Chapter 8

Transition Metal-Substituted Magnetite as an
Innovative Adsorbent and Heterogeneous
Catalyst for Wastewater Treatment

Shima Rahim Pouran, Mohammad Saleh Shafeeyan,
Abdul Aziz Abdul Raman, Wan Mohd Ashri Wan Daud,
and Abolfazl Bayrami

Abstract Iron oxides are conventionally used as adsorbent and/or heterogeneous
catalyst because of their abundance, easy magnetically separation, affordability,
and applicability in broad pH range. This is especially reported for magnetite due to
the presence of Fe?* cations in its structure. However, the pure magnetite has lower
adsorption capacity and degradation rate in Fenton reaction, which led to the
introduction of transition metal-substituted magnetite (TMSM). This section
gives an overview on the adsorption potential and Fenton catalysis performance
of various transition metal-substituted magnetite samples. This recently introduced
group is produced with incorporation of appropriately identified transition metal/
metals into the naturally available magnetite with simple synthesis method. TMSM
has showed a great capacity for treating polluted water bodies using physical and
chemical processes. A combination of factors affects the activity: the increased
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adsorption capacity of the samples evidenced by larger surface area, the participa-
tion of thermodynamically favorable redox pairs in regeneration of Fe** and "OH
radical generation, and the presence of oxygen vacancies serving as active sites on
the surface of TMSM. Nevertheless, there is a need for further understanding and
expansion of this class of adsorbents and heterogeneous catalysts.

Keywords Heterogeneous catalyst « Magnetite adsorbents » Oxidation processes *
Transition metal-substituted magnetite
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8.1 Introduction

Water is a key element on earth for survival of living beings, which plays a crucial
role for the appropriate functioning of the terrain and aquatic ecosystems. However,
water resources are contaminating continuously due to the discharge of various
pollutants such as heavy metal ions, anions, dyes, organics, and microbes into the
environment (Herney-Ramirez et al. 2010). Several factors including the growth in
the world population, civilization, industrialization, agricultural functioning, and
other geological and universal changes have contributed to the water crisis and
environmental pollution (Ali and Gupta 2007). Literature reveals an increasing rate
in the generation of wastewaters with refractory properties from the many of
industrial activities (Shukla et al. 2010; Rahim Pouran et al. 2015b). The strategies
for augmenting freshwater resources had better involved not only the prevention
and minimization of water pollution but treating polluted water bodies to the degree
that can be reused in another sector. In light of this, developing advanced systems
for efficient water treatment and recycling have attracted considerable attention
worldwide, especially in countries with a growing scarcity of water resources
(Munoz et al. 2015).

Over the last decades, different approaches have been proposed and employed
for water treatment, including physical methods (screening, filtration and
centrifugal separation, micro- and ultrafiltration, reverse osmosis, crystallization,
sedimentation and gravity separation, flotation, and adsorption), chemical methods
(precipitation, coagulation, oxidation, ion exchange, and solvent extraction),
electrical approaches (electrodialysis and electrolysis), thermal technologies (evap-
oration and distillation), and biological processes (acrobic and anaerobic processes)
(Ali and Jain 2005; Diya’uddeen et al. 2015a). Out of these, adsorption is
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considered as one of the practical options because of its ease of operation, low cost,
and applicability for the separation of soluble and insoluble organic, inorganic, and
biological contaminants (Ali 2012). Adsorption process is especially promising at
nanoscale where the specific surface area of the adsorbent is relatively high. Iron
oxide nanoparticles have especially attracted a wide interest due to their great
magnetic characteristics that make the separation process much easier. Literature
is replete with studies signifying the efficiency of iron nanomaterials as adsorbent
for decontamination of heavy metal polluted aqueous solutions (Hua et al. 2012).

Nevertheless, in the most industries, the treatment methods are not able to
produce effluents that comply with the effluent discharge standards (Shestakova
et al. 2015). In several cases, the purification strategies basically relocate the
contaminants from one phase to another (Shukla et al. 2010; Nitoi et al. 2013).
Therefore, the use of such approaches is often limited due to the development of
secondary wastes. For example, adsorption processes generate spent adsorbents that
can be either hardly regenerated — by environmentally incompatible ex situ oper-
ating conditions — or it becomes a solid waste, commonly for industrial wastewater,
that needs to be disposed (Delmas et al. 2009). The disposal of the wastes, after the
water treatment process, has become a serious environmental issue that should be
addressed (Diya’uddeen et al. 2015b; Shestakova et al. 2015). Consequently,
advanced treatment methods are being standardized and several processes for the
recovery of the spent adsorbents are being developed.

Recently, advanced oxidation processes (AOPs) have attracted a great deal of
attention due to their potential for degrading numerous organic pollutants and
complete mineralization of them to CO,, H,O, and environmentally harmless
inorganic compounds, without production of secondary wastes (Comninellis et al.
2008; Wang and Xu 2011; Nichela et al. 2013). Fenton chemistry has been
extensively described in recently published reviews (Pignatello et al. 2006; Malato
et al. 2009). The main Fenton equations are given as Egs. (8.1) and (8.2):

Fe’* + H,0, — Fe’* + OH™! + OH" (8.1)
Fe’t + H,0, — Fe*" + HO; + H' (8.2)

This process presents some advantages over the conventional approaches includ-
ing simple equipment, efficient removal within a short reaction time, and potential
for complete oxidation and mineralization of contaminants to benign end products
under appropriate operational conditions. The Fenton reaction initiated by hetero-
geneous Fe?* or Fe** compounds or some other transition metals at low oxidation
states such as Co®" and Cu®" is referred as Fenton-like reaction (Nichela et al.
2013). Fenton-like reaction (Eq. 8.2) has a lower rate compared to Fenton reaction
(Eq. 8.1) (0.01-0.002 vs. 42-79 L/mol S) due to the unbound transfer of the
reactants in the homogeneous reaction site. The relative abundance and low cost
of iron minerals as well as their simple magnetic separation render them as suitable
candidates as adsorbents and for heterogeneous Fenton treatment of recalcitrant
wastewaters. Accordingly, several researchers have focused on improving the
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efficiency of iron oxides and enhancing the breakdown rate of contaminant mole-
cules through structural modifications.

One of the recently studied alterations is to substitute the structural iron species
of iron minerals with other active transition metals. The effectiveness of transition
metal-substituted magnetite (TMSM) as an innovative adsorbent and heteroge-
neous catalyst for water treatment is presented in the following sections.

8.2 Transition Metal-Substituted Magnetite

Magnetite is the most dominant iron mineral that has been employed for TMSIO
synthesis. Iron in the magnetite structure can be substituted isomorphically by other
transition metals, wherein the integrated transition metal/metals should have similar
jonic radius to Fe®*/Fe®* cations and the same or with one or two unit differences in
the oxidation states to the exchanged iron species. For instance, magnetite octahedral
Fe** is replaced by Cr** in Fe;_,Cr,O,4 with the similar ionic radii (64.5 vs. 61.5 pm)
(Magalhaes et al. 2007) and Fe** is replaced by Nb>* with the same ionic radius
(64 pm) (Oliveira et al. 2008; Rahim Pouran et al. 2015a). Concerning the replace-
ments with differing charges, the same amount of Fe** is reduced to Fe** based on the
electrovalence equilibrium (Pearce et al. 2015). On the other hand, the structural
dislocations could be adjusted by prompting oxygen vacancies for the substitutions in
the absence of reduction (Moura et al. 2006). These oxygen vacancies are believed
that perform as active sites for generation of hydroxyl radicals in Fenton process.

The most widely used preparation approach is the coprecipitation of highly pure
ferrous and ferric salts (Fe?*/Fe*" in the molar ratio of 1:2) plus a predetermined
amount of the selected transition metal salt under an inert gas environment and a
few drops of hydrazine to prevent the oxidation of ferrous cations (Fig. 8.1) (Yang
et al. 2009a; Liang et al. 2012b). This process can be continued by thermal
treatment at 400—430 °C (Costa et al. 2003, 2006; Lelis et al. 2004).

FeCl;.6 H,O FeCl,.4 H,0 Fe l I
é L& €
)\ Base - . : .
-V N
= . VN
i )E(a( U NN s
ot § | AT
N T N,H,.H,0 .

Fig. 8.1 Coprecipitation of Fe**, Fe**, and M™ and/or N™ as a TMSM
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Yang et al. (2009a) represented the following set of reactions (Egs. (8.4), (8.5),
(8.6), and (8.7)) involved in synthesis of Fe;_,Ti,O, that were considered by
Sugimoto and Matijevic (1980):

(3 — x)Fe*™ +xTi*" + (6 + 2x)OH™ — Fe3_4Tix(OH)g ,, (8.3)
Fe;_,Tix(OH)4,,, + (1 —x)NO3 — Fe3_Ti 04 (8.4)
+(1 = x)NO; + (3 +x)H,0
Fe; Tix(OH)4, 5, + (2 — 2x)NO, — Fe3 (Ti,O4 + (2 — 2x)NO 5.5)
+(2 +2x)H20 + (2 — 2x)OH !
5Fes_Tix(OH)g 5, + (2 — 2x)NO — 5Fe3_,TixO4 + (2 — 2x)NH; 8.6)

+(8x + 12)H,0

TMSIOs of other iron oxides are often prepared under air atmosphere (dos
Santos et al. 2001; Alvarez et al. 2006; Guimaraes et al. 2009) because they only
contain Fe'" species. Meanwhile, the preparation procedure, type and quantity of
the loaded transition metal, and the temperature range influence the properties of
the developed TMSIO. The preparation of different catalysts through the impreg-
nation of magnetite with transition metal/metals has been extensively reported in
the literature. Most of the studies have explored the incorporation of the period
4 transition metals such as Ti (Yang et al. 2009a, b; Liang et al. 2012a, b; Zhong
etal. 2012), V (Liang et al. 2010, 2012b), Cr (Magalhaes et al. 2007), Mn (Oliveira
et al. 2000; Costa et al. 2003, 2006; Coker et al. 2008), Co (Costa et al. 2003, 2006;
Lelis et al. 2004; Coker et al. 2008), Ni (Costa et al. 2003, 2006; Coker et al. 2008),
Cu (Lee and Joe 2010), Zn (Coker et al. 2008), and other metals like Al (Jentzsch
et al. 2007) into the magnetite structure. The schematic presentation of the prepa-
ration set up is shown in Fig. 8.2.

The investigation on the recent studies indicates that this group of chemicals can
be proposed as a novel promising adsorbent and heterogeneous Fenton catalyst in
the degradation of organic pollutants.

8.3 Physicochemical Changes in Modified Magnetite

The incorporated transition metal may give rise to significant changes in magnetite
physicochemical properties (Magalhaes et al. 2007; Zhong et al. 2012). The main
structural changes in magnetite structure through the incorporation of various
transition metals are given in Table 8.1. The degree of advancement in physico-
chemical properties is mainly dependent on the synthesis method, type and per-
centage of the host metal/metals, and nature of the occupied site (Oliveira et al.
2000; Ramankutty and Sugunan 2002; Costa et al. 2003; Magalhaes et al. 2007; Lee
et al. 2008; Zhong et al. 2012; Liang et al. 2013). Nonetheless, the spinel structure
of magnetite is often kept unchanged after the incorporation.
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Fig. 8.2 The schematic presentation of the TMSM preparation set up (Rahim Pouran et al. 2015c¢)

Several literature on the characteristics of TMSM samples using Brunauer-
Emmett-Teller (BET) surface area analysis reported a major growth in the surface
area, primarily caused by a decrease in the particle size and/or pore diameter (Silva
et al. 2009; de Souza et al. 2010; Liang et al. 2012b; Zhong et al. 2012). For
example, in the Fe, 93Crg o704 sample, the pore diameter decreased from meso- to
micro-size via the substitution of Fe** by Cr’* in which the surface area was
significantly increased (Magalhaes et al. 2007). On the other hand, there was
indistinct variation in the surface area and porosity of magnetite after the incorpo-
ration of Al, as reported by Jentzsch et al. (2007). It is worth mentioning that the
magnetic property of magnetite should be preserved after the modification, as it is
required for facile recovery of the sample from the treated water (Liang et al.
2012b). This characteristic can be affected by the cationic arrangement in the
tetrahedral and octahedral sites, production condition, and the size of magnetite
(Lelis et al. 2004). For instance, a decrease in the particle size to a few nanometers
can intensify the magnetic order on the surface of the magnetite particles (Haneda
and Morrish 1988).

8.4 Adsorption

Surface characteristics of a hetero-catalyst define its activity in a solution. The
electrostatic interaction between the probe molecule and the catalyst surface is a
major controlling parameter, so that the probe molecule removal from the target
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solution is largely determined by its adsorption on the catalyst surface (Yang et al.
2009b). Several factors such as contact time, pH, chemical properties, and initial
concentration of contaminant affect the adsorption capacity of the catalyst (Hanna
et al. 2008; Yang et al. 2009b; Ai et al. 2011a; Yuan et al. 2011; Liang et al. 2012a).
Among surface properties, basicity is an important factor that arises from the
hydroxyl groups on the surface of the catalyst. The ligand shell accomplishment
of the surface Fe atoms leads to the formation of Fe-OH groups on surface of the
catalysts in which the surface adsorption is largely controlled by these groups (Sun
et al. 1998). Accordingly, pH plays a dominant functional role in the catalytic
action of the iron oxides. The pH of point of zero charge (PZC) is a key parameter
that is defined as the pH in which the charge of the surface of the iron oxide is zero
or the total number of the FeOH>* and FeO™~ groups on the catalyst surface is the
same. Conventionally, the determination of the pH,,,. is crucial for identifying the
solution pH influence on the catalyst surface charge and consequent interaction
with probe molecule.

In magnetite, protonation and deprotonation are the main reactions that occur on
the surface, which are given by Eqgs. (8.7), (8.8), and (8.9):

= Fe(Il — III) ~ OH + H* « Fe(Il — Ill) ~ OH pH < pH,,, (8.7)
= Fe(Il — III) ~ OH < Fe(Il — Il[) ~ O + H*  pH > pHypyc (8.8)
=Fe ~OH+OH — Fe ~ O™ +H,0 pH > pH,, (8.9)

At higher pH values than pHy,, the magnetite surface is negatively charged, and
at lower pH values, it is positive (Petrova et al. 2011). The pH,. of magnetite at
room temperature changes between 6.0 and 6.8 in an aqueous medium wherein the
surface charge is of about neutral at this range (Sun et al. 1998; Cornell and
Schwertmann 2003). Accordingly, the surface of the magnetite samples is nega-
tively charged at pH higher than pH,,,.. Hence, it is favored for the adsorption of
cationic probe molecules such as methylene blue (MB), based on the electrostatic
interaction, and vice versa. For example, Liang et al. (2012a) observed that MB
removal through Fenton reaction catalyzed by Cr-substituted magnetite was signif-
icantly influenced by its adsorption on the sample surface at neutral pH value,
whereas the samples indicated no adsorption to acid orange II (anionic dye) and the
degradation of the investigated dyes demonstrated different removal mechanisms.
Table 8.2 gives a number of examples on the modified magnetite adsorbents for
eliminating various contaminants from the aqueous medium. The data shows that
the adsorption is highly affected by the pH of the solution.

In the heterogeneous catalysis, the iron catalyst and the organic pollutant are
stirred together for a period of time to achieve the adsorption equilibrium (Hanna
et al. 2008). The maximum adsorption is normally attained in the first hour and it
continues at a decreased rate to reach the equilibrium state. It can be ascribed to the
progressive filling of the most active adsorption sites on the catalyst surface. Then,
the adsorption rate decreases as a result of the decreased vacant sites and
subsequent repulsion force between the catalyst surface and adsorbed molecules.
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In a study conducted by Liang et al. (2012b), the substitution of Ti** and V>*
improved the adsorption activity of magnetite such that all the Fe;_,_Ti,V,Oy4
samples had greater saturated adsorbed content than Fe;O, with much higher
dependence on the amount of Ti** than V37, Similarly, Fe;_,_,Nb,Mo,O, samples
showed a significantly higher adsorption capacity of 80% more than the pure
magnetite in which the effects of Nb incorporation were prominent (Rahim Pouran
et al. 2015c¢). This clearly indicates that the incorporation of transition metals
positively affected the magnetite adsorption capacity, primarily resulting from the
enlarged specific surface area and, accordingly, the amount of magnetite surface
hydroxyl (Liang et al. 2014).

On the other hand, the adsorption kinetics provides valuable understanding of
the reaction pathways and the adsorption mechanism and describes the solute
uptake rate. A number of models can be employed to express the mechanism of
solute adsorption onto a sorbent. To explore the adsorption mechanism, a pseudo-
first-order equation of Lagergren (1898) based on solid capacity, a first-order
equation of Bhattacharya et al. (1984) based on solution concentration, and a
pseudo-second-order equation based on solid phase adsorption rate are used to
determine the characteristic constants of adsorption. Details of both models are
provided in Chap. 3.

The pseudo-first-order model proposes that the experimental data is only well
fitted to an initial period of the first reaction step. However, the pseudo-second-
order model provides the best correlation of the experimental data over a long
period in the studied systems (Ho and McKay 1999). Consequently, in the most
adsorption studies using modified magnetite samples, the adsorption kinetics were
well described by pseudo-second-order model in kinetics (Table 8.2). For instance,
in a study on the MB adsorption on co-substituted Nb-Mo-magnetite samples, the
pseudo-second-order model presented the best fit to the kinetic data at 25, 50,
100, and 200 mg L ! MB concentrations (Rahim Pouran et al. 2015¢). However, it
should be borne in mind that the kinetic models are not adequate to describe the
adsorption process. Indeed, adsorption is a complex multistep process, and the
kinetic studies provide valuable insights of the adsorption mechanisms which
involve mass transfer, diffusion, and surface reaction phenomenon. In addition to
the kinetic studies, it is recommended to investigate the adsorption data using
various isotherm models and thermodynamic evaluations. Lastly, the merits accom-
panied the adsorption process, such as easy operation, low cost, and huge sludge-
handling processes could be completed with a more efficient method that helps for
effective contaminant removal. Heterogeneous Fenton process is an excellent
candidate for this purpose.

8.5 Oxidation Process

Transition metal-substituted magnetite (TMSM) has received growing interest for
treatment of wastewaters using Fenton reaction, due to their higher adsorption
capacity and reactivity in the degradation reaction compared to pure magnetite
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(Rahim Pouran et al. 2014). The degradation process is started by adsorption of
contaminant molecules on the catalyst surface before H,O, addition and starting
Fenton reaction.

From the reports, the enhancement in the catalytic activity of the modified
magnetite samples has been resulted from the existence of the thermodynamically
favorable redox pairs of the imported cations on the surface of the catalysts. These
redox pairs enhance the Fenton degradation of probe molecule via (i) direct involve-
ment in Fenton oxidation cycle and generation of "OH radicals through Haber-Weiss
mechanism, (ii) regeneration of Fe*? cations, and (iii) acceleration of the electron
transfer during the oxidation reaction in the magnetite structure (Costa et al. 2003).

Generation of oxygen vacancies from the adjustments for unequal charge
replacements or cationic deficiency in the structure of modified iron oxide was
proposed by Costa et al. (2006) as another possible reason for enhanced activities.
These vacancies act as active sites in which they directly get involved in the
degradation of probe molecules or indirectly in decomposition of H,O, (Magalhaes
et al. 2007).

In photocatalysis process, the incorporated transition metals prevent the recom-
bination of the photo-excited holes (h™) and electrons (¢7) on the catalyst surface
(Biichler et al. 1998) and extend the existence time of the charge carriers. For
illustration, Fig. 8.3 shows the action of substituted Nb and Mo in magnetite
samples for oxidation of MB (Rahim Pouran et al. 2015c). Other parameters
including enlarged surface area and, accordingly, higher concentrations of OH
groups on the surface of the catalysts are also reported in a number of studies
(Liang et al. 2012a). However, the type and the quantity of probe molecule, Fenton
reagent concentration, reaction duration and condition, and more importantly the
elemental ratio of the imported transition metal play influential role in the

H,O NO;-
SO]“'_

Fig. 8.3 Action of substituted Nb and Mo in magnetite samples for oxidation of MB through
Fenton reaction (Rahim Pouran et al. 2015c)
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degradation efficacy. For example, Costa et al. (2006) reported that although MB
(50 ppm) removal was achieved within 10 min, the higher H,O, concentrations
(0.3 M) and Co (x = 0.75) and Mn (x = 0.53) loads were the major causes of the
short reaction time. Liang et al. (2012a) observed that 59.3% of MB (x=64 mg L
was oxidized using the Fe,g,Crg1304/H,0, (0.08 M) within 4 h, whereas
Fe, 35Crg 6704/H,0, resulted in 95% color removal within the same reaction
time. Furthermore, a long time of reaction (11 h) was utilized to degrade more
than 90% of MB (70 mg gf1 of Fe, 66V0.3404 at pH 10 (Liang et al. 2013). On the
contrary, the Fe,;9Nbg 71Mo0g 2304 catalyzed Fenton reaction could remove
100 mg/L of MB within 150 min (Rahim Pouran et al. 2015c), whereas the
degradation was about 80% using Fe,73Nbg 1904 sample (Rahim Pouran et al.
2015a).

The optimum portion of the integrated active cation to iron species drives higher
activities and a concentration above this value may not improve the activity. For
instance, Yuan et al. (2011) reported that the highest degradation percentage of
dimethyl phthalate (DMP) by Si = FeOOH was detected at Si/Fe ratio of 0.2;
however, this percentage decreased at lower and higher values than 0.2. It can be
ascribed to the generation of suspended indigent catalyst at lower ratios and
subsequent decrease in UV transmission into the solution. At higher values, the
active sites are masked with high SiO, concentrations and lead to the formation of
lower hydroxyl radical from H,O, breakdown. Nevertheless, the increment in the
content of the integrated Co and Mn leads to a remarkable increase in the catalyst
activity where Fe;0, demonstrated lower activity in comparison with the
Fe;_,Co,O4 and Fe; ,Mn,O, catalysts. In this study, the Fe;;sCog7504 and
Fe, 47Mng 5304 had the highest activities in the aforementioned reactions (Costa
et al. 2003).

A combination of iron oxides and natural niobia (Nb,Os) led to the generation of
a composite catalyst, of which maghemite (yFe,O3) and goethite (aFeOOH) were
the chief constituents in its structure (Oliveira et al. 2007). The niobia load of the
composite significantly influenced the discoloration rate, of which the niobia/iron
oxide ratio of 1:5 only removed the half of the MB in solution, whereas in ratio of
1:1, the removal percentage was approximately 90%. Table 8.3 summarizes the
data on the degradation of recalcitrant organic compounds using transition metal-
substituted magnetite catalysts in Fenton reactions.

8.6 Conclusions

The research on magnetite as an adsorbent has been increasing due to its applica-
bility in a wide range of pH, easy separation, and reusability. However, the
adsorption capacity of magnetite can be improved via modification in its structure
by enhancing its specific surface area and surface properties. One of the most
promising methods that enhances its adsorption characteristic is the isomorphic
substitution of the structural iron of magnetite with other transition metal/metals.
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The optimum transition metal content generally decreases the crystal size signifi-
cantly, with concomitant increased specific surface area, leading to the higher
capacities for the adsorption in the samples. Despite the good adsorption efficien-
cies of the modified magnetite, it incapacitates in contaminant degradation. Con-
sequently, hydrogen peroxide was introduced to the system that in turn hydroxyl
radicals were generated through catalytic action of iron/imported transition metals
in the magnetite. These generated hydroxyl radicals are highly energetic to attack
the pollutant molecules and oxidize them to water and carbon dioxide.

Finally, for further discovery and understanding this class of catalysts, exploring
the best combinations for higher degradation efficiencies and investigation of the
effects of various factors such as wastewater composition on the stability, lixivia-
tion, and aging of the catalytic sites for longer and efficient use in Fenton treatment
of recalcitrant wastewaters are recommended.
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