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Abstract. Analysis of genetic variation using graph structures is an
emerging paradigm of genomics. However, defining genetic sites on
sequence graphs remains an open problem. Paten’s invention of the ultra-
bubble and snarl, special subgraphs of sequence graphs which can iden-
tified with efficient algorithms, represents important first step to segre-
gating graphs into genetic sites. We extend the theory of ultrabubbles to
a special subclass where every detail of the ultrabubble can be described
in a series and parallel arrangement of genetic sites. We furthermore
introduce the concept of bundle structures, which allows us to recognize
the graph motifs created by additional combinations of variation in the
graph, including but not limited to runs of abutting single nucleotide
variants. We demonstrate linear-time identification of bundles in a bidi-
rected graph. These two advances build on initial work on ultrabubbles
in bidirected graphs, and define a more granular concept of genetic site.

Keywords: Sequence graphs · Genetic variants

1 Background

The concept of the genetic site underpins both classical genetics and modern
genomics. From a biological perspective, a site is a position at which mutations
have occurred in different samples’ histories, leading to genetic variation. From
an engineering perspective, a site is a subgraph with left and right endpoints
where traversals by paths correspond to alleles. This is useful for indexing and
querying variants in paths and for describing variants in a consistent and granular
manner.

Against a linear reference, it is trivial to define sites, provided that we disallow
variants spanning overlapping positions. This is clearly demonstrated by VCF
structure [4]. VCF sites, consisting of any number of possible alleles, are identified
by their endpoints with respect to the linear reference.

If we wish to analyze a set of variants containing structural variation, highly
divergent sequences or nonlinear references structures, then a linear reference
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with only non-overlapping variants is no longer a sufficient model. Datasets with
one or more of these properties are becoming more common [1,10], and sequence
graphs [7] have been developed as a method of representing them. However,
defining sites on graphs is considerably more difficult than on linear reference
structures and the creation of methods to fully decompose sequence graphs into
sites remains an unsolved problem.

2 The Challenges of Defining Sites on Graphs

On a graph-based reference, the linear reference definition of a site as a position
along the reference and a set of alleles fails to work for several reasons:

1. Sequences which are at the same location in linear position may not have com-
parable contexts. This is a consequence of having variants which cannot be
represented as edits to the linear reference but rather as edits to another vari-
ant. We illustrate this with an example from 1000 Genomes polymorphism
data, visualized using Sequence Tube Maps [2] (Fig. 1).

2. Elements of sequence may not be linearly ordered. Parallel structure of the
graph (3.) is one sort of non-linearity. Graphs also allow repetitive, inverted
or transposed elements of sequence. These all prevent linear ordering (Fig. 2).

3. The positions spanned by different elements of variation may partially over-
lap. Therefore, multiple mutually exclusive segments of sequence in a region
of the graph cannot be considered to be alternates to each other at a well-
defined position without having to include extraneous sequence that is shared
between some but not all of the “alleles.”

We can expect that the density of these graph structures will increase with
increasing population sizes included in datasets (Fig. 3).

Our aim will be to recognize and fully decompose subgraphs resembling
Example 1 into a notion of site, and isolate these from elements of the graph
resembling Examples 2 and 3.

Fig. 1. The context of the single nucleotide variant shown does not exist in all variants
spanning its linear position

Fig. 2. A cycle and an inversion in a graph
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Fig. 3. Overlapping deletions, from 1000 Genomes polymorphism data

3 Mathematical Background

3.1 Directed and Bidirected Sequence Graphs

The graphs used to represent genetic information consist of labelled nodes and
edges. Nodes are labelled with sequence fragments. Edges form paths whose
labels spell out allowed sequences. Two types of graph are used (Fig. 4).

Fig. 4. (A) A directed acyclic graph (B) A cyclic directed graph (C) Graph B rep-
resented as a bidirected graph. This cycle is proper. (D) Graph C represented as a
biedged graph

The more simple type is the directed graph. A directed graph (or “digraph”)
G consists of a set V of nodes and a set E of directed edges. A directed edge is
an ordered tuple (x, y), consisting of a head x ∈ V and tail y ∈ V . A directed
path is a sequence of nodes joined by edges, followed head to tail. G is a directed
acyclic graph (DAG) if it admits no directed path which revisits any node.

A bidirected graph G [6] consists of a set V of vertices and a set E of edges.
Each vertex v ∈ V consists of a pair of node-sides {vleft, vright} and each edge is
an unordered tuple of node-sides. Bidirected graphs have the advantage of being
able to represent inversion events.

We write N for the set of node-sides in the bidirected graph G. The opposite
n̂ of a node-side n is the other node-side at the same vertex as n.

A sequence p = x1, x2, . . . , xk of node-sides is a path if ∀xi,

1. if xi−1 �= x̂i, then xi+1 = x̂i

2. if xi−2 = ˆxi−1, then {xi−1, xi} ∈ E
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3. any contiguous subsequence of p consisting of a node-side x alternating with
its opposite x̂ must either be even-numbered in length or must be a prefix or
suffix of p

Informally, this means that in a path, consecutive pairs forming edges alternate
with pairs of opposite node-sides or, equivalently, that paths visit both node-
sides of the vertices they pass through. They can however begin or on an isolated
node-side.

A bidirected graph G is cyclic if it admits a path visiting a node-side twice.
Therefore the self-incident hairpin motif (below, right) is considered a cycle. A
bidirected graph G is properly cyclic if it admits a path which visits a pair {n, n̂}
twice in the same order (Fig. 5).

Fig. 5. (Left) A properly cyclic graph. (Right) The self-incident hairpin motif of a
cyclic but not properly cyclic graph

Some publications refer to biedged graphs. These are {black, grey}-edge-
colored undirected graphs, where every node is paired with precisely one other
by sharing a grey edge and paths in the graph must alternate between traversing
black and grey edges. Paten elaborates on this construction in [9] and shows that
it is equivalent to a bidirected graph. We will restrict our language to that of
bidirected graphs, recognizing that these are equivalent to biedged graphs.

Acyclic bidirected graphs are structurally equivalent to directed graphs in
that

Lemma 1. If G is a bidirected acyclic graph, there exists an isomorphic directed
acyclic graph D(G).

Proof. See [9].

3.2 Bubbles, Superbubbles, Ultrabubbles and Snarls

The first use of local graph structure to identify variation was the detection
of bubbles [13] in order to detect and remove sequencing errors from assembly
graphs. Their bubble is the graph motif consisting of two paths which share a
source and a sink but are disjoint between.

The general concept of bubbles was extended by Onodera et al., who defined
superbubbles in directed graphs [8]. Brankovic demonstrates an O(|V | + |E|)
algorithm to identify them [3], building off work of Sung [11].

We restate the Onodera definition, modified slightly as to be subgraph-centric
rather than boundary-centric: A subgraph S ⊆ G of a directed graph is a super-
bubble with boundaries (s, t) if
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1. (reachability) t is reachable from s by a directed path in S
2. (matching) the set of vertices reachable from s without passing through t is

equal to the set of vertices from which t is reachable without passing through
s, and both are equal to S

3. (acyclicity) S is acyclic
4. (minimality) there exists no t′ ∈ S such that boundaries (s, t′) fulfil 1, 2 and

3. There exists no s′ ∈ S such that (s′, t) fulfil 1, 2 and 3.

To motivate our definition of a superbubble equivalent on bidirected graphs,
we prove some consequences of the matching property.

Proposition 2. Let S ⊆ G be a subgraph of a directed graph. If S possesses the
matching property relative to a pair (s, t), then it possesses the following three
properties:

1. (2-node separability) Deletion of all incoming edges of s and all outgoing edges
of t disconnects S from the remainder of the graph.

2. (tiplessness) There exist no node n ∈ S\{s, t} such that n has either only
incoming or outgoing edges.

3. S is weakly connected.

Proof. (matching ⇒ separability) Suppose ∃x /∈ S, y ∈ S\{s, t} such that there
exists either an edge x → y or an edge y → x. Suppose wlog that ∃ an edge
x → y. By matching, there exists a path y → · · · → t without passing through s.
We can then construct the path x → y → · · · → t which does not pass through s.
But by matching this implies that x ∈ S, which leads to a contradiction.

The converse need not be true on directed graphs1. We define two structures
on bidirected graphs. The first is the ultrabubble, which given Proposition 2,
can be thought of as an analogue to a superbubble. The second, the snarl, is
a more general object which preserves the property of 2-node separability from
the larger graph without having strong guarantees on its internal structure. The
following definitions are due to Paten [9]:

A connected subgraph S ⊆ G of a bidirected graph G is a snarl (S, s, t) with
boundaries (s, t), if

1. s �= t̂
2. (2-node separability) every path between a pair of node-sides in x ∈ S, y ∈

G\S contains either s → ŝ or t → t̂ as a subpath.
3. (minimality) there exists no t′ ∈ S such that boundaries (s, t′) fulfil 1 and 2.

There exists no s′ ∈ S such that (s′, t) fulfil 1 and 2

The class of ultrabubbles is the subclass of snarls (S, s, t) furthermore fulfilling

4. S is acyclic
5. S contains no tips — vertices having one node-side involved in no edges

Three examples of ultrabubbles are shown below (Fig. 6).
1 It is on bidirected graphs.
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Fig. 6. Three ultrabubbles, boundaries colored blue, pink and green. These illustrate
the non-overlapping property (Color figure online)

The following is important property of snarls.

Proposition 3 (Non-overlapping property). If two distinct snarls share a
vertex (node-side pair) then either they share a boundary node or one snarl is
included in the other’s interior.

Proof. Let S be a snarl with boundaries s, t. Let T be another snarl, with bound-
aries u, v. Suppose that u ∈ S\{s, t} but v /∈ S, and s /∈ T .

Consider the set S ∩ T . It is nonempty since it contains u. Let x ∈ S ∩ T .
Let y /∈ S ∩ T . Suppose that there exists a path p = x ↔ · · · ↔ y which neither
passes through u nor t.

Since y /∈ S∩T , either y /∈ S or y /∈ T . Wlog, assume y /∈ T . Then due to the
separability of T , since the path p does not pass through u, it must pass through v
before leaving T to visit y. But v /∈ S so p must also pass through s before leaving
S to visit v since it does not pass through t. But it must pass through v before
leaving T to visit s, which leads to an impossible sequence of events. Therefore
any path x ↔ · · · ↔ y for x ∈ S ∩ T, y /∈ S ∩ T must pass through either u or t.
This contradicts the minimality of both S and T .

This non-overlapping property is also a nesting property. Observe that, due
to Proposition 3, the relation U ≤ V on snarls U, V defined such that U ≤ V if
U is entirely contained in V has the property that if U ≤ V and U ≤ W , then
either V ≤ W or W ≤ V . Therefore the partial order on the snarls of G defined
by the relation ≤ will always be equivalent to a tree diagram. A bottom level
snarl is one which forms a leaf node of this tree.

Fig. 7. The nesting tree diagram of the ultrabubbles from the previous figure. U1 and
U3 are bottom-level

The equivalent of Proposition 3 for superbubbles was stated without proof
by Onodera in [8]. Our proof also constitutes a proof of the statement for super-
bubbles, due to the following proposition, proven by Paten in [9]:
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Proposition 4. Every superbubble in a directed graph corresponds to an ultra-
bubble in the equivalent (see Lemma 1) bidirected graph.

Identifying all superbubbles in a directed graph or all snarls in a bidirected
graph introduces a method of compartmentalizing a graph into partitions whose
contents are all in some sense at the same position in the graph, and for which the
possible internal paths are independent of what path they continue on beyond
their boundaries. We will use this concept to define sites for certain specialized
classes of graphs.

4 Graphs Which Are Decomposable into Nested Simple
Sites

We will extend the theory of ultrabubbles to a theory of nested sites where the
structure of certain graphs can be fully described in terms of combinations of
linear ordering and ultrabubble nesting relationships. This is important for

1. Identifying nested variation
2. Indexing traversals.

4.1 Traversals and Subpaths

An (s, t)-traversal of S is a path in S beginning with s and ending with t.
An (s, s)-traversal and a (t, t)-traversal are analogously defined. Presence of an
(s, s)- or (t, t)-traversal implies cyclicity. Two traversals of a snarl are disjoint if
they are disjoint on S\{s, t}.

Paten’s [9] snarls and ultrabubbles are 2-node separable subgraphs whose
paired boundary nodes isolate their traversals from the larger graph. We can
state this with more mathematical rigor:

Claim. Consider a snarl (S, s, t) in a bidirected graph G. The set of all paths in
G which contain a single (s, t)-traversal as contiguous a subpath is isomorphic
to the set-theoretic product P (s) × Trav(s, t) × P (t) consisting of the three sets

1. P (s) := {paths in G\S terminating in ŝ}
2. Trav(s, t) := {(s, t)-traversals of S}
3. P (t) := {paths in G\S beginning with t̂}
The isomorphism is the function mapping p1 ∈ P (s), p2 ∈ Trav(s, t), p3 ∈ P (t)
to their concatenation p1p2p3.

This property is important because it allows us to express the set of all
haplotypes traversing a given linear sequence of snarls in terms of combinations
of alleles for which we do not need to check if certain combinations are valid.
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4.2 Simple Bubbles and Nested Simple Bubbles

Definition 5. An ultrabubble (S, s, t) is a simple bubble if all (s, t)-traversals
are disjoint.

Simple bubbles are structurally equivalent to (multiallelic) sites consisting of
disjoint substitutions, insertions or deletions, with all alleles spanning the same
boundaries (Fig. 8).

Fig. 8. Three examples of simple bubbles from the 1000 Genomes graph

Proposition 7 below demonstrates that we can identify simple bubbles in
O(|V |) time given that we have found all snarl boundaries. Paten has shown [9]
that identification of snarl boundaries is achieved in O(|E| + |V |) time. To find
the ultrabubbles among these, note that checking for acyclicity is O(|E| + |V |)
on account of the unbranching nature of these snarls’ interiors.

Given a node-side n, write Nb(n) for the set of all neighbors of n. Note that
a ∈ Nb(b) ⇔ b ∈ Nb(a).

Lemma 6 (Nodes in an ultrabubble are orientable with respect to
the ultrabubble boundaries). Given an ultrabubble (S, s, t) and given n ∈
S\{s, t}, consider the set T of all (s, t)-traversals of S passing through n. Then
either

1. ∀p ∈ T , an element of Nb(n) precedes n in p
2. ∀p ∈ T , an element of Nb(n) follows n in p

In the former case we call n s-sided, otherwise we call it t-sided.

Proof. This is a corollary to Lemma 1.

Proposition 7 (Simple bubbles have unbranching interiors). Let (S, s, t)
be an ultrabubble. Then all traversals are disjoint iff every interior node-side has
precisely one neighbor.

Proof. (⇒) Suppose that all (s, t)-traversals of S are disjoint. Suppose ∃ a node-
side n ∈ S\{s, t} with multiple neighbors.

Since n is orientable with respect to (s, t), suppose, without loss of generality,
that it is s-sided. Then there exist distinct paths from s to n passing through
each of its neighbors. Continuing these with a path from nopp to t produces two
nondisjoint traversals of S.
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(⇐) Suppose that every interior node-side has precisely one neighbor. Suppose
that there exist two distinct nondisjoint traversals of S. For no node-side to
have multiple neighbors, they must coincide at every node-side, contradicting the
assumption that they are not the same traversal.

We seek to extend this simple property to more complex graph structures.
We will take advantage of the nesting of nondisjoint ultrabubbles proven in
Proposition 3 to define another structure in which nondisjoint traversals are
easily indexed.

Definition 8. An ultrabubble (S, s, t) ⊆ G is decomposable into nested simple
sites if either:

1. S is a simple bubble
2. if, for every ultrabubble S′ contained in the interior of S, you replace the

ultrabubble with a single edge s − t whenever S′ is decomposable into simple
sites, then S becomes a simple bubble

The following figure demonstrates decomposability into nested simple sites.

Proposition 9. If an ultrabubble (U, s, t) is decomposable into nested simple
sites, then the complete node sequence of any (s, t)-traversal can be determined
only by specifying the path it takes inside those nested ultrabubbles within which
the traversal does not visit any further nested ultrabubble.

Proof. Let p be a (s, t)-traversal of an ultrabubble U which is decomposable into
nested simple sites. Let V be a nested ultrabubble inside U . If p traverses, V ,
write p|V for the traversal p restricted to V (Fig. 9).

Suppose that t|V intersects no nested ultrabubbles within V . Then t|V is dis-
joint of all other traversals within V due to U begin decomposable into nested
simple sites. Therefore specifying any node of t|V uniquely identifies it.

Suppose that t|V intersects some set of ultrabubbles nested within V . Since
U is decomposable into nested simple sites, the nodes of t|V must be linear and
disjoint of all other paths if we replace all ultrabubbles nested in V with edges
joining their boundaries. Therefore specifying which ultrabubbles are crossed
uniquely determines the nodes included in t|V which lie outside of the nested
ultrabubbles in V .

Fig. 9. Left: A nesting of four ultrabubbles. Right: The tree structure to index
traversals of U implied by Proposition 9
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The statement of the proposition follows from the two arguments above by
induction.

Proposition 10. An ultrabubble is decomposable into nested simple sites iff
every node side is either the interior ultrabubble boundary or has precisely one
neighbor.

Proof. This can be established using Proposition 7.

This property allows O(|V | + |E|) evaluation of whether a graph is decom-
posable into nested simple sites, by arguments analogous to those for simple
bubbles.

4.3 A Partial Taxonomy of Graph Notifs Which Do Not Admit
Decomposition into Sites

In Sect. 4.3, we will show that we can decompose a graph into nested simple
sites as defined in the previous section if it lacks a certain forbidden motif. We
will begin with examples of three graph motifs, and the biological events which
might produce them.

We describe some graph features which prevent decomposition into nested
sites below, and the sets of mutations which might have produced them.

1. Two (or more) substitutions or deletions against a linear sequence which
overlap, but not completely (Fig. 10).

2. A substitution (or deletion) which spans elements of sequence on the interior
of two disjoint ultrabubbles. Addition of such an edge joining two ultrabubbles
which were decomposable into nested simple sites will consolidate the two
into a single ultrabubble which is not decomposable into nested simple sites
(Fig. 11).

3. Two SNVs or other simple elements of variation at adjacent positions. This
will be the focus of our Sect. 5.

Fig. 10. Overlapping substitutions (or deletions)

Fig. 11. An edge crossing bubble boundaries.
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4.4 The Relationship Between Nested Simple Sites and Series
Parallel Graphs

The structure of ultrabubbles decomposable into nested simple sites, and their
tree representation (see Fig. 7) might be familiar to the graph theorist familiar
with series-parallel digraphs. The fact that the digraphs equivalent to ultrabub-
bles form a subclass of the two-terminal series-parallel digraphs is interesting
due to the computational properties of the latter class of graphs.

Definition 11. A directed graph G is two-terminal series parallel (TTSP) with
source s and sink t if either

1. G is the two-element graph with a single directed edge s → t
2. There exist TTSP graphs G1, G2 with sources s1, s2 and sinks t1, t2 such that

G is formed from G1, G2 by identification of s1 with s2 as s and identification
of t1 with t2 as t (Parallel addition)

3. There exist TTSP graphs G1, G2 with sources s1, s2 and sinks t1, t2 such that
G is formed from G1, G2 by identification of t1 with s2 (Series addition)
(Fig. 12).

Fig. 12. Top: parallel addition. Bottom: series addition

Two terminal series parallel digraphs have a useful forbidden subgraph char-
acterization.

Proposition 12 (From [12]). A directed graph G is two terminal series parallel
if and only if it contains no subgraph homeomorphic to the graph W shown below
Proof: Refer to Valdes [12] and Duffin [5] (Fig. 13).

Fig. 13. The W motif

Proposition 13. If an ultrabubble (U, s, t) is decomposable into nested simple
sites, then the equivalent directed graph is TTSP with source s and sink t.

Proof. Suppose that the directed graph D(U) equivalent to U (which exists by
Lemma 1) contains a subgraph homeomorphic to W . Then there must be a node-
side u in U with two neighbours a1, a2 which are the beginnings of disjoint paths
p1, p2 ending on node-sides b1, b2 which are neighbours of a node-side v. By
Proposition 10, u and v must be ultrabubble boundaries. Since p1, p2 are disjoint,
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u and v must be opposing boundaries of the same ultrabubble. But the presence
of a subgraph homeomorphic to W also implies that there exists a pair q1, q2
of disjoint paths, one from a node x to û and the other from x to v, both not
passing through u or v̂. But this is not possible since it would contradict 2-node
separability of (u, v).

We highlight the middle “Z-arm” of the W -motif in our first two examples
of ultrabubbles which are not decomposable into nested simple sites.

Fig. 14. Portions of the ultrabubbles 1 and 2 of Sect. 4.2, showing the nodes which
project to the forbidden subgraph W

5 Abutting Variants

We wish to decompose the graph structure of sets of variants lying at adja-
cent positions such that there is no conserved sequence between them able to
form an ultrabubble boundary. We will define a graph motif called the balanced
recombination bundle which corresponds this graph structure, and can be rapidly
detected.

We observe examples abutting single nucleotide variants (SNVs) in the 1000
Genomes polymorphism data Fig. 15. It is a reasonable hypothesis that these
should become more common as the population sizes of sequencing datasets
increases, since, statistically, the distribution of variation across the genome
should grow less sparse as the population increases.

Fig. 15. Two examples of abutting SNVs in the 1000 Genomes graph

5.1 Bundles

Definition 14. An internal chain n1 → n2 → · · · → nk is a sequence of node-
sides such that ∀i, 2 ≤ i ≤ k, ni ∈ Nb(ni−1).

Definition 15. We say that a tuple (L,R) of sets of node-sides is a bundle if
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1. (Matching) ∀� ∈ L,Nb(�) ⊆ R and Nb(�) �= ∅; ∀r ∈ R,Nb(r) ⊆ L and
Nb(r) �= ∅

2. (Connectedness) ∀� ∈ L, r ∈ R, there exists an internal chain � → r1 → �1 →
· · · → rk → �k → r such that ∀i, 1 ≤ i ≤ k, ri ∈ R and �i ∈ L

Definition 16. We say that a tuple (L,R) of sets of node-sides is a balanced
recombination bundle (R-bundle for short) if

1. (Complete matching) ∀� ∈ L,Nb(�) = R and ∀r ∈ R,Nb(r) = L
2. (Acyclicity) L ∩ R = ∅

Lemma 17. A balanced recombination bundle is a bundle.

Proof. Complete matching ⇒ matching.
Complete matching ⇒ connectedness by the chain � → r for all � ∈ L, r ∈ R.

Definition 18. An unbalanced bundle is a bundle which is not a balanced recom-
bination bundle. An unbalanced bundle is acyclic if L ∩ R = ∅.

Definition 19. We say that two bundles (L1, R1), (L2, R2) are isomorphic if
either L1 = L2 and R1 = R2 or L1 = R2 and R1 = L2.

We will describe a O(|V | + |E|) algorithm to detect and categorize bundles
exhaustively for all node-sides in a bidirected graph. To establish the validity of
this algorithm, we need several preliminary results:

Lemma 20. Every q ∈ N is either a tip or an element of a bundle.

Proof. Suppose that q is not a tip. Define a function W that maps a tuple (L,R)
of nonempty sets of node-sides to a tuple W (L),W (R) where

W (R) := R ∪
⋃

�∈L

Nb(�)

W (L) := L ∪
⋃

r∈W (R)

Nb(r)

∀n ∈ N define

Wn((L,R)) := W ◦ · · · ◦ W ((L,R))︸ ︷︷ ︸
n times

W∞((L,R)) := W k((L,R)) for k such that

W k+i((L,R)) = W k((L,R))∀i ∈ N

W∞ exists since Wn is nondecreasing with respect to set inclusion and our graphs
are finite. Now define W (q) := W∞(({q}, Nb(q))), noting that Nb(q) �= ∅ since
{q} is not a tip. Let us write LW ∞ and RW ∞ for the respective elements of
W (q). We claim that W (q) is a bundle.
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Proof of matching: let � ∈ LW ∞ , r ∈ RW ∞ . By construction of W ,

Nb(�) ⊆ W (RW ∞) = RW ∞

Nb(r) ⊆ W (LW ∞) = LW ∞

Proof of connectedness: let � ∈ LW ∞ , r ∈ RW ∞ . We will show that for any
r ∈ RW ∞ , ∃ an internal chain q → r1 → �1 → · · · → rk → �k → r such that
∀i, 1 ≤ i ≤ k, ri ∈ RW ∞ and �i ∈ LW ∞ .

Suppose that r ∈ Nb(q), then we are done. Otherwise, since r ∈ RW ∞ ,
there exists some minimal n ∈ N such that r ∈ the R-set RWn of some
Wn(({q}, Nb(q))). It is straightforward to see that we can then construct an
internal chain q → r0 → �1 → r1 → . . . �n−1 → r such that ∀i, 1 ≤ i ≤ n−1, ri ∈
RW i , �i ∈ LW i . By an analogous argument, we can do the same for an internal
chain � → · · · → r′ for some r′ ∈ Nb(q). Concatenation of the first chain with
the reverse of the second gives our chain � → · · · → r, proving connectedness.

Proposition 21. If q ∈ L for a bundle (L,R), then (L,R) = W (q).

Proof. Suppose that W (q) �= (L,R). Then either L �= LW ∞ or R �= RW ∞ . First,
suppose the latter. Suppose that ∃r ∈ R such that r /∈ RW ∞ . Since (L,R) is a
bundle, we know that there is an internal chain q → r0 → �1 → r1 → · · · →
rk → �k → r with all ri ∈ R, �i ∈ L. But, using the same shorthand as before, it
is also evident that ri ∈ RW i , �i ∈ LW i ∀i, 1 ≤ i ≤ k. But since �k ∈ Nb(r), we
can deduce that r ∈ RWk+1 , which leads to a contradiction since r /∈ RW ∞ .

Suppose otherwise that ∃r ∈ RW ∞ such that r /∈ R. Consider an internal
chain c = q → r0 → �1 → r1 → · · · → rk → �k → r fulfilling the conditions
needed to prove connectedness of W (q). Note that q ∈ L and by matching r0 ∈
Nb(q). But r /∈ R, which leads to a contradiction since it means that there
must exist two consecutive members somewhere in the chain c which cannot be
neighbors.

We say that a node-side n is involved in a bundle (L,R) if n ∈ L or n ∈ R.

Corollary 22 (To Proposition 21). Every non-tip node-side is involved in
precisely one bundle.

5.2 An Algorithm for Bundle-Finding

The diagram in Fig. 16 demonstrates our algorithm for finding the balanced
recombination bundle containing a query node-side q if it is contained in one,
and discovering that it is not if it is not. The is written in pseudocode below,
with an illustration following.

In order to prove that this is a valid algorithm for detection of balanced
recombination bundles, we need the following lemma.

Lemma 23. Let (L,R) be a tuple of sets of node-sides. If ∃q ∈ L such that
∀a ∈ Nb(q),∀b ∈ Nb(a), Nb(b) ⊆ Nb(q) but Nb(q) ⊂ R, then (L,R) cannot be
connected (in the sense of Definition 15).
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Algorithm 1. Balanced recombination bundle finding
Data: Node-side q
Result: Bundle containing q if it is in a balanced recombination bundle, ∅ if q

is in an unbalanced bundle or is a tip
begin

if Nb(q) = ∅ then return ∅

A ←− Nb(q)
B ←− Nb(R[0])
if A ∩ B �= ∅ then return ∅

else
for a ∈ A\{R[0]} do

if Nb(a) �= B then return ∅

for b ∈ B\{q} do
if Nb(b) �= A then return ∅

return tuple (A,B)

Proof. Let B =
⋃

a∈Nb(q) Nb(a). We know that ∀b ∈ B,Nb(b) ⊆ Nb(q). Suppose
that (L,R) is connected. Choose r ∈ R\Nb(q). Then ∃ an internal chain c =
q → r1 → �1 → · · · → rk → �k → r with ri ∈ R, �i ∈ L∀i. Since q ∈ B,
Nb(b) ⊆ Nb(q)∀b ∈ B, and Nb(a) ⊆ B ∀a ∈ Nb(q), it is impossible that the
sequence of node-sides c is both a valid internal chain and ends with r. Therefore
(L,R) cannot be connected.

Proposition 24 (Validity of Algorithm1). This algorithm detects all bal-
anced recombination bundles, and rejects all unbalanced recombination bundles.

Proof. Suppose q is involved in a balanced recombination bundle (L,R). W.l.o.g.
suppose that q ∈ L. Due to the complete matching property, the set Nb(q) in the
algorithm is guaranteed to be equal to R. Due to the completeness property, the
set Nb(R[0]) in the algorithm is guaranteed to be equal to L. It is evident that
the algorithm directly verifies complete matching and acyclicity.

Suppose otherwise. Assuming we have eliminated all tips, which can be done
in O(|V |) time, Lemma 20 proves that q is involved in an unbalanced bundle B.
If B fails acyclicity but not complete matching, then checking that A ∩ B = ∅

will correctly detect that L ∩ R �= ∅.
Otherwise, suppose that B fails complete matching. Suppose first that

Nb(q) ⊂ R. We assert that ∃a ∈ Nb(q) such that ∃b ∈ Nb(a) such that
∃c ∈ Nb(b) such that c /∈ Nb(q). This event will be detected by the second loop
of the algorithm. This follows from the connectedness of B and Lemma 23.

Suppose otherwise that Nb(q) = R but ∃r ∈ R such that Nb(r) ⊂ L. Let
c ∈ L\Nb(r). By matching, ∃r′ ∈ R such that r′ ∈ Nb(c). Therefore Nb(r) and
Nb(r′) will be found to be unequal in the first loop of the algorithm.

Suppose otherwise that Nb(q) = R, Nb(r) = L∀r ∈ R, but ∃� ∈ L such that
Nb(�) ⊂ R. Then we will find in the second loop that Nb(�) �= Nb(q).
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Fig. 16. Illustration of Algorithm 1 returning a positive result

Proposition 25 (Speed of Algorithm 1). We can identify all balanced
recombination bundles, all unbalanced bundles and all tips in O(|E| + |V |) time
(Fig. 16).

Proof. We depend on a neighbor index giving us O(|Nb(n)|) iteration across
neighbors of a node-side n.

We begin by looping over all node-sides and identifying all tips, which is
achieved in O(|V |) time. We then loop again over all remaining node-sides. At
each node-side q, we run the function describe above, which, if q is involved in
a balanced recombination bundle, will return the bundle B = W (q). It is evident
that this function runs in O(|EB |) time, seeing as it loops over each edge of
B twice—once from each side—each time making an O(1) set inclusion query.
After B is built, all nodes are marked such that they are skipped when they are
encountered in the global loop. This gives overall O(|EB |+|VB |) exploration of B.

If q is involved in an unbalanced bundle B = W (q), this fact is detected by
the same function in O(|EB |) time. In this case, we can find all nodes of B by
performing a breadth-first search. Examination of the W -function will convince
the reader that a breadth-first search will find all node-sides of B in O(|EB | +
|VB |) time. We follow the same procedure of marking all these node-sides to be
skipped in the global loop.

This proves that, after eliminating tips in O(|V |) time, we can build the
set B of all non-isomorphic bundles B, and decide whether they are balanced
recombination bundles, in time proportional to

∑
B∈B

|EB | + |VB |. But Lemma
20 and Corollary 22 tell us that V = {v : v is a tip} ∪ ⋃

B∈B
VB, and that

all elements of this union of node-sides are disjoint. Furthermore, due to the
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matching property of bundles, E =
⋃

B∈B
EB, and all elements of this union of

edges are disjoint. Therefore, our method is O(|V | + |E|).

5.3 Bundles and Snarl Boundaries

Definition 26. Given a “boundary” node-side b = s or t of a snarl (S, s, t),
we call the tuple (b,Nb(b)) a snarl comb. A snarl comb is called proper if ∀n ∈
Nb(b), Nb(n) = {b} and b /∈ Nb(b).

It is easy to verify that a proper snarl comb is a balanced recombination
bundle. It is also easy to see that an improper snarl comb is, according to set
inclusion of tuples, a proper subset of a unique bundle.

Proposition 27 (Bundles do not cross snarl boundaries). Let (S, s, t) be
a snarl. Suppose that B = (L,R) is a bundle. Then either all node-sides involved
in B are members of S, or no node-side involved in B is a member of S.

Proof. Suppose that there exists a bundle B = (L,R) with node-sides both within
S and not within S. Let x, y be involved in B, with x ∈ S, y /∈ S. W.l.o.g.,
suppose x ∈ L, y ∈ R. This implies that there exists an internal chain p = x →
· · · → y. But then this implies that there exists a ∈ S, b /∈ S such that a ∈ Nb(b),
which would allow us to use the edge a → b to create a path violating the 2-node
separability of S.

5.4 Defining Sites Using Bundles

Definition 28. An ordered pair (B1, B2) of balanced recombination bundles is
compatible if either

1. ∀x ∈ R1, x̂ ∈ L2, and ∀y ∈ L2, ŷ ∈ R1

2. ∃ a bijection f : L1 −→ R2 such that ∀x ∈ R1, there exists a unique path p(x)
from x → · · · → f(x), and all paths p(x) are disjoint.

Definition 29. If two recombination bundles are compatible, we define the set
p(x) to be a bundled simple site P .

Claim. Consider a bundled simple site P in a graph G, lying between compatible
balanced recombination bundles B1, B2. The set of all paths in G which contain
paths p ∈ P as contiguous subpaths is isomorphic to the set-theoretic product
P (L1) × P × P (R2) consisting of the three sets

1. P (L1) := {paths in G\S terminating in x, for some x ∈ L1}
2. P
3. P (R2) := {paths in G\S beginning with y, for some y ∈ R2}
under the function mapping p1 ∈ P (L1), p ∈ P, p2 ∈ P (R2) to their
concatenation.
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We will call a balanced recombination bundle B = (L,R) trivial if both L
and R are singleton sets.

Definition 30. An ultrabubble (U, s, t) is a generalized simple bubble if

1. ({s}, Nb(s)) and (Nb(t), {t}) are balanced recombination bundles
2. The set of all non-trivial balanced recombination bundles admits a linear

ordering X → B1 → . . . Bk → Y such that X and Y are either of ({s}, Nb(s))
and (Nb(t), {t}), X is compatible with B1, every Bi is compatible with Bi+1,
and Bk is compatible with Y .

Definition 31. An ultrabubble U is decomposable into nested generalized sites
if either:

1. It is a generalized simple bubble
2. When each ultrabubble (V, u, v) nested in U which is a decomposable into

nested generalized sites is replaced with a single edge spanning u and v, then
U is a generalized simple bubble (Fig. 17).

Fig. 17. An ultrabubble decomposable into nested generalized sites; some sites marked

We sketch a linear-time method of building sites from a tree diagram of
nested ultrabubbles. We run Algorithms 2 and 3 starting at bottom-level nested
ultrabubbles. If ultrabubble has all nontrivial balanced recombination bundles
paired, then, when we evaluate the ultrabubble containing it, we represent it as
a single edge from its source to sink.

In Algorithm 3, which follows below, we refer to the individual sets of node-
sides forming the tuples (L,R) of a bundle as bundle-sides.

5.5 Bundles Containing Deletions

Our bundles—and therefore our sites—fail to detect the graph motifs formed by
deletions spanning otherwise well-behaved variants. We define a special, well-
behaved subclass of unbalanced bundle to address this (Fig. 18).

Definition 32. A deletion bundle-pair is a tuple (LA, RA, LB , RB) such that

1. ∀� ∈ LA,∀r ∈ RA, {�, r} ∈ E
2. ∀� ∈ LA,∀r ∈ RB , {�, r} ∈ E
3. ∀� ∈ LB ,∀r ∈ RB , {�, r} ∈ E
4. ∃ no other edge involving any node-side n ∈ LA, LB , RA or RB.
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Algorithm 2. Finding spans connecting bundles
Data: Ultrabubble U , and set B of balanced recombination bundles
Result: Set P of spans of unbranching sequence in U
begin

T ←− vector of all trivial bundles in B

NT ←− map (N → T) of node-sides to trivial bundles which contain them
for each trivial bundle t = ({tl}, {tr}) ∈ T do

if NT[t̂r] is found then
({ul}, {ur}) ←− NT[t̂r]
replace ({ul}, {ur}) in T with ({tl}, {ur})
flag ({tl}, {tr}) as having been right-extended

P ←− ∅

for t = ({tl}, {tr}) ∈ T do
if t not flagged as having been right-extended then P ←− P ∪ {t}

return P

Algorithm 3. Finding compatible bundles
Data: Ultrabubble U , set P of node-side tuples containing endpoints of

spanning segments, and set B of balanced recombination bundles
Result: Set C of all compatible pairs of bundle-sides
begin

NP ←− map (N → P) of node-sides of p ∈ P to elements of P

NB ←− map (N → B) of node-sides to bundles-sides of nontrivial R-bundles
C ←− ∅

for R-bundle side X ∈ B do
x ←− X[0]
R-bundle side Xopposite ←− ∅, Y ←− ∅

if x̂ found in NB then
Xopposite ←− NB[x̂]
Y ←− {x̂}

else if x̂ found in NP then
y ←− node-side of NP[x̂] which isn’t x̂
Xopposite ←− NB[ŷ]
Y ←− {ŷ}

if Xopposite �= ∅ and |Xopposite| = |X| then
for a ∈ X\x do

if x̂ found in NB then Y ←− Y ∪ {x̂}
else if x̂ found in NP then

y ←− node-side of NP[x̂] which isn’t x̂
Y ←− Y ∪ {ŷ}

if Y = Xopposite then
C ←− C ∪ {(X,Xopposite)}

return C
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Fig. 18. Two examples of deletion bundle-pairs

These structures occur when two balanced recombination bundles on either
side of some span of graph are bridged by deletions. It remains necessary to
check that there is graph structure joining the nodes of RA to LB for this to be
the case.

Algorithm 4 below will detect deletion bundle pairs from among the set of
unbalanced bundles in linear time.

Proposition 33. Given a set of acyclic unbalanced bundles, this algorithm finds
those among then which are deletion bundle pairs.

Proof. Suppose that q is involved in a deletion bundle pair (LA, RA, LB , RB).
W.l.o.g, either q ∈ LA or q ∈ LB.

Suppose first that q ∈ LB: In this case, Nb(q) = RB. We then know that
∀a ∈ RB, Nb(a) = LA∪LB. This will trigger the condition L2 = ∅. The elements
of a ∈ L1 will segregate into precisely two groups: one such that Nb(a) = RB—
the elements a ∈ LB, and another group such that Nb(a) = RA ∪ RB—the
elements a ∈ LA. If these conditions are fulfilled, we then build RA and RB. It
remains to verify that ∀b ∈ RA, Nb(b) = LA, and ∀b ∈ RB , Nb(b) = LA ∪ LB.

Suppose otherwise that q ∈ LA: In this case, Nb(q) = RA ∪ RB. This will
trigger the condition L2 �= ∅ since the elements b ∈ Nb(q) will segregate into
two groups: RA, where if b ∈ RA, Nb(b) = LA and RB, where if b ∈ RB, Nb(b) =
LA∪LB. If this condition is met, then it remains to check that ∀a ∈ LA, Nb(a) =
RA ∪ RB and ∀a ∈ LB , Nb(a) = RB.

Suppose otherwise that q is not involved in a deletion bundle pair. Suppose
that Algorithm 4 does not fail, returning ∅. There are two possibilities then for
the nature of the unbalanced bundle (L,R) for which q ∈ L.

First, suppose the condition L2 = ∅ was triggered. The ∃q ∈ L such that,
where L′ := {l ∈ L | l ∈ Nb(a) for some a ∈ Nb(q)}, Nb(�) ⊆ Nb(q) ∀� ∈ L′.
Then by Lemma 23, Nb(�) ≥ Nb(q)∀� ∈ L. Therefore it must be that Nb(q) = R.
Furthermore, to pass the search for RA, there must ∃RA such that if � ∈ L
and Nb(�) �= R, then Nb(�) = RA. Furthermore, to pass the conditions of the
subsequent two loops, it must be that ∀r ∈ R\RA, all Nb(r) are the same, and
∀r′ ∈ RA, all Nb(r′) are the same. Furthermore, to pass the last condition
checked, must be that Nb(r′) from the latter group ⊂ Nb(r). And since LA :=
{� ∈ L | Nb(�) = R} and LB := {� ∈ L | Nb(�) = RB} are such that LA ∩ LB =
∅, LA ∪ LB = L, these conditions all together ensure that (L,R) is a deletion
bundle pair.

Otherwise, Nb(q) segregates into two disjoint subsets RA := {r ∈
Nb(q) | Nb(r) = LA}, RB := {r ∈ Nb(q) | Nb(r) = LA ∪ LB for some
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Algorithm 4. Deletion bundle pair finding
Data: Node-side q known to be in an acyclic unbalanced bundle
Result: Deletion bundle-pair containing q if it is in a deletion bundle-pair, ∅

otherwise
begin

LA, RA, LB , RB ←− ∅

Rtemp ←− Nb(q)
L1 ←− Nb(Rtemp[0]), L2 ←− ∅

for a ∈ Rtemp\{Rtemp[0]} do
if Nb(a) �= L1 then

if L2 = ∅ then L2 ←− Nb(a)
else if Nb(a) �= L2 then return ∅

if L2 �= ∅ then
if L2 ⊂ L1 then LA ←− L2, and LB ←− L1\L2

else if L1 ⊂ L2 then LA ←− L1, and LB ←− L2\L1

else return ∅

Rtemp ←− Nb(LB [0])
for a ∈ LB\{LB [0]} do

if Nb(a) �= Rtemp then return ∅

Rtemp ←− Nb(LA[0])
for a ∈ LA\{LA[0]} do

if Nb(a) �= Rtemp then return ∅

if Nb(LB [0]) ⊂ Nb(LA[0]) then
RB ←− Nb(LB [0])
RA ←− Nb(LA[0])\Nb(LB [0])

else return ∅

else
RB ←− Nb(q)
for a ∈ L1\{q} do

if Nb(a) �= RB then
if RA = ∅ then

if RB �⊂ Nb(a) then return ∅

else RA ←− Nb(a)\RB

else if Nb(a) �= RA ∪ RB then return ∅

if RA = ∅ then return ∅

LA ←− Nb(RA[0])
for a ∈ RA\RA[0] do

if Nb(a) �= LA then return ∅

Ltemp ←− Nb(RB [0])
for a ∈ RB\RB [0] do

if Nb(a) �= Ltemp then return ∅

if LA ⊂ Ltemp then LB ←− Ltemp\LA

else return ∅

return tuple (LA, RA, LB , RB)
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LA, LB ⊂ L such that LA ∩ LB = ∅. To pass further conditions, it is neces-
sary that ∀� ∈ LB , Nb(�) = RB and ∀� ∈ LA, Nb(�) = RA ∪ RB. It remains to
show that LA ∪ LB = L and RA ∪ RB = R, these can be proven by application
of Lemma 23. Therefore in this case, it must also be that (L,R) is a deletion
bundle pair.

Proposition 34. This algorithm finds deletion bundles in O(|E| + |V |) time.

Proof. Note that a deletion bundle-pair is a special type of unbalanced bundle.
Therefore, if, given an unbalanced bundle B, we can check whether it is a deletion
bundle-pair in O(|EB | + |VB |) time, by the arguments of Proposition 21, we can
find all deletion bundle-pairs in O(|E| + |V |) time.

Inspection of the algorithm shows that, like the algorithm for identifying bal-
anced recombination bundles, it performs two O(1) set-inclusion queries per edge,
making it O(|EB |) overall.

6 Discussion

Graph formalism has the potential to revolutionize the discourse on genetic vari-
ations by creating a model and lexicon that more fully embraces the complexity
of sequence change. This is vital: the current linear genome model of a reference
sequence interval and alternates is insufficient. It fails to express nested variation
and can not properly describe information about the breakpoints that comprise
structural variations.

The introduction, in order, of bubbles, superbubbles, ultrabubbles and snarls
progressively generalizes the concept of a genetic site to accommodate more gen-
eral types of variation using progressively more general graph types. In this paper
we both review and build on these developments, showing how the recently intro-
duced ultrabubbles can be furthered sub-classified using concepts from circuit
theory. This expands the simple notion of proper nesting described in the original
ultrabubble paper. Furthermore, we describe how we can extend the theory of
ultrabubbles by generalizing ultrabubble boundaries to another sort of boundary
structure—the bundle—which allows us to describe regions where variants are
packed too closely to be segregated into separate ultrabubbles.

Our methods are powerful in decomposing dense collections of nested or
closely packed variation into meaningful genetic sites. We anticipate that these
structures will become increasingly common in the analysis of variation using
graph methods, as sequencing datasets containing variation from increasing num-
bers of individuals become available.
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