Spatial Ontology-Mediated Query Answering
over Mobility Streams

Thomas Eiter!, Josiane Xavier Parreira?, and Patrik Schneider!-2(*)
! Vienna University of Technology, Vienna, Austria
2 Siemens AG Osterreich, Vienna, Austria
patrik@kr.tuwien.ac.at

Abstract. The development of (semi)-autonomous vehicles and commu-
nication between vehicles and infrastructure (V2X) will aid to improve
road safety by identifying dangerous traffic scenes. A key to this is the
Local Dynamic Map (LDM), which acts as an integration platform for
static, semi-static, and dynamic information about traffic in a geograph-
ical context. At present, the LDM approach is purely database-oriented
with simple query capabilities, while an elaborate domain model as cap-
tured by an ontology and queries over data streams that allow for seman-
tic concepts and spatial relationships are still missing. To fill this gap, we
present an approach in the context of ontology-mediated query answer-
ing that features conjunctive queries over DL-Lite4 ontologies allowing
spatial relations and window operators over streams having a pulse. For
query evaluation, we present a rewriting approach to ordinary DL-Litea
that transforms spatial relations involving epistemic aggregate queries
and uses a decomposition approach that generates a query execution
plan. Finally, we report on experiments with two scenarios and evaluate
our implementation based on the stream RDBMS PipelineDB.

1 Introduction

The development of (semi)-autonomous vehicles needs extensive communication
between vehicles and the infrastructure, which is covered by Cooperative Intel-
ligent Transport Systems (C-ITS). These systems collect temporal data (e.g.,
traffic light signal phases) and geospatial data (e.g., GPS positions), which is
exchanged by vehicle-to-vehicle, vehicle-to-infrastructure, and combined com-
munications (V2X). V2X aids to improve road safety by analyzing traffic scenes
that could lead to accidents (e.g. red light violation). A key technology for this
is the Local Dynamic Map (LDM) [1], which acts as an integration platform for
static, semi-static, and dynamic information in a geographical context.

Current approaches for an LDM, however, are purely database-oriented with
simple query capabilities. Our aim is to enable spatial-stream conjunctive queries
(CQs) over a semantically enriched LDM for safety applications, such as detec-
tion of red light violations on complex intersections managed by a roadside
C-ITS station. To realize spatial query answering (QA) over mobility streams,
spatial and streaming data must be lifted to the setting of ontology-mediated

© Springer International Publishing AG 2017
E. Blomgqvist et al. (Eds.): ESWC 2017, Part I, LNCS 10249, pp. 219-237, 2017.
DOI: 10.1007/978-3-319-58068-5_14

220 T. Eiter et al.

QA with the frequently used ontology language DL-Lite 4. However, bridging
the gap between stream processing and ontology-mediated QA is not straight-
forward, as the semantics of DL-Lite 4 must be extended with spatial relations
and stream queries using window operators. For this, we build on the work on
spatial QA in [12] and extend ontology-mediated QA with epistemic aggregate
queries (EAQs) [10] to detemporalize the streams. The extension preserves first-
order rewritability, which allows us to evaluate a CQ with spatial atoms over a
stream RDBMS. Our contributions are briefly summarized as follows:

— we outline the field of V2X integration using LDMs in the mobility context
(Sect. 2);

— we introduce a data model and query language suited for mobility streams
(Sects. 3 and 4);

— we present a spatial-stream QA approach for DL-Lite 4 defining its semantics
with the focus of preserving FO-rewritability. The QA approach is based on
CQ over DL-Lite 4 ontologies, which combines window operators over streams
having a pulse and spatial relations over spatial objects (Sects.4 and 5);

— we provide a technique for query rewriting taking the above into account. For
query evaluation, we extend and apply the known techniques of (a) epistemic
aggregate queries, e.g., average, for a “detemporalization” of the streams; and
(b) provide a technique for query decomposition using hypertrees (Sects.5
and 6);

— we have implemented a prototype and performed experiments in two scenarios
to evaluate its applicability (Sect. 7).

In the final Sect. 8, we discuss related work and conclude with ongoing and future
work.

2 V2X Integration using a Local Dynamic Map

The base communication technolo- s
gies (i.e., the IEEE 802.11p standard) P]
allow wireless access in vehicular // prve
Output of cooperative 5. otc
environments, which enables messag- snsingprocessing 7 4 oo
ing between vehicles themselves and remporay ’ ; oy s a
the infrastructure, called V2X com- i A o —
munication. Traffic participants and referencing R
roadside C-ITS stations broadcast M o s -

every 100 ms messages for informing

others about their current state such Fig. 1. The four layers of a LDM [1] (Color
as position, speed, and traffic light figure online)

signal phases [1]. The main types of

V2X messages are Cooperative Awareness Messages (CAM) that provide high
frequency status updates of a vehicle’s position, speed, vehicle type, etc.; Map
Data Messages (MAP) that describe the detailed topology of an intersection,
including its lanes and their connections; Signal Phase and Timing Messages

Spatial Ontology-Mediated Query Answering over Mobility Streams 221

(SPaT) that give the projected signal phases (e.g., green) for a lane; and Decen-
tralized Environmental Notification Messages (DENM) that inform if specific
events like road works occur in a designated area.

The Local Dynamic Map (LDM) is a comprehensive integration effort of V2X
messages; the SAFESPOT project [1] introduced the concept of an LDM as
an integration platform to combine static geographic information system (GIS)
maps with data from dynamic environmental objects (e.g., vehicles, pedestri-
ans). This was motivated by advanced safety applications (e.g. detect red light
violation) that need an “overall” picture of the traffic environment. The LDM
has the following four layers (see Fig.1):

— Permanent static: the first layer contains static information obtained from
GIS maps and includes roads, intersections, and points-of-interest;

— Transient static: the second layer extends the static map by detailed local
traffic informations such as fixed ITS stations, landmarks, and intersection
features like lanes;

— Transient dynamic: the third layer contains temporary regional information
like weather, road or traffic conditions (e.g., traffic jams), and signal phases;

— Highly dynamic: the fourth layer contains dynamic information of road users
detected by V2X messages, in-vehicle sensors like the GPS module.

Current research (e.g., [19]) on architectures of an LDM identified that it can
be built on top of a spatial RDBMS enhanced with streaming capabilities. As
recognized by [19], an LDM should be represented by a world model, world
objects, and data sinks on the streamed input. However, an elaborate domain
model, captured by an LDM ontology, and extended queries over data streams
allowing spatial relations are still missing. The ontology represents an integration
schema modeled in DL-Lite 4 and captures the layers of an LDM. Likewise, the
LDM ontology must represent the content of the V2X messages and more general
GIS objects (e.g., parking or petrol stations) (cf. [11]).

Safety applications on intersections. “Road intersection safety” is an impor-
tant application for improving road safety [1]. Intersections are the most com-
plex environments and need special attention, where hazardous situations like
obstructed view or red-light violation might lead to accidents. We take the latter
as a motivation and running example.

Ezxample 1. The following query detects red-light violations on intersections by
searching for vehicles y with speed above 30 km/h on lanes x whose signals will
turn red in 4s:
q1(x,y) : LaneIn(x) A hasLocation(z,u) A intersects(u,v) A pos(ine, 4s) (Y, V)
A Vehicle(y) A speed(qug, 4s)(y,7) A (1 > 30) A isManaged(z, z)
A SignalGroup(z) A hasState first, —as)(z, Stop)

Query ¢ exhibits the different dimensions which need to be combined: (a)
Vehicle(y) and isManaged(z, z) are ontology atoms, which have to be unfolded
in respect to the ITS domain modelled in the LDM ontology; (b) intersects(u, v)
and hasLocation(x,u) are spatial atoms, where the first checks spatial intersection

222 T. Eiter et al.

and the second the assignment of a geometry to an object; (¢) speed(avg 25 (Y, v)
defines a window operator that aggregates the average speed of the vehicles over
the stream and hasState(frst, —as) gives us the upcoming traffic light state.

3 Streams, Pulses, and Spatial Databases

We now introduce the data model and sources that are used in our spatial-
stream QA.

Streams and pulses. Our data model is point-based (vs. interval-based) and
captures the valid time (vs. transaction time) saying that some data item is valid
at that time point. We extend this validity of time, and say that a data item
is valid from its time point until the next data item is added to the stream. To
capture streaming data, we introduce the timeline T, which is a closed interval
of (N;<). A (data) stream is a triple F' = (T,v,P), where T is a timeline,
v: T — (F,S#) is a function that assigns to each element of T, called timestamp
(or time point), data items (called membership assertions) of (F,Sz), where F
(resp. SF) is a stream (resp. spatial with streams) database, and P is an integer
called pulse defining the general interval of consecutive data items on the timeline
(cf. [6,20]). A pulse generates a stream of data items with the frequency derived
from the interval length. We always have a main pulse Pr with a fixed interval
length (usually 1) that defines the lowest granularity of the validity of data
items. The pulse also aligns the data items, which arrive asynchronously in the
database (DB), to the timeline.

Extending [20], we allow additional larger pulses that generate streams with
a lower frequency allowing larger intervals. Larger pulses also imply that their
generated data items are valid longer than items from the main pulse, thus
allowing us to resize the window size of a query and perform optimizations
such as caching. Furthermore, pull-based queries are executed at any single time
point ¢ denoted as T;. Push-based queries are evaluated asynchronously where
the lowest granularity is given by Pr.

Ezample 2. For the timeline T = [0,100], we have the stream Foapn = (T,
v, 1) of vehicle positions and speed at the assigned time points v(0) = {speed
(c1,30), pos(ci,(5,5)), speed(by,10), pos(bi,(1,1))}, v(1) = {speed(c1,29),
pos(cy, (6,5)) speed(by,5), pos(bi,(2,1))}, and v(2) = {speed(c1,34), pos(ci,
(7,5))} for the individuals ¢; and by. A second “slower” stream Fsp,r = (T,v,5)
captures the next signal state of a traffic light: v(0) = {hasState(t1, Red)} and
v(5) = {hasState(ty, Green)}. As Fspor has a pulse of p = 5, we know v(4) = 0
but under an alternative semantics with an inertia assumption, we could con-
clude v'(4) = {hasState(t1, Red)}. Further, the static ABox contains the asser-
tions Car(cy), Bike(by), and SignalGroup(ty).

Spatial databases and topological relations. We recall the essential idea
based on Point-Set Topological Relations (see [12]). Spatial relations are defined
via pure set theoretic operations on a point set Pz C R? in the plane. An

Spatial Ontology-Mediated Query Answering over Mobility Streams 223

admissible geometry g(s) is a sequence p = (p1, ..., pn) of points over P, where
Pr C Pg is the set of explicit points. We define a spatial DB over I's as a pair
S = (Pr,g) of a point set Pp and a mapping g : I's — ;> Pp', where I's
is a set of spatial objects. The extent of a geometry p (full point set) is given
by the function points(p) as a (possibly infinite) subset of Pg. For a spatial
object s, we let g(s) be its geometry and let points(s) := points(g(s)). For
our KB, we consider the following admissible geometries p over Pp, and let
Pp = U,er, points(s) (see [12] for further ones):

— points are the sequences p = (p1), where points(p1) = {p1};
— line segments are sequences p = (p1,p2), and points(p) = {ap1+(1—a)pz | €
R,0<a<1}

We use points to evaluate the spatial relations of two spatial objects via their
respective geometries and define the relations in terms of pure set operations
(see [12] for more):

— Inside(x,y): points(x)Cpoints(y) and Outside(x,y): points(x) N points(y)=0;
— Contains(z,y): points(y)Cpoints(x), Intersect(x,y): points(x) N points(y)FD.

A spatial relation S(s,s’) with s,s' € I's holds on a spatial DB S, written
SES(s,s'),if S(g(s),g(s")) is true. Relative to points, this is easily captured by
a first-order (FO) formula over (R?, <), and on geo-spatial RDBMS rewritable
into FO queries.

Combining spatial and stream databases. Following an ontology-mediated
QA approach, the LDM ontology is the global schema called the TBox 7,
whereon we link normal, spatial, and stream DBs. We distinguish between a
(standard) static ABox A, a stream ABox F, a static-spatial ABox S4, and a
spatial ABox with stream support Sz. These ABoxes can be stored in respective
DBs, and combined in different ways. We focus on a stream DB with limited
support for spatial data, which acts also as a storage for S 4.

4 Syntax, Semantics, and Query Language
of DL-Lite4 (S,F)

We start from previous work in [12], which introduced spatial CQ answering for
DL-Lite4, and lift the semantics from the spatial DL-Lite4 KB to the spatial-
stream KB.

Syntax and semantics of DL-Lite,. We consider a vocabulary of individual
names [, domain values I'y (e.g., N), and spatial objects I's. Given atomic
concepts A, atomic roles P, and atomic attributes E, we define (a) basic concepts
B, basic roles @, and basic value-domains E (attribute ranges); (b) complex
concepts C, complex role expressions R, and complex attributes V; and (c) value-
domain expressions D:

B = A|3Q|6(Us) C Te | B|-B|3Q.C’
E == p(Uc) D = Tp|Di]|...| Dy
Q == P| P~ R Q|-Q Va=U|-U

224 T. Eiter et al.

where P~ is the inverse of P, Tp is the universal value-domain and T is
the universal concept; furthermore, Ug is a given attribute with domain §(U¢)
(resp. range p(Uc)). A DL-Lites knowledge base (KB) is a pair K = (7,.A)
where the TBox 7 and the ABox A consist of finite sets of axioms as follows:

— inclusion assertions of the foom B C C, @ C R, E C D, and U C V;
respectively

— functionality assertions of the form funct Q and funct U,

— membership assertions of the form A(a), D(c), P(a,b), and U(a, c), where a,b
are individual names in It and c is a value in Iy,.

The semantics of DL-Lite 4 is in terms of FO interpretations Z = (AZ,-T), where
the domain A% # () is the disjoint union of AZ of AL and -Z is an interpretation
function as usual (see [9]). Satisfaction of axioms and logical implication are
denoted by |=. We assume the unigue name assumption (UNA) for different
individuals resp. domain values and adopt the constant domain assumption,
saying that all models share the same domain.

Syntax DL-Lite 4 (S,F). Let T be a timeline and let I's, I'7, and I'y be pairwise
disjoint sets as above. A spatial-stream knowledge base is a tuple

’CS]: = <T7A78Aa <~7:7S.7'-> ’B>a

where 7 (resp. A) is a DL-Litey4 TBox (resp. ABox), S4 is a spatial DB, and
(F,SF) is a stream DB with support for spatial data. Furthermore, B C I'y x I's
is a partial function called the spatial binding from A to S4 and F to Sg. If we
restrict to a spatial KB resp. stream KB, we drop F (resp., S) and have

Ks={(T,A,84,B) resp. Kr=(T,AF).

We introduce for DL-Lite 4 the possibility to specify the localization of atomic
concepts and roles. For this, we extend their syntax similar as in [12] as follows:

C:=Te|B|-B|3Q.C"| (loc A) | (locs A)
R:=Q|-Q]| (loc Q)| (locs Q),

where s € I's and the concept and roles are as before. Intuitively, (loc A) is the
set of individuals in A that can have a spatial extension (e.g., (loc Parks)), and
(locs A) is the subset where it is s (e.g., (loc(s.20,16.37) Vienna)).

The extension with streaming is captured by the following axiom schemes:

(streamp C) and (streamp R),

where F' is a particular stream over either complex concepts C or roles R in

(F,SF).

Ezample 3. For Example 2, a TBox may contain (streampg.,, speed),
(streamp, ,,, (loc pos)), (streamp, ,,, Vehicle), and (streamp,, . hasState),
and we have further axioms Car C Vehicle, Bike T Vehicle, and Ambulance T
JhasRole. Emergency.

Spatial Ontology-Mediated Query Answering over Mobility Streams 225

Semantics DL-Lite4 (S,F). We give a semantics to the localization (loc Q)
and (locs Q) for individuals of @ with some spatial extension resp. located
at s, such that a KB Ks = (7,A,S,B) can be readily transformed into an
ordinary DL-Liteq KB Ko = (7', A"), using the fresh spatial top concept Cs,
and spatial concepts Cs. An interpretation of Ks is a structure Zg= <AI, I, bI>,
where (AZ,.T) is an interpretation of (7, A) and b C AT x Is is a partial
function that assigns some individuals a location, such that for every a € IT,
(a,s) € By implies b (a?) = s. We extend the semantics with (loc Q) and
(locs Q), where @ is an atomic role in 7 by ((loc A) and (locs A) are accordingly):

(loc Q)*s D {(a1,az2) | (a1,a2) € QF AN3s € I's : (ag, s) € b},
(locs Q)5 = {(a1,a2) | (a1,a2) € QF A (ag,s) € bT}.

The transformation of g to an ordinary DL-Lite4 KB K¢ is described in
[12,13].

The idea of an initial streaming semantics is by interpreting the stream
over the full timeline, which can be captured by a finite sequence Fy =
(Fi)Tpin<i<Tumay Of temporal ABoxes, which is obtained via the evaluation func-
tion v on F and T (cf. [7,15]). Hence, we define the interpretation of the
point-based model over T as a sequence Zp=(Z;)T,,,,<i<T.... Of interpretations
Ti= <AI,-L>; Zr is a model of Kz, denoted Zp = Kz it Z; = F;, and Z; =
T, for alli e T.

The semantics of the (streamp C) and (streamp R) axioms is along the
same line. A stream axiom is satisfied, if a complex concept C' (resp. role R)
holds over all the time points of stream F = (T,wv, P); thus we restrict our
models such that:

(streamp C) = ﬂ C%i and (streamp R)T = ﬂ R%:,

i€tp(T,P) ictp(T,P)

where tp(T, P) is a set of time points determined by the segmentation of T by
P. This allows us to check for the satisfiability of a KB and gives us a global
consistency, which is of theoretical nature, since we would need to know the full
timeline.

Spatial-stream query language over DL-Lite, (S,F). We next define
spatial-stream conjunctive queries over Kgsz. Such queries may contain ontol-
ogy, spatial, and stream predicates. An spatial-stream CQ ¢(x) is a formula:

Azt Qo,(x,¥) ANy Qs, (%, ¥) AN, Qp, (x,y) (1)

where x are the distinguished (answer) variables, y are either non-distinguished
(existentially quantified) variables, individuals from Iy, or values from I'y and

— each Qo,(x,y) has the form A(z) or P(z,z’), where A is a concept name, P
is a role name and z, 2’ are from x Uy;

— each atom Qg;(x,y) is from the vocabulary of spatial relations (see Sect.3)
and of the form S(z,2’), with z, 2’ from x U y;

226 T. Eiter et al.

~ QF;(x,y) is similar to Qo,(x,y) but adds the vocabulary for stream oper-
ators, which are taken from [6] and relate to CQL operators [3]. Moreover,
we have a window B over a stream Fj that is derived from L (in Z* for
past, or in Z~ for future) time units resp. T;, and an aggregate function
agr € {count, sum, first,...} (see Sect.5 for details) that is applied to the
data items in the window:!
— BEagr represents the aggregate of last/next L time units of stream Fj;
— 7 represents the current tuples of F; with L = 0;
- EBCT)agr: represents the aggregate of all previous L time units of F};

Ezample 4. We modify ¢;(z,y) of Example 1 and use the stream operators
instead:

q1(z,y) : LaneIn(z) A hasLocation(z,u) A intersects(u, v) A positionaalelme(y, v)
A Vehicle(y) A speedEy;Tavg(y, r) A (r > 30) A isManaged(z, z)
A SignalGroup(z) A hasStateg-a, (2, Stop)
T

Certain answer semantics with spatial atoms. In the streamless setting,
due to the OWA, queries are evaluated over all (possibly infinitely many) models.
Certain answers retain the tuples that are answers in all possible models. More
formally, a match for ¢(x) in an interpretation Z= <AI L > of K is a function
7m:xUy — AT such that 7(c) = ¢, for each constant ¢ in x Uy, and for each
i=1,...nand j=1,...,m:

(i) m(2) € AZ, for Qo,(x,y) = A(z) (concept atoms);

(ii) (m(2),m(z")) € PZ, for Qo,(x,y) = P(z,2') (role atoms); and
(iii) 3s,s" € I's : (m(2),8) € b A (7(2),8) € b AS = S(s,5'),
for Qs, (x,y) := S(z,2') (spatial atoms).

A tuple ¢ = ¢1,...,¢, over Iy is a (certain) answer for ¢(x) in Z, x =
Z1,...,%k, if g(x) has some match 7 in Z where 7(x;) = ¢;, i =1,...,k; and ¢
is an answer for ¢(x) over K, if it is an answer in every model Z of K. The result
Cert(q(x),K) of g(x) over K is the set of all its answers. If we drop 7, we obtain
a DB setting and let Eval(q(x),Z) be the set of matches of g(x) over the single
model Z of A under closed world assumption.

Regarding spatial atoms, as shown in [12,13] the semantic correspondence
between Ko and Ks guarantees that we can rewrite ¢(x) into an equivalent
query uq(x) over Ks' = (7', A',S4). Using the rewriting and the semantic
correspondence of Koy and Kg, spatial atoms can be rewritten into a “standard”
DL-Lite4, UCQ, thus, answering spatial CQs is still FO-rewritable (details in
[12,13]).

5 Query Rewriting by Stream Aggregation

We aim at answering queries at a single time point T; with stream atoms that
define aggregate functions on different windows sizes relative to T;. For this, we

! This would be represented in CQL as R[Range L], R[Now], R[Range L Slide D], etc.

Spatial Ontology-Mediated Query Answering over Mobility Streams 227

consider a semantics based on epistemic aggregate queries (EAQ) over ontologies
[10] by dropping the order of time points for the membership assertions and
handle the (streamed) assertions as bags, which is similar to “classic” stream
processing approaches.

Epistemic aggregate queries. As described in [10], EAQ are defined over
bags of numeric and symbolic values, called groups and denoted as {|-|}. Aggre-
gates cannot be directly transferred to DL-Lite, since with the certain answer
semantics each model has different groups due to unknown individuals, which
leads to empty answers. [10] extended database semantics for aggregates with
an epistemic operator K and a two-layer evaluation using the completion w.r.t
7T . The basic idea is to close the aggregate query, so only known individuals are
grouped and aggregated. More formally, an EAQ is defined as?

da(x,ag97(y)) : K x,y,2. ¢,

where x are the grouping variables, agr(y) is the aggregate function and variable,
and ¢ is a CQ called main conditions; z are the disjoint existential variables of
¢. We call w := x Uy U z the K-variables of ¢. The definition of a group was
extended in [10] by a multiset Hq of groups d, called K-group, as:

Hq :={| n(y) | # € KSatz x(2;¢) and (x) = d |},
where K Sat are the satisfying K-matches of ¢ for the model Z of K and given by:
KSatz ic(w; ¢) :={m € Eval(¢,T) | m(w) € Cert(auz,,,K)},

where auzg, (W) — ¢ is the auxiliary atom used to map w only to known solu-
tions. The set of K-answers for an EAQ query ¢ over Z and K can now be
derived as:

qf :={(d,agr(Hg)) | d = n(x), for some 7 € K Satz x(w;¢)}.

The epistemic certain answers ECert(qq,K) for a query ¢, over K is the set of
K-answers that are answers in every model Z of K. To compute ECert(q,, K),
[10] gave a “general algorithm” GA that (1) computes the certain answers, (2)
projects on the K-variables, and (3) aggregates the resulting tuples. Impor-
tantly, evaluating EAQs reduces to standard CQ evaluation over DL-Lite4 with
LOGSPACE data complexity.

Filtered and merged temporal ABoxes. Our approach is to evaluate the
EAQ over one or more filtered and merged temporal ABoxes. The filtering and
merging, relative to the window size and T;, creates several windowed ABoxes
Agm,, which are the union of the static ABox A and the filtered stream ABoxes
from F. The EAQ aggregates are applied on each windowed ABox Ag, by
aggregating normal objects, concrete values, and spatial objects. More formally,
a stream atom ¢ B% agr is evaluated as an EAQ over ontologies

ap(x,agr(y)) : K x,y,2. ¢ B,

2 We simplified EAQs of [10] by omitting ¢ and consider only aggregates with a single
variable.

228 T. Eiter et al.

where x are the grouping variables and y is the aggregate variable, z are the
disjoint existential variables, and ¢ is a subquery of ¢ with atoms in the same
scope of the window operator % and aggregate functions agr.

Ezample 5. For query ¢;(x,y) of Example 4, we have three EAQs represented as:

Gpos(y, line(v)) : K y,v. Vehicle(y) A position(y,v);
Gspeed(y, avg(r)) : Ky, r. Vehicle(y) A speed(y,r);
Gstate(2, first(m)) : K z, m. hasState(z, m)

We extend the evaluation of EAQs for the stream setting, such that an EAQ
is evaluated over the window relative to T;, the window operator BZ, and the
pulse P. KSatzy i (W; @) is now the set of K-matches of ¢ for a model Zg of
Km, where the windowed ABox Ag is defined as Ag = AUU{A; | ws < i < we}.
We have four cases for the window size L and a pulse P, where P enlarges L
according to its interval length:

— a current window with L =0, i.e. ws = w, = T;;

— a past window with L > 0 leading to ws = (T; — L) and w, = Ty;

— a future window with L < 0 that is ws = T; and w, = (T; + L); and
— the entire history with O resulting in ws = 0 and w, = T;.

We obtain KB Kg = (7, Ag) as above; the epistemic (certain) answers for
gs over Kmg are naturally defined as ECertm(qq, Kg) = ﬂIEE e qgm, where

qiﬂﬁ = {(d,agr(Hq)) | d = 7(x), for some 7 € KSatzy iz (W:)}

are the K-matches that are answers in the model Zg of K. In ECertgy, we
did not yet address the walidity of an assertion, say in Ag,, until the next
assertion in Ag,. Two semantics are suggestive: the first ignores intermediate
time points, and thus Ag, will be unknown. The second fills the missing gaps
with the previous assertion, i.e. copies it from Ag, to Am,. For specific aggregate
functions, e.g., max, min, or last, the two semantics coincide, but for sum, avg,
and count, they are different.

Ezample 6. We pose the query ¢; (z,y) at T; and replace the stream atoms with
auxiliary atoms related to the EAQ of Example 5:

q1(z,y) : LaneIn(z) A hasLocation(z,u) A intersects(u, v) A gpos(y,v)
Ngspeed(y,) A (r > 30) AisManaged(x, z) A gstate(2, Stop)

The queries are computed using the ABoxes Ampg,;; = AU Ao U A1 and Ag[y 4 =
AU, <;<4 Ai. This leads under ECertg for gspeea to the groups G, ={]30,29,34|} and
Gp, ={|10, 5|}, which results in gspeca={(c1,31), (b1,7.5)}. The results for the other
EAQ are QState:{(tlv REd)} and QPOS:{(Clv ((57 5)7 (65 5)’ (77 5)))7 (blv ((17 1)7 (25 1)))}

ECertgm gives the certain answers for a single EAQ including the ontology
atoms in the same scope as the stream atoms. Answering the full CQ ¢ can be
done by answering each EAQ gy, separately and joining the answers, i.e.,

ECertAll(q,Kr,T;) = ECertm(ge, , Km 1) D - e e DX ECertgg(q¢].,lC53wj),

w

Spatial Ontology-Mediated Query Answering over Mobility Streams 229

Algorithm 1. NSQ - Answer Naive Stream Query

Input: A stream conjunctive query ¢, time point T;, and a KB Kz

Output: Set of tuples O

/* Step 1: Detemporalize */
foreach QF, of ¢ do
Ami - 'AUU’S <j<we
Km, — (T, Am,) ;

build auz;(x,y,z) from ¢ BE agr of QF; ;

Aj according to BL and T ;

build ¢;,1(x,y,z?) from PerfectRef(aux;, T)(X,y,2) ;
build g; 2(x, agr(y)) from g; 1(x,y,2z?) and ¢ BL agr ;

Ri,1 1= evaluate Answer(auz;, Km,) /* certain answers */ ;
R; 2 := evaluate ¢;,1 over R; ;1 /* K projection */ ;
R; := evaluate g; 2 over R; 2 /* aggregation */ ;

Add R; to Aguz and replace QF; in g with R;(z,y) ;

/* Step 2: Standard evaluation */
O := evaluate Answer(q, (7, AU Aquz)) ;

where the wy = w(¢g, T;) are the computed window sizes and A <1 B =
{t over sig(A) U sig(B) | t[sig(A)] € A, t[sig(B)] € B} is the join (cf. [18])
of sets A, B of K-answers, where sig() is the relational signature of a K-answer
set. The new K-answers are also answers in every model Z of . More details
on deriving the g4, are given in Sect. 6.

We now introduce the algorithm NSQ (see Algorithm 1), where z? are the non-
distinguished variables in ¢ and PerfectRef (resp. Answer) is the “standard”
query rewriting (resp. evaluation) as in [9]. NSQ extends the GA of [10] to compute
the answers for stream CQs as follows: (1) calculate the epistemic answer for
each stream atom over the different windowed ABoxes and store the result in
an auxiliary ABox using new atoms. Furthermore, replace each stream atom
with a new auxiliary atom; (2) calculate the certain answers over A and the
auxiliary ABox, using “standard” DL-Lites query evaluation. A proof sketch for
correctness of NSQ is given in [13], viz. that for every stream CQ ¢, KB Kz, and
time point T;, we have NSQ(q, Kz, T;) = ECertAll(q, Kz, T;). It considers that
g must be constrained by 7 and that aggregate functions must obey conditions
as in [10]; it exploits that answering each EAQ (Step 1) can be decoupled from
answering the full CQ.

Standard aggregates. Different aggregate functions for use in ECert(q, K)
were already discussed in [10]. For last and first, we extend the definition of
Hyg, as the sequence of time points is lost. By iteratively checking if we have a
match in one of the ABoxes Am,ws <4 < we, we can determine the first resp.
last match. The extension of Hy for first and last is by checking each model
for match (details in [13]). In an implementation, the first/ last match can be
simply cached while processing the stream.

Spatial aggregates. For spatial objects, we define geometric aggregate func-
tions on the multiset of Hg. As the order of assertions (i.e., points) is lost, we
need to rearrange them to create an admissible geometry g(s) that is a sequence
p= (p1,...,pn). We add new aggregates on Hq to create new admissible geome-
tries g(sa):

230 T. Eiter et al.

— agTpoint: we evaluate last to get the last available position p; and set
9(sa) := (p1);

— agriine: we create p = (p1,...,pn), where p; # p,, and determine a total order
on the bag of points in each K-group, such that we have a starting point using
last and iterate backwards finding the next point;

— agrangle: This aggregate function determines angles (in degrees) in a geometry
by applying (1) agriine, then (2) obtain a simplified geometry using smoothing,
and (3) calculate the angles between the lines of the geometry.

Besides the above aggregate functions, more functions such as computing
the convex hull or minimum spanning tree can be applied. In contrast to numer-
ical aggregates, spatial aggregates introduce for each K-group (d,agr(Ha)) a
new spatial object sq of I's and an admissible geometry g(sq) with agr(Hq) =
(p1,.-.,pn). This is achieved by (a) adding a binding (d, sq) to B and (b) cre-
ating a new mapping ¢ : sS4 — (P1,...,Pn) I Saus- For simplicity, we assume
that I's is static and contains (candidates for) sq already.

Combining spatial and stream queries. We combine the spatial and tem-
poral elements of a query ¢ and KB K as follows: (1) detemporalize the stream
atoms using EAQs; (2) transform ¢ and K to an ordinary UCQ and KB as in
Sect. 4, where in Step 2 of Algorithm 1 Cert(q, (T, AU Aguz, Sa U Sauz, B)) is
changed to Certg(ug, (T', A" U Agyz)). We still keep LOGSPACE data complex-
ity, which follows from the data complexity of single EAQs and the fact that
the number of aggregate atoms bounds the number of EAQs. As shown before,
spatial binding and relations do not increase the data complexity.

6 Query Evaluation by Hypertree Decomposition

We focus on pull-based evaluation of spatial-stream CQs, which is already chal-
lenging, as we must deal with three different types of query atoms that need
different evaluation techniques over possibly separate DBs. Ontology atoms are
evaluated over the static ABox A using the “standard” DL-Lites query rewrit-
ing, i.e., PerfectRef [9]. For spatial query atoms, we need to dereference the
bindings by joining the binding B and the spatial ABox S4, where we evaluate
the spatial relations (e.g., Inside) over the spatial objects of the join; Stream
query atoms are computed as described in Algorithm 1 over the stream ABox
F and the spatial ABox with stream support Sz.

Evaluation strategies. In [12], we introduced spatial CQ evaluation based on
the assumptions that no bounded variables occur in spatial atoms and the CQ
gs(x) has to be acyclic. This allows an evaluation in two stages:

(1) evaluate the ontology part of gs(x) by dropping all spatial atoms over Ks'.
For this, we can apply the standard query rewriting and evaluate the result-
ing UCQ over A;

(2) filter the result of Step (1), by evaluating the spatial atoms on the matches 7
(for the distinguished variables x) taking the bindings B to S 4 into account.

Spatial Ontology-Mediated Query Answering over Mobility Streams 231

As shown in [12], one evaluation strategy is based on the hypergraph of ¢ and
the derived join plan, while another is based on compiling gg(x) into a sin-
gle, large UCQ with spatial joins. The hypergraph-based strategy is well suited
for lifting to spatial-stream CQs as the partial EAQ results are already stored.
Hence, we merge it with the two-stage evaluation of Sect. 5 (detemporalization).
For this, we aim to find large subqueries of combined stream and ontology atoms,
and an efficient evaluation order (the join plan), which allows the partial eval-
uation and merging of the intermediate results to obtain the final result. In
our opinion, the hypergraph-based strategy has the advantage of allowing fine-
grained caching, full control over the evaluation, and possibly different DBs.

Hypergraphs and join trees. Many works have been dedicated to connecting
hypergraphs, (acyclic) DB schemes, and join trees (see [18] for an overview). For
decomposing a query ¢, the query hypergraph H(q) = (V, E) is popular, where
the vertices V' represent the variables in ¢ and the hyperedges in E capture
the atoms in ¢ with shared variables. In case of an acyclic conjunctive query
(ACQ), which is defined in terms acyclicity of H(q), a join tree can be generated
from H(q) that yields a plan for computing the query ¢q. We focus here on a-
acyclicity, which can be efficiently tested by the GYO-reduction (cf. [18]). A
specific join tree Jy can be found via the mazimum-weight spanning tree Ts of
the intersection graph Iy of H, where edge weights of Ts are edge counts of
V in IH.

Details on the query evaluation. The combined evaluation extends our spa-
tial evaluation strategy with hypertree decomposition of a hypergraph, by keep-
ing intermediate results of each step in memory. The main steps of our query
evaluation algorithm are:

(1) construct the a-acyclic hypergraph H, from ¢ and label each hyperedge in
H, with lo, lg, and [p if it represents an ontology, spatial, or stream atom,
resp. the combination of them; [gets the window size assigned, e.g., lF2
for speedmz 4v-

(2) build the join tree J, of H, and extract the subtrees Jy, in Hy, such that each
node is covered by the same label [, . The intention is to extract subtree
CQs that share the same window size L (where static queries have L = 0),
so they can be evaluated together and cached for future query evaluations.

(3) apply detemporalization as in Algorithm 1, where for each subtree J,, the
stream CQ gy, is extracted and computed. The results are stored in a (vir-
tual) relation Ry,, and each J,, is replaced with a query atom pointing
to R¢.

(4) traverse J, bottom up, left-to-right, to evaluate the CQ ¢4, for each subtree
Js, (now without stream atoms) and keep the results in memory for future
steps. Ontology and spatial atoms are evaluated as described before.

Ezample 7. The subqueries and join order of query ¢3(x,v) in Tablel is as
follows:

(1) g3,r1(2,y) © Vehicle(x) A positiongiogine (2, y);

232 T. Eiter et al.

(2) g3,n1(v,u) : LanelIn(v) A hasLocation(v,u); and
(3) gs3(z,v) : g3, p1(x,y) Aintersects(y,u) A g3, n1(v, w).

Caching for future queries is achieved by storing the intermedia results in mem-
ory with an expiration time according to L and the pulse. Static results never
expire.

7 Implementation and Experimental Evaluation

We have implemented a prototype for our spatial-stream QA approach in JAvA
1.8 using the open-source PIPELINEDB 9.6.1 (https://www.pipelinedb.com/) as
the spatial-stream RDBMS. The hypertree decomposition for each query is
computed once using the implementation at https://www.dbai.tuwien.ac.at/proj/
hypertree/. Based on it, each subquery is evaluated separately and (spatial) joined
in-memory. For the FO-rewriting of DL-Lite4, we used the implementation of

Table 1. Benchmark queries (windows size in seconds)

qi(x,y,2) : Car(x), speed(x, y)[avg, 10], cars w/ brands, travelling
vehicleMaker(x,z),y > 30 above 30km/h

Q2(x,y) : LaneIn(x), hasSignal(x,y), lanes and signal groups
SignalGroup(y), switched to red
signalState(y,z)[last, 15|,z =“R”

as(x,v) : Vehicle(x), pos(x,y)[line, 10], vehicles on incoming
inside(y,u), hasGeo(v,u),LaneIn(v) lanes

qa(x,y) : Vehicle(x), pos(x,w)[line, 30], vehicles with crossed
intersects(w, z), pos(y, z)[line, 30],Car(y) | paths

as(x,y) : Vehicle(x), speed(x, z)[avg, 15], vehicles above 30km/h
pos(x,y)[line_angle, 15],z > 30, heading straight
y>—10,y < 10

as(x,y) : Taken from Example 1 Detection of red-light

violation

qr(x,2) : LaneIn(x), isPartof(x,u), Intersection synthetic, testing many
(u),u = “I1”, hasSignal(x,y), ontology atoms
SignalGroup(y), signalState(y, r)[last,
15],r = “R”, connect(x, q), connect(q, v),

Lane(v), hasSignal(v, z), SignalGroup(z),
signalState(z, s)[last, 15],s = “R”

as(x,y) : Vehicle(x),pos(x,y)[line, 20|, intersects synthetic, testing many
(y,u), LaneIn(r), hasGeo(r,u), spatial atoms
intersects(y, v), LaneIn(s), hasGeo(s, v),
intersects(y,w), LaneIn(t),
hasGeo(t,w), within(y, z), hasGeo(q, z),

Intersection(q)
as(x,q,1,8,t,u) : | Vehicle(x), speed(x, q)[avg, 1], speed(x, r) synthetic, testing many
[avg, 5], speed(x, s)[avg, 10], stream atoms

speed(x, t)[avg, 25], speed(x, u)[avg, 50]

https://www.pipelinedb.com/
https://www.dbai.tuwien.ac.at/proj/hypertree/
https://www.dbai.tuwien.ac.at/proj/hypertree/

Spatial Ontology-Mediated Query Answering over Mobility Streams 233

PerfectRef in OWLGRES 0.1 [24] for now; more recent (and more efficient) imple-
mentations for query rewriting (e.g., [23]) are available.

Our experiment is based on two scenarios of monitoring vehicles and traf-
fic lights (a) on a single intersection and (b) on a network of locally connected
intersections, both managed by a single roadside C-ITS station. The ontology,
queries (see Table 1), the experimental setup with logs, and the implementation
are available on http://www.kr.tuwien.ac.at/research/projects/loctrafflog/eswc2017.
We use a custom DL-Lite4 LDM ontology with 119 concepts (with 113 inclusion
assertions); 34 roles and 28 data roles (with 31 inclusion assertions). The LDM
ontology models the C-ITS domain in a layered approach, separating concepts
like ITS features (e.g., intersection topology), geo-features (e.g., POIs), geome-
tries (e.g., polygon), actors (e.g., vehicles), events (e.g., accidents); and roles like
partonomies (e.g., isPartOf), spatial relations, and generic roles (e.g., speed).

For (a), we have a T-shaped intersection as shown in Fig.2 that represents
a real-world deployment of a C-ITS station in Vienna. It connects two roads
with 13 lanes and 3 signal groups that are linked to the lanes. We developed
a synthetic data generator that simulates the movement of 10, 100, 500, 1000,
2500, and 5000 vehicles on a single intersection updating the streams averagely
50 ms. This allows us to generate streams with up to 10000 data points per sec.
and stream.? We chose random starting points and simulated linear movements
on a constant pace, creating a stream of vehicle positions. We also simulated
simple signal phases for each traffic light that toggle between red and green
every 3s. The aim of this scenario is to show for simple driving patterns the
scalability of our approach in the number of vehicles. For (b), we use a real-
istic traffic simulation of 9 intersections in a grid, developed with the micro-
scopic traffic simulation PTV VISSIM (http://vision-traffic.ptvgroup.com/en-us/
products/ptv-vissim/), allowing us to simulate realistic driving behavior and sig-
nal phases. The intersection structure, driving patterns and signal phases are
more complex, but the number of vehicles is lower (max. 300) than in (a), as we
quickly have traffic jams. We developed an adapter to extract the actual state
of each simulation step, allowing us to replay the simulation from the logs. To
vary data throughput, we ran the replay with Oms, 100 ms (real-time), 250 ms
and 500 ms delay.

Results. We conducted our experiments on a Mac OS X 10.6.8 system with an
Intel Core i7 2.66 GHz, 8 GB of RAM, and a 500GB HDD. The average of 11 runs
for query rewriting time and evaluation time was calculated, where the largest
outlier was dropped. The results are shown in Table2 presenting query type
(O for ontology, F' for stream, and S for spatial atoms), number of subqueries
#Q), size of rewritten atoms #A, and t as the average evaluation time (AET) in
seconds for n vehicles or the delay in ms.

The baseline spatial-stream query is g3 for 500 vehicles, where we have a
time-to-load (TOL) of 0.22s, an evaluation time for the stream (resp. ontology)
atom of 0.54s (resp. 0.03s), and a spatial join time of 0.05s. Clearly, 50% of the

3 The intervals vary due to the number of vehicles, so we scale the DB updates up to
12 generators.

http://www.kr.tuwien.ac.at/research/projects/loctrafflog/eswc2017
http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/
http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/

234 T. Eiter et al.

Fig. 2. Schematic representation of scenario (a) and (b) (Color figure online)

Table 2. Results (¢ in secs) for scenario (a) and (b), marked with * are signal streams

Type #Q | #A/| (a) t with #vehicles (b) ¢t with ms sim. delay
10 100 | 500 | 1000|2500 50000 100 | 250 | 500
| O, F 1 110.85/0.820.911.05 |1.22 |1.58 |0.780.74|0.73 | 0.71
@ O, F" |1 610.83/0.83/0.83/0.83 1 0.83 |0.83 |0.77/0.770.72]0.71
q3|O,S,F|3 2310.89]0.87/1.00/1.25 |1.39 | 1.74 |0.83/0.81|0.77/0.75
qs 0,8, F |3 2211.10/1.091.24 | 1.53 | 1.81 |2.32 |1.02|1.000.95|0.93
q |O,S, F |3 4211.11/1.10|1.26 | 1.39 {1.90 | 1.92 |1.05|1.00 | 0.98 | 0.96
g |O,8, F |7 5211.39/1.39/1.491.69 |2.36 |2.28 |1.40|1.28 1.26 | 1.25
qr | O, F* |6 69|1.16/1.16|1.16 | 1.16 |1.16 |1.16 |1.15|1.121.11 | 1.09
g | 0,8 9 7310.92/0.94|1.30|1.43 |1.72 |2.19 10.99]0.98 | 0.92|0.91
q | O, F 9 1051.671.73|1.992.06 |2.49 1 2.97 |1.71|1.68 |1.66 | 1.63

AET is use for the stream atom (including rewriting steps). The TOL could be
reduced by pre-compiling the program; this shortens evaluation by roughly 0.2s.
Initial evaluation of the queries q4, ¢5, gs and g9 show that with each new stream
subquery the number of results dropped down to zero, which seems an imple-
mentation issue of PIPELINEDB with Continuous Views on the same stream
with different window sizes. We found a workaround by adding a delay of 0.2
which again increases the number of results. This delay increases the AET, e.g.
by 0.76s in g9, and might be ignored with future versions of PIPELINEDB and
other stream RDBMS. The synthetic queries with mostly ontology (gs), spatial
(g7), and stream atoms (gg) clearly show that the challenging part of query eval-
uation are the stream aggregates. The good performance of PIPELINEDB allows
us to work on condensed results (reducing the join sizes); however, stream aggre-
gates could be further accelerated by calculated continuously inline aggregates
on the DB, which are skimmed by our queries. Notably, PIPELINEDB keeps not
always the order of inserted data points; this does not affect our bag semantics.

In general, our approach is designed to retain complete results; however, com-
pleteness might be lost as (1) the underlying spatial-stream RDBMS loses results

Spatial Ontology-Mediated Query Answering over Mobility Streams 235

as described above; (2) evaluation of a subquery is slow and subsequent queries
start too late. One can solve (1) at the level of the spatial-stream RDBMS, and (2)
can be overcome by continuous inline aggregates and query parallelization. In con-
clusion, the experiments show that the AET of our experimental prototype is for
up to 500 vehicles below 1.5 (except gg). This suggests that with optimizations,
e.g. quick detection of red-light violations on complex intersections is feasible.

8 Related Work and Conclusion

Data stream management systems (DSMSs) such as STREAM [3], were built
supporting streaming applications by extending RDMBS [14]. More recently,
RDF stream processing engines, such as C-SPARQL [5], SPARQLstream 8],
and CQELS [17], were proposed for processing RDF streams integrated with
other Linked Data sources. Besides C-SPARQL, most of them follow the DSMSs
paradigm and do not support stream reasoning. EP-SPARQL [2] resp. LARS [6]
proposes a language that extends SPARQL resp. CQ with stream reasoning, but
translates KBs into expressive (less efficient) logic programs. Regarding spatio-
temporal RDF stream processing, a few SPARQL extensions were proposed, such
as SPARQL-ST [21] and st-SPARQL [16]. Closest to our work are (i) [22], which
supports spatial operators as well as aggregate functions over temporal features
(ii) [8], which allows evaluating OQA queries over stream RDBMS, and (iii) [20],
which extends SPARQL with aggregate functions (using advanced statistics)
evaluated over streamed and ordered ABoxes. This work differs regarding (a) the
evaluation approach using EAQ with aggregates on the query and not ontology
level, (b) hypergraph-based query decomposition, and (c) the main focus of
querying streams of spatial data in an OQA setting.

Our approach is situated in-between “classical” stream processing approaches
that handle the streaming data as bags in windows, and temporal QA over
DL-Lite using temporal operators like LTL in [4], which are evaluated over a
(two-sorted) model separating the object and temporal domain. We believe that
detemporalization with its bag semantics suffices for the C-ITS case, since the
order of V2X messages is not guaranteed, and for most of the normal as well as
spatial aggregates it can be ignored (e.g., sum) or is implicit in the data (e.g.,
Euclidian distance of points). Besides [4], similar temporal QA is investigated
in [7,15], which are all on the theoretical side and provide no implementation
yet. Finally, we build on the results for EAQs in [10], but we introduce spatial
streams and more complex queries.

This work is sparked by the LDM for V2X communications, which serves as
an integration effort for streaming data (e.g., vehicle movements) in a spatial
context (e.g., intersections) over a complex domain (e.g., a mobility ontology).
We introduced a suitable approach using ontology-mediated QA for realizing the
LDM. For spatial-streaming queries, bridging the gap between stream processing
and ontology-mediated QA is not straightforward; we extended previous work in
[12] and used epistemic aggregate queries to detemporalize the stream sources.
The latter preserves FO-rewritability, which allows us to evaluate conjunctive

236 T. Eiter et al.

queries with spatial atoms over existing stream RDBMSs. We also provided a
technique to construct query execution plans using hypergraph decomposition,
and we have implemented a proof-of-concept prototype to assess the feasibil-
ity of our approach on two experiments with mobility data. The results are
encouraging, as the evaluation time appeared to be moderate already without
optimization.

Future work. Our ongoing and future research is directed to advance the theo-
retical and practical aspects of our approach. On the theoretical side, a detailed
correctness proof for the algorithm that accounts for all different aggregate func-
tions is needed. So far, consistency for QA is neglected and could be enforced
in different ways by repairs. The query language could be lifted to SPARQL,
but epistemic aggregates, query decomposition, and spatial relations would need
reevaluation. On the practical side, our implementation should be extended to
pull-based QA with extensive caching and inline aggregates on the DB, along
with other optimizations, such as using the pulse for pre-caching resp. window
size optimizations, and different query rewriting techniques. Also more complex
spatial aggregates, i.e., trajectories, should be considered. Furthermore, cyclic
queries need to be handled. The implementation could be tested in more com-
plex scenarios like event detection (e.g., bus delays) with public transport data.

Acknowledgements. Supported by the Austrian Research Promotion Agency
project Industrienahe Dissertationen and the Austrian Science Fund projects P26471
and P27730.

References

1. Andreone, L., Brignolo, R., Damiani, S., Sommariva, F., Vivo, G., Marco, S.:
Safespot final report. Technical report D8.1.1 (2010)

2. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: Proceedings of WWW 2011, pp.
635—644 (2011)

3. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15(2), 121-142 (2006)

4. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F.,
Zakharyaschev, M.: First-order rewritability of temporal ontology-mediated
queries. In: IJCAIT 2015, pp. 27062712 (2015)

5. Barbieri, D.F.; Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-sparql: a con-
tinuous query language for rdf data streams. Int. J. Semant. Comput. 4(1), 3-25

2010

6.](Beck,)H.7 Dao-Tran, M., Eiter, T., Fink, M.: LARS: A logic-based framework for

analyzing reasoning over streams. In: Proceedings of AAAI 2015, pp. 1431-1438
2015

7.](30rgvx)/ardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query languages
over knowledge bases. J. Web Sem. 33, 50-70 (2015)

8. Calbimonte, J.-P., Mora, J., Corcho, O.: Query rewriting in RDF stream process-
ing. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C.
(eds.) ESWC 2016. LNCS, vol. 9678, pp. 486-502. Springer, Cham (2016). doi:10.
1007/978-3-319-34129-3_30

http://dx.doi.org/10.1007/978-3-319-34129-3_30
http://dx.doi.org/10.1007/978-3-319-34129-3_30

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Spatial Ontology-Mediated Query Answering over Mobility Streams 237

Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the dl-lite family. J.
Autom. Reasoning 39(3), 385429 (2007)

Calvanese, D., Kharlamov, E., Nutt, W., Thorne, C.: Aggregate queries over ontolo-
gies. In: Proceedings of ONISW 2008, pp. 97-104 (2008)

Eiter, T., Fireder, H., Kasslatter, F., Parreira, J.X., Schneider, P.: Towards a
semantically enriched local dynamic map. In: Proc. 23rd World Congress on Intel-
ligent Transport Systems (ITSWC-2016), Melbourne, October 10-14, 2016 (2016)
Eiter, T., Krennwallner, T., Schneider, P.: Lightweight spatial conjunctive query
answering using keywords. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L.,
Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 243-258. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38288-8_17

Eiter, T., Parreira, J.X., Schneider, P.: Towards spatial ontology-mediated query
answering over mobility streams. In: Proceedings of Stream Reasoning Workshop
2016, pp. 13—24 (2016)

Golab, L., Ozsu, M.T.: Issues in data stream management. SIGMOD Rec. 32(2),
5-14 (2003)

Klarman, S., Meyer, T.: Querying temporal databases via OWL 2 QL. In:
Kontchakov, R., Mugnier, M.-L. (eds.) RR 2014. LNCS, vol. 8741, pp. 92-107.
Springer, Cham (2014). doi:10.1007/978-3-319-11113-1_7

Koubarakis, M., Kyzirakos, K.: Modeling and querying metadata in the semantic
sensor web: the model stRDF and the query language stSPARQL. In: Aroyo, L.,
Antoniou, G., Hyvonen, E., Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache,
T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 425-439. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13486-9_29

Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data.
In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy,
N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370-388. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25073-6_24

Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville
(1983)

Netten, B., Kester, L., Wedemeijer, H., Passchier, 1., Driessen, B.: Dynamap: A
dynamic map for road side its stations. In: Proceedings of ITS World Congress
2013 (2013)

Ozcep, O.L., Moller, R., Neuenstadt, C.: Stream-query compilation with ontologies.
In: Pfahringer, B., Renz, J. (eds.) AI 2015. LNCS (LNAI), vol. 9457, pp. 457-463.
Springer, Cham (2015). doi:10.1007/978-3-319-26350-2_40

Perry, M., Jain, P., Sheth, A.P.: SPARQL-ST: extending SPARQL to support
spatiotemporal queries. Geospatial Semant. Semant. Web 12, 61-86 (2011)

Quoc, H.N.M., Le Phuoc, D.: An elastic and scalable spatiotemporal query process-
ing for linked sensor data. In: Proceedings of Semantics 2015, pp. 17-24. ACM
(2015)

Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data
access: Ontop of databases. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol.
8218, pp. 558-573. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41335-3_35
Stocker, M., Smith, M.: Owlgres: a scalable owl reasoner. In: Proceedings of
OWLED 2008 (2008)

http://dx.doi.org/10.1007/978-3-642-38288-8_17
http://dx.doi.org/10.1007/978-3-319-11113-1_7
http://dx.doi.org/10.1007/978-3-642-13486-9_29
http://dx.doi.org/10.1007/978-3-642-25073-6_24
http://dx.doi.org/10.1007/978-3-319-26350-2_40
http://dx.doi.org/10.1007/978-3-642-41335-3_35

	Spatial Ontology-Mediated Query Answering over Mobility Streams
	1 Introduction
	2 V2X Integration using a Local Dynamic Map
	3 Streams, Pulses, and Spatial Databases
	4 Syntax, Semantics, and Query Language of DL-LiteA (S,F)
	5 Query Rewriting by Stream Aggregation
	6 Query Evaluation by Hypertree Decomposition
	7 Implementation and Experimental Evaluation
	8 Related Work and Conclusion
	References

