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Abstract Adsorption is one of the most widely applied unit operations to separate

molecules that are present in a fluid phase using a solid surface. Adsorption kinetic

aspects should be evaluated in order to know more details about its mechanisms,

characteristics, and possibilities of application. These data can determine the

residence time to reach the required concentration of the adsorbate, making possi-

ble the design and operation of an adsorption equipment and defining the perfor-

mance in batch and continuous systems. This chapter presents the particularities of

adsorption kinetics in liquid phase. Batch and fixed-bed systems are considered. For

discontinuous batch systems, diffusional mass transfer models and adsorption

reaction models are discussed. For fixed-bed systems, the shape of breakthrough

curves is studied on the basis of mass balance equations and empirical models.

Furthermore, the design and scale up of fixed-bed columns are detailed according to

the length of unused bed (LUB) and bed depth service time (BDST) concepts.

Several numerical methods are presented in order to solve the required models

for batch and fixed-bed systems. Some parameter estimation techniques are

discussed in order to obtain the fundamental parameters for adsorption purposes,

like mass transfer coefficients and empirical parameters.
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3.1 Introduction

Adsorption is one of the most widely applied unit operations used to separate

molecules that are present in a fluid phase (adsorbate) using a solid surface

(adsorbent). In this chapter, the adsorption kinetics in liquid phase will be

addressed. Adsorption kinetics is expressed as the rate of adsorbate removal from

the fluid phase to the adsorbent or the time involving the mass transfer of one or

more components contained in a liquid to the adsorbent (Qiu et al. 2009). When

adsorption is studied, kinetic aspects should be evaluated in order to know more

details about its mechanisms, characteristics, and possibilities of application. These

data can determine the residence time to reach the required concentration of the

adsorbate, making possible the design and operation of an adsorption equipment

and defining the performance in batch and continuous systems (Ruthven 1984).

Several mathematical models have been suggested to describe adsorption oper-

ations, which are classified as diffusional models and adsorption reaction models.
Both are used to describe the kinetic peculiarities of adsorption operation; however,

they are completely uneven in its essence (Qiu et al. 2009). Adsorption diffusion

models are constructed based on three successive steps: external mass transfer,

intraparticle diffusion, and adsorption on active sites. On the other hand, adsorption

reaction models, originating from chemical reaction kinetics, are based on the

whole process of adsorption, without considering the adsorption diffusion steps

previously mentioned. They are widely used to represent the adsorption data in the

literature. The more extensively adsorption reaction models utilized are the pseudo-

first-order, pseudo-second-order, and Elovich equation (Wan and Hanafiah 2008;

Cadaval et al. 2013; Dotto et al. 2013).

Here, we reviewed diffusional models and adsorption reaction models to be

applied in discontinuous and continuous adsorption operations. The models and its

mathematical solutions are detailed.
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3.2 Adsorption Kinetics in Discontinuous Batch Systems

In a discontinuous batch adsorption system, the kinetic profile is fundamental due to

several reasons. The kinetic profile provides information about the adsorption rate,

equilibrium time, and effectiveness of the adsorbent. Furthermore, based on the

kinetic curve, it is possible to infer the mass transfer mechanisms, which are the

rate-limiting steps of the adsorption process (Ruthven 1984; Suzuki 1993; Qiu et al.

2009). The kinetic profile in a discontinuous batch adsorption system is normally

represented by curves of Ct (adsorbate concentration in the bulk solution) versus

t (contact time) or qt (amount of adsorbate adsorbed on the adsorbent) versus t. In
order to obtain information about the adsorption process from these curves, several

empirical, semiempirical, theoretical, and diffusion-based models are employed

(Do 1998; Qiu et al. 2009; Plazinski and Rudzinski 2009; Piccin et al. 2011;

Baz-Rodrı́guez et al. 2012; Ocampo-Pérez et al. 2012; Dotto et al. 2014, 2016).

In this section, these models are divided in two main classes, which are normally

employed in the majority of adsorption articles: diffusional mass transfer models

and adsorption reaction models.

3.2.1 Diffusional Mass Transfer Models

Figure 3.1 shows the representation of the main mass transfer mechanisms that

occur in a discontinuous batch adsorption operation. In this case, the adsorbent

particle with radius R is defined as volume of control, and three consecutive steps of

mass transfer are considered: external mass transfer, intraparticle diffusion, and

adsorption on active sites (Ruthven 1984; Do 1998; Ocampo-Pérez et al. 2012;

Dotto et al. 2016). The external mass transfer mechanism is relative to the move-

ment of the adsorbate (molecules/ions) from the bulk solution (with concentration

Ct) to the external surface of the adsorbent particle (with concentration CS(t)). This
mass transfer step is governed by the external mass transfer coefficient (kf). The
intraparticle diffusion mechanism in turn is relative to the movement of the

adsorbate (molecules/ions), inside the adsorbent particle. The intraparticle diffusion

mechanism occurs by effective pore volume diffusion, surface diffusion, or a

combination of both mechanisms. The effective pore volume diffusion describes

the transport of the adsorbate (molecules/ions) in the liquid phase inside of the

particle and is represented by DP, the effective pore volume diffusion coefficient.

The surface diffusion is relative to the transport of the adsorbate over the surface of

the adsorbent particles, from sites of higher energy to sites of lower energy. This

mechanism is represented by the surface diffusion coefficient DS. Finally, the

adsorption on active sites is relative to the interaction of the adsorbate with the

active sites of the adsorbent. In this context, the diffusional mass transfer models

are constructed on the basis in the three abovementioned consecutive steps: external

mass transfer, intraparticle diffusion (effective pore volume diffusion, surface
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diffusion, or a combination of both mechanisms), and adsorption on an active site;

and they represent realistically the adsorption kinetics (Ocampo-Pérez et al. 2012;

Nieszporek 2013; Dotto et al. 2014).

One of the most complete diffusional models is the pore volume and surface

diffusion model (PVSDM). This model is based on the following assumptions:

batch system adsorption occurs at constant temperature; the particles are spherical;

the mass transport by convection within the pores is negligible; the intraparticle

diffusion can occur by pore volume diffusion and surface diffusion or both; the

values of effective pore volume diffusion coefficient (Dp) and effective surface

diffusion coefficient (Ds) are constant; and the adsorption rate on an active site is

instantaneous (Leyva-Ramos and Geankoplis 1985; Ocampo-Pérez et al. 2010).

This model is defined as

V
dCt

dt
¼ �mSkF Ct � Cs tð Þ

��
r¼R

� �
ð3:1Þ

t ¼ 0,Ct ¼ C0 ð3:2Þ

εp
∂Cr

∂t
þ ρp

∂q
∂t

¼ 1

r2
∂
∂r

r2 Dp
∂Cr

∂r
þ ρpDs

∂q
∂r

� �� �
ð3:3Þ

t ¼ 0, 0 � r � R,Cr ¼ 0 ð3:4Þ
∂Cr

∂r

����
r¼0

¼ 0 ð3:5Þ

RPM

T

Cm

C(t) Cs(t)

R

External mass
transfer

Intraparticle
diffusion

Surface diffusion

Effective pore
volume diffusion

q(r,t)

C(r,t)

Ds

DP

kf

V

Fig. 3.1 Representation of the main mass transfer mechanisms which occur in a discontinuous

batch adsorption operation
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Dp
∂Cr

∂r

����
r¼R

þ ρpDs
∂q
∂r

����
r¼R

¼ kF Ct � Cs tð Þ
��
r¼R

� �
ð3:6Þ

In Eqs. (3.1), (3.2), (3.3), (3.4), (3.5), and (3.6), V is the volume of solution, m is

the amount of adsorbent, εp is the void fraction of the adsorbent, ρp is the apparent
density of the adsorbent, S is the external surface area per mass of the adsorbent, C0

is the initial adsorbate concentration in the bulk solution, Cr is the adsorbate

concentration varying with the position and time, and q is the mass of adsorbate

per mass of adsorbent varying with the position and time, respectively. The other

symbols were already defined.

The PVSDM model can be simplified by considering that the sole intraparticle

diffusion mechanism may be either pore volume diffusion (PVDM) (Dp 6¼ 0,

Ds ¼ 0) or surface diffusion (SDM) (Dp ¼ 0, Ds 6¼ 0). Furthermore, to solve this

model, it is considered that there exists a local equilibrium between the adsorbate

concentration of the pore solution, Cr, and the mass of adsorbate adsorbed on the

pore surface, q. This equilibrium relationship between Cr and q is represented by

the adsorption isotherm:

q ¼ f Crð Þ ð3:7Þ

The isotherm studies are detailed in Chap. 2 of this book. Also, if V is constant, it

is evident that Ct and qt are always related by Eq. (3.8):

qt ¼
C0 � Ctð ÞV

m
ð3:8Þ

For illustration, the overall adsorption rate of Reactive Black 5 dye (RB5) on

chitosan-based materials (powder and film) was investigated by Dotto et al. (2016)

using the PVSDMmodel. The geometry of the adsorbents and swelling effects were

evaluated. The authors found that the surface diffusion was the intraparticle diffu-

sion mechanism that governed the adsorption, since its contribution was higher than

92% regardless the position and time. The Ds values ranged from 2.85 � 10�11 to

12.1 � 10�11 cm2/s. The swelling effect was most pronounced for the chitosan

films, providing an increase of about 65 times in the Ds value. On the other hand,

Flores-Cano et al. (2016) studied the adsorption rate of metronidazole,

dimetridazole, and diatrizoate on activated carbons using the PVSDM model. The

results revealed that the surface diffusion contributed >90% of the total

intraparticle diffusion, confirming that surface diffusion is the mechanism that

controls the intraparticle diffusion of these pollutants on activated carbons. Finally,

Largitte and Laminie (2015) evaluated the concentration decay curves for the

adsorption of lead on a granular activated carbon using the PVSDM model. The

results showed that the PVSDMmodel fitted the data reasonably well and the values

of DP were higher than those of DS. kL was around 10
�4 cm s�1, whereas DP and DS

were around 10�6 and 0 cm2/s. Therefore, the overall rate of adsorption was
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controlled by intraparticle diffusion, which was exclusively due to the pore volume

diffusion.

Three models can be derived from the PVSDM model: external mass transfer

model (EMTM), pore volume diffusion model (PVDM), and surface diffusion

model (SDM) (Costa and Rodrigues 1985; Leyva-Ramos and Geankoplis 1985;

Garcia-Reyes and Rangel-Mendez 2010).

The external mass transfer model (EMTM) assumes that the movement of solute

from the liquid phase to the adsorbent is only due to external mass transfer. In this

way, the intraparticle diffusion is instantaneous, so there is not a concentration

gradient inside the particle. Therefore, the intraparticle diffusion resistance is

considered to be insignificant. EMTM model is given by Eqs. (3.9), (3.10),

(3.11), and (3.12) (Dotto et al. 2016):

V
dCt

dt
¼ �mSkF Ct � Cs tð Þ

��
r¼R

� �
ð3:9Þ

t ¼ 0,Ct ¼ C0 ð3:10Þ
mεp
ρp

dCr

∂t

�����
r¼R

þ m
dqt
dt

¼ mSkF Ct � Cs tð Þ
��
r¼R

� �
ð3:11Þ

t ¼ 0,Ct ¼ 0, qt ¼ 0 ð3:12Þ

The pore volume diffusion model (PVDM) with external resistance is a simpli-

fication of the PVDSM model, used when the intraparticle diffusion is controlled

only by effective pore diffusion (Dp 6¼ 0, Ds ¼ 0). This simplification leads to

(Garcia-Reyes and Rangel-Mendez 2010)

V
dCt

dt
¼ �mSkF Ct � Cs tð Þ

��
r¼R

� �
ð3:13Þ

t ¼ 0,Ct ¼ C0 ð3:14Þ

εp
∂Cr

∂t
þ ρp

∂q
∂t

¼ 1

r2
∂
∂r

r2 Dp
∂Cr

∂r

� �� �
ð3:15Þ

t ¼ 0, 0 � r � R,Cr ¼ 0 ð3:16Þ
∂Cr

∂r

����
r¼0

¼ 0 ð3:17Þ

Dp
∂Cr

∂r

����
r¼R

¼ kF Ct � Cs tð Þ
��
r¼R

� �
ð3:18Þ

Based on the same analogy, the SDM model is used when the intraparticle

diffusion mechanism is only controlled by surface diffusion; then the set of

governing equations are given by
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V
dCt

dt
¼ �mSkF Ct � Cs tð Þ

��
r¼R

� �
ð3:19Þ

t ¼ 0,Ct ¼ C0 ð3:20Þ

εp
∂Cr

∂t
þ ρp

∂q
∂t

¼ 1

r2
∂
∂r

r2 ρpDs
∂q
∂r

� �� �
ð3:21Þ

t ¼ 0, 0 � r � R,Cr ¼ 0 ð3:22Þ
∂Cr

∂r

����
r¼0

¼ 0 ð3:23Þ

ρpDs
∂q
∂r

����
r¼R

¼ kF Ct � Cs tð Þ
��
r¼R

� �
ð3:24Þ

Furthermore, if the external mass transfer is negligible, Eq. (3.18) (PVDM) and

Eq. (3.24) (SDM) can be replaced by the adsorption isotherm, or by other boundary

condition.

Another important model used in adsorption systems is named homogeneous

surface diffusion model (HSDM). This model considers a dual mass transport

mechanism across the hydrodynamic boundary layer surrounding the adsorbent

particle and intraparticle resistance within the particle in the form of surface

diffusion (Leyva-Ramos and Geankoplis 1985). Mathematical equations of

HSDM are

m
dqt
dt

¼ mAkF Ct � Cs tð Þ
��
r¼R

� �
ð3:25Þ

t ¼ 0,Ct ¼ C0 ð3:26Þ

m
dqt
dt

¼ V
dCt

dt
ð3:27Þ

ρp
∂q
∂t

¼ 1

r2
∂
∂r

r2 ρpDs
∂q
∂r

� �� �
ð3:28Þ

t ¼ 0, 0 � r � R, q ¼ 0 ð3:29Þ
∂q
∂r

����
r¼0

¼ 0 ð3:30Þ

ρpDs
∂q
∂r

����
r¼R

¼ kF Ct � Cs tð Þ
��
r¼R

� �
ð3:31Þ

In the same way of the other models, HSDM requires a relation between the

amount of adsorbate adsorbed on the adsorbent and the amount of the adsorbate in

the solution, which is given by the adsorption isotherm.
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3.2.2 Adsorption Reaction Models

Adsorption reaction models originating from chemical reaction kinetics are based

on the adsorption as a single phenomenon, unlike diffusive model. Adsorption

reaction models are widely utilized to describe the kinetic process of adsorption.

In batch systems, the more applied models are the pseudo-first-order, pseudo-

second-order, and Elovich equation (Qiu et al. 2009; Largitte and Pasquier 2016).

3.2.2.1 Pseudo-First-Order Model

The pseudo-first-order model presented by Lagergren is based on the solids’
capacity to adsorb and is given by Eq. (3.32) (Lagergren 1898):

dqt
dt

¼ k1 qe � qtð Þ ð3:32Þ

where qe and qt (mg/g) are the adsorption capacities at equilibrium and time t (min),

respectively, and k1 (min�1) is the pseudo-first-order rate constant of the kinetic

model. Integrating Eq. (3.32) using the initial conditions of qt ¼ 0 at t ¼ 0 and

qt ¼ qt at t ¼ t leads to Eq. (3.33) (Ho 2004):

ln
qe

qe � qt

� �
¼ k1t ð3:33Þ

which can be rewritten as

qt ¼ qe 1� exp k1tð Þð Þ ð3:34Þ

Several scientific papers present the pseudo-first-order model as the most suit-

able to represent adsorption kinetics. For the adsorption of FD&C yellow 5 onto

chitosan film, the pseudo-first-order model was the more satisfactory (Cadaval et al.

2015). In this study, a little effect of the stirring rate was confirmed by the little

variation in the k1 values at different stirring rates. This model is normally used

when the adsorption operation is fast, attaining the equilibrium within 20–30 min.

3.2.2.2 Pseudo-Second-Order Model

Ho described a kinetic process of the adsorption of divalent metal ions onto peat

(Ho and McKay 2000), in which the chemical bonding among divalent ions and

functional groups on peat, were responsible for the ionic exchange. Therefore, the

peat-metal interaction can be presented as Eq. (3.35), which occurs in the adsorp-

tion of Cu2+ ions onto the adsorbent (Coleman et al. 1956):
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2P�þCu2þ $ CuP2 ð3:35Þ

where P� represents the active sites on the peat surface. In the above reaction, the

main assumptions were that the adsorption followed a second-order behavior and

the interaction adsorbent adsorbate was chemical.

The adsorption rate described by Eq. (3.36) is dependent of divalent ion con-

centration on the surface of peat at time t and at equilibrium. Thus, the rate can be

expressed as

d Pð Þt
dt

¼ k2 Pð Þ0 � Pð Þt
	 
2 ð3:36Þ

where (P)0 is the amount of equilibrium sites available on the peat, (P)t is the

amount of active sites occupied on the peat at time, and k2 (g/(mg min)) is the

pseudo-second-order rate constant of adsorption.

Since the driving force (qe� qt) is proportional to the available fraction of active
sites, then it can be written as

dqt
dt

¼ k2 qe � qtð Þ2 ð3:37Þ

and integrating Eq. (3.37) using the initial conditions of qt¼ 0 at t¼ 0 and qt¼ qt at
t ¼ t, yields

1

qe � qtð Þ ¼
1

qe
þ k2t ð3:38Þ

This equation can be rewritten as follows:

qt ¼
t

1
h0

� �
þ t

qe

� � ð3:39Þ

and

h0 ¼ k2q
2
e ð3:40Þ

where h0 (mg/(g min)) is the initial adsorption rate.

The second-order rate equation has been successfully applied to the adsorption

of metal ions, dyes, and organic substances from aqueous solutions. Several studies

for adsorption of divalent metals reported that the majority of the sorption kinetics

follows pseudo-second-order mechanism (Ho 2006; Aydin and Aksoy 2009). For

instance, the adsorption of Cu (II) from copper mine water by chitosan films and the

matrix effects were studied, and the pseudo-second-order model showed better fit

than the other ones (Frantz et al. 2017).
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3.2.2.3 Elovich Model

The Elovich equation was developed by Zeldowitsch (1934) and was used to

describe the adsorption rate of carbon monoxide on manganese dioxide, which

decreased exponentially with an increase of the gas adsorbed. Thus, Elovich

equation is applied to determine the kinetics of chemisorption of gases onto

heterogeneous surface (Rudzinski and Panczyk 2000) and was obtained from the

following differential equation:

dq

dt
¼ ae�βq ð3:41Þ

where q represents the amount of gas adsorbed at time t, a is the desorption

constant, and β is the initial adsorption rate. With the assumption of aβt >> 1,

Eq. (3.41) was integrated with the initial conditions of q ¼ 0 at t ¼ 0 and q ¼ q at

t ¼ t resulting in (Chien and Clayton 1980)

qt ¼ β ln aβð Þ þ β ln t ð3:42Þ

or

qt ¼
1

a

� �
ln 1þ aβtð Þ ð3:43Þ

This equation has been applied to describe the adsorption process of different

molecules from liquid medium. For example, Elovich model was the more suitable

to fit the kinetic data for the adsorption of FD&C red 2 onto chitosan film (Cadaval

et al. 2015) and carotenoids and chlorophylls in rice bran oil bleaching (Pohndorf

et al. 2016).

3.3 Fixed-Bed Adsorption

In operational level, a fixed-bed column presents a certain working time to adsorb

contaminants, such that the effluent outlet can comply with allowable levels of

concentration. This working time can be expressed by the so-called breakthrough

curve, and this behavior is shown in Fig. 3.2.

Considering a vertical upward flow, initially the adsorbent is completely free of

the solute, while the flow of liquid is initiated by the column. The solute is gradually

transferred to the adsorbent until at a point above the bed (point I in Fig. 3.2a).

As the process progresses, the initial portions of the adsorbent are completely

saturated (point III in Fig. 3.2a), and the zone where the solute is removed advances

toward the final part of the column. The portion of the column in which the solute

reduction occurs is called the mass transfer zone (point II in Fig. 3.2a).
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When the mass transfer zone reaches the end of column, the concentration of

adsorbate in the liquid gradually increases (point c in Fig. 3.2b), since not all of the

solute can be removed. Then, the start of the mass transfer zone reaches the end of

the column (point e in Fig. 3.2b) and the whole column is saturated, not occurring

more solute removal.

The portion of the curve between the points c and e (Fig. 3.2b) of the column is

called the breakthrough curve, and the point at which the concentration of adsorbate

at the output of the column reaches the maximum limit is called the breakpoint.

Outlet zone

Inlet zone

I
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II

II

II

III

III

III III
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t c
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a b c d e
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b c

d

e
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b

Fig. 3.2 (a) Progression of the mass transfer through fixed-bed column and (b) concentration
profile of solute concentration at adsorbent bed outlet during the adsorption process
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In this way, the shape of the rupture curve provides information about the length

of the mass transfer zone (point II in Fig. 3.2a), and the smaller this zone, the greater

the efficiency of the column.

In general, the breakthrough curve can be affected by thermodynamic factors

related to the adsorption equilibrium or isotherms, kinetic factors related to the

mass transfer rate, and fluid dynamic factors related to the flow velocity (Cooney

1999).

Thus, in this session, the mass balance in fixed-bed systems will be described,

showing the analytical solutions that represent the kinetics of the column adsorption

and presenting the methods of analysis and scale-up for real systems.

3.3.1 Mass Balance and Modeling of the Breakthrough
Curves Based on Mass Transfer Mechanism

The differential mass balances for an elementary volume of a fixed-bed column,

including the fluid phase and the adsorbent within this elementary volume, are used

for the development of a mathematical model, which describes the kinetic behavior

of the system.

In the mathematical modeling of fixed-bed adsorption, the following consider-

ations must be made: (i) the system is isothermal; (ii) there is only one adsorbate

soluble in the liquid; (iii) the concentration of the solute in the liquid is so small

that, if the whole has been adsorbed, there will be no change in the flow rate of the

fluid; (iv) there is not radial velocity and; (v) from this latter consideration, it is also

considered that there is not variation in adsorbate concentration in both phases in

the radial directions (Cooney 1999).

For the differential mass balance in the column, a control volume with a height

Δz and a circular session identical to the column diameter (or area A) is considered.
A fluid stream containing the species to be adsorbed passes through the voids of the

bed (ε). Then, the volume of solid (Vs) in the volume of control is

Vs ¼ 1� εð ÞAΔz ð3:44Þ

Applying the mass conservation law, the mass balance of any solute i in the

control volume is given by

εAΔz
∂Ci

∂t
¼ εANi j z � εANi j zþΔz � 1� εð ÞAΔz∂q

∂t
ð3:45Þ

where εAΔz ∂Ci

∂t is the solute accumulation in the control volume, εANijz is the mass

rate of solute that enters the control volume in the z direction, εANijzþΔz is the mass

rate of solute that leaves volume control in the z direction, and 1� εð ÞAΔz ∂q∂t is the
mass rate of solute adsorbed, respectively.
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Dividing Eq. (3.45) by εAΔz and applying the limit whenΔz tends to zero yields

∂Ci

∂t
¼ ∂Ni

∂z
� 1� εð Þ

ε

∂q
∂t

ð3:46Þ

The mass flux of solute in the fluid phase in the z direction (Niz) is given by a

convective portion, due to fluid movement, and another diffusive, due to a gradient

of concentration caused by the adsorption along the column, according to the

following equation:

∂Ni

∂z
¼ vz

∂Ci

∂z
� DL

∂2
Ci

∂z2
ð3:47Þ

where vz is interstitial velocity of the fluid in the z-direction andDL is the coefficient

of axial dispersion or diffusion. Then, substituting in Eq. (3.46), and rearranging the

equation, the mass balance in the adsorption column can be described as

vz
∂Ci

∂z
þ ∂Ci

∂t

� �
�Z

þ 1� εð Þ
ε

∂q
∂t

� �
�Z

¼ DL
∂2

Ci

∂z2

 !
t

ð3:48Þ

The adsorption rate ∂q
∂t

� �
�Z
is described by the mass transfer in the particle

(previous section), and then Eq. (3.48) can be solved numerically using the follow-

ing initial and boundary conditions:

t ¼ 0;C ¼ 0; q ¼ 0 ð3:49Þ
t > 0; Z ¼ 0;C ¼ C0 ð3:50Þ

t ! 1;
∂Ci

∂t
¼ 0 ¼ ∂q

∂t
¼ 0 ð3:51Þ

3.3.2 Empirical Models for Breakthrough Curves

The breakthrough curve behavior prediction is fundamental for the analysis and

design of fixed-bed adsorption systems. From this curve, parameters, such as the

breakthrough time and the saturation time of the column, are obtained, giving an

idea of the length of the mass transfer zone. For this reason, several models were

developed from analytical solutions of the differential mass balance in the fixed bed

or by empirical solutions.
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3.3.2.1 Bohart-Adams Model

Bohart-Adams model was developed considering the surface reaction theory which

assumes that the equilibrium is not instantaneous, and the rate of adsorption is

proportional to the adsorption capacity and the concentration of solute (Bohart and

Adams 1920). This model is suitable for adsorption systems with high affinity

equilibrium behavior (or irreversible isotherm) and is expressed as (Cooney 1999)

Ct

C0

¼ exp kABC0t� kABq0
z

vz

� �
ð3:52Þ

where C0 and Ct are the input and output solute concentrations, respectively, kAB is
the Bohart-Adams model kinetic constant, q0 is the stoichiometric capacity of the

bed (related to the adsorption capacity predicted by the equilibrium isotherm for

Ce ¼ C0, in units of mass per volume of adsorbent), and z is the length of bed.

3.3.2.2 Thomas Model

Thomas (1944) solved the differential mass balance for a system with adsorption

isotherms of the Langmuir type, no axial dispersion, and kinetic described by

pseudo-second-order model. Thomas model is one of the widely used models,

and this model is based on the plug flow behavior in the bed, i.e., no axial

dispersion, expressed as

Ct

C0

¼ 1

1þ exp
kThq0m

Q � kThC0t
� � ð3:53Þ

where kTh is the Thomas kinetic constant, m is the mass of adsorbent, and Q is the

operating flow rate. In this equation, q0 is expressed in units of mass of solute per

mass of adsorbent.

3.3.2.3 Wolborska Model

Wolborska model (1989) was based on the general equation of diffusional mass

transfer for low concentration range; see Eq. (3.48). For an external diffusion with a

constant coefficient, it is possible to derive

∂q
∂t

¼ �vm
∂q
∂z

¼ βa Cb � Cið Þ ð3:54Þ

where vm is the migration rate of the solute through the fixed bed, Ci is the interface

solid/liquid concentration, and βa is the kinetic coefficient of external diffusion.
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Using Eq. (3.54), and assuming that Ci << Cb, vm << vz, and neglecting the

axial dispersion, the breakthrough curves can be described as

ln
Ct

C0

� �
¼ βaC0

q0
t� βaz

vz
ð3:55Þ

3.3.2.4 Yoon-Nelson Model

Yoon-Nelson model (1984) was proposed to describe the nature of breakthrough

curves of adsorbate gases on activated charcoal. This model is based on the

assumption that the rate of adsorption degradation for each molecule is proportional

to the adsorption rate and the yield curve of the adsorbed material, represented as

Ct

C0

¼ 1þ exp τkYN � kYNtð Þ ð3:56Þ

where kYN is the Yoon-Nelson kinetic constant and τ is the predict time to the

advance of 50% of adsorption front.

3.3.3 Design of Fixed-Bed Adsorption Systems

In fixed-bed adsorption tests (laboratory scale), the adsorption capacity of the bed is

related to the area above the rupture curve, as can be seen in Fig. 3.2b. Thus, the

adsorption capacity is described by

q ¼
QC0

Ðt
0

1� Ct

C0

� �
dt

m
ð3:57Þ

The stoichiometric capacity of the bed (qeq) can be calculated by integrating

Eq. (3.57) to the point that the concentration of the effluent outlet (Ct) is identical to

the inlet concentration (C0). In this case, this adsorption capacity is associated with

complete bed saturation. Theoretically, the time stoichiometric tends to infinity, and

its precise location involves trial and error. The stoichiometric capacity of the

column can also be obtained from equilibrium isotherm, as described in Chap. 2.

Already the column useful capacity (qb) occurs when the concentration of

effluent outlet (Ct) reaches the concentration of break of the column (Cb). Then,

qb is obtained by integrating Eq. (3.57) to the breakthrough time (tb).
For the design of fixed-bed adsorption systems, the useful length of the bed (L)

can be calculated from a mass balance, considering a convex isotherm (i.e.,

Langmuir or Freundlich), using the mass of solute fed into the column with respect
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to the adsorption capacity of the adsorbent (in units of mass per volume of

adsorbent, or q0/ρ), described by

L ¼ QC0ts
S0 1� εð Þq0=ρ ð3:58Þ

In Eq. (3.58), the dividend represents the mass of solute fed in a service time (ts)
and the divisor the amount of accumulated mass per unit of bed length. Introducing

the concept of hydraulic load (H ), denoted by the ratio between the volumetric flow

rate (Q) and the cross-sectional area (S0) of the bed, orH¼ εvz¼Q/S0, the equation
can be rewritten as

L ¼ HC0ts
1� εð Þq0=ρ ð3:59Þ

However, the useful length of the bed (L ) considers a sharp breakthrough curve.
As previously discussed, the shape of the breakthrough curve changes according to

the rates of mass transfer and reaction with the adsorption sites. Thus, in order for

the system to meet the design conditions, an extra length must be added to the bed.

For the calculation of the extra length of the bed, two methodologies will be

presented: the length of unused bed (LUB) and the bed depth service time (BDST).

These methods, performed on a laboratory scale, are intended to calculate the

fraction of the column required for the reduction of the initial concentration to

the acceptable design conditions and are related to the length of the mass

transfer zone.

Moreover, in the scale-up of bed from laboratory data (isotherms or break-

through curves), it is fundamental that the conditions like hydraulic load, pH,

temperature, and concentration are similar.

3.3.3.1 LUB Concept

In this way, the length of unused bed (LUB) is a relation between the stoichiometric

capacity (qeq) and the useful capacity of the column (qb). Associating the two

equations, it has the following:

LUB ¼ 1� qb
qeq

 !
z ¼ 1� tb

t∗

� �
z ð3:60Þ

3.3.3.2 Bed Depth Service Time (BDST)

BDST model was used to describe the fixed-bed adsorption column operation

(Hutchins 1973). This approach becomes useful if the bed depth-breakthrough
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time data determined from a set of curves with different bed sizes is analyzed using

the irreversible isotherm model. The BDST model is expressed as

ln
C0

Ct
� 1

� �
¼ kq0D 1� εð Þ

εvz
� kC0t

0 ð3:61Þ

Note that q0(1�ε) is the adsorption capacity of the bed per volumetric unit,

denoted by N0. Thus, rearranging the equation, the breakthrough time (tb) is

tb ¼ N0

εvC0

D�
ln C0

Cb
� 1

� �
kC0

ð3:62Þ

where Cb is the breakthrough concentration. As can be seen, this equation suggests

that the rupture time (tb) has a linear relationship with the length of the column (D).
For this case, the critical situation for operation is tb ¼ 0. Thus, the critical bed

depth of the column (D0) can be calculated by

D0 ¼ εv

kN0

ln
C0

Cb
� 1

� �
ð3:63Þ

or the service time (ts) of a bed with length D can be expressed by

ts ¼ N0

εvC0

D� D0ð Þ ð3:64Þ

3.4 Numerical Methods and Parameters Estimation

Numerical solution of diffusional mass transfer models requires the application of

the numerical method of lines to solve partial differential equations (Ocampo-Pérez

et al. 2010; Souza et al. 2017) which can be expressed as a system of simultaneous

ordinary differential equations. For batch systems, the boundary conditions can be

expressed as implicit single algebraic equations, and the Newton method can be

used to solve those (Souza et al. 2017). In this case, the mass transport parameters

can be either calculated, such as external mass transfer coefficient, molecular

diffusivity, effective pore volume diffusion coefficient, and tortuosity factor

(Leyva-Ramos et al. 2012; Ocampo-Pérez et al. 2012), or estimated by nonlinear

least-square optimization, such as surface diffusion coefficient and external mass

transfer coefficient (Ocampo-Pérez et al. 2010; Souza et al. 2017). For fixed bed,

the mass transport parameters can also be either calculated, such as fluid interstitial

velocity and voids of the bed, or estimated by nonlinear least-square optimization,

such as axial dispersion or diffusion coefficient.
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The prediction of adsorption reaction models and empirical models for

breakthrough curves depends on parameters whose values must be estimated

from available experimental (Largitte and Pasquier 2016).

3.4.1 Solving Diffusional Mass Transfer Models

The numerical method of lines utilizes ordinary differential equations for the time

derivative and finite differences on the spatial derivatives (Schiesser 1991). In finite

difference method, the derivatives in the partial differential equation are approxi-

mated by linear combinations of function values at the grid points. The derivatives

in the partial differential equation of diffusional transfer models are discretized into

N þ 1 points on the spatial derivatives (radius), where N is the number of grid

points.

Figure 3.3 shows the illustrative representation of discretization (grid points) of

the transport of adsorbate molecules from the bulk solution to the spherical particle.

In this way, it has Cr in different points i where i ¼ 0 is the grid point at r ¼ 0 and

i¼ Nþ 1 is the grid point at r¼ R. The grid points are spaced equally with the step
size given by following equation:

External mass
transfer

Intraparticle
diffusion

C KF
Dp

Ds q

Bulk solution

r = R r = 0

0i = N+1

Cr

Fig. 3.3 Discretization of the transport of the adsorbate molecules from the bulk solution to the

spherical particle (illustrative representation)
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H ¼ R

N þ 1
ð3:65Þ

The partial differential equation of diffusional transfer models can be rewritten

using the second-order central difference approximations of the first and second

derivative. The second-order forward difference approximations of the first deriv-

ative can be used to solve the boundary condition at r ¼ 0, and the second-order

backward difference approximations of the first derivative can be used to solve the

boundary condition at r ¼ R (Souza et al. 2017). Useful finite approximations are

shown in Table 3.1.

Implicit single algebraic equations are resulting from solving the boundary

conditions with finite difference approximations. The most common method for

solving nonlinear algebraic equations is the Newton method (Edgar and

Himmelblau 2001). Trust-region modification of Newton method (Sorensen

1982) is the basis for the MATLAB built-in routine fsolve (Beers 2007).
Discretized partial differential equations yield ordinary differential equation

systems that are very stiff; therefore, to avoid a very small time step, an implicit

method can be used, as the backward difference formula (BDF) (Gear 1971). The

MATLAB built-in routine ode15s is a variable order solver based on the numerical

differentiation formulas (NDFs). Optionally, it uses the backward differentiation

formulas (BDF, also known as Gear method) that are usually less efficient

(Shampine and Reichelt 1997).

Nonlinear least-square optimization can be used to estimate the mass transport

parameters. The nonlinear least-square objective function to be minimized is

defined as the sum of the differences between the experimental data (C) and

model data (Ĉ) of adsorbate concentration, given as

Table 3.1 Finite approximation functions used to solve the partial differential equations

Difference First-order formula Second-order formula

Forward difference for first

derivative

d
dx f xið Þ ¼ f xiþ1ð Þ�f xið Þ

Δx
d
dx f xið Þ ¼ �3f xið Þþ4f xiþ1ð Þ�f xiþ2ð Þ

2Δx

Central difference for first

derivative

d
dx f xið Þ ¼ f xiþ1ð Þ�f xi�1ð Þ

2Δx

Backward difference for

first derivative

d
dx f xið Þ ¼ f xið Þ�f xi�1ð Þ

Δx
d
dx f ðxiÞ ¼ 3f ðxiÞ�4f ðxi�1Þþf ðxi�2Þ

2Δx

Forward difference for

second derivative

d2

dx2
f xið Þ ¼ f xið Þ�2f xiþ1ð Þþf xiþ2ð Þ

Δx2
d2

dx2
f xið Þ ¼ 2f xið Þ�5f xiþ1ð Þþ4f xiþ2ð Þ�f xiþ3ð Þ

Δx2

Central difference for sec-

ond derivative

d2

dx2
f xið Þ ¼ f xiþ1ð Þ�2f xi1ð Þþf xi�1ð Þ

Δx2

Backward difference for

second derivative

d2

dx2
f xið Þ ¼ f xið Þ�2f xi�1ð Þþf xi�2ð Þ

Δx2
d2

dx2
f xið Þ ¼ 2f xið Þ�5f xi�1ð Þþ4f xi�2ð Þ�f xi�3ð Þ

Δx2
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min f pð Þj j ¼
XNE
j¼1

XNY
i¼1

C i;jð Þ � Ĉ i;jð Þ�
2

h
ð3:66Þ

where NE is the number of experiments, NY is the number of experimental data

points, and p is the mass transport parameter.

The mass transport parameter ( p) can represent:

(a) Surface diffusion coefficient: using pore volume and surface diffusion model

(PVSDM), surface diffusion model (SDM), and homogeneous surface diffusion

model (HSDM) for batch systems

(b) External mass transfer coefficient: using the external mass transfer model

(EMTM) for batch systems

(c) Axial dispersion or diffusion: using the mass transfer model for fixed-bed

column

The MATLAB built-in routine lsqnonlin solves nonlinear least-square

(nonlinear data-fitting) problems with optional lower and upper bounds on the

parameters ( p). By default, lsqnonlin chooses the trust-region-reflective algorithm

that is a subspace trust-region method and is based on the interior-reflective Newton

method (Coleman and Yi 1994, 1996). Each iteration involves the approximate

solution of a large linear system using the method of preconditioned conjugate

gradients (PCG) (Barrett et al. 1994).

The mass transport parameter is estimated with intervals of 95% of confidence.

Simulations are performed using the diffusional transfer models with the estimated

parameter to compare to each set of experimental data and, hence, to check the fit

accuracy. The Student t-test can be performed to find out if the means of the

adsorbate concentration experimental curve and of the adsorbate concentration

curve predicted by the model are significantly different. Further, the χ2 and the

Fisher exact test are also useful to verify if variances of the experimental and model

concentration data differ in any interesting way (Schwaab and Pinto 2007).

3.4.2 Solving Adsorption Reaction Models and Empirical
Models for Breakthrough Curves

It is common to use linear regression (also known as linear least-square analyses) to

estimate the values of the parameters of an adsorption reaction model. However, the

sorption data are better simulated when the adsorption reaction models are fitted by

nonlinear regression (Largitte and Pasquier 2016).

Whereas an adsorption reaction model can be directly used in nonlinear regres-

sion, it must be linear with respect to the parameters to be used in linear regression.

Very often, a linear relationship is hypothesized between a log transformed of the

dependent variable and the model parameters.
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The nonlinear least-square objective function to be minimized is defined as the

sum of the differences between the experimental data (y) and model data (ŷ) of
adsorbate adsorbed at time t, given as below:

min f pð Þj j ¼
XNE
j¼1

XNY
i¼1

y i;jð Þ � ŷ i;jð Þ�2
h

ð3:67Þ

In case of adsorption reaction models, y is the adsorbate adsorbed at time t. Here,
p is the kinetic parameter that can represent:

(a) Adsorption rate constant: using pseudo-first-order model and pseudo-second-

order model

(b) Desorption rate constant and initial adsorption rate: using Elovich equation

In the case of empirical models for breakthrough curves, y is the ratio of concen-
tration of the effluent outlet (Ct) and the inlet concentration (C0). Here, p represents
the parameters set of the chosen empirical model for breakthrough curves.

The MATLAB built-in routine nlinfit solves nonlinear regression (nonlinear

data-fitting). For non-robust estimation, nlinfit uses the Levenberg-Marquardt

nonlinear least-square algorithm (Levenberg 1944; Marquardt 1963; Moré 1977).

The kinetic parameter can be estimated with intervals of 95% of confidence.

Simulations are performed using the adsorption kinetic models with the estimated

parameter to compare to each set of experimental data and, hence, to check the fit

accuracy. The coefficient of determination (R2) and Akaike information criterion

(AIC) are also calculated. The Student t-test is used to find out if the means of the

experimental data and of the predicted data by the model are significantly different.

Further, the χ2 and the Fisher exact test can be also performed to verify if variances

of the experimental and model data differ (Schwaab and Pinto 2007).

3.5 Conclusion

This chapter presented a general description of the adsorption kinetics in liquid

phase, considering batch and fixed-bed systems. For discontinuous batch adsorption

systems, it was verified that the kinetic curves can be represented by diffusional

mass transfer models and adsorption reaction models. Diffusional mass transfer

models are based on mass transfer steps, while adsorption reaction models consider

adsorption as a reaction. In this way, we believe that diffusional mass transfer

models are more suitable. For the breakthrough curves obtained in fixed-bed

systems, the same analogy can be made, being more useful the mass transfer-

based models. Furthermore, it was reviewed that LUB and BDST concepts are

adequate for design and scale-up of adsorption systems. Finally, several numerical

methods and parameter estimation techniques were presented and discussed in

order to better understand the treatment of the experimental adsorption data using

batch and fixed-bed columns.
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