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Abstract. We introduce an efficient algorithm for stochastic flux analy-
sis of chemical reaction networks (CRN) that improves our previously
published method for this task. The flux analysis algorithm extends Gille-
spie’s direct method, commonly used for stochastically simulating CRNs
with respect to mass action kinetics. The extension to the direct method
involves only book-keeping constructs, and does not require any labeling
of network species. We provide implementations, and illustrate on exam-
ples that our algorithm for stochastic flux analysis provides a means for
quantifying information flow in CRNs. We conclude our discussion with
a case study of the biochemical mechanism of gemcitabine, a prodrug
widely used for treating various carcinomas.
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1 Introduction

Chemical reaction networks (CRNs) provide a convenient representation scheme
for a broad variety of models in biology and ecology. By resorting to mass action
kinetics, CRNs can be simulated deterministically or stochastically. Stochastic
simulations are commonly performed by using Gillespie’s direct method [5], or
its extensions that address a variety of concerns such as efficiency, e.g., [7],
computation of rare events, e.g., [11], or portability, e.g., [2].

While it is now common practice to use deterministic and stochastic simula-
tions interchangeably for a given CRN as well as hybrid simulations [16], these
methods provide their own merits in different settings. Deterministic simulations
root in a rich theory that makes available various analysis techniques, including
flux analysis [15], as well as efficient numerical methods that also ease practical
tasks such as model fitting by linear regression. However, differential equation
simulations provide only approximations of the changes in population sizes of
CRNs, as random fluctuations cannot be retrieved without introducing an addi-
tional machinery on top of deterministic methods. In this respect, because it
is practically implausible to directly obtain the solution of the chemical mas-
ter equation (CME) [6,13] for a not-extremely-small CRN, stochastic simulation
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algorithms come in handy for computing stochastic trajectories of CRNs. Nev-
ertheless, there are recent efforts that address ways for pushing the envelope by
using linear approximations of CME for stochastic analysis of CRNs [1].

In previous work [10], we have presented a method for stochastic flux analysis
of CRNs that is based on a consideration of stochastic simulations with CRNs as
non-interleaving computations of concurrent systems [8,14]. In this approach, a
simulation is considered as a reduction of a complex structure, that is, the CRN,
into a simpler structure, that is, the simulation trajectory. When a simulation
trajectory is read as a time series, the reaction instances are totally ordered,
because the time stamps of the reaction instances specify a sequential order
on them. However, when the reaction instances are considered from the point
of view of their causal dependencies with respect to their production and con-
sumption relationships with each other, the simulation trajectory takes a partial
order structure rather than a sequential total order structure. In order to retrieve
this otherwise lost information, the algorithm in [10] labels each species instance
with a unique identifier, thereby making it possible to trace each species instance
during the simulation. By tracing these identifiers, the method constructs a par-
tial order structure of species instances. This structure is then used to quantify
the causal interdependence of the reaction instances, and compressed to reveal
the flux graph after a number of graph transformations.

The method described above introduces a departure from the Gillespie’s
direct method, as this algorithm is not designed to trace individual species
instances, but rather monitor the network state as a vector of species types.
Although monitoring each species does not increase the complexity of the
Gillespie algorithm or hamper its correctness, it introduces an overhead due
to the individual representation of species. This overhead effects the simula-
tion efficiency, and extends the simulation time in comparison to the standard
Gillespie algorithm. In some cases with tens of thousands of individuals, it also
introduces a limiting factor for running simulations due to the memory required
to trace individuals.

In the following, we introduce an efficient algorithm for stochastic flux analy-
sis of CRNs in the form of a simple extension of Gillespie’s direct method. In
this algorithm, the fluxes of a CRN are computed during simulation by updat-
ing two arrays, the size of which are bounded by the number of reactions and
species-types of the CRN. Such a mechanism of book-keeping makes it possible
to monitor the network state during simulation in the form of a species-type
vector as in the direct method. Consequently, the algorithm computes the flux
graphs without being subject to an overhead due to monitoring of the species.

As in [10], the flux graph can be extracted for any time interval, in steady or
stationary state, and it provides a causality summary of the network resources,
resulting in a quantification of the information flow in the simulation. We illus-
trate our method on experiments with example networks. We conclude our dis-
cussion with a case study of the biochemical mechanism of gemcitabine, a pro-
drug widely used for treating various carcinomas. The flux graphs of this network
visualize how system dynamics is affected in different metabolic regimes.
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The modules, including a tool for computing flux paths, and the examples
below are available for download at our website.!

2 Stochastic Simulation and Flux Analysis

The stochastic flux analysis of chemical reaction networks [10] is a general
method on discrete event systems that can be represented as Markov chains.
Such systems include those that implement mass action kinetics, which are used
in systems biology for modeling a broad spectrum of phenomenon from those in
molecular biology to large ecosystems. We thus here focus on chemical reaction
networks (CRN) as they are studied in systems biology. Specifically, we use those
that are commonly simulated by the Gillespie algorithm [5], and can be approx-
imated by deterministic ordinary differential equation systems. The methods we
discuss below, however, can be generalized to systems that are represented as
discrete event systems. We first review CRNs, and stochastic flux analysis. We
refer to [10] for the technical definitions and examples that are not included here.
A CRN consists of a set of reactions and an initial state. A reaction
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describes the species Ry, ..., R; that reaction consumes when it occurs, and the
species Py, ..., P. that it produces. The constants my,...,m; and ny,...,n, are
positive integers that denote the multiplicity of the reactants that are consumed
and the products that are produced, respectively, at every instance of such a
reaction. The reaction rate constant p is a positive real number, which deter-
mines how often a reaction occurs in a system, depending on the availability of
the reactants that the reaction consumes. According to the mass action kinetics,
the probability of a reaction’s firing at a particular state instead of another is
proportional with the multiplication of p and the number of possible combina-
tions of reactants at that state. In this respect, the initial state can be safely
considered as a special reaction with infinite rate, which consumes a dummy
species, e.g., Init, which is always present at the beginning of the simulation,
and is immediately consumed to produce the species that are present at time 0.

Gillespie algorithm [5] and its various extensions provide an exact method
for computing the reaction occurrences of CRNs. By using this algorithm, based
on continuous time Markov chains, it is possible to run stochastic simulations.
Such simulations can also be approximated by ordinary differential equations.
However, stochastic simulations can give rise to observations that are other-
wise impossible in a deterministic setting, as stochasticity provides a means for
observing random fluctuations in species numbers. As an example, consider the
CRN in Fig. 1, which is a Lotka-Volterra predator-prey system [12,18].

The algorithm for stochastic flux analysis builds on the Gillespie algorithm in
a way that permits the tracking of individual species as they become consumed
and produced throughout the simulation. By tracking these interactions, the
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Fig. 1. A CRN model of a Lotka-Volterra predator-prey system. X represents a preda-
tor species, and Y represents a prey species. Unlike ordinary differential equation sim-
ulations, stochastic simulations as this one can capture spontaneous extinctions.

algorithm generates a quantitative log of dependencies between instances of reac-
tions. The mechanism for this is realized by assigning a unique integer identifier
to each individual species. The algorithm uses this information to incrementally
construct an edge-colored graph structure by applying graph transformations.
In this graph, the nodes are reactions of the CRN, and the edges are pairs of
species and weights that quantify how many copies of which species flowed from
which reaction to which other reaction, as exemplified in Fig. 2.
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Fig. 2. Besides the time series in Fig. 1, a simulation trajectory as the one on the left
is generated from the CRN during simulation as described in the text. A number of
graph transformations that are applied to this structure deliver the flux graph [10].

n [10], the construction of the flux graphs is realized in a number of steps.
As the first step, each species instance is assigned a unique integer identifier in
the initial state. Through out the simulation, each reaction instance randomly
consumes the species that match its reactants, and are randomly selected from
all the possibilities. The reaction instance then introduces its products to the
current state with fresh integer identifiers. Each simulation step is recorded with
respect to this information in the simulation log, as exemplified in Fig. 2 for the
CRN in Fig. 1. By using the unique identifiers of the species in this structure,
called reaction trajectory, the algorithm constructs a directed acyclic graph (dag)
structure, where the nodes are species instances and the edges are the reaction
instances that modify these edges.
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By further processing this graph, the algorithm in [10] delivers an edge-
labeled directed multi-graph that reveals the independence and causality infor-
mation of the transitions with respect to the flow of specific resources between
reactions. Since a reaction may produce several instances of species, this struc-
ture is in general a multi-graph. This dag, highlights the production-consumption
relationship between reaction instances of the simulation, and this way provides
a causality history of the simulation. Flux graphs, called fluz configurations, are
then obtained by compressing these dags in order to quantify the flow of resources
between the reactions within given time intervals of the simulation. More specif-
ically, the weight of each edge specifies the number of times the species on that
edge flowed from the source to the target reaction of that edge.

In order to enable the recording of the simulation trajectory as described
above, the reactions act on individual instances of species, rather than types
of species as it is the case in the original Gillespie algorithm. Thus, a reac-
tion of the CRN becomes a scheme, similar to a term rewriting rule. Although
this modification does not introduce an increase in the complexity of the
Gillespie algorithm, neither does it hamper its correctness with respect to the
mass action kinetics, it introduces an overhead due to the individual represen-
tation of species. This overhead effects the simulation efficiency, and extends
the simulation time in comparison to the standard Gillespie algorithm. In some
cases with tens of thousands of individuals, it also introduces a limiting factor
for running simulations due to the memory required to trace individuals.

In the following, we introduce an alternative algorithm that directly con-
structs the flux graphs during simulation by a minimal extension of the Gillespie
algorithm, and this way avoids the overhead due to the labeling of the species.

3 Refining the Stochastic Flux Analysis Algorithm

Given a CRN, the Gillepsie algorithm [5], or the SSA, is a Monte Carlo simulation
procedure that faithfully selects the next reaction j and its time 7. Thus, given
a CRN, an initial state, and a t,,44, by using this algorithm a time series s can
be obtained for a time interval 0 < ¢ < t,,42.

Let us consider a CRN with N species {51, ..., Sy}, which interact through
M reactions {Ri, ..., Ryr}. We denote with X(t) = (X1(t),..., Xn(t)) the sys-
tem state vector that represents the population of each S;, whereby the CRN
describes the time evolution of X (t). The occurrence of each reaction R; is
then a discrete random event that changes the system state by v; = p; —r; =
(vlj, ... 7ij). The ith element v;; specifies the change in X; by one R; reaction
event, whereby p;; specifies the products added to the state due to the right-
hand-side of R;, and r;; specifies the reactants removed from the state due to
the left-hand-side of R;. Thus, given the system is in state x = (z1,...,2n), the
system jumps to state x' = x+ v; = X+ Pp; —r; as a consequence of a single R;
reaction event. The time that the next event of reaction R; occurs is governed by
function a;, the propensity function of reaction R;, with ag(x) = Zjle a;(x),
which are updated after each simulation step according to the new state x’.
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The refined algorithm, fSSA, for computing flux configurations of CRN sim-
ulations is a conservative extension of the SSA. The steps of the algorithm that
extend SSA are denoted with ‘(-)’ in Algorithm 1. The flux configuration is
computed by updating two matrices at every simulation step. The algorithm
initializes an (M + 1) x M x N matrix f by setting all its cells to 0 (line 4).
The matrix f delivers the simulation fluxes at the end of the simulation, as it is
updated at every simulation step. The size M + 1 at the first dimension of f is
due to M reactions and an additional reaction for the initial state; the size M at
the second dimension is due to M reactions; the size N at the third dimension
is due to N species. Then, each cell f; ;; denotes the number of species .S; that
flow from R, to R;, and the matrix f is output together with the time series s.

Algorithm 1. fSSA

Input: A CRN with N species and M reactions, initial state xo, and t,,qz-
Output: A time series s and a flux matrix f.

1: t 0
2: X «— Xo
3. s (x0)
4: () y —xo
5: (-) initialize f such that all the cells are 0.
6: (-) initialize m such that mo; is set as in x;, and all others are 0.
7: evaluate all a;(x) and calculate ao(x)
8: while ¢ < t,,4; do
9: T « a sample of exponential random variable with mean 1/ag(x)
10: u «— a sample of unit uniform random variable
11: p < smallest integer satisfying X%, a;(x) > uao(x)
12: t—t+T1
13: XX+ v,
14: S+ 8%
15: update a;(x), and recalculate ao(x)
16: (+) fori=1to N do
17: (1) for k=1 to r;, do
18: (+) w «— a sample of unit uniform random variable
19: (4) o « smallest integer satisfying X7_m; ; > wy;
20: () m; s < Mo — 1
21: (4) yi —yi—1
22: () fo’,y,,i — fo‘,u,i —+ 1
23: (4) done
24: () m; , < mj;, +pi,u
25: () Yi — Yi + Dip
26: (+) done
27: end while

The second matrix that the algorithm uses for book-keeping is an N x (M +1)
matrix m, which is initialized at the beginning of the simulation, and updated
at every simulation step (line 5). In m, there are M + 1 columns, because the
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first column denotes the initial state as a reaction. Thus, at time zero, the first
column of m is initialized as the vector xg and all the other cells are set to 0.
The fSSA algorithm is conservative of SSA, as it does not modify the SSA
steps, and extends it with structures for logging the fluxes. The matrix m keeps
track of the source reactions of species as they are being produced and consumed
at every step. Each cell of the matrix displays a count of the species such that m;;
is the number of species S; that had been produced by the reaction R;, and had
not been consumed by another reaction up to that point in the simulation. Thus,
since each row carries the information on a certain species, each row sums up to
the number of that species at the current state x, that is, ZjM:O m; ; = x;. This
information is used to sample the source of a species that can be produced by
different reactions, proportional to the contribution of each reaction in producing
that species (lines 15 to 22). The matrix f is updated accordingly (line 20). The
products are then directly updated in m for the next simulation step (line 23).
The construction of the flux graph in Algorithm 1 introduces only a constant
cost by introducing data structures that are accessed only for book-keeping, thus
it is not subject to the overhead in the algorithm [10]. This is because, Algorithm 1
avoids labeling of the individual species, and this way permits the reactions to be
applied on the multiplicities of instances instead of their actual occurrences.

4 Flux Paths

The FluxPath tool consists of two modules. The first module computes the flux
configuration and saves this in a file. The flux configuration can be computed
with the algorithm above or equivalently with the one in [10]. The former com-
putes the flux configuration during simulation, whereas the latter first computes
the simulation trajectory, which is saved to a separate file, and the flux config-
uration is then computed by processing this file. The second module takes the
flux configuration as input and enumerates the pathways of information flow for
various starting nodes and lengths of paths. The paths are computed by search-
ing for paths in the flux configuration, which is an edge-colored weighted graph.
The weight and the color, that is, the species, of each edge is kept as they are
in the flux configuration during the search, and displayed in the output paths.
For an example consider the network depicted in Fig.3 and its time series.
The system implemented by this CRN is initiated in equilibrium. However, ran-
dom fluctuations shift the system in a direction that favors either S2 or S5. In the
simulation in Fig. 3, the dynamics results in large and small shifts at many occa-
sions, which are visualized as fluctuations. After the time point around 550, the
S2 production outweighs, which is observed as a rapid increase in S2 numbers.
By using our tool, we have analyzed the underlying dynamics with respect
to the fluxes from the time point 550 to the end of the simulation; the flux graph
is depicted in Fig.4. In this graph, we observe that S4 and S6 fluxes between
ry and r5 have approximately the same weight, whereas S5 has a larger flux
towards r4 in comparison to S4 and S6 fluxes. Conversely, the fluxes between rq
and 7o weigh towards ro. Moreover, a comparison of the S5 flux from r3 to ry4
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Fig. 3. A CRN of two antagonist systems; S2 and S5 compete to break the equilibrium.

54,449 S5,468 r,

55,39
r, 50 ol 3
S6,449 S$4,58 S3,40
S6,58 51,41 51,428 52,409
re® — @ or,
52,59 ry $3,427

Fig. 4. The flux graph of the CRN in Fig.3 for the time interval from 550 to 1000.
The thickness of the arrows are proportional with strength of the fluxes.

and the S2 flux from r¢ to r1 support a dynamics towards ry. Finally, the higher
turnover around rg in comparison to the turnover around rs supports the high
ro activity that explains the shift of resources towards ro, and the consequent
excess in S2 observed in the time-series.

We have computed the paths of the flux configuration by using the FluxPath
tool, available for download at our website. Among many other paths, the out-
put flux paths depicted in Fig.5 quantify the information flow between the S2
producing reaction 19 and the S5 producing reaction r5 after the time point 550.
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Fig. 5. The flux paths of the CRN in Fig. 3 between the S2 producing reaction r2 and
the S5 producing reaction rs for the time interval from 550 to 1000. The thickness of
the arrows are proportional with the strength of the fluxes.
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5 A Case Study: Gemcitabine

Gemcitabine (dFdC) is a prodrug, which is commonly used in the treatment
of patients with non-small-cell lung cancer, pancreatic cancer, bladder cancer,
and breast cancer. It is currently one of the leading therapeutic treatments for
these diseases [3,4,17]. Gemcitabine exerts its clinical effect by depleting the
deoxyribonucleotide pools, the building blocks of the DNA, and incorporating its
triphosphate metabolite (dFdC-TP) into DNA, thereby inhibiting DNA synthe-
sis. The incorporation of gemcitabine into DNA takes place in competition with
the natural nucleotide dCTP, and this competition is an efficacy determining
factor, which can be affected by various environmental and genetic conditions.
In [9], we have a given CRN model of gemcitabine biomolecular action,
depicted in Fig. 6, which quantifies the the mechanisms of competition between
the cascades that incorporate dCTP and dFdC-TP into the DNA. The simula-
tions with this model identified certain mechanisms of crosstalk between these
two pathways that affect the competition for incorporation. In agreement with
the clinical studies dedicated to singling out mechanisms of resistance, our model
associated ribonucleotide reductase (RR) and deoxycytidine kinase (dCK) activ-
ities to the efficacy of gemcitabine. Beside other mechanisms, such as transport
across the plasma membrane, the inhibitory and enzymatic roles of these proteins
determine efficacy depending on the availability of other metabolites.
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Fig. 6. The biochemical machinery of gemcitabine. Gemcitabine (dFdC and dFdU)
is transported into cells by nucleoside transporters. It is then phosphorylated to its
active diphosphate (dFdC-DP and dFdU-DP) and triphosphate (dFdC-TP and dFdU-
TP) metabolites. Gemcitabine exerts its effect mainly by two mechanisms: while the
diphosphate metabolite dFdC-DP plays an inhibitory role for the synthesis of natural
nucleoside triphosphate dCTP, the triphosphate metabolite dFdC-TP competes with
the dCTP for incorporation into nascent DNA chain, thereby inhibiting DNA synthesis
and blocking cells in the early DNA synthesis phase. Image adopted from [9].
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The efficiency of the inhibitions due to the association of dCTP with dCK
and the association of dFdC-DP with RR play a key role in adjusting the efficacy.
In this respect, simulations with our model have predicted a continuum of non-
efficacy to high-efficacy regimes, where the levels of dFdC-TP and dCTP are
coupled in a complementary manner. The complementary action, in which either
dCTP or dFAC-TP make it to the DNA, is determined by the efficiency of the
inhibitory associations of dCTP with dCK and dFdC-DP with RR. The extremes
of this continuum are represented on one end, at the high efficacy regime, by low
dCTP/dCK affinity and high dFdC-DP/RR affinity. On the other end, there is
the low efficacy regime, given by high dCTP/dCK affinity and low dFdC-DP/RR
affinity. Representative time series for these regimes are depicted in Figure 7.

250

200
|

— dFdC_TP
— dcTP
- dFdC_TP_DNA
S 4 — CTPDNA

;
N

100
I
\

T T T Bl T T T T T T
0 5 10 15 20 0 5 10 15 2

low dCTP/dCK — high dFdC-DP/RR high dCTP/dCK — low dFdC-DP/RR

[ ]
dFdC, 1001

dCK,1051 CDP,251

RR,261 c

dCDP,271

—

dFAC_MP, waal

e
@ t—— @
dFdC_DP,1986
dFdC DP,13332
. L]

l dFdC TP, 12160

—

dcTp.221

=

dFdC_TP,530

Fig. 7. Representative time series plots and the flux pathways of the two regimes at
the two ends of the efficacy spectrum of gemcitabine molecular action. The dynamics
on the left is the high efficacy regime given by low dCTP/dCK affinity and high dFdC-
DP/RR affinity, whereas the one on the right is the low efficacy regime given by high
dCTP/dCK affinity and low dFdC-DP/RR affinity.

We have performed flux analysis by using our tool on simulations in these
regimes at either ends of the spectrum to quantify the effect of the inhibitory
mechanisms on information flow from outside the cell into the DNA. Flux graphs
of the dominant pathways for the two cases are depicted in Fig. 7.

In the low dCTP/dCK affinity and high dFdC-DP/RR affinity regime, the
increase in association of dFdC-DP and RR depletes the RR pools, and as a
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result of this, RR becomes unavailable to serve as an enzyme for the cascade that
incorporates dCTP into the DNA. Concomitantly, the decrease in association of
dCTP and dCK increases the availability of dCK to serve as enzyme in the
cascade that incorporates dFdC-TP into the DNA. This results in a dominant
pathway of flux depicted on the left-hand-side of Fig. 7.

At the other end of the spectrum, in the high dCTP/dCK affinity and
low dFdC-DP/RR affinity regime, the complementary mechanism depletes dCK
pools due to increased association of dCTP and dCK. This hampers the pathway
that would otherwise incorporate the dFdC-TP into the DNA. Moreover, as a
consequence of the reduction in the association of dFdC-DP and RR, more RR
becomes available to serve as enzyme in the pathway that incorporates dCTP
into the DNA. The resulting dynamics delivers the pathway of flux depicted on
the right-hand-side of Fig. 7.

6 Discussion

We have presented a method for flux analysis in stochastic simulations of chem-
ical reaction networks that refines our previously published method [10]. In con-
trast to the method in [10], the algorithm here does not require the tracking
of individual species, and monitors the network state during simulation in the
form of species-type vectors as in the direct method [5]. The flux graphs are
then computed by instantiating and updating two arrays, the size of which are
bounded by the number of reactions and species-types of the CRN. Because the
algorithm is not subject to an overhead due to the number of species, it can
be applied to any CRN that can be simulated with the direct method, includ-
ing those with arbitrarily small species numbers. As with time series plots of
stochastic simulations, simulations with greater number of events provide more
convergent observations, whereas smaller number of events highlight the stochas-
tic nature of the systems due to random fluctuations. In this respect, the method
for stochastic flux analysis provides a point of view for individual simulations
that is complementary to their time series considerations. The computation of
the flux graphs is not restricted to steady or stationary states, and it can be
performed on arbitrary time intervals as demonstrated in our examples.

Our module for computing flux paths introduces a filter that is alternative
to the global view of the flux graphs, as flux paths do not have any branching.
In this respect, various filters such as cut-off thresholds or filtering out certain
species in flux graphs can be considered for observations on different aspects of
the CRNs. Other topics of future work include implementation of an integrated
modeling suit that collects features above and others, as well as investigations
with a more theoretical nature, in particular, the influence of different aspects of
reaction networks such as the relative contribution of structure and non-linearity
to the dynamical behavior of the system, and statistical queries that can provide
insights to CRN dynamics.
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