
Chapter 10
Bifurcation Trees of Period-3 Motions
to Chaos in a Time-Delayed Duffing
Oscillator

Albert C.J. Luo and Siyuan Xing

The time-delayed Duffing oscillator is extensively applied in engineering and
particle physics. Determination of periodic motions in such a system is signifi-
cant. Thus, here in, period-1 motions in the time-delayed Duffing oscillator are
discussed through a semi-analytical method. The semi-analytical method is based on
the implicit mappings constructed by discretization of the corresponding differential
equation. Complex period-3 motions are predicted, and the corresponding stability
and bifurcation analysis are completed. From predictions, complex periodic motions
are simulated numerically, and the harmonic amplitudes and phases are presented.
Through this study, the complexity of periodic motions in the time-delayed Duffing
oscillator can be better understood. This chapter is dedicated to Professor Valentin
Afraimoich’s 70th birthday.

10.1 Introduction

In recent decades, time-delay nonlinear systems have received great attentions. Peri-
odic solutions in nonlinear dynamical systems have been of great interest for a long
time. However, one still cannot obtain adequate solutions of periodic motions to
chaos in nonlinear dynamical systems.

In 1788, Lagrange [1] investigated periodic motions of three-body problem
through a perturbation of the two-body problem with the method of averaging. In
the end of 19th century, Poincare [2] developed the perturbation theory for periodic
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motions of celestial bodies. In 1920, van der Pol [3] employed the method of aver-
aging for the periodic solutions of oscillation systems in circuits. Until 1928, the
asymptotic validity of the method of averaging was not proved. Fatou [4] gave the
proof of the asymptotic validity through the solution existence theorems of differ-
ential equations. In 1935, Krylov and Bogoliubov [5] further developed the method
of averaging for nonlinear oscillations in nonlinear vibration systems. Since then,
one extensively used the perturbation method to investigate periodic solutions in
nonlinear dynamical systems. In 2012, Luo [6] developed an analytical method for
analytical solutions of periodic motions in nonlinear dynamical systems. Luo and
Huang [7] applied such a method to the Duffing oscillator for approximate solutions
of periodic motions, and Luo and Huang [8] gave the analytical bifurcation trees
of period-m motions to chaos in the Duffing oscillator (also see, Luo and Huang
[9, 10]).

The approximate solutions of periodicmotion in the time-delayed nonlinear oscil-
lators were investigated by the method of multiple scales (e.g., Hu et al. [11], Wang
and Hu [12]). The harmonic balance method was also employed for approximate
solutions of periodic motions in time-delayed nonlinear oscillators (e.g., MacDon-
ald [13]; Liu and Kalmar-Nagy [14]; Lueng and Guo [15]). However, these methods
are not accurate enough to give reliable results. For instance, the multiple scale
method can only be applied to dynamical systems with weak nonlinear terms. The
harmonic balance method is based on one or two harmonic terms. In 2013, Luo [16]
systematically presented an analytical method for periodic motions in time-delayed,
nonlinear dynamical systems. Luo and Jin [17] applied such an analytical method to
the time-delayed, quadratic nonlinear oscillator, and the analytical bifurcation trees
of period-1 motions to chaos were obtained. In Luo and Jin [18], complex period-1
motions of the periodically forced Duffing oscillator with a time-delayed displace-
ment were investigated, which cannot be obtained from the traditional harmonic
balance and perturbation methods. In Luo and Jin [19], the period-m motions of the
time-delayed Duffing oscillator were investigated analytically, and complex period-
m motions were observed in such a time-delayed Duffing oscillator. The bifurcation
trees of period-1 motion to chaos were also discussed.

To determine stability of time-varying coefficient systems with time-delay,
Insperger and Sepan [20] developed the semi-discretization method, and the detailed
description of such a method can be found in Insperger and Sepan [21]. In 2011,
based on the ideas of finite element method, Khasawneh and Mann [22] developed
the spectral element approach for stability of delayed systems. In 2016, Lehotzsky,
Insperger, and Stepan [23] extended this idea for time-periodic delayed, differential
equations with multiple and distributed delay. Such a method cannot be applied to
periodic motions in nonlinear time-delay systems. In 2015, Luo [24] developed a
semi-analytical method to determine periodic motions in nonlinear dynamical sys-
temswith/without time-delay throughdiscrete implicitmaps. Luo [25] systematically
discussed the discretization methods of continuous dynamical systems with/ without
time-delay. Luo and Guo [26] applied such an approach to investigate bifurcation
trees of the Duffing oscillator, and nonlinear frequency-amplitude characteristics of
periodic motion to chaos.
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This semi-analytical method for time-delayed, nonlinear dynamical systems is
different from the aforementioned semi-analyticalmethod for non-time-delayed non-
linear dynamical systems. Thus, for a periodically forced, time-delayed, harden-
ing Duffing nonlinear oscillator, the different semi-analytical method was adopted
in Luo and Xing [27] for determining complex symmetric and asymmetric period-1
motions. With decreasing excitation frequency, symmetric and asymmetric period-1
motions become very complicated. From the asymmetric period-1 motions, the cor-
responding period-doubling bifurcations were observed. Thus, period-2 motions
should be discovered. If the period-doubling bifurcations of period-2 motions exist,
the period-4 motions will be discovered. In Luo and Xing [28], the bifurcation
trees of periodic motions to chaos in the hardening Duffing oscillator were dis-
cussed. The double-well Duffing oscillators extensively exist in engineering and
physical systems, and one often used displacement feedback to control periodic
motions in such a twin-well Duffing oscillator. Thus, the bifurcation trees of peri-
odic motions to chaos in such a time-delayed Duffing oscillator are of great interest
for a better understanding of global pictures of periodic motions switching and com-
plexity. Before determining bifurcation trees, period-3 motions should be
determined first.

In this chapter, the semi-analytical method will be used to investigate period-3
motions in a periodically forcedDuffing oscillatorwith time-delay. This time-delay is
caused by the displacement feedback. The analytical predictions of period-3 motions
will be completed, and the corresponding stability and bifurcation will be carried out
through the eigenvalue analysis. To understand the motion complexity, the numerical
simulationswill be completed and harmonic amplitudes and phaseswill be presented.

10.2 Discrete Mappings

Consider a time-delayed, Duffing oscillator

ẍ + δ ẋ + α1x − α2x
τ + βx3 = Q0 cos�t (10.1)

where x = x(t) and xτ = x(t − τ). In state space, the above equation becomes

ẋ = y,
ẏ = Q0 cos�t − δy − α1x + α2xτ − βx3.

(10.2)

Let x = (x, y)T and xτ = (xτ , yτ )T. For discrete time tk = kh (k = 0, 1, 2, . . .),
xk = (xk, yk)T and xτ

k = (xτ
k , y

τ
k )

T. Using a midpoint scheme for the time interval
t ∈ [tk−1, tk] (k = 1, 2, . . .), the foregoing differential equation is discretized to form
an implicit mapPk :
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Pk : (x(m)
k−1, x

τ(m)
k−1 ) → (x(m)

k , xτ(m)
k )

⇒ (x(m)
k , xτ(m)

k ) = Pk(x
(m)
k−1, x

τ(m)
k−1 )

(10.3)

The corresponding implicit relations for the implicit map are

xk = xk−1 + 1
2h(yk + yk−1),

yk = yk−1 + h[Q0 cos�(tk−1 + h
2 ) − 1

2δ(yk + yk−1)

− 1
2α1(xk + xk−1) + 1

2α2(xτ
k + xτ

k−1) − 1
8β(xk + xk−1)

3].
(10.4)

The time-delay node xτ
k ≈ x(tk−τ ) of xk ≈ x(tk) lies between xk−lkand xk−lk−1 (lk =

int(τ/h)). The time-delay nodes can be expressed by an interpolation function of
two points xk−lkand xk−lk−1. For a time-delay node xτ

j ( j = k − 1, k), we have

xτ
j = h j (xr j−1, xr j , θr j ) for r j = j − l j . (10.5)

For instance, the time-delay discrete node xτ
j is determined by the simple Lagrange

interpolation, i.e.,

xτ
j = x j−l j−1 + (1 − τ

h + l j )(x j−l j − x j−l j−1),

yτ
j = y j−l j−1 + (1 − τ

h + l j )(y j−l j − y j−l j−1).
(10.6)

Thus, the time-delaynodes are expressedbynon-time-delaynodes.Thediscretization
of differential equation for the time-delayed Duffing oscillator is completed. In the
next section, the discrete mapping will be used to determine period-3 motions in the
time-delayed Duffing oscillator.

10.3 Period-m Motions and Stability

To represent the period-m motion in such a Duffing oscillator, a discrete mapping
structure, presented in Luo [20], is constructed as

P = PmN ◦ PmN−1 ◦ · · · ◦ P2 ◦ P1
︸ ︷︷ ︸

mN−actions

: (x(m)
0 , xτ(m)

0 ) → (x(m)
N , xτ(m)

N ) (10.7)

with

Pk : (x(m)
k−1, x

τ(m)
k−1 ) → (x(m)

k , xτ(m)
k )

(k = 1, 2, · · · ,mN ).
(10.8)

By applying a midpoint scheme discretization, the corresponding algebraic equa-
tions of Pk are obtained as follows:
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Pk :

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

x (m)
k = x (m)

k−1 + 1
2h(y(m)

k + y(m)
k−1),

y(m)
k = y(m)

k−1 + h[Q0cosω(t + 1
2h) − 1

2δ(y
(m)
k + y(m)

k−1)

− 1
2α1(x

(m)
k + x (m)

k−1) + 1
2α2(x

τ(m)
k + xτ(m)

k−1 )

− 1
8β(x (m)

k + x (m)
k−1)

3]
(k = 1, 2, · · · ,mN ).

(10.9)

Application of the simple Lagrange interpolation, the time-delay node xτ
j =

h j (xr j−1, xr j , θr j ) is expressed as

xτ(m)
k = x (m)

k−lk−1 + (1 − τ
h + lk)(x

(m)
k−lk

− x (m)
k−lk−1),

yτ(m)
k = y(m)

k−lk−1 + (1 − τ
h + lk)(y

(m)
k−lk

− y(m)
k−lk−1).

(10.10)

Then, the set of points on the periodic motion are computed by

gk(x
(m)∗
k−1 , x(m)∗

k ; xτ(m)∗
k−1 , xτ(m)∗

k ,p) = 0
xτ(m)∗
j = h j (x

(m)∗
r j−1, x

(m)∗
r j , θr j ), j = k, k − 1

}

(k = 1, 2, · · · ,mN )

x(m)∗
0 = x(m)∗

mN and xτ(m)∗
0 = xτ(m)∗

mN

(10.11)

Once the node points x(m)∗
k (k = 1, 2, · · · ,mN ) of the period-mmotion are obtained,

the stability of period-m motion can be discussed through the eigenvalue analysis of
the corresponding Jacobian matrix.

k
∑

j=k−1

∂gk
∂x(m)

j


x(m)
j + ∂gk

∂xτ(m)
j

(
∂xτ(m)

j

∂xτ(m)
r j


xτ(m)
r j + ∂xτ(m)

j

∂xτ(m)
r j−1


xτ(m)
r j−1) = 0

with r j = j − l j , j = k − 1, k; (k = 1, 2, · · · ,mN ).

(10.12)

As in Luo [20], new vectors are introduced as

y(m)
k = (x(m)

k , x(m)
k−1, · · · , x(m)

rk−1
)T,

y(m)
k−1 = (x(m)

k−1, x
(m)
k−2, · · · , x(m)

rk−1−1)
T,


y(m)
k = (
x(m)

k ,
x(m)
k−1, · · · ,
x(m)

rk−1
)T,


y(m)
k−1 = (
x(m)

k−1,
x(m)
k−2, · · · ,
x(m)

rk−1−1)
T.

(10.13)

The resultant Jacobian matrices of the periodic motions are

DP = DPmN (mN−1)···1 =
[

∂y(m)
mN

∂y(m)
0

]

= AmNAmN−1 · · ·A1 (10.14)

with


y(m)
k = A(m)

k 
y(m)
k−1, A

(m)
k ≡

[

∂y(m)
k

∂y(m)
k−1

]

(y(m)∗
k−1 ,y(m)∗

k )

(10.15)
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and

A(m)
k =

[

B(m)
k (a(m)

k(rk−1−1))2×2

I(m)
k 0(m)

k

]

2(s+1)×2(s+1)

, s = 1 + lk−1

B(m)
k = [(a(m)

k(k−1))2×2, 02×2, · · · , (a(m)

k(rk−1))2×2],
I(m)
k = diag(I2×2, I2×2, · · · , I2×2)2s×2s,

0(m)
k = (02×2, 02×2, · · · , 02×2

︸ ︷︷ ︸

s

)T;

(10.16)

a(m)
k j = [ ∂gk

∂x(m)
k

]−1 ∂gk
∂x(m)

j

,

a(m)
kr j

= [ ∂gk
∂x(m)

k

]−1 ∂gk
∂x(m)τ

j

∂x(m)τ
j

∂x(m)τ
r j

,

a(m)

k(r j−1) = [ ∂gk
∂x(m)

k

]−1 ∂gk
∂x(m)τ

j

∂x(m)τ
j

∂x(m)τ
r j−1

with r j = j − l j , j = k − 1, k;

(10.17)

∂gk
∂x(m)

k−1

=
[−1 − 1

2h

 1

2δh − 1

]

,
∂gk

∂x(m)
k1

=
[

1 − 1
2h


 1
2δh + 1

]

,

∂gτ(m)
j

∂x(m)
r j−1

=
[

0 0
τ
h − l j 0

]

,
∂gτ(m)

j

∂x(m)
r j

=
[

0 0
1 − τ

h + l j 0

]

,

∂gk
∂xτ(m)

j

=
[

0 0
0 − 1

2hα2

]

,


 = 1
2h[α1 + β(xk + xk−1)].

(10.18)

The eigenvalues of DP for such periodic flow are determined by

|DP − λI2(s+1)×2(s+1)| = 0. (10.19)

(i) If the magnitudes of all eigenvalues of DP are less than one (i.e., |λi | <
1, i, 1, 2, · · · , 2(s + 1)), the approximate periodic solution is stable.

(ii) If at least the magnitude of one eigenvalue of DP is greater than one (i.e., |λi | >
1, i ∈ {1, 2, · · · , n(s + 1)}), the approximate periodic solution is unstable.

(iii) The boundaries between stable and unstable periodic flowwith higher-order sin-
gularity give bifurcation and stability conditions with higher-order singularity.

The bifurcation conditions are given as follows.

(1) If λi = 1 with |λ j | < 1(i, j ∈ {1, 2, · · · , 2(s + 1)} and i 	= j), the saddle-node
bifurcation (SN) occurs.
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(2) If λi = −1 with |λ j | < 1(i, j ∈ {1, 2, · · · , 2(s + 1)} and i 	= j), the period-
doubling bifurcation (PD) occurs.

(3) If |λi, j | = 1 with |λl | < 1(i, j, l ∈ {1, 2, · · · , 2(s + 1)} and λi = λ̄ j l 	= i, j),
Neimark bifurcation (NB) occurs.

10.4 Frequency-Amplitude Analysis

From the node points of period-m motions in the time-delayed Duffing oscillator,
x(m)
k = (x (m)

k , y(m)
k )T (k = 0, 1, 2, · · · ,mN ), the period-m motions can be approxi-

mately expressed by the Fourier series, i.e.,

x(m)(t) ≈ a(m)
0 +

M
∑

j=1

b j/m cos(
k

m
�t) + c j/m sin(

k

m
�t) (10.20)

The (2M + 1) unknown vector coefficients of a(m)
0 ,b j/m, c j/m should be determined

from discrete nodes x(m)
k (k = 0, 1, 2, · · · ,mN ) with mN + 1 ≥ 2M + 1. For M =

mN/2, the node points x(m)
k on the period-mmotion can be expressed for tk ∈ [0,mT ]

x(m)(tk) ≡ x(m)
k = a(m)

0 +
mN/2
∑

j=1

b j/m cos(
j

m
�tk) + c j/m sin(

j

m
�tk)

= a(m)
0 +

mN/2
∑

j=1

b j/m cos(
j

m

2kπ

N
) + c j/m sin(

j

m

2kπ

N
) (10.21)

(k = 0, 1, · · · ,mN − 1)

where

T = 2π
�

= N
t;�tk = �k
t = 2kπ
N

a(m)
0 = 1

N

∑mN−1
k=0 x(m)

k ,

b j/m = 2

mN

mN−1
∑

k=1

x(m)
k cos(k

2 jπ

mN
),

c j/m = 2

mN

mN−1
∑

k=1

x(m)
k sin(k

2 jπ

mN
)

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

( j = 1, 2, · · · ,mN/2)
(10.22)

and

a(m)
0 = (a(m)

01 , a(m)
02 )T,b j/m = (b j/m1, b j/m2)

T, c j/m = (c j/m1, c j/m2)
T. (10.23)
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The harmonic amplitudes and phases for the period-m motions are expressed by

A j/m1 =
√

b2j/m1 + c2j/m1, ϕ j/m1 = arctan c j/m1

b j/m1
,

A j/m2 =
√

b2j/m2 + c2j/m2, ϕ j/m2 = arctan c j/m2

b j/m2
.

(10.24)

Thus, the approximate expression of period-mmotions in Eq. (10.20) can be given as

x(m)(t) ≈ a(m)
0 +

mN/2
∑

j=1

b j/m cos(
k

m
�t) + c j/m sin(

k

m
�t). (10.25)

For the time-delayed Duffing oscillator,

{

x (m)(t)
y(m)(t)

}

≡
{

x (m)
1 (t)
x (m)
2 (t)

}

≈
{

a(m)
01

a(m)
02

}

+
mN/2
∑

j=1

{

A j/m1 cos( k
m�t − ϕ j/m1)

A j/m1 cos( k
m�t − ϕ j/m2)

}

.

(10.26)

To reduce illustrations, only frequency-amplitude curves of displacement x (m)(t)
for period-mmotions are presented. However, the frequency-amplitudes for velocity
y(m)(t) can also be done in a similar fashion. Thus, the displacement for period-m
motion is given by

x (m)(t) ≈ a(m)
0 +

mN/2
∑

j=1

b j/m cos(
k

m
�t) + c j/m sin(

k

m
�t) (10.27)

or

x (m)(t) ≈ a(m)
0 +

mN/2
∑

j=1

A j/m cos(
k

m
�t − ϕ j/m) (10.28)

where
A j/m =

√

b2j/m + c2j/m , ϕ j/m = arctan
c j/m
b j/m

. (10.29)

10.5 Bifurcation Trees of Period-3 to Period-6 Motions

In this section, a complete picture of P-3 motions and bifurcation trees of P-3 to
P-6 motions will be presented. The corresponding stability and bifurcation will be
investigated through eigenvalue analysis. Consider a set of parameters under strong
excitation as

α1 = 2.0, α2 = 1.0, β = 4.0, δ = 0.2, Q0 = 100.0 (10.30)
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Fig. 10.1 Period-3 motions a displacement, b velocity for � ∈ (9.385, 28.943), c displacement,
d velocity for � ∈ (4.987, 5.425)

and the time-delay term τ = T/4 where T = 2π/�.

Two branches of simple symmetric period-3 motions and another two branches of
period-3 to period-6 motions are presented in Figs. 10.1 and 10.2, respectively. For
each branch of periodic motions, the displacement and velocity of periodic nodes
xmod(x,N ) and ymod(x,N ) for mod(x, N ) = 0 are presented. Two simple symmetric
period-3 motions exist in � ∈ (9.385, 28.943) and � ∈ (4.987, 5.425), while two
period-3 to period-6 motions exist in � ∈ (2.812, 3.352) and � ∈ (2.277, 2.762).
The acronyms ‘SN’ and ‘PD’ denote saddle-node bifurcation and period-doubling
bifurcation, respectively. The letters ‘A’ and ‘S’ are for asymmetric and symmetric
motions, respectively. The black solid curve is for the stable periodic motions while
the red-curve for the unstable periodic motions. For the first branch of period-3
motion, two saddle-node bifurcations are observed at � ≈ 9.385 and � ≈ 28.943.
For the second branch of period-3motion, four saddle-node bifurcations are observed
at � ≈ 4.987,� ≈ 4.943,� ≈ 5.143, and � ≈ 5.452, respectively. Two of them
where � ≈ 4.987 and � ≈ 5.143 are for jump phenomena. No period-doubling
bifurcation is observed in these two branches of period-3 motions. Thus, no higher
periodic motions appear. For the first period-3 to period-6 motions, two saddle-
node bifurcations for jump phenomena are observed at � ≈ 3.352 and � ≈ 3.289.
Two saddle-node bifurcations for symmetric to asymmetric period-3 motions occur
at � ≈ 2.880 and � ≈ 3.180. Two period-doubling bifurcations for period-3 to
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Fig. 10.2 Bifurcation trees of period-3 to period-6 motions a displacement, b velocity for � ∈
(2.812, 3.352); c displacement, d velocity for � ∈ (2.277, 2.762)

period-6motions appear at� ≈ 2.916 and� ≈ 3.106. Two period-doubling bifurca-
tions for period-6 to period-12motions emerge at� ≈ 3.097 and� ≈ 2.920. For the
second period-3 to period-6 motions, no saddle-node bifurcations for jump phenom-
ena are observed. Saddle-node bifurcations for symmetric to asymmetric period-3
motions appear at � ≈ 2.287 and � ≈ 2.714. Period-doubling bifurcations occur at
� ≈ 2.289 and � ≈ 2.701 for period-3 to period-6 motions and at � ≈ 2.290 and
� ≈ 2.699 for period-6 to period-12 motions.

10.6 Numerical Illustrations

The analytical prediction of period-3 to period-6 motions was predicted analytically
for the bifurcation trees of period-3 to period-6 motions. To illustrate complexity of
periodic motions in the time-delayed Duffing oscillator, initial conditions from the
analytical prediction will be used for numerical simulations of period-3 to period-6
motions in the bifurcation trees, and the corresponding harmonic amplitudes of peri-
odic motions will be presented to show harmonic terms effects on periodic motions.
The system parameters in Eq. (10.30) are used. Numerical and analytical results
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Fig. 10.3 A stable symmetric period-3 motion for � = 3.3. a trajectory, b displacement versus
time, c harmonic amplitude spectrum, d harmonic phase spectrumwith initial conditions (x0, ẋ0) ≈
(2.714985,−14.294936) (α1 = −10.0, α2 = 5.0, β = 10.0, δ = 0.5, Q0 = 100.0, τ = T/4)

are presented by solid curves and symbols, respectively. The initial time-delay is
presented through blue circular symbols. The delay-initial starting and delay-initial
finishing points are ‘D.I.S’ and ‘D.I.F,’ respectively.

Consider a stable symmetric period-3 motion of � = 3.3, and the initial con-
dition (x0, ẋ0) ≈ (2.714985,−14.294936) is computed from the analytical predic-
tion. Trajectory and displacement for such a simple symmetric period-3 motion
are presented in Fig. 10.3a, b, respectively. The initial time-delay is presented by
green symbols. The numerical solution of the stable period-3 motion is presented
by solid curves, and the analytical prediction is depicted by red symbols. The
corresponding harmonic amplitudes and phases are presented in Fig. 10.3c, d,
respectively. The harmonic terms An/3 = 0(n = 0, 2, 4, 6, . . .). The main harmonic
amplitudes are A1/3 = 1.1264, A1 = 2.7333, A5/3 = 0.4010, A7/3 = 2.0006, A3 =
0.3755, A11/3=0.0621, A13/3=0.2879, A5=0.0300, A17/3=0.1362, A19/3=0.0607,
A7 = 0.0288, A23/3 = 0.0288, A25/3 = 8.3549e-3, and A9 = 0.0119. Other
harmonic amplitudes lie in A(2l−1)/3 ∈ (10−15, 10−3) (l = 15, 16, · · · , 80), and
6.2469e-15. For such a period-3 motion, one can use 150 harmonic terms to approx-
imate exact solution.



258 A.C.J. Luo and S. Xing

Fig. 10.4 A pair of stable
asymmetric period-3 motion
for � = 3.15. a, b trajectory,
c harmonic amplitude
spectrum, d harmonic phase
spectrum with initial
conditions a (x0, ẋ0) ≈
(3.567230,−10.284055)
and b (x0, ẋ0) ≈
(2.899588, 9.507185)
(α1 = −10.0, α2 = 5.0,
β = 10.0, δ = 0.5, Q0 =
100.0, τ = T/4)
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Fig. 10.5 A pair of stable asymmetric period-6 motion for � = 3.10. a, b trajectory,
c harmonic amplitude spectrum, d) harmonic phase spectrum with initial 0 conditions a (x0, ẋ0) ≈
(4.039509, 19.992432) and b (x0, ẋ0) ≈ (4.044199,−6.483031) (α1 = −10.0, α2 = 5.0,
β = 10.0, δ = 0.5, Q0 = 100.0, τ = T/4)

Consider a pair of asymmetric period-1 motions at � = 3.15, as shown in
Fig. 10.4. The initial conditions are obtained from the analytical prediction. x0 ≈
3.567230 and ẋ0 ≈ −10.284055 are for the asymmetric period-3motion in Fig. 10.4a
and x0 ≈ 2.899588 and ẋ0 ≈ 9.507185 are for the asymmetric period-3 motion in
Fig. 10.4b. The harmonic amplitudes and phases are presented in Fig. 10.3c, d, respec-
tively. The center of the trajectory is far away from the origin compared to the previous
symmetric period-3 motion. That is, ablack0 = −ablue0 = A0 = 0.0220.

The main harmonic amplitudes for the two asymmetric period-3 motions
are A1/3 ≈ 1.1178, A2/3 ≈ 0.0161, A1 ≈ 2.7884, A4/3 ≈ 0.0625, A5/3 ≈ 0.3811,
A2 ≈ 0.1265, A7/3≈1.5774, A8/3≈0.4019, A3 ≈ 0.6085, A10/3 ≈ 0.0360, A11/3 ≈
0.0561, A4 ≈ 0.0560, A13/3 ≈ 0.2871, A14/3≈0.0725, A5≈0.0738, A16/3≈0.0131,
A17/3 ≈ 0.0820, A6≈0.0542, A19/3≈0.0737, A20/3≈0.0253, A7 ≈ 0.0185, A22/3 ≈
0.0149, A23/3 ≈ 0.0241, A8 ≈ 0.0164, A25/3 ≈ 0.0120. Other harmonic amplitudes
lie in Al/3 ∈ (10−14, 10−3) (l = 26, 27, · · · , 150) and A50 ≈ 7.2626e-14. The two
asymmetric period-3 motions need about 150 harmonic terms in the finite Fourier
series for an approximate analytical expression. The first and third harmonic terms
play very important roles on such symmetric period-3 motions. Because harmonic
amplitude of even terms is relatively small, such harmonic terms make the two
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asymmetric period-3 motions be close to asymmetric period-3 motions. In addi-
tion, harmonic phase distribution varying with harmonic orders is clearly presented.
The gray circular symbols are for the harmonic phases of the upper asymmetric
period-3 motion and the red symbols are for the harmonic phases of the lower asym-
metric period-3 motion. The harmonic phase relations between the two asymmetric
period-3 motions are ϕblack

k/(2lm)
= mod(ϕblue

k/(2lm)
+ ((m + 2r)k/(2lm) + 1))π, 2π) for

l = 0,m = 3, r = 1 and t0 = rT with r ∈ {0, 1, · · · , 2lm − 1}.
Consider a pair of asymmetric period-6 motions at � = 3.10, as shown in

Fig. 10.5. The initial conditions are obtained from the analytical prediction. x0 ≈
4.039509 and ẋ0 ≈ 19.992432 are for the asymmetric period-6 motion in Fig. 10.5a
and x0 ≈ 4.044199 and ẋ0 ≈ −6.483031 are for the asymmetric period-6 motion
in Fig. 10.5b. The harmonic amplitudes and phases are presented in Fig. 10.5c,
d, respectively. The center of the trajectory is far away from the origin com-
pared to the previous asymmetric period-3 motion. That is, ablack0 = −ablue0 =
A0 = 0.0319. The main harmonic amplitudes for the two asymmetric period-
1 motions are A1/6 ≈ 0.0131, A1/3 ≈ 1.0622, A1/2 ≈ 0.0160, A2/3 ≈ 0.0646, A5/6

≈ 3.7917e-3, A1≈2.6545, A7/6≈6.2608e-4, A4/3≈0.0345, A3/2 ≈ 1.8623e-3, A5/3

≈ 0.3432, A11/6 ≈ 7.8357e-3, A2 ≈ 0.0910, A13/6 ≈ 0.0139, A7/3 ≈ 1.2285, A5/2

≈ 0.0305, A8/3 ≈ 0.2763, A17/6 ≈ 0.0124, A3 ≈ 1.0138, A19/6 ≈ 7.2666e-3, A10/3

≈ 0.0509, A7/2 ≈ 3.1323e-4, A11/3 ≈ 0.0866, A23/6 ≈ 1.6868e-3, A4 ≈ 0.0.0280,
and A25/6 ≈ 3.7414e-3, A13/3 ≈ 0.0.2680, A9/2 ≈ 6.9915e-3, A14/3 ≈ 0.0667,
A29/6 ≈ 2.9448e-3, A5 ≈ 0.1699, A31/6 ≈ 8.1422e-4, A16/3 ≈ 0.0.2680, A11/2 ≈
7.9530e-4, A17/3 ≈ 0.0433, A35/6 ≈ 2.6005e-3, A6 ≈ 0.0306, A37/6 ≈ 2.8367e-3,
A19/3 ≈ 0.1016, A13/2 ≈ 3.0073e-3,A20/3 ≈ 0.0285, A41/6 ≈ 9.4470e-4, A7 ≈ 0.
0398, A43/6 ≈ 1.0742e-3,A22/3 ≈ 9.9107e-3, A15/2 ≈ 5.8637e-3,A23/3 ≈ 0.0217,
A47/6 ≈ 1.3083e-3, A8 ≈ 0.0139, A49/6 ≈ 8.0876e-4, A25/3 ≈ 0.0264. Other
harmonic amplitudes lie in Al/6 ∈ (10−14, 10−3) (l = 51, 52, · · · , 300), and A50 ≈
2.4131e-13. The two asymmetric period-6 motions need about 300 harmonic terms
in the finite Fourier series for an approximate analytical expression. The first
and third harmonic terms play very important roles on such asymmetric period-
6 motions. Because harmonic amplitude of even terms is relatively small, such
harmonic terms make the two asymmetric period-6 motions be close to asym-
metric period-3 motions. In addition, harmonic phase distribution varying with
harmonic orders is clearly presented. The gray circular symbols are for the har-
monic phases of the upper asymmetric period-6 motion, and the blue symbols are
for the harmonic phases of the lower asymmetric period-6 motion. The harmonic
phase relations between the two asymmetric period-6 motions are for ϕblue

k/(2lm)
=

mod(ϕblack
k/(2lm)

+ ((m + 2r)k/(2lm)(2lm) + 1))π, 2π) for l = 1,m = 3, r = 5 and

t0 = rT with r ∈ {0, 1, · · · , 2lm − 1}.
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10.7 Conclusions

The symmetric and asymmetric period-3 motions in the time-delayed, double-well
Duffing oscillator were predicted through the semi-analytical method. The semi-
analytical method is based on the implicit mappings constructed by discretization of
the corresponding differential equation. The corresponding stability and bifurcation
analysis were studied. From the analytical predictions, numerical simulations of
complex periodic motions were presented, and the harmonic amplitudes and phases
were presented. The harmonic effects on period-3 motions can be clearly observed.
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