
Ranking Vertices for Active Module
Recovery Problem

Javlon E. Isomurodov1,2, Alexander A. Loboda1,2,
and Alexey A. Sergushichev1,2(B)

1 Computer Technologies Department, ITMO University, Saint Petersburg, Russia
{isomurodov,loboda,alserg}@rain.ifmo.ru

2 JetBrains Research, Saint Petersburg, Russia

Abstract. Selecting a connected subnetwork enriched in individually
important vertices is an approach commonly used in many areas of
bioinformatics, including analysis of gene expression data, mutations,
metabolomic profiles and others. It can be formulated as a recovery of
an active module from which an experimental signal is generated. Com-
monly, methods for solving this problem result in a single subnetwork
that is considered to be a good candidate. However, it is usually useful
to consider not one but multiple candidate modules at different signif-
icance threshold levels. Therefore, in this paper we suggest to consider
a problem of finding a vertex ranking instead of finding a single mod-
ule. We also propose two algorithms for solving this problem: one that
we consider to be optimal but computationally expensive for real-world
networks and one that works close to the optimal in practice and is also
able to work with big networks.

Keywords: Interaction networks · Active module · Vertex ranking ·
Dynamic programming · Integer linear programming · Connected
subgraphs

1 Introduction

Network analysis has many applications in bioinformatics. This includes analysis
of co-expression network for gene clustering [8], searching for reporter metabo-
lites for metabolic processes [10], or stratification of tumor samples based
on topological distance between somatic mutations in a gene interaction net-
works [5]. The overall idea is that by taking into account interactions between
entities (genes, metabolites, etc.) one can better interpret the corresponding raw
data (gene expression, metabolite concentrations, etc.).

One type of network analysis corresponds to the active module recovery prob-
lem. The goal of these methods is to find a connected subnetwork (module) that
is enriched in individually important vertices. Such module, for example, could
correspond to a signalling pathway for protein-protein interaction network [3] or
a metabolic pathway for metabolic networks [7].

c© Springer International Publishing AG 2017
D. Figueiredo et al. (Eds.): AlCoB 2017, LNBI 10252, pp. 75–84, 2017.
DOI: 10.1007/978-3-319-58163-7 5

76 J.E. Isomurodov et al.

There are many implementations for active module recovery [1,3,6,11]. These
methods share a problem of non-monotonous dependence of the resulting module
on the arbitrary significance threshold value. This means that when a method
is rerun with a more relaxed threshold not only some vertices can appear, but
they can disappear too. This situation is confusing for the user and makes inter-
pretation of the results harder.

In this paper we consider a formulation of the active module problem in terms
of connectivity-monotonous vertex ranking. This allows to generated modules for
multiple thresholds that are consistent with each other. First, in Sect. 2.1 we for-
mally define the problem and give related definitions. Then, in Sects. 2.2 and 2.3
we propose two methods to solve the problem: a brute-force-based method and
semi-heuristic method based on solving a series of integer linear programming
(ILP) problems. We also define two baseline methods in Sect. 2.4. Finally in
Sect. 3 we compare the methods with each other and baseline methods on gen-
erated and real networks.

2 Methods

2.1 Formal Definitions

In this section we give a formal definition of the active module recovery problem
in its ranking variant. Here we consider only networks with a simple structure
of an undirected graph.

Let G = (V,E) be a connected undirected graph and w : V → [0, 1] to be
a weight function defined on its vertices. There is also an unknown connected
subgraph (active module) and corresponding set of vertices M . Weights w are
assumed to be random variables such that vertices from M are i.i.d. and fol-
low a “signal” distribution and vertices from V \ M are also i.i.d. but follow a
“noise” distribution. Here we consider weights to be corresponding to P-values
of a statistical test, where null hypothesis holds for vertices from V \ M and
corresponding weights follow uniform distribution U(0, 1). Following [3] vertices
from M are assumed to follow a beta-distribution B(α, 1) for some parameter α.

Definition 1. Let G = (V,E) be a graph. A vertex ranking of G is a permuta-
tion of its vertices V . For a ranking r = (r1, r2, . . . , r|V |) we consider vertices at
the beginning of r (e.g. r1, r2, . . .) to be more important and ranked higher than
vertices at the end (e.g. r|V |, r|V |−1, . . .).

Definition 2. Let us call a vertex ranking r of a connected graph G to be
connectivity-monotonous, if all subgraphs Gk induced by vertices from ranking
prefixes r1..k = (r1, . . . , rk) for k ∈ 1..|V | are connected.

For convenience we will consider a rank prefix r1..k as a set {r1, . . . , rk} rather
than a vector if the context requires it.

In this paper we will use AUC (Area Under the Curve) measure to define
which ranking r of graph G better recovers module M .

Ranking Vertices for Active Module Recovery Problem 77

Definition 3. AUC value of a vertex ranking r for graph G = (V,E) and module
M ⊂ V can be calculated using formula:

AUC(r|M) =
n∑

i=1

(
1 − |r1..i \ M |

|V \ M |
)

[ri ∈ M]
|M | ,

where [ri ∈ M] is equal to 1 if ri ∈ M and 0 otherwise.

To summarize we define the considered problem as follows.

Definition 4. Given a connected graph G, an unknown active module M and
vertices weights w that follow beta- and uniform distributions for vertices from
M and V \ M correspondingly, the ranking variant of the active module recov-
ery problem consists in finding a connectivity-monotonous ranking r with the
maximal value of AUC(r|M).

Later in this paper we consider the parameter α of the beta-distribution
B(α, 1) to be known. Similarly to [3] one can infer parameters of the beta-
uniform mixture from the vertex weights using maximum likelihood approach.

2.2 Optimal-on-Average Ranking

In this section we describe a method that finds ranking with the maximal
expected value of AUC. Correspondingly, we call it optimal-on-average method.

First, let consider a set D ⊂ 2V of all vertex sets that induce a connected
subgraph of G and a discrete probability P (M) defined for all M ∈ D. Together
this constitutes a probability space M.

Our task is to find a ranking r with the maximal expected value of AUC
score given a vector of vertex weights w:

E[AUC(r|M)] =
∑

M∈D

P (M |w) · AUC(r|M). (1)

A conditional probability of a module P (M |w) can be calculated using the
Bayes’ theorem:

P (M |w) =
P (w|M) · P (M)

P (w)

=
P (M)
P (w)

·
∏

v∈M

B(α, 1)(w(v)) ·
∏

v∈V \M

U(0, 1)(w(v)). (2)

Let us rewrite the formula 1:

E[AUC(r|M)] =
∑

M∈D

p(M |w)
n∑

i=1

(
1 − |r1..i \ M)|

|V \ M |
)

[ri ∈ M]
|M |

=
n∑

i=1

∑

M∈D

(
1 − |r1..i \ M |

|V \ M |
)

· p(M |w) · [ri ∈ M]
|M | . (3)

78 J.E. Isomurodov et al.

This allows us to calculate E[AUC(r|M)] iteratively:

E[AUC(r1..k|M)] = E(AUC(r1..k−1|M))+
∑

M∈D|rk∈M

(
1 − |r1..k \ M |

|V \ M |
)

· p(M |w)
|M | . (4)

Formula (4) allows to calculate every r1..k prefix ranking only one time.
This can be used to find the best ranking as shown in the Algorithm1. There

we fill in an array that for every set of vertices D[i] from D contains a pair
of values dp[i].auc – expected AUC value of the best connectivity-monotonous
ranking of vertices D[i] and dp[i].ranking – the corresponding ranking. The
function getArea() calculates the second summand of formula (4).

Algorithm 1. Optimal-on-average ranking.
1 procedure OptimalRanking(V ,E):
2 D ← getConnectedSubgraphs(V, E) � elements of D ordered by size
3 dp[D] : (auc: Double, ranking: Vector)
4 for i = 1 to |D| do
5 M ← D[i]
6 forall v ∈ M do
7 if isNotConnected(M \ {v}) then
8 continue

9 j ← get index of M \ {v} in D
10 auc ← dp[j].auc + getArea(D, dp[j].ranking, v)
11 if auc > dp[i].auc then
12 v̄ ← (dp[j].ranking, v)
13 dp[i] ← (v̄, auc)

14 return dp[|D|].ranking

The time complexity of the Algorithm 1 is O(n2 · |D|2). One call to getArea()
requires O(n · |D|) time and it is multiplied by O(n · |D|) for the outer loops.

2.3 Semi-heuristic Ranking

In this section we describe another approach for the vertex ranking problem.
This approach is inspired by BioNet method [3] and consists in solving a series
of integer linear programming (ILP) problems using IBM ILOG CPLEX library.
Compared to the optimal-on-average approach from the previous section this
method allows finding a ranking for large graphs in a rather reasonable time.
As this method does not explicitly optimizes AUC score we call this method
semi-heuristic.

Ranking Vertices for Active Module Recovery Problem 79

First, similar to BioNet, let us find a subgraph of G that is most likely to
be the active module. The most likely subgraph has the best (log)-likelihood
score. The log-likelihood score of the module can be calculated as a sum of log-
likelihood scores of the individual vertices in the module, where individual score
for vertex v is calculated as:

score(v) = log L(α, 1|w(v)) = log(α · w(v)α−1).

Now, we can find a connected subgraph M with a maximal sum of vertex
scores. This corresponds to an instance of Maximum-Weight Connected Sub-
graph problem (MWCS). This problem is NP-hard but it can be reduced to an
ILP problem and solved by IBM ILOG CPLEX as, for example, in [4].

Using the found subgraph M we can define a crude partial ranking by saying
that vertices of M go before V \ M .

Next, we define a procedure to refine such partial ranking. This procedure
takes two sets of vertices: a set R that contains already ranked vertices and a set
C that contain set of candidate vertices to be ranked. Then we find a subset X
of C, so that R ∪X is a connected and vertices from X should be ranked higher
than C \ X.

Using this procedure we can recursively refine ranking up to the individual
vertex level. Initially we solve an instance where R is set to an empty set and
C contains all vertices. Then we do ranking for (R,X) and (R ∪ X,C \ X). We
stop recursion when the candidate set consists of only one vertex.

A parameter of this procedure is how to select set X. For this end, similarly
to the first step, we solve an MWCS instance, but with an additional constraint
that requires the solution to contain at least one vertex from R and at least one
but not all vertices from C. We set X as an intersection of the solution and the
set C. The corresponding instance is solved by a modified solver from [9], where
corresponding constraints were added into the ILP formulation.

Overall algorithm is shown as Algorithm2. The procedure findMaximum −
SG() solves MWCS with the described additional constraints and returns chosen
subset of vertices from C. If list size is more than one, we call refineRanking() to
get a ranking of this set. The algorithm returns a ranking r of vertices C.

2.4 Baseline Methods

As base line for the experiments we consider the following two methods.
The first method ranks vertices by their weights: the smaller the weight,

the higher is rank. This ranking is not connectivity-monotonous but is a good
starting point. We will call this method non-monotonous.

The second method consists in running BioNet algorithm for ten different
significance thresholds. As the BioNet modules (M1, M2, . . . , M10) can be non-
monotonous we use the following combining procedure. We assign the highest
rank to vertices from M1, the second highest to M2 M1, the third to M3 \ (M1 ∪
M2) and so on. The significance thresholds are selected to be distributed at equal
steps between maximum and minimum log-likelihood vertex scores.

80 J.E. Isomurodov et al.

Algorithm 2. Semi-heuristic ranking refinement.
1 procedure RefineRanking(V , E, R, C):
2 r : Ranking
3 while C.size! = 0 do
4 list ← findMaximumSG(V, E, R, C)
5 if list.size > 1 then
6 list ← refineRanking(V, E, R, list)

7 r.addAll(list)
8 R.addAll(list)
9 C.removeAll(list)

10 return r

3 Experimental Results

We carried three series of experiments for different graph sizes. First, we con-
sidered small graphs of about 20 vertices where we were able to thoroughly
compare all the considered methods. Next, we analyzed medium-sized graphs of
100 vertices. For such sizes that are closer to the real-world ones we analyzed
all methods except optimal-on-average one, as it became computationally infea-
sible to run. Finally, we tested methods on a real-world graph of two thousand
vertices.

3.1 Small Graphs

In the first experiment we have generated 32 different graphs of size 18. Then an
active module of size 4 was chosen uniformly at random. Value of α was chosen
from U(0, 0.5) distribution. Vertex weights were generated from corresponding
beta- and uniform distributions.

The results of the first experiment are shown on Fig. 1. They show that the
optimal-on-average method in most cases works equal or better compared to
both BioNet-like and non-monotonous baseline methods (top panels). The semi-
heuristic method works similarly well compared to optimal (bottom-left panel)
and better than BioNet-like method.

The distribution of active modules can be non-uniform in the real-world
data, so we also carried out an experiment with such non-uniform distribution
(see Sect. 3.4 for details). Aside from the four methods considered before we ran
an optimal-on-average method parametrized by the real empirical distribution
of the modules.

The results of this experiment are shown on Fig. 2. The situation is similar to
the previous experiment with semi-heuristic method being close to optimal-on-
average method and better than baseline methods. However, the semi-heuristic
method works worse than optimal-on-average method parametrized by the real
modules distribution.

Ranking Vertices for Active Module Recovery Problem 81

3.2 Medium-Sized Graphs

Similarly to the previous section we have generated 32 different graphs of size
100. An active module were sampled to be the size of 5–25.

Fig. 1. Module AUC values for graphs of size 18. The following methods are present:
optimal-on-average, semi-heuristic, BioNet-like and non-monotonous. Each panel shows
comparison of two methods. One arrow correspond to one experiment with its ends
corresponding to AUC value of the first and the second methods in the pair. The color
depends on which method works better. True active modules were sampled from the
uniform distribution.

On these graph sizes running the optimal-on-average method becomes infea-
sible, so we excluded it from the analysis. A median time of running the semi-
heuristic method was 146 s.

The results of the experiment are shown on Fig. 3. Almost for all cases semi-
heuristic ranking have worked better than both BioNet-like and non-monotonous
baseline methods.

3.3 Large Real-World Graph

Finally, we analyzed performance of the proposed semi-heuristic method on the
large real-word graph. For this experiment we used a protein-protein interaction
graph from the example of BioNet package [2]. This graph has 2089 vertices and
7788 edges. An active module in this network was sample to be a size of 50–250.

82 J.E. Isomurodov et al.

Fig. 2. Module AUC values for graphs of size 18 when true active modules were sam-
pled from a non-uniform distribution. The following methods are present: optimal-
on-average, optimal-on-average parametrized by the real distribution, semi-heuristic,
BioNet-like and non-monotonous.

Fig. 3. Module AUC values for graphs of size 100. Three methods are present: semi-
heuristic, BioNet-like and non-monotonous.

The results of the experiment are shown on Fig. 4. As for medium sizes semi-
heuristic method works better than both baseline methods. On the other hand,
the running time of the method increased significantly to about six hours.

Ranking Vertices for Active Module Recovery Problem 83

Fig. 4. Module AUC values for a real protein-protein interaction graph. Three methods
are present: semi-heuristic, BioNet-like and non-monotonous.

3.4 Generating Graphs for Experiments

To mimic real network graphs generated for the experiments were scale-free.
For the generation we used an existing implementation of the Barabasi-Albert
algorithm from an R-package igraph.

For subgraph sampling of the given size we used the following procedure. Let
G = (V,E) be a connected graph, k be a required size of an active module and M
is the set of vertices of the generated random active module. At the beginning
M is empty. First we add into M a random vertex from the graph. Next we
choose one of the adjacent vertex of M that does not already belong to M and
add it. This step is repeated until M is of size k.

4 Conclusion

The problem of active module recovery appears in many areas of bioinformatics.
Usually it is solved by an heuristic or exact algorithm that provides a module for
a selected significance threshold. However, in practice multiple threshold values
are tested and the results of these tests are not easily combined to be interpreted.
In this paper we considered a ranking variant of this problem, where vertices are
ranked before a particular threshold is selected. We also force a property of a
module for a more stringent threshold to be a subgraph of a module for a less
stringent one. We proposed two methods to solve this problem. The first method
uses dynamic programming to find a ranking that maximizes an expected value
of AUC score. We consider this method to be optimal, but it works only on
small graphs. The second method does not explicitly maximize the AUC score
but compares well to the optimal one and works better than the baseline methods
in practice. However, it is also able to rank graphs with up to thousands vertices
in a reasonable time.

Acknowledgements. This work was supported by the Ministry of Education and
Science of the Russian Federation (agreement 2.3300.2017).

84 J.E. Isomurodov et al.

References

1. Alcaraz, N., Friedrich, T., Kotzing, T., Krohmer, A., Muller, J., Pauling, J.,
Baumbach, J.: Efficient key pathway mining: combining networks and OMICS
data. Integr. Biol. 4(7), 756–764 (2012)

2. Beisser, D., Klau, G.W., Dandekar, T., Muller, T., Dittrich, M.T.: BioNet: an
R-package for the functional analysis of biological networks. Bioinformatics 26(8),
1129–1130 (2010)

3. Dittrich, M.T., Klau, G.W., Rosenwald, A., Dandekar, T., Müller, T.: Identifying
functional modules in protein-protein interaction networks: an integrated exact
approach. Bioinformatics 24(13), i223–i231 (2008)

4. El-Kebir, M., Klau, G.W.: Solving the maximum-weight connected subgraph prob-
lem to optimality (2014). arXiv:1409.5308

5. Hofree, M., Shen, J.P., Carter, H., Gross, A., Ideker, T.: Network-based stratifica-
tion of tumor mutations. Nat. Methods 10(11), 1108–1115 (2013)

6. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and
signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1),
S233–S240 (2002)

7. Jha, A.K., Huang, S.C., Sergushichev, A., Lampropoulou, V., Ivanova, Y.,
Loginicheva, E., Chmielewski, K., Stewart, K.M., Ashall, J., Everts, B., Pearce,
E.J., Driggers, E.M., Artyomov, M.N.: Network integration of parallel metabolic
and transcriptional data reveals metabolic modules that regulate macrophage
polarization. Immunity 42(3), 419–430 (2015)

8. Langfelder, P., Horvath, S.: WGCNA: an R package for weighted correlation net-
work analysis. BMC Bioinformatics 9(1), 559 (2008)

9. Loboda, A.A., Artyomov, M.N., Sergushichev, A.A.: Solving generalized
maximum-weight connected subgraph problem for network enrichment analysis.
In: Frith, M., Storm Pedersen, C.N. (eds.) WABI 2016. LNCS, vol. 9838, pp. 210–
221. Springer, Cham (2016). doi:10.1007/978-3-319-43681-4 17

10. Patil, K.R., Nielsen, J.: Uncovering transcriptional regulation of metabolism by
using metabolic network topology. Proc. Nat. Acad. Sci. 102(8), 2685–2689 (2005)

11. Sergushichev, A.A., Loboda, A.A., Jha, A.K., Vincent, E.E., Driggers, E.M., Jones,
R.G., Pearce, E.J., Artyomov, M.N.: GAM: a web-service for integrated transcrip-
tional and metabolic network analysis. Nucleic Acids Res. 44(W1), 194–200 (2016)

http://arxiv.org/abs/1409.5308
http://dx.doi.org/10.1007/978-3-319-43681-4_17

	Ranking Vertices for Active Module Recovery Problem
	1 Introduction
	2 Methods
	2.1 Formal Definitions
	2.2 Optimal-on-Average Ranking
	2.3 Semi-heuristic Ranking
	2.4 Baseline Methods

	3 Experimental Results
	3.1 Small Graphs
	3.2 Medium-Sized Graphs
	3.3 Large Real-World Graph
	3.4 Generating Graphs for Experiments

	4 Conclusion
	References

