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Abstract. We present a traffic analytics platform for servers that pub-
lish Linked Data. To the best of our knowledge, this is the first system
that mines access logs of registered Linked Data servers to extract traffic
insights on daily basis and without human intervention. The framework
extracts Linked Data-specific traffic metrics from log records of HTTP
lookups and SPARQL queries, and provides insights not available in
traditional web analytics tools. Among all, we detect visitor sessions
with a variant of hierarchical agglomerative clustering. We also iden-
tify workload peaks of SPARQL endpoints by detecting heavy and light
SPARQL queries with supervised learning. The platform has been tested
on 13 months of access logs of the British National Bibliography RDF
dataset.
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1 Introduction

Data providers have so far published hundreds of linked datasets, thus con-
tributing to the birth of the Web of Data. Although technical and conceptual
challenges of Linked Data publication have been largely discussed in litera-
ture [2,10], we believe that data publishers have still limited awareness of how
datasets are accessed by visitors. In other words, data providers cannot easily
find valuable insights into how triples are consumed and by whom. This has
two consequences: first, publishers struggle to justify Linked Data investment
with management. Second, they miss out technical benefits: poor access traf-
fic knowledge hampers negotiating an affordable service level agreement with
hosting suppliers; limited awareness of traffic spikes prevents predicting peaks
during real-world events. While some works describe specific access metrics for
linked datasets [13], no comprehensive analytics tool for Linked Data publish-
ers has ever been proposed, and in most cases publishers have no choice but
to manually browse through records stored in server access logs. Applications
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for analysing traditional websites traffic exist, but none considers the specifici-
ties of Linked Data: none extracts insights by parsing SPARQL in query strings
(e.g. how many resources occur in SPARQL queries, how many SPARQL end-
points workload peaks, the ratio of HTTP and SPARQL traffic, etc.). Besides,
content negotiation with 303 URIs1 is not interpreted as an atomic operation,
thus overestimating the actual number of requests. No tools detect Linked Data
visitors sessions, neither.

Bringing traffic analytics to Linked Data publishers requires solving three
major challenges: first, we must choose meaningful metrics: are traditional web
traffic analytics metrics sufficient? How should we tailor such metrics to Linked
Data? Second, we must extract such metrics. This leads to additional sub-
problems: which data sources shall we mine, and how do we filter noise (e.g.
search engine crawlers, robots)? Some metrics require knowledge of visitor ses-
sions: how to detect such sessions in a Linked Data scenario? Being aware of
workload peaks of SPARQL endpoints is important: how do we detect heavy
SPARQL queries repeatedly issued in a short time? Last but not least, how do
we deliver insights to end users without human intervention?

Research Contribution. Our contribution is twofold: first, we present a traffic
analytics platform for Linked Data servers: we add novel Linked Data-specific
metrics - to break down traffic by RDF content, capture SPARQL insights, and
properly interpret 303 patterns. Second, we describe two mining tasks that the
system adopts to extract some of the aforementioned metrics: (i) the reconstruc-
tion of Linked Data visitors sessions with time-based hierarchical agglomera-
tive clustering, and (ii) the detection of workload peaks of SPARQL endpoints
by predicting heavy and light SPARQL queries with supervised learning and
SPARQL syntactic features. We evaluate our mining tasks on DBpedia 3.9 and
British National Bibliography logs, and we publish the datasets to reproduce
our results. We describe the insights from 13 months of access logs of the British
National Bibliography dataset2, and we show that our system reveals patterns
that would otherwise require heavy manual intervention by dataset publishers.

The paper is organised as follows: Sect. 2 lists related works. Section 3 intro-
duces the system architecture. Section 4 discusses the traffic metrics and their
extraction. This section also describes how we identify visitor sessions, and how
we detect heavy and light SPARQL queries. Results and reproducibility are
described in Sect. 5. Section 6 proposes future extensions.

2 Related Work

Google Analytics3 and other popular web analytics platforms4 (e.g. Open Web
Analytics, PIWIK5) are not designed for linked datasets (e.g. they do not provide
1 https://www.w3.org/TR/cooluris.
2 http://bnb.data.bl.uk.
3 http://analytics.google.com.
4 https://en.wikipedia.org/wiki/List of web analytics software.
5 http://piwik.org, http://www.openwebanalytics.com.

https://www.w3.org/TR/cooluris
http://bnb.data.bl.uk
http://analytics.google.com
https://en.wikipedia.org/wiki/List_of_web_analytics_software
http://piwik.org
http://www.openwebanalytics.com
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access metrics for SPARQL). Many works over the last decade discuss access
metrics for the traditional web [6]. Nevertheless, only a handful propose Linked
Data-specific traffic metrics: Möller et al. [13] propose a list of Linked Data-
specific metrics that cover HTTP and SPARQL access to RDF (e.g. ratio between
303 and 200 HTTP requests, number of RDF-aware agents, SPARQL query
features, machine/vs human classification based on user-agent strings). The
well-established USEWOD workshop series6 is the reference for Linked Data
usage mining (the workshop authors also publish a dataset of anonymised linked
datasets access logs [11]). We reused and extended metrics defined in [6,13].

Labeling SPARQL queries as light or heavy has been inspired by [5,7,9,18].
Although formal analysis of the SPARQL language complexity has been exten-
sively studied [16,19], empirical works often adopt an informal notion of query
complexity: for instance, Möller et al. [13] consider complexity as the ratio
between the triple pattern types and the count of SPARQL queries. Others [4]
refer to the count of classes and properties of a query. Other empirical stud-
ies propose syntactic features that distinguish low from high complexity queries,
and confirm that non-conjunctive queries lead to higher execution times [5,7,18].
We trained our light/heavy SPARQL classifier with syntactic features proposed
in these papers. Other works use supervised learning on SPARQL query logs:
Hasan [9] goes as far as predicting SPARQL query execution time with k-nearest
neighbours regression and support vector machines.

To the best of our knowledge, no existing work detects Linked Data client
sessions. Traditional web sessions have been naively determined by identifying
fixed-length inactivity gaps, but picking optimal values is awkward and error-
prone [1]. Murray et al. present a variant of hierarchical agglomerative clustering
(HAC) - later refined by [12] - that finds visitor-specific thresholds [14]. We adopt
HAC in our Linked Data scenario. Other clustering approaches rely on model-
based cluster analysis [15] and time-aware clustering [8,17].

3 System Overview

The traffic analytics platform includes the following main components (Fig. 1):

Extract-Transform-Load (ETL) Unit. On a daily basis, for registered
publishers, the Log Ingestion sub-component fetches and parses access logs
from one or more linked dataset servers (see Fig. 2 for an example). Since
data publishers adopt different access records formats, the platform relies on
a flexible and customisable log parser. Records are filtered from search engines
crawlers noise.
Metrics Extraction Unit. Extracts traffic metrics. It includes visitor
session detection, and light/heavy SPARQL query classification (Sect. 4).
Note that we do not support structured content embedded in HTML pages
(e.g. microdata, RDFa). The system does not provide statistics on downloads
of datasets dumps.

6 http://usewod.org/.

http://usewod.org/
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Fig. 1. Architecture of the traffic analytics platform for linked data publishers

Fig. 2. A record of a linked data server access log (Apache commons logfile (https://
httpd.apache.org/docs/trunk/logs.html#common)).

Data Warehouse and MOLAP Unit. Traffic metrics are stored in a
data warehouse equipped with an SQL-compliant MOLAP7 unit that answers
queries with sub-second latency.
Web User Interface. The front end queries the RESTful APIs exposed
by the MOLAP Unit, and generates a web UI that shows the metrics in
Table 1 filtered by date, user agent type, and access protocol (see screenshots
in Fig. 3).

4 Traffic Metrics

The traffic analytics platform features three categories of traffic metrics:

Content Metrics. How many times RDF resources have been accessed. We
interpret content negotiation with 303 URIs as an atomic operation. We also
count how many times resource URIs appear in SPARQL queries8, and pro-
vide aggregates by family of RDF resource (i.e. instances, classes, properties,
graphs).
Protocol Metrics. Information about the data access protocols used by
visitors. Includes SPARQL-specific metrics such as the count of malformed
queries and the detection of light and heavy SPARQL queries with supervised
learning.

7 Multidimensional Online Analytical Processing.
8 This is a lower bound estimate. Access logs do not contain SPARQL result sets.

https://httpd.apache.org/docs/trunk/logs.html#common
https://httpd.apache.org/docs/trunk/logs.html#common
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Table 1. Supported metrics.

Content Metrics

Instancesa How many times RDF instances have been requested (HTTP requests and

URIs in SPARQL queries)

Classesa The count of URIs used as RDFS/OWL classes in SPARQL queries. URIs

must be objects of rdf:type.

Propertiesa The count of URIs used as predicates in SPARQL queries.

Graphsa The count of URIs used as graphs in SPARQL queries (FROM/FROM NAMED,

USING/USING NAMED, GRAPH).

Protocol Metrics

Data access protocola The count of HTTP lookups and SPARQL queries, over a specific time frame.

SPARQL query typea The count of SPARQL verbs over a specific time frame (e.g. how many SELECT,

ASK, DESCRIBE, and CONSTRUCT).

Light/Heavy SPARQLa Indicates the number of light and heavy SPARQL queries (see Sect. 4.2 for

details).

HTTP methods Indicates the count of HTTP verbs (e.g. GET, POST, HEAD).

303 Patternsa The count of HTTP 303 patterns found in logs (303 URIs).

Misses Keeping track of HTTP 404s is useful to understand whether visitors are

looking for resources which are not currently included in the dataset.

Malformed queriesa The count of HTTP 400s shows how many malformed HTTP requests have been

issued. We also show how many SPARQL queries contain syntax errors.

Other client-side errors Useful, for example, to detect whether visitors attempt to access forbidden

RDF resources (HTTP 403).

Server-side errors The count of HTTP 5xxs is important to estimate whether error-triggering

SPARQL queries have been repeatedly issued to a triplestore.

Audience Metrics

Location Continent, country, subdivision, and city of origin of a visitor.

Network provider The name of the company or institute associated to a visitor’s IP address, as

returned by WHOIS lookups. If WHOIS data is not available, we provide the

visitor’s host network.

Languagea The preferred language requested by a visitor. Such information is extracted

from the Accept-Language HTTP header (for HTTP lookups) and retrieved

from SPARQL xsd language-tagged string literals (e.g. @en) or FILTER lang()s

(e.g. lang(?l) = "en").

User agent The user agent string provided by a visitor.

User agent type To provide a clearer estimate of which clients are used to access a dataset, we

group user agent strings into Software Libraries (e.g. Jena, Python

SPARQL-client, etc.), Desktop Browsers, Mobile Browsers, and Others.

New vs Returning New visitors versus visitors that have performed at least one visit before.

External referrer HTTP Referer: headers. When dereferencing an RDF resource, the HTTP

request might contain this optional header field that specifies the URI from

which the request has been issued.

Sessions count The count of all visitors sessions.

Session size The number of requests sent by a visitor during a session (requests might be a

mix of HTTP lookups and SPARQL queries).

Session deptha The number of distinct RDF resources (graphs, classes, properties, instances)

requested by a visitor during a session.

Session duration The duration of a session.

Bounce rate Indicates the percentage of sessions that contain only one resource request

(whether this is an HTTP lookup or a SPARQL query).

a indicates linked data-specific entries
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Audience Metrics. Besides traditional information about visitors (e.g. loca-
tion, network provider), these measures include details of visitor sessions.

Table 1 describes the three categories, and highlights Linked Data-specific
metrics (e.g. light/heavy SPARQL queries). In the following sections we describe
how metric extraction is carried out by the system.

4.1 Content Metrics Extraction

Our traffic analytics platform supports Linked Data dual access protocol: it
counts how many times an RDF resource is dereferenced with HTTP operations,
but also how many times its URI is included in SPARQL queries. Unlike existing
tools, we interpret content negotiation with 303 URIs as an atomic operation,
thus counting each HTTP 303 pattern as a single request. Table 1 shows the list
of aggregates by family (instances, classes, properties, graphs). While extraction
of resources and their family is straightforward for HTTP operations (target
URIs belong by default to the instance family), for SPARQL it requires parsing
each query to determine the family of a resource (see Table 1 for parsing details).

(a) (b)

(c) (d)

Fig. 3. Screenshots of the web UI: (a) HTTP vs SPARQL; (b) sessions insights; (c)
light and heavy SPARQL queries spikes; (d) most popular RDF classes.

4.2 Protocol Metrics Extraction and SPARQL Queries Weight

Besides the count of HTTP lookups, 303 patterns, malformed queries, etc., this
group includes the count of light and heavy SPARQL queries. We now describe
the problem determined by this task, followed by our contribution.



Traffic Analytics for Linked Data Publishers 9

SELECT ?x
WHERE
{?x a foaf:Person .}

(a)

SELECT ?u ?c ?l
WHERE {{

?u rdfs:comment ?c .
FILTER(regex(str(?c), '(^|\\\\W)fr', 'i'))}

UNION {
?u rdfs:label ?l .
OPTIONAL {?u skos:prefLabel ?l.}}}

(b)

Fig. 4. Sample SPARQL queries. light (a), and heavy (b). Note the presence of UNION,
OPTIONAL, and FILTER regex in query (b).

Detecting Heavy and Light SPARQL Queries. We argue that identifying
workload peaks of a SPARQL endpoint requires a rough estimate of how many
heavy SPARQL queries have been sent to a SPARQL endpoint. A number of
challenges arise: first, an (informal) definition of weight of a SPARQL query is
required (i.e. when is a query heavy or light?). Second, a method to detect heavy
and light queries is needed. Identifying heavy and light queries can be cast as a
supervised binary classification problem; however, supervised learning requires a
training and test dataset, and access logs collections usually do not include any
information on execution time, least of all a manual annotation of light/heavy
queries. Third, a comprehensive, established, and unified list of discriminative
features for this specific classification task has not been defined yet, although
features have been proposed for similar tasks (see related work in Sect. 2).

We use SPARQL syntactic features to train off-the-shelf supervised binary
classifiers that label SPARQL queries in two categories: light and heavy (see
Fig. 4 for an example). Although such categories can be more thoroughly
explained by means of SPARQL complexity analysis, for the scope of this work
we rely on the following qualitative definition:

Definition 1 (Heavy (light) SPARQL query). Given a set Q of SPARQL
queries, a query q ∈ Q is defined as heavy (light) if it requires considerable (little)
computational and memory resources.

We extract SPARQL 1.1 features from logs with Apache Jena 3.1.1: we com-
bine what is proposed in recent literature [5,7,18] and experiment with five con-
figurations (Table 2). Besides disjunctive statements [7], Group 1 includes the
number of joins, of FILTERs, and of regular expressions used in filters. Group 2
adds the count of triple patterns, while Group 3 also includes the count of * oper-
ators in SELECT statements (more than one might be present in case of nested
queries). Group 4 adds a number of other features, including FILTER-specific
operators, projections, grouping operations, pagination, and the count of basic
graph patterns. Finally, the complete set of features (All) adds the type of joins
included in a query. Besides the six join configurations described in [7], we also
keep track of the count of completely unbound and bound statements. In this
paper we do not consider property paths, or negations (FILTER NOT EXISTS).
We choose two binary classifier models, support vector machine classification
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Table 2. Feature vectors configurations in our experiments (b=bound, u=unbound.
Examples:?s foaf:name ?n → ubu, ?s ?p?o → uuu)

(SVC) and multinomial Näıve Bayes (NB), and we train such models on the
training set described above (results presented in Sect. 5).

4.3 Audience Metrics Extraction and Visitor Session Identification

Most traffic analytics metrics described in this group (Table 1) rely on the notion
of visitor session, and require query session analysis, i.e. the analysis of groups of
queries. It is therefore crucial to (i) provide a Linked Data-compliant definition
of session, and (ii) detect such sessions with acceptable precision and recall.

There is no general consensus on the definition of visitor session on the
web [14,20]. Linked Data is no exception, as there seems to be no work in the
Linked Data research community that tackles session detection identification.
We adapt the definitions presented in [14] to Linked Data:

Definition 2 (Session). A Session is defined as a sequence of requests issued
with no significant interruptions by a uniquely identified visitor to a Linked
Dataset. A session expires after a period of inactivity. Requests can either be
HTTP lookups or SPARQL queries.

Definition 3 (Visitor). A visitor is a client uniquely identified by an IP
address and a user agent string. Visitors can issue either HTTP operation or
SPARQL queries.

Besides problems shared with the traditional web (e.g. how to define a period
of inactivity between sessions?), Linked Data session patterns might differ from
traditional web sessions: Linked Data is meant for human consumption, and
software agents: does this influence the shape of sessions? Does Linked Data
dual protocol (HTTP lookups and SPARQL) lead to different patterns?

We adopted the variant of hierarchical agglomerative clustering (HAC) pre-
sented by Murray et al. in [14]. Although originally conceived for classic web
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logs analysis, we show that HAC has good performance also in a Linked Data
scenario. HAC adopts a purely time-based gap detection, which is performed
with hierarchical agglomerative cluster analysis. HAC is visitor-centered, and
identifies sessions from the burstiness of a visitor’s activity. HAC finds visitor-
specific cut-off thresholds, and it does not need a global fixed cut-off threshold.
For each visitor, HAC carries out two steps (Fig. 5a). First, it scans the gaps
between HTTP requests to find a time interval that significantly increases the
variance (Fig. 5a, line 3): such interval becomes the visitor-specific session cut-
off. Then, it groups HTTP requests into sessions according to the cut-off (Fig. 5a,
line 4). Figure 5b shows the cut-off threshold choice in detail: the algorithm loops
through inter-session gaps in ascending order (lines 4–12); at each iteration it
computes the time difference δg between the current gap g and the mean μI of
the set of processed gaps I (line 6). If the ratio of δg and the standard deviation
σI is greater than rmax (line 7), then rmax is replaced by such ratio and the
cut-off cv is set to g (lines 8,9). Figure 5c shows how sessions are built: if the gap
between a request and the previous one is shorter than the cut-off cv (line 4),
the request is added to the current session (line 5). Otherwise, a new session is
created (line 9).

Algorithm: HAC

Input : The set R = {R1, . . . , Rn} of requests for
n visitors

Output : The sessions S of all n visitors

1 foreach visitor v do
2 Gv ← get inter-requests time gaps from Rv

3 cv ← SetCutOff (Gv)
4 Sv ← BuildSessions (Rv, cv)
5 add Sv to S

6 end
(a)

Function: SetCutOff

Input : The gap intervals Gv for
visitor v

Output : The visitor-specific cut-off
threshold cv

1 I ← ∅
2 rmax ← 0
3 sort Gv in ascending order
4 foreach gap g ∈ Gv do
5 if I �= ∅ then
6 δg ← (g − μI)
7 if δg/σI > rmax then
8 rmax ← δg/σI

9 cv ← g

10 end
11 end
12 I ← I ∪ {g}
13 end

(b)

Function: BuildSessions

Input : The requests Rv for visitor v,
the visitor-based threshold cv

Output : The collection of sessions Sv

for visitor v

1 s ← new session
2 foreach request ri ∈ Rv do
3 gap g ← (tri − tri−1 )

4 if g < cv then
5 add ri to s
6 end
7 else
8 Sv ← Sv ∪ {s}
9 s ← new session

10 end
11 end

(c)

Fig. 5. HAC: (a) main function, (b) how per-visitor thresholds are set, (c) how
HTTP/SPARQL requests are grouped in sessions.
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5 Results

Heavy and Light SPARQL Queries. The light/heavy classifier must undergo
ad-hoc training with dataset-specific access logs. To reproduce results, we
describe how the classifier can be trained on public available USEWOD 2015
DBpedia 3.9 access logs [11] (we are not allowed to disclose the British National
Bibliography access logs). The dataset used in this experiment is created as fol-
lows: we select random distinct queries from DBpedia 3.9 logs included in the
USEWOD 2015 dataset. We execute such SPARQL queries on a local clone of
DBpedia 3.9, and measure the response time of each query. Queries are issued
from localhost. We run queries multiple times, to compute mean execution time
μt and standard deviation ρt. We discard queries that led to HTTP and SPARQL
errors, and queries with relative standard deviation ρt/μt > 0.8. The resulting
dataset contains 3,752 records (3,682 SELECT, 39 CONSTRUCT, and 31 ASK). We
exclude DESCRIBE queries. We then choose a cut-off threshold tcut−off=100ms,
to separate light from heavy queries. Such value is chosen arbitrarily after man-
ual inspection of the dataset: Fig. 6a shows the distribution of SPARQL against
their execution time: the majority of queries falls within the first buckets. Note
the extremely slow queries around 100 s. The chosen tcut−off leads to 3,192
light and 560 heavy queries (hence, the dataset is skewed towards light queries).
Note that since we rely on a qualitative and scenario-dependent definition of
heavy SPARQL query, the value of tcut−off can be replaced with another user-
defined value, perhaps more meaningful under different conditions (e.g. different
triplestore, server architecture, dataset). This paper only evaluates the quality
of predictions with tcut−off=100ms. Because supervised learning performance is
influenced by tcut−off , model re-training is required if such parameter is mod-
ified. We split the dataset in a training test and a test set. The two splits are
generated with random stratified sampling, and account for 80% and 20% of
records respectively. Training includes 2,553 light and 448 heavy queries; test
includes 639 light and 112 heavy queries.

We run 10-fold cross-validated model selection with grid search over both
support vector classifier and multinomial Näıve Bayes, using F1 score as scoring
function: for SVC we iterate over C = [0.1, 1, 10, 100] and linear versus radial
basis function (RBF) kernels. For RBF kernels we try γ = [0.1, 0.2, 0.5]. Multino-
mial Näıve Bayes (NB) is trained with α = [0.5, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 10], and
learned class prior probabilities versus uniform prior. We fine-tune SVC model
selection with randomized search over the ranges mentioned above, and find the
best SVC estimator to have C = 12.96 and RBF kernel with γ = 0.10. The best
NB classifier has α = 12.7 and uniform prior. For SVC, we also train our models
with each of the five groups of features described in Table 2. Figure 6b shows
the quality of predictions by class when all features are used: although Näıve
Bayes does not lead to reliable predictions of heavy queries (F1= 0.56), SVC
reaches a F1 score of 0.66 ( P = 0.87, but recall lags at R = 0.54, leaving space
for future improvements). Light queries are labeled with F1= 0.95 by SVC and
F1= 0.91 by Näıve Bayes. The average F1 score of SVC is 0.91, while NB yields
to 0.86. Figures 6c and d show that AUC-ROC for SVC and Näıve Bayes are close
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(a)

P R F1 F1avg Acc

SV Call
light 0.92 0.99 0.95

0.91 0.92
Heavy 0.87 0.54 0.66

NBall
light 0.94 0.88 0.91

0.86 0.85
Heavy 0.49 0.67 0.56

(b)

(c) (d)

Fig. 6. Heavy/light SPARQL classification on USEWOD 2015: (a) queries distribution
by execution time; (b) breakdown of performance (all features); (c) ROC and (d) PR
curve for each feature configuration in Table 2.

(0.87 and 0.86 respectively). Nevertheless, due to class imbalance, we consider
more reliable the area of the precision-recall curve (AUC-PR), where SVC shows
the best result (AUC-PR= 0.67). Figures 6c and d also show that the entire set
of features All is more effective than Groups 1-4 (Table 2).

Visitor Session Identification. We assess the quality of the results of the
session detection algorithm. We measure how well the adopted algorithm detects
the beginning of a session. We compare precision, recall, and F1 score of HAC
with sessions with fixed cut-offs of 15, 30, and 60 min respectively (these are
common fixed-length session durations in literature [1,14]).

Our evaluation dataset spans three consecutive random days of access records
to the British National Bibliography Linked Dataset. The dataset includes 137
anonymised distinct visitors with at least 5 visits. Known search engine crawlers
have been filtered out. Overall, the dataset includes 16,426 HTTP requests,
67.8% (11,128) of which have been issued by 10 distinct visitors that used soft-
ware libraries, 31.6% (5,206) by 115 distinct visitors with desktop browsers, and
0.6% by other types of user agents (UA) - e.g. mobile browsers. Records include
a timestamp, an HTTP (or SPARQL) request, and the user agent of the visitor.
Records have been manually annotated by a domain expert as session start or
internal : a total of 576 human-annotated session starts have been found, leading
to 439 human-validated session gaps (the total count of session starts minus the
137 initial sessions for each visitor). As shown by Fig. 7a, session cut-offs are
considerably spread out from their means μ. Data suggests that outliers greatly
influence the means: software libraries are particularly affected with a standard
deviation σ three times bigger than the mean. In this case, 50% of cut-offs are
shorter than 29 m, but outliers bring the mean beyond 1 h.
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Our tests show that HAC outperforms fixed-length cut-offs (Fig. 7b). When
considering all user agents (All UAs), HAC’s precision is always higher than
the three fixed-length cut-offs (the 15 min cut-off leads to better recall, but pre-
cision is not satisfactory). Family-specific session detection shows that HAC is
outperformed in the case of browsers (this presumably corresponds to human
browsing sessions). Fixed cut-offs attempts show that precision increases with
larger thresholds, but recall always decreases: this is because fixed-length ses-
sions do not perform well when session gaps are highly spread out from the
mean. Such behaviour is more prominent for software libraries than for desk-
top browsers, since session gaps of software libraries are more scattered: Fig. 7a
shows that they have the highest coefficient of variation among the three cate-
gories (cv = σ/μ = 2.57), i.e. they have the highest relative standard deviation.

Impact of Mining Tasks and Lessons Learned. We show that our binary
supervised classifier based solely on SPARQL syntactic features helps identifying
workload peaks of SPARQL endpoints. This approach based on statistical learn-
ing overcomes missing query response time in access logs, as we cannot assume
that logs include such information. Results show that SVC leads to encourag-
ing results, with satisfactory detection of light queries. Heavy queries prediction
comes with acceptable precision, although recall shows margin for improvement,
namely through enhancements in feature extraction (e.g. adding property paths
support) and training on larger datasets. The main disadvantage of our approach
is the need for a adequately large and diverse training set. Class imbalance is
also a limitation: heavy queries are rare - among more than 60k distinct queries
from USEWOD logs which return 200 OK, only 560 led to mean execution times
above the chosen cut-off with satisfactory relative standard deviation. Another
limitation of our approach is the need to re-train the model if tcut−off is changed.

Session detection proves vital to deliver a more accurate estimate of the
traffic on a Linked Data server: sessions enable understanding the duration of
each visit, how often visitors come back, and how many distinct resources are
requested during such time frame. They also serve as a course-grained alternative
to the request count, thus helping gauging visitor engagement. The main benefit
of HAC is its performance with intertwined human-machine traffic - a distinctive
feature of Linked Data: we show that HAC outperforms fixed cut-offs on session
gaps with high relative standard deviation. This is important for session analysis
in Linked Data because, unlike traditional web, we must deal at the same time
with both visits from desktop browsers (presumably by humans, hence with more
condensed session gaps - see Fig. 7a), and from software libraries (that generate
more scattered session durations). HAC also supports the dual access-protocol
nature of Linked Data, since the time-based version of HAC presented in this
paper is access protocol-independent. The heuristic can therefore be adopted as
baseline, thus laying the foundations for content-based session detection heuris-
tics that take into account SPARQL, HTTP, or mixed sessions. Note that, since
we do not inject tracking code to identify single visitors, session detection with
HAC should be considered a lower-bound estimate: we cannot circumvent inter-
mediate components between visitors and datasets - e.g. caches (ISP, browsers,
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μ σ cv Median 95th perc Support

All UAs 4h16m 6h16m 1.47 1h35m 18h20m 439

Desktop
Browsers

5h43m 6h52m 1.20 2h57m 19h46m 259

Software
Libraries

1h14m 3h10m 2.57 29m 3h18m 158

(a)

P R F1

All UAs

HAC 0.91 0.72 0.80
15 m 0.58 0.99 0.73
30 m 0.72 0.75 0.73
60 m 0.87 0.67 0.75

Desktop
Browsers

HAC 0.88 0.63 0.73
15 m 0.60 0.99 0.75
30 m 0.77 0.96 0.86
60 m 0.91 0.87 0.89

Software
Libraries

HAC 0.96 0.93 0.95
15 m 0.53 1.00 0.69
30 m 0.43 0.23 0.30
60 m 0.76 0.15 0.26

(b)

Fig. 7. (a) Gaps between manual annotated sessions in the evaluation dataset, and
(b) session detection evaluation results: HAC algorithm vs fixed cut-offs (All UAs also
includes 22 cut-offs from UA types not included in the table).

or others), proxy servers, NAT. Besides, visitors might fake user agent strings,
thus leading to imprecise visitor identification.

Insights on the British National Bibliography Traffic Logs. We tested
the the system on 13 months of logs of the British National Bibliography dataset
(March 2014–April 2015). The dataset contains almost 100 million triples about
books and serials, and is accessible with HTTP and SPARQL. The platform
automatically filtered out 99.4% of records, as such requests were generated by
search engines and malicious crawlers. Only 0.6% are genuine calls to the triple-
store. The platform shows that the combined traffic of HTTP operations and
SPARQL queries over the observed period increased by 30%. Interestingly, we
identified a 95-fold increase in requests from software libraries, i.e. clients that
interact with the triplestore by means of SPARQL queries. We identified 49
unique applications of this kind. Desktop browsers generated 62% of requests
(either HTTP operations or SPARQL queries). SPARQL access accounts for
29% of total requests. 6% of queries have been classified as heavy. We identified
37 days that show unusual traffic spikes. One of these findings consists in a 1-h
spike of 10 thousands light SELECT SPARQL queries. The traffic analytics plat-
form also indicates the town and host network of origin, and shows that such
queries come from a Java-based application. With this in mind, dataset admin-
istrators quickly found in logs that such spike consists in thousands of identical
queries - probably originated from a bug in the client application. The plat-
form shows that 33% of requests come from the United States, with the United
Kingdom totalling 22%. Nevertheless, the most common city of origin of visi-
tors is Frankfurt, in Germany. WHOIS lookups shows that the dataset has been
accessed by more than 250 universities, at least 100 government-related host
networks worldwide, and at least 20 other libraries. Our platform also measures
user retention: over the analysed 13 months, bounce rate is 48%, meaning that
almost half of visitors never came back after the first visit. The average monthly
percentage of new visitors is 74%. Visitor session detection shows that visits
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)%(qerFecnatsnI

resource/009910399 2.4
resource/007073756 1.9
person/LewisCS%28CliveStaples%291898-1963 0.6
person/TolkienJRR%28JohnRonaldReuel%291892-1973 0.6
resource/007073756/publicationevent/LondonHarperCollins1993c1978 0.6

(a)
)%(qerFssalC

dcterms:BibliographicResource 0.7
bibo:Author 0.5
bibo:Book 0.4
resource/Author 0.2
foaf:Person 0.1

(b)

Property Freq (%)

bibo:isbn10 8.7
dcterms:title 4.9
rdfs:label 3.2
dcterms:creator 2.4
foaf:name 2.3

(c)

Fig. 8. Top-5 RDF instances, classes, and properties of the BNB dataset (HTTP oper-
ations and SPARQL queries). (a) instances, (b) classes, and (c) properties.

generated by software libraries have bigger, deeper, and longer sessions: the aver-
age daily size of software libraries sessions is 24 resources (against 2 resources
for sessions originated from desktop browsers). The average daily depth of soft-
ware libraries sessions is 11 unique resources (desktop browsers show on average
2 distinct resources per session). Software library sessions last in average 1 h
and 3 min, while desktop browser sessions only 27 min. Figure 8 shows the most
popular RDF instances, classes, and properties of the dataset.

Reproducibility and Public Demo. A public demo of the system is avail-
able at http://bit.ly/ld-traffic [3]. Datasets used for experiments with the
SPARQL classifier and the session detector are available at http://bit.ly/
traffic-ESWC2017. The heavy/light SPARQL classifier is implemented with
scikit-learn 0.18.1 SVC and MultinomialNaiveBayes. Hyperparameters not
listed in Sect. 4 are set to scikit-learn 0.18.1 defaults. Pseudo-code of the session
detection algorithm is presented in Fig. 5. All experiments have been executed
on an Intel Xeon E5-2420 v2 @ 2.20 GHz (1 socket, 6 cores, 12 threads), 128 GB
RAM, Ubuntu 14.04 LTS, Virtuoso version 7.10.3211 (Virtuoso memory usage
settings: NumberOfBuffers=5450000, MaxDirtyBuffers=4000000).

6 Conclusions and Future Work

We present a novel traffic analytics platform that relieves publishers from man-
ual and time-consuming access log mining. We add novel Linked Data-specific
metrics - to break down traffic by RDF content, capture SPARQL insights,
and properly interpret 303 patterns. Platform aside, we also propose two mining
tasks adopted by the system: the reconstruction of Linked Data visitors sessions -
which we are the first to achieve with time-based hierarchical agglomerative clus-
tering (establishing a baseline for future Linked Data-optimized heuristics), and
the detection of workload peaks of SPARQL endpoints, achieved by predicting

http://bit.ly/ld-traffic
http://bit.ly/traffic-ESWC2017
http://bit.ly/traffic-ESWC2017
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heavy and light SPARQL queries with a novel approach based on supervised
learning and SPARQL syntactic features. The analysis of 13 months of access
logs of the British National Bibliography dataset shows that our system effec-
tively reveals visitors insights otherwise hidden to dataset publishers. These find-
ings are useful, among all, to gauge SPARQL traffic spikes, and monitor trends
(e.g. HTTP vs SPARQL traffic over time). They also help justifying investment
in Linked Data, and enhancing the popularity of a dataset: for example, the
awareness of decreasing user retention might prompt for better promotion (e.g.
hackatons, spreading the word on community mailing lists, etc.). Also, if portions
of a dataset are never accessed, perhaps better data documentation is required.

Future extensions will include additional metrics, such as statistics about
noisy traffic that is now simply discarded by the platform (i.e. web crawlers).
The heavy/light classifier feature set will be refined, and we will investigate
whether this approach generalizes to additional linked datasets. We will enhance
time-based session detection with content-based heuristics, such as relatedness of
subsequent SPARQL queries, and structure and type of requested RDF entities.
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16. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg
(2006). doi:10.1007/11926078 3

17. Petridou, S.G., Koutsonikola, V.A., Vakali, A.I., Papadimitriou, G.I.: Time-aware
web users’ clustering. IEEE Trans. Knowl. Data Eng. 20(5), 653–667 (2008)

18. Picalausa, F., Vansummeren, S.: What are real SPARQL queries like? In: Proceed-
ings of SWIM, p. 7. ACM (2011)

19. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization.
In: ICDT, pp. 4–33. ACM (2010)

20. Ye, C., Wilson, M.L., Rodden, T.: Develop, implement, and improve a web session
detection model. In: Proceedings of IIiX, pp. 336–338. ACM (2014)

http://dx.doi.org/10.5258/SOTON/379407
http://dx.doi.org/10.1007/11425274_23
http://dx.doi.org/10.1007/11425274_23
http://dx.doi.org/10.1007/11926078_3

	Traffic Analytics for Linked Data Publishers
	1 Introduction
	2 Related Work
	3 System Overview
	4 Traffic Metrics
	4.1 Content Metrics Extraction
	4.2 Protocol Metrics Extraction and SPARQL Queries Weight
	4.3 Audience Metrics Extraction and Visitor Session Identification

	5 Results
	6 Conclusions and Future Work
	References


