
Parallel Biological Sequence Comparison
in Linear Space with Multiple Adjustable Bands

Gabriel H.G. Silva, Edans F.O. Sandes, George Teodoro,
and Alba C.M.A. Melo(B)

Department of Computer Science, University of Brasilia (UnB), Brasilia, Brazil
alves@unb.br

Abstract. In this paper, we propose and evaluate Fickett-MM, a par-
allel strategy that combines the algorithms Fickett and Myers-Miller,
splitting a pairwise sequence comparison into multiple comparisons of
subsequences and calculating an appropriate Fickett band to each sub-
sequence comparison (block). With this approach, we potentially reduce
the number of cells calculated in the dynamic programming matrix when
compared to Fickett, which uses a unique band to the whole compari-
son. Our adjustable multi-block strategy was integrated to the stage 4 of
CUDAlign, a state-of-the-art parallel tool for optimal biological sequence
comparison. Fickett-MM was used to compare real DNA sequences whose
sizes ranged from 10KBP (Thousands of Base Pairs) to 47MBP (Millions
of Base Pairs), reaching a speedup of 59.60× in the 10MBP× 10MBP
comparison when compared to CUDAlign stage 4.

Keywords: Parallel biological sequence comparison · Multiple
adjustable bands

1 Introduction

Pairwise biological sequence comparison is a widely used operation in Bioinfor-
matics. It produces as output a score, which represents the similarity between
the sequences, and an alignment [1]. The optimal global alignment with linear
gap can be obtained with the Needleman-Wunsh (NW) algorithm [9], which is
based on dynamic programming (DP) and has O(mn) time and space complex-
ity, where m and n are the lengths of the sequences. Smith-Waterman (SW) [14]
proposed a DP-based algorithm that computes optimal local alignments with
linear gap with the same time and space complexity.

Gotoh [3] modified the NW algorithm, calculating optimal alignments with
the affine gap model. Since gaps tend to occur together in nature, the affine
gap model is more appropriate for realistic scenarios. Hirschberg [4] proposed a
variant of the NW algorithm that retrieves optimal alignments in linear space
(O(m + n)) with linear gap. This variant was further modified by Myers-Miller
(MM) [8] in order to use the affine gap model. Fickett [2] proposed an algorithm
that retrieves the optimal global alignment by calculating only a k-band of the
c© Springer International Publishing AG 2017
D. Figueiredo et al. (Eds.): AlCoB 2017, LNBI 10252, pp. 167–179, 2017.
DOI: 10.1007/978-3-319-58163-7 12

168 G.H.G. Silva et al.

DP matrix near the main diagonal, where k is the number of diagonals computed,
executing thus in O(kn) time and space. If the alignment does not fall into the
k-band, the band is enlarged and the DP matrix is iteratively re-computed until
the alignment can be retrieved.

The use of the NW and SW algorithms and its variants to compare long DNA
sequences or a protein sequence to a huge genomic database can lead to very
high execution times and, for this reason, parallel solutions are usually employed.
In the literature, there are many proposals that execute NW or SW variants in
parallel architectures such as clusters [7,12], FPGAs (Field Programmable Gate
Arrays) [13,16], GPUs (Graphics Processing Units) [6,10] and Intel Xeon Phis
[5,15], among others. CUDAlign 4.0 [10] is a state-of-the-art tool which computes
optimal local alignments between long DNA sequences in linear space using 5
stages. Stage 1 executes phase 1 of the Gotoh algorithm (score calculation) with
affine-gap and stages 2 to 5 execute phase 2 (traceback), with an adapted version
of the MM algorithm.

In this paper, we propose and evaluate Fickett-MM, a parallel strategy which
combines MM with a variant of Fickett’s [2]. Unlike the original Fickett algo-
rithm, we divided the alignment problem into several parts and computed a
different k-band for each part of the problem, which is adjusted to its alignment
characteristics. Fickett-MM was implemented in C++/pthreads and integrated
to the stage 4 of CUDAlign. The results obtained with real DNA sequences
whose sizes varied from 10 KBP to 47 MBP show that our strategy is able to
achieve a speedup of up to 59.60× in stage 4 of CUDAlign, when compared to
the original implementation. In the longest comparison, the execution time of
CUDAlign stage 4 was reduced from 2 min and 54 s to 30 s.

The remainder of this paper is organized as follows. Section 2 presents algo-
rithms for optimal biological sequence alignment and the CUDAlign tool is pre-
sented in Sect. 3. The design of Fickett-MM is explained in Sect. 4. In Sect. 5,
experimental results are discussed and Sect. 6 concludes the paper.

2 Biological Sequence Comparison

2.1 Basic Algorithms - NW and SW

The Needleman-Wunsh (NW) [9] algorithm is based on DP and retrieves the
optimal global alignment in O(mn) space and time, executing in two phases: (a)
calculate the DP matrix and (b) retrieve the alignment (traceback).

The first phase receives sequences S0 and S1, with lengths n and m, and
computes the DP matrix H as follows. The first row and column are filled with
Hi,0 = i ∗ g and H0,j = j ∗ g, where g is the gap penalty and i and j represent
the sizes of the prefixes of the sequences. The remaining cells are calculated with
the recurrence relation expressed by Eq. (1) [9].

Hi,j = max

⎧
⎪⎨

⎪⎩

Hi−1,j−1 + p(i, j)
Hi,j−1 − g

Hi−1,j − g

(1)

Parallel Biological Sequence Comparison in Linear Space 169

* T A G T C

* 0 −2 −4 −6 −8 −10

T −2 1 −1 −3 −5 −7

A −4 −1 2 0 −2 −4

G −6 −3 0 3 1 −1

C −8 −5 −2 1 2 2

T A G T C

T A G − C

(a)

* T A G T C

* 0 0 0 0 0 0

T 0 1 0 0 1 0

A 0 0 2 0 0 0

G 0 0 0 3 1 0

C 0 0 0 1 2 2

T A G

T A G

(b)

Fig. 1. DP matrices and alignments for S0 and S1 (mi = −1, ma = +1, g = −2).
(a) NW matrix; (b) SW matrix.

In this equation, if DNA or RNA sequences are compared, p(i, j) is the match
punctuation (ma), if S0[i] = S1[j], or the mismatch punctuation (mi), otherwise.
If amino acid sequences are compared, p(i, j) is given by a given 20× 20 sub-
stitution matrix [1]. Each cell Hi,j keeps an indication of which cell (Hi−1,j−1),
(Hi,j−1) or (Hi−1,j) was used to produce its value (arrows in Fig. 1). The optimal
score is in cell Hm,n. In order to produce the alignment, phase 2 (traceback) is
executed from the bottom right cell in the DP matrix, following the indications
until the top left cell is attained. Figure 1(a) illustrates the DP matrix calculated
by NW. The optimal score is 2 and the optimal global alignment, obtained in
the traceback phase, is shown below the DP matrix.

When the biologists are interested in calculating how similar the fragments
of the sequences are, local alignment is usually applied and the Smith-Waterman
(SW) algorithm is used. The SW uses DP, has the same complexity of NW and
executes in two phases. Nevertheless, NW and SW are distinct in three ways.
First, differently from NW, the elements of the first row and column of the SW
matrix are set to zero. Second, the SW recurrence relation is slightly different
from the NW recurrence relation since no negative values are allowed in SW
(Eq. (2)) [14]. Finally, the cell that contains the optimal local score is the cell
Hi,j which has the highest value in H. In the traceback phase, SW starts from
cell Hi,j , following the arrows until a cell whose value is zero is found. Figure 1(b)
illustrates the DP matrix calculated by SW. In this figure, the optimal score is
3 and the optimal local alignment is shown below the DP matrix.

Hi,j = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Hi−1,j−1 + p(i, j)
Hi,j−1 − g

Hi−1,j − g

0

(2)

2.2 NW and SW Variants

To produce more biologically relevant results, Gotoh [3] proposed an algo-
rithm that implements the affine-gap model, with two different gap penalties:

170 G.H.G. Silva et al.

one to initiate a sequence of gaps (Gfirst) and another to extend it (Gext).
Gotoh calculates three DP matrices: H, E and F , where H keeps track of
matches/mismatches and E and F keep track of gaps in each sequence (Eqs. 3,
4 and 5).

Hi,j = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0
Ei,j

Fi,j

Hi−1,j−1 − p(i, j)

(3)

Ei,j = max

{
Ei,j−1 − Gext

Hi,j−1 − Gfirst

(4)

Fi,j = max

{
Fi−1,j − Gext

Hi−1,j − Gfirst

(5)

When long sequences are compared, linear space algorithms should be used.
One of the first linear space algorithms for sequence comparison is the one pro-
posed by Hirschberg [4]. First, the DP matrix is calculated from the beginning
to the middle row (i∗), storing only the last row calculated. After that, the DP
matrix is calculated from the end to i∗, over the reverses of the sequences. At
this point, there are two middle rows, one calculated with the original sequences
and another one calculated with the reverses of the sequences. Hirschberg proved
that the position where the addition of the corresponding values in these two
middle rows is maximum belongs to the optimal alignment [4]. This point is
called crosspoint and it divides the problem into two smaller subproblems, which
are processed recursively, until trivial solutions are found. Myers-Miller (MM)
[8] adapted Hirschberg to the Gotoh algorithm by using two additional vectors.
The first and second recursions of the MM algorithm are shown in Fig. 2.

Fig. 2. Myers-Miller (MM) algorithm. The black circles represent the crosspoints.

Fickett [2] proposed an algorithm that can be executed quickly if the
sequences compared are very similar. In this case, the alignment between the
sequences is confined in a small region near the main diagonal of the DP matrix.

Parallel Biological Sequence Comparison in Linear Space 171

Thus, Fickett only calculates and stores a small set of diagonals near the main
diagonal (k-band), with time and space complexity O(kn). The k-band is esti-
mated with a heuristic measurement of the similarity of the sequences. The
optimal score is contained in cell Hn,m and it is used to do the traceback over
the band. If the k-band was underestimated, the alignment cannot be retrieved
(Fig. 3a). In this case, the algorithm enlarges iteratively the k-band and the DP
matrix is calculated for the new k-band, until the whole alignment is obtained
(Fig. 3b).

Fig. 3. Fickett’s algorithm. The gray area represents the k-band.

Although algorithms MM and Fickett have been proposed to the global align-
ment problem, they can be easily adapted to the local alignment case as fol-
lows. First, the DP matrix is processed with SW, giving as output the highest
score. Second, the matrix is recalculated from the position where the optimal
score occurs over the reverses of the sequences until the position where the opti-
mal local alignment begins is found. With these two positions, the problem is
transformed into a global alignment problem and MM or Fickett can be readily
applied.

3 Design of CUDAlign 4.0

CUDAlign [10] is a tool that obtains the optimal local alignment between two
long DNA sequences in GPU, using adapted versions of the Gotoh and MM
algorithms (Sect. 2.2). CUDAlign executes in 5 stages, as shown in Fig. 4.

(a) Stage 1 (b) Stage 2 (c) Stage 3 (d) Stage 4 (e) Stage 5

Fig. 4. General overview of CUDAlign

172 G.H.G. Silva et al.

Stage 1 corresponds to the first phase of the Gotoh algorithm and executes
in GPU in linear space, giving as output the highest score and its position in the
matrix. Stage 1 uses mainly two optimizations. The optimization cells delegation
processes the Gotoh matrices in multiple blocks, in a parallelogram wavefront
shape, allowing maximum parallelism most of the time. The optimization block
pruning, shown in gray in Fig. 4(a), does not compute DP cells which certainly
do not contribute to the optimal alignment. In order to accelerate the further
stages, some rows of the DP matrices (special rows) are stored. Stages 2, 3, 4
and 5 implement phase 2 (traceback).

In stage 2, a variant of MM is used in GPU to retrieve the midpoints that
cross the special rows (crosspoints), which belong to the optimal alignment.
Unlike MM, the special rows contain information about the maximum score and
can be used to accelerate the computation. So, it is sufficient to find the position
in the special row where the addition is equal to the (already known) maximum
score. With this observation, Stage 2 starts from the position in the DP matrix in
which the optimal score occurs and processes over the reverses of the sequences,
calculating the area column by column (instead of row by row, as in the original
MM) and finding midpoints until the beginning of the optimal local alignment
is found. In stage 3, the beginning and end of the optimal local alignment are
received as input. Moreover, the special columns saved to disk in stage 2 are
used. Stage 3 starts from the beginning of the alignment and uses the special
columns to retrieve more crosspoints in GPU.

Stage 4 executes in CPU using a modified MM algorithm between each suc-
cessive pair of crosspoints (partition) found on stage 3, with multiple threads.
The goal of stage 4 is to increase the number of crosspoints until the distance
between any successive pair of crosspoints is smaller than a given limit (e.g.
16 × 16). Figure 4(d) shows the additional crosspoints obtained in stage 4.

Figure 5 presents four ways to process a partition in stage 4, where the gray
areas represent the regions that do not need to be processed after the crosspoint
is found. The conventional MM algorithm processes both halves of the partition
entirely (Fig. 5(a)). CUDAlign 2.0 introduced an optimization called Orthogonal
Execution, which processes the top half of the partition over rows and the bottom
half of the partition over columns (Fig. 5(b)). CUDAlign 4.0 extended this idea
processing both halves of the partition over columns, alternating columns from

(a) Conventional (b) Orthogonal (c) Optimized (d) Ficket-MM

Fig. 5. DP submatrix computed in stage 4. Area in gray are not processed.

Parallel Biological Sequence Comparison in Linear Space 173

each half (Fig. 5(c)). The Ficket-MM algorithm proposed in this paper (Sect. 4)
reduces further the area processed (Fig. 5(d)).

Stage 5 aligns in CPU each partition found in stage 4 using NW. Then it con-
catenates all the results, giving as output the full optimal alignment (Fig. 4(e)).
Stage 6 is an optional stage used only for visualization of the alignment.

4 Design of Fickett-MM

The main goal of Fickett-MM is to reduce the area computed in the alignment
retrieval. In order to achieve this goal, we combine the well-known algorithms
Fickett and MM (Sect. 2.2), creating the notion of adjustable bands. We assume
that, as in MM, the computation is divided into blocks and the scores at the
top left and bottom right corners of a block are known. With this information,
we are able to define computation bands of different sizes, one for each block, in
which the optimal alignment is guaranteed to be found.

(a) Fickett’s band (b) Fickett-MM adjustable bands

Fig. 6. Bands in the Fickett algorithm and in the Fickett-MM algorithm

In Fig. 6, we illustrate the main difference between Fickett-MM and the orig-
inal Fickett algorithm. In Fig. 6(a), Fickett’s band (gray area) must encompass
the whole alignment (dashed line), which has a considerable number of gaps
in its beginning. For this reason, the size of the band is big, even though the
alignment does not have many gaps in its end. On the other hand, Fickett-MM
(Fig. 6(b)) defines three different bands (gray area), one for each block.

The efficiency of Fickett-MM is highly dependent on a good estimation of size
of the computation bands. The scores at the upper left corner (scorel) and at
the bottom-right corner (scorer) are known and a block is the rectangle defined
by these two points.

The size of the band for each block is computed with Eq. 6 and it depends on
four terms: PM , scored, DPM and ming, which are explained in the following
paragraphs.

band =
⌈
PM − scored

DPM

⌉

+ ming (6)

The perfect match term (PM) computes the maximum score of the block
in the best case, i.e., all the corresponding characters of the subsequences are

174 G.H.G. Silva et al.

Fig. 7. Elements used in the perfect match (PM) computation.

the same (perfect match). Since the lengths of the subsequences may not be the
same (Fig. 7), the length of the smaller subsequence is multiplied by the match
punctuation and subtracted by the difference on the lengths of the subsequences
multiplied by the gap penalty. In Eq. 7, ma is the punctuation for matches and
gap is the punctuation for gap extension.

PM = min(mb, nb) ∗ ma − (max(mb, nb) − min(mb, nb)) ∗ |gap| (7)

The difference between scores (scored) in Eq. 6 is simply the difference
between the score at the bottom right corner and the score at the upper left
corner: scored = scorer − scorel.

The deviation from the perfect match (DPM) term takes into account the
fact that each time a gap is introduced, we need at least another gap to return
to the perfect match case, and, since two gaps are introduced, one punctuation
for match (ma) will not be counted. Equation 8 presents this computation.

DPM = |2 ∗ gap| + ma (8)

Finally, the term ming calculates the difference between the sizes of the
subsequences (mb and nb) since it indicates the minimum number of gaps needed
for the band to contain the optimal alignment (Eq. 9).

ming = max(mb, nb) − min(mb, nb) (9)

The size of the band is computed by considering the worst case, i.e., gaps are
introduced instead of mismatches. In addition, since we do not know in which
sequence gaps will be introduced, we apply the same value of band for both sides
of the perfect match case. With this, we guarantee that the band encompasses
the optimal alignment even though in some cases it will be larger than necessary.
In order to illustrate the computation of the size of the band, consider the values
in Fig. 7 and assume that ma = +1, gap = −2. In this case, PM = 7, scored = 3,
DPM = 5 and ming = 1, giving 2 as the size of the band in each side of the
perfect match case (Eq. 6).

Algorithm 1 presents the pseudocode of Fickett-MM. It receives as input the
subsequences S′

0 and S′
1 as well as the scores in the upper left and bottom right

Parallel Biological Sequence Comparison in Linear Space 175

Algorithm 1. Fickett-MM
Require: Subsequences S′

0 e S′
1, Scores scorel and scorer

Ensure: crosspoint
1: /*Calculates the size of the band*/
2: scored ← scorer − scorel
3: k ← calculate band(S′

0, S
′
1, scored)

4: seq1 length ← size(S′
0)

5: j ← 0
6: loop
7: /*Calculates the extremities of the columns inside the band*/
8: upper left ← Calculate FickettMM upper left(j, k)
9: lower left ← Calculate FickettMM lower left(j, k)
10: upper right ← Calculate FickettMM upper right(seq1 length − j, k)
11: lower right ← Calculate FickettMM lower right(seq1 length − j, k)
12: /*Calculates the recurrence equation inside the band*/
13: crosspoint1[j] ← Compute FickettMM(upper left, lower left, S′

0, S
′
1)

14: crosspoint2[j] ← Compute FickettMM(upper right, lower right, S′
0, S

′
1)

15: if j > seq1 length/2 then
16: crosspoint ← crosspoint1[j] + crosspoint2[seq1 length − j]
17: if check(crosspoint, scored) = TRUE then
18: return crosspoint
19: end if
20: crosspoint ← crosspoint2[j] + crosspoint1[seq1 length − j]
21: if check(crosspoint, scored) = TRUE then
22: return crosspoint
23: end if
24: end if
25: j + +
26: end loop

cells (scorel and scorer). The computation of the size of the band is done in
lines 2 and 3 and its value is stored in k. Then, a loop is executed from lines 6
to 26 for every column j as follows. In lines 8 to 11, the algorithm calculates the
extremeties of column j (forward direction) and column seq1 length−j (reverse
direction) up to the middle row. Then, the recurrence equation is calculated
for both columns j and seq1 length − j, as illustrated in Fig. 5(d). The values
of the cells in the middle row are stored in vectors crosspoint1 (line 13) and
crosspoint2 (line 14). When the middle column is attained (line 15), crosspoints
1 and 2 are added accordingly (lines 16 and 20) and the algorithm checks if the
results match scored (i.e. scorer − scorel). If one of these values match (lines 17
and 21), this crosspoint is returned (lines 20 and 24).

5 Experimental Results

Fickett-MM was implemented in C/C++/pthreads and integrated to the stage
4 of CUDAlign 4.0. In our tests, we used a desktop with a CPU Intel Core i7
3770 (4 hardware cores), 8 GB RAM, 1 TB disk and a GPU NVidia GTX 680
(1536 cores and 2 GB RAM).

The following parameters were used in the tests: ma (match) = +1, mi (mis-
match) = −3, Gfirst (First gap) = −5, Gext (Gap extension) = −2, number of
threads = 8 and final size of block = 24 × 24.

The experiments used real DNA sequences, retrieved from the NCBI
(National Center for Biotechnology Information) at www.ncbi.nlm.nih.gov.

www.ncbi.nlm.nih.gov

176 G.H.G. Silva et al.

Table 1. Sequences used in the tests.

Comparison size Sequence S0 Sequence S1

Accession Name Accession Name

10K × 10K AF133821.1 HIV-1 isolate MB2059 AY352275.1 HIV-1 isolate SF33

57K × 57K AF494279.1 C. globosum NC 001715.1 A. macrogynus

162K × 172K NC 000898.1 H. herpesvirus 6B NC 007605.1 H. herpesvirus 4

543K × 536K NC 003064.2 A. fabrum C58 NC 000914.1 Rhizobium sp. NGR234

1M × 1M CP000051.1 C. trachomatis AE002160.2 C. muridarum

3M × 3M BA000035.2 C. efficiens BX927147.1 C. glutamicum

5M × 5M AE016879.1 B. anthracis str. Ames AE017225.1 B. anthracis str. Sterne

7M × 5M NC 005027.1 R. baltica SH AE016879.1 B. anthracis str. Ames

10M × 10M NC 017186.1 A. mediterranei S699 NC 014318.1 A. mediterranei U32

23M × 25M NT 033779.4 D. melanogaster chr. 2L NT 037436.3 D. melanogaster chr. 3L

47M × 32M NC 000021.7 H. sapiens chr. 21 BA000046.3 P. troglodytes chr. 22

Table 2. Execution time, speedup and characteristics of the alignment

Comparison Fickett-MM

(ms)

CUDAlign stage

4 (ms)

Speedup Local score Matches % Mismatches % Gaps %

10K × 10K 98.08 179.62 1.83× 5,091 89.12 9.64 1.24

57K × 57K 0.76 0.80 1.03× 80 92.50 5.00 2.50

162K × 172K 0.83 0.82 0.99× 18 100.00 0.00 0.00

543K × 536K 1.96 2.07 1.06× 48 88.04 11.96 0.00

1M × 1M 1, 403.09 2, 555.49 1.81× 88,535 79.76 17.12 3.12

3M × 3M 109.69 146.61 1.34× 4,226 83.05 10.46 6.49

5M × 5M 510.59 26, 892.05 52.67× 5,220,960 99.95 0.00 0.05

7M × 5M 3.49 4.84 1.39× 172 84.07 12.74 3.19

10M × 10M 898.65 53, 563.24 59.60× 10,235,188 99.99 0.01 0.00

23M × 25M 10.15 182.03 17.93× 9,063 99.88 0.05 0.07

47M × 32M 30, 425.82 174, 147.98 5.72× 27,206,434 94.38 1.54 4.08

Table 1 shows the accession number, the name and approximate size of each
sequence.

Table 2 shows the execution times and speedups comparing Fickett-MM with
CUDAlign stage 4 (optimized version). It can be seen in this table that, as
expected, the best speedups are obtained when the sequences have high similar-
ity, i.e., the local score is close to the size of the smallest sequence (Table 1). For
the 5M × 5M and 10M × 10M comparisons, Fickett-MM executed more than 50
times faster than CUDAlign stage 4.

The comparison 23M × 25M obtained a high speedup (17.93×) even though
the alignment is not so big. This suggests that, besides the similarity between
the sequences, the shape of the alignment has a high influence over the speedups,
as shown in the columns 5 to 8 in Table 2. It can be seen that alignments which
have a high percentage of matches (>99%) have impressive speedups, with the
exception of very small alignments (e.g. 162k× 172k comparison).

Parallel Biological Sequence Comparison in Linear Space 177

Table 3. Number of blocks vs. size of the band

Comparison Band size (%) Number of blocks

0–10 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100

10k× 10k 108 241 116 70 18 10 4 4 2 1 574

57k× 57k 0 2 1 0 0 0 0 0 0 0 3

162k× 172k 0 0 0 0 0 0 0 0 0 0 0

543k× 536k 0 1 2 0 0 0 0 0 0 0 3

1M× 1M 1056 3538 6469 9940 3615 2677 841 357 241 913 29647

3M× 3M 439 179 74 69 60 59 38 58 65 164 1205

5M× 5M 323193 119 28 25 17 8 8 9 9 52 323468

7M× 5M 0 5 14 4 4 2 1 1 0 0 33

10M× 10M 642225 76 6 7 3 6 1 0 3 0 642327

23M× 25M 507 3 1 0 0 0 0 0 0 0 511

47M× 32M 1788870 151556 25926 16259 6943 5670 4212 2724 2734 25079 2029973

A detailed analysis of the alignment’s shapes is presented in Table 3 and
Fig. 8, showing the number of blocks that were processed with a given band
size. The band sizes are given in percentage, calculated as the absolute size of
the band divided by the size of the subsequence. For instance, if the size of the
subsequence is 100 nucleotides and the size of the band is 12, the percentage is
12% and this block is counted in column “10–20%”.

It can be seen that the comparisons in which Fickett-MM achieved impres-
sive speedups (5M × 5M, 10M × 10M and 23M× 25M) only processed less than
10% of their blocks. The comparison 47M× 32M achieved a very good speedup
(5.72×) but not as impressive as the three comparisons previously cited because
of some blocks in which the size of the band is big. The 543K × 536K comparison

Fig. 8. Percentage of block computation for 6 comparisons

178 G.H.G. Silva et al.

is a very interesting case in which the alignment is so small (size = 18) that it
does not fill one entire block.

6 Conclusion

In this paper, we proposed and evaluated Fickett-MM, a strategy that
retrieves the optimal alignment between two biological sequences using multiple
adjustable Fickett bands in linear space. In order to compute the size of each
band, we proposed a formula that uses the best score computed so far in special
rows/columns, guaranteeing that the optimal alignment will be encompassed by
the band. The computation of the adjustable bands was integrated to CUDAlign
stage 4, a modified and parallel version of Myers-Miller, which retrieves optimal
alignments in linear space.

The results obtained with sequence comparisons whose sizes ranged from
10K × 10K to 47M × 32M show that Fickett-MM is able to attain impressive
speedups when the alignment is huge and the sequences are very similar. In the
10M × 10M comparison, the execution time was reduced from 53.5 s to 0.89 s.

As future work, we intend to port Fickett-MM to GPUs (CUDA and
OpenCL). Also, we intend to adapt Fickett-MM to retrieve global and semi-
global alignments, integrating it to the MASA tool [11].

References

1. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge (1999)

2. Fickett, J.W.: Fast optimal alignments. Nucleic Acids Res. 11, 175–179 (1984)
3. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol.

162(3), 705–708 (1982)
4. Hirschberg, D.S.: A linear space algorithm for computing maximal common sub-

sequences. Commun. ACM 18(6), 341–343 (1975)
5. Liu, Y., Tam, T., Lauenroth, F., Schmidt, B.: SWAPHI-LS: Smith-Waterman algo-

rithm on Xeon Phi coprocessors for long DNA sequences. In: IEEE International
Conference on Cluster Computing, pp. 257–265 (2014)

6. Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: accelerating Smith-
Waterman protein database search by coupling CPU and GPU SIMD instructions.
BMC Bioinformatics 14, 117 (2013)

7. Maleki, S., Musuvathi, M., Mytcowicz, T.: Parallelizing dynamic programming
through rank convergence. In: 19th ACM PPoPP, pp. 219–232 (2014)

8. Myers, E.W., Miller, W.: Optimal alignments in linear space. Comput. Appl. Biosci.
4(1), 11–17 (1988)

9. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–
453 (1970)

10. de Oliveira Sandes, E.F., Miranda, G., Martorell, X., Ayguade, E., Teodoro, G.,
de Melo, A.C.M.: CUDAlign 4.0: incremental speculative traceback for exact
chromosome-wide alignment in GPU clusters. IEEE Tran. Parallel Dist. Syst.
27(10), 2838–2850 (2016)

Parallel Biological Sequence Comparison in Linear Space 179

11. de Oliveira Sandes, E.F., Miranda, G., Martorell, X., Ayguade, E., Teodoro, G.,
de Melo, A.C.M.: MASA: a multiplatform architecture for sequence aligners with
block pruning. ACM Trans. Parallel Comput. 2(4), 28 (2016)

12. Rajko, S., Aluru, S.: Space and time optimal parallel sequence alignments. IEEE
Trans. Parallel Distrib. Syst. 15(12), 1070–1081 (2004)

13. Sarkar, S., Kulkarni, G.R., Pande, P.P., Kalyanaraman, A.: Network-on-chip hard-
ware accelerators for biological sequence alignment. IEEE Trans. Comput. 59(1),
29–41 (2010)

14. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147(1), 195–197 (1981)

15. Wang, L., Chan, Y., Duan, X., Lan, H., Meng, X., Liu, W.: XSW: accelerating
biological database search on Xeon Phi. In: IEEE AsHES, pp. 950–957 (2014)

16. Wienbrandt, L.: The FPGA-based high-performance computer RIVYERA for
applications in bioinformatics. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.)
CiE 2014. LNCS, vol. 8493, pp. 383–392. Springer, Cham (2014). doi:10.1007/
978-3-319-08019-2 40

http://dx.doi.org/10.1007/978-3-319-08019-2_40
http://dx.doi.org/10.1007/978-3-319-08019-2_40

	Parallel Biological Sequence Comparison in Linear Space with Multiple Adjustable Bands
	1 Introduction
	2 Biological Sequence Comparison
	2.1 Basic Algorithms - NW and SW
	2.2 NW and SW Variants

	3 Design of CUDAlign 4.0
	4 Design of Fickett-MM
	5 Experimental Results
	6 Conclusion
	References

