
WOMBAT – A Generalization Approach
for Automatic Link Discovery

Mohamed Ahmed Sherif1(B), Axel-Cyrille Ngonga Ngomo1,2,
and Jens Lehmann3,4

1 R&D Department II, Computing Center,
University of Leipzig, 04109 Leipzig, Germany

{sherif,ngonga}@informatik.uni-leipzig.de
2 Data Science Group, University of Paderborn,

Pohlweg 51, 33098 Paderborn, Germany
ngonga@upb.de

3 Computer Science Institute, University of Bonn, Römerstr. 164,
53117 Bonn, Germany

jens.lehmann@cs.uni-bonn.de
4 Fraunhofer IAIS, Schloss Birlinghoven, 53757 Sankt Augustin, Germany

jens.lehmann@iais.fraunhofer.de

Abstract. A significant portion of the evolution of Linked Data datasets
lies in updating the links to other datasets. An important challenge
when aiming to update these links automatically under the open-world
assumption is the fact that usually only positive examples for the links
exist. We address this challenge by presenting and evaluating Wombat,
a novel approach for the discovery of links between knowledge bases that
relies exclusively on positive examples. Wombat is based on generali-
sation via an upward refinement operator to traverse the space of link
specification. We study the theoretical characteristics of Wombat and
evaluate it on 8 different benchmark datasets. Our evaluation sug-
gests that Wombat outperforms state-of-the-art supervised approaches
while relying on less information. Moreover, our evaluation suggests
that Wombat’s pruning algorithm allows it to scale well even on large
datasets.

1 Introduction

The Linked Open Data Cloud has grown from a mere 12 datasets at its beginning
to a compendium of more than 9,000 public RDF data sets.1 In addition to the
number of the datasets published growing steadily, we also witness the size of single
datasets growing with each new edition. For example, DBpedia has grown from 103
million triples describing 1.95 million things (DBpedia 2.0) to 583 million triples
describing 4.58 million things (DBpedia 2014) within 7 years. This growth engen-
ders an increasing need for automatic support when maintaining evolving datasets.

1 http://lodstats.aksw.org.

c© Springer International Publishing AG 2017
E. Blomqvist et al. (Eds.): ESWC 2017, Part I, LNCS 10249, pp. 103–119, 2017.
DOI: 10.1007/978-3-319-58068-5 7

http://lodstats.aksw.org

104 M.A. Sherif et al.

One of the most crucial tasks when dealing with evolving datasets lies in updat-
ing the links from these data sets to other data sets. While supervised approaches
have been devised to achieve this goal, they assume the provision of both positive
and negative examples for links [1]. However, the links available on the Data Web
only provide positive examples for relations and no negative examples, as the open-
world assumption underlying the Web of Data suggests that the non-existence of
a link between two resources cannot be understood as stating these two resources
are not related. Consequently, state-of-the-art supervised learning approaches for
link discovery can only be employed if the end users are willing to provide the algo-
rithms with information that is generally not available on the Linked Open Data
Cloud, i.e., with negative examples.

We address this drawback by proposing the first approach for learning links
based on positive examples only. Our approach, dubbed Wombat, is inspired
by the concept of generalisation in quasi-ordered spaces. Given a set of positive
examples we aim to find a classifier that covers a large number of positive exam-
ples (i.e., achieves a high recall on the positive examples) while still achieving a
high precision. We use Link Specifications (LS, see Sect. 2) as classifiers [1,7,14].
We are thus faced with the challenge of using various similarity metrics, accep-
tance thresholds and nested logical combinations of those when learning. The
contributions of this paper are: (1) We provide the first approach for learning
LS that is able to learn links from positive examples only. (2) Our approach
is based on an upward refinement operator for which we analyse its theoretical
characteristics. (3) We use the characteristics of our operator to devise a pruning
approach and improve the scalability of Wombat. (4) We evaluate Wombat on
8 benchmark datasets and show that in addition to needing less training data,
it also outperforms the state of the art in most cases.

2 Preliminaries

The aim of link discovery (LD) is to discover the set {(s, t) ∈ S × T : Rel(s, t)}
provided an input relation Rel and two sets S (source) and T (target) of RDF
resources. To achieve this goal, declarative LD frameworks rely on LS, which
describe the conditions under which Rel(s, t) can be assumed to hold for a pair
(s, t) ∈ S × T . Several grammars have been used for describing LS in previous
works [6,15,19]. In general, these grammars assume that LS consist of two types
of atomic components: similarity measures m, which allow comparing property
values of input resources and operators op, which can be used to combine these
similarities to more complex LS. Without loss of generality, we define a similarity
measure m as a function m : S×T → [0, 1]. An example of a similarity measure is
the edit similarity dubbed edit2 which allows computing the similarity of a pair
(s, t) ∈ S ×T with respect to the properties ps of s and pt of t. We use mappings
M ⊆ S × T to store the results of the application of a similarity function to
S × T or subsets thereof. We denote the set of all mappings as M and the set
2 We define the edit similarity of two strings s and t as (1 + lev(s, t))−1, where lev

stands for the Levenshtein distance.

Wombat – A Generalization Approach for Automatic Link Discovery 105

Fig. 1. Example of a complex
LS. The filter nodes are rectangles
while the operator nodes are cir-
cles. :socID stands for social secu-
rity number.

Table 1. Link specification syntax and
semantics

LS [[LS]]M

f(m, θ) {(s, t)|(s, t) ∈ M ∧ m(s, t) ≥ θ}
L1 � L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) ∈ [[L2]]M}
L1 � L2 {(s, t)|(s, t) ∈ [[L1]]M ∨ (s, t) ∈ [[L2]]M}
L1\L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) /∈ [[L2]]M}

of all LS as L. We define a filter as a function f(m, θ). We call a specification
atomic when it consists of exactly one filtering function. A complex specification
can be obtained by combining two specifications L1 and L2 through an operator
that allows merging the results of L1 and L2. Here, we use the operators �, �
and\ as they are complete and frequently used to define LS. An example of a
complex LS is given in Fig. 1.

We define the semantics [[L]]M of a LS L w.r.t. a mapping M as given in
Table 1. Those semantics are similar to those used in languages like SPARQL,
i.e., they are defined extensionally through the mappings they generate. The
mapping [[L]] of a LS L with respect to S × T contains the links that will be
generated by L. A LS L is subsumed by L′, denoted by L � L′, if for all mappings
M , we have [[L]]M ⊆ [[L′]]M . Two LS are equivalent, denoted by L ≡ L′ iff L � L′

and L′ � L. Subsumption (�) is a partial order over L.

3 Constructing and Traversing Link Specifications

The goal of our learning approach is to learn a specification L that generalizes
a mapping M ⊆ S × T which contains a set of pairs (s, t) for which Rel(s, t)
holds. Our approach consists of two main steps. First, we aim to derive initial
atomic specifications Ai that achieve the same goal. In a second step, we combine
these atomic specifications to the target complex specification L by using the
operators �, � and \. In the following, we detail how we carry out these two
steps.

3.1 Learning Atomic Specifications

The goal here is to derive a set of initial atomic specifications {A1, . . . , An} that
achieves the highest possible F-measure given a mapping M ⊆ S × T which
contains all known pairs (s, t) for which Rel(s, t) holds. Given a set of similarity
functions mi, the set of properties Ps of S and the set of properties Pt of T ,
we begin by computing the subset of properties from S and T that achieve a
coverage above a threshold τ ∈ [0, 1], where the coverage of a property p for a
knowledge base K is defined as

coverage(p) =
|{s : (s, p, o) ∈ K}|

|{s : ∃q : (s, q, o) ∈ K}| . (1)

106 M.A. Sherif et al.

Now for all property pairs (p, q) ∈ Ps × Pt with coverage(p) ≥ τ and
coverage(q) ≥ τ , we compute the mappings Mij = {(s, t) ∈ S × T : mij(s, t) ≥
θj}, where mij compares s and t w.r.t. p and q and Mij is maximal w.r.t. the
F-measure it achieves when compared to M . To this end, we apply an itera-
tive search approach. Finally, we select Mij as the atomic mapping for p and
q. Thus, we return as many atomic mappings as property pairs with sufficient
coverage. Note that this approach is not quintessential for Wombat and can
thus be replaced with any approach of choice which returns a set of initial LS
that is to be combined.

3.2 Combining Atomic Specifications

After deriving atomic LS as described above, Wombat computes complex speci-
fications by using an approach based on generalisation operators. The basic idea
behind these operators is to perform an iterative search through a solution space
based on a score function. Formally, we rely on the following definitions:

Definition 1 ((Refinement) Operator). In the quasi-ordered space (L,�),
we call a function from L to 2L an (LS) operator. A downward (upward) refine-
ment operator ρ is an operator, such that for all L ∈ L we have that L′ ∈ ρ(L)
implies L′ � L (L � L′). L′ is called a specialisation (generalisation) of L.
L′ ∈ ρ(L) is usually denoted as L �ρ L′.

Definition 2 (Refinement Chains). A refinement chain of a refinement oper-
ator ρ of length n from L to L′ is a finite sequence L0, L1, . . . , Ln of LS, such
that L = L0, L

′ = Ln and ∀i ∈ {1 . . . n}, Li ∈ ρ(Li−1). This refinement chain
goes through L′′ iff there is an i (1 ≤ i ≤ n) such that L′′ = Li. We say that L′′

can be reached from L by ρ if there exists a refinement chain from L to L′′. ρ∗(L)
denotes the set of all LS which can be reached from L by ρ. ρm(L) denotes the
set of all LS which can be reached from L by a refinement chain of ρ of length m.

Definition 3 (Properties of refinement operators). An operator ρ is
called (1) (locally) finite iff ρ(L) is finite for all LS L ∈ L; (2) redundant iff
there exists a refinement chain from L ∈ L to L′ ∈ L, which does not go through
(as defined above) some LS L′′ ∈ L and a refinement chain from L to L′ which
does go through L′′; (3) proper iff for all LS L ∈ L and L′ ∈ L, L′ ∈ ρ(L)
implies L
≡ L′. An LS upward refinement operator ρ is called weakly complete
iff for all LS ⊥ � L we can reach a LS L′ with L′ ≡ L from ⊥ (most specific
LS) by ρ.

We designed two different operators for combining atomic LS to complex
specifications: The first operator takes an atomic LS and uses the three logical
connectors to append further atomic LS. Assuming that (A1, . . . , An) is the set
of atomic LS found, ϕ can be defined as follows:

ϕ(L) =

{⋃n
i=1 Ai if L = ⊥

(
⋃n

i=1 L � Ai) ∪ (
⋃n

i=1 L � Ai) ∪ (
⋃n

i=1 L\Ai) otherwise

Wombat – A Generalization Approach for Automatic Link Discovery 107

Fig. 2. Definition of the refinement operator ψ.

This naive operator is not a refinement operator (neither upward nor downward).
Its main advantage lies in its simplicity allowing for a very efficient implementa-
tion. However, it cannot reach all specifications, e.g., a specification of the form
(A1 �A2)� (A3 �A4) cannot be reached. Examples of chains generated by ϕ are
as follows:

1. ⊥ �ϕ A1 �ϕ A1 � A2 �ϕ (A1 � A2) \ A3

2. ⊥ �ϕ A2 �ϕ A2 � A3 �ϕ (A2 � A3) \ A4

The second operator, ψ, uses a more sophisticated expansion strategy in order
to allow learning arbitrarily nested LS and is shown in Fig. 2. Less formally, the
operator works as follows: It takes a LS as input and makes a case distinction
on the type of LS. Depending on the type, it performs the following actions:

– The ⊥ LS is refined to the set of all combinations of \ operations. This set
can be large and will only be built iteratively (as required by the algorithm)
with at most approx. n2 refinements per iteration (see the next section for
details).

– In LS of the form A1 \ A2, ψ can drop the second part in order to generalise.
– If the LS is a conjunction or disjunction, the operator can perform a recursion

on each element of the conjunction or disjunction.
– For LS of any type, a disjunction with an atomic LS can be added.

Below are two example refinement chains of ψ:

1. ⊥ �ψ A1 \ A2 �ψ A1 �ψ A1 � A2 \ A3

2. ⊥ �ψ A1\A2�A3\A4 �ψ A1�A3\A4 �ψ A1�A3 �ψ (A1�A3)�(A5\A6)

ψ is an upward refinement operator with the following properties.

Proposition 1. ψ is an upward refinement operator.

Proof. For an arbitrary LS L, we have to show for any element L′ ∈ ψ(L) that
L � L′ holds. The proof is straightforward by showing that L′ cannot generate
less links than L via case distinction and structural induction over LS:

108 M.A. Sherif et al.

– L = ⊥: Trivial.
– L is atomic: Adding a disjunction cannot result in less links (this also holds

for the cases below).
– L is of the form L1 \ L2: L′ = L1 cannot result in less links.
– L is a conjunction / disjunction: L′ cannot result in less links by structural

induction. ��
Proposition 2. ψ is weakly complete.

Proof. To show this, we have to show that an arbitrary LS L can be reached from
the ⊥ LS. First, we convert everything to negation normal form by pushing \
inside, e.g. LS of the form L1\(L2�L3) are rewritten to (L1\L2)�(L1\L3) and LS
of the form L1\(L2�L3) are rewritten to (L1\L2)�(L1\L3) exhaustively. We then
further convert the LS to conjunction normal including an exhaustive application
of the distribute law, i.e., conjunctions cannot be nested within disjunctions. The
resulting LS is dubbed L′ and equivalent to L. We show that L′ can always be
reached from ⊥ via induction over its structure:

– L′ = ⊥: Trivial via the empty refinement chain.
– L′ = A (atomic): Reachable via ⊥ �ψ A \ A′ �ψ A.
– L′ = A1 \ A2 (atomic negation): Reachable directly via ⊥ �ψ A1 \ A2.
– L′ is a conjunction with m elements: ⊥ �ψ Ai1 \ Aj1 � · · · � Aim \ Ajm where

an element Aik \Ajk is chosen as follows: Let the k-th element of conjunction
L′ be L′′.

• If L′′ is an atomic specification A, then Aik = A (Ajk can be arbitrarily).
• If L′′ is an atomic negation A1 \ A2, then Aik = A and Ajk = A2.
• If L′′ is a disjunction, the first element of this disjunction falls into one

the above two cases and Aik and Ajk can be set as described there.
Each element of L′′ is then further refined to L′ as follows:

• If L′′ is an atomic specification A: A \ Ajk is refined to A.
• If L′′ is an atomic negation A1 \A2: No further refinements are necessary.
• If L′′ is a disjunction. The first element of the disjunction is first treated

according to the two cases above. Subsequent elements of the disjunction
are either atomic LS or atomic negation and can be added straightfor-
wardly as the operator allows adding disjunctive elements to any non-⊥
LS.

Please note that the case distinction is exhaustive as we assume L′ is in con-
junctive negation normal form, i.e., there are no disjunctions on the outer level,
negation is always atomic, conjunctions are not nested within other conjunction
and elements of disjunctions within conjunctions cannot be conjunctions. ��
Proposition 3. ψ is finite, not proper and redundant.

Proof. Finiteness: There are only finitely many atomic LS. Hence, there are
only finitely many atomic negations and, consequently, finitely many possible
conjunctions of those. Consequently, ψ(⊥) is finite. The finiteness of ψ(L) with
L
= ⊥ is straightforward.

Wombat – A Generalization Approach for Automatic Link Discovery 109

Properness: The refinement chain ⊥ �∗
ψ A1 � A2 �∗

ψ (A1 � A2) � A2 is a
counterexample.

Redundancy : The two refinement chains A1 � A3 �∗
ψ (A1 � A2) � A3 �∗

ψ

(A1 �A2)� (A3 �A4) and A1 �A3 �∗
ψ A1 � (A3 �A4) �∗

ψ (A1 �A2)� (A3 �A4)
are a counterexample. ��

Naturally, the restrictions of ψ (being redundant and not proper) raise the
question whether there are LS refinement operators satisfying all theoretical
properties:

Proposition 4. There exists a weakly complete, finite, proper and non-
redundant refinement operator in L.

Proof. Let C be the set of LS in L in conjunctive negation normal form without
any LS equivalent to ⊥. We define the operator α as α(⊥) = C and α(L) = ∅ for
all L
= ⊥. α is obviously complete as any LS has an equivalent in conjunctive
negation normal form. It is finite as S can be shown to the finite with an extended
version of the argument in the finiteness proof of ψ. α is trivially non-redundant
and it is proper by definition. ��

The existence of an operator which satisfies all considered theoretical criteria
of a refinement operator is an artifact of only finitely many semantically inequiv-
alent LS existing in L. This set is however extremely large and not even small
fractions of it can be evaluated in all but very simple cases. For example, the
operator α as α(⊥) = C and α(L) = ∅ for all L
= ⊥ is trivially non-redundant
and it is proper by definition. Such an operator α is obviously not useful as it
does not help structuring the search space. Providing a useful way to structure
the search space is the main reason for refinement operators being successful for
learning in other complex languages as it allows to gradually converge towards
useful solutions while being able to prune other paths which cannot lead to
promising solutions (explained in the next section). This is a reason why we
sacrificed properness and redundancy for a better structure of the search space.

4 The WOMBAT Algorithm

We have now introduced all ingredients necessary for defining the Wombat algo-
rithms. The first algorithm, which we refer to as simple version, uses the oper-
ator ϕ, whereas the second algorithm, which we refer to as complete, uses the
refinement operator ψ. The complete algorithm has the following specific char-
acteristics: First, while ψ is finite, it would generate a prohibitively large number
of refinements when applied to the ⊥ concept. For that reason, those refinements
will be computed stepwise as we will illustrate below. Second, as ψ is an upward
refinement operator it allows to prune parts of the search space, which we will
also explain below. We only explain the implementation of the complex Wom-
bat algorithm as the other is a simplification excluding those two characteristics.

Algorithm 1 shows the individual steps of Wombat complete. Our approach
takes the source dataset S, the target dataset T , examples E ⊆ S × T as well as

110 M.A. Sherif et al.

Algorithm 1. Wombat Learning Algorithm
Input: Sets of resources S and T ; examples E ⊆ S × T ; property coverage

threshold τ ; set of similarity functions F
1 A ←− null (the list of initial atomic metrics);
2 i ←− 1 ;
3 foreach property ps ∈ S do
4 if coverage(ps) ≥ τ then
5 foreach property pt ∈ T do
6 if coverage(pt) ≥ τ then
7 Find atomic metric m(ps, pt) that leads to highest F-measure;
8 Optimize similarity threshold for m(ps, pt) to find best mapping

Ai;
9 Add Ai to A;

10 i ←− i + 1;

11 Γ ←− ⊥ (initiate search tree Γ to the root node ⊥);
12 Fbest ←− 0, Lbest ←− null;
13 while termination criterion not met do
14 Choose the node with highest scoring LS L in Γ ;
15 if L == ⊥ then
16 foreach Ai, Aj ∈ A, where i �= j do
17 Only add refinements of form Ai \ Aj ;

18 else
19 Apply operator to L;
20 if L is a refinement of ⊥ then
21 foreach Ai, Aj ∈ A, where i �= j do
22 In addition to refinements, add conjunctions with specifications

of the form Ai \ Aj as siblings;

23 foreach refinement L′ do
24 if L′ is not already in the search tree Γ then
25 Add L′ to Γ as children of the node containing L;

26 Update Fbest and Lbest;
27 if Fbest has increased then
28 foreach subtree t ∈ Γ do
29 if Fbest > Fmax(t) then
30 Delete t;

31 Return Lbest;

the property coverage threshold and the set of considered similarity functions as
input. In Line 3, the property matches are computed by optimizing the threshold
for properties that have the minimum coverage (Line 7) as described in Sect. 3.1.
The main loop starts in Line 13 and runs until a termination criterion is satisfied,
e.g. (1) a fixed number of LS has been evaluated, (2) a certain time has elapsed,

Wombat – A Generalization Approach for Automatic Link Discovery 111

(3) the best F-score has not changed for a certain time or (4) a perfect solution
has been found. Line 14 states that a heuristic-based search strategy is employed.
By default, we employ the F-score directly. More complex heuristics introducing
a bias towards specific types of LS could be encoded here. In Line 15, we make
a case distinction: Since the number of refinements of ⊥ is extremely high and
not feasible to compute in most cases, we perform a stepwise approach: In the
first step, we only add simple LS of the form Ai \Aj as refinements (Line 17). In
Line 22, we add more complex conjunctions if the simpler forms are promising.
Apart from this special case, we apply the operator directly. Line 24 updates
the search tree by adding the nodes obtained via refinement. For redundancy
elimination, we only add those nodes to the search tree which are not already
contained in it.

The subsequent part starting from Line 26 defines our pruning procedure:
Since ψ is an upward refinement operator, we know that the set of links generated
by a child node is a superset of or equal to the set of links generated by its parent.
Hence, while both precision and recall can improve in subsequent refinements,
they cannot rise arbitrarily. Precision is bound as false positives cannot disappear
during generalisation. Furthermore, the achievable recall rmax is that of the most
general constructable LS, i.e., A =

⋃
Ai This allows to compute an upper bound

on the achievable F-score. In order to do so, we first build a set S′ with those
resources in S occurring in the input examples E as well as a set T ′ with those
resources in T occurring in E. The purpose of those is to restrict the computation
of F-score to the fragment S′ × T ′ ⊆ S × T relevant for example set E. We can
then compute an upper bound of precision of a LS L as follows:

pmax(L) =
|E|

|E| + |{(s, t) | (s, t) ∈ [[L]], s ∈ S′ or t ∈ T ′} \ E|
Fmax is then computed as the F-measure obtained with recall rmax and precision
pmax, i.e., Fmax = 2pmaxrmax

pmax+rmax
. It is an upper bound for the maximum achievable

F-measure of any node reachable via refinements. We can disregard all nodes
in the search tree which have a maximum achievable F-score that is lower than
the best F-score already found. This is implemented in Line 28. The pruning is
conservative in the sense that no solutions are lost. In the evaluation, we give
statistics on the effect of pruning. Wombat ends by returning Lbest as the best
LS found, which is the specification with the highest F-score. In case of ties, we
prefer shorter specifications over long ones. Should the tie persist, then we prefer
specifications that were found early.

Proposition 5. Wombat is complete, i.e., it will eventually find the LS with
the highest F-measure within L.

Proof. This is a consequence of the weak completeness of ψ and the fact that the
algorithm will eventually generate all refinements of ψ. For the latter, we have
to look at the refinement of ⊥ as a special case since otherwise a straightforward
application of ψ is used. For the refinements of ⊥ it is easy to show via induction
over the number of conjunctions in refinements that any element in ψ(⊥) can be

112 M.A. Sherif et al.

reached via the algorithm. (The pruning is conservative and only prunes nodes
never leading to better solutions.) ��

5 Evaluation

We evaluated our approach using 8 benchmark datasets. Five of these bench-
marks were real-world datasets while three were synthetic. The real-world inter-
linking tasks used were those in [9]. The synthetic datasets were from the OAEI
2010 benchmark3. All experiments were carried out on a 64-core 2.3 GHz PC run-
ning OpenJDK 64-Bit Server 1.7.0 75 on Ubuntu 14.04.2 LTS. Each experiment
was assigned 20 GB RAM.

For testing Wombat against the benchmark datasets in both its simple and
complete version, we used the jaccard, trigrams, cosine and qgrams similarity
measures. We used two termination criteria: Either a LS with F-measure of 1
was found or a maximal depth of refinement (10 resp. 3 for the simple resp.
complete version) was reached. This variation of the maximum refinement trees
sizes between the simple and complete version was because Wombat complete
adds a larger number of nodes to its refinement tree in each level. The coverage
threshold τ was set to 0.6. A more complete list of evaluation results are available
at the project web site.4 Altogether, we carried out 6 sets of experiments to
evaluate Wombat.

In the first set of experiments, we compared the average F-Measure achieved
by the simple and complete versions of Wombat to that of four other state-
of-the-art LS learning algorithms within a 10-fold cross validation setting. The
other four LS learning algorithms were Eagle [15] as well as the linear, con-
junctive and disjunctive versions of Euclid [16]. Eagle was configured to run
100 generations. The mutation and crossover rates were set to 0.6 as in [15]. To
address the non-deterministic nature of Eagle, we repeated the whole process
of 10-fold cross validation 5 time and present the average results. Euclid’s grid
size was set to 5 and 100 iterations were carried out as in [16]. The results of the
evaluation are presented in Table 2. The simple version of Wombat was able to
outperform the state-of-the-art approaches in 4 out of the 8 data sets and came
in the second position in 2 datasets. Wombat complete was able to achieve the
best F-score in 4 data sets and achieve the second best F-measure in 3 datasets.
On average, both versions of Wombat were able to achieve an F-measure of
0.9, by which Wombat outperforms the three version of Euclid by an average
of 11%. While Wombat was able to achieve the same performance of Eagle in
average, Wombat is still to be preferred as (1) Wombat only requires positive
examples and (2) Eagle is indeterministic by nature.

3 http://oaei.ontologymatching.org/2010/.
4 https://github.com/AKSW/LIMES/tree/master/evaluationsResults/wombat.

http://oaei.ontologymatching.org/2010/
https://github.com/AKSW/LIMES/tree/master/evaluationsResults/wombat

Wombat – A Generalization Approach for Automatic Link Discovery 113

Table 2. 10-fold cross validation F-measure results.

Dataset Wombat
Simple

Wombat
Complete

Euclid
Linear

Euclid
Conjunction

Euclid
Disjunction

Eagle

Person 1 1.00 1.00 0.64 0.97 1.00 0.99

Person 2 1.00 0.99 0.22 0.78 0.96 0.94

Restaurants 0.98 0.97 0.97 0.97 0.97 0.97

DBLP-ACM 0.97 0.98 0.98 0.98 0.98 0.98

Abt-Buy 0.60 0.61 0.06 0.06 0.52 0.65

Amazon-GP 0.70 0.67 0.59 0.71 0.73 0.71

DBP-LMDB 0.99 1.00 0.99 0.99 0.99 0.99

DBLP-GS 0.94 0.94 0.90 0.91 0.91 0.93

Average 0.90 0.90 0.67 0.80 0.88 0.90

For the second set of experiments, we implemented an evaluation protocol
based on the assumptions made at the beginning of this paper. Each input
dataset was split into 10 parts of the same size. Consequently, we used 3 parts
(30%) of the data as training data and the rest 7 parts (70%) for testing. This
was to implement the idea of the dataset growing and the specification (and
therewith the links) for the new version of the dataset having to be derived by
learning from the old dataset. During the learning process, the score function
was the F-measure achieved by each refinement of the portion of the training
data related to S × T selected for training (dubbed S′ × T ′ previously). The
F-measures reported are those achieved by LS on the test dataset. We used
the same settings for Eagle and Euclid as in the experiments before. The
results (see Table 3) show clearly that our simple operator outperforms all other
approaches in this setting. Moreover, the complete version of Wombat reaches
the best F-measure on 2 datasets and the second-best F-measure on 3 datasets.
This result of central importance as it shows that Wombat is well suited for
the task for which it was designed. Interestingly, our approach also outperforms
the approaches that rely on negative examples (i.e. Euclid and Eagle). The
complete version of Wombat seems to perform worse than the simple version
because it can only explore a tree of depth 3. However, this limitation was
necessary to test both implementations using the same hardware.

In the third set of experiments, we measured the effect of increasing the
amount of training data on the precision, recall and F-score achieved by both
simple and complete versions of Wombat. The results are presented in Fig. 3.
Our results suggest that the complete version of Wombat is partly more stable
in its results (see ABT-Buy and DBLP-Google Scholar) and converges faster
towards the best solution that it can find. This suggests that once trained on
a dataset, our approach can be used on subsequent versions of real datasets,
where a small number of novel resources is added in each new version, which

114 M.A. Sherif et al.

Table 3. A comparison of Wombat F-measure against 4 state-of-the-art approaches
on 8 different benchmark datasets using 30% of the original data as training data.

Dataset Wombat
Simple

Wombat
Complete

Euclid
Linear

Euclid
Conjunction

Euclid
Disjunction

Eagle

Person 1 1.00 1.00 0.95 0.96 0.99 0.92

Person 2 0.99 0.79 0.80 0.82 0.88 0.69

Restaurants 0.97 0.88 0.87 0.84 0.89 0.88

DBLP-ACM 0.95 0.91 0.88 0.89 0.91 0.85

Abt-Buy 0.44 0.40 0.29 0.29 0.29 0.27

Amazon-GP 0.54 0.41 0.31 0.30 0.32 0.32

DBP-LMDB 0.98 0.98 0.97 0.96 0.97 0.89

DBLP-GS 0.91 0.74 0.83 0.76 0.74 0.69

Average 0.85 0.76 0.74 0.73 0.75 0.69

is the problem setup considered in this paper. On the other hand, the simple
version is able to find better LS as it can explore longer sequences of mappings.

In the fourth set experiments, we measured the learning time for each of the
benchmark datasets. The results are also presented in Fig. 3. As expected, the
simple approach is time-efficient to run even without any optimization. While
the complete version of Wombat without pruning is significantly slower (up to
1 order of magnitude), the effect of pruning can be clearly seen as it reduces the
runtime of the algorithm while also improving the total space that the complete
version of Wombat can explore. These results are corroborated by our fifth set
of experiments, in which we evaluated the pruning technique of the complete ver-
sion of Wombat. In those experiments, for each of aforementioned benchmark
datasets we computed what we dubbed as pruning factor. The pruning factor
is the number of searched nodes (search tree size plus pruned nodes) divided
by the maximum size of the search tree (which we set to 2000 nodes in this
set of experiments). The results are presented in Table 5. Our average pruning
factor of 2.55 shows that we can discard more than 3000 nodes while learning
specifications.

In a final set of experiments, we compared the two versions of Wom-
bat against the 2 systems proposed in [8]. To be comparable, we used the same
evaluation protocol in [8], where 2% of the gold standard was used as training
data and the remaining 98% of the gold standard as test data. The results (pre-
sented in Table 4) suggests that Wombat is capable of achieving better or equal
performance in 4 out of the 6 evaluation data sets. While Wombat achieved infe-
rior F-measures for the other 2 data sets, it should be noted that the competing

Wombat – A Generalization Approach for Automatic Link Discovery 115

20% 40% 60% 80% 100%
10 2

10 3

10 4

10 5

0

0.2

0.4

0.6

0.8

1

(a) Person 1

20% 40% 60% 80% 100%
10 1

10 2

10 3

10 4

0

0.2

0.4

0.6

0.8

1

(b) Person 2

20% 40% 60% 80% 100%
10 1

10 2

10 3

10 4

0

0.2

0.4

0.6

0.8

1

(c) Restaurants

20% 40% 60% 80% 100%
10 3

10 4

10 5

10 6

10 7

0

0.2

0.4

0.6

0.8

1

(d) ABT–Buy

20% 40% 60% 80% 100%
10 3

10 4

10 5

10 6

0

0.1

0.2

0.3

0.4

0.5

(e) Amazon–Google Products
20% 40% 60% 80% 100%

10 2

10 3

10 4

10 5

10 6

10 7

0

0.2

0.4

0.6

0.8

1

(f) DBLP–ACM

20% 40% 60% 80% 100%
10 2

10 3

10 4

0

0.2

0.4

0.6

0.8

1

(g) DBpedia–LinkedMDB

20% 40% 60% 80% 100%
10 3

10 4

10 5

10 6

10 7

0

0.2

0.4

0.6

0.8

1

(h) DBLP–Google Scholar

Time for WOMBAT simple
Time for WOMBAT complete with pruning
Time for WOMBAT complete without pruning
F-Measure for WOMBAT simple
F-Measure for WOMBAT complete

Fig. 3. Runtime and F-measure results of Wombat. The x-axis represents the fraction
of positive examples from the gold standard used for training. The left y-axis represents
the learning time in milliseconds with time out limit of 107 ms, processes running
above this upper limit were terminated, all time plots are in log scale. The right y-axis
represents the F-measure values.

systems are optimised for a low number of examples and they also get nega-
tive examples as input. Overall, these results suggest that our approach can
generalise a small number of examples to a sensible LS.

Overall, our results show that ψ and ϕ are able to learn high-quality LS
using only positive examples. When combined with our pruning algorithm, the
complete version of ψ achieves runtimes that are comparable to those of ϕ. Given
its completeness, ψ can reach specifications that simply cannot be learned by ϕ
(see Fig. 4 for an example of such a LS). However, for practical applications, ϕ
seems to be a good choice.

116 M.A. Sherif et al.

Table 4. Comparison of Wombat F-measure against the approaches proposed in [8]
on 6 benchmarks using 2% of the original data as training data.

Dataset Pessimistic Re-weighted Simple Complete

Persons 1 1.00 1.00 1.00 1.00

Persons 2 0.97 1.00 0.80 0.84

Restaurants 0.95 0.94 0.98 0.88

DBLP-ACM 0.93 0.95 0.94 0.94

Amazon-GP 0.39 0.43 0.53 0.45

Abt-Buy 0.36 0.37 0.37 0.36

Average 0.77 0.78 0.77 0.74

Table 5. The pruning factor of the benchmark datasets.

Dataset 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Person 1 1.57 2.13 1.85 2.13 2.13 2.13 2.13 2.13 2.13 2.13

Person 2 1.29 1.29 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57

Restaurant 1.17 1.45 1.17 1.45 1.45 1.45 1.45 1.45 1.45 1.45

DBLP-ACM 6.23 5.58 6.79 6.85 6.85 6.85 6.79 6.79 6.93 6.79

Abt-Buy 3.38 3.00 3.00 3.39 3.39 3.39 1.79 3.39 3.39 3.39

Amazon-GP 1.14 1.38 1.33 1.37 1.38 1.45 1.54 1.59 1.60 1.60

DBP-LMDB 1.00 1.86 2.86 1.86 1.86 2.33 2.36 2.36 2.36 2.36

DBLP-GS 1.79 1.93 2.01 2.36 2.45 1.66 2.44 2.26 1.97 2.05

6 Related Work

There is a significant body of related work on positive only learning, which we can
only briefly cover here. The work presented by [13] showed that logic programs
are learnable with arbitrarily low expected error from positive examples only.
[18] introduced an algorithm for learning from labeled and unlabeled documents
based on the combination of Expectation Maximization (EM) and a naive Bayes
classifier. [2] provides an algorithm for learning from positive and unlabeled
examples for statistical queries. The pLSA algorithm [24] extends the original
unsupervised probabilistic latent semantic analysis, by injecting a small amount
of supervision information from the user.

For learning with refinement operators, significant previous work exists in the
area of Inductive Logic Programming and more generally concept learning which
we only briefly sketch here. A milestone was the Model Inference System in [20].
Shapiro describes how refinement operators can be used to adapt a hypothesis
to a sequence of examples. Afterwards, refinement operators became widely used
as a learning method. In [23] some general results regarding refinement opera-
tors in quasi-ordered spaces were published. In [3] and later [4], algorithms for
learning in description logics (in particular for the language ALC) were created

Wombat – A Generalization Approach for Automatic Link Discovery 117

Fig. 4. Best LS learned by Wombat for the DBLP-GoogleScholar data set.

which also make use of refinement operators. Recent studies of refinement oper-
ators include [11,12] which analysed properties of ALC and more expressive
description logics. A constructive existence proof for ideal operators in the light-
weight EL description logics has been shown in [10]. Deer [21] uses refinement
operators for automatic datasets enrichment.

Most LD approaches for learning LS developed are supervised. One of the
first approaches to target this goal was presented in [5]. While this approach
achieves high F-measures, it also requires large amounts of training data. Hence,
methods based on active learning have also been developed (see, e.g., [7,17]). In
general, these approaches assume some knowledge about the type of links that
are to be discovered. For example, unsupervised approaches such as Paris [22]
aim to discover exclusively owl:sameAs links. Newer unsupervised techniques for
learning LS include approaches based on probabilistic models [22] and genetic
programming [16,19], which all assume that a 1-to-1 mapping is to be discovered.
To the best of out knowledge, this paper presents the first LD approach designed
to learn from positive examples only.

7 Conclusions and Future Work

We presented the (to the best of our knowledge) first approach to learn LS from
positive examples via generalisation over the space of LS. We presented a simple
operator ϕ that aims to achieve this goal as well as the complete operator ψ. We
evaluated ϕ and ψ against state-of-the-art link discovery approaches and showed
that we outperform them on benchmark datasets. We also considered scalability
and showed that ψ can be brought to scale similarly to ϕ when combined with
the pruning approach we developed. In future work, we aim to parallelize our
approach as well as extend it by trying more aggressive pruning techniques for
better scalability.

Acknowledgments. This work has been supported by H2020 projects SLIPO (GA
no. 731581) and HOBBIT (GA no. 688227) as well as the DFG project LinkingLOD
(project no. NG 105/3-2) and the BMWI Project GEISER (project no. 01MD16014).

118 M.A. Sherif et al.

References

1. Auer, S., Lehmann, J., Ngonga Ngomo, A.-C., Zaveri, A.: Introduction to linked
data and its lifecycle on the web. In: Reasoning Web, pp. 1–90 (2013)

2. Denis, F., Gilleron, R., Letouzey, F.: Learning from positive and unlabeled exam-
ples. Theoret. Comput. Sci. 348(1), 70–83 (2005). Algorithmic Learning Theory
2000

3. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-
intensive induction of terminologies from metadata. In: McIlraith, S.A., Plex-
ousakis, D., Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30475-3 31

4. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for
concept learning in the semantic web. Appl. Intell. 26(2), 139–159 (2007)

5. Isele, R., Bizer, C.: Learning linkage rules using genetic programming. In: Sixth
International Ontology Matching Workshop (2011)

6. Isele, R., Jentzsch, A., Bizer, C.: Efficient multidimensional blocking for link dis-
covery without losing recall. In: WebDB (2011)

7. Isele, R., Jentzsch, A., Bizer, C.: Active learning of expressive linkage rules for
the web of data. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE
2012. LNCS, vol. 7387, pp. 411–418. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31753-8 34

8. Kejriwal, M., Miranker, D.P.: Semi-supervised instance matching using boosted
classifiers. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux,
P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 388–402. Springer,
Cham (2015). doi:10.1007/978-3-319-18818-8 24

9. Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on
real-world match problems. Proc. VLDB Endow. 3(1–2), 484–493 (2010)

10. Lehmann, J., Haase, C.: Ideal downward refinement in the EL description logic. In:
19th International Conference on Inductive Logic Programming, Leuven, Belgium
(2009)

11. Lehmann, J., Hitzler, P.: Foundations of refinement operators for description
logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007.
LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78469-2 18

12. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement
operators. Mach. Learn. J. 78(1–2), 203–250 (2010)

13. Muggleton, S.: Learning from positive data. In: Muggleton, S. (ed.) ILP
1996. LNCS, vol. 1314, pp. 358–376. Springer, Heidelberg (1997). doi:10.1007/
3-540-63494-0 65

14. Ngonga Ngomo, A.-C.: Link discovery with guaranteed reduction ratio in affine
spaces with minkowski measures. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudo-
rache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G.,
Bernstein, A., Blomqvist, E. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 378–393.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-35176-1 24

15. Ngonga Ngomo, A.-C., Lyko, K.: EAGLE: efficient active learning of link specifica-
tions using genetic programming. In: Simperl, E., Cimiano, P., Polleres, A., Corcho,
O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 149–163. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-30284-8 17

16. Ngonga Ngomo, A.-C., Lyko, K.: Unsupervised learning of link specifications:
deterministic vs. non-deterministic. In: Proceedings of the Ontology Matching
Workshop (2013)

http://dx.doi.org/10.1007/978-3-540-30475-3_31
http://dx.doi.org/10.1007/978-3-642-31753-8_34
http://dx.doi.org/10.1007/978-3-642-31753-8_34
http://dx.doi.org/10.1007/978-3-319-18818-8_24
http://dx.doi.org/10.1007/978-3-540-78469-2_18
http://dx.doi.org/10.1007/978-3-540-78469-2_18
http://dx.doi.org/10.1007/3-540-63494-0_65
http://dx.doi.org/10.1007/3-540-63494-0_65
http://dx.doi.org/10.1007/978-3-642-35176-1_24
http://dx.doi.org/10.1007/978-3-642-30284-8_17

Wombat – A Generalization Approach for Automatic Link Discovery 119

17. Ngomo, A.-C.N., Lyko, K., Christen, V.: COALA – correlation-aware active learn-
ing of link specifications. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L.,
Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 442–456. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-38288-8 30

18. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from
labeled and unlabeled documents using EM. Mach. Learn. 39(2–3), 103–134 (2000)

19. Nikolov, A., dAquin, M., Motta, E.: Unsupervised learning of link discovery config-
uration. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.)
ESWC 2012. LNCS, vol. 7295, pp. 119–133. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-30284-8 15

20. Shapiro, E.Y.: Inductive inference of theories from facts. In: Lassez, J.L., Plotkin,
G.D. (eds.) Computational Logic: Essays in Honor of Alan Robinson. The MIT
Press (1991)

21. Sherif, M.A., Ngomo, A.-C.N., Lehmann, J.: Automating RDF dataset transfor-
mation and enrichment. In: Gandon, F., Sabou, M., Sack, H., dAmato, C., Cudré-
Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 371–387.
Springer, Cham (2015). doi:10.1007/978-3-319-18818-8 23

22. Suchanek, F.M., Abiteboul, S., Senellart, P.: PARIS: probabilistic alignment of
relations, instances, and schema. PVLDB 5(3), 157–168 (2011)

23. Laag, P.R.J., Nienhuys-Cheng, S.-H.: Existence and nonexistence of complete
refinement operators. In: Bergadano, F., Raedt, L. (eds.) ECML 1994. LNCS, vol.
784, pp. 307–322. Springer, Heidelberg (1994). doi:10.1007/3-540-57868-4 66

24. Zhou, K., Gui-Rong, X., Yang, Q., Yu, Y.: Learning with positive and unlabeled
examples using topic-sensitive PLSA. IEEE Trans. Knowl. Data Eng. 22(1), 46–58
(2010)

http://dx.doi.org/10.1007/978-3-642-38288-8_30
http://dx.doi.org/10.1007/978-3-642-30284-8_15
http://dx.doi.org/10.1007/978-3-642-30284-8_15
http://dx.doi.org/10.1007/978-3-319-18818-8_23
http://dx.doi.org/10.1007/3-540-57868-4_66

	WOMBAT -- A Generalization Approach for Automatic Link Discovery
	1 Introduction
	2 Preliminaries
	3 Constructing and Traversing Link Specifications
	3.1 Learning Atomic Specifications
	3.2 Combining Atomic Specifications

	4 The WOMBAT Algorithm
	5 Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

