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Abstract. The large number of linked datasets in the Web, and their
diversity in terms of schema representation has led to a fragmented
dataset landscape. Querying and addressing information needs that span
across disparate datasets requires the alignment of such schemas. Major-
ity of schema and ontology alignment approaches focus exclusively on
class alignment. Yet, relation alignment has not been fully addressed,
and existing approaches fall short on addressing the dynamics of datasets
and their size.

In this work, we address the problem of relation alignment across dis-
parate linked datasets. Our approach focuses on two main aspects. First,
online relation alignment, where we do not require full access, and sample
instead for a minimal subset of the data. Thus, we address the main lim-
itation of existing work on dealing with the large scale of linked datasets,
and in cases where the datasets provide only query access. Second, we
learn supervised machine learning models for which we employ various
features or matchers that account for the diversity of linked datasets at
the instance level. We perform an experimental evaluation on real-world
linked datasets, DBpedia, YAGO, and Freebase. The results show supe-
rior performance against state-of-the-art approaches in schema matching,
with an average relation alignment accuracy of 84%. In addition, we show
that relation alignment can be performed efficiently at scale.

1 Introduction

In the recent years, the number of datasets exposed as linked data has grown
continuously. Estimates show that there are more than 1000 datasets, with
roughly 30 billion facts in the form of triples [1]. The decentralized nature of
these datasets and furthermore, the lack of mechanisms and proper documenta-
tion for reusing existing schemas has led to a large number of schemas, 650 in
LOD [25]. In many cases classes and relations across such schemas are redundant
and not aligned (with only 2% of schemas aligned [25]). As a consequence this
leads to a disintegrated dataset landscape [9].
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This particular problem has been partly addressed by ontology alignment
approaches, which almost exclusively have focused on class alignment across dis-
parate ontologies [27]. In contrast to the class alignment, relation alignment has
not seen such progress. Yet an equally important task, helping address informa-
tion needs that span across datasets. Through both class and relation alignment
we can rewrite and perform federated queries across disparate datasets.

The few existing relation alignment approaches, like the state of the art [28]
fail to incorporate two main aspects of linked datasets. First, [28] is a blocking
solution that requires several iterations over full datasets and which takes several
hours to complete. As shown in [25] full dataset access is not always possible.
Many datasets limit to only query access and to a few thousands of triples per
query. Secondly, it does not take into account the evolving nature of datasets.
Upon updates, only some of the alignments may require to be modified. Yet, the
existing solutions need to be run from scratch on the full datasets, thus making
such approaches inefficient.

We propose SORAL – Supervised Ontology Relation ALignment, a supervised
machine learning approach for relation alignment across disparate schemas and
datasets. Similar to [17], we work under the assumption that owl:sameAs state-
ments exist between entities across datasets [25]. Additionally we operate in an
online setting requiring only SPARQL query access to datasets, thus allowing
for large scale alignment, independent of dataset size.

Figure 1 shows SORAL, consisting of two main steps. First, for a source
relation and source dataset, we generate candidate relations for alignment to
a target dataset. As candidates we consider relations that have entity instances
in common (based on owl:sameAs statements). In this step we employ sam-
pling strategies to cope with the scale of datasets and ensure the efficiency of
SORAL. Second, for a relation pair, we compute features from the common entity
instances, and information we extract from the relations, e.g. domain/range of
relations etc. SORAL optimizes for efficiency by performing the alignment in
an online setting, and accuracy by providing qualitative relation alignments. To
this end, we make the following contributions:

– We propose an approach for finding relation subsumptions and equivalences;
– We perform the relation alignment in an online setting that ensures efficiency ;
– We conducted an extended experimental evaluation using real-world knowl-

edge bases (KBs).

2 Related Work

Scope. Our goal is to discover subsumption and equivalence relationships
between the relations of two KBs exported using SPARQL endpoints. This prob-
lem is also known as ontology alignment. Ontology alignment includes: instance
alignment, class alignment, and relation alignment. To align relations, we rely
on existing work on aligning instances [5,6,20]. Hence, we see this effort as com-
plementary to ours.
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Fig. 1. SORAL approach overview.

Related work in this field is usually categorized in schema-based and instance-
based approaches depending on the data that is used to produce the alignments.
The majority of the work focuses on class alignment and much less on relation
alignment, which is the objective of this work.

Schema-Based. Schema matching systems like in [3,8,22,26] align classes by
relying on schema constrains, which are often unavailable in LOD. COMA++ [3]
expects as input OWL descriptions and ignores data instances. While in [8] the
approach relies on user assistance for the alignment process. Other systems like
in [26] serve as proxy over existing schema matching tools, thereby providing
means on combining the different functionalities of the individual platforms.
BLOOMS [15], aligns classes in different KBs where the schema definitions are
available. In our vision, the alignment of KBs should happen even in cases where
explicit schema information or other database constraints are not available. For
that reason we choose an instance-based approach.

Instance-Based: Class Alignment. Many instance-based approaches are pro-
posed for class alignment in ontologies [12,16,31], contrary to our work, that
focuses on relation alignment. Movshovitz-Attias et al. [23] infer subconcept and
superconcept hierarchies from a KB. [24] produces equivalence and subsumption
relationships between classes. Contrary to the class alignment work, the differ-
ence in the case of relations lies on two main aspects. First, classes and relations
represent two different constructs in schemas. For classes it is sufficient to sim-
ply measure set overlap in terms of entities and other schematic information. In
the case of relations we have the domain and range which should map between
two relations, and even in cases they match, two distinct relations might have
different semantics (e.g. bornIn and presidentOf).

Instance-Based: Relation Alignment. A large corpus of works focus on the
discovery of equivalence or similarity relationships between relations, with early
examples in relational databases [11,21], and Web services [18,19]. In the case
of KBs, the schemas are in large numbers and vary heavily. For example, YAGO
and DBpedia vary greatly in their representation, where YAGO has 37 object
relations, while DBpedia has 688, whereas in terms of entity instances they have
a high overlap. Thus, by considering only equivalence alignments we cannot map
relations that have similar semantics or subsume another. This is due to the fact
that many relations map to more than one relation in a target KB (e.g. YAGO
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to DBpedia). In itself finding subsumption relationships is more challenging, yet,
it reflects the true nature of this problem. In the following we describe only the
approaches that are capable of handling subsumption relationships [28,30,32].

ILIADS [30] and PARIS [28] serve for the dual purpose of aligning instances
and schema elements between two KBs. In ILIADS as in [7], the authors acknowl-
edge the difficulty of the relation alignment problem, where systems designed for
class and instance alignment perform poorly. In the case of PARIS, it is acknowl-
edged as a state of the art approach by related work [32], thus, we compare
against it, and show the advantages of SORAL achieving significant improve-
ment over PARIS. Galárraga et al. [13] propose ROSA, a relation alignment
approach. ROSA operates on a similar setting as ours. However, as we show in
our experimental evaluation in Sect. 7, relying solely on association rule mining
measure PCA [14] is insufficient. Finally, the aforementioned works [13,28,30,32]
operate on KB snapshots, contrary to our approach, which operates on small
data samples that are queried from the respective KBs, thus, tackling one of the
major problems of efficiency of existing works.

3 Preliminaries

Knowledge Bases. We assume that knowledge bases (KB) are represented in
RDFS1. A KB consists of a set of triples K ⊆ E ×R× (E ∪L), where E is a set of
resources that we refer as entities, L a set of literals, and R a set of relations. An
entity is identified by a URI and represents a real-world object or an abstract
concept. A relation (or property) is a binary predicate. A literal is a string, date
or number.

Given a triple (x, r, y) (aka a statement), x is known as subject, r as relation,
and y as object. Based on the nature of the objects, we classify relations in
two categories: (i) entity-entity relations with x and y being entities, and (ii)
entity-literal relations where y is a literal.

We use r(x, y) to refer to the triple (x, r, y), and the tuple (x, y) as an instan-
tiation of r. Without loss of generality, for an entity-entity relation r ∈ R we
denote its inverse as r− ∈ R, and that the triples of r− are also contained by K
(∀r(x, y) ∈ K ⇒ r−(y, x) ∈ K).

Classes and Instances. A class is an entity that represents a set of objects,
e.g., the class of all politicians. An entity that is a member of a class is
called an instance of that class. The rdf:type relation connects an instance
to a class. For example, Barack Obama is a member of the class of politicians:
rdf:type(Barack Obama, Politician).

Equivalence of Instances. Equivalence between two entities is expressed
through owl:sameAs statements. For example, yago:US and dbpedia:USA (both
referring to the same country), the equivalence of the two instances is expressed
as owl:sameAs(yago:US, dbpedia:USA).

1 https://www.w3.org/RDFS/.

https://www.w3.org/RDFS/


156 M. Koutraki et al.

4 Problem Statement

We consider a KB pair (a source KS and a target KT ) that can be queried
through SPARQL endpoints. Next, we assume that owl:sameAs statements exist
between entity instances of KS and KT . For two equivalent instances es ≡ et,
from KS and KT , respectively, we assume that, KS stores owl:sameAs(es, et)
and KT stores owl:sameAs(et, es).

Definition 1 (Relation Subsumption). For two relations rS and rT , we say
that rS is subsumed by rT , or that rT subsumes rS and write rS ⊆ rT or
rS ⇒ rT iff

∀x, y, rS(x, y) is true → rT (x, y) is also true.

The notion of subsumption is independent of the relation extensions/name
in the two KBs. We can only rely on the facts stored in the KBs to learn the
subsumption relationships.

Goal. For two knowledge bases, a source KS(ES ,RS , ES ∪ LS) and a target
KT (ET ,RT , ET ∪ LT ), and a relation rS ∈ RS, find the relations rT ∈ RT s.t.
rS ⊆ rT .

The relationship of equivalence between two relations is expressed as two way
subsumption relationship: rS ≡ rT iff rS ⊆ rT and rT ⊆ rS . In this way, we
support the computation of both subsumption and equivalence relationships.

In this work, we consider only entity-entity relations. We do not consider
entity-literal relations, because the equivalences between literals are managed
differently and are not materialized in KBs. However, once such equivalences are
established, one can use our approach to align entity-literal relations.

5 SORAL: Relation Alignment

We propose SORAL, an online relation alignment approach, which for a pair of
knowledge bases, a source KS and a target KT , works under two assumptions:
(i) each KB is accessible through a SPARQL endpoint, (ii) for a KB pair we
assume that their entity instances are partially aligned.

The process of discovering subsumption and equivalence relation alignments
in SORAL is outlined in two main steps:

(1) Candidates Generation. For a relation rS ∈ RS , find all overlapping
relations rT ∈ RT i.e. ∃x, y : rS(x, y) ∈ KS ∧ rT (x, y) ∈ KT .

(2) Supervised Model. For every candidate pair 〈rS , rT 〉, we classify it as
correct or incorrect depending if the subsumption relationship holds or not.
We propose a set of features (Sect. 5.3) which we use to learn a supervised
machine learning model.
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5.1 Candidate Generation

We observe that for a relation rS its super-relations rT must have at least one
instantiation in common. Thus, they must satisfy the following constraint:

∃xS , yS , xT , yT : rS(xS , yS) ∧ xT ≡ xS ∧ yT ≡ yS ∧ rT (xT , yT )

Since, the relations reside at different endpoints, for the candidate generation
we perform a federated query. The conjunction of the first three terms of the
expression can be evaluated at KS . However, for the last term the query is
evaluated at KT . More precisely, we first evaluate the following query at KS :

Q1: SELECT DISTINCT ?xT ?yT FROM <KS> WHERE

{ ?xS rS ?yS. ?xS owl:sameAs ?xT . ?yS owl:sameAs ?yT . }

From the query result-set SrS = {(x1, y1) . . .} of Q1 we discover the candidate
relations from KT for which these pairs are instantiations. Note that a tuple (xT ,
yT ) can be the instantiation of the inverse of a relation at KT . Hence, we discover
both direct and inverse relations. For this purpose, we use the VALUES feature
from SPARQL 1.1 and compute using only one query both inverse and direct
relations.

Q2: SELECT DISTINCT ?rT ?d FROM <KT > WHERE {
VALUES (?x ?y) {(x1 y1) . . .}
{ SELECT ?x ?rT ?y ?d WHERE {?x ?rT ?y. VALUES ?d {"d"}}}
UNION

{ SELECT ?x ?rT ?y ?d WHERE {?y ?rT ?x. VALUES ?d {"i"}}} }

The result-set of query Q2, C(rS), denotes the set of candidate relations rT .
For simplicity, we assume that all relations are direct. This is because we have
assumed (Sect. 3) that each KB defines for each relation, its inverse.

We avoid the transfer of the entire instantiations of a relation (as it introduces
a bottleneck), and instead sample for a minimal set of tuples (xT , yT ) that are
transferred from the source to the target. We discuss the sampling strategies in
the following

5.2 Sampling Strategies

In many cases SPARQL endpoints place limitations on the number of triples
one can transfer. Even when full access is provided, transferring the full data is
expensive (both in terms of time and network bandwidth consumption).

To overcome these issues we suggest three sampling strategies for entity
instance selection, which we use to generate relation candidates. For rS , the
objective is to sample for a minimal set of representative instantiations SrS ,
such that they provide optimal coverage on discovering super-relations rT .

First–N Sampling. It is an efficient way to query for the first N returned
entity samples (xT , yT ). The drawback is that it does not provide representative
samples, due to the fact that it is subject to how the data is added into the
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KBs. This represents a baseline to show the impact of sampling strategies on
generating accurate relation alignments.

Random Sampling. In this case we use the RAND() feature of SPARQL 1.1
to query for representative samples for SrS . Contrary to first–N , ordering the
matching triples through the RAND() function is expensive and introduces a sig-
nificantly higher overhead in the query-execution when performing the relation
alignment. Moreover, dependent on the sample size, the samples might be biased
towards the classes with more instances, and as such it has an impact in the can-
didate relations we generate from KT .

Stratified Sampling. Here, we account for the possibly missing candidate rela-
tions from KT due to the sample size, for relations whose domain/range belongs
to fine grained entity types. Through stratified sampling we can achieve a better
coverage in terms of uncovered relation alignments for rS .

We group entities into homogeneous groups/strata (a group is represented
by an entity type) before sampling. Additionally, the groups are further defined
at various depths at the type taxonomy levels in order to find out the optimal
groups which yield the highest coverage in terms of candidate relations. To ensure
the disjointness (a prerequisite for stratified sampling), from the transitive type
closure for an entity, we associate it to its most specialized type (dependent
at what level in the type taxonomy we are interested to group entities), thus,
ensuring disjointness of groups.

At high levels in the taxonomy, the sampling is similar to random sampling,
whereas for deeper levels, we have more groups, and as a consequence more
representative samples, leading to an increased coverage of candidate relations
from KT . The query to retrieve the samples is shown below, where N is the
sample size for each strata, proportional to the number of entities in it and the
given total sample size.

Q3: SELECT DISTINCT ?xT ?yT WHERE {
?xS rS ?yS. ?xS owl:sameAs ?xT .

?yS owl:sameAs ?yT . ?xS rdf:type ?type.

} ORDER BY RAND() LIMIT N

5.3 Features

In this section, we describe the features we use to learn the supervised model
in SORAL to predict whether the subsumption relationship for a relation pair
holds. We consider features which we categorize into two main categories. Firstly,
we consider inductive logic programming (ILP) approaches that work under
the open and closed world assumptions w.r.t the instantiations of relations rS
and rT . In the second group (GRS), we look into general statistics extracted
from relations, specifically we assess the domain/range class distribution of the
relations rS and rT . It is important to note that the features are computed over
the sampled entity instances SrS and for the candidate relation in C(rS).
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ILP – Features

Closed World Assumption – CWA. Proposed in [10], cwaconf is used to
mine association rules and was first used for relation alignment between two
KBs in state of the art [28]. It works under the closed world assumption, where
the KBs are assumed to be complete, hence there are no missing statements.
The cwaconf score is computed as in Eq. 1. It measures the overlap in terms of
the number of instantiations in common between rS and rT , normalised by the
number of instantiations of rS .

cwaconf (rS ⇒ rT ) :=
overlap(rS ∧ rT )

rS
(1)

We gather such counts by querying the respective SPARQL endpoints of KS

and KT .
The cwaconfmeasure provides strong signal for the alignment of relations

in the case when the relations are complete (i.e., KBs have all statements for a
given relation). However, due to the fact that KBs are constructed from different
sources, complementary statements for an entity in different KBs are considered
as counter-examples.

Partial Completeness Assumption – PCA. The second feature, pcaconf ,
is an ILP measure proposed in [14] with the purpose of mining Horn rules for
an input KB. It is able to handle incompleteness in KBs, and works under the
partial completeness assumption. For a relation rS and instance x, it is assumed
that the KB contains either all or none of the rS-triples with x as a subject.
As counter-examples for the alignment rS ⇒ rT , is considered any pair (x, y)
that is an instantiation of rS but not of rT . More formally, counter(rS ⇒ rT )
:= #(x, y) : rS(x, y) ∧ ∃y2, y2 
= y : rT (x, y2) ∧ ¬rT (x, y).

pcaconf (rS ⇒ rT ) :=
overlap(rS ∧ rT )

overlap(rS ∧ rT ) + counter(rS ⇒ rT )
(2)

Similar to cwaconf , to compute pcaconfwe extract the counts for rS and rT
through SPARQL queries on KS and KT . Note that, pcaconfcan have maximal
score even when the overlap between relation instantiations consists of few tuples
with no counter-examples. This is helpful in detecting alignments with a small
overlap in the two KBs. On the other hand, it increases the likelihood of getting
false positives. These are caused by erroneous facts and incomplete data.

However, considering jointly cwaconfand pcaconf features has the effect of reg-
ularizing each other; for high pcaconf scores but low cwaconf the chance of having
a correct alignment is low, and vice-versa. We make use of this assumption and
compute a joint probability score for a relation pair being correct by considering
the pcaconfand cwaconf scores jointly.

Partial Incompleteness Assumption – PIA. The pcaconfmay hold for func-
tional relations (see Eq. 4), but is less probable for one-to-many relations. The
intuition is that if the average number of rS-triples per subject is high, then
it is more likely that not all rS-triples of some subject x have been extracted.
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The same observation holds also for the triples of rT . Note, that we have yet to
prove that rS is subsumed in rT . Hence, the counter-examples of less functional
relations should be weighted less than the counter-examples of more functional
relations. We measure the piaconf score as:

piaconf (rS ⇒ rT ) :=
overlap(rS ∧ rT )

overlap(rS ∧ rT ) + (counter(rS ⇒ rT ) ∗ func(rS))
(3)

where, func(rS) measures the probability that a counter example may not exist.

General Relation Statistics (GRS) – Features. In the GRS feature group,
we propose features that take into account the cardinality of the two relations,
and the types extracted from the entity instances in the domains and ranges of
a relation.

Functionality of a Relation. A relation is called functional, if there are no
two distinct facts that share the relation and the first argument. Real life KBs
may be noisy, and contain distinct facts for relations that should be functional
(such as bornIn). Therefore, we make use of the functionality [28]:

func(r) :=
#x : ∃y : r(x, y)

#(x, y) : r(x, y)
(4)

Perfect functional relations have a functionality of 1.
From this intuition we assume that if rS is subsumed by rT , then the num-

ber of facts per subject in rS should be lower than in rT . In other words, the
functionality of rS should be grater or equal to the functionality of rT , that
is if rS ⇒ rT → func(rS) � func(rT ). Finally, the functionality feature we
consider here is the functionality difference between rS and rT , funcdiff :=
func(rS) − func(rT ) ∈ (−1, 1).

Weighted Jaccard Similarity. We measure the similarity of the type distrib-
utions D(·) between the relations rS and rT . We denote with Ds(rS) and Ds(rT )
the type distribution for subject entities for rS and rT , respectively; each type is
represented by the proportion of entities (out of the total entities for a relation).

Since we are interested to find the subsumption rS ⇒ rT , the intuition behind
this feature is that the respective type distributions should be similar, or D(rS)
should be entailed in D(rT ). In other words, the target relation rT , should be
able to represent entity instances from rS , namely through its domain entity
type definition2.

To compute D(·), first we unify the type representation of entities in the two
KBs by picking one of the taxonomies in either KS or KT . This is necessary, due
to the fact that two KBs use different schemas. We are able to do this due to
the restriction that we consider only entities that are linked across KBs through
owl:sameAs statements. The similarity is computed as in Eq. 5.

WJ(D(rS), D(rT )) :=

∑
t∈D(rS)∧D(rT ) min(σ(tS), σ(tT ))

∑
t∈D(rS)∧D(rT ) max(σ(tS), σ(tT ))

(5)

2 Each relation in a RDFS schema has two properties denoting the domain and range.
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where, D(·) represents either the type distribution for the subject or object values
based on that if the relation is a direct or inverse relation. σ(t) represents the
score of a type in the distribution for a given relation.

Weighted Jaccard Dissimilarity. Contrary to the previous feature which is
computed on overlapping types, in this case, we compute the weighted dissim-
ilarity score (WDS) between rS and rT . Specifically, if a specific entity type
from rS does not exist in rT , this accounts for a dissimilarity between the two
relations, and lowers the likelihood of rT subsuming rS .

WDS(D(rS), D(rT )) :=

∑
t∈D(rS)∧t/∈D(rT ) σ(tS)

|D(rS) \ D(rT )| (6)

The intuition is that if rT cannot represent types from rS which account to a
large proportion of entities, then it is unlikely for rS ⇒ rT to hold.

ILP Score Relevance Probability. In the case of ILP features, the scores
are subject to KB pairs. For specific relations we can achieve nearly perfect
pcaconf score with low overlap in terms of entity instantiations between relations
(e.g. single entity x), yet, with the subsumption relationship unlikely to hold. On
the other hand, low pcaconf scores may result even if the overlap of instantiations
is high in absolute numbers, but due to the complementary nature of datasets
might yield to many counter examples.

We circumvent such shortcomings of the ILP features, by assessing the like-
lihood of the pcaconfand cwaconf scores for a subsumption relationship to hold
between a relation pair. We measure the prior probabilities (in our training
data) and use these probabilities as features in our learning algorithm. To do so,
we first discretize the pcaconfand cwaconf scores into the ranges with a cut-off
point of 0.1, {0, 0.1, . . ., 1.0}. For a given pcaconfor cwaconf score, we denote
with 〈rS , rT 〉c the set of relation alignment candidates that are correct, and with
〈rS , rT 〉 the complete set of relation alignment candidates.

ILP Prior. We measure the prior probabilities, p(correct|pcaconf ) or
p(correct|cwaconf ), where the subsumption relationship holds for a pcaconfor
cwaconf score as the ratio of the cases where the relation holds, divided by the
total relation pairs having that discretized score.

Joint PCA and CWA Probability. Here we address the shortcomings of
cwaconfand pcaconf score, by learning a joint probability score in which the sub-
sumption relationship holds. We compute the joint relevance probability as fol-
lowing.

p(correct|pcaconf , cwaconf ) :=

#〈rS , rT 〉c : pcaconf (rS ⇒ rT ) = pcaconf ∧ cwaconf (rS ⇒ rT ) = cwaconf

#〈rS , rT 〉 : pcaconf (rS ⇒ rT ) = pcaconf ∧ cwaconf (rS ⇒ rT ) = cwaconf
(7)

where for a given discretized pcaconfand cwaconf score we simply count the num-
ber of relation pairs whose scores match and the corresponding alignment is
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relevant, over the total number of relation pairs with the respective pcaconfand
cwaconf scores. We expect this feature to be sparse, hence, we use the simple
priors as fall-back features.

6 Experimental Setup

Here we present the evaluation setup of SORAL. In our setup we host the eval-
uation datasets in the Virtuoso Universal Server3 with SPARQL 1.1 support.

Datasets. We evaluate SORAL on the following real-world knowledge bases
which are the most commonly used datasets from LOD and serve as general
purpose datasets.

YAGO (Y). From the YAGO2 [29] dataset we use the core and transitive
type facts, excluding the entity labels given that we consider only entity–entity
relations. The size of YAGO is approximately 900 MB.

DBpedia (D). For DBpedia [2] we consider the entity types and the mapping-
based properties, with a size of 5.5 GB.

Freebase (F). For Freebase4 we take a subset of entities that have owl:sameAs

links to DBpedia, with a total of 30 GB of data.

Entity-Entity Relations. From the aforementioned KBs, we extract all possi-
ble entity-entity relations, and filter out those with less than 50 triples. After
filtering we are left with 36 relations from YAGO, 563 from DBpedia, and 1666
from Freebase.

Entity Links owl:sameAs. We are in hold of owl:sameAs links between the pairs
DBpedia – YAGO (2.8 MM links), and DBpedia – Freebase (3.8 MM links), in
the case of YAGO and Freebase we infer the owl:sameAs links (2.7 MM links)
through the DBpedia links.

Sampling Strategies Setup. In order to measure the right samples size to
have an optimal coverage and maintain the efficiency of our approach, we vary
the sample sizes between {100, 500, 1000}. We evaluate all three sampling strate-
gies, and in the case of stratified sampling we construct the strata based on the
DBpedia type taxonomy5. We take advantage of the fact that all sampled enti-
ties from the various KBs have equivalent entities in DBpedia. We opt for the
DBpedia taxonomy due to the fact that the types form a hierarchy.

Ground-Truth Construction. Due to the limited resources, the authors of the
paper have served as expert annotators and we manually construct the ground-
truth for the relation alignment process. The ground-truth is constructed for
each KB pair. We guide the process of ground-truth creation by displaying the
individual pairs 〈rS , rT 〉. For each pair, apart form the labels of the relations,
3 http://virtuoso.openlinksw.com.
4 http://www.freebase.com.
5 http://mappings.dbpedia.org/server/ontology/classes/.

http://virtuoso.openlinksw.com
http://www.freebase.com
http://mappings.dbpedia.org/server/ontology/classes/
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the expert annotators need to assess a sample of instantiations for each relation
in order to assess correctly whether a relation subsumes another.

Learning Framework. In SORAL we feed in all the computed features into
a supervised model. In our case we use a logistic regression (LR) model [4]
(any other model can be used), and learn a binary classifier. For each relation
pair 〈rS , rT 〉 it outputs either ‘correct’ or ‘incorrect’ depending whether the
subsumption relationship holds in our ground-truth dataset. Finally, we evaluate
the performance of our model by considering a 5-fold cross-validation strategy.

Evaluation Metrics. We evaluate SORAL on two main aspects: (i) accuracy
and (ii) efficiency. In terms of accuracy, we compute standard evaluation metrics,
like precision (P), recall (R) and F-measure (F1). For efficiency we measure the
overhead in the query-execution process in terms of: (i) time (t), as the amount
of time taken to sample entities for the set SrS , and (ii) network bandwidth
usage (b) as the amount of bytes we transfer over the network for the different
sample sizes in SrS . Note here, that a traditional schema-matching approach
operating on a dataset snapshot, and as such they introduce an incomparably
higher overhead in terms of bytes and time.

Competitors. We compare SORAL against two existing approaches. First is a
state of the art approach in relation alignment, a system called PARIS [28],
which implements the cwaconfmeasure. The second competitor, is called
ROSA [13] and makes use of the pcaconfmeasure. It must be noted that the
competitors are unsupervised approaches, and as such do not need training
data. However, as it will be shown in our evaluation applying such measures
in an unsupervised manner results in poorer performance.

To ensure fairness in our comparison, since the two baselines use specific
thresholds for the alignment process, we select their best threshold parameter
such that it maximizes the F1 score. The best configuration for PARIS is a
threshold of cwaconf= 0.1, whereas for ROSA a threshold of pcaconf= 0.3.

Table 1. The performance of SORAL for the different sampling strategies and sizes.

Sampling 100 500 1000

P R F1 P R F1 P R F1

firstN .80 .45 .56 .83 .48 .60 .82 .48 .59

random .80 .45 .56 .81 .44 .56 .82 .44 .56

str.lvl–2 .80 .40 .51 .81 .44 .57 .77 .40 .49

str.lvl–3 .80 .42 .54 .84 .52 .64 .82 .50 .61

str.lvl–4 .79 .44 .55 .82 .49 .61 .80 .49 .59

str.lvl–5 .77 .44 .55 .82 .47 .59 .80 .48 .60
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7 Results and Discussion

In this section we present the evaluation results of SORAL by assessing two main
aspects: (i) the performance for the relation alignment task and its comparison
against the competitors, (ii) the efficiency by measuring the introduced over-
head in terms of time and network bandwidth overload through the sampling
strategies.

7.1 Relation Alignment Accuracy

Sampling Configurations. Here, we show the impact of the sampling strate-
gies on the candidate generation process. Through sampling we can efficiently
perform the alignment process in an online setting, and at the same time provide
accurate results.

Table 1 shows the sampling strategies presented in Sect. 5.2. In the case of the
stratified sampling we construct the strata based on the DBpedia type taxonomy
with a depth level from 2 up to 5 (DBpedia has a maximum depth level of 7).
The results are averaged across the different KB pairs. Here we aim at finding the
best parameter configuration for SORAL, specifically for: (i) sampling strategy,
and (ii) sample size.

From Table 1 we see that the best performing strategy is based on the strat-
ified sampling, with strata constructed at the depth level of three, and with a
sample size of 500. With these two parameters, SORAL yields an F1 score of
0.64. We note a small fluctuation in terms of precision for the sample sizes of
500 and 1000. We check for statistical significance on the resulting F1 scores,
however, the difference proved to be insignificant with a p− value = .17. On the
other hand, we find statistical significance between the F1 scores for 100 and
500 entity samples (p − value = .01).

Table 2. The performance of SORAL in comparison to the competing baselines.

Sampled data Full data

SORAL ROSA PARIS SORAL ROSA PARIS

pcath = 0.3 cwath = 0.1 pcath = 0.3 cwath = 0.1

KS → KT P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

YAGO → DBpedia 1.0 .68 .81 .17 .75 .28 .71 .66 .68 .92 .73 .81 .06 .68 .11 .42 .54 .48

YAGO → Freebase .87 .67 .76 .11 .78 .20 .55 .59 .57 .82 .82 .82 .03 1.0 .05 .40 1.0 .57

DBpedia → Freebase .72 .36 .48 .10 .67 .18 .31 .50 .40 .69 .38 .49 .05 .85 .09 .31 .65 .42

DBpedia → YAGO .86 .60 .71 .30 .72 .43 .70 .66 .68 .57 .49 .53 .18 .55 .27 .40 .45 .43

Freebase → DBpedia .88 .51 .64 .27 .79 .41 .65 .65 .65 .87 .66 .75 .34 .93 .50 .72 .57 .64

Freebase → YAGO .72 .34 .46 .22 .39 .28 .42 .37 .39 .69 .74 .71 .61 .86 .71 .73 .60 .66

Average .84 .52 .64 .19 .68 .29 .55 .57 .56 .76 .64 .69 .21 .81 .29 .49 .63 .53
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SORAL Effectiveness. Table 2 shows the results for the best configuration of
SORAL (with stratified sampling at depth level 3) for the individual KB pairs. In
the “Sampled Data” results group we compare SORAL against the competitors
ROSA and PARIS. The results are highly significant when comparing SORAL
against the competitors for the F1 score. In terms of precision, we have a relative
improvement of 336% when compared to ROSA, whereas in the case of PARIS we
have a 51% improvement. In terms of recall, we perform worse, however, the low
pcaconfand cwaconf thresholds for our baselines (pcath = 0.3 and cwath = 0.1),
lead to a low precision which makes such results hardly usable. Increasing the
thresholds results an increase of precision, however, strongly penalizing the recall
of the competitors.

In the group of results in column “Full Data”, we show the results of SORAL
and the competitors when computed without sampling for the relation candidate
generation. Here too we outperform the competitors to a large extent, with an
average difference of 16% in terms of F1 for PARIS and even higher difference
of 40% to ROSA.

It is interesting to note that for SORAL on average we miss 13% of aligned
relations from the real coverage performance of SORAL when comparing the
results with sampling and without. In terms of F1 measure we have only a
small difference of 6%, which presents an optimal results when comparing the
advantages we get in terms of efficiency through sampling.

Finally, we note varying performance of SORAL (with and without sampling)
across the different KB pairs. For instance, in the case of YAGO → DBpedia
we have perfect precision and the best F1 score. It is evident that DBpedia
and YAGO represent high quality KBs, whereas Freebase is more noisy, thus,
leading to a poorer performance. The main reason for such noise is that relations
in Freebase are created by its users, and as such are not unique, in the sense
that there are multiple relations representing similar concepts in Freebase.

From Table 2 we further notice that in the case of DBpedia to YAGO we
have worse results when comparing the full against results obtained through
sampling. This may be caused due to the difference in the number of statements
per relation in the two KBs. DBpedia has a larger set of entity instances and
statements per relation, and as such the ILP and GRS features are penalized
more heavily in the full dataset. We believe that in this case the sampling plays
a normalizing factor for such differences in terms of statements and the impact
on the feature computation.

Feature Ablation. In the feature ablation we show as to what is attributed
the performance of SORAL. Figure 2 shows the feature ablation results for the
different feature groups in Sect. 5.3. The results are averaged across the different
KB pairs and are computed based on models trained on the full data, such that
we can assess the true power of the different groups.

The highest impact is attributed to the GRS feature group. This follows our
intuition where we hypothesized that for a relation to be subsumed in a target
relation, one of the important factors is the ability of rT to represent the entity
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Fig. 2. Feature ablation for the different feature groups.

instances. In other words, the entity types for two relations should be similar.
The next assumption we made was that ILP feature scores, depending on the
KB pairs, sometimes are insufficient, hence, the corresponding likelihood scores
of the ILP measures can provide additional information on predicting correctly
the label of a relation pair.

7.2 Query-Execution Overhead

Here we show the overhead in terms of time and network bandwidth usage for
the sampling process. These represent important aspects considering that our
relation alignment is setup in an online setting.

Time overhead. With respect to the time efficiency factor, we measured the
time it takes to perform the different sampling strategies. The most efficient sam-
pling strategy is first–N taking the least amount of time. The stratified sampling
strategy requires the most amount of time, with a maximum of 3 s (for 1000
instances); a significantly higher execution time compared to other strategies.
However, such an overhead for the task at hand is arguably not high.

Network bandwidth overhead. Understandably the amount of overhead in
terms of bandwidth is uniformly distributed across the different sampling strate-
gies. That is, considering that we sample for the same amount of entity instances.
The highest amount of bandwidth overhead is introduced when we sample for
1000 entity instances, with a maximum 140 kb. In the performance evaluation
of SORAL in Table 1, we found the optimal results to be with 500 entity sample
instances, resulting in bandwidth overhead of 60 kb. This contrary to existing
approaches that require the full content of a KB, represents a highly efficient
way to compute such alignments.

8 Conclusion

We proposed SORAL, a supervised machine learning approach for relation align-
ment. We perform the specific task where for a given source relation rS we
find relation subsumption in a target KB. Furthermore, we employ SORAL in
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an online setting, where we ensure the efficiency of the proposed approach by
extracting minimal samples of entity instances for a relation from the respec-
tive SPARQL endpoints. To ensure the accuracy of SORAL we computed fea-
tures that range from association rule mining features, to general statistics from
relations.
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