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Abstract. DNA tiles serve as molecular components for the self-
assembly of programmable 2-dimensional patterns at the nanoscale. To
produce identical copies of a pre-assembled DNA tile pattern, we use
a theoretical framework of non enzymatic cross-coupled self-replication
system based on tile self-assembly model. This paper presents a kinetic
modelling of the pattern self-replication and analyses the influence of
physicochemical parameters of tile self-assembly process over the relia-
bility and replication gain. We demonstrate that the tile assembly errors,
introduced in tile patterns during their assembly, set a limit over the size
of a tile pattern that can be replicated exponentially and reliably.
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1 Introduction

Self-replication is a fundamental mechanism in biology, that nature applies to
create elegant molecular systems inexpensively using processes of growth and
selection. Application of this inspiration to engineer artificial molecular sys-
tems has been a constant pursuit of nanosciences. Gunter von Kiedorowski [10]
first introduced a minimal system of molecular self-replication, which typically
involves a three-step process. First, a template molecule assembles with few sub-
strate molecules resulting in an intermediate complex formation. Second, the
substrate molecules within the complex join together irreversibly by covalent
binding, and thereby forming a replica of the template. Third, the complex
molecule dissociates into two templates: the former template and the newly cre-
ated replica. Each of these templates can reiterate the three-step process adding
to the template population. The population have been observed to grow sub-
exponentially (parabolic) [16].

Template directed non-enzymatic self-replication has been used for the
synthesis of nucleic acid sequences using only linear organization of short
sequences of nucleic acids (primers). However, recent advances in structural
DNA self-assembly have opened up perspectives for the non-enzymatic self-
replication of two-dimensional (2-D) and three-dimensional (3-D) patterns of
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DNA [1,9,14,18,23]. A 2-D DNA pattern replication based on crystal growth fol-
lowed by random splitting has been experimentally demonstrated for the ampli-
fication of combinatorial information [15].

DNA tile self-assembly [20] is an emerging paradigm for nanostructure con-
struction and molecular scale computation. DNA tiles [19], the building blocks
of tile self-assembly, can be designed to interact with strength and specificity
for the assembly of logically and/or algorithmically directed periodic and ape-
riodic 2-D intricate patterns. For a theoretical modelling of tile assembly, Erik
Winfree first introduced an abstract Tile Assembly Model (aTAM) [20]. In the
aTAM framework, the assembly starts from a single seed tile and the pattern
grows in 2-D as more tiles adjoin one-by-one following a simple assembly rule —
the total binding strength of an incumbent tile should be greater than or equal
to a threshold value known as temperature parameter of assembly. However,
DNA tile assembly is essentially a physico-chemical process, where local reac-
tion temperature and tile concentration are the governing factors. Therefore, for
a realistic modelling of tile assembly process, Winfree introduced kinetic Tile
Assembly Model (kTAM) [21]. The kTAM considers each tile assembly step as a
reversible process governed by the tile concentration, local reaction temperature
and binding strengths of tiles. The model enables analysis of the assembly errors
and growth rate for a given tile assembly system.
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Fig. 1. A simplistic view of the tile pattern self-replication system: the self-replication
starts with a pre-assembled target tile pattern (a 4× 5 tile pattern is shown in gray);
a mold (shown in black) assembles around the South-West border of the pattern; a
cyclically generated inhibitor signal dissociates the mold and pattern, which initiate a
cross-coupled cycle of pattern self-replication.

A very high level abstract version of tile pattern self-replication system [6],
shown in Fig. 1, is designed using additional tiles, which self-assemble to form a
mold structure around the L-shaped South-West border of the target pattern.
The assembled mold consists of switching enabled tiles that are dynamically trig-
gered by an externally supplied inhibitor signal of DNA to dissociate the pattern



26 V.K. Gautam and R. Prasath

and mold templates. The dissociated mold and pattern structures further catal-
yse the assembly of new templates of patterns and mold structures, respectively.
The inhibitor signal is cyclically released by a chemical oscillator tuned to the
time intervals involved in the mold formation and pattern formation. Thus, the
entire process forms the basis of a cross-coupled self-replication system of 2-D
patterns of tiles.

In this paper, we derive a kinetic model for the population growth of pattern
self-replicator using chemical kinetic rates of tile assembly and disassembly in the
kTAM. Kinetic rates of tiles are governed by physicochemical parameters (local
assembly temperature, total binding strength and concentration of tiles), which
causes erroneous assembly of tiles. We analyse the impact of these parameters in
population growth dynamics of the pattern self-replicator and reliability of the
replicated patterns. Population growth, fidelity and size of replicating patterns
are important metrics that we investigate quantitatively using mathematical
modelling.

The remainder of the article is structured as follows: background of DNA
tile self-assembly, tile assembly models and tile pattern self-replication system
are described in Sect. 2. Section 3 presents kinetic model of the tile pattern self-
replicator. In Sect. 4, we present simulation results based on kinetic model, and
discuss design choices in terms of assembly error and pattern size. Section 5,
concludes the article.

2 Background

In this section we discuss briefly the background of the main concepts used in
this article. This includes: a brief introduction to the self-assembly mechanism
of DNA tile patterns, the abstract and kinetic modelling of tile assembly, and
previously introduced tile pattern self-replication system [6].

2.1 Self-assembly of Programmable DNA Tile Patterns

A connection between algorithmic self-assembly and computation was studied by
Wang in his theoretical tiling model [17]. The Wang Tiling theory demonstrates
the implementation of a Turing machine by a finite set of square tiles with four
colored edges.

Erik Winfree [20] applied the theoretical concepts of Wang tilling for the
realization of programmable self-assembly patterns using DNA molecular struc-
tures (DNA tiles [19]) as analogue to the Wang’s abstract tiles. DNA tiles serve
as building blocks of self-assembly for the construction of 2-D physical pat-
terns. DNA tiles consist of four (≈ 50 nucleotide) ss-DNA molecules, synthe-
sized for a given DNA tile design. Figure 2 illustrates the construction of a Dou-
ble Crossover (DX) molecular DNA tile with four DNA strands. As shown in
Fig. 2(a), each ss-DNA consists of a sequence of nucleotides (A, T, G, C). The
tiles self-assemble through the bonding of these ss-DNAs at room temperature.
The bonding process occurs when two complimentary strands meet and their
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Fig. 2. DX DNA tile structure (a) Four ss-DNA (b) Assembled DNA tile (c) Abstract
representation

base pairs: A-T and G-C, bind. Any left-over bases from each of the bonded
strands form a sticky end(s) — as shown in Fig. 2(b). As the term implies, this
end is available to “stick” or bond to another strand. DX molecular DNA tiles are
square shaped structures where sticky-ends are represented by their respective
square edges — as illustrated in Fig. 2(c).

2.2 Tile Self-assembly Models

The physical implementation of tile self-assembly in a wet-lab is often time-
consuming, expensive and challenging with respect to reproducibility of results.
Simulation of realistic models of DNA self-assembly provides a cheaper, faster
(and more reliable) media in which to explore and refine new avenues of research,
prior to experimentation. There are two simulation models of tile self-assembly,
developed by Winfree [13,20]: (1) The abstract Tile Assembly Model (aTAM),
and (2) The kinetic Tile Assembly Model (kTAM).

Abstract Tile Assembly Model (aTAM): The aTAM [20] is based on
Wang’s tiling theory [17], which requires creation of a finite set of square shape
tiles that are abstract representations of DX DNA-tile shown in Fig. 3(a). In
aTAM, a tile t is represented by a quadruple (σS(t), σW (t), σN (t), σE(t)), where
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σ ∈ Σ is glue type associated with the four sides (North(N), South(S), West(W),
East(E)) of a rotationally asymmetric unit square. The glue type, Σ, is a finite
set, which is used to derive a glue strength function (s : Σ × Σ → N) for a
legitimate tile association between two glues of tiles. The glue strength function
is symmetric, i.e., s(σ1, σ2) = s(σ2, σ1) ∀σ1, σ2 ∈ Σ.

A tile pattern assembly system (TPAS) T = (T, S, s, τ) consists of a finite set
T of tile types, an assembly S termed as seed assembly, a glue strength function s
and a temperature parameter τ ∈ Z+. A tile assembly system has a temperature
‘τ ’ if any larger structure of tiles cannot be dissociated into smaller assemblies
without breaking bonds of total strength at least ‘τ ’. Alternatively, a tile can
join the assembly as long as the sum of the strengths of the bonds that it makes
with tiles already in the assembly is at least τ .

Figure 3 illustrates the self-assembly process of the Sierpinski pattern [12,21]
at temperature 2 (τ = 2). The tile set comprises a seed tile, two boundary tiles
and four rule tiles - see Fig. 3(a). Tile edges are marked by non-negative integers
illustrating their respective glue strengths. The South and West glues of the tiles
are designed as inputs and the North and East glues are outputs.

Tile pattern assembly in the aTAM starts from a given seed structure that
nucleates the pattern formation which grows into a finite or infinite pattern as
more tiles join - see Fig. 3(b). Tiles join by forming bonds with strength at least
of τ . For example, in a τ = 2 assembly, each tile that binds with the growing
pattern of tiles needs an attachment of total binding strength ≥ 2. For a given
TPAS, a pattern assembly P is said to be terminal, if no tile can be added further
that satisfies the τ − stability criteria.

The aTAM has given insights to important theoretical aspects of the tile
assembly systems [3,13]: (1) what can or can’t be self-assembled?, and (2) if
something can be assembled, how efficient it could be?

The Kinetic Tile Assembly Model (kTAM): Tile binding in the tile self-
assembly is a reversible physico-chemical process that has been modelled using
the kTAM [20]. The rate of tile attachment at a binding site of an aggregate is
directly proportional to the tile concentration. The concentration of each type
of tile (except the seed tile) can be given by e−Gmc , where Gmc is the decrease
in entropy when a tile binds at a vacant site. Therefore, the forward reaction
rate (rf ) can be given by rf = kfe−Gmc where kf is the reaction rate constant.
Similarly, the tile detachment process is controlled by the energy required to
break any single tile-aggregate bond and denoted by Gse. The value of Gse

depends on the sticky end length (s) and the temperature (T ), where Gse ≈
(4000/T − 11)s. The tile reverse reaction rate involving b tile bonds is given by
rr,b = kfe−bGse .

A larger value of Gmc thus implies a lower tile concentration and consequently
a slower forward reaction rate (or vice versa). Similarly, a larger value of Gse

results in a slower detachment rate. The optimum growth rate with low error
rates happens near thermodynamic equilibrium (Gmc ≈ 2Gse) [21], and may be
given by r∗ ≈ rf − rr,2 and ε ≈ e−Gse , respectively. Therefore, a relation between
optimum growth rate and minimum error rate may be given by r∗ ≈ βε2 where,
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Fig. 3. Sierpinski pattern self-assembly. (a) Sierpinski tile set (XOR tile set). (b) Steps
of self-assembly of Sierpinski pattern of size 9× 9. (c) Kinetics of tile assembly in kTAM.

β = 0.75 × 106 /M/sec. Thus, any effort to reduce the error rate (ε) by tuning
physical parameters (Gmc and Gse) would result in a quadratic reduction of
the growth rate. However, error reduction without significant fall off in assembly
growth rate has been achieved by adding redundant tiles [8,21] and by protecting
tile’s inputs and outputs [5,11].

2.3 The Tile Pattern Self-replication System

Figure 4 shows the design of Tile Pattern Self-replication System (TPSS), earlier
introduced in [6]. The L-shaped seed of the target pattern (P) is highlighted with
a blue colour. The unique corner tile of the pattern is shown in red. Starting
with the pattern structure (left cycle), pattern-mold (P-M) complex forms as
CST attaches with the unique corner tile of the pattern, and further tiles from
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Fig. 4. Tile pattern self-replication system. (Color figure online)

the v-MTS and h-MTS sets assemble to form the vertical and horizontal arms
of the mold, respectively. The P-M complex is dissociated into the seed and
the mold (M) through external switching. The dissociated mold (M) serves as
a new seed to assemble a new P-M complex (right cycle) that subsequently
dissociates in the seed and the mold. Thus, the process initiates cross-coupled
cycles catalyzing the formation of one another.

Let a pre-assembled target pattern, P, be self-replicated. L-shaped South-
West border of the pattern P serves as seed, which enables entire rectangular
pattern of tiles to be uniquely identified by the glues placed on its interior border.
Considering that each tile in the pattern requires at least two bonds for a stable
attachment (a case of τ = 2 algorithmic tile self-assembly), the formation of
pattern from the L-shaped seed would be a terminal assembly process [2]. A
terminal assembly system forms a unique final structure from a set of supplied
components.

The replication process starts with a pre-assembled rectangular pattern (P),
Corner Super Tile (CST), and a set of Mold forming Tile Set (MTS). The MTS
consists of two subsets: (1) Vertical Mold forming Tile Set (v-MTS) assembles
to form a vertical double layer of the mold; (2) Horizontal Mold forming Tile
Set(h-MTS) assembles the horizontal arm of the mold.

We require that the target pattern contains a unique, red-coloured tile on
its lower-left corner position, which is not used on any other position inside the
pattern. Observe that the CST consists of eight tiles, and therefore it is stable
at temperature-2. The CST is designed to bind (using two strength-1 glues) on
the special red-coloured tile. Mold formation is initiated with the binding of the
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CST, and further proceeds as more tiles cooperatively join one by one until the
entire South-West boundary of the pattern structure is covered by a double layer
of tiles, creating a pattern-mold complex (P-M). Tiles forming the inner layer
of the mold are designed as SWET type (now shown in the above schematics)
with switch-enabled glue on the side that binds with the seed (pattern). The
assembled pattern-mold complex undergoes a controlled dissociation, splitting
into the Pattern P and the mold M structures. Observe that the dissociated mold
structure has two layers of tiles, thus ensuring its stability under temperature-2
assembly framework.

In the next replication cycle, the dissociated pattern structure (P) repeats
the left hand side pathway, and thereby, creates two (P-M) complexes, whereas
the dissociated mold structure (M) drives the right hand side pathway using tiles
from the PTS. Indeed, assuming we have at our disposal a tile set capable of
assembling the pattern, we use the mold to reassemble the complete pattern P.
Thus, by supplying the system with sufficiently many copies of the tiles within
the MTS and PTS tile sets, and by continuing the process for i complete cycles,
the replicator could theoretically produce 2i−1 copies of both the mold and
the pattern structures. In a potential experimental implementation, one has to
provide enough time for both the mold formation process (from a template
pattern) and the pattern formation process (using the mold as a seed). Then,
one adjusts the cycle of inhibitor signal supply, which triggers the pattern-mold
dissociation such as to be at least as long as the maximum of the two expected
time values.

3 Kinetic Model of the TPSS

In this section, we derive a simplified kinetic model of pattern self-replication
system using the kTAM. The kinetic model consists of two cross-coupled path-
ways as shown in Fig. 5 — the left hand side pathway I corresponds to the cycle
that is seeded with a target Pattern (P), whereas for the right hand side cycle
II, Mold (M) acts as a seed. Intermediate product of both assembly pathways is
Pattern-Mold (P-M) complex, which dissociates into copies of seed and mold.

Using the kTAM and its analytic model of kinetic trapping [20], macroscopic
kinetic rates 1 (k1 and k2) of assembly steps leading to P-M complex from seed
and mold are: k1 = r∗√

n2+4
and k2 = r∗

n
√
2
, respectively, where n denotes the size

of n × n pattern and r∗ is an optimal kinetic rate of tile assembly, as discussed
in Sect. 2.2. Kinetic rate of dissociation of P-M complexes is a DNA strand
displacement reaction. A typical kinetic rate of a toehold-mediated DNA strand
displacement process involving a toehold of 3 nucleotides (nt), and a 7 nt long
branch migration [22] is kd ≈ 105 M−1s−1.

Let number of copies of P, M and P-M structures at a time i are, s[i], m[i], and
sm[i], respectively. Therefore, under chemical equilibrium conditions, number of

1 Macroscopic kinetic rate refers to an approximate kinetic rate for a terminal assembly
process, as discussed in [4].
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Fig. 5. Kinetic model of pattern self-replication system of rectangular patterns

copies of P, M, and P-M complexes in discrete time are given in Eqs. (1) and (2).

s[i + 1] = m[I] = kdsm[i] (1)

sm[i] = k1s[i] + k2m[i − 1] − kdsm[i] (2)

Using Eqs. (1) and (2), the concentration of pattern-mold complexes after i
replication cycles is

sm[i] =
k1s[i] + k2m[i − 1]

1 + kd
(3)

From Eqs. (3) and (1), s[i + 1] and m[i] can be given as

s[i + 1] = m[i] =
kdk1

1 + kd
s[i] +

kdk2
1 + kd

m[i − 1] (4)

The coefficient terms, s[i] and m[i − 1] in Eq. (4), can be replaced with ka and
kb, respectively. The equivalent equation is given as below

s[i + 1] = kas[i] + kbm[i − 1] (5)

Replacing m[i − 1] by s[i − 1] in Eq. (5) gives the following difference equations
in discrete time.

s[i + 1] = kas[i] + kbs[i − 1] (6)

Applying z-transformation2 in Eq. (6), it turns into following quadratic equation
in the z-domain

z2 − kaz − kb = 0 (7)

2 z-transform is a linear operator that is applied to convert non-linear difference equa-
tions of time (i) domain into linear equations of frequency domain.
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Let λ1 and λ2 are the two roots of the quadratic equation (7): λ1 = ka+
√

k2
a+4kb

2

and λ2 = ka−
√

k2
a+4kb

2 . Hence, a general solution of Eq. (5) can be represented as

s[i] = c1λ
i
1 + c2λ

i
2 (8)

The c1 and c2 are arbitrary constants. For a replicator system supplied with
c copies of seeds in the start, s[0] = c and m[0] = 0, as mold is not yet assembled.
Putting i = 0 in Eq. (5), it gives s[1] = kac. Applying these boundary conditions
for i = 0 and i = 1 in (7), it gives

c = c1 + c2 (9)

kac = c1λ1 + c2λ2 (10)

Solving Eqs. (9) and (10) for c1 and c2, and putting these values in Eq. (8),
the general solution of the difference equation (6) is

s[i] =
(ka − λ2)c
(λ1 − λ2)

λi
1 − (ka − λ1)c

(λ1 − λ2)
λi
2 (11)

The expression of s[i] in Eq. (11) represents the population growth with
respect to replication cycles (i). Clearly, the population s[i] at a given repli-
cation cycle is proportional to the initially supplied seed concentration, and is
a polynomial in λ1 and λ2. Dynamics of the population growth is governed by
parameters: ka, kb, λ1, and λ2. These parameters depend on physicochemical
conditions (local assembly temperature (T), tile concentration (Gmc) and total
binding strength of tile (b and Gse)) of the tile self-assembly medium.

4 Results and Discussion

The kTAM based analysis of tile assembly has demonstrated the effect of physical
parameters over the growth rate and the error rate of tile assembly. It was
established that a target error rate can be achieved only at a certain growth rate.
Therefore, owing to the constraints of experimental feasibility, a proper choice
for an optimum error rate and its corresponding growth rate has to be made.
Herein, we analyse quantitatively the effect of these constraints over population
growth dynamics and reliability of pattern replicator.

In Fig. 6, λ1 is plotted against error rate and target pattern size using the
replication gain derived in Eq. (11).
For an exponential gain of self-replication, value of λ1 should be ≈ 2. From the
plot, it is evident that for an error rate (ε ≈ 5 × 10−3), λ1 ≈ 2. In Fig. 7, λ2

is plotted against error rate and target pattern size using mathematical model.
From the plot, it is evident that |λ2| < 1 for an error rate ε ≈ 5 × 10−3.

For a given set of kinetic parameter values of k1, k2 and kd, |λ1| is > 1, and
|λ2| is < 1. Therefore, an approximate population of self-replicating patterns
after many replication cycles i.e., i → ∞, can be given as

s[i] ≈ (ka − λ2)c
(λ1 − λ2)

λi
1 (12)
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Fig. 8. Exponential replication growth of pattern self-replication: c = 2 n = 18, and ε
= 5 × 10−3) (LHS); c = 1, n = 60, and ε = 10−2 (RHS).

For an approximate replication gain, derived in Eq. (12), we plotted the pat-
tern replication gain for replication cycles. Figure 8 shows exponential replica-
tion gains for two sets of parameters: initially introduced pre-assembled target
patterns (c), size of target pattern (n), and assembly error rate (ε).

5 Conclusion

In this study, we constructed a kinetic model of a tile pattern self-replication
system. Our model captures the dynamics of self-replicating tile patterns using
equivalent kinetic rates for the two cross-coupled cycles of the self-replicator. The
physico-chemical parameters of tile self-assembly influence the overall replication
dynamics of the tile pattern self-replication process. It is observed that both size
of target pattern and parameters should be carefully chosen so as to produce an
exponential self-replication gain.

The observations of this paper could be useful for an experimental
implementation of the pattern self-replication. To increase the robustness of
self-replicating patterns in error accumulating tile self-assembly medium, error-
correction tiles [7] can be used. A reliable self-replicator with error levels not
exceeding a minimum threshold may further open up new directions for inves-
tigation of fundamental principles behind reproduction and selection-driven
evolution.
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