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Abstract. Imposing constraints that influence multiple sequence align-
ment (MSA) algorithms can often produce more biologically meaningful
alignments. In this paper, a modularized program of constrained mul-
tiple sequence alignment (CMSA) called CSA-X is created that accepts
constraints in the form of regular expressions. It uses arbitrary under-
lying MSA programs to generate alignments, and is therefore modu-
lar. The accuracy of CSA-X with different underlying MSA algorithms
is compared, and also with another CMSA program called RE-MuSiC
that similarly uses regular expressions for constraints. A technique is
also developed to test the accuracies of CMSA algorithms with regu-
lar expression constraints using the BAliBASE 3.0 benchmark database.
For verification, ProbCons and T-Coffee are used as the underlying MSA
programs in CSA-X, and the accuracy of the alignments are measured
in terms of Q score and TC score. Based on the results presented herein,
CSA-X significantly outperforms RE-MuSiC. On average, CSA-X used
with constraints that were algorithmically created from the least con-
served regions of the correct alignments achieves results that are 17.65%
higher for Q score, and 23.7% higher for TC score compared to RE-
MuSiC. Further, CSA-X with ProbCons (CSA-PC) achieves a higher
score in over 97.9% of the cases for Q score, and over 96.4% of the cases
for TC score. It also shows that the use of regular expression constraints,
if chosen well, created from accurate knowledge regarding a lesser con-
served region can improve alignment accuracy. Statistical significance is
measured using the Wilcoxon rank-sum test and Wilcoxon signed-rank
test. An open source implementation of CSA-X is also provided.
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1 Introduction

Multiple sequence alignment (MSA) is a fundamental tool towards many objec-
tives, such as phylogenetic studies, computational biology, prediction of func-
tional residues, and protein structure prediction [17]. A large number of MSA
programs have been developed, and Pais, FSM et al. [16] recently surveyed such
programs in terms of accuracy and computational time. Indeed, accuracy is
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particularly important for MSA algorithms, especially within modern computer
bioinformatics pipelines, where less accurate alignments cause negative down-
stream effects with amplification of errors [12]. Most of the state-of-the-art mul-
tiple sequence alignment programs such as ProbCons [7], T-Coffee [15], MAFFT
[11], and ClustalW [20] are fully automated, with a limited number of changeable
parameters.

But often, users have additional information that could affect the alignments
such as, active site residues, intramolecular disulphide bonds, enzyme activities,
and conserved motifs [19]. Hence, having a program that can use additional
information, either manually created, or automatically determined from addi-
tional annotations, can improve the accuracy of alignments. Constrained mul-
tiple sequence alignment (CMSA) [18] is an extension of the MSA problem [4]
that allows users to use knowledge regarding the sequences involved, in the form
of constraints, with a view to achieving more biologically meaningful alignments.
For example, Du and Lin [8] showed that ClustalW [20], does not align common
patterns and similar structures found in sequences consistently. Because of this
reason, Tsai et al. [19] proposed MuSiC, a web server that allowed constrained
alignment of sequences. But many biologically important motifs, such as those
listed as regular expressions in the PROSITE [10] database cannot be formu-
lated into constraints according to the convention followed by MuSiC [5]. To
solve this issue, Arslan [2], and Chung et al. [6] introduced alignment algorithms
that accept regular expression constraints, and enforce that segments that match
the regular expression must align. Then, Chung et al. proposed RE-MuSiC [5],
an extension to their previous work [6] to support multiple sequences and mul-
tiple constraints. In that work, they used sequence motifs found in PROSITE
as regular expression constraints to improve the quality of alignments. How-
ever, there are some limitations of RE-MuSiC, as it does not allow the use
of quantification operators such as Kleene star (*), Kleene plus (+) in regu-
lar expression constraints, and thus only a subset of regular expressions can be
used as input. Arslan [3] also proposed sequence alignment programs guided by
Context Free Grammars (CFG) only limited to pairwise sequence alignment.
Morgenstern et al. [14] developed DIALIGN, a web server, that can accept user
defined anchor points as constraints. It is common to use a benchmark database,
such as BALiBASE to evaluate MSA algorithms [9,11,15], however no such tech-
nique is available for CMSA with regular expression constraints, and therefore,
no such comparison is available for use with RE-MuSiC.

Here a new program, CSA-X is developed that also accepts arbitrary regular
expression constraints (including quantifiers), and creates a multiple sequence
alignment that forces sections to align that match the entire regular expression.
Furthermore, it is also possible to enforce with an extended regular expression
syntax that certain sections that match part of a regular expression must align.
CSA-X is a modularized program that uses an underlying MSA program, and
because of this reason, it is possible to replace the underlying MSA program
with another, perhaps improved or tailored program. In addition, this study
compares the performance of CSA-X, RE-MuSiC, and ‘X’, where ‘X’ is the
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underlying MSA program in the proposed tool, with respect to the BALiBASE
3.0 [21] benchmark database. This involves the creation of a new technique to
compare CMSA algorithms by creating regular expressions algorithmically using
the BALiBASE alignments. This assesses their accuracy in terms of Q score and
TC score [9], and measures statistical significance of the results. Furthermore,
it also shows that if constraints are chosen appropriately, such as from knowl-
edge regarding lesser conserved regions, CSA-X can give better results than the
underlying MSA algorithm.

2 Methods

An open source implementation of CSA-X has been made available [1], which
will be described. Arbitrary MSA implementation can be used with it. CSA-X
accepts constraints in the form of regular expressions using the PERL regular
expression syntax. However, the symbol # can be optionally placed in multiple
spots in the regular expression, and it has special meaning providing guidance
by which sequences are aligned. Next the constraints are defined.

Definition 1. Hash-augmented regular expressions are defined inductively:

– every PERL regular expression is a hash-augmented regular expression,
– if R and S are two hash-augmented regular expressions, then R#S is a hash-

augmented regular expression.

From this definition, it is implied that every hash-augmented regular expression
can be written in the following form, for some n ≥ 1: R1#R2# . . .#Rn, when
R1, . . . , Rn are regular expressions. Intuitively, the MSA generated will align the
parts of each sequence that match R1, R2, . . . , Rn, and enforce that the parts
that match each Ri, for 1 ≤ i ≤ n are aligned. Hence, the # symbols provide
additional control by giving information regarding the residues or nucleotides to
align. If the # symbols are not used, then CSA-X constructs the best alignment
of the entire parts matching the entire regular expression.

In the case of hash-augmented regular expressions, between every two #
symbols, it must be a syntactically correct regular expression. For example,
(AC#TT)C#A is not a valid CSA-X hash-augmented regular expression because
the left side of the first # symbol contains ‘(AC’ and right side contains ‘TT)C’
which are not regular expressions.

If a hash-augmented regular expression matches multiple sequences, then
each match must have the same number of hash symbols since # symbols cannot
(by definition) be placed inside any quantifier, such as * (which could match i
times within one sequence, but j times within another, where i �= j).

Consider, an input of N sequences to align S1, S2, S3, . . . , SN , N ≥ 2, and a
hash-augmented regular expression R = R1#R2#R3# . . .#Rm, where m ≥ 1.
The precise process that CSA-X uses to generate such an alignment can be
described using the following high-level steps:
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1. CSA-X attempts to match R to each sequence Si of the N input sequences,
for each i, 1 ≤ i ≤ N . If the regular expression matches exactly once in each
sequence Si, then CSA-X determines a list of positions (for each i, 1 ≤ i ≤ N)
l0i , l

1
i , l

2
i , . . . , l

m
i , where 0 ≤ l0i ≤ l1i ≤ l2i ≤ . . . ≤ lmi ≤ |Si|+1, whereby regular

expression Rj matches between positions lj−1
i and lji −1, for each j, 1 ≤ j ≤ m

(if lj−1
i = lji then Rj matches the empty string). If CSA-X does not find any

regular expression matches on the input sequences or it finds matches for a
strict subset of sequences in the dataset, then it returns the alignment of the
input dataset using the underlying MSA program without using the regular
expression.

2. CSA-X generates alignments for each of the matched sections of the sequences
using the underlying alignment algorithm. That is, it aligns the sub-
words S1(1, l01 − 1), . . . , SN (1, l0N − 1), then aligns subwords S1(l

j−1
1 , lj1 −

1), . . . , SN (lj−1
N , ljN − 1) for every j, 1 ≤ j ≤ m, and then aligns subwords

S1(lm+1
1 , |S1|), . . . , SN (lm+1

N , |SN |). Then it concatenates each of these align-
ments together in order. As the constraints in CSA-X are specified using
a hash-augmented regular expression, it generates alignments by decoding
information from the specified constraints.

3. If CSA-X finds multiple regular expression matches on a single sequence,
then it generates all possible combinations of the matched-segment datasets
by selecting each regular expression match of the sequence separately, and
determines the alignment that has the highest sum-of-pairs score.

Intuitively, the formalism of step 2 means that CSA-X identifies the seg-
ments that match the entire expression R for each sequence Si in step 1. In
addition, at the same time on each of the matched segments, it also identifies
the subsections that match the sub-patterns R1, R2, R3, . . . , Rm consecutively
in the hash-augmented regular expression. Then, CSA-X aligns each matching
sub-pattern separately (including the parts that match before the first matching
sub-pattern, and the parts that match after the final sub-pattern has ended),
using the underlying MSA program X to generate alignments, and then it merges
the generated alignments together to produce a complete alignment.

In step 3, suppose a hash-augmented regular expression R, matches the
sequence St at two spots. If the rest of the sequences match the hash-augmented
regular expression exactly at one spot, then CSA-X would create two alignments,
one where the matching occurs between the first matching part of St, and the
other one where the matching occurs with the second matching part of St. Then
the algorithm determines the alignment that has the highest sum-of-pairs score,
and returns the alignment with the highest score.

It should be noted that, multiple regular expressions R and S can be used as
input by joining them with quantifiers such as R.∗S, where “.” represents any
character match, and “∗” is Kleene star. Alignment can be further influenced
through # symbols, e.g. R#.∗#S.

Example 2. Conserved motifs for different protein sequences are listed in the
PROSITE database in the form of regular expressions, which can be used as
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constraints to improve the biological accuracy of the alignments in different
CMSA programs. For example, the TATA-binding protein plays a vital role in
the activation of eukaryotic genes. PROSITE (PDOC00303) lists the consensus
for the signature pattern of the TATA-binding protein as follows (using a slightly
different regular expression syntax).

Y-x-[PK]-x(2)-[IF]-x(2)-[LIVM](2)-x-[KRH]-x(3)-P-[RKQ]-x(3)-L-
[LIVM]-F-x-[STN]-G-[KR]-[LIVMA]-x(3)-G-[TAGL]-[KR]-x(7)-
[AGCS]-x(7)-[LIVMF].

For the alignment of different TATA box proteins, the above mentioned consen-
sus pattern can be used as a constraint. For instance, if one would like to align
TATA box proteins found in Homo sapiens (gb AAI09054.1), Rattus rattus (gb
AAH16476.1), and microorganism Halobacterium salinarum (emb CAA63691.1)
using CSA-X, then the format of this consensus pattern can be as follows:

Y.[PK]..[IF]..[LIVM]{2}.[KRH]...P[RKQ]...L[LIVM]F.[STN]G
[KR][LIVMA]...G[TAGL][KR].......[AGCS].......[LIVMF].

It is also possible to simplify this further using quantifiers, or to add hash symbols
to force sections of the regular expression to align; for instance to align sections of
the sequences that match Y.[PK]..[IF]..[LIVM]+.[KRH], then ...P[RKQ]...L
[LIVM]F.[STN]G[KR][LIVMA], then ...G[TAGL][KR].......[AGCS].......
[LIVMF] the hash augmented regular expression could be used. Omitting the #
symbols would not necessarily align the three parts separately on all sequences.

Y.[PK]..[IF]..[LIVM]+.[KRH]#...P[RKQ]...L[LIVM]F.[STN]G[KR]
[LIVMA]#...G[TAGL][KR].......[AGCS].......[LIVMF].

Figure 1 shows the partial alignment generated by CSA-X, where the region
identified by the regular expression is aligned in columns (highlighted). For this
alignment, ProbCons is used as the underlying alignment tool.

3 Method of Assessments

Since CSA-X is a modular tool, the underlying MSA program can be changed
to obtain different alignments, and in some sense, different customized tools.
The study conducted by Pais, FSM et al. [16] showed that ProbCons, T-Coffee,
Probalign, and MAFFT achieve higher accuracy than other MSA tools consid-
ered. Therefore, for this assessment, ProbCons and T-Coffee are used as the
underlying MSA algorithms in CSA-X (although other programs can be used
with CSA-X as well, these are the only two used for the purposes of assess-
ment). Whenever CSA-X uses ProbCons, it is referred to as CSA-PC, and for
T-Coffee, it is called CSA-TCOF. It is common for a benchmark database, such
as BALiBASE 3.0 to be used to assess alignments and algorithms. Each set of
sequences in such a database also has an alignment that is thought of as “cor-
rect” (based on additional knowledge such as protein structure). This database is
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Fig. 1. CSA-X partial alignment of TATA box proteins. CSA-X partial alignment of
TATA box proteins, where the highlighted regions indicate the sections matched by
the regular expression constraint.

used here. However, RE-MuSiC generates erroneous alignments for a portion of
the datasets in the BAliBASE 3.0 benchmark database, where the length of the
sequences are not equal (sometimes the resulting alignments produced contain
wildcard characters). Hence, the working database for this study is defined as
being created from BAliBASE 3.0 including those datasets for which RE-MuSiC
produces non-erroneous alignments for the purposes of comparison. BAliBASE
3.0 is classified into several groups; namely RV11, RV12, RV20, RV30, RV40, and
RV50. In the working database for this study, there are 76 datasets from RV11,
84 datasets from RV12, 6 datasets from RV20, 6 datasets from RV30, 17 datasets
from RV40 and 11 datasets from RV50; in total 200 datasets from BAliBASE
3.0 out of a total of 386 datasets. Out of these 200 datasets, 98 datasets contain
short truncated sequences. To compare the performance of CSA-X with RE-
MuSiC and other programs, this working database is used in this study (we will
additionally consider the difference in results between programs when including
those datasets not in the working dataset).

As BALiBASE does not contain regular expression constraints, a new tech-
nique must be developed for comparison of CMSA algorithms. To identify the
effects of constraints on generated alignments, two sets of regular expression
constraints are created to use for assessment. Indeed, the correct alignments
from the BAliBASE 3.0 benchmark database are used to algorithmically create
accurate regular expressions. One set of regular expression constraints are cre-
ated from the “most conserved” region of the correct alignments. Another set
is constructed from the “least conserved” region of the correct alignments. All
of these constraints are automatically generated using a Perl script, which uses
reference alignment files from BAliBASE 3.0, and identifies the most conserved
regions and the least conserved regions for the alignments and generates the
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regular expression constraints. These same sets of constraints are used to com-
pare CSA-X and RE-MuSiC.

The idea behind this approach is to identify the effects of constraints on
multiple sequence alignment. Often, expert users possess information about the
sequences involved in the alignment process. They align the sequences using a
MSA program, and then often adjust the alignment based on knowledge not
reflected in the generated alignment. For the assessment, we do not obtain reg-
ular expression constraints from expert users, but rather, algorithmically create
regular expressions from the curated alignments. Although this approach could
create unrealistically good regular expressions, it is useful to use when comparing
multiple algorithms that take regular expressions as constraints and to represent
“accurate” knowledge being incorporated into regular expressions.

For this study, the regular expression constraints are generated to be of length
12 with a maximum of one gap per sequence, which is large enough to affect align-
ments, while avoiding many matches. To make a fair comparison between CSA-X
and RE-MuSiC, both are tested on the same sets separately for both (most and
least conserved) of regular expression constraints, and therefore, all regular expres-
sions tested do not have the quantifiers * or+as these do notworkwithRE-MuSiC.
Furthermore, a separate comparison is made between CSA-PC with these regular
expressions and ProbCons without using any regular expressions at all (and simi-
larlywithT-Coffee) to gauge thepotential improvements that using regular expres-
sions as constraints can provide. This depends on whether the regular expressions
are created from highly conserved or lesser conserved regions. Although this part of
the assessment is done using the correct alignments to construct the regular expres-
sions, it is only being used to see if regular expressions can possibly improve quality,
depending on the type of regular expression. A thorough test of common regular
expressions used by expert users together with a test to see if they improve align-
ment quality would be valuable. However, for comparing RE-MuSiC to CSA-X,
such regular expressions are equally favourable to both programs, and is therefore
a useful method of comparison.

3.1 Accuracy, Statistical Significance and Parameters

To measure the accuracy of considered programs in this study, two scores, Q
score (Quality Score) and TC score (Total Column Score) are computed. Edgar
[9] defined the Q score of an algorithm as a ratio between the number of correctly
aligned pairs to the number of residue pairs in the reference alignment. This is
the same as the sum-of-pairs score defined by Thompson et al. [22]. TC score is
the number of correctly aligned columns, divided by the number of columns in
the reference alignment (this is the same as the column score (CS) defined by
Thompson et al.).

To reduce the probability that the difference is merely by chance, researchers
working in the area of MSA frequently conduct statistical significance tests. In
this work, Wilcoxon signed-rank test [23] and Wilcoxon rank-sum test [23] are
used to measure statistical significance. If two samples are paired, Wilcoxon
signed-rank test is used, otherwise, Wilcoxon rank-sum test is used.
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Standalone ProbCons and T-Coffee are used with the default parameter set-
tings (performing a comparison by systematically varying all parameters with
every program is of interest but is left for future work). The same parameter
settings of ProbCons and T-Coffee are used in CSA-PC and CSA-TCOF respec-
tively. RE-MuSiC is run with the default gap extension and gap open penalty.
CSA-PC, CSA-TCOF, and RE-MuSiC are provided with the equivalent set of
regular expression constraints. As the format of specifying regular expression
constraints in CSA-X and RE-MuSiC is different, equivalent regular expression
constraint sets are used for these programs.

4 Results

For each of CSA-PC, CSA-TCOF, RE-MuSiC, T-Coffee, and ProbCons, average
(AVG) and standard deviation (SD) of Q score and TC score are presented in
Table 1. Among these programs CSA-PC, CSA-TCOF, and RE-MuSiC are pro-
vided with the regular expression constraints; however, T-Coffee and ProbCons
are used without any constraints (as they do not take any as input).

4.1 Comparison of CSA-X with RE-MuSiC

It is observed from Table 1 that for the 200 datasets in the working database,
that CSA-PC and CSA-TCOF both achieve higher accuracy compared to RE-
MuSiC, using both Q score and TC score. From Table 1 it can be calculated that

Table 1. Average and standard deviation of Q score and TC score for the working
database. MC (and LC respectively) represent the use of regular expression constraints
identified from the most conserved region (least conserved respectively), of the correct
alignments in the benchmark datasets (‘−’ represents a score that cannot be computed).
The entries that are bold represent the highest value for each type of score and regular
expression.

MC LC AVG (SD)

AVG (SD) AVG (SD)

Q CSA-PC 0.868 (0.118) 0.881 (0.116) −
CSA-TCOF 0.860 (0.131) 0.876 (0.124) −
RE-MuSiC 0.691 (0.197) 0.702 (0.220) −
ProbCons − − 0.854 (0.153)

T-Coffee − − 0.846 (0.166)

TC CSA-PC 0.713(0.222) 0.730 (0.244) −
CSA-TCOF 0.702 (0.231) 0.718 (0.244) −
RE-MuSiC 0.496 (0.256) 0.487 (0.299) −
ProbCons − − 0.693

T-Coffee − − 0.680
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on average for Q score, CSA-PC achieves approximately 0.179 and CSA-TCOF
achieves almost 0.174 higher score compared to RE-MuSiC when using con-
straints obtained from the least conserved (LC) region of the correct alignments
respectively. For the constraints obtained from the most conserved (MC) region
of the correct alignments, CSA-PC and CSA-TCOF achieve 0.176 and 0.168
higher score respectively. While for TC score, for the most conserved region reg-
ular expression constraints set, CSA-PC achieves 0.217 and CSA-TCOF achieves
0.206 higher results compared to RE-MuSiC, and the score rises by 0.217 and
0.206 respectively for CSA-PC and CSA-TCOF for the LC constraints set.

Out of 200 working datasets for Q score, CSA-PC and CSA-TCOF with
LC constraints perform higher for 195 and 194 datasets respectively compared
to RE-MuSiC. In addition, for TC score, CSA-PC and CSA-TCOF with LC
constraints set achieves higher score in total for 185 and 184 datasets. CSA-PC
and CSA-TCOF with MC constraints set achieves a higher score for Q score for
192 and 191 datasets respectively, and for TC score they achieve higher score
for 186 and 180 datasets respectively compared to RE-MuSiC. In addition, if
all the datasets in BAliBASE 3.0 are considered, instead of just the working
datasets, and we define CSA-X as performing better for instances where RE-
MuSiC is giving erroneous results, then CSA-PC (LC) gives a higher score for
381 datasets out of 386 datasets, and CSA-TCOF (LC) gives a higher score for
380 datasets out of 386 datasets.

4.2 Comparison of CSA-X with the Underlying MSA Program

From Table 1, CSA-PC and CSA-TCOF score higher overall than standalone
ProbCons and T-Coffee respectively run without any constraints. For MC con-
straints, CSA-PC and CSA-TCOF both show 0.014 higher Q score and more
than 0.02 higher TC score compared to ProbCons and T-Coffee. Further, using
LC constraints, CSA-PC and CSA-TCOF achieve 0.026 and 0.029 higher Q score
and 0.0378 and 0.0376 higher TC score respectively. According to Thompson
et al. [22] the BAliBASE sum-of-pairs score (similar to Q score) increases if
a program succeeds in aligning sequences relative to the reference alignment
dataset; this means that the higher the Q score is, the better the program is at
generating accurate alignments, while TC score tests how efficiently the program
is aligning all the sequences. This is a more stringent criteria of measurement as
a column score can become zero if a single sequence is misaligned [13]. Again, it
is worth mentioning that the comparison of CSA-X to its underlying tool does
not lend any evidence to the notion that CSA-X is better than its underlying
algorithm. It is only examining certain types of correct information that can
improve alignments. Furthermore, it is an important verification of the potential
of CSA-X.

4.3 Statistical Analysis

First, the Wilcoxon rank-sum test is performed between CSA-TCOF and RE-
MuSiC, and between CSA-PC and RE-MuSiC. As the outcome of CSA-TCOF
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does not depend upon RE-MuSiC, the Wilcoxon rank-sum test is chosen. Sec-
ond, each are compared to their underlying algorithm with both the most con-
served and least conserved regular expressions. Since the outcome of CSA-TCOF
and CSA-PC depends upon T-Coffee and ProbCons respectively, the Wilcoxon
signed-rank test is selected to test if there is significant difference between these
programs. Table 2 shows the results of these tests. For both the tests, the null
hypothesis is that there is no significant difference between the two samples. If
the test rejects the null hypothesis then it means that there is a significant differ-
ence between the two samples. For this test, a 5% significance level is used, which
means that if the p-value is less than 0.05 then the null hypothesis is rejected.
For the Wilcoxon rank-sum test, all the p-values are significantly less than 0.05.
Hence, the null hypothesis is rejected, and it is determined that the results of
CSA-PC and CSA-TCOF are significantly different compared to RE-MuSiC,
and the differences are not by chance. However, for the Wilcoxon signed-rank
test, the results are not significantly different for CSA-TCOF and T-Coffee if
CSA-TCOF uses the most conserved (MC) regular expression constraints set,
as with CSA-PC. This is because ProbCons and T-Coffee both are able to suc-
cessfully align the most conserved region without the explicit constraints. But
the situation changes if CSA-TCOF and CSA-PC uses the least conserved (LC)

Table 2. Wilcoxon rank-sum and Wilcoxon signed-rank test results.

Wilcoxon rank-sum test

Constraints Programs Scores P-value (Significant)

MC CSA-TCOF and RE-MuSiC Q <2.2e-16 (yes)

TC 2.89e-15 (yes)

CSA-PC and RE-MuSiC Q <2.2e-16 (yes)

TC <2.2e-16 (yes)

LC CSA-TCOF and RE-MuSiC Q <2.2e-16 (yes)

TC 6.66e-16 (yes)

CSA-PC and RE-MuSiC Q <2.2e-16 (yes)

TC <2.2e-16 (yes)

Wilcoxon signed-rank test

Constraints Programs Scores P-value (Significant)

MC CSA-TCOF and T-Coffee Q <0.6529 (no)

TC 0.1579 (no)

CSA-PC and ProbCons Q <0.0911 (no)

TC 0.0201 (yes)

LC CSA-TCOF and T-Coffee Q <8.18e-10 (yes)

TC 3.09e-08 (yes)

CSA-PC and ProbCons Q <2.50e-10 (yes)

TC <1.10e-08 (yes)
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regular expression constraints set, and it is observed that there is significant dif-
ference in the results of CSA-TCOF and CSA-PC with T-Coffee and ProbCons
respectively if they are supplied with LC constraints set.

Although, constraints chosen from the most or least conserved region are
not necessarily realistic in terms of regular expression constraints chosen by
either an expert user, or created from a database of additional information,
using constraints created from the correct alignment does have the advantage of
capturing some piece of information the user may know to be true, in a situation
where a standalone alignment program is not giving the desired results. And
indeed, constraints chosen from the most conserved region do not seem to help
significantly versus not using any constraint, however constraints chosen from
the least conserved region do help versus not using any constraints.

5 Conclusions

The constrained multiple sequence alignment program, CSA-X, allows the user
to specify regular expression constraints for the multiple sequence alignment,
and the resulting alignment enforces that specific sections matching the regular
expression gets aligned. This can improve the accuracy and biological significance
of the generated alignments, as functional and structural information regarding
the sequences can be expressed using regular expression syntax. However, a more
systematic study of regular expression constraints from expert users and other
sources is left as future work.

In this research work, based on the average accuracy scores from the bench-
marking analysis and the statistical significance testing, it is shown that CSA-X
framework with ProbCons and T-Coffee (known as CSA-PC and CSA-TCOF
respectively) generates more accurate alignments compared to RE-MuSiC—
the only other implemented CMSA algorithm that uses regular expression con-
straints. Furthermore, it is also shown that if good regular expression constraints
are chosen from the least conserved portion of the correct alignments, then the
results of CSA-X are significantly better than the underlying MSA program.
Finally, CSA-X is a modularized tool, and it allows the user to change the under-
lying multiple sequence alignment program if more efficient programs become
available, or a specialized program is required. An open source implementation
is also available [1].
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