
Biomedical Applications of Prototype Based
Classifiers and Relevance Learning

Michael Biehl(B)

Johann Bernoulli Institute for Mathematics and Computer Science,
University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

m.biehl@rug.nl

Abstract. In this contribution, prototype-based systems and relevance
learning are presented and discussed in the context of biomedical data
analysis. Learning Vector Quantization and Matrix Relevance Learn-
ing serve as the main examples. After introducing basic concepts and
related approaches, example applications of Generalized Matrix Rel-
evance Learning are reviewed, including the classification of adrenal
tumors based on steroid metabolomics data, the analysis of cytokine
expression in the context of Rheumatoid Arthritis, and the prediction of
recurrence risk in renal tumors based on gene expression.
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1 Introduction

The development of novel technologies for biomedical research and clinical prac-
tice have led to an impressive increase of the amount and complexity of elec-
tronically available data. Large amounts of potentially high-dimensional data
are available from different imaging platforms, genomics, proteomics and other
omics techniques, or longitudinal studies of large patient cohorts. At the same
time there is a clear trend towards personalized medicine in complex diseases
such as cancer or heart disorders.

As a consequence, an ever-increasing need for powerful automated data analy-
sis is observed. Machine Learning can provide efficient tools for tasks including
problems of unsupervised learning, e.g. in the context of clustering, and super-
vised learning for classification and diagnosis, regression, risk assessment or out-
come prediction.

In biomedical and more general life science applications, it is particularly
important that algorithms provide white box solutions. For instance, the criteria
which determine the outcome of a particular diagnosis system or recommenda-
tion scheme, should be transparent to the user. On the one hand, this increases
the acceptance of automated systems among practitioners. In basic research, on
the other hand, interpretable systems may provide novel insights into the nature
of the problem at hand.
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Prototype-based classifiers constitute a powerful family of tools for super-
vised data analysis. These systems are parameterized in terms of class-specific
representatives in the original feature space and, therefore, facilitate direct inter-
pretation of the classifiers. In addition, prototype-based systems can be further
enhanced by the data-driven optimization of adaptive distance measures. The
framework of relevance learning increases the flexibility of the approaches sig-
nificantly and can provide important insights into the role of the considered
features.

In Sect. 2, the basic concepts of prototype based classification is introduced
with emphasis on the framework of Learning Vector Quantization (LVQ). The
use of standard and unconventional distances is briefly discussed before relevance
learning is introduced in Sect. 2.5. Emphasis is on the so-called Generalized Rel-
evance Matrix LVQ (GMLVQ). Section 3 presents the application of GMLVQ in
several relevant biomedical problems, before a brief summary is given in Sect. 4.

2 Distance-based Classification and Prototypes

Here, a brief review of distance based systems is provided. First, the concepts
of Nearest Prototype Classifiers and Learning Vector Quantization (LVQ) are
presented in Sects. 2.1 and 2.2. The presentation focusses on their relation to
the classical Nearest Neighbor classifier. In Sect. 2.3 examples of non-standard
distance measures are briefly discussed. Eventually, adaptive dissimilarities in
the framework of relevance learning are introduced in Sect. 2.4.

2.1 Nearest Prototype Classifiers

Similarity based schemes constitute an important and successful framework for
the supervised training of classifiers in machine learning [10,14,31,55]. The basic
idea of comparing observations with a set of reference data is at the core of the
classical Nearest-Neighbor (NN) or, more generally, k-Nearest-Neighbor (kNN)
scheme [14,31,55,66]. This very popular approach is easy to implement and
serves as an important baseline for the evaluation of alternative algorithms.

A given set of P feature vectors and associated class labels

ID = {xμ, yμ = y(xμ)}P
μ=1 where xμ ∈ IRN and yμ ∈ {1, 2, . . . C} (1)

is stored as a reference set. An arbitrary feature vector or query x ∈ IRN is then
classified according to its similarity to the reference samples: The vector x is
assigned to the class of its Nearest Neighbor in ID. Very frequently, the (squared)
Euclidean distance with d(x,xμ) = (x − xμ)2 is employed for the compari-
son. The more general kNN classifier determines the majority class membership
among the k closest samples. Figure 1(a) illustrates the concept in terms of the
NN-classifier.

While kNN classification is very intuitive and does not require an explicit
training phase, an essential drawback is obvious: For large data sets ID, stor-
age needs are significant and, moreover, computing and sorting all distances
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Fig. 1. Illustration of Nearest-Neighbor classification (panel a) and Nearest-Prototype
classification in LVQ (panel b). The same two-dimensional data set with three differ-
ent classes (marked by squares, diamonds and pentagrams) is shown in both panels.
Piecewise linear decision boundaries, based on Euclidean distance are shown for the
NN classifier in (a), while panel (b) corresponds to an NPC with prototypes marked
by large symbols.

d(x,xμ) becomes costly, even if sophisticated bookkeeping and sorting strate-
gies are employed. Most importantly, NN or kNN classifiers tend to realize very
complex decision boundaries which may be subject to over-fitting effects, because
all reference samples are taken into account explicitly, cf. Fig. 1(a).

These particular difficulties of kNN schemes motivated the idea to replace the
complete set of exemplars ID by a few representatives already in [30]. Learning
Vector Quantization (LVQ) as a principled approach to the identification of suit-
able prototypes wk ∈ IRN (k = 1, 2, . . . K) was suggested by Kohonen [35,37].
The prototypes carry fixed labels yk = y(wk) indicating which class they repre-
sent. Obviously, the LVQ system should comprise at least one prototype per class.

Originally, LVQ was motivated as an approximate realization of a Bayes
classifier with the prototypes serving as a robust, simplified representation of
class-conditional densities [35,37,67]. Ideally, prototypes constitute typical rep-
resentatives of the classes, see [26] for a detailed discussion of this property.
Recent reviews of prototype based systems in general and LVQ in particular can
be found in [11,41,53,67].

A Nearest Prototype Classifier (NPC) assigns any feature vector x to the
class y∗ = y(w∗) of the closest prototype w∗(x), or w∗ for short, which satisfies

d(w∗,x) ≤ d(wj ,x) for j = 1, 2, . . . K. (2)

Assuming that meaningful prototype positions have been determined from a
given data set ID, an NPC scheme based on Euclidean distance also implements
piece-wise linear class boundaries. However, since usually K � P , these are
much smoother than in an NN or kNN scheme and the resulting classifier is less
specific to the training data. Moreover, the NPC requires only the computation
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and ranking of K distances d(wj ,x). Figure 1(b) illustrates the NPC scheme as
parameterized by a few prototypes and employing Euclidean distance for the
same data set as shown in panel (a).

In binary problems with classes A and B, a bias can be introduced by mod-
ifying the NPC scheme: A data point x is assigned to class A if

d(wA,x) ≤ d(wB ,x) + Θ (3)

and to class B, else. Here, wA and wB denote the closest prototypes carrying
label A or B, respectively. The threshold Θ can be varied from large negative
to large positive values, yielding true positive rate (sensitivity) and false pos-
itive rate (1-specificity) as functions of Θ. Hence, the full Receiver Operator
Characteristics (ROC) can be determined [22].

2.2 Learning Vector Quantizaton

A variety of schemes have been suggested for the iterative identification of LVQ
prototypes from a given dataset. Kohonen’s basic LVQ1 algorithm [35] already
comprises the essential ingredients of most modifications which were suggested
later. It is conceptually very similar to unsupervised competitive learning [14]
but takes class membership information into account, explicitly.

Upon presentation of a single feature vector xμ with class label yμ = y(xμ),
the currently closest prototype, i.e. the so-called winner w∗ = w∗(xμ) is identi-
fied according to condition (2). The Winner-Takes-All (WTA) update of LVQ1
leaves all other prototypes unchanged:

w∗ ← w∗ + ηw Ψ(y∗, yμ) (xμ − w∗) with Ψ(y, ỹ) =
{

+1 if y = ỹ
−1 else. (4)

Hence, the winning prototype is moved even closer to xμ if both carry the same
class label: y∗ = yμ ⇒ Ψ = +1. If the prototype is meant to represent a different
class, it is moved further away (Ψ = −1) from the feature vector. The learning
rate ηw controls the step size of the prototype updates.

All examples in ID are presented repeatedly, for instance in random sequential
order. A possible initialization is to set prototypes identical to randomly selected
feature vectors from their class or close to the class-conditional means.

Several modifications of the basic scheme have been considered in the lit-
erature, aiming at better generalization ability or convergence properties, see
[7,36,53] for examples and further references.

LVQ1 and many other modifications cannot be formulated as the optimiza-
tion of a suitable objective function in a straightforward way [59]. However,
several cost function based LVQ schemes have been proposed in the litera-
ture [58,59,67]. A popular example is the so–called Generalized Learning Vector
Quantization (GLVQ) as introduced by Sato and Yamada [59]. The suggested
cost function is given as a sum over all examples in ID:

E =
P∑

μ=1

Φ(eμ) with eμ =
d(wJ ,xμ) − d(wK ,xμ)
d(wJ ,xμ) + d(wK ,xμ)

. (5)
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For a given xμ, wJ represents the closest correct prototype carrying the correct
label y(wJ) = yμ and wK is the closest incorrect prototype with y(wK) �= yμ,
respectively. A monotonically increasing function Φ(eμ) specifies the contribu-
tion of a given example in dependence of the respective distances d(wJ ,xμ)
and d(wK ,xμ). Frequent choices are the identity Φ(eμ) = eμ and the sigmoidal
Φ(eμ) = 1/[1+exp(−γ eμ)] where γ > 0 controls the steepness [59]. Note that eμ

in Eq. (5) satisfies −1 ≤ eμ ≤ 1. The misclassification of a particular sample is
indicated by eμ > 0, while negative eμ correspond to correctly classified training
data. As a consequence, the cost function can be interpreted as to approximate
the number of misclassified samples for large γ, i.e. for steep Φ.

Since E is differentiable with respect to the prototype components, gradient
based methods can be used to minimize the objective function for a given data set
in the training phase. The popular stochastic gradient descent (SGD) is based on
the repeated, random sequential presentation of single examples [14,17,31,56].

The SGD updates of the correct and incorrect winner for a given example
{x, y(x)} read

wJ ← wJ − ηw
∂

∂wJ
Φ(e) = wJ − ηw Φ′(e)

2dK

(dJ + dK)2
∂dJ

∂wJ
,

wK ← wK − ηw
∂

∂wK
Φ(e) = wK + ηw Φ′(e)

2dJ

(dJ + dK)2
∂dK

∂wK
,

(6)

where the abbreviation dL = d(wL,x) is used. For the squared Euclidean dis-
tance we have ∂dL/ ∂wL = −2(x−wL). Hence, the displacement of the correct
winner is along +(x − wJ) and the update of the incorrect winner is along
−(x − wK), very similar to the attraction and repulsion in LVQ1. However, in
GLVQ, both winners are updated simultaneously.

Theoretical studies of stochastic gradient descent suggest the use of time-
dependent learning rates ηw following suitable schedules in order to achieve con-
vergent behavior of the training process, see [17,56]. for mathematical conditions
and example schedules. Alternatively, automated procedures can be employed
which adapt the learning rate in the course of training, see for instance [34,65].
Methods for adaptive step size control have also been devised for batch gradient
versions of GLVQ, employing the full gradient in each step, see e.g. [40,54].

Alternative cost functions have been considered for the training of LVQ sys-
tems, see, for instance, [57,58] for a likelihood based approach. Other objective
functions focus on the generative aspect of LVQ [26], or aim at the optimization
of the classifier’s ROC [68].

2.3 Alternative Distances

Although very popular, the use of the standard Euclidean distance is frequently
not further justified. It can even lead to inferior performance compared with
problem specific dissimilarity measures which might, for instance, take domain
knowledge into account.
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A large variety of meaningful measures can be considered to quantify the
dissimilarity of N -dim. vectors. Here, we mention only briefly a few important
alternatives to Euclidean metrics. A more detailed discussion and further exam-
ples can be found in [9,11,29], see also references therein.

The family of Minkowski distances of the form

dp(x,y) =
(∑N

j=1 |xj − yj |p
)1/p

for x,y ∈ IRN (7)

provides an important set of alternatives [39]. They fulfill metric properties (for
p ≥ 1) and Euclidean distance is recovered with p = 2. Employing Minkowski
distances with p �= 2 has proven advantageous in several practical applications,
see for instance [4,25,69].

A different class of more general measures is based on the observation that
the Euclidean distance can be written as

d2(x,y) = [(x · x) − 2x · y + (y · y)]1/2
. (8)

Replacing inner products of the form a·b =
∑

j ajbj by a suitable kernel function
κ(a,b), one obtains so-called kernelized distances [63,64]. In analogy to the
kernel-trick used in the Support Vector Machine [64], kernelized distances can
be used to implicitly transform non-separable complex data to simpler problems
in a higher-dimensional space, see [60] for a discussion in the context of GLVQ.

A very popular dissimilarity measure that takes statistical properties of the
data into account explicitly, was suggested very early by Mahalanobis [42]. The
point-wise version

dM (x,y) =
[
(x − y)�C−1 (x − y)

]1/2
(9)

employs the (empirical) covariance matrix C of the data set for the comparison
of two particular feature vectors. The Mahalonobis distance is widely used in
the context of the unsupervised and supervised analysis of given data sets, see
[55] for a more detailed discussion.

As a last example we mention statistical divergences which can be used when
observations are described in terms of densities or histograms. For instance, text
can be characterized by word counts while color histograms are often used to
summarize properties of images. In such cases, the comparison of sample data
amounts to evaluating the dissimilarity of histograms. A variety of statistical
divergences is suitable for this task [20]. The non-symmetric Kullback-Leibler
divergence [55] constitutes a well-known measure for the comparison of densi-
ties. An example of a symmetric dissimilarity is the so-called Cauchy-Schwarz
divergence [20]:

dCS(x,y) = 1/2 log [(x · x)(y · y)] − log [x · y] . (10)

It can be interpreted as a special case of more general γ-divergences, see [20,50].
In LVQ, meaningful dissimilarities do not have to satisfy metric proper-

ties, necessarily. Unlike the kNN approach, LVQ classification does not rely on
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the pair-wise comparison of data points. A non-symmetric measure d(w,x) �=
d(x,w) can be employed for the comparison of prototypes and data points as
long as one version is used consistently in the winner identification, update steps,
and the actual classification after training [50].

In cost function based GLVQ, cf. Eq. (5), it is straightforward to replace
the squared Euclidean by more general, suitable differentiable measures d(w,x).
Similarly, LVQ1-like updates can be devised by replacing the term (w − x) in
Eq. (4) by 1/2 ∂d(w,x)/∂w. Obviously, the winner identification has to make
use of the same distance measure in order to be consistent with the update.

It is also possible to extend gradient-based LVQ to non-differentiable dis-
tance measures like the Manhattan distance with p = 1 in Eq. (7), if differen-
tiable approximations are available [39]. Furthermore, the concepts of LVQ can
be transferred to more general settings, where data sets do not comprise real-
valued feature vectors in an N -dimensional Euclidean space [41]. Methods for
classification problems where only pair-wise dissimilarity information is avail-
able, can be found in [27,52], for instance.

2.4 Adaptive Distances and Relevance Learning

The choice of a suitable distance measures constitutes a key step in the design
of a prototype-based classifier. It usually requires domain knowledge and insight
into the problem at hand. In this context, Relevance Learning constitutes a very
elegant and powerful conceptual extension of distance based classification. The
idea is to fix only the basic form of the dissimilarity a priori and optimize its
parameters in the training phase.

2.5 Generalized Matrix Relevance Learning

As an important example of this strategy we consider here the replacement of
standard Euclidean distance by the more general quadratic form

dΛ(x,w) = (x − w)�
Λ (x − w) =

N∑
i,j=1

(xi − wi)Λij (xj − wj). (11)

While the measure is formally reminiscent of the Mahalonobis distance defined
in Eq. (9), it is important to note that Λ cannot be directly computed from the
data. On the contrary, its elements are considered adaptive parameters in the
training process as outlined below.

Note that Euclidean distance is recovered by setting Λ proportional to the
N -dim. identity matrix. A restriction to diagonal matrices Λ corresponds to
the original formulation of relevance LVQ, which was introduced as RLVQ or
GRLVQ in [16] and [28] respectively. There, each feature is weighted by a single
adaptive factor in the distance measure.

Measures of the form (11) have been employed in various classification
schemes [15,32,70,71]. Here we focus on the so-called Generalized Matrix Rele-
vance LVQ (GMLVQ), which was introduced and extended in [18,61,62]. Appli-
cations from the biomedical and other domains are discussed in Sect. 3.
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As a minimal requirement, dΛ(x,w) ≥ 0 should hold true for all x,w ∈ IRN .
This can be guaranteed by assuming a re-parameterization of the form

Λ = Ω�Ω, i.e. dΛ(x,w) = [Ω (x − w)]2 (12)

with the auxiliary matrix Ω ∈ IRM×N . It also implies the symmetries Λij = Λji

and dΛ(x,w) = dΛ(w,x). Frequently, a normalization
∑

ii Λii =
∑

ij Ω2
ij = 1 is

imposed in order to avoid numerical problems.
According to Eq. (12), dΛ corresponds to conventional Euclidean distance

after a linear transformation of all data and prototypes. The transformation
matrix can be (M × N)-dimensional, in general, where M < N corresponds to
a low-dimensional intrinsic representation of the original feature vectors. Note
that, even for M = N , the matrix Λ can become singular and dΛ is only a
pseudo-metric in IRN : for instance, dΛ(x,y) = 0 is possible for x �= y.

In the training process, all elements of the matrix Ω are considered adaptive
quantities. From Eq. (12) we obtain the derivatives

∂dΛ(w,x)
∂w

= Ω�Ω (w − x),
∂dΛ(w,x)

∂Ω
= Ω (w − x)(w − x)� (13)

which can be used to construct heuristic updates along the lines of LVQ1 [8,11,41].
From the GLVQ cost function, cf. Eq. (5), one obtains the matrix update

Ω ← Ω − ηΩ Φ′(e)
(

2dK
Λ

(dJ
Λ + dK

Λ )2
∂ dΛ(wJ ,x)

∂Ω
− 2dJ

Λ

(dJ + dK
Λ )2

∂ dΛ(wK ,x)
∂Ω

)

(14)
which can be followed by a normalization step achieving

∑
ij Ω2 = 1. Prototypes

are updated as given in Eq. (6) with the gradient terms replaced according to
Eq. (13). The matrix learning rate is frequently chosen smaller than that of
the prototype updates: ηΩ < ηw, details can be found in [18,61]. The matrix
Ω ∈ IRM×N can be initialized by, for instance, drawing independent random
elements or by setting it proportional to the N -dim. identity matrix for M = N .

In the measure (11), the diagonal elements of Λ quantify the weight of sin-
gle features in the distance. The inspection of the relevance matrix can provide
valuable insights into the structure of the data set after training, examples are
discussed in Sect. 3. Off-diagonal elements correspond to the contribution of
pairs of features to dΛ and their adaptation enables the system to cope with
correlations and dependencies between the features. Note that this heuristic
interpretation of Λ is only justified if all features are of the same order of magni-
tude, strictly speaking. In any given data set, this can be achieved by applying
a z-score transformation, yielding zero mean and unit variance features. Alter-
natively, potentially different magnitudes of the features could be taken into
account after training by rescaling the elements of Λ accordingly.

2.6 Related Schemes and Variants of GMLVQ

Adaptive distance measures of the form (11) have been considered in several
realizations of distance based classifiers. For example, Weinberger et al. optimize
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a quadratic form in the context of nearest neighbor classification [70,71]. An
explicit construction of a relevance matrix from a given data set is suggested
and discussed in [15], while the gradient based optimization of an alternative
cost function is presented in [32].

Localized versions of the distance (11) have been considered in [18,61,71].
In GMLVQ, it is possible to assign an individual relevance matrix Λj to each
wj or to devise class-wise matrices. Details and the corresponding modified
update rules can be found in [18,61]. While this can enhance the classification
performance significantly in complex problems, we restrict the discussion to the
simplest case of one global measure of the form (11).

The GMLVQ algorithm displays an intrinsic tendency to yield singular rel-
evance matrices which are dominated by a few eigenvectors corresponding to
the leading eigenvalues. This effect has been observed empirically in real world
applications and benchmark data sets, see [41,61] for examples. Moreover, a
mathematical investigation of stationarity conditions explains this typical prop-
erty of GMLVQ systems [8]. Very often, the effect allows for an interpretable
visualization of the labeled data set in terms of projections onto two or three
leading eigenvectors [5,41,61].

An explicit rank control can be achieved by using a rectangular (M × N)
matrix Ω in the re-parameterization (12), together with the incorporation of a
penalty term for rank(Λ) < M in the cost function [18,62]. For M = 2 or 3, the
approach can also be used for the discriminative visualization of labelled data
sets [5].

An important alternative to the intrinsic dimension reduction provided
by GMLVQ is the identification of a suitable linear projection in a pre-
processing step. This can be advantageous, in particular for nominally very high-
dimensional data as encountered in e.g. bioinformatics, or in situations where
the number of training samples P is smaller than the dimension of the feature
space. Assuming that a given projection of the form

y = Ψ x, v = Ψ w with Ψ ∈ IRM×N (15)

maps N -dim. feature vectors and prototypes to their M -dim. representations we
can re-write the distance measure of the form (11) as

(x − w)�
Λ (x−w) = (x − w)�

Ψ� Λ̃ Ψ (x−w) = (y − v)�
Λ̃ (y−v). (16)

Hence, training and classification can be formulated in the M -dimensional space,
employing prototypes vj ∈ IRM and an M × M relevance matrix Λ̃. Moreover,
the relation Λ = Ψ�Λ̃ Ψ facilitates its interpretation in the original feature space.

This versatile framework allows to combine GMLVQ with, for instance, Prin-
cipal Component Analysis (PCA) [55] or other linear projection techniques. Fur-
thermore, it can be applied to the classification of functional data, where the
components of the feature vectors represent an ordered sequence of values rather
than a collection of more or less independent quantities. This is the case in, for
instance, time series data or spectra obtained from organic samples, see [43] for
examples and further references. The coefficients of a, for instance, polynomial
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approximation of observed data are typically obtained by a linear transforma-
tion of the form (15), where the rows of Ψ represent the basis functions. Hence,
training can be performed in the lower-dimensional coefficient space, while the
resulting classifier is still interpretable in terms of the original features [43].

3 Biomedical Applications of GMLVQ

In the following, selected bio-medical applications of the GMLVQ approach are
highlighted. The example problems illustrate the flexibility of the approach and
range from the direct analysis of relatively low-dim. data in steroid metabolomics
(Sect. 3.1), the combination of relevance learning with dimension reduction for
cytokine data (Sect. 3.2), and the application of GMLVQ to selected gene expres-
sion data in the context of tumor recurrence prediction (Sect. 3.3). A brief discus-
sion with emphasis on the interpretability of the relevance matrix. Eventutally,
further applications of GMLVQ for biomedical and life science data are briefly
mentioned in Sect. 3.4.

3.1 Steroid Metabolomics in Endocrinology

A variety of disorders can affect the human endocrine system. For instance,
tumors of the adrenal glands are relatively frequent and often found inciden-
tally [3,21]. The adrenals produce a number of steroid hormones which regulate
important body functions. The differential diagnosis of malignant Adrenocortical
Carcinoma (ACC) vs. benign Adenoma (ACA) based on non-invasive methods
constitutes a highly relevant diagnostic challenge [21]. In [3], Arlt et al. explore
the possibility to detect malignancy on the basis of the patient’s steroid excretion
pattern obtained from 24 h urine samples by means of gas chromatography/mass
spectrometry (GC/MS).

The analysis of data comprising the excretion of 32 steroids and steroid
metabolites was presented in [3,13]: A data set representing a study population
of 102 ACA and 45 ACC samples was analysed by means of training a GMLVQ
system with one prototype per class and a single, global relevance matrix Λ ∈
IR32×32. In a pre-processing step, excretion values were log-transformed and in
every individual training process a z-score transformation was applied.

In order to estimate the classification performance with respect to novel data
representing patients with unknown diagnosis, random splits of the data set were
considered: about 90% of the samples were used for training, while 10% served as
a validation set. Results were obtained on average over 1000 randomized splits,
yielding, for instance the threshold-averaged ROC [22], see Eq. (3).

A comparison of three scenarios provides evidence for the beneficial effect
of relevance learning: When applying Euclidean GLVQ, the classifier achieves
an ROC with an area under the curve of AUC ≈ 0.87, see Fig. 2(a). The con-
sideration of an adaptive diagonal relevance matrix, corresponding to GRLVQ
[28], yields an improved performance with AUC ≈ 0.93. The GMLVQ approach,
cf. Sect. 2.5, with a fully adaptive relevance matrix achieves an AUC of about
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Fig. 2. Detection of malignancy in adrenocortical tumors, see Sect. 3.1. Panel (a):
Test set ROC as obtained in the randomized validation procedure by applying GLVQ
with Euclidean distance (dash-dotted line), GRLVQ with diagonal Λ (dashed) and
GMLVQ with a full relevance matrix (solid). Panel (b): Visualization of the data
set based on the GMLVQ analysis in terms of the projection of steroid profiles on
the leading eigenvectors of Λ. Circles correspond to patients with benign ACA while
triangles mark malignant ACC. Prototypes are marked by larger symbols. In addition,
healthy controls (not used in the analysis) are displayed as crosses.

0.97. In the latter case, a working point with equal sensitivity and specificity of
0.90 can be selected by proper choice of the threshold Θ in Eq. (3). As reported
in [3], the GMLVQ system outperformed alternative classifiers of comparable
complexity.

The resulting relevance matrix Λ turned out to be dominated by the lead-
ing eigenvector corresponding to its largest eigenvalue; subsequent eigenvalues
are found to be significantly smaller. As discussed above, this property can be
exploited for the discriminative visualization of the data set and prototypes, see
Fig. 2(b). The figure displays, in addition, a set of feature vectors representing
healthy controls, which were not explicitly considered in the training process.
Reassuringly, control samples cluster close to the ACA prototype and appear
clearly separated from the malignant ACC.

By inspecting the relevance matrix of the trained system, further insight into
the problem and data set can be achieved. Figure 3(a) displays the diagonal ele-
ments of Λ on average over 1000 randomized training runs. Subsets of markers
can be identified, which are consistently rated as particularly important for the
classification. For instance, markers 5, 6 and 19 appear significantly more rele-
vant than all others, see [3] for a detailed discussion from the endocrinological
perspective. There, the authors suggest a panel of nine leading steroids, which
could serve as a reduced marker set in a practical realization of the diagnosis
tool. Figure 3(b) displays the fraction of training runs in which a single marker
is rated among the nine most relevant ones, providing further support for the
selection of the subset [3]. Repeating the GMLVQ training for selected subsets of
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Fig. 3. Relevance of steroid markers in adrenal tumor classification, see Sect. 3.1 for
details. Panel (a): Diagonal elements Λii of the GMLVQ relevance matrix on average
over the 1000 randomized training runs. Panel (b): Percentage of training runs in
which a particular steroid appeared among the 9 most relevant markers.

leading markers yielded slightly inferior performance compared to the full panel
of 32 markers, with AUC ≈ 0.96 for nine steroids, and AUC ≈ 0.94 with 3
leading markers only, see [3] for details of the analysis.

The analysis of steroid metabolomics data by means of GMLVQ and related
techniques is currently explored in the context of various disorders, see [24,38,44]
for recent examples. In the context of adrenocortical tumors, the validation
of the diagnostic approach in prospective studies and the development of effi-
cient methods for the detection of post-operative recurrence are in the center of
interest [19].

3.2 Cytokine Markers in Inflammatory Diseases

Rheumatoid Arthritis (RA) constitutes an important example of chronic inflam-
matory disease. It is the most common form of autoimmune arthritis with symp-
toms ranging from stiffness and swelling of joints to, in the long term, bone
erosion and joint deformity.

Fig. 4. GMLVQ analysis of Rheumatoid Arthritis data, see Sect. 3.2 for details. Dis-
crimination of patients with early RA (class B) vs. resolving cases (class C). Panel
(a) shows the ROC (AUC ≈ 0.763) as obtained in the Leave-One-Out (from each
class) validation. Panel (b) displays the diagonal elements of the back-transformed
relevance matrix Λ ∈ IR117×117 on average over the validation runs.
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Cytokines play an important role in the regulation of inflammatory processes.
Yeo et al. [72] investigated the role of 117 cytokines in early stages of RA. Their
mRNA expression was determined by means of PCR techniques for four different
patient groups: Uninflamed healthy controls (group A, 9 samples), patients with
joint inflammations that resolved within 18 months after symptom onset (group
B, 9 samples), early RA patients developing Rheumatoid Arthritis in this period
of time (group C, 17 samples), and patients with an established diagnosis of RA
(group D, 12 samples).

Note that the total number of samples is small compared to the dimension
N = 117 of the feature vectors x comprising log-transformed RNA expression
values. Hence, standard PCA was applied to identify a suitable low-dimensional
representation of the data. The analysis revealed that 95% of the variation in
the data set was explained by the 21 leading principal components already.
Attributing the remaining 5% mainly to noise, all cytokine expressions data
were represented in terms of M = 21-dim. feature vectors corresponding to the
y ∈ IRM in Eq. (15).

GMLVQ was applied to two classification subproblems: The first addressed
the discrimination of healthy controls (class A) and established RA patients
(class D). While this problem does not constitute a diagnostic challenge at all, it
served as a consistency check and revealed first insights into the role of cytokine
markers. In the second setting, the much more difficult problem of discriminating
early stage RA (class C) from resolving cases (class B) was considered.

The performances of the respective classifier systems were evaluated in a
validation procedure by leaving out one sample from each class for testing and
training on the remaining data. Results were reported on average over all possible
test set configurations. Reassuringly, the validation set ROC obtained for the
classification of A vs. D displayed almost error free performance with AUC ≈
0.996. The expected greater difficulty of discriminating patient groups C and D
was reflected in a lower AUC of approximately 0.763, see Fig. 4(a).

It is important to note that it was not the main aim of the investigation
to propose a practical diagnosis tool for the early detection of Rheumatoid
Arthritis. As much as an early diagnosis would be desirable, the limited size
of the study population would not provide enough supporting evidence for such
a suggestion. However, the GMLVQ analysis revealed important and surprising
insights into the role of cytokines. Computing the back-transformed relevance
matrix Λ ∈ IR117×117 with respect to the original cytokine expression features
along the lines of Eq. (16), makes possible an evaluation of their significance
in the respective classification problem. Figure 4(b) displays the cytokine rel-
evances as obtained in the discrimination of classes B and C. Two cytokines,
CXCL4 and CXCL7, were identified as clearly dominating in terms of their dis-
criminative power. A discussion of further relevant cytokines also with respect
to the differences between the two classification problems can be found in [72].

The main result of the machine learning analysis triggered additional inves-
tigations by means of a direct inspection of synovial tissue samples. Careful
studies employing staining techniques confirmed that CXCL4 and CXCL7 play
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Fig. 5. Recurrence risk prediction in ccRCC, see Sect. 3.3 for details. Panel (a): Num-
ber of recurrences registered in the 469 patients vs. time in days. The vertical line marks
a threshold of 24 months, before which 109 patients developed a recurrence. Panel (b):
Diagonal entries of the relevance matrix with respect to the discrimination of low risk
vs. high risk patients from the expression of the 80 selected genes.

an important role in the early stages of RA [72]. Significantly increased expres-
sion of CXCL4 and CXCL7 was confirmed in early RA patients compared
with those with resolving arthritis or with clearly established disease. The
study showed that the two cytokines co-localize, in particular, with extravas-
cular macrophages in early stage Rheumatoid Arthritis. Implications for future
research into the onset and progression of RA are also discussed in [72].

3.3 Recurrence Risk Prediction in Clear Cell Renal Cell Carcinoma

Mukherjee et al. [47] investigated the use of mRNA-Seq expression data to evalu-
ate recurrence risk in clear cell Renal Cell Carcinoma (ccRCC). The correspond-
ing data set is publicly available from The Cancer Genome Atlas (TCGA) repos-
itory [51] and is also hosted at the Broad Institute (http://gdac.broadinstitute.
org). It comprises mRNA-Seq data (raw and RPKM normalized) for 20532 genes,
accompanied by clinical data for survival and recurrences for 469 tumor samples.
Preprocessing steps, including normalization, log-transformation, and median
centering, are described in [47].

By means of an outlier analysis [1], a drastically reduced panel of 80 genes
was identified for further use, see also [47] for a description of the method in this
particular example. The panel consists of four different groups, each comprising
20 selected genes: In group (I), high expression can be correlated with low risk,
i.e. late or no recurrence. In group (II), however, low expression is associated
with low risk. Group (III) contains genes where high expression is correlated
with a high risk for early recurrence, while in group (IV) low expression of the
genes is an indication of high risk.

In [47], a risk index is presented, which is based on a voting scheme with
respect to the 80 selected genes. Here, the focus is on the further analysis of the
corresponding expression values using GMLVQ, also discussed in [47].

http://gdac.broadinstitute.org
http://gdac.broadinstitute.org
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Fig. 6. Recurrence risk prediction in ccRCC, see Sect. 3.3 for details. Panel (a): ROC
for the classification of low-risk (no or late recurrence) vs. high risk (early recurrence) as
obtained in the Leave-One-Out validation of the GMLVQ classifier trained on the subset
of 216 patients, cf. Sect. 3.3. The circle marks the performance of the Nearest Prototype
Classifier. Panel (b): Kaplan-Meier plot [33] showing recurrence free survival rates
in the high-risk (lower curve) and low-risk (upper curve) group as classified by the
GMLVQ system applied to all 469 samples. Time is given in days.

In order to define a meaningful classification problem, two extreme groups of
patients were considered: group A with poor prognosis/high risk, comprises 109
patients with recurrence within the first 24 months after the initial diagnosis.
Group B corresponds to 107 patients with favorable prognosis/low risk, who did
not develop tumor recurrence within 60 months after diagnosis. The frequency
of recurrence times observed over five years in the complete set of 469 patients
is shown in Fig. 5(a), the vertical line marks the threshold of two years after
diagnosis.

A GMLVQ system with one 80-dim. prototype per class (A, B) and a global
relevance matrix Λ ∈ IR80×80 was trained on the subset of the 216 clear-cut cases
in groups A and B. Leave-One-Out validation yielded the averaged ROC shown
in Fig. 6(a) with AUC ≈ 0.812.

The diagonal elements of the averaged relevance matrix are displayed in
Fig. 5(b). The results show that genes in the groups (I) and (IV) seem to be
particularly discriminative and suggest that a further reduction of the gene panel
should be well possible [47].

In order to further evaluate the GMLVQ classifier, it was employed to assign
all 469 samples in the data set to the groups of high risk or low risk patients,
respectively. In case of the 216 cases with early recurrence (≤24 months) or no
recurrence within 60 months, the Leave-One-Out prediction was used. For the
remaining 253 patients, the GMLVQ classifier obtained from the 216 reference
samples was used.

In Fig. 6 the resulting Kaplan-Meier plot [33] is shown. It displays the recur-
rence free survival rate of the low risk (upper) and high risk (lower) groups
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according to GMLVQ classification, corresponding to a pronounced discrimina-
tion of the groups with log-rank p-value 1.2 × 10−8.

In summary, the work presented in [47] shows that gene expression data
makes possible an efficient risk assessment with respect to tumor recurrence.
Further analysis, taking into account healthy cell samples as well, shows that
the panel of genes is not only prognostic but also diagnostic [47].

3.4 Further Bio-medical and Life Science Applications

Apart from the studies discussed in the previous sections, variants of LVQ have
been employed successfully in a variety of biomedical and life science applica-
tions. In the following, a few more examples are briefly mentioned and references
are provided for the interested reader.

An LVQ1-like classifier was employed for the identification of exonic vs.
intronic regions in the genome of C. Elegans based on features derived from
sequence data [4]. In this application, the use of the Manhattan distance in
combination with heuristic relevance learning proved advantageous.

Simple LVQ1 with Euclidean distance measure was employed successfully in
the inter-species prediction of protein phosphorylation in the sbv IMPROVER
challenge [12]. There, the goal was to predict the effect of chemical stimuli on
human lung cells, given information about the reaction of rodent cells under the
same conditions.

The detection and discrimination of viral crop plant diseases, based on color
and shape features derived from photographic images was studied in [50]. The
authors applied divergence-based LVQ, cf. Sect. 2.3, for the comparison of fea-
ture histograms derived from Cassava plant leaf images. A comparison with
alternative approaches, including GMLVQ is presented in [49].

The analysis of flow-cytometry data was considered in [6] in the context of the
DREAM6/FlowCAP2 challenge [2]. For each subject, 31 markers were provided,
including measures of cell size and intracellular granularity as well as 29 expression
values of surface proteins for thousands of individual cells. Hand-crafted features
were determined in terms of statistical moments over the entire cell population,
yielding a 186-dim. representation for each patient. GMLVQ applied in this fea-
ture space yielded error-free prediction of AML in the test set [2,6].

The detection and discrimination of different Parkinsonian syndromes was
addressed in [45,46]. Three-dimensional brain images obtained by fluorodeoxyglu-
cose positron emission tomography (FDG-PET) comprise several hundreds of
thousands voxels per subject, providing information about the local glucose
metabolism. An appropriate dimension reduction by Scaled Subprofile Model with
Principal Component Analysis (SSM/PCA), yields a data set dependent, low-
dimensional representation in terms of subject scores, see [45,46] for further ref-
erences. In comparison with Decision Trees and Support Vector Machines, the
GMLVQ classifier displayed competitive or superior performance [46].
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4 Concluding Remarks

This contribution merely serves as a starting point for studies into the applica-
tion of prototype and distance based classification in the biomedical domain. It
provides by no means a complete overview and focusses on the example frame-
work of Generalized Matrix Relevance Learning Vector Quantization, which has
been applied to a variety of life science datasets. The specific application exam-
ples were selected in order to demonstrate the flexibility of the approach and
illustrate its interpretability.

A number of open questions and challenges deserve attention in future
research – to name only a few examples: A better understanding of feature
relevances should be obtained, for instance, by exploiting the approaches pre-
sented in [23]. Combined distance measures can be designed for the treatment
of different sources of information in an integrative manner [48]. The analysis of
functional data plays a role of increasing importance in the biomedical domain,
see e.g. [43]. In general, the development of efficient methods for the analysis
of biomedical data, which are at the same time powerful and transparent, con-
stitutes a major challenge of great importance. Prototype based classifiers will
continue to play a central role in this context.

Acknowledgments. The author would like to thank the collaboration partners and
co-authors of the publications which are reviewed in this contribution or could be
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