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Abstract. ScholarlyData is the new and currently the largest reference
linked dataset of the Semantic Web community about papers, people,
organisations, and events related to its academic conferences. Originally
started from the Semantic Web Dog Food (SWDF), it addressed mul-
tiple issues on data representation and maintenance by (i) adopting a
novel data model and (ii) establishing an open source workflow to sup-
port the addition of new data from the community. Nevertheless, the
major issue with the current dataset is the presence of multiple URIs for
the same entities, typically in persons and organisations. In this work
we: (i) perform entity deduplication on the whole dataset, using super-
vised classification methods; (ii) devise a protocol to choose the most
representative URI for an entity and deprecate duplicated ones, while
ensuring backward compatibilities for them; (iii) incorporate the auto-
matic deduplication step in the general workflow to reduce the creation of
duplicate URIs when adding new data. Our early experiment focused on
the person and organisation URIs and results show significant improve-
ment over state-of-the-art solutions. We managed to consolidate, on the
entire dataset, over 100 and 800 pairs of duplicate person and organisa-
tion URIs and their associated triples (over 1,800 and 5,000) respectively,
hence significantly improving the overall quality and connectivity of the
data graph. Integrated into the ScholarlyData data publishing workflow,
we believe that this serves a major step towards the creation of clean,
high-quality scholarly linked data on the Semantic Web.

1 Introduction

ScholarlyData [16] is the evolution of the Semantic Web Dog Food (SWDF)
dataset!. So far it has taken care of refactoring data from the SWDF dataset at
schema level, migrating data representation from the Semantic Web Conference
(SWC) Ontology? to the new conference-ontology®. Moreover a workflow is in

! http://data.semanticweb.org.

2 http://data.semanticweb.org/ns/swec/swc_2009-05-09.html.
3 http://w3id.org/scholarlydata/ontology/.
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place - cLODg* (conference Linked Open Data generator) [4] - to ease the tasks
of data acquisition, conversion, integration, augmentation, which has already
been used to add novel data to the portal®.

Nevertheless, the problem of verifying data at instance level has not been
tackled so far. Despite existing guidelines for populating the SWDF dataset in
order to maximise the reuse of existing URIs and minimise the introduction
of redundant URIs, these are, in practice, not carefully followed, resulting in a
number of duplicate URIs in the dataset. This is especially common for people
with multiple names and surnames, which sometime are reported inconsistently
in different papers and in general for organisations, for which different variations
of the name are often reported. In the initial refactoring from SWDF to Scholar-
lyData, while we tackled data model issues, we ignored the problems at instance
level and we simply kept URIs as is.

In this work we address these issues and extend the cLODg workflow with
data integration and verification steps. The aim is to have a procedure in place
that when a new data graph is to be added to ScholarlyData, determines for
each new URI in the new data graph, whether it refers to an existing entity
in ScholarlyData with a different URI, or a truly unknown and new entity. We
propose a three steps approach that for each input URI from the new data graph
(i) creates a candidate pool of URIs that could potentially represent the same
entity in the ScholarlyData dataset; (ii) discovers truly duplicate URIs (if any)
for the input URI using supervised classification methods and (iii) finally resolves
the duplicates and merges the new data graph into ScholarlyData.

Ultimately, we aim to ensure that each entity in ScholarlyData is represented
by one unique URI, which is currently not the case. Therefore in this work, we
also apply the proposed method to the existing ScholarlyData dataset in a one-
off cleaning process to resolve and deprecate duplicate URIs. The contributions of
this work are threefold. First, we expand the data publication workflow for Schol-
arlyData, adding automatic data integration capabilities. Second, we propose an
efficient deduplication method for the scholar domain and show that it outper-
forms several state-of-the-art models significantly. Finally, we add a maintenance
step in the general publication workflow that empirically determines how to resolve
duplicate URIs, integrate information, while ensuring backward compatibility.

The paper is structured as follows. Section 2 examines related work; Sect. 3
describes the proposed method; Sect.4 evaluates our method on a manually
annotated dataset and discusses the deduplication results on the ScholarlyData
dataset; and finally Sect.5 concludes the paper and identifies future work.

2 Related Work

Scholarly data. The first considerable effort to offer comprehensive semantic
descriptions of conference events is represented by the metadata projects at

4 ¢cLODG is an Open Source tool that provides a formalised process for the conference
metadata publication workflow https://github.com/anuzzolese/cLODg2.
5 The tool as been used for generating data for ISWC2016 and EKAW2016.
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ESWC 2006 and ISWC 2006 conferences [13], with the Semantic Web Confer-
ence Ontology being the vocabulary of choice to represent such data. Increasing
number of initiatives are pursuing the publication of data about conferences
as Linked Data, mainly promoted by publishers such as Springer® or Elsevier”
amongst many others. For example, the knowledge management of scholarly
products is an emerging research area in the Semantic Web field known as
Semantic Publishing [19]. Numerous initiatives are aimed at offering advanced
exploration services over scholarly data, such as Rexplore [17], Open Citation®,
Google scholar? and DBLP'C.

Despite these continuous efforts, it has been argued that lots of information
about academic conferences is still missing or spread across several sources in
a largely chaotic and non-structured way [1]. Improving data quality remains a
major challenge with scholarly data. This can include, amongst others, tasks of
dealing with data-entry errors, disparate citation formats, enforcement of stan-
dards, ambiguous author names and abbreviations of publication venue titles
[10]. The ScholarlyData dataset as well currently suffers from data quality issues,
mainly due to duplicates, inconsistencies, misspelling and name variations. This
work aims at filling this gap, by proposing a strategy to detect co-referent entities
and resolve the duplicate URIs in scholarly datasets, specifically on ScholarlyData.

Entity deduplication. Entity deduplication looks for (nearly) duplicate records
in relational data, usually amongst data points that belong to the same entity
type. This is related to a wide range of literature, such as named entity co-
reference resolution in Natural Language Processing [22], and Link Discovery on
the Semantic Web [14]. The typical approach depends on measuring a degree
of ‘similarity’ between pairs of objects using certain metrics, then making a
decision about whether a pair or groups of pairs are mutually duplicate. This
is often done using strategies based on similarity threshold, classification (e.g.,
[2]) or clustering (e.g., [12]) methods. In [14], 10 most recent state-of-the-art
systems are evaluated. Our work is most relevant to SILK [8] and LIMES [15],
which include supervised models to overcome the arbitrary decision making of
link-matching thresholds. Compared to SILK and LIMES, our method differs
in terms of the learning algorithms and similarity metrics. In particular, our
method deals with the situation where one URI is used much more frequently
than its duplicates, which is found to be common in linked datasets [21] and
making conventional set-overlap based measures ineffective. Also, the machine
learning algorithms in LIMES (e.g., WOMBAT) only use positive examples for
training while both SILK (i.e., the genetic algorithm in [8]) and our method
can benefit from negative training examples. The 2013 KDD CUP [20] pro-
posed an academic paper author linking task that drew 8 participating systems.

5 http://lod.springer.com/wiki/bin/view /Linked+Open+Data/About.
" http://data.elsevier.com/documentation /index.html.
8 http://opencitations.net/.
9 https://scholar.google.com.
19 http://dblp.uni-trier.de/.
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However, the dataset used are very different and hence does not represent the
problems in ScholarlyData. Duplicates are found very frequent, often as a result
of parsing errors when importing data from different sources, and the winning
system heavily relied on ad hoc pre-processing of author names. As we shall show
later, duplicates in ScholarlyData are much less frequent and thus challenging
to detect.

If addressed in a brute force fashion, the matching task has quadratic com-
plexity as it requires pairwise comparisons of all the records. A common way to
reduce complexity is the use of so-called blocking strategies (grouping records in
blocks before comparing them) to reduce the search space. An approach is to
exploit specific criteria in the data schema (the values of particular attributes)
to split the data [7,18], as in the Sorted Neighborhood Method (SNM) [7] which
performs sorting of the records according to a specifically chosen blocking key.
Content based blocking strategies usually look for common tokens between two
entities [18] and group entities that share some token(s). Finally, another solu-
tion to speed up the comparison step is to map the original entity representations
in a lower dimensional space. The most prominent example is Locality-Sensitive
Hashing (LSH), which produces effective entity signatures [3]. In this work, we
experiment with SNM [7] and a content based approach. We show that a simple
content based technique [18] is as effective for this scenario, when searching for
common tokens in name-like properties!! of named entities.

Handling duplicate URIs. Once the sets of duplicate or co-referent URIs are
detected, the next step is to determine how to resolve the co-reference and inte-
grate information. A typical solution adopted in Linked Data is to link dupli-
cates with owl:sameAs axioms. Glaser et al. [5] argue that owl:sameAs axioms
are not suitable for co-referent URIs as they become indistinguishable, even
though they may refer to different entities according to the context in which they
are used. The Identity of Resources on the Web (IRW) ontology [6] formalises
the distinction between information resources, such as webpages and multime-
dia files, and other kinds of Semantic Web non-information resources used in
Linked Data and proposes a solution to link them. The solution adopted by
DBpedia [11] for dealing with co-referent URIs follows the intuition of [5,6]:
mirroring the structure of Wikipedia, DBpedia stores co-referent URIs in a sep-
arate graph called redirects and uses the HT'TP response code 303 See Other
in order to (i) deal with the distinction between information and non-information
resources and (ii) to implement the HT'TP dereferencing.

Our solution encompasses those in [5,6,11] to allow to: (i) harmonise co-
referent URIs by identifying information and non-information resources, and
(ii) rely on HTTP redirect for dereferencing. We also extend it by enabling
redirect in SPARQL queries by means of query rewriting. This enables backward
compatibility to external clients that might refer to a certain resource by using
any co-referent URIs.

" http://xmlns.com/foaf/0.1/name.
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3 Deduplication

Given a set of URIs E = {ey, eq, ...e, } representing entities of the same type, the
goal of deduplication is to: (i) identify sets of duplicate URIs that refer to the
same real-world entity. We will call such URIs in each set ‘co-referent’ to each
other; (ii) determine in each subset one URI to keep (to be called the ‘“target
URI’), while deprecating the others (to be called the ‘duplicates’) and consol-
idating RDF triples from the duplicates into the target URI. In this work, we
focus on two entity types that are found to be the dominant source of duplicates:
PERSON (PER), and ORGANISATION (ORG).

For (i), we develop a process that identifies potential co-referent URI pairs
(i, €ej) from E and submits each pair to a binary classifier to predict if they are
truly co-referent. For (ii), we develop heuristics to deprecate duplicate URIs from
co-referent pairs. Arguably, the first objective can also be achieved through the
use of heuristic thresholds or clustering techniques. However, thresholds are often
data-dependent [21], while our motivation for a classification-based approach is
two-fold. First, as discussed before, our practical scenarios typically contain an
existing, de-duplicated reference dataset D (i.e., ScholarlyData), and another
data graph D’ is generated from time to time and is to be merged into D (in our
problem formalisation, both D and D’ will be part of E). Hence the question to
be asked is often classification-based: given a URI from D’, determine if there
exists one URI from D that refers to the same entity. Second, due to the nature
of datasets, we expect clusters with 2 or more elements to be rather infrequent.

Beginning with an input set E, we first apply blocking strategies to identify
pairs of URIs that are potentially co-referent. This should reduce the number
of pairs to a number m such that m < (2‘), where n is the number of URIs in
E, (Z) is the number of all possible un-ordered pairs from E and will contain
overwhelmingly negative elements as we expect true co-referent pairs to be rare.
Next, each pair is passed to a classification process that predicts if the potential
co-referent pair is positive. Finally, the positive co-referent pairs are submitted
to the URI harmonisation process that identifies the target URI, removes the
duplicates and merges RDF triples.

3.1 Blocking Strategies

Given the set of URIs F, the set P of all possible pair comparisons to perform
is quadratic to the size of E. The blocking strategies aim at identifying a subset
of comparisons P’ such that |P’| <« |P|, which achieves a good tradeoff between
Reduction Ratio (RR) - the percentage of discarded comparisons from P - and
Pair Completeness (PC) - the percentage of true positive (given a gold standard)
that are covered by P’.

We experiment with two different solutions for this problem. First we use
SNM [7]. We produce the list of all URIs in E with lexicographic ordering and
we produce all combination for e; with all e; in a context window size of n
(sliding window). We experiment with two kinds of ordering: one on the URIs
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Table 1. Features for representing an organisation. ~! indicates the inverse of a

predicate.
Feature Path Target(s) | Example
Name (conf:name) Literals | ‘STLab-CNR’,
‘ISTC-CNR’
Members’ (conf:withOrganisation ™!, Literals | ‘L. Page’, ‘S. Brin’
names conf:isAffliationOf,
conf:name)
Members’ (conf:withOrganisation ™!, URIs sdp:aldo-gangemi
URIs conf:isAffliationOf)
Participated | (conf:withOrganisation™*, URIs sde:ESWC2009/
event URIs conf:during) eswec/2009

themselves, one based on the literal value given the URI’s predicate conf'? :name
for each e;.

The second is a content based technique [18]. For each e; € E we produce a
candidate pair for comparisons for all e; (e; # e;) that share at least one common
token in their property values. Following [18], we choose name-like properties of
entities (both persons and organisations). Details about experiments on the two
blocking strategies are presented in Sect. 4.2.

3.2 Classification

Given a pair of URIs (e;, e;), we firstly build feature representations of e; and
e; by traversing corresponding linked data graphs to gather their properties.
Next, we derive a feature vector representation for the pair, which is then to be
classified as either co-referent or not.

Features of URIs. These are generated by traversing paths on the linked data
graph O, starting from e and following a series of predicates (p1, pa, ...pm ) that
represent a particular semantic relation r, to reach another set of nodes, which
can be either URIs or data literals. Depending on the semantic type of e, we
define different semantic relations and paths. We use the ScholarlyData SPARQL
endpoint'® as the single point of access to the underlying linked data graph.

12 The prefixes used in this paper are:

— conf: https://w3id.org/scholarlydata/ontology /conference-ontology.owl
— sdp: https://w3id.org/scholarlydata/person/

— sde: https://w3id.org/scholarlydata/event/

— sdo: https://w3id.org/scholarlydata/organisation

— sdi: http://www.scholarlydata.org/inproceedings/.

'3 https://w3id.org/scholarlydata/sparql/.
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Table 2. Features for representing a person. The superscript

of a predicate.
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1 indicates the inverse

Feature Path Target(s) | Example
Name (conf:name) Literals | ‘Tom Mitchell’,
“T. Mitchell’
Affiliation (conf:hasAffiliation, Literals |‘STLab-CNR/,
names conf:withOrganisation, conf:name) ‘ISTC-CNR’
Affiliation (conf:hasAffiliation, URIs sdo:cnr-iste-italy
URIs conf:withOrganisation)
Participated | {conf:hasAffiliation, URIs sde:ESWC2009/
event URIs | conf:during) eswc/2009
Published (conf:hasContent™, URIs sdi:ekaw2012/
work URIs conf:hasItem™, paper/demos/109
conf:hasAuthorList™)
Co-author (conf:hasContent'l , URIs sdp:aldo-gangemi,
URIs conf:hasItem™, conf:hasItem, sdp:valentina-
conf:hasContent) presutti
Title + starting from each each ‘published | Literals | ‘This paper
abstract + work URI™: describes a ...’
keywords (conf:title) V (conf:abstract) V
(conf:keyword)

Table 3. Functions to measure similarity between two bag of features.

[f(ei,t)Nfle; D]

dice(es, 5,) = m !
dice® " 617 6], \/37zmdzce el: ) f(eﬂ7 )) 2
HNflej ) [f(es

cov(e;s, ej,t) = max {lf

|f(€17t)‘ ’

cov® ™ (e, e5,t) = cov(ei, e;, )

\f(ej,t)\

(1)
(2)
)N f(ej, t)\} (3)
(4)

4

For an ORG, we gather features following the paths shown in Table1l. We

then normalise URI values to lowercase, and normalise literal values by ASCII
folding and replacing any consecutive non-alphanumeric characters with a single
white space. For a PER, we gather features following the paths shown in Table 2.
We apply the same normalisation to URI and literal values as that for ORG.
Furthermore, for the feature ‘title+abstract+keyword’, we also tokenise the text
and remove stopwords.

Features of a Pair of URIs. Next, given a pair of URIs, we create a vector
representation of the pair based on the similarities between the features of each
URI. Let f(e,t) return a bag of features for the feature type ¢ of the URI e.
Depending on ¢, this will be either a duplicate-removed set (fs(e,t)) or a mul-
tiset (fm(e,t)). We then measure the similarity of each feature type for a pair
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of URIs in the range of [0,1], using the functions shown in Table 3. Functions
based on the Dice co-efficient (dice, dice®?"™) evaluate the extent to which the
information that the two URIs have in common (the top term) along a partic-
ular dimension (feature type t), can describe both of them (the bottom term).
Functions based on the Coverage (cov, cov®?"t) evaluate the maximum degree to
which the common part of the two can describe either of them. This is to cope
with the situation where one URI is used much more frequently than the other,
which is found to be common in linked datasets [21]. As a result, conventional
set-overlap based measures (e.g., Dice) tend to produce low similarity scores for
such pairs, due to the lack of features for the minor URI.

Specifically, for a pair of ORG URIs, we use fs(e,t) as the bag of feature
function, and apply similarity functions (1) to (4) to each of the four feature
types in Table 1. This produces a feature vector with a dimension of 16. For a
pair of PER URIs, we use all similarity functions with the fs(e,t) bag of feature
representation on all feature types (Table2), except ‘title+abstract+keyword’,
for which we use all similarities with the fm(e,t) bag of feature representation).
This produces a feature vector for the pair with a dimension of 28.

Classification Models. Given a labelled dataset of PER or ORG URI pairs,
each represented as a feature vector described above, we train a binary classi-
fier for predicting new, unseen PER or ORG pairs. A plethora of classification
models can be used for this kind of tasks. In this work, we select five mod-
els to experiment with, including: a Stochastic Gradient Descent (SGD) clas-
sifier, a Logistic Regression (LR) model, a Random Forest (RF) decision tree
model, a linear Support Vector Machine (SVM-1) and a nonlinear SVM using a
Radial Basis Function kernel (SVM-rbf). We use the implementation from the
scikit-learn'# library for all models. Details of the datasets and the training
process are discussed in Sect. 4.3.

3.3 URI Harmonisation

The previous steps allow to identify a set of pairs consisting of duplicate URIs
in the ScholarlyData dataset. The harmonisation is the task of identifying which
are the URIs to keep after the data cleansing process. This task is not trivial, as
it requires multiple activities: (i) closure identification; (ii) candidate selection;
(iii) knowledge inheriting; (iv) recording of the harmonisation.

Closure Identification. Here we traverse the transitive chains of duplicates
in order to identify the closures of duplicate URIs from available pairs. Clo-
sure identification is mandatory as the classification process returns predictions
on potential co-referent pairs. Hence, it is possible to have transitive chains of
co-referent pairs resulting from the classification in case a certain person or
organisation is represented by more than two URIs in the dataset. This scenario

' http:/ /scikit-learn.org/.
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occurs when the lexicalisations provided for the names of people and organisation
vary from one conference to another. For example, the individual ‘Andrea Gio-
vanni Nuzzolese’ is associated with the URIs sdp:andrea-giovanni-nuzzolese,
sdp:andrea-nuzzolese, and sdp:andrea-g-nuzzolese, which in turn are pro-
vided by the classifier as a set of pairs as follows.

<sdp:andrea-nuzzolese,sdp:andrea-giovanni-nuzzolese>
<sdp:andrea-g-nuzzolese,sdp:andrea-nuzzolese>
<sdp:andrea-giovanni-nuzzolese,sdp:andrea-g-nuzzolese>

Closure identification then produces a single tuple as:

<sdp:andrea-nuzzolese,sdp:andrea-giovanni-nuzzolese,sdp:andrea-g-nuzzolese>

Candidate Selection. The result of the previous activity is a set of tuples.
Next, candidate selection aims at identifying for each tuple, a single candidate
to keep as reference URI. The selection is performed by computing and compar-
ing the degree centrality of each entity associated with a URI part of a tuple. The
degree centrality is computed as the sum of indegree and outdegree, which count
the number of incoming and outcoming ties of the node respectively. Accord-
ingly, the selected URI is the one recording the highest degree centrality within
the context of the tuple. To compute outdegree centrality, we do not take into
account of datatype properties, as in ScholarlyData the only literals used for
person and organisation are names. Hence, we assume that (i) an entity with
alternative names is not more relevant with respect to another with a single
name; (ii) the centrality is captured by object properties only.

Dataset Update. Once a single URI for each tuple has been selected, we
associate the triples available through the other URIs of the tuple with the
single selected URI. This is performed by means of SPARQL UPDATE queries.

Recording of the Harmonisation. This is carried out in parallel with the
previous activity and its result is an RDF graph whose aim is twofold: (i) pro-
viding a description about how a final URI for a set of duplicates is derived
and (ii) serving as background knowledge for enabling backward compatibility.
The backward compatibility is needed in order to guarantee transparent access to
any client application that relies on ScholarlyData without any client-side change
being required. The RDF graph is modelled by using PROV-O'® and describes
the harmonisation in terms of provenance. Following the previous example, we
show the resulting RDF graph generated below.

sdp:andrea-giovanni-nuzzolese a prov:Entity, sdo:Person ;
prov:wasDerivedFrom sdp:andrea-nuzzolese, sdp:andrea-g-nuzzolese .

sdp:andrea-nuzzolese a prov:Entity, sdo:Person .

sdp:andrea-g-nuzzolese a prov:Entity, sdo:Person .

5 https://www.w3.org/TR/prov-o/.
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In this example, the entity sdp:andrea-giovanni-nuzzolese is typed as
prov:Entity and associated with the entities sdp:andrea-nuzzolese and sdp:
andrea-g-nuzzolese by means of the property prov:wasDerivedFrom that
according to PROV-O allows to model the transformation of an entity into
another, an update of an entity resulting in a new one or the construction of a new
entity based on a pre-existing entity [9]. The objects of prov:wasDerivedFrom
properties are recorded in the RDF graph along with their original triples'®
coming from the dataset before the update. On top of the RDF graph result-
ing from this activity we designed and implemented a software module that
enables HTTP redirect and SPARQL query expansion in case deleted URIs
are requested. The HTTP redirect is implemented by querying the provenance
graph when a resource is not available in the default graph of ScholarlyData.
Hence, if such a resource is available in the provenance graph the software
module return a 301 HTTP status code, meaning that the resource has been
moved permanently. For example, of response a HTTP/1.1 301 Moved Per-
manently to sdp:andrea-giovanni-nuzzolese is returned when the resource
sdp:andrea-nuzzolese is requested.

The SPARQL query expansion is implemented by substituting all the occur-
rences of deleted URIs that appear as URI constants in a query with the valid
ones. Again this is enabled by the provenance graph. The software is available on
the GIT repository of cLODg!”. For example, in the following, the first SPARQL
SELECT statement is automatically converted to the second and then executed
assuming that sdp:andrea-giovanni-nuzzolese is the candidate URI selected
to inherit the knowledge from its duplicates and sdp:andrea-nuzzolese is one
of the removed duplicates.

SELECT DISTINCT ?pred 7obj WHERE {sdp:andrea-nuzzolese 7pred 7obj}
SELECT DISTINCT ?pred 7obj WHERE {sdp:andrea-giovanni-nuzzolese
?pred 7obj}

4 Experiments

4.1 The Train/test Dataset

We manually labelled a dataset of pairs of PER URIs (perD) and pairs of ORG
URIs (orgD). To select the PER pairs to annotate we retrieve all pairs that
share at least a common value in one of their properties (we restrict these
to conf :name, conf:familyName, rdfs:label; note that these properties can
return multiple values for each entity). Similarly we select the ORG pairs (where
the properties are restricted to conf :name, rdfs:label). For ORG we generate
additional pairs by retrieving all affiliations for each person and generating all
pair combinations when multiple affiliations are found for each person. We then
manually annotated roughly 20% of all the candidates as positive or negative,
discarding all the others. This resulted in 698 (148 positive, 550 negative) pairs
for perD and 424 (188 positive, 236 negative) pairs for orgD.

16 Due to space limitation those triples have been omitted in the example.
17 https://github.com/anuzzolese /cLODg?2.
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4.2 Blocking

This part of experiment is aimed at identifying the optimal strategy for reducing
pair comparisons. We evaluate this independently from the classification step by
considering the pair completeness (PC), i.e. the fraction of true positive entity
pairs contained in the list of candidate pairs returned by blocking, and the reduc-
tion ratio (RR), i.e. the percentage of pairs discarded after blocking is applied
from the total number of possible pairs without blocking. The harmonic mean
(HM) measures the tradeoff between PC and RR. These metrics give us some
indication of the upper bound of performance for the classifiers, i.e. the percent-
age of duplicates that can be potentially identified, assuming perfect prediction.
Given all PER or ORG URIs from ScholarlyData, we first run different blocking
strategies to create candidate URI pairs. Next, we use the true positive pairs
from the training data as reference to calculate the three metrics. Note that it is
expected that this reference set may not include all true positives in the entire
ScholarlyData dataset.

Tables 4 and 5 show the results of the blocking strategies for PER and ORG
respectively. For the content based method, we keep all URI pairs that share
at least a common value in their name-like properties. For the SNM method we
produce the list of all URIs with the two orderings described in Sect. 3.1 and for
each URI we generate all combinations in a context window n, from 5 to 90.

Results show that the content based method produces the best results for
both PER and ORG. Note that although in training data preparation, we also
used name-like properties as a proxy to find candidate pairs to annotate, the
content based blocking uses name-like properties in a more general way (i.e., we
tokenise property values and look for common tokens rather than values) and in
practice generates far more candidate pairs.

We conclude to use the content based blocking for both PER and ORG
to create candidate URI pairs. Specifically, we use multiple features L+N+S
for PER (ref. Table4) and P+N+L for ORG (ref. Table5). We choose multiple

Table 4. Blocking results for PER. Results for (i) the SNM method (ordered by
URI/name), at the variation of the window size, and (ii) the content based method with
different features: N stands for conf :name, S for conf:familyName, L for rdfs:label.

SNM |RR |[PC HM SNM |RR |PC 'HM | Content RR |PC |HM

name URI based

5 ~1[073/084| 5 ~1[06 |0.75|L ~1/0.38|0.55
10 ~1[08 [0.89]10 ~1[0.71/083|N ~1/0.38/0.55
20 ~1]0.91]0.95|20 ~1[08 |0.89]S ~1|1 ~

30 0.99/0.91/0.95|30 0.99/0.84 091 L+N+S |~ 1|1 &
50 0.990.93]0.96 | 50 0.9910.840.91
70 0.9910.93/0.96 | 70 0.9910.850.91
90 0.9810.95/0.97 |90 0.9810.89{0.93
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Table 5. Blocking results for ORG. Including: (i) the SNM method (ordered by
URI/name), at the variation of the window size, and (ii) the content based method with
different features: N stands for conf :name, P for affiliated person, L for rdfs:label.

SNM |RR |PC|HM |SNM |RR |PC |HM |Content |RR |PC |HM
name URI based

5 ~ 1 |~ 5 ~1/0.49|0.66 P ~1]0.84/0.91
10 0991 |~ 10 0.99/0.59 1 0.74 | N ~1/1 ~
20 0991 [0.99|20 0.990.65/0.78 | L ~1|1 ~
30 0981 [0.99|30 0.98/0.66 0.79 | P+N+L |~1|1 ~
50 0971 [0.99|50 0.97/0.68 0.8

70 0961 [0.98|70 0.96 | 0.68 1 0.8

90 0951 [0.98]90 0.95]0.710.81

features over single features (i.e., S for PER, N or L for ORG) because in practice,
using multiple features for content based blocking may result in better PC.
Although the effects of using multiple as opposed to single features are indifferent
for the experiment results, this may be partially attributed to the potentially
incomplete reference set of true positive pairs, as discussed above.

Applied to the entire sections of PER and ORG URIs from the ScholarlyData
dataset, this generates 1,468 PER and 3,717 ORG URIs to be classified, which is
around 1% of the total possible pair combinations, and we expect this reasonably
leads to a significant reduction in running time.

4.3 Classification

This part of experiment evaluates the performance of the binary classification
models, using the datasets created in Sect. 4.1. The task addresses a typical prob-
lem in link discovery, therefore we compare against two state-of-the-art systems
to be described below.

Training and testing. We split each labelled dataset (perD and orgD) randomly
into a training set containing 75% of the data, and a testing set containing 25%
of data. For each of our classifiers, we tune their hyper parameters by performing
grid search using the training set with 10-fold cross validation. Both the labelled
datasets and the optimised classification models are available for download'®.
The optimised classifiers are then applied to the test set. Both PER and ORG
experiments are carried out independently from each other.

State-of-the-art. We compare our models against LIMES' and SILK??, both
of which offer supervised learning methods that can benefit from training data.

8 https://github.com /zigizhang/scholarlydata/tree/master/data,/public/.
19 Ver 1.1.2, https://github.com/AKSW /LIMES-dev /releases.
20 Ver 2.6, https://github.com/silk-framework /silk /releases.
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Table 6. Classification results for ORG. Table 7. Classification results for PER.

SGD |LR |RF |SVM-1|SVM-rbf SGD |LR |RF |SVM-1|SVM-rbf

Positive P ]0.85 |0.84/0.86/0.83 0.83 Positive P ]0.78 |0.88/0.92|0.77 0.88
examples examples

R 0.8 |0.8 0.82/0.86 0.86 R |0.51 |0.63/0.66|0.49 0.63

F1/0.83 |0.82/0.84/0.85 0.85 F1]/0.62 |0.73|0.77|0.6 0.73
Negative |P |0.83 [0.82/0.84|0.87 0.87 Negative P |0.89 |0.91/0.92|0.88 0.91
examples examples

R |0.87 |0.85/0.87/0.84 0.84 R |0.96 |0.98|0.990.96 0.98

F1/0.85 |0.84/0.86|0.85 0.85 F1/0.93 |0.94/0.95|0.92 0.94
Total P ]0.84 |0.83/0.85/0.85 0.85 Total P 10.87 |0.91/0.92|0.88 0.91

R |0.84 |0.83/0.85/0.85 0.85 R [0.87 |0.91/0.92|0.87 0.91

F1/0.84 |0.83/0.85/0.85 0.85 F1/0.86 |0.90/0.91|0.86 0.90

For LIMES, we test Wombat Simple (L-ws) and Wombat Complete (L-wc)
supervised batch models that are available at the time of writing. For a consistent
experimental environment, the same set of URI features (Sect. 3.2) are used for
all models. Both SILK and LIMES models are trained and tested on the train-test
splits (75%-25%) for ORG and PER respectively. Their default configurations
are used.

Analysis. Tables 6 and 7 show results of our five classifiers. The results show that
detecting and resolving duplicates in scholarly linked datasets is not an easy task.
When only positive examples are considered - as in the realistic scenarios, the
performance of the classifiers is particularly weak for PER in terms of recall.
Manual inspection of the training datasets reveals that, on the one hand, fea-
tures of some URIs are very sparse. For example, URI sdp:gregoris-antoniou
has no published work, while sdp:ghislain-atemezing has no affiliations. Con-
sequently, the similarity between this URI and its true positive co-referent URI
will be 0 in terms of this feature. To rectify this, an ensemble of classifiers could
be employed. Different classifiers can be trained on different sub-sets of feature
types. Then during testing, the optimal model is chosen dynamically depend-
ing on the availability of feature types. On the other hand, two URIs in a pair
sometimes use features that, although are disjoint, often share certain implicit
connections. For example, conference participants may use affiliations of differ-
ent granularity from time to time, e.g., the names ‘The Open University’ and
‘KMTI’. Being able to measure the implicit connectivity between the two values
could improve the model’s recall. Furthermore, to improve recall, generalisation
over certain features could also be helpful. For example, we derive generic event
names (e.g., ESWC) based on their URIs, currently representing event series
(e.g., ESWC2009, ESWC2011). All of these will be explored in the future work.

Overall, the RF model offers the best trade-off for both PER and ORG,
especially on positive examples. Therefore in Tables8 and 9 we compare the
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Table 8. SoA results for ORG. Table 9. SoA results for PER.
RF | L-ws | L-wc | SILK RF | L-ws | L-wc | SILK
Positive P |0.860.63 [0.73 |0.59 Positive P [0.92/0.34 0.78 |0.48
examples examples
R 10.82/0.64 [0.49 |1.0 R ]0.66 |0.63 |0.17 | 0.80
F1/0.84/0.64 |0.59 |0.74 F1]0.77]0.44 |0.28 | 0.6
Negative |P [0.84]0.72 10.69 | 1.0 Negative |P [0.92/0.85 |0.79 |0.94
examples examples
R |0.87/0.71 [ 0.86 |0.47 R [0.99]0.61 0.98 0.71
F1/0.86/0.72 | 0.77 |0.64 F1/0.95]/0.71 10.88 | 0.81
Total P |0.85/0.68 [0.70 |0.70 Total P [0.92/0.62 0.79 |0.79
R ]0.85/0.68 [0.70 |0.70 R /0.92/0.62 | 0.79 |0.73
F1]0.85/0.68 |0.70 |0.70 F1]/0.91]0.62 |0.79 | 0.76

results of this model against the best results of SILK and LIMES models?!. As
the results show, our method makes significant improvement in both tasks on
F1, and strikes much better balance between precision and recall. This could
be partially attributed to the usage of the ‘Coverage’ functions that may cope
with infrequently used URIs more effectively. However, readers should note that
on the one hand, our method is specifically tailored to the problem while both
LIMES and SILK are general purpose matching systems; on the other hand,
we did not extensively test all configurations of the two systems but used their
default settings.

Finally, we use the trained RF model to label the sets of PER and ORG
URI pairs identified by content based blocking, as discussed before. The output
is then passed to URI harmonisation.

4.4 TURI Harmonisation

The aim of this experiment is twofold: (i) assessing the classification output,
and (ii) updating the dataset. First we manually checked all pairs labelled as
positive. For PER we recorded 101 correct resolutions over 118, i.e. 0.86 of pre-
cision. For ORG we recorded 884 correct resolutions out of 1,262 pairs, i.e. 0.7
of precision. We then used the resulting cleaned output to harmonise the URIs
on the ScholarlyData dataset. Consequently, from 101 pairs of PER URIs we
derived 94 unique individuals each of them harmonising on average 2.05 dis-
tinct individuals. The average size of the graph associated with each individual

21 LIMES allows setting a threshold for predicted mappings. We tested different thresh-
olds from 0.1 to 1.0 with increment of 0.1 and found that LIMES-wc is insensitive to
the threshold while LIMES-ws is. For complete results and optimal thresholds see:
https://github.com/zigizhang/scholarlydata/tree /master/data/public/soa_results.
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involved in the harmonisation for PER counted of 20.3 distinct RDF triples.
Similarly, for ORG we kept 531 correct resolutions out of 884 pairs harmonising
2.67 URIs on average. The graph associated with each individual involved in the
harmonisation for ORG counted of 10.2 distinct RDF triples on average.

5 Conclusions

In this work, we introduced an approach to address a key issue in the publication
of scholarly linked data on the Semantic Web, i.e., the presence of duplicate
URIs for the same entities. Using the ScholarlyData dataset as a reference, our
approach uses blocking techniques to narrow down a list of candidate duplicate
URI pairs, exploits supervised classification methods to label the true positives
and then devises a protocol to choose the most representative URI for an entity to
keep in ScholarlyData and to make sure that we preserve all facts from duplicated
URIs. To our knowledge, this is by far the first attempt to solve such issues on the
largest conference dataset in the Semantic Web community. Future work will be
carried out in a number of directions. Firstly, we will look into the issue of other
types of URIs, such as events. Next, in terms of the classification process, we will
explore the possibilities of improvement discussed before. We will also develop
methods that exploit the dependency between the different types of URIs, where
the solution to one task can feed into that of another (e.g., the de-duplication
of ORG URIs could potentially address the disjoining issue of ‘affiliation URI’
and ‘affiliation names’ features of PER). Finally, we will explore the inclusion of
human in the loop, in an ‘active-learning’ fashion to both minimise the human
effort on annotation and improve the accuracy of our method.
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