated fundamental
(1, 1)-form. Since dimR X = 2, it follows that d� = 0, and hence h is a Kähler
metric. Moreover, if

c =
∫

X
�,

then c �= 0, since X is orientable. Letting �̃ = (1/c)�, we see that �̃ is a fundamental
form associated to a Hodge metric, and hence X is a Hodge manifold.

If X is noncompact, then a fundamental existence theorem for Riemann surfaces
is that there exists a nonconstant meromorphic function f on X (this is a consequence
of the Riemann–Roch theorem, see Sect. 10.4). This was proved inWeyl’s 1913 book
[241] (see also the book by Farkas and Kra [72], which has a modernized proof of
this using the Dirichlet principle ideas, which Weyl also utilized). The function f
exhibits X as a branched coveringof anopen subset ofP1,which isRiemann’s original
description of a Riemann surface. In this context, Behnke and Stein showed in 1947
[14] that there is a generalization of Runge’s approximation theorem for domains in
the complex plane (as was discussed in Sect. 9.6). It follows from this that X is a
Stein manifold, which is formally defined in the following chapter, Chap. 15.

http://dx.doi.org/10.1007/978-3-319-58184-2_10
http://dx.doi.org/10.1007/978-3-319-58184-2_9
http://dx.doi.org/10.1007/978-3-319-58184-2_15
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14.2 Holomorphic Line Bundles

The primary tool Kodaira uses for the construction of an embedding from a compact
complex manifold into projective space is the theory of holomorphic line bundles.
This theory is developed in several of the references we have cited, and we will
introduce some of the terminology and fundamental ideas briefly here.

Let X be a complex manifold. A holomorphic line bundle E over X is a complex
manifold E with a mapping π : E → X , such that π is regular and surjective,
and each fibre of the mapping Ex := π−1(x), for x ∈ X , has the structure of a
one-dimensional complex vector space (these are the “lines” of the line bundle).
Moreover, it is required that there is an open covering Uα of X such that there are
biholomorphic mappings hα satisfying

hα : π−1(Uα) ∼= Uα × C,

hα|Ex
: Ex → {x} × C is complex-linear.

A section of a holomorphic line bundle (differentiable or holomorphic section)
on an open set U ⊂ X is a mapping (differentiable or holomorphic)

s : U → E,

such that π ◦ s = id is the identity mapping on U . A holomorphic line bundle
E → X is said to be trivial if E ∼= X × C, and the sections of a trivial bundle are
simply complex-valued functions on open sets on X . The mappings hα are called
local trivializations of the line bundle E (and play the role of coordinate charts on
a manifold), and sections of the line bundle can be considered locally as ordinary
functions by means of the trivializations (again, just as functions on a manifold are
functions of coordinates in a coordinate chart on amanifold). LetO(U, E) (E(U, E))
denote the holomorphic (differentiable, i.e., C∞) sections of a holomorphic line
bundle E → X on the open set U ⊂ X .

We define transition functions for a holomorphic line bundle E → X by

hαβ := hα ◦ h−1
β : Uα ∩ Uβ × C → Uα ∩ Uβ × C,

which are nonvanishing holomorphic functions on Uα ∩ Uβ , assuming this is a non-
empty intersection. These transition functions satisfy

hαβ ◦ hβγ ◦ hγα = id, on Uα ∩ Uβ ∩ Uγ,

hαα = id on Uα.
(14.15)

It is easy to show that if one has a set of transition functions on X satisfying (14.15),
then one can construct an associated holomorphic line bundle E on X .

The notion of a holomorphic line bundle is a special case of themore general notion
of a vector bundle on a manifold (differentiable or holomorphic), which has fibres
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modeled on a vector space (real or complex) of rank r . The transition functions will
be nonsingularmatrix-valued functions of the appropriate smoothness (differentiable
or holomorphic, for instance). More general classes of fibre bundles include where
the fibre is a Lie group or a homogeneous space (e.g. a sphere). The book by Norman
Steenrod (1910–1971) [219], The Topology of Fibre Bundles, from 1951 provided
the first systematic description of fibre bundles after its vigorous study over the
previous decades. In particular, the theory of characteristic classes of fibre bundles
is developed, where a particular characteristic class of a vector bundle E → M , for
instance, is an element of an appropriate cohomology group of its base manifold M .
Characteristic classes help measure how far a given bundle deviates from being a
trivial bundle.

The primary example of a vector bundle is the tangent bundle to amanifold, where
the fibres are simply the tangent space at each point. The tangent bundle to a Riemann
surface X , denoted by T (X), is a holomorphic line bundle as we defined above, and
it is trivial (in the case of a compact Riemann surface) if and only if X has genus 1,
i.e., X is a complex torus of dimension one.

Vector bundles are modeled on vector spaces, and as such, most standard vector
space operations carry over to vector bundles. For instance, if E and F are vector
bundles on a manifold M , then E ⊕ F and E ⊗ F are well-defined vector bundles.
For the case of a line bundle E on a complex manifold X , we will be interested in
tensor products of higher order, and we will write, for instance, E ⊗ E as E2, and En

will denote higher tensor powers. Also we let E∗ denote the dual line bundle (each
fibre E∗

x is defined as the dual vector space of Ex ). Finally, we note that if T (M)

is the tangent bundle of a general differentiable manifold M , then the differentiable
sections of the exterior algebra bundle∧k T ∗(M) on an open setU are the differential
forms of degree k on U .

We want to give a few more concrete examples of holomorphic line bundles that
are important for our understanding of Kodaira’s theorem. First, we describe how
to associate a holomorphic line bundle with any holomorphic submanifold Y of
codimension one of a complex manifold X (a hypersurface in X ). A hypersurface
Y ⊂ X can be described by an open covering Uα of X and holomorphic functions
f ∈ O(Uα) such that

Y ∩ Uα = {x ∈ Uα : fα(x) = 0}, (14.16)

and

d fα �= 0 on Uα. (14.17)

Defining transition functions for a holomorphic line bundle EY by

gαβ = fα
fβ

on Uα ∩ Uβ,
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we see easily that the conditions (14.15) are satisfied. We note that the nonsingular
condition (14.17) which is required in order that Y be a submanifold is not necessary
to define the line bundle EY . More generally, (14.16) without the nonsingular con-
dition defines a holomorphic subvariety of codimension one, and is an example of
a divisor which plays an important role in algebraic and analytic geometry. Certain
equivalence classes of divisors are in one-to-one correspondence with equivalence
classes of holomorphic line bundles (using the natural notion of two vector bundles
being equivalent; see [238] or [91], for instance).

Now let Y be a hyperplane in Pn which is defined by a homogeneous linear equa-
tion in homogeneous coordinates (such a hyperplane is referred to as a hyperplane
section). For instance, if (ξ0, . . . .ξn) are homogeneous coordinates on Pn , let

Y = {(ξ0, . . . , ξn} : ξ0 = 0}

be an example of such a hyperplane section. Using the standard covering of Pn by
the open sets

Uα := {(ξ0, . . . , ξn) : ξα �= 0},

then the defining function for Y in each coordinate chart Uα are given by (letting “∗̂”
denote an omitted entry)

fα

(
ξ0

ξα
, . . . ,

ξ̂α

ξα
, . . . ,

ξn

ξα

)
= ξ0

ξα
, α �= 0,

gαβ =
(

ξ0
ξα

)

(
ξ0
ξβ

) = ξβ

ξα
on Uα ∩ Uβ .

Any other hyperplane section would have yielded an equivalent line bundle.We refer
simply to the hyperplane section bundle H on Pn for all such equivalent line bundles.

We note that for any holomorphic line bundle E on a complex manifold X with
transition functions {gαβ}, the transition functions for Ek are given by

{gk
αβ},

and the transition functions for E∗ are given by

{g−1
αβ }.
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It follows that the transition functions for H k and H∗ on Pn are given by

gn
αβ =

(
ξβ

ξα

)n

,

g−1
αβ = ξα

ξβ
.

Finally, an important holomorphic line bundle on any complex manifold X of
dimension n is the canonical bundle defined by

K X := ∧nT ∗(X).

The holomorphic sections of K X are simply the holomorphic n-forms on X , locally
given by

ϕ = f (z)dz1 ∧ · · · ∧ dzn,

where f (z) is a holomorphic function in a local coordinate system (z1, . . . , zn) on X .
The canonical bundle on Pn can be shown to be

KPn = (H∗)n+1,

where H is the hyperplane section bundle on Pn , as described above (see, e.g., [239]
pp. 224–225, for a proof of this).

As we mentioned at the beginning of this section, we want to use holomorphic
sections of holomorphic line bundles to obtain an embedding. As we saw, the only
globally defined holomorphic functions on a compact complex manifold X are con-
stants, and these can be considered as holomorphic sections on X of the trivial line
bundle X ×C. An important question is whether a given line bundle has any nontriv-
ial global sections that could be used for an embedding. Let’s look at our examples
above in this context. It is not difficult to verify that, for n > 0,

O(Pn, H n) ∼= {polynomials of degree n + 1 on Cn+1},

and

O(Pn, (H∗)n) ∼= 0,

where here 0 denotes the zero-dimensional complex vector space. Thus, some line
bundles have sections and some do not. We will formulate a criterion below for
holomorphic line bundles, due to Kodaira, that ensures that there are sufficiently
many sections of such bundles that will eventually provide an embedding.
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For the moment, consider a compact complex manifold with a holomorphic line
bundle E , where O(X, E) has N + 1 sections s0, . . . , sN , such that for each x ∈ X,

s j (x) �= 0, for some j, 0 ≤ j ≤ N . (14.18)

Then these sections provide a holomorphic mapping

� : X → PN . (14.19)

Namely, let

hα : E|Uα
→ Uα × C

be trivializations for E on open sets Uα ⊂ X . For x ∈ Uα, define �α(x) to be the
point in PN which is the one-dimensional subspace of Cn+1 spanned by complex
multiples of the nonzero vector

(hα(s0)(x), . . . , hα(sN )(x)) ∈ CN+1 − {0}.

Note that �α is well defined by (14.18). If x ∈ Uα ∩ Uβ , then, letting gαβ denote the
transition functions for E , we have

(hα(s0)(x), . . . , ha(sN )(x)) = (gαβ(x)hβ(s0)(x), . . . , gaβ(x)hβ(s(N )(x))

= gαβ(x)(hβ(s0)(x), . . . , hβ(sN )(x)),

and hence �α(x) = �β(x) on Ua ∩ Uβ . We can then define

�(x) := �a(x), for x ∈ Uα,

and this is then a well-defined holomorphic mapping from X to PN , as desired.
The basic problem for Kodaira was to show that for a given Hodge manifold X ,

there is a holomorphic line bundle E → X such that the mapping F in (14.19) is
well-defined and that, moreover, it is one-to-one and regular at each point of X . We
now need to introduce the tools of sheaf theory and Hodge theory in the next two
sections, which lead up to Kodaira’s vanishing theorem in Sect. 14.5. This will then
be used to find an embedding of the form (14.19) in Sect. 14.6.

14.3 Sheaf Theory

Three major developments in algebraic topology were single-handedly developed in
a prisoner-of-war camp during the second world war. Namely, a well-known French
mathematician, Jean Leray (1906–1998), who had worked on nonlinear partial
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differential equations, includingfixed-point theorems in the infinite-dimensional con-
text (Schauder–Leray fixed-point theorem), was an officer in the French army and
taken prisoner and placed in a prisoner-of-war camp in Austria during 1940–1945.
He didn’t want his captors to know that he knew something of applied mathematics,
and so he spent his time studying and developing a new theory of algebraic topology.

After the war, it was difficult for others to understand what he had developed, as
the language of the newmathematics was difficult to absorb at the time. What he had
developed was the theory of sheaves, sheaf cohomology and spectral sequences, all
of which became standard tools in algebraic topology, several complex variables and,
most decisively, algebraic geometry. The story of Leray’s prisoner-of-war incarcera-
tion and the evolution of his ideas into the tools they became is beautifully described
by Haynes Miller [152]. Leray’s experiences are very similar to those of Poncelet in
a Russian prisoner-of-war camp, 1813–1814, during which time he wrote up what
became a draft of his major monograph on projective geometry, as we described in
Sect. 3.2.

The seminars in Paris after the secondworldwar run byHenri Cartan (1904–2008)
played a very important role in synthesizing these ideas (Seminaire Cartan, 1948–
1964), all of whichwere published and are now available online (www.numdam.org).
We will summarize the basic concepts of sheaf theory and sheaf cohomology that
we need for Kodaira’s work in this chapter as well as for the next chapter concerning
noncompact complex manifolds, Chap.15. We refer to standard references again for
details and references (e.g., Hirzebruch [104], Griffiths and Harris [91], and Wells
[239]).

Sheaf theory and sheaf cohomology theory are well defined on topological spaces
in general, but we restrict ourselves to complexmanifolds, as that is ourmain focus in
these last two chapters of the book, and it the nature ofmost of our important examples
as well. Let X denote a complex manifold. A sheaf F on X is an assignment of an
Abelian group F(U ) to each open set U on X satisfying certain properties. Let us
give several examples to illustrate this. Namely, consider the assignments, for U an
open set in X ,

U �→ C∞(U ),

U �→ Ek(U ),

U �→ O(U ).

These assignments define the sheaves C∞, Ek , and O on X . These Abelian groups
(on each open set U ) are spaces of functions (or differential forms), and they all
happen to be vector spaces, but for our immediate purposes we think of them as
Abelian groups under the operation of addition. Sheaves have restriction mappings
which are group homomorphisms of the form

rU V : F(U ) → F(V ), for V ⊂ U,

which for our examples are simply pointwise restrictions from the larger to the smaller
open set. There are two simple axioms for sheaf theory which all of our examples

http://dx.doi.org/10.1007/978-3-319-58184-2_3
www.numdam.org
http://dx.doi.org/10.1007/978-3-319-58184-2_15
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(and the ones to come) clearly satisfy, and we leave this theoretical aspect to the
references.

The elements of the Abelian group F(U ) are called sections of the sheaf on (or
over) the set U , and in our examples sections are simply functions or differential
forms on the set U . One more set of examples is the so-called constant sheaves.
These are simply of the form, where again, U is an arbitrary open set on X

U �→ Z,

U �→ C,

· · ·

A section of the sheaf Z on an open set U is simply the assignment of an integer (a
constant function) on each connected component of U .

A sheaf F on X has information at the global level, e.g., sections on all of X ,
F(X), and at the local level, e.g., F(U ), for U a small neighborhood of a point. A
prime motivation for Leray in the creation of sheaf theory was to create a theory that
would help understand how to piece together local data to obtain global mathematical
objects of a similar type, and, in particular, to formalize obstructions to such a process.
We will see an example of what we mean by this in the paragraphs below.

An important ingredient in this process is to formalize the local information of
a sheaf at a given point. Let x ∈ X , and consider all of the sections F(U ) defined
near x , namely all s ∈ F(U ) for U � x . If s1 ∈ F(U1) and s2 ∈ F(U2), where
x ∈ U1 ∩ U2, then we say that s1 and s2 are equivalent at x if there is an open set
W ⊂ U1 ∩ U2 with x ∈ W , and such that

rU1W (s1) = rU2W (s2),

i.e., the restrictions of s1 and s2 to some smaller neighborhood of x coincide. Using
this equivalence relation we can form the direct limit of all F(U ) for U � x modulo
this equivalence relation, and we denote this by Fx . This is called the stalk of F at
the point x , and it is an Abelian group, where the addition is obtained by adding
representatives of equivalence classes in suitable neighborhoods of x .

For instance, if O is the sheaf of holomorphic functions on X (i.e., O(U ), for all
open sets U in X ), then Ox at x ∈ X can be identified with all convergent power
series at x in any coordinate chart containing x . The elements of the stalk Fx are
referred to as the germs of the sheaf F at x .

Now we turn to sheaf cohomology. A sequence of Abelian groups is a discrete
set of Abelian groups with linking homomorphisms of the form

· · · α→ A
β→ B

γ→ C
δ→ · · · . (14.20)

The sequence is said to be exact at B if ker γ = imβ.
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A sheaf homomorphism

F h→ G

is a set of homomorphisms of the form

F(U )
hU→ G(U ),

for each open set U ⊂ X . A sequence of sheaves is a discrete set of sheaves linked
by homomorphisms, just as in (14.20),

· · · α→ A β→ B γ→ C δ→ · · · . (14.21)

Finally, a sequence of sheaves, such as in (14.21), is exact atB if the induced sequence
of stalks (which are all Abelian groups)

· · · α→ Ax
β→ Bx

γ→ Cx
δ→ · · · ,

is exact at Bx for each x ∈ X . Note that we are not requiring exactness at B(U ) for
all open sets U ⊂ X , but only at the localizations of the sheaves near each point of
X (which is represented by the stalks).

Let’s illustrate this last notion with an important example. Consider the sequence
of sheaves of differential forms on X linked by the homomorphisms of exterior
differentiation

0 → C
i→ E0 d→ · · · → Ek−1 d→ Ek d→ Ek+1 → · · · , (14.22)

i.e.,

· · · → Ek−1(U )
d→ Ek(U )

d→ Ek+1(U ) → · · · ,

for each open set U ⊂ X , and i is the natural inclusion of constants in smooth
functions. By using the Poincaré lemma5 at each point x ∈ X , one easily sees that
the sequence (14.22) is exact at Ek , for each k ≥ 0. However, if X is compact and
has nontrivial cohomology for some k, 0 < k < dimR X (for instance, a compact
Riemann surface of genus g > 1, where H 1(X,C) �= 0), then the sequence

· · · → Ek−1(X)
d→ Ek(X)

d→ Ek+1(X) → · · ·

is not exact at Ek(X) by de Rham’s theorem (14.7), i.e., there is a d-closed form ϕ
on X which is not an exact form.

5See any of the references for this important lemma from advanced calculus, which generalizes the
fundamental theorem of calculus.
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This is a prime example of the difference between local exactness (which has
been formalized in the exactness of a sheaf sequence) and global exactness. Sheaf
cohomology theory provides a measure of the difference being exact near a point
(like the Poincaré lemma) versus being globally exact (as exemplified by de Rham’s
theorem) for a larger class of sheaves than the differential forms in this example.

A short exact sequence of sheaves is a sequence of sheaves of the form

0 → A α→ B β→ C → 0,

which is exact at A, B, and C. That is to say, the homomorphism α is injective, the
homomorphism β is surjective, and ker β = imα. Let us give an important example
of such a short exact sequence that will be useful later. On a complex manifold X , let
O∗ denote the sheaf of nonvanishing holomorphic functions with the Abelian group
structure given by multiplication. Then consider the sequence of sheaves

0 → Z
i→ O exp→ O∗ → 0, (14.23)

where

exp( f ) := e2πi f , f ∈ O(U ),

for U an open subset of X . It is easy to verify that this is a short exact sequence of
sheaves. In particular, if g(z) is holomorphic and nonzero in the neighborhood of
a point x0 ∈ X , then choosing a branch of the logarithm function near g(x0) will
provide a local inverse to the exponential mapping in the sequence. On the other
hand, the sequence

O(C − {0}) exp→ O∗(C − {0}) → 0

is not exact atO∗(C−{0}), since there is no branch of the logarithm function on the
punctured plane.

Now we proceed to formulate the notion of sheaf cohomology groups for a sheaf
F on a topological space X . Namely, to each sheaf F , there is an assignment of a
sequence of Abelian groups of the form

(X,F) �→ Hq(X,F), q ∈ Z, q ≥ 0. (14.24)

These Abelian groups Hq(X,F) satisfy specific axioms which we will not discuss
in detail here. However, we will describe their most important property, namely, the
sheaf cohomology groups have the property that, for each short exact sequence of
sheaves

0 → A → B → C → 0, (14.25)
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there is a long exact sequence of cohomology groups of the form

0 → H 0(X,A) → H 0(X,B) → H 0(X, C) → H 1(X,A) →
H 1(X,B) → H 1(X, C) → H 2(X,A) → H 2(S,B) → · · · ,

(14.26)

where

H 0(X,A) = A(X),

H 0(X,B) = B(X),

H 0(X, C) = C(X).

(14.27)

See the references we have cited at the beginning of this section for more details.
One shows that there is a unique cohomology theory satisfying the axioms, and

there are several existence proofs for the cohomology groups, including Čech theory
(using open coverings), resolution of sheaves by specific types of sheaves, and in
terms of category theory, for instance. Classical cohomology theory from algebraic
topology (Hq(X,Z), Hq(X,R), etc.), which also has an axiomatic formulation as
in the text by Eilenberg and Steenrod [59], coincides with the more general sheaf
cohomology theory we are using here, using constant sheaves (Z,R, etc.) on X . In
working with cohomology groups, just as in classical algebraic topology, one uses
homological algebra to compute unknown cohomology groups in terms of known
cases, just as in calculus one computes derivatives using properties of differentiation
(e.g., product rule, chain rule, etc.).

Let us look at the example of a short exact sequence we introduced above (14.23)
and use the long exact sequence (14.26), which yields, for the case of a domain D
in the complex plane, using (14.27),

O(D)
exp→ O∗(D) → H 1(D,Z),

which is exact at the center. If H 1(D,Z) = 0, that is, in this case, if D is simply-
connected, then the exponential mapping is surjective. This is the classical statement
that one can choose a branch of a logarithm on a simply-connected domain in the
complex plane.

We now give an important analogue of de Rham’s theorem on a complexmanifold
that we will use later. Let X be an n-dimensional complex manifold and consider the
sequence of sheaves

0 → �p i→ E p,0 ∂→ E p,1 ∂→ · · · ∂→ E p,n → 0,

using (14.11). Pierre Dolbeault (1924–2015) showed that this is an exact sequence of
sheaves and he was able to formulate and prove an analogue to de Rham’s theorem
context which is now known as Dolbeault’s Theorem: [58]:

Hq(X,�p) ∼= ker ∂ : E p,q(X) → E p,q+1(X)

im ∂ : E p,q−1(X) → E p,q(X)
. (14.28)
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The sheaf cohomology in Dolbeault’s theorem, Hq(X,�p), is formulated on the
complex manifold X in terms of holomorphic differential forms, and the theorem
represents this cohomology in terms of solutions on X of partial differential equations
involving smooth differential forms.Wewill see how this can be further refined in the
next section, using Hodge theory. For convenience later on, we define the right-hand
side in Dolbeault’s theorem as

H p,q(X) := ∂-closed(p, q)-forms

∂-exact(p, q)-forms
. (14.29)

These are called the Dolbeault cohomology groups. Thus Dolbeault’s theorem
becomes, with this notation,

Hq(X,�p) ∼= H p,q(X),

and we note that the order of the two symbols p and q is reversed here.
We give one final example of an application of sheaf cohomology that will be

of use later. Namely, consider again the long exact sequence of cohomology groups
associated to the exponential short exact sequence (14.23)

· · · → H 1(X,O) → H 1(X,O∗) δ→ H 2(X,Z) → · · · . (14.30)

By using Čech cohomology6 one can identify an element E ∈ H 1(X,O∗) with
an equivalence class of holomorphic line bundles on X . Namely, a representative
cocycle in this cohomology group can be defined by nonvanishing holomorphic
functions hαβ ∈ O∗(Uα ∩ Uβ) satisfying the cocycle conditions (14.15), which is
then a representation of a line bundle E . The image of E under the mapping δ in
(14.30)

c1(E) := δ(E) ∈ H 2(X,Z) (14.31)

is defined to be the Chern class c1(E) of the holomorphic line bundle7 E . It is a
primary topological obstruction for the line bundle E being trivial or not. This is
well-defined in the category of differentiable as well as topological manifolds using
the same mechanism with sheaves of differentiable or continuous functions. We will
discuss later in this section a differential-geometric representation for the Chern class
of a line bundle, and it will play an important role in Kodaira’s theorem.

Wewill need one further sheaf-theoretic tool thatwill turn out to be quite important
for us later, and that is the notion of a quotient sheaf. Suppose that G ⊂ F is a
subsheaf defined in some natural manner (e.g., on a complex manifold, the sheaf of

6We will give an overview of Čech cohomology in Sect. 15.6; see Hirzebruch [104] for a detailed
discussion of sheaf cohomology theory from this open covering point of view.
7It is denoted as the first Chern class c1(E), since for higher-rank vector bundles there are higher-
order Chern classes.

http://dx.doi.org/10.1007/978-3-319-58184-2_15
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holomorphic functions O is a subsheaf of the sheaf E of differentiable functions).
We can form the quotient Abelian groups

F(U )/G(U ) (14.32)

for each open subset U ⊂ X . However, this assignment of Abelian groups to open
sets U may not satisfy the sheaf axioms (which we have not explicitly stated).

One can, on the other hand, form the quotients of the stalks of F and G at a given
point x . These quotients have the form

Fx/Gx , (14.33)

at each point x ∈ X . It is possible to take the union

⋃

x∈X

Fx/Gx ,

to form a sheaf called the quotient sheaf F/G. This is one of the more delicate
and important constructions in sheaf theory, which the references can explain more
fully. The sections of the quotient sheaf over an open set U , (F/G)(U ), will contain
F(U )/G(U ), but, in principle, will be a larger group. However, the stalks of F/G at
x ∈ X will be as in (14.33). There is a canonical exact sequence for quotient sheaves
of the form

0 → G → F → F/G → 0. (14.34)

We will have occasion to use this type of exact sequence in Sect. 14.6 when we
construct the Kodaira embedding, as well as in Chap.15.

Now we suppose that X is a complex manifold, and we observe that O is a sheaf
of rings on X . Namely, each Abelian group O(U ) also has the structure of a ring in
a natural manner, as products and sums of holomorphic functions are well-defined
and satisfy the properties of a ring. In a similar manner, one can define a sheaf of
modules over the sheaf of rings O, and these are called analytic sheaves. A locally
free analytic sheaf F is defined by the property that in a neighborhood W of a given
point the sheaf has the form

F|W ∼= Or ,

where Or is the direct sum of r copies of O, and r is called the rank of the (locally
free) sheaf F . If we consider a holomorphic vector bundle E on X , then the sheaf
of holomorphic sections of E is a locally free sheaf of rank r , where r = dimC E .
Namely, locally the sections of E are simply vector-valued holomorphic functions,
and that is the nature of the sections of a locally free analytic sheaf, by definition.
All locally free analytic sheaves are simply sheaves of a holomorphic vector bundle
and vice-versa. This is simply a change in language, which is often very useful.

http://dx.doi.org/10.1007/978-3-319-58184-2_15
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In addition, there are important analytic sheaves which are not sections of holo-
morphic vector bundles. The most important category of such analytic sheaves are
the coherent analytic sheaves,8 generalizations of locally free sheaves, introduced by
Henri Cartan in his seminars in the 1950s, and we will see examples of such sheaves
as we proceed. If we have two analytic sheavesF and G on X , then, as modules over
the sheaf of rings O, we can define the tensor product

F ⊗O G,

which is defined by the tensor product

F(U ) ⊗O(U ) G(U ),

for each open set U . The tensor product of two analytic sheaves is a well-defined
analytic sheaf on X , andwewill have need of this in Sect. 14.6. If we have two locally
free sheaves F and G on X corresponding to two holomorphic vector bundles F and
G on X , then

F ⊗O G ∼= O(F ⊗ G),

which will also turn out to be useful for us.
Let us close with one important example. Let p be a point in a complex manifold

X , and define the subsheaf m p of O on X by

m p(U ) :=
{ { f ∈ O(U ) : f (p) = 0}, if p ∈ U,

O(U ), if p /∈ U.
(14.35)

The sheaf m p is an example of an ideal sheaf on X (more generally, an ideal sheaf
is a subsheaf of O which vanishes on a given analytic subvariety of X ). It is called
an ideal sheaf, since the stalk of m p at p is an ideal in the ring Op. This ideal sheaf
m p is an example of a coherent analytic sheaf.

The quotient sheaf of two coherent analytic sheaves is also a coherent analytic
sheaf.

8A coherent analytic sheaf F on X is a sheaf which is locally finitely generated, i.e., there is, in a
neighborhood of any point, a surjective homomorphism

O p → F,

and the kernel of such a mapping is also locally finitely generated. We will not have the need to
use this concept explicitly, but we will see its use in special cases. See the references, for instance,
Gunning and Rossi [93], Hörmander [112] and Krantz [130], for more detailed information about
coherent analytic sheaves.
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Let us now look at the quotient sheafO/m p in this example. It is easy to see that

(O/m p)x
∼=

{
C, x = p,

0, x �= p.

Moreover, there is an exact sequence of the form

0 → m p → O → O/m p → 0.

This type of exact sequencewill turn out to be very important inKodaira’s embedding
proof, as we will see in Sect. 14.6 as well as in Chap.15.

14.4 Hodge Theory

As we mentioned earlier, Hodge created a theory of harmonic differential forms
on manifolds that proved to be very useful in studying the algebraic topology of
projective algebraic manifolds. We now want to summarize some of the key aspects
of this theory as applied to the investigation of Kählermanifolds, which play a critical
role in Kodaira’s theorem.

We review first the elements of the theory for compact differentiable manifolds.
Let M be a compact orientable differentiable manifold of m dimensions, and let
g be a Riemannian metric on M . The metric g is an inner product on the tangent
space Tx (M) at each point x ∈ M , and it naturally induces a smoothly varying inner
product on the dual spaces T ∗

x (M).
Let U be an open set in M . A frame9 for the cotangent bundle T ∗(M) on U

is a set of one-forms (e1, . . . , em) such that the differential forms {eμ} are linearly
independent at each point of U . If U is a coordinate chart on M with coordinates
(x1, . . . , xm), any one-form ϕ is a linear combination of the form

ϕ =
∑

aμ(x)dxμ,

where aμ(x) are differentiable functions on U . So, in this case, (dx1, . . . , dxn) is a
frame for T ∗(M) in the coordinate chart U . We can choose suitable linear combina-
tions of the differentials dxμ to be a frame as well, i.e., let

eμ =
∑

ν

eμν(x)dxν, (14.36)

9A frame for a vector bundle E on M is a set of sections defined in a neighborhood U of a given
point which are linearly independent and which span the vector spaces Ex at each point x ∈ U . A
vector bundle always has a frame defined near each point by the local trivializations of the bundle,
and it has a frame defined on all of M only if it is a trivial vector bundle.

http://dx.doi.org/10.1007/978-3-319-58184-2_15
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where we require the matrix eμν(x) to be nonsingular for x ∈ U , then (e1, . . . , em)

is also a frame.
By the Gram–Schmidt orthogonalization process, we can choose a frame eμ of

the form (14.36) so that

(eμ(x), eν(x))x = δμν, 1 ≤ μ, ν,≤ m,

i.e., the frame eμ forms an orthonormal basis at each point x ∈ U . A frame with this
orthonormality property is called an orthonormal frame or a moving frame.10

Let (e1, . . . , em) be an orthonormal frame for T ∗(M) on an open set U ⊂ M .
Then the k-forms

eμ1 ∧ · · · ∧ eμk , 1 ≤ μ1 < · · · < μk ≤ m, (14.37)

form a basis for the k-forms on U . We define the ∗-operator on this basis as follows:

∗ (eμ1 ∧ · · · ∧ eμk ) = ±eν1 ∧ · · · ∧ eνm−k , (14.38)

where

{eμ1 , . . . , eμk , eν1 , . . . , eνm−k }

is a permutation of

{e1, . . . , em}, (14.39)

and the sign in (14.38) is chosen to be positive for an even permutation and negative
if the permutation is odd. Note that the ordering in (14.39) corresponds to a choice
of an orientation on the manifold M .

Using this definition of the ∗-operator on the basis (14.37) we can extend the
definitionof∗-operator to any k-formonU .Hodge shows that if there are orthonormal
frames on overlapping open sets U1 and U2, then the definition of ∗-operator must
agree on the overlap U1 ∩ U2, and hence the ∗-operator is defined for k-forms on M .
Thus we have a linear mapping of vector spaces

∗ : Ek(M) → Em−k(M),

which is called the Hodge ∗-operator, which depends on the Riemannian metric
on M . As we want to extend this theory to complex manifolds, we choose to take
differential forms to have complex-valued coefficients. If

10Elie Cartan pioneered the use ofmoving frames (“repèremobile”) in the early part of the twentieth
century, and this tool allowed one to simplify many calculations and formulations of concepts in
differential geometry and its various generalizations.
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η(x) =
∑

|I |=k

ηI (x)dx I

is a complex-valued differential form on M , then the complex conjugate of η is
defined by

η(x) :=
∑

|I |=k

ηI (x)dx I .

We now define the Hodge inner product on Ek(M) as

(ϕ,ψ) :=
∫

M
ϕ ∧ ∗ψ. (14.40)

This L2-inner product on differential forms is a generalization of the classical
L2-Hermitian inner product on complex-valued functions on Rm ,

( f, g) =
∫

Rm

f (x)g(x)dx . (14.41)

Let D(Rm) denote the compactly-supported differentiable functions on Rm , and
consider a linear differential operator

L : D(Rm) → D(Rm),

then we define the adjoint differential operator11 to be a linear operator L∗ which
satisfies

(L f, g) = ( f, L∗g), f, g ∈ D(Rm),

for the L2-inner product defined by (14.41). For instance, in the simplest case, using
integration by parts,

∫

R

(
d f

dx

)
gdx =

∫

R
f

(
−dg

dx

)
dx, f, g ∈ D(R), (14.42)

that is, − d
dx is the adjoint of d

dx in this very simple case.
We now use this model to define the adjoint d∗ of the exterior differentiation

operator d using the Hodge inner product. Formally, we define d∗ by the equality

(dϕ,ψ) = (ϕ, d∗ψ), (14.43)

11This is the formal adjoint in the theory of linear differential equations; the word adjoint in that
theory involves boundary conditions as well.
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where on the left-hand side we use the Hodge inner product on Ek+1(M) and on the
right-hand side the Hodge inner product on Ek(M).

In particular, the formula (14.43) indicates that d∗ is an operator of the form

d∗ : Ek+1(M) → Ek(M).

Indeed, this is the case, and Hodge shows, by proving suitable straightforward prop-
erties of the ∗-operator, that we can define d∗ by

d∗ϕ = (−1)m+mk+1 ∗ d ∗ ϕ, for ϕ ∈ Ek(M), (14.44)

which does satisfy (14.43). Note that the − sign in (14.44) is reminiscent of the −
sign in (14.42), which is in fact a consequence of the use of Stokes’s theorem in this
more general case.

Using the adjoint operator d∗ we can now define the Laplacian operator � acting
on k-forms. Namely, we set

� = dd∗ + d∗d : Ek(M) → Ek(M).

For k = 0, d∗ is undefined, and we simply take � = d∗d in this case. In the case of
differential forms on Rm with the simple Euclidean metric, the Laplacian operator
� is the usual Laplacian operator

� =
m∑

μ=1

∂2

∂x2
μ

,

acting on the coefficients of the differential forms. The primary differential equation
on M that one needs to solve is:

�ϕ = ψ. (14.45)

In the long history of the theory of differential equations, the fundamental problem
has always been: given a differential equation, e.g.,

d f

dx
= g, (14.46)

find a solution f which satisfies the given equation. In this case, and inmost cases, we
use an integration process to find the solutions. For the simple differential equation
(14.46), we write

f (x) =
∫ x

x0

g(t)dt,
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and, by the fundamental theorem of calculus, f (x) is the desired solution. In classical
potential theory, integral operators of the form

∫

R3

g(y)

|x − y|dy (14.47)

were used to solve problems of the form

�u = g,

where � is the three-dimensional Laplacian (and 1/r is the kernel of the integral
operator, in this case the potential). This was important for the solution ofmany prob-
lems of physics in the eighteenth and nineteenth centuries (fluid mechanics, elec-
tromagnetism, etc.). Many such integral operators of that time were called Green’s
operators.

Hodge was able to generalize the theory of Green’s operators to this differen-
tial-geometric setting on a compact differentiable manifold. Without going into the
details of the integral operators involved, we summarize the fundamental results of
Hodge here in the following theorem. First we define the vector space of harmonic
k-forms to be

Hk(M) := {ϕ ∈ Ek(M) : �ϕ = 0}. (14.48)

It is not difficult to show (in this case where M is a compact manifold) that a k form
ϕ is harmonic if and only if

dϕ = 0 and d∗ϕ = 0. (14.49)

Theorem 14.2 (Hodge decomposition theorem [109]) Let M be a compact
Riemannian manifold, then there is a continuous linear mapping

G : Ek(M) → Ek(M),

and an orthogonal decomposition of the form

Ek(M) = Hk(M) ⊕ dd∗GEk(M) ⊕ d∗dGEk(M)

= Hk(M) ⊕ Gdd∗Ek(M) ⊕ Gd∗dEk(M),
(14.50)

and moreover,

dimHk(M) < ∞.
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The operator G in this theorem is referred to as a Green’s operator. We define the
orthogonal projection (the harmonic projection)

H : Ek(M) → Hk(M)

to be the orthogonal projection onto the harmonic differential forms (first term in the
sum on the right-hand side of (14.50)). An important fact that we use below is that
the Green’s operator and the Laplacian commute and respect the degrees of the forms
(i.e., �G = G�, and, in particular, dd∗G = dd∗G and d∗dG = Gd∗d). We note
here that the left-hand side of (14.50) depends only on the differentiable structure of
M , and the right-hand side depends explicitly on the Riemannian metric on M , as
well. The orthogonal direct sum in (14.50) is referred to as the Hodge decomposition
on the manifold M .

What the Hodge decomposition (14.50) shows is that the inhomogeneous Lapla-
cian operator on the infinite-dimensional vector space Ek(M) has an inverse, modulo
the finite-dimensional space of harmonic forms. In fact the Green’s operator is such
a pseudoinverse and can be defined by pseudodifferential operators, generalizations
of differential operators which include integral operators of the form (14.47) (see
e.g., Wells [239]). It can also be defined in terms of the spectral theory of elliptic
differential equations. In both cases, the proof of the Hodge decomposition involves
including the spaces of smooth differential forms in corresponding Sobolev spaces
of differential forms, which are then Hilbert spaces which allow us to prove that
limiting processes converge in the appropriate sense. Fundamentally, in the theory of
elliptic linear differential equations, and (14.45) is an example of such an equation,
one shows first that there exists a weak distribution solution in some appropriate
space of distributions (usually a Sobolev space of some sort), and then one shows
that such a weak solution is, in fact, smooth.

An immediate corollary of the Hodge decomposition is Hodge’s representation
of de Rham cohomology on M . Namely, there is an isomorphism

H k
dR(M) ∼= Hk(M). (14.51)

To see this, let ϕ be a closed k-form which represents a cohomology class [ϕ] ∈
H k

dR(M), then, by the Hodge decomposition

ϕ = Hϕ + dd∗Gϕ,

since dϕ = 0. The mapping

ϕ �→ Hϕ

induces a mapping

Zk(M) → Hk(M).
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This mapping is surjective, since any harmonic k-form is closed. If Hϕ = 0, then

ϕ = Hϕ + dd∗Gϕ + Gd∗dϕ

= d(d∗gϕ),

and hence ϕ ∈ Bk(M). It follows that the induced mapping

H k
dR(M) = Zk(M)/Bk(M) → Hk(M)

is an isomorphism.
Let us now extend the theory of harmonic forms to a compact complexmanifold X

with aHermitianmetric h. TheHermitianmetric induces naturally aRiemannianmet-
ric on the underlying differentiable manifold, which we still denote as X . Thus there
is a well-defined Hodge ∗-operator, Hodge inner product, and Laplacian operator on
X , and these yield harmonic differential forms on X . We need to investigate how
these mathematical objects interact with the complex structure on X . We begin with
the following fundamental result (again we refer to the references). The ∗-operator
is a C-linear isomorphism

∗ : E p,q(X)
∼=→ En−q,n−p(X). (14.52)

The proof of this involves a careful linear algebra analysis of the exterior algebra

∧k T ∗
x (X) =

∑

p+q=k

∧p,q T ∗
x (X),

at each point x ∈ X and its interaction with the Hermitian inner product on Tx .
We now use the Hodge inner product on the differential forms on X , and we find

that the direct sum decomposition

Ek(X) =
∑

p+q=k

E p,q(X) (14.53)

is an orthogonal direct sum decomposition. This is an easy consequence of (14.52).
Namely, if

ϕ ∈ E p,q(X), ψ ∈ Er,s(X), p + q = r + s,

then

ϕ ∧ ∗ψ

is of type (n − r + p, n − s + q). Now ψ is of type (s, r), and by (14.52) ∗ψ is of
type (n − r + p, n − s + q), as desired. But ϕ ∧ ∗ψ must be of type (n, n) in order
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that the inner product ∫
ϕ ∧ ∗ψ

be nonzero, and this is only the case if p = r and q = s. Otherwise, the inner product
is zero, and this shows the orthogonality of (14.53), as desired.

We now want to make a small modification of the ∗-operator for notational con-
venience in this complex manifold setting. Let

∗(ϕ) := ∗(ϕ), for ϕ ∈ Ek(X).

We recall the differential operator

∂ : E p,q(X) → E p,q+1(X),

and one can compute its adjoint with respect to the Hodge inner product and obtain

∂
∗ = −∗∂∗ : E p,q(X) → E p,q−1(X).

We define the associated Laplacian operator to be

� = ∂∂
∗ + ∂

∗
∂ : E p,q(X) → E p,q(X).

This is again a linear elliptic differential operator and we can define harmonic (p, q)-
forms in this context by

�(ϕ) = 0.

Note that these harmonic forms may not necessarily be harmonic in the sense that
�ϕ = 0. We will come back to this important point shortly.

We define the vector space of (p, q)-harmonic forms to be

Hp,q(X),

and this is also finite-dimensional, as in Theorem14.2.We recall Dolbeault’s theorem
(14.28), andHodge’s harmonic theory yields the harmonic representation of the sheaf
cohomology (this is due to Kodaira [127]),

Hq(X,�P) ∼= H p,q(X) ∼= Hp,q(X).

This is completely analogous to Hodge’s representation of the de Rham groups and
the standard cohomology of algebraic topology that we saw earlier in this section.

We now have the two sets of cohomology groups on X , each represented by
harmonic forms:
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H k(X,C) ∼= Hk(X),

H p,q(X) ∼= Hp,q(X),

all of which are finite-dimensional, and we set

bk : = dimC H k(X,C),

h p,q = dimC H p.q(X),

where the bk are the Betti numbers of the underlying compact differentiable
manifold X . The numbers h p,q are called the Hodge numbers of the compact com-
plex manifold X . However, we note that if ϕ is a d-closed form on X of degree k,
then there is a decomposition

ϕ = ϕk,0 + ϕk−1,1 + · · · + ϕ0,k

of ϕ into forms of type (p, q), and none of these forms need be ∂-closed; and
similarly, if ϕ is a ∂-closed form on X , it need not be d-closed.

There is, however, a spectral sequence due to Fröhlicher [76] which yields a
relation between these dimensions. It has the form

H p,q(X) ⇒ H k(X,C),

which yields a representation of the Euler characteristic χ(X) in terms of the Hodge
numbers

χ(X) :=
∑

k

(−1)kbk =
∑

k

∑

p+q=k

(−1)p+q h p,q . (14.54)

Now we make the assumption that X is a Kähler manifold with a fundamental
form �. With this assumption the relation between the de Rham and Dolbeault
groups simplifies considerably. By a subtle family of computations concerning the
fundamental form� and the∗-operator, one canderive the important relationbetween
the two Laplacians on X , namely,

� = 2�. (14.55)

There are a number of such identities, but this suffices for us to be able to say that
the two different notions of harmonic form that we introduced above coincide when
we have a Kähler metric (see the references Weil [238], Griffiths and Harris [91], or
Wells [239]).

An important consequence of this is that the orthogonal decomposition

Ek(X) =
∑

p+q=k

E p,q(X)
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induces an orthogonal decomposition of harmonic forms,

Hk(X) =
∑

p+q=k

Hp,q(X), (14.56)

which is called the Hodge structure or the Hodge decomposition12 of the Kähler
manifold X . We note that the ∗-operator ∗ induces a conjugate-linear isomorphism

∗ : Hp,q ∼=→ Hq,p, (14.57)

and hence the Hodge numbers satisfy

h p,q = hq,p,

which implies from the Hodge decomposition that the odd Betti numbers of X are,
in fact, even numbers, i.e.,

b1 = h1,0 + h0,1 = 2h1,0,

b3 = h3,0 + h2,1 + h1,2 + h0,3 = 2(h3,0 + h2,1),

· · ·

which is an important topological restriction on the Kähler manifold X . The Euler
characteristic formula of Fröhlicher (14.54) is a simple consequence of the Hodge
decomposition (14.56) in the case where X is a Kähler manifold.

The references give examples of compact complex manifolds which have, for
instance, b1 = 1. An example is a Hopf manifold, homeomorphic to S1 × S3, which
therefore cannot be a Kähler manifold, and hence, by Kodaira’s embedding theorem,
could not be a projective algebraic manifold.

14.5 Kodaira’s Vanishing Theorem

As we saw in the previous section, the assumption that a compact complex manifold
has a Kähler metric puts a restriction on the Betti numbers of the manifold. In a
similar vein, Salomon Bochner (1899–1982) showed in 1948 [22] that a compact
Riemannian manifold which has a Ricci curvature which is positive in a certain pre-
cise sense must have its first Betti number b1 = 0. Under additional such hypotheses,
Bochner showed that higher Betti numbers vanished as well. Bochner used Hodge’s
representation of the de Rham cohomology groups in terms of harmonic forms as
a main tool in his proof. Kodaira was able to generalize Bochner’s ideas to show

12Note that the term “Hodge decomposition” is often used for (14.50) for a differentiable manifold
as well as (14.56) on a Kähler manifold. It is usually clear from the context which is meant.
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that certain generalized Hodge numbers vanish, and this has become known as the
Kodaira vanishing theorem, which we will outline here.

First, we need to generalize the Dolbeault groups to include the cohomology
of (p, q)-forms with coefficients in a holomorphic line bundle. Let E → X be a
holomorphic line bundle on X and let ∧p,q T ∗(X) be the holomorphic vector bundle
whose differentiable sections are the (p, q)-forms we have been using. Then define
the tensor product bundle

∧p,q T ∗(X) ⊗ E → X.

Wewill call the differentiable sections of this vector bundle differential forms of type
(p, q)) with coefficients in E , which we denote by E p,q(X, E), for sections defined
on all of X . If gαβ is a set of transition functions for E with respect to a covering by
open sets Uα, then a differential form of this type is simply a differential form ϕa of
type (p, q) defined in each Uα which satisfies

ϕα = gαβϕβ in Uα ∩ Uβ,

for each nonempty intersection Uα ∩ Uβ . Similarly, we can define a holomorphic
p-form on X with coefficients in E to be defined in the same manner, where the
transition functions act on holomorphic p-forms instead of differentiable forms. A
holomorphic section of E is simply the special case of such a holomorphic p-form,
for p = 0.

We denote by O(E) the sheaf of holomorphic sections of the holomorphic line
bundle E on X , and we denote by �p(E) the sheaf of holomorphic p-forms on X
with coefficients in E . Thus we can consider the cohomology groups Hq(X,O(E))

and Hq(X,�p(E)), which will occur in Kodaira’s vanishing theorem below.
To apply the theory of harmonic forms in this setting, we need a Hermitian metric

l on the line bundle E . We suppose that we have a set of transition functions gαβ for
E defined on a covering of X by open sets Uα. We define a Hermitian metric l on E
to be a set of positive functions lα ∈ E(Uα) which satisfy

lα
lβ

= |gαβ |2 on Uα ∩ Uβ . (14.58)

Such metrics always exist (using, e.g., a partition of unity, just as in the case of a
metric on the tangent bundle). The metric l is a Hermitian inner product on the fibres
Ex , and it induces a conjugate-linear isomorphism

τ : E → E∗,

defined on each fibre of the line bundle E .
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If we assume, as before, that X is a Kähler manifold with Kähler metric h, and
that E has a Hermitian metric l, then we can define the Hodge inner product in this
setting. Namely, if

ϕx ⊗ sx ∈ ∧p,q Tx (X) ⊗ Ex ,

then we define the generalized Hodge ∗-operator

∗E (ϕx ⊗ sx ) := ∗ϕx ⊗ τ (sx ).

If we have two forms ϕ and ψ in E p,q(X, E), then we can define the Hodge inner
product by

(ϕ,ψ) =
∫

ϕ ∧ ∗E (ψ). (14.59)

Thewedge product under the integral sign is defined at a point x ∈ X in the following
manner. If v ⊗ a, w ⊗ b ∈ ∧p,q Tx ⊗ Ex , then

(v ⊗ a) ∧ (∗w ⊗ τ (b)) := v ∧ ∗w < a, τ (b) >,

where< , > denotes the pairing between Ex and its dual space E∗
x . Henceϕ∧∗E (ψ)

is a scalar differential form, and the integrand in (14.59) makes sense.
It is easy to verify that the mapping

∂ : E p.q(X, E) → E p,q+1(X, E)

is well-defined, since ∂ annihilates the transition functions of E . We define the
analogue of the Dolbeault groups in this case to be

H p,q(X, E) = ker ∂ : E p,q(X, E) → E p,q+1(X, E)

im ∂ : E p,q−1(X, E) → E p,q(X, E)
.

The adjoint of ∂ is given by

∂
∗
E = −∗E∂∗E : E p,q+1(D, E) → E p,q(X, E),

just as in the scalar case. Now we can define the Laplacian operator

�E = ∂∂
∗
E + ∂

∗
E∂ : E p,q(X, E) → E p,q(X, E),

and we define the harmonic forms as before:

Hp,q(X, E) := {ϕ ∈ E p,q(X, E) : �E (ϕ) = 0}.
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Using the harmonic theory as we have earlier, we have the representation of the sheaf
cohomology group and its corresponding Dolbeault group with coefficients in E in
terms of harmonic forms

Hq(X,�p(E)) ∼= H p,q(X, E) ∼= Hp,q(X, E),

which is again a result of Kodaira [126].
We can now use this harmonic representation of the Dolbeault groups to obtain the

vanishing theorem that we need for the embedding theorem. For this we will need to
use theChern classof the holomorphic line bundle E whichwe introduced earlier (see
(14.31)), andwhichwewill now reformulate with a differential-geometric definition.
In 1946 Shiing-Shen Chern (1911–2004) [44] showed how curvature of Hermitian
vector bundles (including the tangent bundle of a givenHermitian complexmanifold,
for instance) could be used to create characteristic classes for such a bundle, which
were topological obstructions to the triviality of the bundle. These characteristic
classes are now called Chern classes. This was very analogous to Hodge using
differential geometry and harmonic forms to represent cohomology groups of a
manifold, and it proved to be an important advance in our geometric understanding
of vector bundles. We will see the use of Chern classes for holomorphic vector
bundles in Sect. 14.7.

Let us now define Chern classes for holomorphic line bundles via differential
geometry. Let E be a holomorphic line bundle on a compact complex manifold, as
before. We define a Hermitian metric l on E (by using transition functions gαβ for E)
by letting lα be a positive differentiable function defined on each Uα which satisfies
(14.58). We define on each Uα the (1, 1)-form

cα = i

2π
∂∂ log lα.

We need to show that the cα agree on overlapping open sets Uα ∩Uβ , and this is easy
to do. On Uα ∩ Uβ we have

∂∂ log lα = ∂∂ log(gαβlβ),

= ∂∂ log gαβ + ∂∂ log lβ,

but

∂(∂ log gαβ) = 0 on Uα ∩ Uβ,

since the transition functions gαβ are holomorphic. Thus, we can define

c(E, l) :=
{

i

2π
∂∂ log lα(x), x ∈ Uα

}
, (14.60)
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and this is a well-defined (1, 1)-form on X , which we will call the Chern form on
X with respect to the Hermitian metric l. We want to show that the Chern form is a
closed differential form on X .

For this we introduce a useful notational device due to Weil [238]. We define

C : E p,q(X) → E p,q(X),

by setting

C(ϕp,q) := i p−qϕp,q .

We then define

dC := C−1dC,

and it is then an easy exercise to verify that

d = ∂ + ∂,

idC = ∂ − ∂,

2i∂∂ = ddC .

So, in each Uα, the Chern form becomes

− 1

π
ddC log lα,

and hence is a closed two-form on X .
Suppose that l and l̃ are two different metrics on E . We want to know that they

define the same cohomology class on the de Rham group H 2
dR(X). Consider the

difference of the two Chern forms in Uα

− 1

π
(ddC log lα − ddC log l̃α) = − 1

π

(
ddC log

lα

l̃α

)
.

But

lα = gαβlβ,

l̃a = gαβ l̃β,

and thus

la

l̃α
= lβ

l̃b

,
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and it follows that

− 1

π

(
dC log

lα

l̃α

)
= − 1

π

(
dC log

lβ

l̃β

)
,

on Uα ∩ Uβ , and thus defines a global one-form ψ on X with

c(E, l) − c(E, l̃) = dψ,

and hence c(E, h) gives a well-defined cohomology class [c(E, l)] in H 2
dR(X).

One can show13 that the cohomology class defined by the Chern form [c(E, l)]
coincides with the cohomology class c1(E), which we called the Chern class of E
defined by (14.31). Here c1(E) is considered as an element in H 2(X,C) (assuming
the identification of this cohomology group with the de Rham group H 2

dR(X)) under
the inclusion

c1(E) ∈ H 2(X,Z) ↪→ H 2(X,C).

We now define the concept of a positive line bundle on X . Let ψ be a differential
form of type (1,1) on X , then ψ is said to be a positive differential form if locally (on
some coordinate chart U )

ψ = i
∑

μν

ψμνdzμ ∧ dzν,

and the coefficient matrix ψμν(x) is a positive-definite matrix at each x ∈ U . A
holomorphic line bundle E → X is said to be a positive line bundle if there is a real
positive d-closed (1, 1)-form ψ ∈ c1(E), i.e., ψ is a representative of the Chern class
of E . A line bundle E is said to be negative if its dual bundle E∗ is positive. Now
we can formulate Kodaira’s vanishing theorem.

Theorem 14.3 (Kodaira vanishing theorem [126]) Let X be an n-dimensional com-
pact complex manifold, and let E be a holomorphic line bundle on X, then:

(a) If E ⊗ K ∗ is a positive line bundle, then

Hq(X,O(E)) = 0, q > 0.

(b) If E is a negative line bundle, then

Hq(X,�p(E)) = 0, p + q < n.

13See, for instance, Wells [239], Chap. III, Sect. 4. for a proof of this. It uses Čech cohomology to
represent the sheaf cohomology group H2(X,Z).
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We want to outline Kodaira’s proof of his vanishing theorem. First we will need
to introduce some differential-geometric concepts that will prove useful for this.
In the late nineteenth century development of differential geometry the concepts
of a connection, covariant differentiation, and the curvature of a connection were
developed, generalizing the original ideas of Riemann. In the early twentieth century,
Elie Cartan formulated the ideas of Riemannian geometry and numerous variations
thereof in terms of differential forms. Chern, in his theory of characteristic classes,
developedCartan’s ideas further forHermitian vector bundles on a complexmanifold.
We will use Chern’s methodology in our context for holomorphic line bundles.

Let E be a holomorphic line bundle on a compact complex manifold X , and let
D be a connection 14 on E . That is, D is a linear mapping

D : E0(X, E) → E1(X, E)

satisfying

D( f ϕ) = d f ·ϕ + f Dϕ,

for f ∈ E(X),ϕ ∈ E0(X, E). Using the complex structure of X , we have

E1(X, E) = E1,0(X, E) ⊕ E0.1(X, E),

and thus see that the connection D is the sum of two linear mappings

D = D′ + D′′,

where

D′(ϕ) ∈ E1,0(X, E),

D′′(ϕ) ∈ E0,1(X, E),

for ϕ ∈ E0(X, E).
If l is now a Hermitian metric on E , then there is a unique connection D on E

satisfying

d(ϕ,ψ) = (Dϕ,ψ) + (ϕ, Dψ),

for ϕ,ψ ∈ Ek(X, E), and

D′′ϕ = 0, if ϕ ∈ �p(X, E).

14We will use the specific notation and terminology fromWells [239]; see also Chern [45], Griffiths
and Harris [91].
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Here we have used the natural generalization of the Hermitian metric on E to
differential form-valued sections of E .

It follows that locally (for a suitable covering Uα of X and transition functions
gαβ for E) we can represent D = D′ + D′′ in the form

D′ϕa = ∂ϕa + θα ∧ ϕa,

D′′ϕ = ∂ϕα,

where θα is a (1, 0)-form given by

θα = l−1
α ∂lα,

a local connection one-form.
The curvature of E , defined by

� = D2,

is a (1, 1)-form on X defined locally by

�α = ∂(l−1
α ∂lα).

Thus we see that the Chern form that we defined earlier is defined by the curvature
of the connection D, namely

c(E, l) = i

2π
�,

and the properties of curvature yield corresponding properties of the characteristic
class (Chern class) of the line bundle, a principal idea of Chern.

Nowwe need to compute the adjoints of these operators in terms of the Hermitian
metric l on E and a Hermitian metric h on X , using the Hodge inner product. We
find that (locally)

(D′)∗E = = − ∗ ∂∗ = ∂∗,
(D′′)∗E = − ∗ ∂ ∗ +w ∗ θα∗,

where the mapping w is a C-linear mapping defined by

w = ∗∗ = (−1)kϕ, for ϕ ∈ Ek(X, E).

Let now � be the fundamental form on X associated to the Hermitian metric h
on X , and define the C-linear mapping

L : Ek(X) → Ek+2(X)
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by

L(ϕ) = � ∧ ϕ, ϕ ∈ Ek(X),

and let L∗ denote its adjoint. This operator has many important roles in the geometry
of Hermitian and Kähler manifolds, and we will need to use it briefly, as we see
below. We first need to describe a few elementary properties15 of L . First, it is easy
to see that

L∗ : Ek(X) → Ek−2(X), and L∗(ϕ) = w ∗ L∗,ϕ ∈ Ek(X).

Secondly, if ϕ is a (p, q)-form on X , then

(L∗L − L L∗)ϕ = (n − p − q)ϕ. (14.61)

Now we assume that X is a compact Kähler manifold with a fundamental form
�. Then there are a number of identities relating the operators d = ∂ + ∂ and L
and L∗ on X (see, for instance, Wells [239], Sect.V.4)). Some of these were used in
proving 2� = �, which we made use of earlier. We single out one that we will need
in our proof below:

∂L∗ − L∗∂ = i∂∗. (14.62)

We have two fundamental differential-geometric inequalities that are the key to
Kodaira’s proof. Let ϕ ∈ Hp,q(X, E), then

(
i

2

)
(� ∧ L∗ϕ,ϕ) ≤ 0, (14.63)

(
i

2

)
(L∗� ∧ ϕ,ϕ) ≥ 0. (14.64)

These inequalities involving harmonic forms are a version in this complex-analytic
setting of Bochner’s use of similar inequalities in his paper on curvature and Betti
numbers from1948 [22]. It was generalized to holomorphic vector bundles by Shigeo
Nakano in 1955 [162] after Kodaira’s work came out in 1954.

We can now outline the proof of these inequalities. First we note that

D2 = (d + θ)2 = �,

15See e.g., Weil [238], Chap.1 or Wells [239], Sect.V.1 for more details about Hermitian linear
algebra.
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where the second term is the square of the local representation of the connection D.
If follows that, if η is an E-valued differential form of type (p, q), then

� ∧ η = D2η = (D′∂ + ∂D′)η,

where we note that (D′)2η = 0, by comparing types. Namely, �∧η must be of type
(p + q, q + 1).

Thus we have, for our harmonic form ϕ,

i(∂∗ϕ, ∂∗ϕ) = ((∂L∗ − L∗∂)ϕ, ∂∗ϕ),

by (14.62). Since ϕ is harmonic, we have ∂ϕ = 0 and ∂
∗
E = 0, and it follows that

i(∂∗ϕ, ∂∗ϕ) = (∂L∗ϕ, ∂∗ϕ)

= (L∗ϕ, ∂
∗
E∂∗ϕ)

= (L∗ϕ, ∂
∗
E∂∗ϕ + ∂∗∂

∗
Eϕ),

since ∂
∗
Eϕ = 0. Taking adjoints twice in this expression, we obtain

i(∂∗ϕ, ∂∗ϕ) = ((D′∂ + ∂D′)L∗ϕ,ϕ)

= (� ∧ L∗ϕ,ϕ),

and this yields the inequality (14.63). The second inequality (14.64) is proved in a
similar fashion.

To continue now with the proof of Kodaira’s vanishing theorem, we let E be a
negative line bundle on X and let

� = −
(

i

2

)
�

be a fundamental form for a Kähler metric on X . We subtract (14.64) from (14.63),
obtaining

(
i

2

)
((� ∧ L∗ − L∗�)ϕ, f ) ≤ 0,

for a harmonic (p, q) form ϕ ∈ Hp,q(X, E). Now we use

Lϕ = −
(

i

2

)
� ∧ ϕ,

obtaining

((L∗L − L L∗)ϕ,ϕ) ≤ 0.



252 14 Compact Complex Manifolds

Now, using the commutator relation for L and L∗ (14.61), we obtain

(n − p − q)(ϕ,ϕ) ≤ 0,

which gives

ϕ = 0, for p + q < n,

and hence

Hp,q(X, E) = 0, for p + q < n,

and this completes our outline of a proof of part (b) of Theorem14.3.
To prove part (a) of the same theorem, we note that there is a conjugate-linear

isomorphism

Hp,q(X, E) ∼= Hn−p,n−q(X, E∗), (14.65)

due to Kodaira [126], which is a special case of Serre duality [215] for compact
complexmanifolds. Kodaira proves this in a straightforwardmanner using the theory
of harmonic forms that we have developed in this chapter. Serre’s theorem is valid
for all complex manifolds (using cohomology with compact supports) and uses the
natural duality between distributions and functions with compact support. We now
let E ⊗ K ∗ be positive, as in the hypothesis of part (a) of Theorem14.3, and hence
E∗ ⊗ K is a negative line bundle. Therefore by part (b) we have

Hp,q(X, E∗ ⊗ K ) = 0, p + q < n,

which means by (14.65) that

Hn−p,n−q(X, E ⊗ K ∗) = 0, p + q < n.

Let now p = 0, and we have

Hn,n−q(X, E ⊗ K ∗) = 0, q < n. (14.66)

Now we recall the Dolbeault representation that

Hn,n−q(X, F) ∼= Hq(X,�n(F)) = Hq(X, K ⊗ F),

for a holomorphic line bundle, since the canonical bundle K is the line bundle whose
holomorphic sections are holomorphic n-forms. Using this, we see that (14.66)
becomes
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0 = Hn,n−q(X, E ⊗ K ∗)
= Hq,n−q(X, K ⊗ E ⊗ K ∗)
= H0,n−q(X, E)

for q < n, which means, by relabeling the index q,

H0,q(X, E) = 0, q > 0,

which gives part (a) of the theorem.

14.6 The Kodaira Embedding

We formulated the Kodaira embedding theorem in Theorem14.1, and we now want
to outline the proof of this theorem, where we will use the various tools from sheaf
theory and the theory of harmonic forms that we have discussed in the previous
sections.

Suppose now that X is a Hodgemanifoldwith a closed fundamental form�which
represents an integral cohomology class in H 2(X,Z). Consider the exact sequence

· · · → H 1(X,O∗) δ→ H 2(X,Z)
κ→ H 2(X,O) → · · · (14.67)

coming from

0 → Z → O → O∗ → 0.

Let [�] denote the cohomology class of � in H 2(X,Z). Any two-form on X has a
decomposition of the form

ϕ = ϕ2,0 + ϕ1,1 + ϕ0,2.

Thus the (1, 1)-form � has �2,0 = �0,2 = 0.
Since

H 0,2(X) ∼= H 2(X,O),

it then follows that κ([�]) = 0 in (14.67), and thus there is a holomorphic line bundle
E → X such that

c1(E) = δ(E) = [�].

Now E is a positive line bundle, since it has a positive Chern form of type (1, 1)
representing its Chern class. We will see below that a suitable tensor power of E , of
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the form F = Eμ, for some μ > 0, will be a line bundle that will give an embedding
of X into PN for a suitable N .

We now need to define several specific subsheaves of the sheafO of holomorphic
functions on X . We recall our example (14.35) of an ideal sheaf m p of holomorphic
functions that vanish at a point p ∈ X . We now define m p,q to be the subsheaf of
O of holomorphic functions that vanish at two points p and q. If the points p and q
coincide, then this is the sheaf of functions that vanish at p to second order, which
we denote by m2

p. It is easy to verify that the quotient sheaves have the form

(O/m p,q)x
∼=

{
C, if x = p or q,

0, if x �= p or q,

(O/m2
p)x

∼=
{
C ⊕ Cn, if x = p,

0, if x �= p.

We have the corresponding short exact sequences,

0 → m p,q → O → O/m p,q → 0,
0 → m2

p → O → O/m2
p → 0,

and we can tensor these with the sheaf O(F), obtaining

0 → m p,q ⊗ O(F) → O(F) → O/m p,q ⊗ O(F) → 0,
0 → m2

p ⊗ O(F) → O(F) → O/m2
p ⊗ O(F) → 0.

These short exact sequences induce the long exact sequences

· · · → H0(X,O(F))
r→ H0(X,O/m p,q ⊗ O(F)) → H1(X, m p,q ⊗ O(F)) → · · · ,

· · · → H0(X,O(F))
s→ H0(X,O/m2

p ⊗ O(F)) → H1(X, m2
p ⊗ O(F)) → · · · .

(14.68)

We will show that if the two mappings r and s in (14.68) are surjective, then a
basis for the finite-dimensional vector space of holomorphic sections

H 0(X,O(F))

yields an embedding of X into PN , where

dim H 0(X,O(F)) = N + 1.

This will then give the required Kodaira embedding.
If we knew that

H 1(X, m p,q ⊗ O(F)) = 0,
H 1(X, m2

p ⊗ O(F)) = 0,
(14.69)
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then it would follow that r and s were surjective, and the Kodaira embedding theorem
would follow. The vanishing of the two cohomology groups (14.69) was proved in
1962 by Grauert [87], which, at the time, provided a new proof of the Kodaira
embedding theorem. In fact, Grauert extended Kodaira’s results to compact complex
spaces (allowing singularities) with an alternative definition of positive line bundles
in the more general case. This work followed up on some of the methodology of
Grauert’s proof of the real-analytic embedding theorem that we will see in Sect. 15.7.

Kodaira used the theory of harmonic forms to show that the mappings r and s
in (14.68) are surjective, but he had to do this somewhat indirectly, as the harmonic
theory using partial differential equations was only valid for locally free holomorphic
sheaves, and the sheaves in (14.69) are not locally free. We will see how Kodaira did
this later in this section. First, we will show that if r and s are surjective, then we
obtain an embedding.

Let us look at the mapping r in (14.68), and we assume that it is surjective. It
follows that given any two points in the stalks (O(F)/m p,q)p and (O(F)/m p.q)q ,
there is a section s which takes on these values at these two points. It follows that
we can find two sections

s1, s2 ∈ H 0(X,O(F))

such that

s1(p) = 0, s1(q) �= 0,
s2(p) �= 0, s2(q) = 0.

(14.70)

If we now let {s0, s1, . . . , sN } be a basis for H 0(X,O(F)), then it follows from
(14.70) that, for each x ∈ X , there is at least one section s j with the property that
s j (x) �= 0. Hence the Kodaira mapping defined in (14.19)

� : X → PN ,

is a well-defined holomorphic mapping, and it follows easily from (14.70) that � is
a one-to-one mapping.

Now we suppose that the mapping s in (14.68) is surjective. Let’s see what this
looks like locally at the point p. Let s ∈ H 0(X,O(F)), then in a coordinate chart U
near p, where we assume that p = (0, . . . , 0), and where we assume that the section
s is represented by a holomorphic function f , then the first two terms of the Taylor
series at p have the form

f (0) +
n∑

μ=1

∂ f

∂zμ
(0)zμ.

http://dx.doi.org/10.1007/978-3-319-58184-2_15
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This is then a representative of the section s in the stalk of O(F)/m2
p at p. To say

that the mapping s in (14.68) is surjective means that locally at p, the mapping

f �→ f (0) + d f (0)

is surjective, and this implies that the induced mapping locally at p from the Kodaira
mapping � : X → PN is regular. Thus the mapping � is an embedding, as required.

Now we still need to understand why these mappings r and s in (14.68) are
surjective. The problem we face is that the two sheaves m p,q and m2

p are not locally
free. Thus they don’t correspond to holomorphic vector bundles, and the theory of
harmonic forms wouldn’t apply. Kodaira introduces a new trick at this point, which
allows him to use the vanishing theorem that he proved using harmonic forms. The
basic idea is to blow up the manifold X at the points p and q in a suitable manner
which converts the problem to one involving locally free sheaves. To “blow up a
manifold at a point” is a specific classical procedure from algebraic geometry which
replaces the point p by a copy of Pn−1 in such a way that X remains a smooth
manifold. This has been used for a long time by algebraic geometers to resolve
singularities. More formally, it is called the quadratic transform of the manifold X
at the point p, which we now briefly describe.

Let Y be an n-dimensional complex manifold, and suppose p ∈ Y . Let U be a
coordinate chart near p, where we let p = (0, . . . , 0) in these coordinates. Consider

W = {(x, t) ∈ U × Pn−1 : tαzβ − tβzα = 0,α,β = 1, . . . , n}, (14.71)

where (t1, . . . , tn) are homogeneous coordinates for Pn−1. Then W is a holomorphic
submanifold of U × Pn−1, and there are natural projections

π : W → U,

given by

π(z, t) = z,

and

σ : W → Pn−1,

given by

σ(z, t) = t.

It follows from the above construction that

Sp := π−1(0) = {0} × Pn−1,
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and that if we restrict π to W − Sp, we see that

π|W−Sp : W − Sp → U − {0}

is a biholomorphic mapping.
We now define the quadratic transform of Y at p to be:

Q pY :=
{

W, x ∈ U,

Y − U, x ∈ Y − U,

and we extend the projection π to all of Q pY in a natural manner:

πp : Q pY → Y,

being defined by π in W and by the identity mapping on Y − W .
Now we return to our compact complex manifold and the mappings r and s in

(14.68).We consider the two given points p and q, where p �= q, and we can perform
the double quadratic transform with its projection

πp,q : Q p Qq X → X,

which is well-defined since each quadratic transform is local near p and q, respec-
tively. We set X̃ := Q p Qq X and let Õ be the sheaf of holomorphic functions on X̃ .
We define the two hypersurfaces in X̃ by

Sp = π−1
p,q(p),

Sq = π−1
p,q(q).

(14.72)

Then we let

S := Sp ∪ Sq

be the holomorphic submanifold of codimension one in X̃ defined by the blowups
at the points p and q (14.72).

We want to reduce the surjectivity of r and s in (14.68) to a different sheaf-
theoretic vanishing theorem where we will be able to utilize the Kodaira vanishing
theorem. We will first illustrate how this is done for the mapping r , and then indicate
how this procedure can be modified to obtain a similar result for the mapping s.

We can now define the ideal sheaf I of holomorphic functions on X̃ which vanish
on the hypersurface S.

We recall that part of our hypothesis is that we have a positive line bundle E → X ,
and that F = Eμ is defined as a power of E for a not yet specified power μ. We let

F̃ := π∗F
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be the pullback line bundle of F on X̃ , and we then have the short exact sequences

0 → I ⊗ Õ(F̃) → Õ(F̃) → Õ(F̃)/I → 0,
↑ π∗

1 ↑ π∗ ↑ π∗
2

0 → m p,q ⊗ O(F) → O(F) → O(F)/m p,q → 0,

where π1 and π2 are the naturally induced mappings from πp,q . This then yields the
pair of long exact sequences

· · · → H0(X̃ , Õ(F̃))
r̃→ H0(X̃ , Õ(F̃) ⊗ Õ/I) → H1(X̃ , Õ(F̃) ⊗ I) → · · · ,

α ↓↑ π∗ ↑ π∗
2 ↑ π∗

1
· · · → H0(X,O(F))

r→ H0(X,O(F) ⊗ O/m p,q ) → H1(X,O(F) ⊗ m p,q ) → · · · .

(14.73)

We can now show that the first vertical mapping π∗ in this diagram is an
isomorphism. We have denoted the inverse by α, and we now show that it is indeed
a well-defined inverse. We note first that for n = 1, X̃ = X , so there is nothing to
show, since π is then biholomorphic. If n > 1, then we see that

π : X̃ − S → X − {p, q}

is biholomorphic, and we can define the inverse

α := ((π−1)∗ : H 0(X̃ − S, Õ(F̃)) → H 0(X − {p, q},�(F))

on these open sets which exclude the points {p, q} and their blowups. We need
to show that this mapping extends across the exceptional sets. Suppose that s ∈
H 0(X̃ − S, Õ(F̃)), and consider α(s). Then locally, near either p or q, α(s) can be
represented as a holomorphic function on a punctured neighborhood of such a point,
and by Hartogs’s theorem16 the function analytically continues across the point. It
follows that π∗ in (14.73) is indeed an isomorphism with inverse α.

Moreover, it is easy to show that themappingπ∗
2 in (14.73) is an injectivemapping,

and we will use this fact below.
Now, we can check that if

H 1(X̃ , I ⊗ Õ(F̃)) = 0, (14.74)

then themapping r in (14.73) (which is the same as the original mapping r in (14.68))
is surjective. Namely, if s ∈ H 0(X,O(F)/m p,q), then, by the vanishing theorem

16Hartogs proved that there are no isolated singularities of holomorphic functions of more than one
complex variable [96]. See Sect. 15.2 for a discussion of the important role this theorem played in
the theory of functions of several complex variables in the first half of the twentieth century.

http://dx.doi.org/10.1007/978-3-319-58184-2_15
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(14.74), r̃ in (14.73) is surjective, and there is then an element s̃ ∈ H 0(X̃ , Õ(F̃))

such that

r̃(s̃) = π∗(s),

and thus we obtain

r(α(s̃) = s,

and thus r is surjective (using the fact that π∗
2 is injective).

One can prove in the same manner that the mapping s in (14.68) is surjective by
using the ideal sheaf I2 of holomorphic functions on X̃ that vanish to second order
on S. For this, one would need to have a similar vanishing theorem of the form

H 1(X̃ , Õ(F̃) ⊗ L2) = 0. (14.75)

As we saw in Sect. 14.2, to any hypersurface in a complex manifold, we can
associate a holomorphic line bundle. Let L be the line bundle on X̃ associated to
the hypersurface S = Sp ∪ Sq , the blowups of the points p and q. The ideal sheaf
of holomorphic functions on X̃ which vanish on the hypersurface S, which we have
denoted by I and used extensively in the last few paragraphs, corresponds to the
sheaf of sections of the line bundle L∗. More precisely,

I ∼= Õ(L∗),

as is easy to verify.
Consider now the line bundle

π∗(Eμ) ⊗ L∗ ⊗ K ∗
X̃
, (14.76)

for the case of two distinct points p and q, as above. If we can show that this line
bundle is positive for some sufficiently largeμ, then it would follow from the Kodaira
vanishing theorem (Theorem14.3) that

H 1(X̃ , Õ(π∗Eμ) ⊗ I) = 0,

which is what we needed in (14.74) above.
In order to show that the tensor product (14.76) is positive, we will need to have

metrics on each of the factors in the product and compute and compare the curvatures.
First, we have, by hypothesis, a metric l on E such that the curvature �E is positive
on X . It follows that l induces a metric on π∗Eμ, and it is easy to see that

�π∗ Eμ = μ�π∗ E .
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This curvature is positive on X̃ − S, and, since S is lower-dimensional, it is positive
semidefinite on X̃ .

Now we let Wp and Wq be coordinate neighborhoods of Sp and Sq where we
have the representation of the quadratic transforms of X at the points p and q as in
(14.71), and we let W = Wp ∪ Wq . It is not difficult to show, using the coordinates
(z, t) in Wp, that

L∗
|Wp

∼= σ∗(H),

where H is the hyperplane section bundle on Pn−1. We define a metric on H by

kα = log
|tα|2

(|t1|2 + · · · + tn|2) in Vα = {tα �= 0} ⊂ Pn−1.

The curvature

�H = ∂∂ log ka

is the Fubini–Study (1, 1)-form given by (14.14) (ignoring the factor of i/2), and is
positive. This induces a metric kp and curvature on σ∗(H) which is positive semi-
definite and is positive-definite in the t direction in the open set Wp. We can perform
the same construction in Wq .

Now let ρ be a cutoff function which is ≡ 1 near Sp and Sq and is ≡ 0 on a
neighborhood of the compact set X̃ − W . The line bundle L∗ is trivial on X̃ − S, and
we can put a constant metric k0 on L∗

X̃−S
. We can then define a metric on L∗ by

k = ρkp + ρkq + (1 − ρ)k0.

The curvature of L∗ with respect to this metric is positive-semidefinite near Sp and
Sq and is positive-definite in the t-directions, also near Sp and Sq .

Now we need a good representation of K X̃ . Again, using the local coordinate
charts Wp and Wq , one can verify that

K X̃
∼= (L∗)n−1 ⊗ π∗K X ,

where the factor (L∗)n−1 is the contribution to K X̃ coming from the quadratic trans-
forms of X at p and q. The metric h on X induces a metric on the canonical bundle
K = ∧nT ∗(X), and hence on the pullback bundle π∗K X .

Our tensor product (14.76) now has the form

π∗Eμ ⊗ (L∗)n ⊗ π∗K X . (14.77)
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Let’s rewrite this as

π∗Eμ1 ⊗ (L∗)n ⊗ π∗Eμ2 ⊗ π∗K X , (14.78)

where μ = μ1 + μ2 and μ1 and μ2 are both positive integers.
We note the important fact that if G ⊗ H is a tensor product of holomorphic line

bundles with Hermitian metrics, then the curvature of the tensor product is the sum
of the curvatures of the factors, i.e.,

�G⊗H = �G + �H ,

as is easy to see from the Chern form representation of curvature (14.60).
Now consider the sum of curvatures of the first two factors in (14.78),

μ1�π∗ E + n�L∗ . (14.79)

The first term is positive-semidefinite on X̃ ; and in the coordinate neighborhood
Wp near the hypersurface Sp the first term is positive-definite in the z-direction
and the second term is positive-definite in the t-direction. This is also true near
the hypersurface Sq , and hence their sum is positive-definite in a neighborhood of
S = Sp ∪ Sq . The first term is positive-definite on the closure of the set

{x ∈ X̃ : ρ(x) < 1},

and hence we can choose a μ0
1 such that the sum in (14.79) is positive-definite for

any μ1 ≥ μ0
1.

Let us now consider the last two factors in (14.78). We have

μ2�π∗ E + �π∗ K X = π∗(μ2�E + �K X ).

Since �E is a positive-definite (1, 1)-form on the compact manifold X , there is a
positive integer m0

2 such that

μ2�E + �K X

is positive on X for all μ2 ≥ μ0
2. The pullback form

π∗(μ2�E + �K X )

will then be a positive semidefinite (1, 1)-form on X̃ ; thus we obtain, for μ1 ≥
μ0
1,μ2 ≥ μ0

2, that the tensor product (14.78) is a positive line bundle.
The above argumentationwas for a fixed p andq on X . By continuity, the estimates

would also be true for points near p and q. By covering X by a finite covering of
suitable open sets, we would be able to conclude that there is an integer μ0 such that
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the tensor product (14.78) is positive for μ ≥ μ0, for all pairs of distinct points p
and q on X .

A variation of this argument will yield the same result for the tensor product of
line bundles

π∗Eμ ⊗ (L∗)2 ⊗ K X̃ ,

where here L∗ corresponds to the ideal sheaf I for the hypersurface Sp for a single
point p. This then concludes our outline of the proof of the Kodaira embedding
theorem.

14.7 Riemann–Roch Theorems in Higher Dimensions

At the end of Chap.10 we discussed the celebrated Riemann–Roch theorem for
Riemann surfaces. We want to revisit this theorem and show how it can be expressed
in terms of sheaf theory, sheaf cohomology and contemporary algebraic topology.
These are the same tools we have used in this chapter on the Kodaira embedding
theorem. This reformulation has led to simpler proofs as well as to quite impor-
tant generalizations to higher-dimensional manifolds that we want to outline in this
section.

Let now X be a compact one-dimensional complex manifold of genus g17

(a compact Riemann surface), and let D be a divisor on X as defined in Sect. 10.4,
namely,

D =
∑

l

nl pl,

where pl is a discrete set of points in X , and nl are integers. We can associate to
this divisor a holomorphic line bundle. We can describe this divisor as the zeros and
poles with multiplicities of meromorphic functions defined in the neighborhood of
each point pl (e.g., fλ ∈ M(Ul), l = 1, . . . , L , where Ul is a neighborhood of pl

and f0 ≡ 1 in the open set U0 = X − ∪pl ). In the intersections Uα ∩ Uβ , we let
gαβ = fα/ fβ , which defines a holomorphic line bundle ED on X . Linearly equiva-
lent divisors (D − D′ = ( f ), for some globally defined meromorphic function f )
correspond to holomorphically equivalent holomorphic line bundles (ED

∼= E ′
D).

We then have the following vector space isomorphism:

L(D) = { f ∈ M(X) : ( f ) + D ≥ 0} ∼= H 0(X,O(ED)), (14.80)

17We now use the common designation of g for genus for a Riemann surface, as opposed to the
notation p used by Riemann and his successors at the end of the nineteenth century.

http://dx.doi.org/10.1007/978-3-319-58184-2_10
http://dx.doi.org/10.1007/978-3-319-58184-2_10
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which is quite easy to verify. This links the language of the nineteenth century with
the sheaf-theoretic language of the mid-twentieth century. Here we are following the
paper of Jean-Pierre Serre (1926–) [215], which makes this transition in language
and which gives a very elegant proof of the Riemann–Roch theorem that we will
outline below. For simplicity, we will let E denote the line bundle associated with
the given divisor D in the paragraphs below.

Now let K be the canonical divisor on X (divisor defined by a meromorphic
one-form, as in Sect. 10.4), and let K also denote the canonical bundle (T ∗(X) in
this case of a Riemann surface) on X . We use the same notation for the canonical
bundle, whichwe have used extensively earlier in this chapter, as for the holomorphic
line bundle associated to the divisor K . The meromorphic sections of the canonical
bundle K are precisely the meromorphic one-forms used in the definition of the
canonical divisor K .

The divisors in the Riemann–Roch theorem form an Abelian group which are
described additively as D + D′, and the corresponding holomorphic line bundles
form an Abelian group described in this chapter multiplicatively as E ⊗ E ′. And
thus we would have K − D, as in the Riemann–Roch theorem, corresponding to
K ⊗ E∗, recalling that the multiplicative inverse of a holomorphic line bundle is its
dual bundle. Thus we have the isomorphism

L(K − D) ∼= H 0(X,O(K ⊗ E∗)).

In Serre’s paper that we are following here [215], he proves his well-known Serre
duality theorem for complex manifolds. A special case of this theorem was proved
by Kodaira for compact complex manifolds, which we used earlier in this chapter;
see Eq. (14.65). In this special case we have the conjugate-linear isomorphism

H 1(X,O(E)) ∼= H 0(X,�1(E∗)),

which is also isomorphic to H 0(X,O(K ⊗ E∗)), since the sheaves �1(E∗) and
O(K ⊗ E∗) are isomorphic. Thus we obtain

dim H 1(X,O(E)) = dim H 0(X,O(K ⊗ E∗)). (14.81)

We recall now the statement of the Riemann–Roch theorem from Sect. 10.4
(Theorem10.4)

dim L(D) − dim L(K − D) = deg(D) + 1 − g, (14.82)

where g is the genus of X . Using the isomorphism above,18 we obtain an equivalent
form of the Riemann–Roch theorem

18R.C. Gunning’s lecture notes on Riemann surfaces [92] have a very readable and much more
detailed account of Serre’s work concerning the classical and sheaf-theoretic versions of the
Riemann–Roch theorem.

http://dx.doi.org/10.1007/978-3-319-58184-2_10
http://dx.doi.org/10.1007/978-3-319-58184-2_10
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dim H 0(X,O(E)) − dim H 1(X,O(E)) = deg(D) + 1 − g, (14.83)

where here E is the line bundle corresponding to the divisor D.
We can now outline Serre’s elegant proof of the Riemann–Roch theorem (in the

formof (14.83)) using sheaf cohomology.Thebasic idea is to show that the expression

R(D) := dim H 0(X,O(E)) − dim H 1(X,O(E)) − deg(D)

is a constant. To see this, suppose that D is any divisor, and let D′ = D + p for
any point p ∈ X , and we simply have to show that R(D) = R(D′). Letting E and
E ′ be the line bundles associated to D and D′, we have the short exact sequence of
sheaves:

0 → O(E) → O(E ′) → O(E ′)/O(E) → 0.

This yields the long exact sequence

0 → H 0(X,O(E)) → H 0(X,O(E ′)) → H 0(X,O(E ′)/O(E)) →
H 1(X,O(E)) → H 1(X,O(E ′)) → H 1(X,O(E ′)/O(E)) → · · · .

It is easy to check that

(O(E ′)/O(E)
)

x =
{
C, x = p,

0, x �= p,

and, moreover,

Hq(X,O(E ′))/O(E)) = 0, q ≥ 1,

since O(E ′)/O(E) is a fine sheaf (a sheaf which admits a partition of unity; see
the references for sheaf cohomology). Also, since we assume X is connected,
H 0(X,O(E ′)/O(E)) ∼= C.

Thus the long exact sequence above becomes the exact sequence of five vector
spaces

0 → H 0(X,O(E)) → H 0(X,O(E ′)) → H 0(O(E ′)/O(E)) →
H 1(X,O(E)) → H 1(X,O(E ′)) → 0.

By elementary linear algebra we obtain an alternating sequence of dimensions of the
form

dim H 0(X,O(E)) − dim H 0(X,O(E ′)) + 1
− dim H 1(X,O(E)) + dim H 1(X,O(E ′) = 0,
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and this gives immediately

R(D) = dim H 0(X,O(E ′)) − dim H 1(S,O(E ′)) − deg(D) − 1.

But deg(D′) = deg(D) + 1, and thus R(D) is a constant.
To complete Serre’s proof of the Riemann–Roch theorem, we simply have to

evaluate R(D) for the special case of D = 0. We see that

R(0) = dim H 0(X,O) − dim H 1(X,O) − 0.

But, by Serre duality (14.65),

dim H 1(X,O) = dim H 0(X,�1) = g,

the genus of X . Namely, the space H 0(X,�1) is the space of holomorphic one-forms
on X which we know by Hodge theory is the genus of X . This is also equivalent
to Riemann’s space of Abelian integrals of the first kind, which he showed in his
original paper from 1857 [202] is the same as the genus (see our discussion of this
in Chap.10).

Weneed onemore ingredient to completely transform theRiemann–Roch theorem
to its modern form. We recall the Chern class of a holomorphic line bundle c1(E) ∈
H 2(X,Z), and that this Chern class can be represented, by de Rham’s theorem, as a
closed two-form on X . If D = ∑

l nl pl is a divisor on X , we have that deg(D) is the
numerical sum of these points with multiplicities, i.e., deg(D) = ∑

l nl . The Chern
class of the line bundle allows us to compute the degree in the following manner:

deg(D) =
∫

X
c1(E), (14.84)

where the integration refers to the integration of the two-form representing the Chern
class c1(E).

Chern’s fundamental paper from 1946 [44] introduced and proved many proper-
ties of what are now called Chern classes of Hermitian vector bundles on compact
differentiable manifolds (he called them “characteristic classes,” but they have been
called Chern classes ever since).We described and used the concept of the first Chern
class c1(E) for a holomorphic line bundle E in the earlier sections of this chapter.
Now we need to use the higher-order Chern classes as well. Our primary interest
is complex manifolds, so we restrict our attention to this category of manifolds,
although the theory of Chern classes is much more general than this.

Let E be a Hermitian holomorphic vector bundle of rank r on a compact complex
manifold of dimension n. Then there is a countable set of Chern classes of the form

c j (E) ∈ H 2 j (X,Z), j = 0, . . . , k, . . . where c j (E) = 0, for ; j > 2r,

and where we have set c0(E) = 1.

http://dx.doi.org/10.1007/978-3-319-58184-2_10


266 14 Compact Complex Manifolds

Chern classes can, in fact, be defined axiomatically in terms of their fundamental
properties, and we leave it to the references for the constructions and properties of
these characteristic classes of vector bundles, which play such an important role in
modern complex geometry (see, e.g., Hirzebruch [104], Chern [45], Griffiths and
Harris [91], or Wells [239]).

In summary form, the construction of these classes can be obtained by defining
the Chern classes for the universal bundles on Grassmannian manifolds, and then
showing that any such holomorphic vector bundle is a pullback from the universal
bundle on a suitable Grassmannian manifold, and defining the Chern classes as
the pullbacks of specifically defined Chern classes for the universal bundle of a
Grassmannian manifold. This shows, in particular, that the Chern classes are integral
cohomology classes.

Chern also constructs the Chern classes in terms of curvature forms defined (using
certain homogeneous terms of an expansion of a determinant expression involving
curvature). This differential-geometric construction (which we saw in the case of a
holomorphic line bundle) yields Chern formswhich are closed 2 j-forms on X , which
define c j (E) as an element of H 2 j (X,R). It takes a separate argument to show that
these are integral cohomology classes, as can be shown from the Grassmannian
definition, for instance, but there are other methods which yield the integrality as
well.

We now define the total Chern class to be:

c(E) = 1 + c1(E) + c2(E) + · · · cr (E) ∈ H∗(X,Z),

where H∗(X,Z) is the cohomology ring of the manifold X . The multiplication here
can be defined by using the de Rham representation of cohomology and using the
exterior multiplication of differential forms.

A fundamental theorem of Chern is his higher-dimensional version of the Gauss–
Bonnet theorem [46], which has the following form in terms of Chern classes. Letting
χ(X) be the Euler characteristic of the manifold X , i.e., the alternating sum of Betti
numbers,

χ(X) =
2n∑

k=0

(−1)kbk,

then the Chern–Gauss–Bonnet theorem has the form:

χ(X) =
∫

X
cn(T (X)).

For dim X = 1, with genus g, this is simply

∫
c1(T (X)) = 2 − 2g.
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Now we can rewrite the Riemann–Roch theorem for Riemann surfaces in terms
of Chern classes, and from (14.83) we obtain

dim H 0(X,O(E)) − dim H 1(X,O(E)) =
∫

X
c1(E) + 1

2
[c1(T (X))] . (14.85)

This is now the version of Riemann–Roch that generalizes to higher dimensions.
In 1954 Hirzebruch announced [103] what is now called the Hirzebruch–Riemann–
Roch theorem and published his results in a monograph in 1955 [105]. This was
republished as a considerably expanded English monograph in 1966 [104]. We now
have the language to formulate his theorem, which we now proceed to do.

Let now X be a compact complex manifold of dimension n, and let E be a
holomorphic vector bundle of rank r on X . Hirzebruch defines theEuler characteristic
for a holomorphic vector bundle E on X to be:

χ(X, E) :=
n∑

q=0

(−1)q Hq(X,O(E)), (14.86)

and then has his version of the Riemann–Roch theorem in arbitrary dimensions:

Theorem 14.4 (Hirzebruch–Riemann–Roch [104]) Let E be a holomorphic vec-
tor bundle on a projective algebraic manifold X, then there exists a homogeneous
polynomial p(X1, . . . , Xr , Y1, . . . , Yn) with rational coefficients such that

χ(X, E) =
∫

p(c1(E), . . . , cr (E), c1(T (X)), . . . , cn(T (X))). (14.87)

Hirzebruch has a very explicit formula for the polynomial p in this theorem in terms
of Todd polynomials for the tangent bundle and Chern classes of the holomorphic
vector bundle E (see Hirzebruch’s monograph [104]).

We give a couple of examples to illustrate the theorem. First, we have the case
of the classical Riemann–Roch theorem as formulated in Eq. (14.85), where here
p(X1, Y1) = X1 + 1

2Y1. Second, we consider the case of a holomorphic line bundle
L on a projective algebraic manifold X of dimension two, and Hirzebruch’s theorem
simplifies to

χ(X, L) =
∫

X

1

2
[c1(L)2 + c1(L)c1(T (X))] + 1

12
[c1(T (X))2 + c2(T (X))].

(14.88)

We remind the reader that the products are in the cohomology ring H∗(X,Q). A num-
ber of special cases of the Hirzebruch–Riemann–Roch theorem had been previously
proved in the late nineteenth and early twentieth century. See Hirzebruch’s mono-
graph [104] for a description of these earlier results. One important fact which comes
out in all of these theorems is that the right-hand side is a priori only a rational
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number, but the left-hand side is necessarily an integer, thus proving the integrality
of the right-hand side, which is not at all easy to prove directly.

In 1963Michael F.Atiyah (1929–) and IsadoreM. Singer (1924–) announced their
index theorem for elliptic operators on compact differentiable manifolds [11], and
this result is now universally known as the Atiyah–Singer index theorem. A complete
proof was published by Richard Palais in 1965 based on a seminar at the Institute
for Advance Study [177], and Atiyah and Singer published a new and somewhat
different proof in 1968 [12], which was followed up by a series of papers dealing
with a number of different variations and generalization of this important theorem.

The fundamental result of Atiyah and Singer can be summarized as follows.

Theorem 14.5 (Atiyah–Singer index theorem) Let E and F be differentiable com-
plex vector bundles on a compact oriented differentiable manifold M of dimension
m, and let D be a linear elliptic differential operator

D : E(E) → E(F),

where E(∗) denotes C∞ sections of the vector bundles. Then there is a cohomology
class α ∈ H m(X,Q) such that

index(D) := dim ker D − dim coker D =
∫

M
α.

Here coker D = E(F)/im E(E). The cohomology class α in this theorem is defined
explicitly by Atiyah and Singer in terms of the symbol of the differential operator
(derived from the highest order derivative expression of D in local coordinates) as
well as the Chern classes of the vector bundles E, F and T (X).

A very important special case of the Atiyah–Singer index theorem is that the
Hirzebruch–Riemann–Roch theorem, Theorem14.4, is valid for arbitrary compact
complex manifolds, not just for projective algebraic manifolds. With this result of
Hirzebruch being generalized to arbitrary complex manifolds, we conclude our sum-
mary of Riemann–Roch theorems in the twentieth century.



Chapter 15
Noncompact Complex Manifolds

15.1 Introduction

In the previous chapter, we sawhowKodaira used a powerful combination of the tools
from sheaf theory and the theory of harmonic differential forms to give a characteri-
zation of complex submanifolds of complex projective space. In this chapter we will
discuss a similar characterization of complex submanifolds of complex Euclidean
space.

The theory of several complex variables developed over the first half of the twen-
tieth century, and a major theme concerned itself with numerous aspects of complex
analysis that arose fromHartogs’s discovery in 1906 that there are domains inCn , for
n > 1, which admit simultaneous analytic continuation to larger domains. In particu-
lar, this included the characterizations of domains of holomorphy which are domains
inCn that do not admit simultaneous analytic continuation to a larger domain. In the
following section we outline a brief history of this theory, which leads, in particular,
to the notion of an abstract Stein manifold.

In 1951Karl Stein (1913–2000) gave adefinitionof a complexmanifoldwhichwas
a generalization of a domain of holomorphy in Cn . It turns out that a Stein manifold
is precisely the notion of an abstract complex manifold which characterizes a closed
submanifold of complex Euclidean space. This can be formulated as an embedding
theorem for Stein manifolds, which was announced by Reinhold Remmert in 1957
and proved by Narasimhan and Bishop a couple of years later. We outline Bishop’s
proof of this theorem in Sects. 15.3–15.5.

One aspect of the theory of several complex variables was the formulation and
eventual solution of the Levi problem. This problem is discussed in Sect. 15.2. It con-
cerns itself with a characterization of domains of holomorphy (and generalizations
thereof) in terms of a local differential-geometric condition on the boundary of such
a domain (when there is a smooth boundary). In 1958 Hans Grauert gave a solution
to the Levi problem in the context of a complex manifold setting, and was able to
use this to prove that a real-analytic manifold admits a real-analytic embedding into
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real Euclidean space [86]. We outline the fundamental ideas in Grauert’s paper in
the final two sections of this chapter (Sects. 15.6 and 15.7).

15.2 Several Complex Variables

As we have mentioned earlier, Hartogs proved in 1906 [96] that there are no isolated
singularities for holomorphic functions of n complex variables1 for n ≥ 2, but in
fact he proved much more than this. Let’s make this somewhat more precise. We
consider a simple example of his theorem. Let

�0 = {(z, w) ∈ C2 : 1
2

< |z| < 1, |w| < 1 or |z| < 1,
1

2
< |w| < 1},

and let
�1 = {(z, w) : |z| < 1, |w| < 1},

the unit bidisc of radius 1. We note that � 1
2

:= �1 − �0 is the open bidisc of radius
1
2 . Then Hartogs’s theorem in this context says that if f ∈ O(�0), then there is a
unique holomorphic function f̃ ∈ O(�1) such that f̃|�0 = f . In other words, all
holomorphic functions on �0 admit simultaneous analytic continuation across the
closed set � 1

2
. The proof of this theorem uses the Cauchy integral formula in a very

specific manner.
This type of simultaneous analytic continuation, which is only present in more

than one complex dimension, is often referred to as a Hartogs’s phenomenon.
A domain of holomorphy D ⊂ Cn is defined to be a domain such that there is no

such simultaneous analytic continuation to a larger domain. In Sect. 9.6 we discussed
Mittag-Leffler’s generalization of the Weierstrass factorization theorem (a theorem
on the complex plane C) to a version which is valid for any domain D ⊂ C. This
shows immediately that any domain in the plane is a domain of holomorphy (see
the discussion of this in Sect. 9.6). The example in the preceding paragraph due to
Hartogs shows that not all domains in Cn, n > 1, are domains of holomorphy. It
became a major task in the first half of the twentieth century to characterize domains
of holomorphy, both in terms of the geometry of the boundary of such a domain, and
in terms of the behavior of holomorphic functions in the interior of the domain.

Let now D be a domain in Cn . If K is a compact subset of D, then we define the
holomorphic hull of K in D to be

K̂ D := {z ∈ D : | f (z)| ≤ sup
ζ∈K

| f (ζ)|, for all f ∈ O(D)}.

1Jacques Hadamard had remarked in his booklet La Series de Taylor [94], Chap. IX, that there are
no isolated singularities of a holomorphic function of more than one variable using an analysis of
power series near a point.

http://dx.doi.org/10.1007/978-3-319-58184-2_9
http://dx.doi.org/10.1007/978-3-319-58184-2_9
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We say that a domain D ⊂ Cn is holomorphically convex if

K is compact in D ⇒ K̂ D is compact in D. (15.1)

This is a generalization of ordinary convexity, and it is not difficult to show that a
convex set in Cn is indeed holomorphically convex. This yields immediately a rich
family of holomorphically convex domains.

In 1932 Henri Cartan and Peter Thullen (1907–1996) proved an important result
which linked the concept of domain of holomorphy with that of holomorphic con-
vexity [222]:

Theorem 15.1 A domain D ⊂ Cn is a domain of holomorphy if and only if it is
holomorphically convex.

In 1934 Heinrich Behnke (1898–1979) and Peter Thullen published an impor-
tant monograph, Theorie der Funktionen mehrerer komplexer Veränderlichen2 [13],
which set the stage for the study of function theory of more than one complex vari-
able for the next three decades. Behnke was based in Münster in the western part
of Germany, and he created a school of several complex variables which played an
important role in the development of this theory, culminating in major results in the
1950s, as we shall see later in this chapter. His students included Stein, Thullen,
Grauert, Remmert, Hirzebruch and many others, all of whom played a major role in
postwar mathematics in Germany.

In the 1930s there was a strong collaboration with the French school of several
complex variables which was primarily led by Henri Cartan. This collaboration
continued, almost unabated, after the second world war.

In 1929 Kiyoshi Oka (1901–1978) came to Paris to study several complex vari-
ables and returned to Japan three years later. In the course of two decades, Oka
published ten fundamental papers solving a number of major problems, many of
which had been formulated in the book by Behnke and Thullen. These papers all had
the same title “Sur les fonctions analytiques de plusieurs variables”,3 with differing
subtitles labeled I–X, e.g., the first paper had the subtitle “I. Domaines convexes par
rapport aux fonctions rationnelles”.4 In 1961 Oka published a book [175] which con-
tained the first nine of these papers. The tenth and final paper in the series appeared
in 1962 [176].

This French–German collaboration before and after the second world war, along
with the very important contributions made independently by Oka, formed the basis
of what became the theory of several complex variables as it was understood at the
beginning of the 1960s. There have been a number of books which appeared after
1960 which survey different aspects of the theory of several complex variables. We
mention only four here for reference.

2Theory of Functions of Several Complex Variables.
3“Concerning analytic functions of several variables”.
4“Rationally convex domains”.
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Gunning and Rossi’s book Analytic Functions of Several Complex Variables [93]
developed the theory of complex manifolds and complex spaces (which are locally
subvarieties5 of complex Euclidean space, which could have singularities). The treat-
ment of singularities required the use of ring theory (including ideals, modules, etc.),
and this needed to be extended to the sheaf-theoretic setting as well. The key work
of Oka on coherent analytic sheaves was developed, and the culminating Theorems
A and B of Cartan from his Seminaire Cartan from 1951–1952 were formulated
and proved. This subsumed a good deal of the developments of the theory that had
evolved since the book by Behnke and Thullen roughly thirty years earlier. We will
introduce these theorems in Sect. 15.6, where they will be used in Grauert’s solution
of the Levi problem. We will discuss the Levi problem, which concerns a geometric
characterization of domains of holomorphy, in the following paragraphs.

Lipman Bers published his very lucid lecture notes Introduction to Several Com-
plex Variables in 1965 [17]. This coveredmuch of thematerial in Gunning and Rossi,
but it split the singularity theory and algebraic topology into a smaller aspect of the
book and concentrated on the analysis on domains inCn in the first part of the notes,
making it somewhat easier for the reader to get the general picture.

The book by Lars Hörmander [112] brought a completely new point of view to
the theory of several complex variables, showing howmany of the problems that had
been treated since the beginning of the theory at the time of Hartogs could be solved
by solving suitable systems of over-determined partial differential equations, in par-
ticular, the inhomogeneous Cauchy–Riemann equations. His L2-methods proved to
be very powerful in this regard. However, they only worked at the time in the context
of smooth complex manifolds.

Finally, the book by Stephen Krantz [130] brings an update of the theory and
includes more material concerning various generalizations of the classical Cauchy
integral formula from the nineteenth century, which were able to play important roles
in solving a number of different problems.

We will refer to these references as we proceed with our study of the embedding
theorems for noncompact complex manifolds and real-analytic manifolds in this
chapter.

In 1910 Eugenio Ella Levi (1883–1917) discovered a very interesting local geo-
metric criterion for the boundary of a domain of holomorphy in the case where the
domain has a smooth boundary [143]. Suppose that ϕ(z) is a real-valued differen-
tiable function defined on a domainU ⊂ Cn , then we say thatϕ is plurisubharmonic
if the Hermitian symmetric matrix

H(ϕ) :=
(

∂2ϕ

∂zi∂z j

)
(15.2)

5A subvariety V of a complex manifold X is a closed subset V ⊂ X which is locally defined
near any point x ∈ V to be the zero set of a finite number of holomorphic functions defined in a
neighborhood of the point x .
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is positive-semidefinite on U and is strictly plurisubharmonic on U if H(ϕ) is
positive-definite on U .

Let us now consider a domain D ⊂ Cn with a smooth boundary. Let p ∈ ∂D,
where ∂D denotes the boundary of D. We say that the boundary of D is pseudocon-
vex (strongly pseudoconvex) near p if there is a plurisubharmonic function (strictly
plurisubharmonic function) ϕ defined in a neighborhood U of p, and

D ∩ U = {z ∈ U : ϕ(z) < 0}.

Levi showed in [143] that a domain of holomorphy with a smooth boundary must
be pseudoconvex near each of its boundary points. More precisely, if f ∈ O(D∩U ),
then f cannot be analytically continued beyond the point p. He also showed that

Lemma 15.1 Levi [143]For any point p of the boundary of a strongly pseudoconvex
domain D, there is a neighborhood U of p which is a domain of holomorphy and
such that U ∩ D is also a domain of holomorphy.

The Levi problem became the problem of showing that a pseudoconvex domain
is itself a domain of holomorphy. The Levi problem became an important unsolved
problem for several decades until it was resolved for domains in C2 by Oka in
1942 [173] and in Cn in 1953 by Oka [174] and by Hans Bremermann [26] and
Francois Norguet [172] in 1954. It was successfully resolved in the general context
of a complex manifold by Hans Grauert (1930–2011) in 1958 [86]. We will discuss
this further in Sect. 15.7, as the solution to the Levi problem is a key ingredient in
Grauert’s proof of the real-analytic embedding theorem.

15.3 Stein Manifolds

In Chap.14 we discussed Kodaira’s embedding theorem for compact complex man-
ifolds. Now we turn to an analogous theorem for noncompact complex manifolds
which we call the Stein manifold embedding theorem. This theorem characterizes
all complex manifolds which can be embedded as closed complex submanifolds of
CN for N ≥ 1. We need to formulate first several concepts that are the basis for this
characterization.

Let X be an n-dimensional complex manifold (as always, with a countable basis),
and letO(X) be the ring of holomorphic functions on X .We can equipO(X)with the
topology of uniform convergence on compact subsets of X , which makesO(X) into
a Frchet space, and, moreover, O(X) is a complete metric space with this topology.

We say that X is holomorphically separable if, for any two distinct points x1 and x2
of X , there exists a function f ∈ O(X) such that f (x1) �= f (x2).6 We say that X has
global local coordinates if, for any point x ∈ X , there are n functions f1, . . . , fn ∈

6This is often expressed as saying that the globally defined holomorphic functions on X separate
points on X .

http://dx.doi.org/10.1007/978-3-319-58184-2_14
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O(X) such that the mapping F = ( f1, . . . , fn) has rank n at x (these n functions,
globally defined, could be used as a local coordinate system in a neighborhood of x).
Finally, we say that X is holomorphically convex if, for any compact subset K ⊂ X ,
the holomorphic hull of K,

K̂ X := {x ∈ X : | f (x)| ≤ sup
y∈K

| f (y|, for all f ∈ O(X)} (15.3)

is compact in X .
A complex manifold X is said to be a Stein manifold if it is holomorphically

separable, has global local coordinates, and is holomorphically convex. This concept
of a complex manifold satisfying these axioms was first formulated by Stein in 1951
[220], and Henri Cartan coined the name “ Stein manifold” in his lectures of 1952
[34]. We can now formulate the Stein manifold proper embedding theorem.

Theorem 15.2 Let X be a Stein manifold of dimension n, then there exists a proper
holomorphic embedding

F : X → C2n+1.

Since the mapping is proper, the image of F in this theorem is a closed complex
submanifold.

It is not difficult to show that any closed complex submanifold of complex Euclid-
ean space is, indeed, a Stein manifold, and we will show this in the following para-
graphs. Thus this theorem provides a characterization of which complex manifolds
can be holomorphically embedded in complex Euclidean space as closed submani-
folds.

First, we note that complex Euclidean space is clearly holomorphically convex.
Namely, if K is compact in CN , then, letting (z1, . . . , zN ) be coordinates on CN , we
can set

M j = sup
K

|z j |,

and it follows that

K̂CN ⊂ {(z1, . . . , zN ) : |z j | ≤ M j , j = 1, . . . N },

which is compact.
Now, let X be a complex submanifold of CN , and suppose that K is a compact

subset of X , then K has a holomorphic hull K̂CN which is compact inCN , and hence
its restriction to X is compact. But the holomorphic functions on CN restricted to X
is a subset of the holomorphic functions on X . It follows that

K̂CN ⊃ K̂ X ,

and hence K̂ X is compact in X . Moreover, X is clearly holomorphically separable
and has global local coordinates, and hence it is a Stein manifold.
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The Steinmanifold proper embedding theoremwas announced by Reinhold Rem-
mert (1930–2016) in 1956 [193] with some indications of the nature of the proof (we
note that he used the term “holomorphically complete” to describe a Stein manifold
at that time). However, he never published a proof. Raghavan Narasimhan (1937–
2015) in 1960 [163] and Errett Bishop (1928–1983) in 1961 [20] gave independent
proofs a few years later. Both of these authors proved a more general result for com-
plex spaces, which requires the proofs to be somewhat more technical. Hörmander’s
monograph on several complex variables from 1966 [112] gave a simplified proof
(using the ideas of Bishop) in the case of complex manifolds, which is how we have
formulated the theorem here. In our exposition we follow Hörmander’s formulation
of Bishop’s proof.

The proof of this embedding theorem splits into two parts. The first part shows that
there is an abundance of holomorphic embeddings of a complex manifold X which is
holomorphically separable and has global local coordinates into C2n+1. Here we use
some of the basic ideas thatWhitney used in his proof of the differentiable embedding
theorem (Chap.12). This we discuss in the following Sect. 15.4.

To prove that there are proper holomorphic embeddings is considerably more dif-
ficult, and we outline the proof in Sect. 15.5. This proof uses basic ideas concerning
analytic polyhedra as formulated and used by Bishop [20]. We cite here an impor-
tant approximation theorem originally formulated and proved in Stein’s paper [220]
and which plays an important role in Bishop’s proof of the Stein manifold proper
embedding theorem. It is a generalization to this context of the classical Runge
approximation theorem from the nineteenth century that we discussed in Sect. 9.6.

Theorem 15.3 Let K be a compact subset of a Stein manifold X such that K̂ X = K ,
then if f is a holomorphic function defined in a neighborhood of K , then f can be
approximated uniformly on K by functions holomorphic on X.

We will often say that a compact set K ⊂ X is holomorphically convex if it satisfies
the condition K̂ X = K , as is hypothesized in this theorem.

15.4 Generic Embeddings for a Class of Complex
Manifolds

Suppose that D is a domain in Cn . Then clearly D is holomorphically separable
and has global local coordinates. The following theorem shows that any complex
manifold with these properties can be embedded into a complex Euclidean space
(not necessarily a proper embedding, however). Here embedding means simply a
regular one-to-one mapping, and we phrase it as such in this theorem.

Theorem 15.4 Let X be an n-dimensional complex manifold which is holomorphi-
cally separable and which has global local coordinates, then the set of one-to-one
regular mappings

F : X → C2n+1

is dense in O(X)2n+1.

http://dx.doi.org/10.1007/978-3-319-58184-2_12
http://dx.doi.org/10.1007/978-3-319-58184-2_9
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As we said above, the hypotheses of this theorem are satisfied by any domain D in
Cn . In particular, there is no assumption of holomorphic convexity, as in the case of
Stein manifolds. But the image of a one-to-one regular mapping of such a domain
D need not be a closed submanifold of C2n+1. For instance, if � is the unit disc in
C, then the mapping

z �→ (z, 0, 0)

is a one-to-one regular mapping of � into C3, and its image (a copy of the unit disc)
is clearly not a closed subset of C3.

The proof of this theorem can be summarized in two lemmas concerning the
behavior of the mappings on compact subsets, which we discuss first, and then these
are applied to obtain a proof of the theorem.

Lemma 15.2 Let K be a compact subset of X, then there is an integer N and a
mapping

F : X → CN , (15.4)

which is one-to-one and regular on K .

We outline the proof of this lemma. Since X has global local coordinates, there is a
finite covering of K by open sets Uα with functions f α

1 , . . . , f α
n ∈ O(X) such that

the mappings f α = ( f α
1 , . . . , f α

n ) are regular on Uα. Using all of these functions
yields a finite set of functions f j ∈ O(X), j = 1, . . . , M , such that the mapping
( f1, . . . , fM) is regular at each point of K . By this regularity, the mapping is one-to-
one in the neighborhood of each point of K . Thus, there is a neighborhood W of the
diagonal of K × K in X × X such that if (x1, x2) ∈ W , then f j (x1) = f j (x2), j =
1, . . . , M , implies that x1 = x2. By using the property of holomorphic separation
we can find a finite number of functions f j ∈ O(X), j = M + 1, . . . N , such that
if (x1, x2) ∈ K × K − W , then f j (x1) = f (x2), j = M + 1, . . . , N implies that
x1 = x2. Then the mapping

F = ( f1, . . . , fN ) : X → CN

will be a mapping which is one-to-one and regular on K .
This lemma insures that we have a suitable mapping on K into a possibly high-

dimensional Euclidean space CN . The next lemma shows that we can successively
perturb the mapping F in (15.4) to mappings into lower-dimensional spaces until we
reach the desired embedding dimension of 2n + 1.

Lemma 15.3 Suppose that N > 2n + 1, and suppose that

F = ( f1, . . . , fN+1) : X → CN+1

is regular and one-to-one on a compact set K ⊂ X, then there is a neighborhood U
of 0 ∈ CN such that for almost all a ∈ U, the perturbed mapping
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F̃ = ( f1 − a1 fN+1, f2 − a2 fN+1, . . . , fN − aN fN+1) (15.5)

is regular and one-to-one on K .

We recall one of the key ingredients in the perturbations involved in the proof of
the Whitney embedding theorem. Namely, if we have a smooth mapping f (C1 is
sufficient), defined on an open subset U of Rm which maps to a higher-dimensional
Euclidean space RN , where N > m, then the image f (U ) has measure zero in RN

(see the discussion in Sect. 12.1). We note that a holomorphic mapping of the same
type, namely,

f : U ⊂ Cm → CN ,

where N > m, is a special case of the real-analysis result for C1-mappings, and
hence in this case we also have

meas f (U ) = 0.

To prove Lemma 15.3 we need to successively choose two perturbations a in a
neighborhood of 0 ∈ CN . First we will need a perturbation to insure that F̃ is regular
on K .

We assume, for simplicity, that K is contained in a coordinate neighborhood, and
we can compute the Jacobian matrix of F̃ at a point x ∈ K ,

∂ f j

∂xk
− a j

∂ fN+1

∂xk
, k = 1, . . . , n, j = 1, . . . , N . (15.6)

We consider this as n vectors inCN , and we want to show that for appropriate a these
are linearly independent. To see thiswe consider the sum, forλ = (λ1, . . . ,λn) ∈ Cn ,

n∑
k=1

λk

(
∂ f j

∂xk
− a j

∂ fN+1

∂xk

)
= 0, (15.7)

and we need to show that, for suitable a, λ = 0.
We now set aN+1 = 1, and set

μ =
∑

k

λk
∂ fN+1

∂zk
,

then (15.7) becomes

n∑
k=1

λk
∂ f j

∂zk
= μa j , j = 1, . . . , N + 1. (15.8)

The matrix

http://dx.doi.org/10.1007/978-3-319-58184-2_12
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∂ f j

∂zk
, j = 1, . . . , N + 1, k = 1, . . . , n,

has maximal rank, by hypothesis. Consider now the mapping

� : Cn × K → CN+1,

given by

�(λ, x) =
{∑

k

λk
∂ f j

∂zk

}N+1

j=1

∈ CN+1.

We see here that the domain of � has dimension 2n, and the dimension of the image
space is N + 1 > 2n + 2 and hence

meas (�(Cn × K )) = 0.

Since the matrix in the definition of the mapping � has, for fixed x ∈ K , maximal
rank, then if λ = (λ1, . . . λn) �= 0, in (15.8), then �(λ, x) �= 0 in CN+1. Thus we
have

�(λ, x) = μ(a, 1) �= 0,

and hence μ �= 0. By rescaling, and letting λ̃ = 1
μ
λ, we have

�(λ̃, x) = (a, 1) ∈ �(Cn × K ).

But we know that meas (�(Cn × K )) = 0, so we can choose an arbitrarily small
a ∈ CN such that

(a, 1) /∈ �(Cn × K ).

If (a, 1) is chosen in this manner, then it follows that λ = 0, which proves the desired
linear independence of the vectors in the perturbed Jacobian matrix in (15.6), as
desired.

To show that there is a choice of an arbitrarily small perturbation parameter a ∈ Cn

so that F̃ is one-to-one, we proceed in a similar manner. We have, by hypothesis,
that: if x1, x2 ∈ K , and

f j (x1) − f j (x2) = 0, j = 1, . . . , N + 1,

then x1 = x2. Suppose now that

f j (x1) − a j fN+1(x1) − ( f j (x2) − a j fN+1(x2)) = 0, j = 1, . . . , N ,

for some small a ∈ Cn , then these differences can be rewritten as (aN+1 = 1, as
before):
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f j (x1) − f j (x2) = a jλ, j = 1, . . . , N + 1,

where we have set λ = fN+1(x1) − fN+1(x2). If λ = 0 for our choice of a, then it
follows from the one-to-one nature of the mapping F , that x1 = x2. Suppose that
λ �= 0, then, letting μ = 1/λ, we can define the mapping

�̃ : C × K × K → CN+1

by
�̃(μ, x1, x2) = μ( f1(x1) − f1(x2), . . . , fN+1(x1) − fN+1(x2)).

Now we note, as we did in the previous case, that

meas (�̃(C × K × K )) = 0,

since 2n + 1 < N + 1. By rescaling as we did before, we can now choose small
a ∈ Cn such that (a, 1) is not in the range of �̃. Thus, for this choice of a, we must
have λ = 0, and it follows that the perturbed mapping F̃ is one-to-one.

By choosing a so that (a, 1) is not in the range of either � or �̃, then we can
conclude that the perturbed mapping F̃ is both regular and one-to-one on K , and this
concludes the outline of the proof of Lemma 15.3.

Using these two lemmas, it will be relatively easy to show why Theorem 15.4
is valid. We will use the language of Baire category theory for a metric space for
this. Recall that the vector spaces O(X) or O(X)N , for some N ≥ 1, are all Fréchet
spaces, and, as such, they are complete metric spaces with the corresponding metric
coming from the Fréchet structure. A subset of a complete metric space is said to
be of first category if it is the union of closed subsets, each of which has no interior
points, and a subset is said to be of second category if it is the complement of a set
of first category. It follows that a set in a complete metric space of second category
is dense in the metric space.

We now assume that N ≥ 2n + 1, as hypothesized in Theorem 15.4. We let K be
a compact set in X , and we let

SK = {F ∈ O(X)N : F is not regular or one-to-one on K }.

The complement of SK , which we denote by TK , is the set of mappings which are
regular and one-to-one on K . First, we need to know that TK is nonempty. By Lemma
15.2 there is a mapping G = (g1, . . . , gM) ∈ O(X)M , for some M , such that G is
regular and one-to-one on K . Necessarily, M ≥ N , but it might be considerably
larger. If M > N , we can use Lemma 15.3 to successively find (by a sequence
of perturbations of F each of which lowers the embedding dimension) a suitable
mapping F̃ ∈ O(X)N which is regular and one-to-one on K . If M < N , then the
mapping

F̃ := (g1, . . . , gM , 0, . . . , 0) ∈ O(X)N



280 15 Noncompact Complex Manifolds

will be regular and one-to-one, as well, where we have added N − M zeros to the
mapping. Thus TK is nonempty. It is easy to see using continuity considerations that
the set TK is open. Thus, the set SK is closed. Now we need to show that SK has no
interior points.

We will show that in the neighborhood of any F ∈ O(X)N (in particular, any
F ∈ SK ), there is a mapping F̃ which is regular and one-to-one at all points of K .
By Lemma 15.2 there is a mapping G = (g1, . . . , gM), which we used above, such
that G is regular and one-to-one on K . Let now F ∈ O(X)N be any mapping from
X to CN . Consider the mapping

H := ( f1, . . . , fN , g1, . . . , gM).

By successively applying Lemma 15.3 to H we can find a perturbation of F of the
form

f̃ j = f j +
∑

k

a jkgk, j = 1, . . . , N ,

for suitably small a jk ∈ C, such that F̃ = ( f̃1, . . . , f̃N ) is regular and one-to-one on
K . Thus SK has no interior points.

We can now find a countable set of compact sets Kα which cover X . Then, let T
be the set of mappings in f ∈ O(X)N such that F is regular and one-to-one on X .
We see that, if we let S be the complement of T , then

S =
⋃
α

SKα
,

and hence is of first category, and thus T is of second category and is a dense subset
of O(X)N , as desired.

Remark We note here that the ideas used in the proofs of this theorem and the
two lemmas use the perturbation techniques that were used as part of the proof of
Whitney’s embedding theorem as in Sect. 12.3. In fact, this outline given here would
have proved, by using differentiable functions on an n-dimensional manifold X , that
the set of mappings in E(X)2n+1 mapping X to R2n+1 which are regular and one-to-
one on X is a dense set. This proof of this fact using category-theoretic arguments
would not have used cut-off functions as we did in Sect. 12.3, where we followed
closely the steps outlined in the original paper of Whitney [245]. The final step in
Whitney’s proof was to find a proper mapping ϕ(x) of X into R, and this did use
cut-off functions. It is this step, where we can’t use cut-off functions, which is much
more difficult in this holomorphic setting, and we will see that in much greater detail
in the next section.

http://dx.doi.org/10.1007/978-3-319-58184-2_12
http://dx.doi.org/10.1007/978-3-319-58184-2_12
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15.5 A Proper Embedding Theorem for Stein Manifolds

In this section we will see how holomorphic convexity of a Stein manifold helps to
give a proper holomorphic embedding into complex Euclidean space. We’ve already
seen in the previous section how the two hypotheses of holomorphic separability and
having global local coordinates give a generic embedding.

Let now X be an n-dimensional complex manifold. Suppose that f1, . . . , fN are
N holomorphic functions on X . We define an analytic polyhedron P of order N on
X to be a union of components of the open set

P0 := {x ∈ X : | f j (x)| < 1, j = 1, . . . , N }. (15.9)

This concept generalizes to a manifold the notion of a polydisc in CN defined by

P = {z ∈ CN : |z j | < 1, j = 1, . . . , N },

where the coordinate functions z j play the role of the f j in the definition of an
analytic polyhedron.7

We now formulate two lemmas which play a critical role in the proof of the proper
embedding theorem. We assume for these lemmas that X is now a Stein manifold
(of dimension n). The first one uses the holomorphic convexity explicitly and has a
fairly straightforward proof.

Lemma 15.4 Let K be a compact subset of X such that K = K̂ X , then, for any
neighborhood U of K in X, there exists an analytic polyhedron P such that

K ⊂ P ⊂ U.

To see this, assume that U is relatively compact8 in X . For each x ∈ ∂U , since
K = K̂ X , we can find a holomorphic function f ∈ O(X) such that | f | < 1 on K
and | f (x) > 1. By the compactness of ∂U , there are a finite number of holomorphic
functions f j ∈ O(X), such that

P := {z ∈ U : | f j (x)| < 1}

7An analytic polyhedron is often defined to be simply a set of the form P0 in (15.9), but this
slightly more subtle notion we are using was introduced by Bishop [20], and it allows different
open components of the set P0 to play a role in the proof of a theorem, as is the case in Bishop’s
proof of the proper embedding theorem, which we are following here. Consider the example of
X being a two-sheeted covering of the punctured complex plane defined by w = √

z, and let
π : X → C − {0} be the covering mapping, then if z0 ∈ C satisfies, for instance, |z0| > 2, then
letting f (x) := π(x) − z0, we see that P0 = {x ∈ X : | f (x)) < 1} consists of two copies of the
open unit disc on the two sheets of X centered at the two points π−1(z0), so an analytic polyhedron
in this case could be one or both of these components.
8We recall that a set U is relatively compact in X if the closure U is compact in X . We will denote
this by U ⊂⊂ X .
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is an analytic polyhedron with K ⊂ P ⊂ U , as desired.
The second lemma, due to Bishop [20], is quite a bit more difficult, and it is the

key to the proper embedding proof. Namely, we can reduce by a perturbation the
order of a given analytic polyhedron if its order is greater than 2n.

Lemma 15.5 Let K be compact in X, and let P be an analytic polyhedron of order
N + 1 in X with K ⊂ P. If N ≥ 2n, then there exists an analytic polyhedron P ′ of
order N such that

K ⊂ P ′ ⊂ P ⊂ X.

We will outline the construction of P ′ here. Suppose that P is defined by

P = {x ∈ X : | f j (x)| < 1, for f j ∈ O(X), j = 1, . . . , N + 1}.

Let
c0 < c1 < c2 < c3 < 1 (15.10)

be such that
| f j (x)| < c0, x ∈ K , j = 1, . . . , N + 1.

Wenowwant tofind suitable approximations f ′
j of the functions f j .UsingLemma15.3,

and setting f ′
N+1 = fN+1, we can find approximations f ′

j (x) so that

( f ′
1/ fN+1, . . . f ′

N / fN+1) has rank n on {x ∈ P : | fN+1(x)| ≥ c2},
| f ′

j (x)| < c0 in K , j = 1, . . . , N ,

U := {x ∈ P : | f ′
j (x)| < c3, j = 1, . . . , N + 1} ⊂⊂ P.

Here we have used the hypothesis that N ≥ 2n.
So far we have utilized three of the intermediate constants in (15.10). The next

step in our construction will use the remaining constant c1. We set

�ν := {x ∈ X : | f ′
j (x)ν − fN+1(x)ν} < cν

1 , j = 1, . . . , N },

and let P ′
ν be the union of the components of �c which intersect K . We can then

take our desired P ′ to be P ′
ν for some sufficiently large ν. The proof that such a P ′

satisfies the conclusion of the lemma involves a delicate sequence of estimates which
will be omitted here (see Hörmander [111], pp. 122–124).

We can now outline the proof of Theorem 15.2, using these lemmas on analytic
polyhedra. Let X be an n-dimensional Stein manifold, and let

g : X → C2n+1

be a one-to-one regular mapping (an embedding, but not necessarily proper) given
by Theorem 15.4. Then suppose we can find a holomorphic mapping
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f : X → C2n+1

such that
{x ∈ X : | f (x)| ≤ k + |g(x)|} ⊂⊂ X, (15.11)

for all positive integers k (k will denote positive integers in the following arguments
as well). Here we have set

| f (x)| = max
j

| f j (x)|,

and similarly for |g(x)|. It will then follow that a suitable perturbation f̃ of the
mapping f will be a proper holomorphic embedding of X into C2n+1.

Let us show how to find such a perturbation and that it provides a proper embed-
ding, and then we will return to the question of the existence of a mapping f that
satisfies (15.11). Namely, given the mappings f and g, we can combine them to form
the mapping

( f, g) : X → C2(2n+1),

and this is an embedding, since g is. By Lemma 15.3 we can find constants a jl

sufficiently small so that the perturbation of f given by

f̃ j (x) = f j (x) +
2n+1∑
l=1

a jlgl

is an embedding. Supposing that |a jl | ≤ 1, then

{x ∈ X : | f̃ (x)| ≤ k} ⊂ {x ∈ X : | f (x)| ≤ k + |g(x)|} ⊂⊂ X,

for all k, and it follows that f̃ is a proper holomorphic embedding of X into C2n+1,
as desired.

To construct a mapping f which satisfies (15.11), we utilize an exhaustion of
X by analytic polyhedra. By the holomorphic convexity of X it follows that there
exists a sequence of compact sets Kk with Kk contained in the interior of Kk+1 and
satisfying K̂k = Kk and X = ⋃

k Kk . Now, using Lemma 15.5, we can find analytic
polyhedra Pk of order 2n such that

Kk ⊂ Pk ⊂ Kk+1,

and we can define the constants Mk by

Mk := sup
Pk

|g|.

If we can find a mapping f : X → C2n+1 such that
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| f (x)| ≥ k + Mk+1 in Pk+1 − Pk, for all k, (15.12)

then f will satisfy our condition (15.11). Namely, (15.12) implies that

| f (x)| ≥ k + |g(x)| for x ∈ Pk+1 − Pk,

and hence

| f (x)| ≥ k + |g(x)| for x ∈
∞⋃

l=k

(Pl+1 − Pl) = X − Pk .

But this then implies that

{x ∈ X : | f (x)| ≤ k + |g(x)|}

is necessarily a subset of Pk , which is relatively compact in X , and thus condition
(15.11) is satisfied.

To find a mapping f = ( f1, . . . , f2n, f2n+1) that satisfies (15.12), we proceed
in two steps: first we find ( f1, . . . , f2n) that satisfy the inequality in (15.12) on the
boundary of Pk (and some of the interior points of Pk+1 − Pk), and then we construct
a final function f2n+1 which satisfies this inequality at the remaining points of the
set Pk+1 − Pk in (15.12). The first step uses specifically the properties of the analytic
polyhedra Pk , and the second step uses the holomorphic approximation theorem
for holomorphically convex compact sets in X (Theorem 15.3). In both cases the
functions f j are defined as the sum of infinite series of terms which are defined
inductively in terms of the analytic polyhedra Pk .

We start with the construction of the functions f1, . . . , f2n . Let

hk
1(x), . . . , hk

2n(x)

be holomorphic functions on X defining the analytic polyhedron of order 2n,

Pk = {x ∈ X : |hk
j (x)| < 1}.

Thus we have
max

1≤ j≤2n
|hk

j | < 1 in Pk−1,

and
max

1≤ j≤2n
|hk

j | = 1 on ∂Pk .

We now let
f (x)k

j = (akh(x)k
j )

mk ,
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where the ak are constants slightly larger than 1, and the mk are integers sufficiently
large so that

max
1≤ j≤2n

| f k
j | ≤ 2−k in Pk−1,

and

max
1≤ j≤2n

| f k
j | > Mk+1 + k + 1 + max

1≤ j≤2n
|

k−1∑
l=1

f l
j | on ∂Pk .

Then it is easy to verify that the sum

f j :=
∞∑

k=1

f k
j , j = 1, . . . , 2n

will converge on X , and will satisfy9

max
1≤ j2n

| f j (x)| > k + Mk+1 on ∂Pk . (15.13)

This estimate for f1, . . . , f2n is part of the estimate we need in (15.12) (namely on
a neighborhood of ∂Pk), but not on all of Pk+1 − Pk . We need to construct a function
f2n+1 which will provide the needed lower bound on the remainder of Pk+1 − Pk .
Thus we set

Gk = {x ∈ Pk+1 − Pk : max
1≤ j≤2n

| f j (x)| ≤ k + Mk+1}.

This is the set of points where we need f2n+1 to be sufficiently large. We also define

Hk = {x ∈ Pk : max
1≤ j≤2n

| f j (x)| ≤ k + Mk+1}.

It is clear from (15.13) that these two compact sets Gk and Hk are disjoint. The
holomorphic hull of the set Gk ∪ Hk is a compact subset of Kk+2 and it has the form

Gk ∪ Hk ∪ H ′
k,

where
H ′

k ⊂ X − Pk+1.

Herewenote that each of the setsGk and Hk are the closures of polynomial polyhedra,
and hence are each holomorphically convex themselves. Also one can prove easily
that H ′ = ∅ by comparing the values of the functions hk

j on Gk ∪ Hk and on any
possible point of H ′

k . It now follows that if we define the locally constant function

9Here one uses the classical inequality |A + B| ≥ ||A| − |B||, for complex numbers A and B.
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ϕ :=
{
1 on Gk,

0 on Hk,

which is a holomorphic function defined on a neighborhood of Gk ∪ Hk , then we can
approximate ϕ by a holomorphic function on X , using Theorem 15.3. We choose
such holomorphic approximations hk ∈ O(X) successively, such that

|hk(x)| < 2−k on Hk,

hk ≥ 1 + Mk + k + 1 + |∑k−1
l=1 hl(x)| on Gk .

Then, just as before, we define the limit

∞∑
k=0

hk(x),

which is a well-defined holomorphic function on X satisfying

| f2n+1 ≥ k + Mk+1, for x ∈ Gk .

Thus the mapping ( f1, . . . , f2n+1) satisfies (15.12), and this concludes our outline
of the proper holomorphic embedding theorem for Stein manifolds.

Remark This was the status in 1961, when this theorem was first proved by
Narasimhan [163] and Bishop [20]. The question remained: could the embedding
dimension 2n + 1 be lowered? Otto Forster showed in 1970 [73] that the embedding
dimension must be at least

[
3n
2

]+1, and he was able to lower the embedding dimen-
sion to

[
5n
2

] + 1; and in 1992, Eliashberg and Gromov showed that [60], in fact, the
embedding dimension could be lowered to the best possible

[
3n
2

] + 1.

15.6 Grauert’s Solution to the Levi Problem

Let X be a complex manifold, and suppose that D ⊂⊂ X is a domain with a strongly
pseudoconvex boundary. More precisely, we assume that there is a neighborhood W
of ∂D and a strictly plurisubharmonic function ϕ ∈ C∞(W ) such that

D ∩ W = {x ∈ W : ϕ(x) < 0}.

We formulate the Levi problem in this context to ask if such a domain D is holo-
morphically convex. We note that to ask if D were Stein would be asking too much
as the following example shows.

Let B be in the unit ball in X = Cn, n ≥ 2, and let X̃ = Q0X be the quadratic
transform of X at the origin, and let B̃ = Q0B be the corresponding quadratic
transform of the domain B. It is clear then that B̃ is a strongly pseudoconvex domain
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in X̃ (the boundary of the ball or its quadratic transform hasn’t been modified at all).
However, B̃ is not Stein, since it is not holomorphically separable, as all holomorphic
functions on B̃ are constant on

π−1(0) ∼= Pn−1,

where
π : Q0X → X

is the projection mapping of the quadratic transform. However, B̃ is holomorphically
convex, as one can check directly.

That this example is holomorphically convex is also a consequence of the follow-
ing quite general theorem of Grauert, which is a solution of the Levi problem in this
complex manifold context.

Theorem 15.5 (Grauert [86]) Let D be a relatively compact strongly pseudoconvex
domain in a complex manifold X, then D is holomorphically convex.

Grauert’s proof of this theorem consists of two fundamental steps. The first step we
formulate as a lemma (although it has the strong merit of being a theorem in its own
right).

Lemma 15.6 The cohomology groups

Hq(D,O), q ≥ 1,

are all finite-dimensional.

The second step (which depends on the first) is to show that for each boundary
point, there is a holomorphic function which doesn’t analytically continue beyond
that point. More precisely we have a second lemma.

Lemma 15.7 For each point p ∈ ∂D, there exists a holomorphic function f ∈
O(D) such that

lim
x→p

| f (x | = ∞.

It is clear from this lemma that D must be holomorphically convex, and that concludes
the proof of the theorem, assuming these two lemmas.

We now outline the proofs of these two lemmas. The proof of Lemma 15.6 is a
generalization of Henri Cartan’s proof of the finite-dimensionality of cohomology
groups for compact complex manifolds:

Theorem 15.6 (H. Cartan [35]) Let F be a coherent analytic sheaf on a compact
complex manifold X, then the cohomology groups

Hq(X,F), q ≥ 1,

are all finite-dimensional.
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This theoremofHenriCartan is, in turn, a generalizationofKodaira’s finite-dimen-
sionality theorem for cohomology groups with coefficients in a locally free sheaf
which used a version of Dolbeault’s theorem and the theory of harmonic differential
forms for its proof (Hodge theory; see Sect. 14.4). Grauert’s version of this theorem
(Lemma 15.6) is for a compact complex manifold with boundary for the simplest
locally free sheaf, namely the sheaf of holomorphic functionsO. Cartan’s proof and
Grauert’s variation of that proof use the Čech-theoretic representation of cohomology
groups in terms of coverings. We will discuss this shortly, but first we discuss a result
from complex analysis which plays an important role in these finite-dimensionality
theorems.

Let U be any open set in X , then, as we noted at the beginning of Sect. 15.3,
we can equip the vector space O(U ) with the structure of a Fréchet space with the
topology of uniform convergence on compact subsets of U . If F1 and F2 are two
Fréchet spaces, and u is a linear mapping

u : F1 → F2,

then u is said to be completely continuous10 if there is a neighborhood U of 0 ∈ F1

such that its image u(U) in F2 is relatively compact. We now have an important
lemma that will be quite useful for us.

Lemma 15.8 Let V and U be two open subsets of X with V ⊂⊂ U, then the natural
restriction mapping

r : O(U ) → O(V )

is a continuous linear mapping of Fréchet spaces, and moreover, it is a completely
continuous mapping.

This is a generalization of theorems of Montel and Vitali from classical function
theory to this more abstract setting. See, for instance, a proof of this in Gunning and
Rossi’s monograph [93] (Proposition 1, Chap. VIII, pp. 234–235).

We summarize briefly the Čech representation of cohomology here, which we
need for our purposes. For a more formal presentation of this theory we refer to the
monograph by Hirzebruch [104] or the summary in Wells [239].

Let F be a sheaf on a topological space X , and let U = {Ui } be an open covering
of X , then we define a q-simplex

σ = (U0, . . . , Uq)

to be an ordered collection of Ui ∈ U, and let the intersection

|σ| :=
⋂

Ui ∈σ

Ui

10Completely continuous mappings or operators are now referred to as compact linear mappings
or compact operators.

http://dx.doi.org/10.1007/978-3-319-58184-2_14
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be the support of the simplex σ. A q-cochain with coefficients inF is an assignment

c(σ) ∈ F(|σ|),

(i.e., a section of the sheaf on the intersection) which is also alternating, that is, the
sign of c(σ) changes if two indices in σ are permuted.

By using pointwise addition of sections of the sheaf F on intersecting open sets,
we can define

Cq(U,F)

to be the Abelian group of q-cochains. We let the coboundary operator

δ : Cq(U,F) → Cq+1(U,F)

be defined by

δc(σ) =
q+1∑
i=1

(−1)i r |σi |
|σ| c(σi ),

where
σi = (U0, . . . , Ui−1, Ui+1, . . . , Uq+1),

and
r |σi |
|σ| : F(|σi |) → F(|σ|)

is the sheaf restriction mapping.
It follows easily that δ2 = 0, and we can form cocycles, coboundaries, and

cohomology groups in the usual manner. Namely, we set

Zq(U,F) := ker δ : Cq(U,F) → Cq+1(U,F),

Bq(U,F) := im δ : Cq−1(U,F) → Cq(U,F),

Hq(U,F) := Zq(U,F)/Bq(U,F).

We call Hq(U,F), q ≥ 0, the Čech cohomology groups of X with coefficients in F ,
with respect to the coveringU. By using a limiting processwith respect to refinements
of coverings we can define the direct limit,

Hq(X,F) := lim
U

Hq(U,F),

and it is a theorem that this cohomology agreeswith the sheaf cohomology introduced
in Sect. 14.3.

Leray showed in 1950 that one can compute this cohomology in a certain family
of special cases without taking a limit.

http://dx.doi.org/10.1007/978-3-319-58184-2_14
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Theorem 15.7 (Leray [142]) If the simplices of the covering U have the property
that

Hq(|σ|,F) = 0,

then
Hq(X,F) ∼= Hq(U,F), q ≥ 0.

This theorem is proved11 and used inHenriCartan’s lectures in 1954 [35] on thefinite-
dimensionality of cohomology groups on compact complex manifolds, as mentioned
above, and we will see below how Grauert used it in the same way in the following
paragraphs. The key to using this theorem is to find an open covering which satisfies
the hypotheses of vanishing cohomology for the intersections of the elements of the
covering, and we see an example of this in our discussion below.

We now formulate two fundamental theorems on Stein manifolds for coherent
analytic sheaves due to Henri Cartan from his lectures from 1952, which we men-
tioned earlier.

Theorem 15.8 (HenriCartan [34])Let X be a Stein manifold, and letF be a coherent
analytic sheaf on X, then

A For each x ∈ X, the stalkFx can be generated over the ringOx by a finite number
of global sections of F .

B Hq(X,F) = 0, q ≥ 1.

The two parts of this theorem are referred to in the literature as Theorems A and B
of Cartan (as they were labeled in Cartan’s original paper [34]). They represent the
culmination of almost 50 years of research in the field of several complex variables
by numerous researchers. Proofs can be found in the references referred to earlier,
including, in particular, the original paper by Cartan.

For instance, ifO is the sheaf of holomorphic functions on a domain of holomor-
phy X ⊂ Cn , then Theorem B asserts that H 1(X,O) = 0, and this is equivalent to
the solution to Cousin’s first problem on such a domain (see, e.g., Gunning and Rossi
[93] or the other references for a discussion of the two classical Cousin problems).
In the case of any domain D ⊂ C, the assertion that H 1(D,O) = 0 is equivalent
to the classical Mittag-Leffler theorem for the domain D (see Sect. 9.6, where we
discuss the Mittag-Leffler theorem for a domain in the plane).

If I is the ideal sheaf of a subvariety of a Stein manifold X , then Henri Cartan
showed in 1950 [33] that this ideal sheaf is a coherent analytic sheaf. Let’s assume
for simplicity that V is a submanifold of X , and we letO(V ) denote the holomorphic
functions on the submanifold V . From the exact sequence of sheaves

0 → I → O → O/I → 0,

11One can find proofs in any number of more modern references, e.g., Gunning and Rossi [93], as
well as other references which use spectral sequences for a proof of this theorem. Spectral sequences
were a part of Leray’s original formalism; see, for instance, Roger Godement’s classical reference
on sheaf theory [83].

http://dx.doi.org/10.1007/978-3-319-58184-2_9
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which we used in Kodaira’s proof of his vanishing theorem in Sect. 14.6 for the case
of V being a point, we obtain the exact sequence

H 0(X,O) → H 0(X,O/I) → H 1(X, I).

By Theorem 15.8 (Cartan’s Theorem B) we have H 1(X, I) = 0, and hence the
mapping

O(X) = H 0(X,O) → H 0(X,O/I) ∼= O(V )

is surjective. This implies that any holomorphic function on V is the restriction to V
of a holomorphic function on X , an important consequence of Cartan’s work.

We now return to our outline of the proof of Grauert’s finite-dimensionality the-
orem for strongly pseudoconvex domains (Lemma 15.6). We consider a strongly
pseudoconvex domain D ⊂ X , as hypothesized, and let p ∈ ∂D. We want to con-
sider a small perturbation of the boundary near the point p, leaving the remainder of
the boundary fixed. Let U be a suitably small neighborhood of p, and suppose that
χ is a smooth nonnegative function defined on X such that, for ε small,

0 < χ(x) < ε, x ∈ U,

χ(x) ≡ 0, x ∈ X − U.

We also choose χ to have sufficiently small first and second derivatives. We let

ϕ̃ := ϕ − χ,

where ϕ is the defining function for the boundary of D, as formulated above, and we
define the perturbed domain

D1 := {x ∈ X : ϕ̃ < 0},

and thus D1 ⊃ D, for ε sufficiently small, and is still strongly pseudoconvex. We
have “bumped” the domain D outward near the point p.

Now, by choosing the neighborhood U and the bumping function χ sufficiently
small, we can find a finite Stein open covering {U0, . . . , UN } of D1 with the property
that U ∩ Ui = ∅, i = 1, . . . N , and U ⊂ U0. By using Levi’s theorem that there are
Stein neighborhoods of boundary points of a strongly pseudoconvex domain whose
intersection with the domain is Stein (Lemma 15.1), we can assume that the open
sets

Ui ∩ D, Ui ∩ D1

are all Stein. Moreover, it is easy to prove the fact that if W, W̃ are open Stein
submanifolds of a complex manifold, then their intersection W ∩ W̃ is also Stein.

We can now define coverings of the two domains D and D1, using this data.
Namely, let

UD = {Ui ∩ D},UD1 = {Ui ∩ D1}

http://dx.doi.org/10.1007/978-3-319-58184-2_14
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be coverings of D and D1 being defined by the restrictions of the covering U to each
of these domains.

Since the domains in these two coverings and their intersections are all Stein, if
follows from Leray’s theorem (Theorem 15.7) that we have

Hq(D1,O) ∼= Hq(UD1 ,O), q ≥ 1,

Hq(D,O) ∼= Hq(UD,O), q ≥ 1.

We now claim that the restriction mapping

r∗ : Hq(D1,O) → Hq(D,O), is surjective for q ≥ 1. (15.14)

Namely, we have
Zq(UD1 ,O) = Zq(UD,O), q ≥ 1. (15.15)

This follows since the support of the cochains for these two cocyle groups, for q ≥ 1,
have the form

Ui0 ∩ · · · Uiq ,

intersecting either D1 or D. But these intersections do not intersect the original
perturbation neighborhood U , and thus we obtain

Ui0 ∩ · · · Uiq ∩ D1 = Ui0 ∩ · · · Uiq ∩ D.

Therefore we have (15.15), which then yields immediately (15.14).
By applying this process on successive bumps, which after a finite number of

steps can be chosen to cover ∂D, we obtain a perturbation D′ of the domain D with
the property that

D ⊂⊂ D′,

D′ is strongly pseudoconvex, and the restriction mapping

r∗ : Hq(D′,O) → Hq(D,O) is surjective, for all q ≥ 1. (15.16)

Grauert now uses a variation of Cartan’s proof of finite-dimensionality for com-
pact complex manifolds extended to this strongly pseudoconvex setting (a compact
manifold with boundary), and we outline this now.

Consider two finite Stein coverings of D, {U0, . . . , UK } and {U ′
0, . . . , U ′

K }, with
Ui ⊂⊂ U ′

i , and Ui ∩ D and U ′
i ∩ D being Stein manifolds. Let Wi = Ui ∩ D, and let

W = {Wi }

be a well-defined Stein covering of D. We now choose a strongly pseudoconvex
perturbation D′ as above such that
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D ⊂⊂ D′,
D′ ⊂ ⋃

i U ′
i ,

and where (15.16) is satisfied. We let

W′ = {W ′
i = U ′

i ∩ D′}

be a Stein covering of D′ (here we have used that a perturbation of the boundary in
Levi’s theorem (Lemma 15.1) also yields a domain of holomorphy).

For these fixed coverings we have the vector spaces of q-cochains and q-cocycles

Cq(W,O), Zq(W,O), Cq(W′,O), Zq(W′,O),

each of which can be given the structure of a Fréchet space. The set of holomorphic
functions on a typical intersection, say Wi0 ∩ · · · ∩ Wiq , is a Fréchet space (with the
topology of uniform convergence on compact subsets), and we have a finite direct
sum of such Fréchet spaces for the cochains and cocycles listed above.

We now set
V1 = Zq(W′,O) ⊕ Cq−1(W,�),

V2 = Zq(W,�),

for q ≥ 1, and these are also then two Fréchet spaces. We define linear mappings

u : V1 → V2,

v : V1 → V2,

by setting

u(z ⊕ c) = r(z) + δ(c),

v(z ⊕ c) = = r(z),

where r is the restrictionmapping, and δ is the coboundary operator. Thesemappings
are continuous linear mappings of the Fréchet spaces involved. Since

Hq(D′,O) ∼= Hq(W′,O),

Hq(D,O) ∼= Hq(W,O),

it follows from (15.16) that the mapping u is surjective. The mapping v is completely
continuous, using the generalization of Montel’s theorem, Lemma 15.8.

In 1953 Laurent Schwartz (1915–2002) proved the following important theorem
concerning Fréchet spaces, which was used by both Cartan and Grauert in their
finite-dimensionality theorems.
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Theorem 15.9 (Schwartz [211]) Let F1 and F2 be Fréchet spaces, and let

u : F1 → F2

be a surjective continuous linear mapping and

v : F1 → F2,

be a completely continuous mapping, then the vector space

F2/(u(F1) + v(F1))

is finite-dimensional.

Schwartz devotes two pages to his proof, using the relatively new (at that time)
formalism of locally convex topological vector spaces. A more detailed proof can be
found in Gunning and Rossi ([93], pp. 294–295). See also the exposition by Serre in
the Cartan seminar from 1954 [214].

In our case above we have

V2/(u(V1) + v(V1)) = Zq(W,O)/(r(Zq(W′,O)) + δ(Cq−1(W,O))

−r(Zq(W′,O)))

= Zq(W,O)/δ(Cq−1(W,O))

= Hq(D,�),

and, hence,
dim Hq(D,O) < ∞,

as desired.
Now we turn to the proof of Lemma 15.7. Let D be, as before, a strongly pseudo-

convex domain in a complex manifold X . Let p ∈ ∂D. By Levi’s result [143] that
we used earlier, there is a Stein neighborhood U of p such that D ∩ U is Stein. Part
of Levi’s proof consists of showing that there is a holomorphic function f ∈ O(U )

such that {x ∈ U : f (x) = 0} ∩ ∂D = p.

Thus if we consider g = 1/ f , then g ∈ O(D ∩ U ), and

lim
x→p

|g(x)| = ∞.

What Grauert does is to use this function f defined only in a neighborhood of the
point p to find a similar function f̃ defined in a perturbation D′ of D.

Let now D′ be a strongly pseudoconvex perturbation of D such that D′ coincides
with D in X − U , and such that U ∩ D′ is Stein. Let

S = {x ∈ U ∩ D′ : f (x) = 0},



15.6 Grauert’s Solution to the Levi Problem 295

and thus S ∩ ∂D = p, as above. Let [S] be the (positive) divisor on D′ defined
by S in U , and let F be the holomorphic line bundle determined by [S]. We let
�(D′,O(F)) denote the holomorphic sections of the sheafO(F) on the domain D′,
and let h ∈ �(D′,O(F)) denote the canonical holomorphic section that vanishes to
first order on S.12

Consider the exact sequence

0 → O(Fk)
α→ O(Fk+1) → O(Fk+1)/αO(Fk) → 0,

defined by
α(s) = h · s.

We note that the quotient sheaf on the right in this exact sequence is 0 for points
x ∈ D′ − S and has the form

(O(Fk+1)/αO(Fk)
)

x
∼= OS(Fk+1

S )x , x ∈ S,

where we let
Fk+1

S := Fk+1|S

be the restriction of the line bundle Fk+1 to the submanifold S, and OS denotes the
sheaf of holomorphic functions on S.

Since S is a complex submanifold of D′ ∩U , which is Stein, it follows that S itself
is Stein, which is easy to verify. We let F k+1 be the trivial extension ofOS(Fk+1

S ) to
D′ (i.e., this extension is 0 at points not on S), and the exact sequence above becomes

0 → O(Fk)
α→ O(Fk+1)

β→ F k+1 → 0, (15.17)

for all k ∈ Z.
For simplicity of notation we let

Hq(Y, E) := Hq(Y,O(E)),

where Y is a complex manifold, andO(E) is the sheaf of holomorphic sections of a
holomorphic vector bundle E .

12This can be made quite explicit in this special case. Let U0 = U ∩ D′ and U1 = D be a covering
of D′. The functions

f0 = f in U0,

f1 = 1 in U1,

define the transition functions g01 = f0/ f1 on U0 ∩ U1 for the line bundle F associated to the
divisor [S], and the canonical section h has the (same) form

h0 = f0 in U0,

h1 = 1 in U1.
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From the short exact sequence (15.17) we have the long exact sequence of coho-
mology groups

0 → H 0(D′, Fk) → H 0(D′, Fk+1) → H 0(D′,F k+1) →
H 1(D′, Fk) → H 1(D′, Fk+1) → H 1(D′,F k+1) → · · · .

But
Hq(D′,F k+1) ∼= Hq(S, Fk+1

S ) = 0,

for q ≥ 1, by Theorem B of Cartan (Theorem 15.8B), since S is Stein.
This yields the exact sequence

H 0(D′, Fk+1)
β∗→ H 0(S, Fk+1

S ) → H 1(D′, Fk)
α∗→ H 1(D′, Fk+1) → 0. (15.18)

Thus the linear mapping α∗ in this sequence is surjective, and it follows that

dim H 1(D′, Fk) ≥ dim H 1(D′, Fk+1),

for k ≥ 0. Letting
dk = dim H 1(D′, Fk),

it follows that these dimensions are all finite since d0 < ∞ by Lemma 15.6.
Since dk < ∞, and dk ≥ dk+1 for k ≥ 0, it follows that there is a k0 ≥ 0 such that

dk = dk + 1, k > k0.

Choose now any k > k0, and it follows that ker α∗ = 0 in (15.18), and hence the
mapping

H 0(D′, Fk+1)
β∗→ H 0(S, Fk+1

S ) (15.19)

in (15.18) is surjective.
Let now s0 be a holomorphic section of Fk+1

S defined near p with s0(p) �= 0.
By Cartan’s Theorem A (Theorem 15.8A), there is a holomorphic section s of Fk+1

S
on S with s(p) �= 0, using again the fact that S is Stein. By the surjectivity of the
mapping (15.19) it follows that there is a section s̃ of Fk+1 on D′ whose restriction
to S is s, and hence s̃(p) �= 0, as well.

We can now form the quotient

f̃ := s̃

hk+1
,

which is a meromorphic function on D′. Moreover, f̃ is holomorphic on D, since
h �= 0 on D, and since hk+1(p) = 0 and s̃(p) �= 0, it follows that
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lim×→p
| f̃ (x)| = ∞.

This completes our outline of the proof of Lemma 15.7 and hence completes our
discussion of the proof of Grauert’s Theorem 15.5 which asserts that a strongly
pseudoconvex domain is indeed holomorphically convex.

As the example at the beginning of this section shows, a manifold can be holo-
morphically convex, but not necessarily Stein. We need additional information to
conclude that certain holomorphically convex manifolds are Stein. Grauert showed
in [85] that a holomorphically convex manifold X which is K -complete is a Stein
manifold (and conversely). Here K -complete means that for any point x0 of X , there
are a finite number of holomorphic functions f1, . . . , fK on X such that

{x ∈ X : f j (x) = 0, j = 1, . . . , K }

consists of isolated points in X .
If ϕ is a strictly plurisubharmonic function on a complex manifold X , then it

follows by a maximum principle argument that X has no compact subvarieties of
positive dimension. On the other hand, a holomorphically convex manifold X is
K -complete if and only if X has no compact subvarieties of dimension greater than
zero. These results are relatively straightforward and are proved in Grauert’s 1958
paper [86]. From these remarks, we have the following important result of Grauert,
providing the final solution of the Levi problem in this context.

Theorem 15.10 (Grauert [86]) Let D be a strongly pseudoconvex domain which has
a strictly plurisubharmonic function ϕ defined on D, then D is a Stein manifold.

15.7 The Grauert Real-Analytic Embedding Theorem

Aswedescribed inChap.12,Whitney proved in 1936 thefirst of themajor embedding
theorems for differentiable manifolds. A significant problem that remained unsolved
at that timewaswhether a real-analyticmanifold could be real-analytically embedded
in real Euclidean space of some dimension. One year later, in 1937, Bochner showed
[21] that if a compact real-analytic n-dimensional manifold admits a real-analytic
Riemannianmetric gi j , then there is a real-analytic embedding of M intoR2n+1. Note
that Bochner’s work did not obtain an isometric embedding; that came only much
later with the work of Nash, as described in Chap.13.

Wenowoutline brieflyBochner’s approach to this problem.Given the real-analytic
metric, Bochner considered the Laplacian operator defined on functions

� = d∗d

acting on smooth functions defined on M . The eigenfunctions of this Laplacian,
solutions of

http://dx.doi.org/10.1007/978-3-319-58184-2_12
http://dx.doi.org/10.1007/978-3-319-58184-2_13
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�ϕ j = λ jϕ,

form a discrete basis for the Hilbert space H consisting of all L2-functions on M ,
and these are real-analytic eigenfunctions.

The embedding functions

( f1, . . . , f2n+1); M → R2n+1,

given by Whitney, are C∞ functions on M , and hence, of course, are L2-functions
and elements of the Hilbert spaceH. Thus each such function can be approximated in
the L2-norm by a finite series of the basis functions, which yields L2-norm approxi-
mations of the functions f1, . . . , f2n+1 by real-analytic functions r1, . . . , r2n+1. The
major contribution of Bochner’s paper, using delicate real-analysis estimates, is to
exploit this L2-approximation by these real-analytic functions and to show that they
approximate the embedding functions in the C1-norm, thus yielding a real-analytic
embedding of M into R2n+1.

In 1958 two papers appeared, each of which provided real-analytic embeddings
for compact real-analytic manifolds, improving on Bochner’s result, by not requiring
a real-analytic metric, and solving, in the case of compact manifolds, Whitney’s
problem. The first of these was by Charles B. Morrey, Jr. (1907–1984) [160], who
was able to find a real-analytic immersion of M into a Euclidean space, which
provided a Riemannian metric induced from the immersion, and he was able to then
use Bochner’s result to obtain an embedding. Morrey used important tools from the
theory of elliptic differential equations in his proof.

The second result, due to Grauert, is a simple application of Grauert’s solution
to the Levi problem that we described in the previous section, which used powerful
methods from the theory of several complex variables. We will describe Grauert’s
proof in the following paragraphs. Moreover, Grauert was able to refine his proof
to obtain an embedding theorem for noncompact real-analytic manifolds, as well,
thus providing the complete solution to the problem posed by Whitney in 1936. We
formulate this result as our final embedding theorem of this book.

Theorem 15.11 (Grauert [86]) Let M be a real-analytic n-dimensional manifold,
then there is a proper real-analytic embedding

f : M → R2(2n+1).

In Fig. 15.1 we show the first page of Grauert’s paper in which he both solved the
Levi problem on complex manifolds and applied this result to obtain his general
real-analytic embedding theorem.

We will first outline Grauert’s proof for the case where M is compact, and then
we will indicate the refinements used to extend the proof to the noncompact case.

The first idea is to embed M as a real-analytic submanifold of a complex manifold
which mimics the standard embedding of Rn in Cn given by

http://dx.doi.org/10.1007/978-3-319-58184-2_15
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Fig. 15.1 First page from Grauert’s 1958 paper on the solution to the Levi problem and the embed-
ding of real-analytic manifolds [86]. Reprinted with the permission of the Annals of Mathematics



300 15 Noncompact Complex Manifolds

Rn = {z = (z1, . . . , zn) ∈ Cn : Im z j = 0, j = 1, . . . , n}. (15.20)

This has been carried out in a very nice manner by Whitney and Francois Georges
RenéBruhat (1929–2007) in 1959 [243], whichwas used by bothMorrey andGrauert
in their separate proofs, and allows both authors to use complex variable methods to
solve this real-analytic problem, an essential element in their solutions.

We will formulate this as a theorem, but first we introduce Whitney and Bruhat’s
definition of a complexification of a real-analytic manifold. A complexification of a
real-analytic manifold M is a complex manifold X and a real-analytic embedding
τ : M → X , such that for any coordinate chart neighborhood U of a point p ∈ X ,
there is a biholomorphic mapping

h : U → U ′ ⊂ Cn,

so that
h(U ∩ τ (M)) = U ′ ∩ Rn,

where Rn is embedded in Cn as in (15.20).

Theorem 15.12 (Whitney–Bruhat [243]) Let M be a real-analytic manifold, then
there exists a complexification (X, τ ), and for any two such complexifications
(X1, τ1), (X2, τ2), there is a biholomorphic extension of the real-analytic isomor-
phism

τ2 ◦ τ−1
1 : τ1(M) → τx (M)

to a neighborhood of τ1(M) in X.

The latter part of the theorem simply asserts that complexifications are unique near
the embedded version of M in any such complexification.

We now return to Grauert’s proof of Theorem 15.11. Let X be a complexification
of the given real-analytic manifold M , and let {Uα} be a covering of M by open sets
with biholomorphic mappings

hα : Uα → U ′
α ⊂ Cn,

where each U ′
α is an open ball in Cn , and such that

hα(Uα ∩ M) = U ′
α ∩ Rn,

where

Rn = {z = (x1 + iy1, . . . , xn + iyn) ∈ Cn : y j = 0, j = 1, . . . , n}.

We assume that the covering is a countable covering, and, in the case where M is
compact, we can assume that this is a finite covering.

In a given U ′
α we can define the function
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ϕ̃α(z) :=
n∑

j=1

y2j = −1

4

n∑
j=1

(z j − z j )
2.

This function is strictly plurisubharmonic, as is easy to compute. We recall that
strictly plurisubharmonic means the Hermitian matrix

∂2ϕ̃α

∂zi∂z j

is positive-definite at points of U ′
α, and, in particular, at points of U ′

α ∩ Rn , which
will be important below. Also,

ϕ̃α = 0 on Rn ∩ U ′
α,

dϕ̃α(z) = 0 on Rn ∩ U ′
α.

If we let
ϕα = ϕ̃α ◦ hα,

then ϕα satisfies on Uα:

ϕα is strictly plurisubharmonic on Uα ∩ M,

ϕα = 0 on Uα ∩ M,

dϕα = 0 on Uα ∩ M.

(15.21)

We call a C∞ function satisfying the three properties in (15.21) a p-function.
Suppose that on any open set W in X with W ∩ M �= ∅, ϕ1 and ϕ2 are two

p-functions in W , then, for any smooth function χ > 0 on W ,

χϕ1, and ϕ1 + ϕ2,

are also p-functions on W . This is easy to verify, since, in suitable local coordinates,
for instance,

∂2(χϕ1)

∂zi∂z j
(z) = χ(z)

∂2ϕ1

∂zi∂z j
(z) + R(z),

where R(z) vanishes on W ∩ M , sinceϕ1 and dϕ1 vanish on W ∩ M . Thus we can use
a partition of unity with respect to the covering Uα to obtain a p-function ϕ defined
in a neighborhood U of M in X , such that

M = {x ∈ U : ϕ(x) = 0}.

Suppose now that M is compact, then there is an ε > 0 such that

T := {x ∈ U : ϕ(x) < ε}
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is a strongly pseudoconvex domain in X , which has a strictly plurisubharmonic func-
tion ϕ defined on T . It now follows from Grauert’s theorem (solution to the Levi
problem), Theorem 15.10, that T is a Stein manifold. By the proper holomorphic
embedding theorem for Stein manifolds (Theorem 15.2), there is a proper holomor-
phic embedding

f : T → C2n+1,

and hence the restriction of F to M , which we denote by g, gives us the desired
proper real-analytic embedding

g : M → R2(2n+1).

In fact, here we only need to use Theorem 15.4 to obtain a holomorphic embedding
defined in a neighborhood of M in T , since T being Stein implies that T is holo-
morphically separable and has global local coordinates, and M is a compact subset
of T . Thus, in this case, we don’t need the full power of the proper holomorphic
embedding theorem.

In the case where M is noncompact, Grauert constructs a similar tube domain
T (open set containing M , equipped with a strictly plurisubharmonic function ϕ
defined on T ), such that T is the union of relatively compact strongly pseudoconvex
domains Tρ, where ρ is a real parameter. The sets Tρ are constructed in a similar
manner to the strongly pseudoconvex domain used in the proof above for the case
where M is compact. Moreover, they provide an exhaustion of the form

Tρ ⊂ Tρ′ , ρ < ρ′,

and
T =

⋃
ρ

Tρ.

Each of the domains Tρ is a Stein manifold, as in the earlier discussion, and by a
theoremof FerdinandDocquier andGrauert [57], the union T is also a Steinmanifold.
Now, using the proper embedding theorem for Stein manifolds (Theorem 15.2), it
follows that there is a proper real-analytic embedding

g : M → R2(2n+1).
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