
Explaining Graph Navigational Queries

Valeria Fionda1 and Giuseppe Pirrò2(B)

1 DeMaCS, University of Calabria, Rende, Italy
fionda@mat.unical.it

2 Institute for High Performance Computing and Networking,
ICAR-CNR, Rende, Italy

pirro@icar.cnr.it

Abstract. Graph navigational languages allow to specify pairs of nodes
in a graph subject to the existence of paths satisfying a certain regular
expression. Under this evaluation semantics, connectivity information in
terms of intermediate nodes/edges that contributed to the answer is lost.
The goal of this paper is to introduce the GeL language, which provides
query evaluation semantics able to also capture connectivity informa-
tion and output graphs. We show how this is useful to produce query
explanations. We present efficient algorithms to produce explanations
and discuss their complexity. GeL machineries are made available into
existing SPARQL processors thanks to a translation from GeL queries
into CONSTRUCT SPARQL queries. We outline examples of explana-
tions obtained with a tool implementing our framework and report on
an experimental evaluation that investigates the overhead of producing
explanations.

1 Introduction

Graph data pervade everyday’s life; social networks, biological networks, and
Linked Open Data are just a few examples of its spread and flexibility. The lim-
ited support that relational query languages offer in terms of recursion stimulated
the design of query languages where navigation is a first-class citizen. Regular
Path Queries (RPQs) [6], and Nested Regular Expressions (NREs) [16] are some
examples. Also SPARQL has been extended with a (limited) navigational core
called property paths (PPs). As for query evaluation, the only tractable lan-
guages are 2RPQs and NREs; adding conjunction (C2RPQs) makes the prob-
lem intractable (NP-complete) while evaluation of PPs still glitches (mixing set
and bag semantics). Usually, queries in all these languages ask for pairs of nodes
connected by paths conforming to a regular language over binary relations.

We research the problem of enhancing navigational languages with expla-
nation functionalities and introduce the Graph Explanation Language (GeL in
short). In particular, our goal is to define formal semantics and efficient evalua-
tion algorithms for navigational queries that return graphs useful to explain the
results of a query.

Part of this work was done while G. Pirrò was working at the WeST institute,
University of Koblenz-Landau supported by the FP7 SENSE4US project.

c© Springer International Publishing AG 2017
E. Blomqvist et al. (Eds.): ESWC 2017, Part I, LNCS 10249, pp. 19–34, 2017.
DOI: 10.1007/978-3-319-58068-5 2

20 V. Fionda and G. Pirrò

GeL is useful in many contexts where one needs to connect the dots [11];
from bibliographic networks to query debugging [8]. The practical motivation
emerged from the SENSE4US FP7 project1 aiming at creating a toolkit to sup-
port information gathering, analysis and policy modeling. Here, explanations
are useful to enable users to find out previously unknown information that is
of relevance for a query, understand how it is of relevance, and navigate it. For
instance, a GeL query on DBpedia and OpenEI using concepts like Country and
Vehicle (extracted from a policy document) allows to retrieve, for instance, the
pair (Germany, ElectricCar) and its explanation, which includes the company
ThyssenKrupp (intermediate node). This allows to deduce that ThyssenKrupp
is potentially affected by policies about electric cars.

GeL by Example. We now give an example of what GeL can express (the
syntax and semantics are introduced in Sect. 3).

Example 1 (Co-authors). ISWC co-authors between 2002 and 2015.

?x foaf:maker([swrc:series{=“ swrc:semweb”}]&&[dc:issued({>2002}&&{<2015}]))/ˆfoaf:maker ?y

The query uses path concatenation (/) nesting ([]), boolean combinations
(&&) of (node) tests { } and backward navigation (ˆ). The GeL syntax is pur-
posely similar to previous navigational languages (e.g., NREs [16]). What makes
a difference is the query evaluation semantics. Under the semantics of previous
navigational languages, the evaluation would only look for pairs of co-authors
(bindings of the variables ?x and ?y) connected by paths (in the graph) that sat-
isfy the query. Under the GeL semantics, one can obtain both pairs of co-authors
and a graph that gives an account of why each pair is an answer. Figure 1 shows
the GUI of our explanation tool when evaluating the query on RDF data from
DBLP. The tool allows to detail the explanation for each node in the answer. We
only report explanations for ?x → S. Staab in Fig. 1(a) and ?x → C. utierrez in
Fig. 1(b). One can see why S. Staab is linked with his co-authors; he had a paper
with P. Mika, and R. Siebes and J. Brokestra are also authors of this paper. As
for C. Gutierrez, we see that he had 8 ISWC papers, two of which with the same
co-authors (i.e., M. Arenas and J. Pérez). �
Contributions and Outline. We contribute: (i) GeL, which to the best
of our knowledge is the first graph navigational language able to produce
(visual) query explanations; (ii) formal semantics; (iii) efficient algorithms; (iv) a
GeL2CONSTRUCT translation, which makes our framework readily usable on exist-
ing SPARQL processors; (v) an evaluation that investigates the overhead of the
new explanation-based semantics.

The remainder of the paper is organized as follows. Section 3 provides some
background, presents the GeL language, formalizes the notion of graph query
explanation and introduces the formal semantics of the language. Section 4
presents the evaluation algorithms, a study of their complexity and outlines the
GeL2CONSTRUCT translation. We discuss an experimental evaluation in Sect. 5,
sketch future work and conclude in Sect. 6.
1 http://www.sense4us.eu.

http://www.sense4us.eu

Explaining Graph Navigational Queries 21

Paper

Author

Some pairs of results

S. Staab

W. Nejdl

R.Troncy

R.Dividino

P. Mika
R. Siebes

(S. Staab, W. Nejdl)
(S. Staab, R. Dividino)
(S. Staab, Y. Sure)
(S. Staab, P. Mika)
(S. Staab, R. Troncy)
(S. Staab, M. S. Pini)
(S. Staab, M. Thimm)
(S. Staab, M. Ehrig)
(S. Staab, O. Gorlitz)

Y. Sure

ISWC co-authors 2002-2015

N. Fanizzi

A. Scherp

S. Schenk

C.
Ringelstein

M.
Leinberger

R. Laemmel

M. Ehrig

D. Fing

F. Esposito

H. Oppermann

T. Franz

C. Tempich

ISWC co-authors 2002-2015

M. Martinez-Prieto

J. Fernandez

R. Angles

V. Fionda

M.
Arenas

J. Brokestra

Some pairs of results

(C. Gutierrez, M. Arenas)

(C. Gutierrez, V. Fionda)
(C. Gutierrez, R. Angles)
(C. Gutierrez, R. Rosati)
(C. Gutierrez, E. Franconi)

(a) (b)

C.Gutierrez

Fig. 1. ISWC co-authorship for S. Staab and C. Gutierrez.

2 Related Work

The core of graph query languages are Regular Path Queries (RPQs) that have
been extended with other features, among which, conjunction (CRPQs) [6],
inverse (C2RPQs) and the possibility to return and compare paths (EXPQs) [5].
Languages such as Nested Regular Expressions (NREs) [16] allow existential tests
in the form of nesting, in a similar spirit to XPath. Finally, some languages have
been proposed for querying RDF or Linked Data on the Web (e.g., [1,2,12,13]).
There are some drawbacks that hinder the usage of these languages for our goal.
The evaluation of queries in these languages (apart from ERPQs) returns set of
pairs of nodes or set of (solution) mappings and no connectivity information is
kept. Query evaluation in most of these languages (including ERPQs that return
graphs) is not tractable (combined complexity); those languages that are tractable
(e.g., NREs, RPQs) do not output graphs. We design efficient algorithms to recon-
struct parts of the graph traversed to build to the answer.

There are approaches to retrieve subgraphs, querying for semantic associ-
ations and/or providing relatedness explanations. As for the first strand, we
mention ρ-Queries [4] and SPARQ2L [3]; here the idea is to enhance RDF query
languages to deal with semantic associations or path variables and constraints.
Our work is different since we focus on navigational queries and our algorithms
for query evaluation under the graph semantics are polynomial. As for the sec-
ond strand, we mention RECAP [17], RelFinder [14], Explass [7] that generate
relatedness explanation when giving as input two entities and a maximum dis-
tance k. The idea is to generate SPARQL queries (typically 2k SPARQL queries)
to retrieve paths of length k connecting the input pair; then, show paths after
performing some filtering (e.g., only considering a subset of paths). The input
of these approaches is a set of entities while in our case is a declarative naviga-
tional query; moreover, these approaches consider paths of a fixed length k (given
as input) and require (SPARQL) queries to find these paths. Our work is also
related to: (i) provenance (e.g., [9]); (ii) annotations (e.g., [22]) and (iii) module
extraction (e.g., [19]).

22 V. Fionda and G. Pirrò

Research in (i) and (ii) do not directly touch upon the problem of providing
query explanations; their focus is on provenance and require complex machinery
(e.g., annotation of data tuples using semirings). Our work defines formal query
semantics to return graphs and obtain explanations via graph navigation and
efficient reconstruction techniques. We focus on a precise class of queries that
can be evaluated (also under the graph semantics) in polynomial time. The focus
of (iii) is on the usage of Datalog to extract modules at ontological level while
ours is on enhancing graph languages to return graphs. We also recall recent
approaches dealing with recursion in SPARQL [18], where graphs (obtained via
CONSTRUCT) are used to materialize data needed for the evaluation of the recur-
sive SELECT query. Our focus is on the definition of formal semantics and efficient
algorithms to enhance navigational languages to return graphs, and build expla-
nations in an efficient way. Finally, to make our framework available on existing
SPARQL processors we have devised a GEL2CONSTRUCT translation.

3 Building Query Explanations with GeL

We now provide some background information and then present the GeL lan-
guage. We focus our attention on the Resource Description Framework (RDF).
An RDF triple is a tuple of the form 〈s, p, o〉 ∈ I×I×I∪L, where I (IRIs) and L
(literals) are countably infinite sets. Since we are interested in producing query
explanations we do not consider bnodes. An RDF graph G is a set of triples.
The set of terms of a graph will be terms(G) ⊆ I∪L; nodes(G) will be the set of
terms used as a subject or object of a triple while triples(G) is the set of triples
in G. Since SPARQL property paths offer very limited expressive power, we will
consider the well-known Nested Regular Expressions (NREs) as reference lan-
guage. NREs [16] allow to express existential tests along the nodes in a path via
nesting (in the same spirit of XPath) while keeping the (combined) complexity
of query evaluation tractable. Each NRE nexp over an alphabet of symbols Σ
defines a binary relation �nexp�G when evaluated over a graph G. The result
of the evaluation of an NRE is a set of pairs of nodes. Other extensions (e.g.,
EPPs [10]) although adding expressive power to NREs (e.g., EPPs add path
conjunction and path difference), all return pairs of nodes. This motivates the
introduction of GeL, which tackles the problem of returning graphs from the
evaluation of navigational queries that also help to explain query results.

3.1 Syntax of GeL

The syntax of GeL is defined by the following grammar:

gexp :=τ#exp (τ ∈ {full, filtered, set})

exp :=a gtest(a ∈ Σ) | ˆa gtest(a ∈ Σ) | exp / exp | exp |exp | exp∗ | exp{l, h}
gtest :=gtest && gtest | gtest || gtest | (gtest) | [exp] | {op val}

op := > | < | = | �=

Explaining Graph Navigational Queries 23

In the syntax, ˆ denotes backward navigation, / path concatenation, | path
union, {l,h} denotes repetition of an exp between l and h times; && and ||
conjunction and disjunction of gtest, respectively. Moreover, when the gtest is
missing after a predicate, it is assumed to be the constant true. We kept the
syntax of the language similar to that of NREs and other languages. We define
novel query semantics and evaluation algorithms capable of: (i) returning graphs;
(ii) keeping query evaluation tractable; (iii) building query explanations. The
syntactic construct τ allows to output the answer either in the form of pairs of
nodes (i.e., set) as usually done by previous navigational languages or in the
form of an explanation. GeL can produce two types of explanations: one keeping
the whole portion of the graph “touched” during the evaluation (full) and the
other keeping only paths leading to results (filtered).

3.2 Semantics of GeL

Tiddi et al. [21] define explanations as generalizations of some starting knowledge
mapped to another knowledge under constraints of certain criteria. We use GeL
queries to define starting knowledge and Explanation Graphs (EGs) to formally
capture the criteria that knowledge included into an explanation has to satisfy.

Definition 2 (Explanation Graph). Given a graph G, a GeL expression e and a
set of starting nodes S ⊆ nodes(G), an EG is a quadruple Γ=(V,E, S, T) where
V ⊆ nodes(G), E ⊆ triples(G) and T ⊆ V is a set of ending nodes, that is,
nodes reachable from nodes in S via paths satisfying e.

:knows:knows

:co-author:co-author:co-author:co-author

aa

bb

cc

dd

:knows:knows

ff

Fig. 2. An example graph.

Consider the graph G in Fig. 2 and the expression
e=(:knows/:knows)|(:co-author/:co-author). The answer
with the semantics based on pairs of nodes (i.e.,
NREs) is the set of pairs of nodes: (a,c), (b,d).
Under the GeL semantics, since there are two
starting nodes a and b from which the evalu-
ation produces results, one possibility would be
to consider the EG capturing all results, that is,

Γ=(nodes(G), triple(G), {a,c}, {b,d}). However, one may note that there exists
a path (via the node f) from a to d in the EG even if the pair (a,d) does not
belong to the answer. This could lead to misinterpretation of the query results
and their explanation. To avoid these situations, we define G-soundness and
G-completeness for EGs.

Definition 3 (G-Soundness). Given a graph G and a GeL expression e, an
EG is G-sound iff each ending node is reachable in EG from each starting node
via a path satisfying e.

Definition 4 (G-Completeness). Given a graph G and a GeL expression e,
an EG is G-complete iff all nodes reachable from some starting nodes, via a path
satisfying e, are in the ending nodes.

24 V. Fionda and G. Pirrò

The EG Γ in the above example violates G-soundness because there exists only
one path (via the node f) from a to d in Γ and such path does not satisfy the
expression e. The following lemma guarantees G-soundness and G-completeness.

Lemma 1 (G-Sound and G-Complete EGs). Explanation Graphs having a
single starting node v ∈ nodes(G) are G-sound and G-complete.

Definition 5 (Query Explanation). Given a GeL expression e and a graph
G, a query explanation EQ is a set of G-sound and G-complete EGs Γv.

Returning to our example, the query explanation is the set {Γa, Γb} s.t.:

1. Γa=({a,f,c}, {〈a, :knows, f〉, 〈f, :knows, c〉, a, {a,c})
2. Γb=({b,f,d}, {〈b, :co-author, f〉, 〈f, :co-author, d〉}, b, {b,d}).

Note that query answering under the semantics returning pairs of nodes can
be represented via the query explanation composed of the set of EGs: {Γv =
(∅, ∅, v, T) | v ∈ nodes(G)}. Since the formal semantics of GeL manipulates
EGs, we now define: the counterpart for EGs of the composition (◦) and union
(∪) operators used for binary relations, and operators to work with sets of EGs.

Definition 6 (EGs operators). Let Γi = (Vi, Ei, si, Ti), i = 1, 2 be EGs and
Γ⊥ = (∅, ∅,⊥, ∅) denote the empty EG, where ⊥ is a symbol not in the universe
of nodes.

Composition (◦) and union (∪) of EGs:

Γ1◦Γ2 =
{

Γ⊥ if s2 /∈ T1,
(V1∪V2, E1∪E2, s1, T2) if s2 ∈ T1.

Γ1∪Γ2=

⎧⎪⎨
⎪⎩

(V1∪V2, E1∪E2, s1, T1∪T2) if s1 = s2,
Γ1 if s1 �= s2 ∧ Γ2 = Γ⊥,
Γ2 if s1 �= s2 ∧ Γ1 = Γ⊥,
not defined if s1 �= s2 ∧ Γ1, Γ2 �= Γ⊥.

The following definition formalizes extensions of the above operators over
sets of EGs; here, the binary operator op ∈ {◦,∪} is applied to all pairs Γ1, Γ2

such that Γ1 belongs to the first set and Γ2 to the second one.

Definition 7 (Operations over sets of EGs). Let S1 and S2 be two sets of EGs.

1. For each op ∈ {◦,∪} we define S1 op S2 = {Γ1op Γ2 | Γ1 ∈ S1, Γ2 ∈ S2}.
2. (Disjoint union, direct sum): S1⊕S2 = {Γ | Γ ∈ S1 ∨ Γ ∈ S2}.

We now introduce the semantics of GeL in two variants: full (Λ) returning
the portion of the graph visited during the evaluation and filtered (Φ), which
only considers successful paths. Let G be a graph and e a GeL expression. Under
the Λ semantics an explanation is the set of EGs where each EG Γv includes the
nodes and edges of G traversed during the evaluation of e from v ∈ nodes(G).
For this semantics we introduce, in Table 1, the evaluation function EΛ�exp�G.

Explaining Graph Navigational Queries 25

Table 1. The full(Λ) and filtered(Φ) semantics of GeL EGs. (∗): rule valid for
both. Repetitions of GeL expressions are translated into unions of concatenations. In
lines 5, 6, 10 and 11 if gtest is not present then Λ�gtest�Gv’ = Φ�gtest�Gv’ = true.

One may be only interested in the portion of G that actually contributed to
build the answer; this gives the second semantics, where the query explanation is
defined as the set of EGs such that each Γv only considers paths that start from v ∈
nodes(G) and satisfy the expression (i.e., the successful paths). We introduce the
evaluation function EΦ�exp�G in Table 1. The difference between the semantics
lays in the sets of nodes (V) and edges (E) included in the explanations graphs
that form a query explanation. An expression is evaluated either via the rule at
line 1 or 2, depending on the type of semantics (explanation) wanted.

GeL expressiveness. We chose NREs as reference language and added the pos-
sibility to test for node values reached when evaluating a nested expression and
boolean combinations of tests. We added this type of tests since they allow to
express queries like those in Example 1. Nevertheless, the focus of this paper is

26 V. Fionda and G. Pirrò

on defining semantics and evaluation algorithms for navigational languages to
output graphs besides pairs of nodes. This feature is not available in any existing
navigational language (e.g., NREs [16], EPPs [10], SPARQL property paths).

4 Algorithms and Complexity

This section presents algorithms for the evaluation of GeL expressions under the
novel semantics that also generate query explanations. The interesting result
is that the evaluation of a GeL expression e in this new setting can be done
efficiently. Let e be a GeL expression and G a graph. Let |e| be the size of e, Σe

the set of edge labels appearing in it, and |G|=|nodes(G)| + |triples(G)| be the
size of G. Algorithms that build explanations according to the full or filtered
semantics are automata-based and work in two steps. The first step is shared
and leverages product automata; the second step requires a marking phase only
for the filtered semantics and is needed to include nodes and edges in the EGs
that are relevant for the answer.

Building Product Automata. The idea is to associate to e (and to each gtest
on the form of [exp]) a non deterministic finite state automaton with ε transitions
Ae (Aexp, resp.). Such automata can be built according to the standard Thomson
construction rules over the alphabet V oc(e)=Σe ∪ ⋃

gtest∈e gtest, that is, by
considering also gtest in e as basic symbols. The product automaton is a tuple
G × Ae = 〈Qe, V oc(e), δe, Qe

0, F
e〉 where Qe is a set of states, δe:Qe × (V oc(e) ∪

ε) → 2Qe

is the transition function, Qe
0 ⊆ Qe is the set of initial states, and

F e ⊆ Qe is the set of final states. The building of the product automaton G×Ae

is based on an extension of the algorithm used by [16] based on the labeling of
the nodes of G. In this phase, G is labeled wrt nested subexpressions in e, that
is, for each node n ∈ nodes(G) and nested subexpression exp in e, exp ∈ label(n)
if and only if there exists a node n′ such that there is a path from n to n′ in G
satisfying exp. This allows to recursively label the graph G for each [exp]; hence,
when the labeling wrt exp has to be computed, G has already been labeled wrt
all the nested subexpressions [exp′] in exp.

Theorem 8 ([16]). The product G × Ae can be built in time O(|G| × |e|).
Building Explanations. We now discuss algorithms that leverage product
automata (of the GeL expression e and all nested subexpressions) to produce
graph query explanations according to the full and filtered semantics. To
access the elements of an explanation graph Γ (see Definition 2) we use the
notation Γ.x, with x ∈ {V,E, S, T}. The main algorithm is Algorithm 1, which
receives the GeL expression and the type of explanation to be built. In case of the
filtered semantics the data structure reached, which maintains a set of states
(ni, qj), is initialized via the procedure mark (line 3) reported in Algorithm 2;
otherwise, it is initialized as the union of: (i) all the states of the product automa-
ton G × Ae; (ii) all the states of the product automata (G × Aexp) of all the
nested expressions in e (line 5). The procedure mark fills the set reached with

Explaining Graph Navigational Queries 27

all the states in all the product automata that contribute to obtain an answer;
these are the states in a path from an initial state to a final state in the product
automata. As shown in Algorithm 2, reached is populated by navigating the
product automata backward from the final states to the initial ones. Then, the
set of EGs composing a query explanation EQ are initialized (lines 6–7; 9) by
adding to EQ an EG Γs for each initial state (s, q0) of G × Ae. Moreover, the
data structure seen is also initialized (line 8) by associating to each state (s, q0)
the node s (associated to the initial state (s, q0)) from which it has been visited.

Input : GeL expression e, graph G, τ (full or filt)
Output: EQ: a query explanation as set of EG Γs

1. build the product automaton G×Ae

2. if filt /* filtered semantics */ then
3. reached = mark(G×Ae, ∅)

/* reached keeps nodes in G×Ae that are in a path to a final state */
4. else
5. reached = Qe ∪⋃[exp] in e Qexp

6. for all (s, qo) ∈ Qe
0 do

7. Γs = 〈{s}, ∅, s, ∅〉
8. seen(s,qo) = {s}

/*seen for each state sj keeps nodes in G×Ae from which it has been reached*/
9. EQ =

⋃
(s,qo)∈Qe

0
{Γs}

10. visit =
⋃

(s,qo)∈Qe
0
{((s, q0), {s})}

/* visit keeps nodes to be visited */

11. buildE(G × Ae, reached, EQ, visit)

Algorithm 1. BuildExpl (e, G, τ)

Input: product automaton G × A, set of states reached

Build: set of states reached

1 reached = reached ∪⋃(n,qf)∈Fe{(n, qf)}
2 visit =

⋃
(n,qf)∈Fe{(n, qf)} s.t. qf ∈ F

3 visitN = ∅
4 while visit �= ∅ do
5 for all (n, q) in visit do
6 for all transition δ((n′, q′), x) ∈ G × Ae s.t. (n, q) ∈ δ((n′, q′), x) do
7 if (n′, q′) /∈ reached then
8 visitN = visitN ∪ {(n′, q′)}
9 reached = reached ∪ {(n′, q′)}

10 if x is a gtest then
11 for all [exp] in x do
12 mark(G × Aexp, reached)
13 visit = visitN

14 visitN = ∅
15 return reached

Algorithm 2. mark(G × Ae, reached)

The data structure seen maintains for each state, reached while visiting the
product automata, the starting nodes from which this state has already been
visited. The usage of seen avoids to visit the same state more than once for

28 V. Fionda and G. Pirrò

each starting node. Finally, the data structure visit is also initialized with the
initial states of G × Ae (line 10); it contains all the states to be visited in the
subsequent step plus the set of starting nodes for which these states have to
be visited. Then, the EGs are built via buildE (Algorithm 3); all the states
in visit are considered (line 2) only once for the entire set Bn,q, which keeps
starting nodes for which states in visit have to be processed (line 3). Then,
for each state (n, q) ∈ visit all its transitions are considered (line 7); for each
state (n′, q′) ∈ reached, reachable from some (n, q) ∈ visit via some transitions
(line 8), the set of “new” starting nodes (D) for which (n′, q′) has to be visited
in the subsequent step is computed with a possible update of the sets visit
and seen (lines 9–12). If the transition is labeled with a predicate symbol in G
(line 13), the EGs corresponding to nodes s ∈ Bn,q are constructed by adding
the corresponding nodes and edges (lines 14–16). If the transition is a gtest the
building of the query explanation EQ proceeds recursively by visiting the product
automata associated to all nested (sub)expressions for gtest (lines 17–21).

Input: product G × Aē, set of states reached, Explanation EQ, states to visit

1 visitN = ∅
2 for all (n, q) in visit do
3 Bn,q =

⋃
((n,q),S)∈visit S

4 for all s ∈ Bn,q do
5 if q ∈ F ē then
6 add n to Γs.T
7 for all transition δē((n, q), x) do
8 for all (n′, q′) ∈ δē((n, q), x) s.t (n′, q′) ∈ reached do
9 D = Bn,q \ seen(n,q)

10 if D �= ∅ then
11 visitN = visitN ∪ {((n′, q′), D)}
12 seen(n′,q′) = seen(n′,q′) ∪ D
13 if x ∈ Σe then
14 for all s ∈ Bn,q do
15 add n′ to Γs.V
16 add (n, x, n′) to Γs

17 else if x is a gtest then
18 for all [exp] ∈ gtest do
19 let (n, q0) ∈ Qexp

0

20 seen(n,q0) = seen(n,q0) ∪ Bn,q

21 buildE(G × Aexp, reached, EQ, {(n, q), Bn,q})
22 buildE(Ae × G, reached, EQ, visitN)

Algorithm 3. buildE(G × A, reached, EQ, visit)

Theorem 9. Given a graph G and a GeL expression e, the query explanation EQ

(according to both semantics) can be computed in time O(|nodes(G)|× |G|× |e|).
Proof. The explanation EQ built according to the full semantics can be
constructed by visiting G×Ae (Algorithm 3). In particular, for each starting
state (n, q), the states and transitions of G×Ae are all visited at most once

Explaining Graph Navigational Queries 29

(and the same also holds for the automata corresponding to the nested expres-
sions of e). The starting and ending nodes of each EG are set during the
visit of the product automaton. For each node s corresponding to a start-
ing state (s, qo) ∈ Qe

0 an explanation graph Γs is created (Algorithm 1, lines
6–7); the set of nodes reachable from s is set to be Γs.T = {n | (n, q) ∈
F e and (n, q) is reachable from (s, qo)} (Algorithm 3 lines 5–6). Thus, each EG
can be computed by visiting each transition and each node exactly once with
a cost O(|Qe| +

∑
[exp]∈e |Qexp| + |δe| +

∑
[exp]∈e |δexp|) = O(|G| × |e|). Since

the number of EGs to be constructed is bound by |nodes(G)|, the total cost of
building the query explanation EQ, is O(|nodes(G)| × |G| × |e|). This bounds
also take into account the cost of building product automata as per Theorem8.

In the case of the filtered semantics, the marking phase does not increase
the complexity bound; this is because the set reachable, which keeps reachable
states, is built by visiting at most once all nodes and transitions in all the product
automata, with a cost O(|G| × |e|). �
Note that in Algorithm 3, the amortized processing time per node is lower than
|G|×|e| when visiting the product automaton since the Breadth First Search(es)
from each starting state are concurrently run according to the algorithm in [20].
Finally, the EGs in the EQ built via Algorithm1 are both G-sound and G-
complete. It is easy to see by the definition of the product automaton, that
there exists a starting state (n, q0) that is connected to a final state (n′, qf) in
G × Ae and, thus, a path from n to n′ in Γn if, and only if, there exists a path
connecting n to n′ in G satisfying e.

4.1 Translating GeL into SPARQL

The algorithms discussed in Sect. 4 are suitable for the implementation of GeL
on a custom query processor. This has the advantage to guarantee a low com-
plexity of query evaluation as we have formally proved. On the other hand,
there is SPARQL, which is the standard for querying RDF data although offer-
ing limited navigational capabilities (via property paths). We wondered how the
machineries developed for GeL could be made available on existing SPARQL
processors. This will have the advantage of making GeL readily available for
usage on the tremendous amount of RDF data accessible through SPARQL
endpoints. We have devised a formal translation (GEL2CONSTRUCT) from GeL
queries into CONSTRUCT SPARQL queries that produce RDF graphs as results
of a SPARQL query. In particular, since current SPARQL processors can han-
dle limited forms of recursive queries (as studied by Fionda et al. [10]) only
a subset of GeL queries can actually be turned into CONSTRUCT queries. Such
queries do not include closure operators (i.e., *). We have included in GeL path
repetitions, that is, the possibility to express in a succinct way the union of con-
catenations of a GeL expression between l and h times. When translating GeL
into CONSTRUCT queries one has to give up two main things. First, the complexity
of query evaluation increases even if one can now rely on efficient and mature
SPARQL query processors. Second, it is possible to only produce explanations

30 V. Fionda and G. Pirrò

Table 2. Translating GeL into SPARQL (CONSTRUCT).

under the filtered semantics as SPARQL processors only provide parts of the
graph that contribute to the answer while GeL relies on automata-based algo-
rithms to also keep parts touched that do not contribute to the answer. Table 2
gives an overview of the translation. The translation algorithm, starts from the
root of the parse tree of a GeL expression and applies translation rules recur-
sively. Each GeL syntactic construct has associated a chuck of SPARQL code.

Theorem 10. For every (non-recursive) GeL query P=(α, gel, β), α, β ∈ V∪I,
there exists a CONSTRUCT query Qe=At(P) such that for every RDF graph G it
holds that [[P]]G=[[Qe]]G. The GEL2CONSTRUCT algorithm At runs in time O(|P|).
Proof (Sketch). The proof works by checking that the propagation of variable
names (artificially generate) and terms along the parse tree is correct (see
e.g., [10]). �

5 Implementation and Evaluation

We implemented GeL and the explanation framework in Java. Beside our custom
evaluator based on the algorithms discussed in Sect. 4, we have also implemented
the GEL2CONSTRUCT translation to make available GeL’s capabilities into existing
SPARQL engines in an elegant and non-intrusive way.

Experimental Setting. We tested our approach using different datasets. The
first is a subset of the FOAF network (∼4M triples) obtained by crawling from
10 different seeds foaf:knows predicates up to distance 6 and then merging
the graphs. The second one, is the Linked Movie Database (LMDB)2, an RDF
dataset containing information about movies and actors (∼6M triples). We also
considered data from YAGO (via the LOD cache3) (∼22B triples) and DBpedia4

2 http://linkedmdb.org.
3 http://lod.openlinksw.com/sparql.
4 http://dbpedia.org/sparql.

http://linkedmdb.org
http://lod.openlinksw.com/sparql
http://dbpedia.org/sparql

Explaining Graph Navigational Queries 31

(∼412M triples). The goal of the evaluation is to measure the overhead of out-
putting graphs as a result of navigational queries and build query explanations.
Because of the novelty of our approach it was not possible to compare it against
other implementations, or run standard benchmarks to test the overhead of out-
putting graphs instead of pairs of nodes. We tested the overhead of producing
explanations both when using our custom processors and on SPARQL endpoints
and also measured the size of the output returned. We used 6 queries per dataset
for a total of 24 queries plus their SPARQL translation. Experiments have been
run on a PC i5 CPU 2.6 GHz and 8 GB RAM; results are the average of 5 runs.

Overhead using the custom processor. We considered 6 queries (on FOAF
data) including concatenations and gtest that ask for (pairs of) friends at increas-
ing distance (from 1 to 6) with the condition that each friend (in the path) must
have a link to his/her home page. For sake of space we report the overhead
of generating explanations about Tim Berners-Lee (TBL) along with the size
of the explanation (#nodes,#edges) generated under the filtered and full
semantics (Tables 3 and 4). We observed a similar behavior when considering
explanations related to other people in the FOAF network (e.g., A. Polleres, N.
Lopes).

Table 3. Overhead (secs).

FOAF Filtered Full

Q1 0.434 0.278

Q2 0.738 0.234

Q3 0.985 0.534

Q4 1.155 0.849

Q5 1.665 1.145

Q6 1.785 1.257

Table 4. Size of the explanation.

FOAF Filtered Full

Q1 (6, 5) (17, 17)

Q2 (18, 37) (20, 45)

Q3 (18, 44) (25, 53)

Q4 (23, 51) (55, 90)

Q5 (36, 64) (149, 236)

Q6 (177, 111) (190, 139)

The evaluation of GeL queries under the explanation semantics does not have
a significant impact on query processing time (the overhead is max. ∼2 s) for
friends at distance 6. This is not surprising as it confirms the complexity analysis
discussed in Sect. 4 where we showed that our explanations algorithms run in
polynomial time. The output of a GeL query clearly requires more space as it is
a (explanation) graph. As one may expect, the full semantics produces larger
graphs than the filtered semantics as it reports all parts of the graph touched
(i.e., even paths that did not lead to any result). We can observe that for TBL,
at distance 6 the explanation contains 190 nodes and 139 edges (resp., 177 and
111) under the full semantics (resp., filtered). The visual interface of the
tool implementing GeL (see Fig. 1) allows to picking one node in the output and
generate the corresponding explanation graph, zoom the graph, change the size
of nodes/edges and perform free text search for nodes/edges. Running time for
all queries were in the order of 6 seconds. Note that our algorithms work with

32 V. Fionda and G. Pirrò

the graphs loaded into main memory. In the next experiment we measure the
overhead of generating explanations on large set of triples.

Overhead on SPARQL endpoints. Since we made available GeL’s machin-
ery also via CONSTRUCT queries, we tested the overhead of generating explana-
tion (graphs) also on different datasets and SPARQL endpoints both local and
remote. We set up a local BlazeGraph5 instance where we loaded LMDB and
accessed the other datasets via their endpoints. For each dataset we created 6
GeL queries and translated them into: (i) SELECT queries to mimic the semantics
returning pairs of nodes and (ii) CONSTRUCT queries to mimic the explanation
semantics. At this point, we need to make two important observations about
generating explanations via translation into SPARQL. First, it is only possible
to consider the filtered semantics as SPARQL engines do not keep track of
the portions of the graph visited that did not contribute to the answer necessary
for the full semantics. Second, explanations are only G-complete (see Defini-
tion 5) as it is not possible to keep separate the explanation for each node in the
result of a CONSTRUCT while it can be done in GeL by using Explanation Graphs
(see Definition 2). The overhead and size of results for DBpedia and YAGO are
reported in the following figures.

Fig. 3. DBpedia Time. Fig. 4. DBpedia Size. Fig. 5. YAGO Time. Fig. 6. YAGO size.

As it can be observed, running time for the CONSTRUCT (explanation) queries
are always higher in DBpedia (Fig. 3) but always ∼1 s. The size of results (#
triples) (Fig. 4) reaches 800 for Q1, which asks for (all pairs) fo people that
have influenced each other (no filters). From Q2–Q6 each person in an influence
path must be a scientist; this filter decreases at each step the size of the answer
(∼100 for Q6). For YAGO (Fig. 5), accessed via LOD cache, we also observe that
CONSTRUCT queries (asking for influences in YAGO among female people) require
more time (<3 s) than SELECT queries, with an overhead of ∼2 s. Even in this
case the overhead of generating explanations (considering the larger number of
results generated) is bearable (Fig. 6). On LDMB (results not reported for sake
of space) the overhead was of ∼1.5 s with average size of the explanation ∼700
triples. The GEL2CONSTRUCT translation (integrated in our tool) allows to obtain
explanations from a variety of SPARQL endpoints online.

5 https://www.blazegraph.com.

https://www.blazegraph.com

Explaining Graph Navigational Queries 33

6 Concluding Remarks and Future Work

We have shown how current navigational languages (e.g., NREs) can be enhanced
to return graphs besides pairs of nodes. Such kind of information is useful when-
ever one needs to connect the dots (e.g., bibliographic networks, exploratory
search). We have described a language, formalized two semantics, and pro-
vided algorithms that use connectivity information to produce different types
of query explanations. The interesting aspect is that query answering under
the new explanation semantics is still tractable. We gave some examples of
(visual) explanations generated with a tool implementing our framework and
using real world data. There are several avenues for future research, among
which: (i) studying explanations with negative information (e.g., which parts of
a query failed); (ii) studying the expressiveness of GeL; (iii) assisting the user in
writing queries [15]; (iv) including RDFS inferences.

References

1. Acosta, M., Vidal, M.-E.: Networks of linked data eddies: an adaptive web
query processing engine for RDF data. In: Arenas, M., Corcho, O., Simperl, E.,
Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J.,
Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 111–127.
Springer, Cham (2015). doi:10.1007/978-3-319-25007-6 7

2. Alkhateeb, F., Baget, J.-F., Euzenat, J.: Extending SPARQL with regular expres-
sion patterns (for querying RDF). J. Web Sem. 7(2), 57–73 (2009)

3. Anyanwu, K., Maduko, A., Sheth, A.: SPARQ2L: towards support for subgraph
extraction queries in RDF databases. In: WWW, pp. 797–806. ACM (2007)

4. Anyanwu, K., Sheth, A.: p-Queries: enabling querying for semantic associations on
the semantic web. In: WWW, pp. 690–699. ACM (2003)

5. Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path
queries over graph-structured data. ACM TODS 37(4), 31 (2012)

6. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of con-
junctive regular path queries with inverse. In: KR, pp. 176–185 (2000)

7. Cheng, G., Zhang, Y., Explass, Y.: Exploring associations between entities via top-
k ontological patterns and facets. In: Proceedings of ISWC, pp. 422–437 (2014)

8. Consens, M.P., Liu, J.W.S., Rizzolo, F.: Xplainer: visual explanations of XPath
queries. In: ICDE, pp. 636–645. IEEE (2007)

9. Dividino, R., Sizov, S., Staab, S., Schueler, B.: Querying for provenance, trust,
uncertainty and other meta knowledge in RDF. J. Web Semant. 7(3), 204–219
(2009)

10. Fionda, V., Pirrò, G., Consens, M.P., Paths, E.P.: Writing more SPARQL queries
in a succinct way. In: AAAI (2015)

11. Fionda, V., Gutierrez, C., Pirrò, G.: Building knowledge maps of web graphs. Artif.
Intell. 239, 143–167 (2016)

12. Fionda, V., Pirrò, G., Gutierrez, C.: NautiLOD: a formal language for the web of
data graph. ACM Trans. Web 9(1), 5:1–5:43 (2015)

13. Hartig, O., Pérez, J.: LDQL: a query language for the web of linked data. In:
Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas,
K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.)
ISWC 2015. LNCS, vol. 9366, pp. 73–91. Springer, Cham (2015). doi:10.1007/
978-3-319-25007-6 5

http://dx.doi.org/10.1007/978-3-319-25007-6_7
http://dx.doi.org/10.1007/978-3-319-25007-6_5
http://dx.doi.org/10.1007/978-3-319-25007-6_5

34 V. Fionda and G. Pirrò

14. Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder:
revealing relationships in RDF knowledge bases. In: Semantic Multimedia, pp.
182–187 (2009)

15. Lehmann, J., Bühmann, L.: AutoSPARQL: let users query your knowledge base.
In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer,
P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 63–79. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21034-1 5

16. Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: a navigational language for RDF.
J. Web Semant. 8(4), 255–270 (2010)

17. Pirrò, G.: Explaining and suggesting relatedness in knowledge graphs. In: Arenas,
M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P.,
Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS,
vol. 9366, pp. 622–639. Springer, Cham (2015). doi:10.1007/978-3-319-25007-6 36

18. Reutter, J.L., Soto, A., Vrgoč, D.: Recursion in SPARQL. In: Arenas, M., Corcho,
O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier,
M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9366,
pp. 19–35. Springer, Cham (2015). doi:10.1007/978-3-319-25007-6 2

19. Rousset, M.-C., Ulliana, F.: Extracting bounded-level modules from deductive
RDF triplestores. In: Proceedings of the AAAI (2015)

20. Then, M., Kaufmann, M., Chirigati, F., Hoang-Vu, T., Pham, K., Kemper, A.,
Neumann, T., Vo, H.T.: The more the merrier: efficient multi-source graph traver-
sal. VLDB Endowment 8(4), 449–460 (2014)

21. Tiddi, I., d’Aquin, M., Motta, E.: An ontology design pattern to define explana-
tions. In: K-CAP, p. 3 (2015)

22. Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A feneral framework for
representing, reasoning and querying with annotated semantic web data. J. Web
Semant. 11, 72–95 (2012)

http://dx.doi.org/10.1007/978-3-642-21034-1_5
http://dx.doi.org/10.1007/978-3-319-25007-6_36
http://dx.doi.org/10.1007/978-3-319-25007-6_2

	Explaining Graph Navigational Queries
	1 Introduction
	2 Related Work
	3 Building Query Explanations with GeL
	3.1 Syntax of GeL
	3.2 Semantics of GeL

	4 Algorithms and Complexity
	4.1 Translating GeL into SPARQL

	5 Implementation and Evaluation
	6 Concluding Remarks and Future Work
	References

