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Our book is dedicated to the 70th
Anniversary of Prof. Afraimovich, whose
soul and mind forever remain youthful



Preface

This book is based on the conference on Lie groups and computation methods in
nonlinear problems of mathematical modeling, Shenyang, Liaoning, China, July
27–August 5, 2015. This conference provided a place to exchange recent devel-
opments, discoveries, and progress on lie groups and computation methods in
nonlinear problems of mathematical modeling. The aims of the conference were to
present the fundamental and frontier theories and techniques for modern science
and technology; to stimulate more research interest for exploration of nonlinear
physical science and mathematical modeling; to directly pass the new knowledge to
the young generation of engineers, including the developments, findings and pro-
gress on fundamental theories and principles, analytical and symbolic approaches,
and computational techniques in nonlinear physical science and nonlinear
mathematics.

Through this conference, a celebration of Prof. Valentin Afraimovich’s 70th
birthday was held. Special invited papers were extended to the book chapters. This
book provides recent theoretical developments and new techniques to solve non-
linear dynamical systems, and hopes to help one understand complexity, stochas-
ticity, and regularity in nonlinear dynamical systems. This book covers
integro-differential equation solvability, Poincare recurrences in ergodic systems,
orientable horseshoe structure, analytical routes of periodic motions to chaos,
grazing on impulsive differential equations, from chaos to order in coupled oscil-
lator and differential-invariant solutions for automorphic systems, and inequality
under uncertainty. All the materials are placed into 12 book chapters. All the
materials dedicated to Prof. Valentin Afraimovich are for his achievements and
accomplishments on nonlinear dynamics and complexity. We hope the community
of nonlinear dynamics will benefit from this edited book.

We would also like to express our gratitude to Shenyang Aerospace University
which took care of all of the necessary arrangements for the conference and special
events in China.

Lubbock, TX, USA Dimitri Volchenkov
Marseille, France Xavier Leoncini
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Chapter 1
Solvability of Some Integro-Differential
Equations with Anomalous Diffusion

Vitali Vougalter and Vitaly Volpert

1.1 Introduction

The present article deals with the existence of stationary solutions of the following
nonlocal reaction-diffusion equation

∂u

∂t
= −D

(
− ∂2

∂x2

)s

u +
∫ ∞

−∞
K (x − y)g(u(y, t))dy + f (x), 0 < s <

1

4
,

(1.1)

which appears in cell population dynamics. The space variable x here corresponds
to the cell genotype and u(x, t) stands for the cell density as a function of their
genotype and time. The right side of this equation describes the evolution of cell
density via cell proliferation, mutations, and cell influx. The anomalous diffusion
term here corresponds to the change of genotype due to small random mutations,
and the nonlocal term describes large mutations. Function g(u) designates the rate
of cell birth which depends on u (density-dependent proliferation), and the kernel
K (x − y) gives the proportion of newly born cells changing their genotype from y
to x . We assume that it depends on the distance between the genotypes. Finally, the
last term in the right side of this equation stands for the influx of cells for different
genotypes.

V. Vougalter (B)
Department of Mathematics, University of Toronto, Toronto,
ON M5S 2E4, Canada
e-mail: vitali@math.toronto.edu
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2 V. Vougalter and V. Volpert

The operator

(
− ∂2

∂x2

)s

in problem (1.1) describes a particular case of anom-

alous diffusion actively treated in the context of different applications in plasma
physics and turbulence [7, 16], surface diffusion [12, 14], semiconductors, [15] and
so on. Anomalous diffusion can be described as a random process of particle motion
characterized by the probability density distribution of jump length. The moments of
this density distribution are finite in the case of normal diffusion, but this is not the
case for superdiffusion. Asymptotic behavior at infinity of the probability density
function determines the value s of the power of the Laplacian [13]. The operator(

− ∂2

∂x2

)s

is defined by virtue of the spectral calculus. In our work, we will treat

the case of 0 < s < 1/4. A similar equation in the case of the standard Laplacian in
the diffusion term was investigated recently in [26].

We set D = 1 and prove the existence of solutions of the equation

−
(

− d2

dx2

)s

u +
∫ ∞

−∞
K (x − y)g(u(y))dy + f (x) = 0, 0 < s <

1

4
. (1.2)

We will consider the case where the linear part of this operator does not satisfy the
Fredholm property. Consequently, conventional methods of nonlinear analysis may
not be applicable. We use solvability conditions for non-Fredholm operators along
with the method of contraction mappings.

Consider the problem

− Δu + V (x)u − au = f, (1.3)

where u ∈ E = H 2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and the scalar
potential function V (x) is either zero identically or converges to 0 at infinity. For
a ≥ 0, the essential spectrum of the operator A : E → F corresponding to the left
side of Eq. (1.3) contains the origin. Consequently, such operator does not satisfy
the Fredholm property. Its image is not closed, for d > 1 the dimension of its kernel
and the codimension of its image are not finite. The present article deals with the
studies of certain properties of the operators of this kind. Note that elliptic equations
with non-Fredholm operators were treated actively in recent years. Approaches in
weighted Sobolev and Hölder spaces were developed in [1, 3–6]. The non-Fredholm
Schrödinger-type operators were studied with the methods of the spectral and the
scattering theory in [17, 20, 21]. The Laplace operator with drift from the point of
view of non-Fredholm operators was treated in [23] and linearized Cahn–Hilliard
equations in [19, 24]. Nonlinear non-Fredholm elliptic problems were studied in
[22, 25]. Important applications to the theory of reaction-diffusion equations were
developed in [9, 10].Non-Fredholmoperators arise alsowhen studyingwave systems
with an infinite number of localized travelingwaves (see [2]). In particular, when a =
0, the operator A is Fredholm in some properly chosen weighted spaces (see [1, 3–
6]). However, the case of a �= 0 is significantly different and themethod developed in
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theseworks cannot be applied. Front propagation equationswith anomalous diffusion
were treated actively in recent years (see, e.g., [27, 28]).

Let us set K (x) = εK(x) with ε ≥ 0 and suppose that the assumption below is
satisfied.

Assumption 1.1 Consider 0 < s <
1

4
. Let f (x) : R → R be nontrivial, such that

f (x) ∈ L1(R) ∩ L2(R) and

(
− d2

dx2

) 1
2 −s

f (x) ∈ L2(R). Assume also that K(x) :

R → R and K(x) ∈ L1(R). In addition,

(
− d2

dx2

) 1
2 −s

K(x) ∈ L2(R), such that

Q :=
∥∥∥∥
(

− d2

dx2

) 1
2 −s

K(x)

∥∥∥∥
L2(R)

> 0.

We choose the space dimension d = 1, which is related to the solvability con-
ditions for the linear Poisson-type problem (1.31) proved in Lemma 1.6. From the
perspective of applications, the space dimension is not restricted to d = 1 because
the space variable corresponds to cell genotype but not to the usual physical space.
Let us use the Sobolev spaces

H 2s(R) :=
{
u(x) : R → R | u(x) ∈ L2(R),

(
− d2

dx2

)s

u ∈ L2(R)

}
, 0 < s ≤ 1

equipped with the norm

‖u‖2H 2s (R) := ‖u‖2L2(R) +
∥∥∥∥
(

− d2

dx2

)s

u

∥∥∥∥
2

L2(R)

. (1.4)

By virtue of the standard Sobolev inequality in one dimension (see, e.g., Sect. 8.5 of
[11]), we have

‖u‖L∞(R) ≤ 1√
2
‖u‖H 1(R). (1.5)

When the nonnegative parameter ε vanishes, we arrive at the linear Poisson-type
equation (1.31). Bymeans of Lemma 1.6 below along with Assumption 1.1, problem
(1.31) admits a unique solution

u0(x) ∈ H 2s(R), 0 < s <
1

4
,

such that no orthogonality relations are required. By virtue of Lemma 1.6, when
1
4 ≤ s < 1, certain orthogonality conditions (1.33) and (1.34) are required to be able
to solve Eq. (1.31) in H 2s(R). By virtue of Assumption 1.1, since
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(
− d2

dx2

) 1
2

u(x) =
(

− d2

dx2

) 1
2 −s

f (x) ∈ L2(R),

we have for the unique solution of linear problem (1.31) that u0(x) ∈ H 1(R). Let us
seek the resulting solution of nonlinear equation (1.2) as

u(x) = u0(x) + u p(x). (1.6)

Evidently, we obtain the perturbative equation

(
− d2

dx2

)s

u p = ε

∫ ∞

−∞
K(x − y)g(u0(y) + u p(y))dy, 0 < s <

1

4
. (1.7)

Let us introduce a closed ball in the Sobolev space

Bρ := {u(x) ∈ H 1(R) | ‖u‖H 1(R) ≤ ρ}, 0 < ρ ≤ 1. (1.8)

We look for the solution of problem (1.7) as the fixed point of the auxiliary nonlinear
equation

(
− d2

dx2

)s

u = ε

∫ ∞

−∞
K(x − y)g(u0(y) + v(y))dy, 0 < s <

1

4
(1.9)

in ball (1.8). For a given function v(y), this is an equation with respect to u(x). The
left side of (1.9) involves the non-Fredholm operator

(
− d2

dx2

)s

: H 2s(R) → L2(R).

Its essential spectrum fills the nonnegative semi-axis [0,+∞). Therefore, such oper-
ator has no bounded inverse. The similar situation appeared in works [22, 25], but as
distinct from the present situation, the equations studied there required orthogonality
conditions. The fixed point technique was used in [18] to estimate the perturbation
to the standing solitary wave of the Nonlinear Schrödinger (NLS) equation when
either the external potential or the nonlinear term in the NLS was perturbed but
the Schrödinger operator involved in the nonlinear equation there had the Fredholm
property (see Assumption 1.1 of [18], also [8]). Let us define the interval on the real
line

I :=
[

− 1√
2
‖u0‖H 1(R) − 1√

2
,

1√
2
‖u0‖H 1(R) + 1√

2

]
(1.10)
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along with the closed ball in the space of C2(I ) functions, namely

DM := {g(s) ∈ C2(I ) | ‖g‖C2(I ) ≤ M}, M > 0. (1.11)

Here, the norm

‖g‖C2(I ) := ‖g‖C(I ) + ‖g′‖C(I ) + ‖g′′‖C(I ), (1.12)

where ‖g‖C(I ) := maxs∈I |g(s)|. Wemake the following assumption on the nonlinear
part of equation (1.2).

Assumption 1.2 Let g(z) : R → R, such that g(0) = 0 and g′(0) = 0. It is also
assumed that g(z) ∈ DM and it does not vanish identically on the interval I .

Let us explain whywe impose condition g′(0) = 0. If g′(0) < 0, then the essential
spectrum of the corresponding operator is in the left half plane. The operator satisfies
the Fredholmproperty, and conventionalmethods of nonlinear analysis are applicable
here. If g′(0) ≥ 0, then the operator does not satisfy the Fredholm property, and the
goal of thiswork is to prove the existence of solutions in this casewhere usualmethods
are not applicable. The method developed in this paper can be used for g′(0) = 0 but
not for g′(0) > 0. Therefore, we impose this condition on the nonlinearity.

We introduce the operator Tg, such that u = Tgv, where u is a solution of Eq. (1.9).
Our first main statement is as follows.

Theorem 1.3 Let Assumptions 1.1 and 1.2 hold. Then, Eq. (1.9) defines the map
Tg : Bρ → Bρ, which is a strict contraction for all 0 < ε < ε∗ for some ε∗ > 0. The
unique fixed point u p(x) of this map Tg is the only solution of problem (1.7) in Bρ.

Clearly, the resulting solution of Eq. (1.2) given by (1.6) will be nontrivial because
the source term f (x) is nontrivial and g(0) = 0 due to our assumptions. We make
use of the following elementary lemma.

Lemma 1.4 For R ∈ (0,+∞), consider the function

ϕ(R) := αR1−4s + β

R4s
, 0 < s <

1

4
, α,β > 0.

It attains the minimal value at R∗ := 4βs

α(1 − 4s)
, which is given by

ϕ(R∗) = (1 − 4s)4s−1

(4s)4s
α4sβ1−4s .

Our second main result is about the continuity of the fixed point of the map Tg in
which existence was established in Theorem 1.3 above with respect to the nonlinear
function g.
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Theorem 1.5 Let j = 1, 2, the assumptions of Theorem 1.3 hold, such that u p, j (x)
is the unique fixed point of the map Tg j : Bρ → Bρ, which is a strict contraction for
all 0 < ε < ε∗

j and δ := min(ε∗
1, ε

∗
2). Then, for all 0 < ε < δ, the inequality

‖u p,1 − u p,2‖H 1(R) ≤ C‖g1 − g2‖C2(I ) (1.13)

holds, where C > 0 is a constant.

We proceed to the proof of our first main result.

1.2 The Existence of the Perturbed Solution

Proof of Theorem 3. Let us choose arbitrarily v(x) ∈ Bρ and denote the term involved
in the integral expression in the right side of problem (1.9) as

G(x) := g(u0(x) + v(x)).

Let us use the standard Fourier transform

φ̂(p) := 1√
2π

∫ ∞

−∞
φ(x)e−i pxdx . (1.14)

Evidently, we have the inequality

‖φ̂(p)‖L∞(R) ≤ 1√
2π

‖φ(x)‖L1(R). (1.15)

We apply (1.14) to both sides of problem (1.9) and arrive at

û(p) = ε
√
2π

K̂(p)Ĝ(p)

|p|2s .

Hence, for the norm, we obtain

‖u‖2L2(R) = 2πε2
∫ ∞

−∞
|K̂(p)|2|Ĝ(p)|2

|p|4s dp. (1.16)

As distinct from works [22, 25] including the standard Laplace operator in the dif-
fusion term, here, we do not try to control the norm

∥∥∥∥ K̂(p)

|p|2s
∥∥∥∥
L∞(R)

.
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Instead, let us estimate the right side of (1.16) using the analog of inequality (1.15)
applied to functions K and G with R > 0 as

2πε2
∫

|p|≤R

|K̂(p)|2|Ĝ(p)|2
|p|4s dp + 2πε2

∫
|p|>R

|K̂(p)|2|Ĝ(p)|2
|p|4s dp ≤

≤ ε2‖K‖2L1(R)

{
1

π
‖G(x)‖2L1(R)

R1−4s

1 − 4s
+ 1

R4s
‖G(x)‖2L2(R)

}
. (1.17)

Since v(x) ∈ Bρ, we have

‖u0 + v‖L2(R) ≤ ‖u0‖H 1(R) + 1.

Sobolev inequality (1.5) yields

|u0 + v| ≤ 1√
2
(‖u0‖H 1(R) + 1).

Formula G(x) =
∫ u0+v

0
g′(z)dz with the interval I defined in (1.10) implies

|G(x)| ≤ supz∈I |g′(z)||u0 + v| ≤ M |u0 + v|.

Thus,

‖G(x)‖L2(R) ≤ M‖u0 + v‖L2(R) ≤ M(‖u0‖H 1(R) + 1).

Obviously, G(x) =
∫ u0+v

0
dy

[ ∫ y

0
g"(z)dz

]
. This gives us

|G(x)| ≤ 1

2
supz∈I |g"(z)||u0 + v|2 ≤ M

2
|u0 + v|2,

‖G(x)‖L1(R) ≤ M

2
‖u0 + v‖2L2(R) ≤ M

2
(‖u0‖H 1(R) + 1)2. (1.18)

Thus, we obtain the estimate from above for the right side of (1.17) as

ε2‖K‖2L1(R)M
2(‖u0‖H 1(R) + 1)2

{
(‖u0‖H 1(R) + 1)2R1−4s

4π(1 − 4s)
+ 1

R4s

}
,

where R ∈ (0,+∞). By means of Lemma 1.4, we obtain the minimal value of the
expression above. Thus,
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‖u‖2L2(R) ≤ ε2‖K‖2L1(R)(‖u0‖H 1(R) + 1)2+8s M2

(1 − 4s)(16πs)4s
. (1.19)

Obviously, via (1.9), we have

(
− d2

dx2

) 1
2

u(x) = ε

(
− d2

dx2

) 1
2 −s ∫ ∞

−∞
K(x − y)G(y)dy.

By virtue of the analog of inequality (1.15) applied to function G along with (1.18),
we arrive at

∥∥∥du
dx

∥∥∥2

L2(R)
≤ ε2‖G‖2L1(R)Q

2 ≤ ε2
M2

4
(‖u0‖H 1(R) + 1)4Q2. (1.20)

Hence, bymeans of the definition of the norm (1.4)with s = 1

2
alongwith inequalities

(1.19) and (1.20), we obtain the estimate from above for ‖u‖H 1(R) as

ε(‖u0‖H 1(R) + 1)2M

[‖K‖2L1(R)
(‖u0‖H 1(R) + 1)8s−2

(1 − 4s)(16πs)4s
+ Q2

4

] 1
2

≤ ρ

for all ε > 0 small enough. Thus,u(x) ∈ Bρ aswell. If for some v(x) ∈ Bρ, there exist
two solutions u1,2(x) ∈ Bρ of problem (1.9), and their difference w(x) := u1(x) −
u2(x) ∈ L2(R) satisfies

(
− d2

dx2

)s

w = 0.

Since the operator

(
− d2

dx2

)s

considered on the whole real line does not have

nontrivial square-integrable zeromodes,w(x) vanishes a.e. onR. Therefore, problem
(1.9) defines a map Tg : Bρ → Bρ for all ε > 0 sufficiently small.

Our goal is to prove that this map is a strict contraction. We choose arbitrarily
v1,2(x) ∈ Bρ. The argument above yields u1,2 := Tgv1,2 ∈ Bρ as well. By virtue of
(1.9), we have

(
− d2

dx2

)s

u1 = ε

∫ ∞

−∞
K(x − y)g(u0(y) + v1(y))dy, (1.21)

(
− d2

dx2

)s

u2 = ε

∫ ∞

−∞
K(x − y)g(u0(y) + v2(y))dy, (1.22)



1 Solvability of Some Integro-Differential Equations … 9

0 < s <
1

4
. Let us introduce

G1(x) := g(u0(x) + v1(x)), G2(x) := g(u0(x) + v2(x))

and apply the standard Fourier transform (1.14) to both sides of problems (1.21) and
(1.22). We arrive at

û1(p) = ε
√
2π

K̂(p)Ĝ1(p)

|p|2s , û2(p) = ε
√
2π

K̂(p)Ĝ2(p)

|p|2s .

Evidently,

‖u1 − u2‖2L2(R) = ε22π
∫ ∞

−∞
|K̂(p)|2|Ĝ1(p) − Ĝ2(p)|2

|p|4s dp.

Apparently, it can be bounded from above by means of inequality (1.15) by

ε2‖K‖2L1(R)

{
1

π
‖G1(x) − G2(x)‖2L1(R)

R1−4s

1 − 4s
+ ‖G1(x) − G2(x)‖2L2(R)

1

R4s

}
,

with R ∈ (0,+∞). Let us use the formula

G1(x) − G2(x) =
∫ u0+v1

u0+v2

g′(z)dz.

Thus,

|G1(x) − G2(x)| ≤ supz∈I |g′(z)||v1 − v2| ≤ M |v1 − v2|.

Therefore,

‖G1(x) − G2(x)‖L2(R) ≤ M‖v1 − v2‖L2(R) ≤ M‖v1 − v2‖H 1(R).

Obviously,

G1(x) − G2(x) =
∫ u0+v1

u0+v2

dy
[ ∫ y

0
g"(z)dz

]
.

We derive the upper bound for G1(x) − G2(x) in the absolute value as

1

2
supz∈I |g"(z)||(v1 − v2)(2u0 + v1 + v2)| ≤ M

2
|(v1 − v2)(2u0 + v1 + v2)|.
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The Schwarz inequality implies the estimate from above for the norm ‖G1(x) −
G2(x)‖L1(R) as

M

2
‖v1 − v2‖L2(R)‖2u0 + v1 + v2‖L2(R) ≤ M‖v1 − v2‖H 1(R)(‖u0‖H 1(R) + 1).

(1.23)

Hence, we obtain the upper bound for the norm ‖u1(x) − u2(x)‖2L2(R)
given by

ε2‖K‖2L1(R)M
2‖v1 − v2‖2H 1(R)

{ 1

π
(‖u0‖H 1(R) + 1)2

R1−4s

1 − 4s
+ 1

R4s

}
.

Lemma 1.4 enables us to minimize the expression above over R ∈ (0,+∞) to derive
the estimate from above for ‖u1(x) − u2(x)‖2L2(R)

as

ε2‖K‖2L1(R)M
2‖v1 − v2‖2H 1(R)

(‖u0‖H 1(R) + 1)8s

(1 − 4s)(4πs)4s
. (1.24)

Formulas (1.21) and (1.22) yield

(
− d2

dx2

) 1
2

(u1 − u2) = ε

(
− d2

dx2

) 1
2 −s ∫ ∞

−∞
K(x − y)[G1(y) − G2(y)]dy.

Inequalities (1.15) and (1.23) imply

∥∥∥∥ d

dx
(u1 − u2)

∥∥∥∥
2

L2(R)

≤ ε2Q2‖G1 − G2‖2L1(R) ≤

≤ ε2Q2M2‖v1 − v2‖2H 1(R)(‖u0‖H 1(R) + 1)2. (1.25)

By means of (1.24) and (1.25), the norm ‖u1 − u2‖H 1(R) can be bounded from above
by the expression

εM(‖u0‖H 1(R) + 1)

{‖K‖2L1(R)
(‖u0‖H 1(R) + 1)8s−2

(1 − 4s)(4πs)4s
+ Q2

} 1
2

‖v1 − v2‖H 1(R).

(1.26)

This implies that our map Tg : Bρ → Bρ defined by problem (1.9) is a strict contrac-
tion for all values of ε > 0 sufficiently small. Its unique fixed point u p(x) is the only
solution of Eq. (1.7) in the ball Bρ. The resulting u(x) ∈ H 1(R) given by (1.6) is a
solution of problem (1.2).

Then, we turn our attention to the proof of the second main result of our work.
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1.3 The Continuity of the Fixed Point of the Map Tg

Proof of Theorem 5. Clearly, for all 0 < ε < δ, we have

u p,1 = Tg1u p,1, u p,2 = Tg2u p,2,

such that

u p,1 − u p,2 = Tg1u p,1 − Tg1u p,2 + Tg1u p,2 − Tg2u p,2.

Hence,

‖u p,1 − u p,2‖H 1(R) ≤ ‖Tg1u p,1 − Tg1u p,2‖H 1(R) + ‖Tg1u p,2 − Tg2u p,2‖H 1(R).

By virtue of estimate (1.26), we have

‖Tg1u p,1 − Tg1u p,2‖H 1(R) ≤ εσ‖u p,1 − u p,2‖H 1(R),

where εσ < 1 due to the fact that the map Tg1 : Bρ → Bρ under our assumptions is
a strict contraction. Here, the positive constant

σ := M(‖u0‖H 1(R) + 1)

{‖K‖2L1(R)
(‖u0‖H 1(R) + 1)8s−2

(1 − 4s)(4πs)4s
+ Q2

} 1
2

.

Thus, we arrive at

(1 − εσ)‖u p,1 − u p,2‖H 1(R) ≤ ‖Tg1u p,2 − Tg2u p,2‖H 1(R). (1.27)

Note that for our fixed point Tg2u p,2 = u p,2 and denote ξ(x) := Tg1u p,2. We obtain

(
− d2

dx2

)s

ξ(x) = ε

∫ ∞

−∞
K(x − y)g1(u0(y) + u p,2(y))dy, (1.28)

(
− d2

dx2

)s

u p,2(x) = ε

∫ ∞

−∞
K(x − y)g2(u0(y) + u p,2(y))dy, (1.29)

with 0 < s <
1

4
. Let G1,2(x) := g1(u0(x) + u p,2(x)) and G2,2(x) := g2(u0(x) +

u p,2(x)). By applying the standardFourier transform (1.14) to both sides ofEqs. (1.28)
and (1.29) above, we easily arrive at

ξ̂(p) = ε
√
2π

K̂(p)Ĝ1,2(p)

|p|2s , û p,2(p) = ε
√
2π

K̂(p)Ĝ2,2(p)

|p|2s .
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Obviously,

‖ξ(x) − u p,2(x)‖2L2(R) = ε22π
∫ ∞

−∞
|K̂(p)|2|Ĝ1,2(p) − Ĝ2,2(p)|2

|p|4s dp.

Evidently, it can be estimated from above by virtue of (1.15) by

ε2‖K‖2L1(R)

{
1

π
‖G1,2 − G2,2‖2L1(R)

R1−4s

1 − 4s
+ ‖G1,2 − G2,2‖2L2(R)

1

R4s

}
,

where R ∈ (0,+∞). Let us use the formula

G1,2(x) − G2,2(x) =
∫ u0(x)+u p,2(x)

0
[g′

1(s) − g′
2(s)]ds.

Hence,

|G1,2(x) − G2,2(x)| ≤ sups∈I |g′
1(s) − g′

2(s)||u0(x) + u p,2(x)| ≤

≤ ‖g1 − g2‖C2(I )|u0(x) + u p,2(x)|,

such that

‖G1,2 − G2,2‖L2(R) ≤ ‖g1 − g2‖C2(I )‖u0 + u p,2‖L2(R) ≤

≤ ‖g1 − g2‖C2(I )(‖u0‖H 1(R) + 1).

Another useful representation formula is

G1,2(x) − G2,2(x) =
∫ u0(x)+u p,2(x)

0
dy

[ ∫ y

0
(g1"(z) − g2"(z))dz

]
.

Thus,

|G1,2(x) − G2,2(x)| ≤ 1

2
supz∈I |g1"(z) − g2"(z)||u0(x) + u p,2(x)|2 ≤

≤ 1

2
‖g1 − g2‖C2(I )|u0(x) + u p,2(x)|2.

Therefore,

‖G1,2 − G2,2‖L1(R) ≤ 1

2
‖g1 − g2‖C2(I )‖u0 + u p,2‖2L2(R) ≤
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≤ 1

2
‖g1 − g2‖C2(I )(‖u0‖H 1(R) + 1)2. (1.30)

This enables us to estimate the norm ‖ξ(x) − u p,2(x)‖2L2(R)
from above by

ε2‖K‖2L1(R)(‖u0‖H 1(R) + 1)2‖g1 − g2‖2C2(I )

[ 1

4π
(‖u0‖H 1(R) + 1)2

R1−4s

1 − 4s
+ 1

R4s

]
.

This expression can be easily minimized over R ∈ (0,+∞) by means of Lemma
1.4. We arrive at the inequality

‖ξ(x) − u p,2(x)‖2L2(R) ≤ ε2‖K‖2L1(R)(‖u0‖H 1(R) + 1)2+8s
‖g1 − g2‖2C2(I )

(1 − 4s)(16πs)4s
.

By virtue of (1.28) and (1.29), we have

(
− d2

dx2

) 1
2

ξ(x) = ε

(
− d2

dx2

) 1
2 −s ∫ ∞

−∞
K(x − y)G1,2(y)dy,

(
− d2

dx2

) 1
2

u p,2(x) = ε

(
− d2

dx2

) 1
2 −s ∫ ∞

−∞
K(x − y)G2,2(y)dy,

such that via (1.15) and (1.30), the norm ‖ξ′(x) − u′
p,2(x)‖2L2(R)

can be bounded
above by

ε2‖G1,2 − G2,2‖2L1(R)Q
2 ≤ ε2Q2

4
(‖u0‖H 1(R) + 1)4‖g1 − g2‖2C2(I ).

Therefore, ‖ξ(x) − u p,2(x)‖H 1(R) ≤

≤ ε‖g1 − g2‖C2(I )(‖u0‖H 1(R) + 1)2
[‖K‖2L1(R)

(‖u0‖H 1(R) + 1)8s−2

(1 − 4s)(16πs)4s
+ Q2

4

] 1
2

.

By means of inequality (1.27), the norm ‖u p,1 − u p,2‖H 1(R) can be estimated from
above by

ε

1 − εσ
(‖u0‖H 1(R) + 1)2

[‖K‖2L1(R)
(‖u0‖H 1(R) + 1)8s−2

(1 − 4s)(16πs)4s
+ Q2

4

] 1
2

‖g1 − g2‖C2(I ),

which completes the proof of the theorem.
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1.4 Auxiliary Results

Below, we derive the solvability conditions for the linear Poisson-type equation with
a square-integrable right side

(
− d2

dx2

)s

u = f (x), x ∈ R, 0 < s < 1. (1.31)

Let us denote the inner product as

( f (x), g(x))L2(R) :=
∫ ∞

−∞
f (x)ḡ(x)dx, (1.32)

with a slight abuse of notations when the functions involved in (1.32) are not square
integrable, like for instance the one present in orthogonality condition (1.33) of
Lemma 1.6 below. Indeed, if f (x) ∈ L1(R) and g(x) ∈ L∞(R), then the integral in
the right side of (1.32) is well defined. The left side of relation (1.34) makes sense
as well under the given conditions. We have the following technical statement.

Lemma 1.6 Let f (x) : R → R and f (x) ∈ L2(R).

(1) When 0 < s < 1
4 and in addition f (x) ∈ L1(R), Eq. (1.31) admits a unique

solution u(x) ∈ H 2s(R).
(2) When 1

4 ≤ s < 3
4 and additionally |x | f (x) ∈ L1(R), problem (1.31) possesses

a unique solution u(x) ∈ H 2s(R) if and only if the orthogonality relation

( f (x), 1)L2(R) = 0 (1.33)

holds.
(3) When 3

4 ≤ s < 1 and in addition x2 f (x) ∈ L1(R), Eq. (1.31) has a unique solu-
tion u(x) ∈ H 2s(R) if and only if orthogonality conditions (1.33) and

( f (x), x)L2(R) = 0 (1.34)

hold.

Proof First, we observe that by means of norm definition (1.4) along with the square
integrability of the right side of (1.31), it would be sufficient to prove the solvability
of problem (1.31) in L2(R). The solution u(x) ∈ L2(R) will obviously belong to
H 2s(R), 0 < s < 1 as well.

Let us establish the uniqueness of solutions for Eq. (1.31). If u1,2(x) ∈ H 2s(R)

both satisfy (1.31), then the difference w(x) := u1(x) − u2(x) ∈ L2(R) solves the
homogeneous problem (

− d2

dx2

)s

w = 0.
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Since the operator

(
− d2

dx2

)s

on R does not have nontrivial square-integrable zero

modes, w(x) vanishes a.e. on the real line.
Let us apply (1.14) to both sides of Eq. (1.31). This gives us

û(p) = f̂ (p)

|p|2s χ{p∈R | |p|≤1} + f̂ (p)

|p|2s χ{p∈R | |p|>1}, (1.35)

where χA is the characteristic function of a set A ⊆ R. Obviously, for all 0 < s < 1,
the second term in the right side of (1.35) is square integrable by virtue of the bound

∫ ∞

−∞
| f̂ (p)|2
|p|4s χ{p∈R | |p|>1}dp ≤ ‖ f ‖2L2(R) < ∞.

To prove the square integrability of the first term in the right side of (1.35) when
0 < s < 1

4 , we apply estimate (1.15), which gives

∫ ∞

−∞
| f̂ (p)|2
|p|4s χ{p∈R | |p|≤1}dp ≤ ‖ f (x)‖2L1(R)

π(1 − 4s)
< ∞,

which completes the proof of part (1) of the lemma.

To establish the solvability of equation (1.31)when 1
4 ≤ s < 3

4 , we use the formula

f̂ (p) = f̂ (0) +
∫ p

0

d f̂ (s)

ds
ds.

This allows us to express the first term in the right side of (1.35) as

f̂ (0)

|p|2s χ{p∈R | |p|≤1} +
∫ p
0

d f̂ (s)
ds ds

|p|2s χ{p∈R | |p|≤1}. (1.36)

By virtue of definition (1.14)

∣∣∣∣d f̂ (p)

dp

∣∣∣∣ ≤ 1√
2π

‖|x | f (x)‖L1(R) < ∞

due to one of our assumptions. Hence,

∣∣∣∣
∫ p
0

d f̂ (s)
ds ds

|p|2s χ{p∈R | |p|≤1}
∣∣∣∣ ≤ 1√

2π
‖|x | f (x)‖L1(R)|p|1−2sχ{p∈R | |p|≤1} ∈ L2(R).
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The remaining term in (1.36)
f̂ (0)

|p|2s χ{p∈R | |p|≤1} ∈ L2(R) if and only if f̂ (0) = 0,

which implies orthogonality relation (1.33) in case (2) of the lemma.

Finally, it remains to investigate the situation when
3

4
≤ s < 1. For that purpose,

we use the representation

f̂ (p) = f̂ (0) + p
d f̂

dp
(0) +

∫ p

0

( ∫ r

0

d2 f̂ (q)

dq2
dq

)
dr,

which enables us to write the first term in the right side of (1.35) as

[
f̂ (0)

|p|2s + p d f̂
dp (0)

|p|2s +
∫ p
0

( ∫ r
0

d2 f̂ (q)

dq2 dq
)
dr

|p|2s
]
χ{p∈R | |p|≤1}. (1.37)

Definition (1.14) yields

∣∣∣d2 f̂ (p)

dp2

∣∣∣ ≤ 1√
2π

‖x2 f (x)‖L1(R) < ∞

as assumed. This enables us to estimate

∣∣∣∣
∫ p
0

( ∫ r
0

d2 f̂ (q)

dq2 dq
)
dr

|p|2s χ{p∈R | |p|≤1}
∣∣∣∣ ≤ 1

2
√
2π

‖x2 f (x)‖L1(R)|p|2−2sχ{p∈R | |p|≤1},

which clearly belongs to L2(R). The sum of the first and the second terms in (1.37)

is not square integrable unless both f̂ (0) and
d f̂

dp
(0) vanish, which gives us orthog-

onality relations (1.33) and (1.34), respectively.

Notably for the lower values of the power of the negative second derivative oper-

ator 0 < s <
1

4
under the assumptions given above, no orthogonality conditions are

required to solve the linear Poisson-type equation (1.31) in H 2s(R).
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Chapter 2
Poincaré Recurrences in Ergodic
Systems Without Mixing

Vadim Anishchenko, Nadezhda Semenova, Elena Rybalova
and Galina Strelkova

2.1 Introduction

The Poincaré recurrence is one of the fundamental features pertaining to the time
evolution of dynamical systems. Recurrence, according to Poincaré, implies that
practically any phase trajectory of a set with given probability measure, which leaves
a point x0 of the phase space, will pass infinitely many times arbitrarily close to its
initial state as it evolves in time. Poincaré termed this type of motion in dynamical
systems as Poisson stable [1].

The statistics of Poincaré recurrences in the global approach has been a topic of
research in recent years [2–4]. The local approach idea of the Poincaré recurrence
theory consists in calculating Poincaré recurrences in a certain ε-vicinity of a given
initial state [5, 6]. In the framework of the global approach, recurrence times are con-
sidered in all covering elements of the whole set and their statistics is then analyzed.
The main characteristic of the Poincaré recurrence statistics in the global approach
is the dimension of return times, which has been introduced in [4] and called as the
Afraimovich–Pesin dimension (AP dimension).
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It has been established that the statistics of recurrences in the global approach
depends on the topological entropy hT . Poincaré recurrences have been studied the-
oretically for mixing sets with hT > 0 [2–4] and the theoretical results have been con-
firmed by numerical simulation [7–9]. The situation is different in the case of ergodic
sets without mixing, i.e., when hT = 0. There are practically no works devoted to
studies of the properties of Poincaré recurrences for this case. Some important theo-
retical results have been obtained in [2–4] for the shift circle (the linear circle map)
with an irrational rotation number. In our present work, we aim to study numerically
the Poinaré recurrence statistics in the linear and nonlinear circle map with different
irrational rotation numbers and to reveal new peculiarities of Poincaré recurrences.
The circle map is widely used in nonlinear dynamics to study quasiperiodic oscilla-
tions with two independent frequencies.

In the global approach, the whole set of phase trajectories of a dynamical system
is covered with cubes (or balls) of size ε � 1. A minimal time of the first recurrence
of a phase trajectory in the ui -vicinity τinf(ui ) is calculated for each covering element
ui (i = 1, 2, . . . , N ). Then, the mean minimal return time is defined over the whole
set of covering elements ui [9–11] as follows:

〈τinf(ε)〉 = 1

N

m∑

i=1

τinf(ui ). (2.1)

It has been shown in [2] that in the general case

〈τinf(ε)〉 ∼ φ−1(ε
d
αc ) (2.2)

where d is the fractal dimension of the considered set, and αc is the AP dimension
of a return time sequence. The gauge function φ(t) in (2.2) can be given by one of
the following forms:

φ(t) ∼ 1

t
, φ(t) ∼ exp(−t), φ(t) ∼ exp(−t2), . . . ,φ(t) ∼ exp(−tn). (2.3)

The appropriate choice of φ(t) depends on the topological entropy hT as well as on
the multifractality of the considered set if such a property exists. It has been shown
in [2, 4] that for hT = 0, the gauge function has an asymptotic form φ(t) ∼ 1/t and
the following expression holds

〈τinf(ε)〉 ∼ ε− d
αc , ε � 1 . (2.4)

For chaotic systems, we have hT > 0 and φ(t) ∼ exp(−t), and thus, the following
law is valid [10]:

〈τinf(ε)〉 ∼ − d

αc
ln ε, ε � 1. (2.5)
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2.2 Model Under Study

We consider a particular example of a minimal set that is produced by the circle map:

θn+1 = θn + Δ + K sin θn, mod 2π (2.6)

where Δ and K are the parameters of the map. The circle map of type (2.6) is a
reference model of a wide class of dynamical systems with quasiperiodic behavior.

The trajectories of (2.6) are characterized by the rotation number which is defined
as the mean increment of angle θ over one iteration of the map with respect to the
total angle:

ρ = lim
n→∞(θn − θ0)/2πn. (2.7)

We start by studying the map (2.6) with K = 0. In this case, the trajectory rotates
by a constant angle Δ per iteration and thus the rotation number can be defined
as ρ = Δ/2π. An irrational value of ρ is associated with quasiperiodic trajectories
which are everywhere dense on a circle, and the distribution p(θ) is uniform on
the interval 0 ≤ θn ≤ 2π (Fig. 2.1). If ρ takes a rational value, i.e., ρ = k/m, the
trajectory makes k rotations around the circle over m iterations, being a periodic
one. In the nonlinear case when K > 0, the map cannot already be reduced to rigid
rotations of the point on the circle and p(θ) is no longer uniform (Fig. 2.1).

It has been shown in [2, 4] that the AP dimension of the set {θn} which is generated
by (2.6) essentially depends on ρ and the methods of its definition.

Fig. 2.1 Distribution
density p(θ) on the circle
(2.6) for the golden ratio and
with K = 0.0 (curve 1) and
K = 0.6 (curve 2)
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All irrational numbers can be divided into transcendental and algebraic numbers.
The latter are the numbers that are roots of the equation:

CN ρN + · · · + C1ρ + C0 = 0. (2.8)

They can be exemplified by i
√

2, i
√

3, and others where i are natural numbers. The
numbers that are not algebraic are said to be transcendental. They include π, e, and
ln 2.

Any number can be represented as a continued fraction. In the case of an irrational
number, this fraction is infinite and can be written in the form [12]:

ρ = a0 + 1

a1 + 1
a2+ 1

...

. (2.9)

The sequence of coefficients {ai }, i > 0, which is written as [a0; a1, a2, a3, . . .], is
called a continued fraction. Irrational values of ρ can be approximated by the ratio of
two integers ki/mi . That method is said to be the method of rational approximations
and the ratio itself is called the i th convergent of a continued fraction. Sequences
{ki } and {mi } are increasing, the numerators and denominators are defined using the
recursive relations and the coefficients of the continued fraction:

k−1 = 1, k0 = a0, ki = ai ki−1 + ki−2, (2.10)

m−1 = 0, m0 = 1, mi = ai mi−1 + mi−2

where {ai } is a sequence of natural coefficients of the continued fraction, ki and mi

are numerators and denominators of the convergent.
In terms of the convergence rate of rational approximations, irrational numbers

can be divided into Diophantine and Liouvillian numbers. The approximation error
obeys the inequality:

∣∣∣ρ − k

m

∣∣∣ <
C

mμ
(2.11)

where k/m is a convergent from a set of pairs of integers ki and mi , 2 ≤ μ < ∞ is the
measure of irrationality, and C is a constant. An irrational rotation number ρ is said
to be Diophantine if the upper bound of values of μ for each of which the inequality
(2.11) has infinitely many solutions is finite. Otherwise, ρ is a Liouvillian number.

We consider the case of Diophantine approximations of ρ. Following [2, 4], we
obtain

∣∣∣ρ − k

m

∣∣∣ ≥ 1

n[ν(ρ)+1+ξ] (2.12)
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where ν(ρ) = sup{v(ρ)} is the maximal rate of Diophantine approximations of an
irrational number over all possible pairs of k and m, and ξ > 0. It has been proven
analytically for (2.12) [2, 4] that

〈τinf(ε)〉 ∼ ε− 1
ν(ρ) , ln〈τinf(ε)〉 ∼ − 1

ν(ρ)
ln ε. (2.13)

Here, the fractal dimension of the set {θn}, which is generated by (2.6), is d = 1.
Comparing (2.5) and (2.13), we can obtain that ν(ρ) = αc in the considered case.
This implies that the AP dimension coincides with the approximation rate of the
irrational rotation number ρ. Furthermore, the gauge function is φ(t) ∼ 1/t . In the
following section, we introduce several features of the dependence ln〈τinf(ε)〉, which
are obtained by numerical simulation.

2.3 Main Properties of Return Time Dependence
for the Linear Circle Map

We calculate the dependence 〈τinf(ε)〉 on the set {θn} of the map (2.6) for K = 0 and
ρ which is equal to the golden ratio:

ρ = 1

2
(
√

5 − 1) ≈ 0.618 . . . , Δ = 2πρ = π(
√

5 − 1). (2.14)

Since a point rotates uniformly on the circle when K = 0, for any interval of
ε, there is a single value τinf(ε) which is independent of the initial point θ = θ0.
Therefore, we do not need to calculate the mean value (2.1). Numerical results for
τinf(ε) are shown in Fig. 2.2. As shown in the figure, this dependence looks like a
step function, which can be referred to as the “Fibonacci stairs.” We have established
that it has several features which are as follows.

1. When ln ε decreases, the sequence of τinf (ε) values grows and strictly corresponds
to the basic Fibonacci series (. . ., 8, 13, 21, 34, 55, 89, 144, . . .): Each subsequent
number is the sum of the previous two. The values of τinf which relate to the steps
of the Fibonacci stairs are indicated in Fig. 2.2.

2. When ε changes within any step of the Fibonacci stairs, three return times
τ1 < τ2 < τ3 can be distinguished. This property follows from Slater’s theorem
[13]. These three return times correspond to the basic Fibonacci series.

3. It has been shown numerically and proven theoretically that lengths and heights
of the steps (Fig. 2.2) of the Fibonacci stairs possess a universal property for the
golden and silver ratios. The length of the i th step can be defined as follows:

Di = ln εi − ln εi+1 = const = | ln ρ|, i � 1 (2.15)
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where εi and εi+1 are values of ε at the boundaries of the relevant step. From
(2.15), it follows that εi+1 = εi · ρ.
Similarly, for the height of the i th step, we have

ln τinf(εi+1) − ln τinf(εi ) = | ln ρ|, i � 1. (2.16)

The index i in (2.15) and (2.16) increases as ε decreases (Fig. 2.2). The lengths
and the heights of the steps are universal and equal to | ln ρ| where ρ is the rotation
number.

As follows from property 2, when ε changes “within a step,” three return times
τ1 < τ2 < τ3 can be registered. Its sequence corresponds to the sequence of denom-
inators of convergents, i.e., τ1 = mi , τ2 = mi+1, and τ3 = mi+2. This implies the
appearance of the Fibonacci number sequence in return times. Calculations of
probability distributions of return times in different regions of an arbitrary step in
the Fibonacci stairs show three different situations. These results are illustrated in
Fig. 2.3. We first have P(τ3) < P(τ2) < P(τ1) for the return vicinity which is chosen
in the right side of the step (Fig. 2.3a). The change between the three distributions
occurs in the middle of the step, i.e., P(τ1) = P(τ3) < P(τ2) (Fig. 2.3b). Finally,
P(τ1) < P(τ3) < P(τ2) is observed when the return vicinity is taken in the left half
of the step (Fig. 2.3c). At the end of the step the probability P(τ1) → 0 (Fig. 2.3d),
a new return time τ4 = mi+3 is appeared, and the transition to the next step takes
place. The distribution in this case is P(τ3) < P(τ2) < P(τ1) (Fig. 2.3e). The mini-
mal return time is already τinf = τ2 within the next step, and so on.

Now, we try to prove the third property of the Fibonacci stairs which is expressed
by the relations (2.15) and (2.16). The validity of (2.15) and (2.16) can be proven by
several methods [14–16]. We give one of them.

The structure of Fibonacci stairs is closely related to the theory of convergents and
continued fractions. An irrational number is a real number which cannot be written
as a fraction k/m where k and m are natural numbers, 1, 2, . . ..

Fig. 2.2 Dependence of the
minimal return time τinf (ε)
for the map (2.6) with the
golden ratio and for K = 0
and Δ = 2πρ
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Fig. 2.3 Distributions of return times in the ε-vicinity chosen in different regions of a step of the
Fibonacci stairs: a at the right side, b in the middle, c at the left side, d at the left boundary, and e
transition to the next step

In the general case, an irrational rotation number can be presented in the form of a
continued fraction (2.9). This produces a sequence of approximation coefficients {ai },
i ≥ 0. The notation [a0; a1, a2, a3, . . .] is an infinite continued fraction representation
of the irrational number.

As mentioned in the previous section, the irrational rotation number ρ can be
approximated by the fraction of two integers ki/mi . This is the method of rational
approximations. The i th convergent of the continued fraction ρ = [a0; a1, a2, a3 . . . ]
is a finite continued fraction [a0; a1, a2, . . . , ai ], which value is equal to the rational
number ki/mi . The increasing sequences of numerators {ki } and denominators {mi }
are called continuants of the i th convergent (2.9) and can be found using fundamental
recurrence formulas (2.11).
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It has been found [15, 17] that for any rotation number, the dependence τinf(ε)
is a step function and each value τinfi , which corresponds to the i th step, is equal
to the denominators of the i th convergent ki/mi of the rotation number ρ. Using
the equality τinfi (ε) = mi , we obtain the minimal vicinity size which corresponds to
this return time τinfi . As noted in Introduction, after one iteration of the linear circle
map (2.6), the position of the point on the circle changes by 2πρ. The expression
τinf(ε) = mi means that the point returns in the neighborhood of its initial state after
mi iterations, shifting by 2πρmi . During these iterations, the point can make several
complete circles and appear to the left or right of the initial state. To take this fact into
account, we introduce the modulus and subtract the convergent numerator ki which
defines the number of complete circles. Thus, the return in the neighborhood of the
initial state θ0 takes place at the distance of 2π|ρmi − ki | from the point θ0 [14].

Let us consider the case when we start not from the point θ0 but from the right
boundary of its neighborhood, i.e., from the point θ′

0 = θ0 + εc/2. The return in εc

after the minimal number of iterations mi happens near the left boundary of this
neighborhood, i.e., at the point θ0 − εc/2. In such a case, as mentioned above, the
point shifts by 2π|ρmi − ki | from the initial position θ′

0 (see Fig. 2.4). This means
that

θ′
0 − 2π|ρmi − ki | = θ0 − εc/2. (2.17)

θ0 + εc/2 − 2π|ρmi − ki | = θ0 − εc/2. (2.18)

This enables one to derive the expression for calculating the value εi , which
corresponds to the left boundary of the stairs step with the minimal return time
τinf = mi for any irrational rotation number ρ:

εi = εc = 2π|ρmi − ki | (2.19)

where ρ is the rotation number, mi is convergent denominator, and ki is the convergent
numerator. As discussed above, the golden (silver) ratio represents a special case.

Fig. 2.4 Schematic
representation of the
neighborhood ε and initial
and return points on the
circle
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The universal feature of the staircase dependence is due to the fact that numerators
and denominators of convergents have the same definition rules and are elements
of the Fibonacci (Pell) series. Thus, for the golden ratio, (2.19) can be rewritten as
follows:

εi = 2π|ρFi − Fi−1|, or

εi ≈ 2π
Li

(2.20)

where Fi is the i th Fibonacci number, ρ = (
√

5 − 1)/2 is the golden ratio, and Li is
the i th Lucas number.

Following the same motivation, for the silver ratio we can find

εi = 2π|ρPi − Pi−1| or

εi ≈ 2π
Qi

(2.21)

where Pi is the i th Pell number, ρ = √
2 − 1 is the silver ratio, and Qi is the i th

Pell–Lucas number.
We confirm our analytical results (2.19)–(2.21) by numerical simulation for the

golden and silver ratios (Fig. 2.5) as well as for more complex Diophantine numbers
3
√

2, e, and lg(5), which correspond to the absence of universal geometry of the step
dependence (Fig. 2.6). Using (2.19), we can find the dependence of each step length
Di (Figs. 2.5 and 2.6) on its number in general.

For the golden and silver ratios, the length of stairs steps is constant and indepen-
dent of the step number but is defined by the rotation number:

Di = const = | ln ρ|. (2.22)
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5 − 1)/2) and b the silver ratio
(ρ = √

2 − 1) are indicated by solid lines; dashed lines with plus points and circle points represent
the corresponding approximations using (2.20) for the golden ratio and (2.21) for the silver ratio
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Fig. 2.6 Dependences ln τinf (ln ε) for four values of the rotation number: a ρ = 3
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2, b ρ = 3
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7,
c ρ = e, and d ρ = lg(5) (solid lines). Dashed lines with circle points show the corresponding
approximations using (2.19)

Figure 2.7 illustrates dependences of the step length on the step number for the
golden ratio (the universal geometry is valid) and for two different values of the
rotation number, namely ρ = 3

√
2 and lg 5 (no universal geometry is observed).

Figure 2.7a corresponds to the golden ratio and shows that all step lengths are equal.
Figure 2.7b, c indicates that the universal geometry fails for the other rotation num-
bers. As shown in Fig. 2.7, analytical and numerical results are in full agreement. This
means that the universal geometry can be obtained only in cases of the golden and
silver ratios for which the step length does not depend on the step number (Fig. 2.7a).

Golden ratio.
In the case of the golden ratio (ρ = (

√
5 − 1)/2), denominators and numerators

of the convergents of ρ can be found as mi = Fi and ki = Fi−1 where {Fi } is the
Fibonacci sequence. The golden ratio is a special case when numerators and denom-
inators have the same determination rule and are elements of the same sequence.
Thus, we can simplify the expression (2.19).
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Each i th Fibonacci number is defined by the following recurrence relation:

Fi = Fi−1 + Fi−2 (2.23)

with the set values F0 = 1, F1 = 1. The i th Fibonacci number can also be found
using Binet’s formula:

Fi = ϕi − (−ϕ)−i

2ϕ − 1
(2.24)

where ϕ = (
√

5 + 1)/2 is the root of the equation ϕ2 − ϕ − 1 = 0 and depends on
ρ as follows:

ρ = ϕ − 1 <=> ϕ = 1 + ρ. (2.25)
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The value of ε which corresponds to the emergence of a new stairs step and relates
to the left boundary of the step with the minimal return time τinf = Fi is

εi = 2π|ρFi − Fi−1| . (2.26)

Using (2.24) and (2.25), this expression can be rewritten as follows:

εi = 2π|(ϕ − 1)Fi − Fi−1| = 2π|ϕFi − (Fi + Fi−1)| =
= 2π|ϕFi − Fi+1| = 2π

∣∣∣ϕi −(−ϕ)−i

2ϕ−1 ϕ − ϕi+1−(−ϕ)−i−1

2ϕ−1

∣∣∣ =
= 2π

∣∣∣ϕi+1+(−ϕ)−i+1−ϕi+1+(−ϕ)−i−1

2ϕ−1

∣∣∣ =
= 2π

∣∣∣ (−1)−i−1(ϕ−i+1+ϕ−i−1)

2ϕ−1

∣∣∣ = 2π
∣∣∣(−1)−i−1

∣∣∣×
× ϕ2 + 1

2ϕ − 1
ϕ−i−1 = 2π ϕ2+1

2ϕ−1ϕ−i−1 = 2πϕ−i ϕ2+1
2ϕ2−ϕ

=
= 2πϕ−i ϕ2−ϕ−1+ϕ+2

2ϕ2−ϕ−ϕ−2+2+ϕ
= 2πϕ−i ϕ+2

ϕ+2 = 2πϕ−i =
= 2πϕ−i (ϕi + (−ϕ)−i )

ϕi + (−ϕ)−i
= 2π

ϕi + (−ϕ)−i

(
1 + (−1)−iϕ−2i

)
.

(2.27)

Since ϕ > 1, the second term between the brackets tends to zero when i → ∞.
Thus,

lim
i→∞ εi (τinf = Fi ) = 2π

ϕi + (−ϕ)−i
= 2π

Li
(2.28)

where Li is the i th Lucas number. It is defined by the same recurrence relation as the
Fibonacci numbers (2.23) but with another set values L0 = 2, L1 = 1. The Lucas
numbers can be approximately defined by the following formula:

Li = ϕi + (−ϕ)−i . (2.29)

Calculation of the step length.
The size of the neighborhood εi , which corresponds to the left boundary of a step

with the minimal return time τinf = mi , for any irrational rotation number ρ can be
found as follows:

εLi = εi = 2π|ρmi − ki | . (2.30)

Similarly, we can obtain the value εi−1. Since the dependence τinf(ε) is a steplike
function, εi−1 is simultaneously the left boundary of the step with the minimal return
time τinf = mi−1 and the right boundary of the step with τinf = mi :

εRi = εi−1 = 2π|ρmi−1 − mi−1| . (2.31)

Hence, the length of the i th step of the dependence ln τinf(ln ε) can be calculated as
follows:
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Di = ln εLi − ln εRi = ln εLi
εRi

=
= ln 2π|ρmi −ki |

2π|ρmi−1−ki−1| = ln |ρmi −ki |
|ρmi−1−ki−1| =

= ln qi |ρ−mi /ki |
mi−1|ρ−ki−1/mi−1| ≈ ln mi

mi−1
.

(2.32)

Thus, in general the length of stairs steps depends on denominators of convergents
of rotation numbers. For the golden ratio, the denominators and numerators of the
convergents are related to the Fibonacci series as ki−1 = mi = Fi . It follows that for
the golden ratio,

Di ≈ ln
mi

mi−1
≈ ln

ki−1

ki−2
≈ | ln ρ| . (2.33)

The same motivation can be used for the silver ratio. In this case, the numerators
and denominators are connected with the Pell series: ki−1 = mi = Pi . For this reason,
the step lengths for the golden and silver ratios are constant and independent of the
step number. They are defined only by the rotation number | ln ρ|.

2.4 Afraimovich–Pesin Dimension for Different
Rotation Numbers

The dependence τinf(ε) obtained analytically enables one to define αc more precisely.
From (2.4) and (2.13), it follows that

ν(ρ) = αc = 1. (2.34)

Therefore, the AP dimension and the rate of approximation of the rotation number
coincide and are equal to 1 in the case of the golden ratio.

All the features described above are also valid in the case of the silver ratio.
The dependence τinf(ε) for the silver ratio is presented in Fig. 2.5b. The universal
properties (2.15) and (2.16) of the Fibonacci stairs are also observed in this case.
However, for the silver ratio, the sequence of minimal return times obeys the Pell
law mi+1 = 2mi + mi−1 and forms the series: . . ., 29, 70, 169, 408, 985, . . . [18].
Calculating the sequence of neighborhoods (2.21), we plot the dependence ln τinf(εi )

which is also a straight line with slope −1 (Fig. 2.5b). Thus, in the case of the silver
ratio, the AP dimension and the rate ν(ρ) are also equal to 1 as for the golden ratio.

The golden and silver ratios are algebraic Diophantine numbers with the measure
of irrationality μ = 2. It has been proven that any algebraic irrational number has
μ = 2 [19]. This means that (2.12), (2.13), and (2.34) hold for these numbers.

The universal geometry of the Fibonacci stairs is observed only for the golden
and silver ratios and is attested to the peculiarities of their expansion in a continued
fraction. This universal property is violated for other irrational rotation numbers.

Numerical results obtained for ρ = 3
√

2 and ρ = 3
√

7 are similar to the previous
cases, but the Fibonacci stairs demonstrates a more complex structure.
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Fig. 2.8 Calculation results
for τinf (ε) in the map (2.6)
for K = 0 and a ρ = e and b
ρ = π/

√
3. The Fibonacci

stairs (curve 1), its linear
approximation (curve 2).
Plot 2 has slope 1
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We now describe in detail transcendental numbers. It is known that any Liouvillian
number is transcendental, but the opposite is not true, i.e., there are numbers that
can be both Diophantine and transcendental simultaneously. These numbers have the
measure of irrationality μ ≥ 2. Diophantine transcendental numbers can be exempli-
fied by π, π/

√
3, π/100, e, ln 2, ln 10, and others. It has been proven that the number

e has μ = 2. There is only a theoretical estimation from above for the measure of
the other numbers, e.g., μ(π) ≤ 7.6063, μ(π/

√
3) ≤ 4.6016, μ(ln 2) ≤ 3.57455391.

Figure 2.8 illustrates numerical results for π/
√

3 and e. Calculating the slope of the
Fibonacci stairs by both averaging and theoretically gives ν(ρ) = αc = 1.0. From a
numerical viewpoint, this implies that both π/

√
3 and e are Diophantine numbers

with the measure of irrationality μ = 2.
It can be shown that the measure of irrationality for the irrational numbers con-

sidered takes exactly the values indicated above. Let us denote δ = |ρ − k
m | where

k/m is a convergent of a continued fraction. In this case, (2.11) can be rewritten in
the form
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Fig. 2.9 Numerical data for
the measure of irrationality μ
for different numbers:
ρ = (

√
5 − 1)/2 (curve 1),

ρ = π/
√

3 (curve 2), the
theoretical approximation
ln δ = −2 ln m (curve 3),
and ρ = λ (curve 4)
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The measure of irrationality can be determined as a slope of the dependence of ln δ
on ln m by calculating a sequence of nominators and denominators of convergents.
Calculation results are shown in Fig. 2.9 for different irrational values of the rotation
number. It is shown in the figure that μ = 2 as in the previously considered cases of
the golden and silver ratios, ρ = e, and ρ = π/

√
3. It follows that

ν(ρ) = μ(ρ) − 1. (2.36)

This means that ν(ρ) = 1 for μ = 2. This fact confirms the numerical data for
the unit AP dimension which are obtained for all the aforementioned values of the
rotation number.

Transcendental Liouvillian numbers form a last subgroup of irrational numbers.
They have a very high rate of convergence of rational approximations. In other words,
their measure of irrationality is μ → ∞. We have considered several Liouvillian
numbers, one of which is

ρ = λ =
∞∑

i=0

10−i !. (2.37)

The numerical results presented in Fig. 2.9 (curve 4) attest that μ → ∞ for ρ = λ.
In this case, φ(t) ∼ 1/t cannot be considered as a gauge function (Fig. 2.10). Unfor-
tunately, we were not able to find an appropriate form for φ(t) in this case because of
the finite computer accuracy. We have only found that (2.12) and (2.13) do not hold
for Liouvillian irrational numbers and this fact corroborates the theoretical results
[2, 4].
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Fig. 2.10 Dependence of
τinf (ε) for the Liouvillian
rotation number ρ = λ
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2.5 Impact of Nonlinearity

We now study the map (2.6) for 0 < K < 1, i.e., when the system is nonlinear.
For K > 0, the distribution density p(θ) is not uniform on the interval 0 ≤ θ ≤ 2π
(see Fig. 2.1). Therefore, to find 〈τinf(ε)〉, one needs to divide the whole region on
intervals of ε values and to calculate the mean value (2.1). We restrict ourselves to
the case when the rotation number ρ is equal to the golden ratio. If K is varied in
(2.6), ρ is also changed. Therefore, for fixed values of K , we select Δ in (2.6) so that
ρ = (

√
5 − 1)/2. Calculation data are shown in Fig. 2.11 for three different values

of K .
Analysis of the data shown in Fig. 2.11 attests that when K grows, the Fibonacci

stairs is gradually smoothing and practically tends to a straight line at K = 0.6.
Calculations of the mean slope of the plots in Fig. 2.11 show that it is equal to −1
for K = 0, 0.1, and 0.6. Thus, in the nonlinear case of the circle map (2.6), the
AP dimension coincides with the rate ν(ρ) and is equal to ν(ρ) = αc = 1. These
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Fig. 2.12 Calculation
results for ln〈τinf (ε)〉 in the
map (2.6) for ρ = e and
three different values of K :
K = 0, K = 0.6, and
K = 0.9
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conclusions have been confirmed by numerical simulation with other values of the
rotation number and for 0 < K < 1. This is exemplified in Fig. 2.12 for ρ = e. It
shows that the dependence ln〈τinf(ε)〉 for K = 0.9 is a straight line with unit slope.
It means that the AP dimension is equal to 1, αc ≈ 1.0.

We note an important point. It is known that in the case of an irrational rotation
number, the nonlinear circle map (2.6) can be transformed (or reduced) to the linear
circle map ψn+1 = ψn + Δ by using a suitable nonlinear change of variable ψ = g(θ)
[6, 20]. This change must satisfy the property g(θ + 2π) = 2π + g(θ). The result
described above for the AP dimension αc = 1, which has been obtained both for the
linear and the nonlinear circle map, testifies that the AP dimension is an invariant
with respect to the nonlinear change of variables.

2.6 Fibonacci Stairs and the Afraimovich–Pesin
Dimension for a Stroboscopic Section of a
Nonautonomous van der Pol Oscillator

In addition to periodic oscillations, so-called quasiperiodic oscillations are widely
and frequently encountered in nature and technology. Such oscillations are described
by functions of the following form:

x(t) = Φ[γ1(ω1t), γ2(ω2t) . . . γn(ωnt)] (2.38)

where each function fn(ωnt) is periodic with period Tn = 2π/ωn . We are interested in
quasiperiodic oscillations with two frequencies ω1 and ω2. They are associated with a
two-dimensional torus in the phase space. When the frequencies ω1, ω2 are rationally
related, a resonance takes place on the torus and a limit cycle is realized. If the
frequencies become irrationally related, the motion on the torus will be nonperiodic
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or ergodic. The phase trajectory covers the torus surface everywhere densely and
does not close as t → ∞.

If we introduce a Poincaré secant plane which intersects a torus transversally, the
points that appear when a trajectory intersects the plane generate a discrete sequence
ψn lying on the closed curve. This sequence is described by the following equation
[21, 22]:

ψn+1 = ψn + Δ + f (ψn) (2.39)

where Δ is a shift of each subsequent point relative to the previous one and f (ψn)

is a certain periodic function. If only the first term of the expansion of f (ψn) in a
Fourier series is taken into account, the following discrete equation can be derived:

ψn+1 = ψn + Δ + K sin ψn, mod 2π. (2.40)

The variable ψn can be treated as the coordinate of a point on the circle in the torus
section, the parameter Δ = 2πρ includes the rotation number ρ and characterizes
the frequency detuning, and the parameter 0 < K < 1 is related to the amplitude
of oscillations at one of the independent frequencies. Equation (2.40) describes the
circle map and serves as a classical model of nonlinear dynamics for modeling the
dynamics of two-frequency quasiperiodic oscillations [21–25]. If the nonlinear term
in (2.40) is neglected, one can come to the model of a linear circle shift

ψn+1 = ψn + Δ, mod 2π, Δ = 2πρ. (2.41)

The circle map (2.40) is frequently used to study effects of synchronization and
the transition to chaos via two-frequency oscillation destruction [26, 27].

The regime of two-frequency oscillations can be realized in several ways. For
example, one can use two coupled self-sustained oscillatory systems with different
basic frequencies. The simplest way consists in considering a self-sustained oscilla-
tory system subjected to an external periodic force. Introducing the Poincaré secant
plane of a two-dimensional torus results in a discrete set which must correspond to
the circle map (2.40) for small values of the external amplitude. Alternatively, the
circle map can be obtained by constructing a discrete set in the stroboscopic section
of a phase trajectory through the period of the external force [21]. If the integration
step Δt = T/j where j is an integer, the set of points in this cross section is computed
with maximum accuracy. This method is often known as the stroboscopic technique.

We consider a periodically driven van der Pol oscillator and apply the stroboscopic
method to obtain a discrete set which is equivalent to the circle map. The next objec-
tive of our work is to show that the features of recurrence statistics established for
the circle shift in the framework of the global theory can be reliably observed for the
set in the stroboscopic section of the driven van der Pol oscillator. With this purpose,
we construct the Fibonacci stairs and calculate the Afraimovich–Pesin dimension
for different irrational values of the rotation number. In conclusion, we compare the
theoretical results formulated for the circle shift (2.41) with our numerical data for
the driven van der Pol oscillator.
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2.6.1 System Under Study

The classical periodically driven van der Pol oscillator is described by the following
equation:

ẍ − (α − x2)ẋ + ω2
0 x = A sin Ωt. (2.42)

We rewrite (2.42) in the form of a system of three first-order differential equations:

⎧
⎨

⎩

ẋ = y ,

ẏ = (α − x2)y − ω2
0 x + A sin Θ ,

Θ̇ = Ω

(2.43)

where α is the excitation parameter, ω0 is the basic frequency of the self-sustained
oscillations, A is the amplitude of the external force, Θ = Ωt is the phase, and Ω is
the frequency of the external force.

In contrast to the work [28], we do not pass to the equations for the amplitude
and phase. Numerical simulation has shown that the calculation accuracy can be
significantly increased by using the system (2.43) directly. This enables us to compare
the theoretical and numerical results in more detail.

For A ≈ 0 and α > 0 in (2.42), a limit cycle is born with amplitude 2
√

α. In
the three-dimensional system (2.43) for A > 0, we have quasiperiodic oscillations
corresponding to a two-dimensional torus in the phase space. The torus can be ergodic
or resonant depending on the ratio of frequencies ω0 and Ω . We are interested in
the case of an ergodic torus when the ratio of the frequencies (rotation number) is
irrational.

We apply the stroboscopic technique to the system (2.43). This means that we
observe the driven system at the times t j = j · T where T = 2π

Ω
is the period of the

external force and j = 1, 2, . . .. This observation results in the set of points shown
in Fig. 2.13 together with a two-dimensional torus in the system (2.43). It is clearly
shown in the figure that the map is quite equivalent to the circle shift.

Fig. 2.13 A
two-dimensional torus and
its stroboscopic section L in
the system (2.43) for
α = 0.01, ω0 = 1.0,
Ω = 1.1835944, and
A = 0.1
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2.6.2 Numerical Results

In the general case of finite values of the external force amplitude A > 0, the set in
the stroboscopic section corresponds to the nonlinear circle map (2.40):

ψn+1 = ψn + Δ + K (A) sin ψn. (2.44)

One can expect that for small A � 1, the coefficient K (A) also satisfies the condition
K (A) � 1, and in this case, the map (2.44) is similar to (2.41). Therefore, we are
going to consider the cases of small and relatively large values of the amplitude of
the external force A.

In order to compare the presented results with the theoretical data [2] and the
calculations carried out in [15, 28], one needs to clarify the way of definition of the
rotation number ρ.

The rotation number ρ can be defined as the mean increment of the angle ψ per
one iteration of the circle map in relation to the total angle:

ρ = lim
n→∞

ψn − ψ0

2πn
. (2.45)

It is easy to see that for K (A) → 0, the parameter Δ in (2.44) represents a linear
phase shift on a circle and is related to the rotation number as Δ = 2πρ. Moreover,
in this case, the rotation number depends on the basic frequency ω0 of the van der
Pol oscillator and the frequency of the external force Ω . The dependence ρ(Ω) is
shown in Fig. 2.14 for the fixed parameter values α = 0.01, ω0 = 1, A = 0.1. As
shown, the plot corresponds to the relation

ρ = ω0/Ω (2.46)

with the accuracy of ±0.1%.

Fig. 2.14 Dependence of
the rotation number ρ on the
external frequency Ω in the
system (2.43) for ω0 = 1,
α = 0.01, and A = 0.01
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When ω0 = Ω = 1, the resonance 1 : 1 can be observed in Fig. 2.14. The theoret-
ical curve must have an infinite number of “plateus” which correspond to resonances
ω0/Ω = l/q where l, q = 1, 2, . . .. This curve is called the “devil’s staircase” [29].
However, high-order resonances (q > 1) are not visible in the scale of Fig. 2.14
because they can be observed only within the narrow intervals with respect to Ω ,
and the external amplitude is much less than the amplitude of oscillations in the van
der Pol oscillator.

2.6.2.1 The Case of Small Values of the External Amplitude

We now consider the case of small values of the external amplitude (A = 10−5). The
set in the stroboscopic section of the system (2.43) is shown in Fig. 2.15a on the
plane of variables (xs, ys). It looks like a circle with radius r = √

x2
s + y2

s . Since for
α = 0.01 the amplitude r = 0.2 is constant, the sequence of phase shifts ψn can be
analyzed in the polar system of coordinates: xsn = r cos ψn , ysn = r sin ψn .

The set of values ψn must satisfy the circle map (2.44). Let us consider the case
of small values of the external amplitude A � 1. Figure 2.15b shows the probability
distribution density p(xs, ys) of points on the circle (Fig. 2.15a) for the golden ratio
ρ = (

√
5 − 1)/2. As shown in the figure, p(xs, ys) is rather uniform and corresponds

to the linear circle shift (2.41). If this is true, then only local approach can be used to
calculate 〈τinf(ε)〉 by varying ε in a certain interval (for any point on the circle). This
is related to the fact that for a uniform distribution, τinf (ε) is independent of the choice
of ε on the circle length. The calculation results for τinf(ε) are presented in Fig. 2.16
for the golden ratio. In contrast to the results of [28], in a wide range of ε values,
the numerical plot in Fig. 2.16 is qualitatively and quantitatively consistent with the
calculation data for the linear circle map (2.41), which are presented in Fig. 2.2a.
This is due to an increase of the calculation accuracy of the stroboscopic section.
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Fig. 2.15 The stroboscopic section (a) and the probability distribution density p(xs , ys) on the
circle (b) for α = 0.01, ω0 = 1, A = 10−5. The value Ω = 1.6180141526367187 corresponds to
the golden ratio ρ = (

√
5 − 1)/2
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Fig. 2.16 The Fibonacci stairs for the stroboscopic section of phase trajectories in the system (2.43)
for α = 0.01, ω0 = 1.0, A = 10−5, ρ = ω0/Ω , and Ω = 1.6180141526367187. The curve with
points corresponds to the global approach; dashed lines are constructed by using the local approach
when recurrences are calculated in neighborhoods of the points ψ0 = π/3 and ψ0 = 5π/4. All
curves are approximated by a straight line with slope αc = 1

Comparing Figs. 2.2a and 2.16 reveals that all the dependences coincide in the
range −4 < ln ε < 1. The sequence of τinf on the steps of the Fibonacci stairs in
Fig. 2.16 strictly complies with the basic Fibonacci series. The height and width of
the stairs steps are Di � | ln ρ|. The average slope of the linear approximation is
equal to −1 and gives the AP dimension αc = 1. When ln ε < −4, the Fibonacci
stairs is gradually destroyed. This is due to the accuracy of calculations and to the
fact that the distribution density p(xs, ys) becomes inhomogeneous for sufficiently
small ε. Nearly identical results have been obtained for the external amplitude taken
in the range 10−8 ≤ A ≤ 10−3. One may say that for small values of A ≤ 10−3, the
map in the stroboscopic section has the properties of the circle shift (2.41) with a
rather high degree of accuracy.

To confirm the results described above, we consider the case of the silver ratio
ρ = √

2 − 1. The corresponding numerical results are shown in Fig. 2.17. In this
case, the frequency of the external force is set to be Ω = 0.414209134578705.

Since the external amplitude A = 10−8 is very small, the numerical data in
Fig. 2.17a, b demonstrate their good qualitative and quantitative agreement. The
sequence of τinf(ε) on the stairs steps corresponds to the basic Pell series. The height
and width of the steps are Di � | ln ρ|.

2.6.2.2 The Case of Relatively Large Values of the External Amplitude

We now turn to relatively large values of the external amplitude A > 10−3. In
this case, the nonlinear item K (A) in the circle map (2.44) may effect the results.
The numerical data are shown in Fig. 2.18 for A = 10−2. The distribution density
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Fig. 2.17 The Fibonacci
stairs a for the linear circle
map (2.41) with Δ = 2πρ,
ρ = √

2 − 1 and b for the
map in the stroboscopic
section of the system (2.43)
for α = 0.01, ω0 = 1,
A = 10−8, ρ = ω0/Ω , and
Ω = 0.414209134578705
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p(xs, ys) becomes nonuniform (Fig. 2.18a), and 〈τinf(ε)〉 must be found by cover-
ing the whole set with intervals of size ε and then averaging the calculation data. As
shown in Fig. 2.18b, if the external amplitude A increases, the Fibonacci stairs begins
to break down. The average slope of the graph is approximately equal −1, i.e., the
AP dimension retains the value of αc = 1. When A is further increased, the plot in
Fig. 2.18b tends to a straight line with slope � −1, as in the case of the nonlinear
circle map (2.44) studied in [28].

We have also carried out numerical calculations for another values of the rotation
number ρ by varying the external frequency Ω . The obtained results fully comply
with the data described in [28], namely the Fibonacci stairs for another Diophantine
rotation numbers loses its universal properties established for the golden and silver
ratios. However, the AP dimension remains close to 1 (αc � 1.0) both for small and
relatively large values of the external amplitude 10−8 ≤ A ≤ 10−2. Figure 2.19 exem-
plifies the Fibonacci stairs calculated for the Diophantine rotation number ρ = 3

√
2.
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Fig. 2.18 The probability
distribution density (a) and
the Fibonacci stairs (b) for
the map in the stroboscopic
section of the system (2.43)
for α = 0.01, ω0 = 1,
A = 10−2, and
ρ = (

√
5 − 1)/2
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Comparison of the plots in Fig. 2.19a, b testifies a good correspondence of the
results. The average value of the slope of these graphs is close to −1 (−0.98 ± 0.01).

In this section, the results of the global analysis of Poincaré recurrence statistics
have been presented for the set in the stroboscopic section of the driven van der Pol
oscillator through the period of the external force. It has been established that this
set can be described by the circle map (2.44) with the irrational rotation number
ρ = ω0/Ω . It has been shown that the stroboscopic map is close to the linear circle
shift (2.41) in the case of small values of the external amplitude A � 1, while for
relatively large values of A, it corresponds to the nonlinear circle map (2.44) due to
the nonlinearity. The AP dimension is αc � 1 in both cases. Our numerical simulation
has confirmed the universal nature of the Fibonacci stairs (Figs. 2.16 and 2.17) for
the golden and silver ratios. The height and width of the stairs steps have been
numerically obtained to be equal to Di = | ln ρ|. The universality of the Fibonacci
stairs is violated for other values of the rotation number (see Fig. 2.19). These results
completely confirm the data obtained numerically for the map (2.44). The fact that the
AP dimension remains equal to 1 both in the linear and nonlinear cases is caused by
the invariance of the AP dimension with respect to a nonlinear change of coordinates.
As discussed in [28], the map (2.44) can be reduced to the circle shift (2.41) by a
suitable change of variables [21].
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Fig. 2.19 The Fibonacci
stairs a for the linear circle
map (2.41) with Δ = 2πρ,
ρ = 3

√
2 and b for the map in

the stroboscopic section of
(2.43) for α = 0.01, ω0 = 1,
A = 10−8, and ρ = 3
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2.7 Poincaré Recurrences in Hamiltonian Systems

Different fractal objects can be observed in the phase space of Hamiltonian systems.
They have a complex structure which indicates the complexity in the system behavior
[4]. For this reason, this type of systems can be rather interesting to analyze in terms
of description of Poincaré recurrence statistics. From the standpoint of Poincaré
recurrence theory, Hamiltonian systems were explored long ago [30], while they
have only been recently studied in the framework of multifractal analysis [3, 4, 31–
33]. The cited works are mainly based on the study of the probability distribution
of recurrences which are obtained by using the method of multifractal analysis [4].
Hamiltonian systems can be exemplified by the Hénon–Heiles model [34], scattering
billiards (Sinai billiards), a periodically kicked rotator, a double pendulum [35], and
several discrete-time systems [3, 4, 36].
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Fig. 2.20 Schematic
representation of the phase
space of a system with two
degrees of freedom

Let us consider one of such systems, namely a periodically driven nonlinear
conservative oscillator which is described by the following equations:

ẋ = y,

ẏ = − sin x + b sin Θ,

Θ̇ = Ω

(2.47)

where the oscillation amplitude of the autonomous oscillator is equal to 1 and its
frequency is ω0 = 1. The external force is defined by the amplitude b and frequency
Ω . When the variables “action—angle” are used (if the canonic transformation
(
−→q ,

−→p ) → (−→α ,
−→
J ) is possible), the dynamics of such systems can be visibly rep-

resented as follows: the circular motion with the center at O1, which is formed by
the α1, J1 variables, and simultaneously the rotation along the circle centered at O2

(lying in the plane which is transversal to the plane of the O1 circle), which is formed
by the α2, J2 variables (Fig. 2.20). The superposition of these rotations defines the
motion on a two-dimensional torus.

The behavior of phase trajectories depends crucially on the frequency ratio Ω/ω0.
If the ratio is rational, i.e., Ω/ω0 = k/m where k and m are integers, then in a certain
time T = 2π(kΩ + m/ω0), the trajectory returns to the point which it leaves at the
time t0 = t − T . When the frequencies are irrationally related, the phase trajectory
does not close on itself and covers the torus surface everywhere densely.

Phase portraits for the system (2.47) are shown in Fig. 2.21 (left column) for
several values of the parameter b. Starting with a certain value of b, quasiperiodic and
chaotic motions in the phase portrait become indistinguishable, so that we continue
analyzing the Hamiltonian dynamics by applying the stroboscopic technique, i.e., we
fix a sequence of points through the interval 2π on the phase variable Θ . In this case,
periodic motions will be associated with a finite sequence of points, quasiperiodic
motions—with closed trajectories, and chaotic behavior—with a random sequence
of points. Related sets of points in the stroboscopic section of the system (2.47) are
depicted in Fig. 2.21 (right column).
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Fig. 2.21 Phase portraits (left column) and the corresponding sets of points in the stroboscopic
section (right column) of the system (2.47) for Ω = 2π/3 and different values of the parameter b:
(a) b = 0.001, (b) b = 0.01, (c) b = 0.1, and (d) b = 0.8

2.7.1 Poincaré Recurrences in a Periodically Driven
Nonlinear Conservative Oscillator

Let us consider what happens with the dependence ln〈τinf(ε)〉 (2.13) in the case
of Hamiltonian systems. We first fix b = 0.001 that corresponds to Fig. 2.21a. In
this case, the phase portrait and the stroboscopic section look like a set of circles
and ellipses with different radiuses. Falling on a particular set of points depends on
initial conditions, so we fix the initial conditions as x0 = 0.44 and y0 = 0 which
correspond to a circle with a constant radius ≈ 0.2. Thus, we can further turn to the
polar system of coordinates and consider only one variable—the angle ψ instead of
a pair of coordinates (x, y). Figure 2.22 illustrates the dependence of the rotation
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Fig. 2.22 The rotation
number ρ as a function of the
external frequency Ω in the
system (2.47) for b = 0.001
and initial conditions
x0 = 0.44 and y0 = 0
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Fig. 2.23 Dependence of
the minimal Poincaré return
time on the size of the return
region (local approach) in the
system (2.47) for b = 0.001;
Ω = 1.598233989; and
initial conditions x0 = 0.44
and y0 = 0. The black curve
corresponds to the return
vicinity of the point
ψ0 = π/3 and the gray
curve—to the return region
of the point ψ0 = 2π/3

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1

ln
 τ

in
f(

ε)

ln ε

2
3

5

8
13

21

34

55
377

number on the external frequency Ω for the system (2.47). This plot is quite similar
to that for ρ = 1/Ω . On this basis, one can choose a value of Ω so that the rotation
number is close to the golden ratio. However, one must take into account the fact that
in Hamiltonian systems, frequencies and, consequently, rotation numbers depend
strongly on the radius of a circle. This enables one to set the rotation number only
with a certain error.

Figure 2.23 shows the dependence of minimal Poincaré return times (local
approach) on the size ε of a return vicinity for two initial states ψ0 = 2π/3 and
ψ0 = π/3. As shown in the figure, the dependences begin to diverge starting from
the step with number 13.

Such a difference in the dependences results from the fact that even at b = 0.001
the probability distribution density is nonuniform (see Fig. 2.24). This implies that
the local approach cannot be applied in the case of b = 0.001. Figure 2.25 shows
the dependence τinf(ε) calculated using the global approach. It shows that the stairs
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Fig. 2.24 Probability
distribution density p(ψ) in
the system (2.47) for
b = 0.001 and initial
conditions x0 = 0.44 and
y0 = 0
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Fig. 2.25 Dependence of
the mean minimal Poincaré
return time on the vicinity
size in the global approach
for the system (2.47) at
b = 0.001 and
Ω = 1.598233989
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is destroyed also starting form the step 〈τinf(ε)〉 = 13. This is caused by a too large
amplitude of the external force.

Calculation results for the local and global approaches are shown in Fig. 2.26 for
b = 0.00001. As follows from the figure, when the global approach is applied, the
staircase is broken later (from the step with number 34).

We may conclude that the dynamics of points on circles in Hamiltonian systems
demonstrate the same regimes as the circle map. For a small external amplitude,
the dependence τinf(ε) represents the Fibonacci stairs which is destroyed when the
external amplitude b increases. It should be noted that for different rotation numbers
and regardless of the nonlinearity degree of an invariant closed curve in (2.47), the
AP dimension αc turns out to be equal to unity in full compliance with the theory [2,
4]. The AP dimension is defined by the slope of the linear approximation of the step
functions (Figs. 2.23, 2.25, and 2.26) in the range of ε values when the Fibonacci
stairs is not yet destroyed.
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Fig. 2.26 a Dependence of the minimal Poincaré recurrence time on the vicinity size (local
approach) in the system (2.47) for b = 0.00001; Ω = 1.598033989; and initial conditions
x0 = 0.44, y0 = 0. The black curve corresponds to the return vicinity of the point ψ0 = π/3 and
the gray curve—to the return region of the point ψ0 = 2π/3. b Dependence of the mean minimal
Poincaré recurrence time on the vicinity size (global approach) in the system (2.47) for b = 0.00001
and Ω = 1.598033989

2.8 Conclusion

In the present work, we have described the numerical results for the statistics of
Poincaré recurrence sequences in ergodic sets without mixing. We have considered
sets in the dissipative circle map and in stroboscopic sections of the nonautonomous
van der Pol oscillator and nonautonomous conservative oscillator. It has been found
that in all the above examples, regardless of the nonlinearity degree, the Afraimovich–
Pesin dimension is αc = 1, that is fully consistent with the theory developed for the
linear circle shift [2, 4]. We have established that the dependence of ln τinf(ε) on
ln ε represents a step function and have substantiated theoretically its geometric
properties. The universal geometry of the above dependence has been proven for
the golden and silver ratios. The length and the height of the Fibonacci stairs steps
are defined by | ln ρ| [15, 16]. The universality of the Fibonacci stairs is violated if
rotation numbers are different from the golden and silver ratios as well as in cases
caused by the growth of nonlinearity degree of the systems under consideration.
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Chapter 3
Success, Hierarchy, and Inequality Under
Uncertainty

Dimitri Volchenkov

Domainswith a lot of uncertainty have the highest likelihood of skilled people failing.
Those that succeed the most under uncertainty are often simply those that tried
harder and whose early luck compounded. By fostering hierarchical organization in
a group, uncertainty ultimately leads to inequality. Wealth inequality in a population
arises from risky decisions being taken under uncertainty by the vital few: The
more adventurous traders are, the greater their fortune, and the fewer lucky ones
there are. Scarcity also promotes inequality by necessitating competition and fueling
conspicuous consumption. Existing econometric data suggest that rising income
inequality is a global phenomenon, occurring whenever the national economy is out
of step with the world average. Rampant inequality may transform the uncertainty
of national economic development into uncertainty of international relations.

3.1 Introduction

Success comes with perseverance and improvements, opposing luck, over which we
have zero control.

The probability model of success can be viewed as correlated Bernoulli trials,
in which the probability to win in a random experiment with exactly two possible
outcomes, “success” and “failure,”would depend on the number of trials and previous
(successful) outcomes. While the chances of getting lucky might be as small as
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p0 � 1—perhaps, in the same vein as the likelihood of being struck by lightning—
success results from the subsequent deliberate actions and skill acquisition with the
aim to work on the opportune occasion for boosting its chances of recurrence in the
future,

p → p + δ p. (3.1)

The positive probability increment δ p > 0 in (3.1) can describe the effectiveness of
learning, or the gain of advantageous skill contributing toward a favorable outcome.
It can also result from a preferential attachment mechanism where the probability
of the next outcome in a series is proportional to the number of previous successful
outcomes.

Although being amatter of random chance p0 > 0, the launching phase of success
often might be surprisingly controllable. For instance, as the initial phase of a new
business is a search for the customer need that has not yet been addressed, the finding
of a critical point that would represent a major business opportunity in the future can
be accomplished via a predictable process, by identifying a set of market hypothesis
and by sequential validating them through controlled experimentation [1].

As soon as the focus point of efforts is identified, it is time to put ourselves in
a position to win. There are two factors contributing to the process of success: the
number of times (the amount of time) we tried and the magnitude of probability
increment δ p.

However, the road to success is not that easy.

3.2 Enhancing Success Chances by Persistent Learning
and Skill Acquisition

Individuals are capable of continually developing their abilities through persistence
and effort. The degree to which early success (characterized by some probability
p0 > 0) causes subsequent success may be attributed to a learning process, in which
existing knowledge, behaviors, and skills become modified and reinforced. Progress
over time does not happen all at once, but builds upon and is shaped by previous
knowledge.

We suppose that the efficiency of learning process can be described by the prob-
ability gain of getting success in the future, after every successful trial,

δ p = pn − pn−1 = ω = Const, (3.2)

which we assume a fixed constant ω > 0 for simplicity. We suppose that pn = 1 if
pn−1 + ω > 1, and pn = 0 if pn−1 + ω < 0.

Let us study the distributions of the numbers of successful outcomes in the model
(3.2).
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The positive probability increment ω > 0 describes a positive feedback on the
motivation to perform further trials after the previous success. The modification of
the Bernoulli random process that includes a simple component of self-affirmation
(3.2) has been introduced and studied in [2] in details.

We consider the trials as a series of N Bernoulli random variables ui , i =
1, . . . , N , with probabilities 1 − pi and pi for the outcomes “0” (“failure”) and “1”

(“success”), respectively. We are interested in the distribution PN

(∑N
i=1 ui = n

)
of

the n successes over N trials.
With no effect of learning, pi = p, all ui are independent identically distributed

random variables and PN is given by the binomial distribution

PN

(
N∑
i=1

Ui = n

)
=

(
N

n

)
pn (1 − p)N−n . (3.3)

The effect of positive feedback (3.2) for the bimodal model (3.3) is revealed by the
geometric distribution of distances Di between sequent success events,

P (Di = di ) = pi (1 − pi )
di−1, i = 0, . . . , n, (3.4)

with respect to the probabilities 1 − pn . Therefore, the desired distribution of suc-
cesses,

PN (n) =
∑

{∑i ui=n}
P(u1, . . . , uN ), (3.5)

where P(u1, . . . , uN ) is the joint probability distribution of the series of random
variables {ui }, can be calculated as

PN (n) =
∑

{∑i di=N}
p0 . . . pn−1(1 − p0)

d0−1 . . . (1 − pn)
dn−1 (3.6)

where 1 ≤ di ≤ N − n.
This marginal distribution satisfies an intuitively plausible Pascal-type recurrence

relation for the probabilities PN (n), expressing the simple idea of that n successes
in N trials can be reached either from n successes in N − 1 trials plus a final failure,
or from n − 1 or from n − 1 successes in N − 1 trials and a final success:

PN (n) = (1 − pn) PN−1(n) + pn−1PN−1(n − 1), (3.7)

supplied by the boundary conditions P0(0) = 1 and PN (n) = 0, for n > N .

Multiplying (3.7) by xn and summing over all n = 0, . . . ,∞, one arrives at the
equation

GN (x) − GN−1(x) = (x − 1)HN−1(x), (3.8)
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for the generating functions,

GN (x) =
∞∑
n=0

xn PN (n) and HN (x) =
∞∑
n=0

xn pn PN (n). (3.9)

Another equation required in order to accomplish the system is taken from the relation
pn = p0 + ωn following for the probability gain (3.2),

HN (x) = p0GN (x) + ω · x ∂

∂x
GN (x). (3.10)

Combining (3.8) and (3.10), we obtain the following finite difference equation

GN (x) − GN−1(x) = (x − 1)

[
p0 + ω · x ∂

∂x

]
GN (x). (3.11)

For Nω < 1, we can use the continuum approximation N �→ t and replace the finite
difference in the left hand side of (3.11) by the time derivative that gives

∂G(x, t)

∂t
= (x − 1)

[
p0G(x, t) + ωx

∂

∂x
G(x, t)

]
, (3.12)

with the following solution,

G(x, t) = [
eωt − x(eωt − 1)

]−p0/ω
. (3.13)

The time continuum analog of the probability function PN (n) that corresponds to
the generating function (3.13) is nothing else but a negative binomial distribution,

Pt (n) = e−p0t
Γ (p0/ω + n)

n! Γ (p0/ω)

(
1 − e−ωt

)n =
(
r + n − 1

n

)
pn(1 − p)r , (3.14)

with respect to the time-dependent probability function p = 1 − e−ωt , and
r = p0/ω. The derived continuum approximation (3.14) is valid for the total num-
ber of trials not exceeding tmax < ω−1 and for the total number of success less than
nmax = (1 − p0)/ω. The probability density plot for the number of successful trials
in the process with persistent learning, in which the initial probability of success is
p0 = 0.1 and the probability incrementω = 0.02, is given in Fig. 3.1.When learning
matters, the number of tries is attributed to skill. The probability gradients shown in
Fig. 3.1 by arrows “worsen” the chances for success if the number of trials is small,
but “enhance” these chances for longer trial sequences. Driving down cycle time in
trials allows for more experiments, which can produce better results for those with
early luck compounded.
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Fig. 3.1 The probability
density of successful trials in
the process with persistent
learning, in which the initial
probability of success is
p0 = 0.1 and the probability
increment is ω = 0.02. The
arrows show the probability
gradients

3.3 Like a Squirrel in a Wheel—Freud’s Repetition
Compulsion

Factors, over which we have no control, may play an important role in determining
performance amidst uncertainty. When cause and effect are not well understood, or
the environment is permanently changing the acquired skills do not necessarily pay
off over time.

Domains with a lot of uncertainty have the highest likelihood of skilled people
failing. The natural mechanism that can help to improve the long-term performance
under uncertainty is diversification of activities. By getting involved inmany different
projects, e.g., by making a portfolio of many investments, or by bearing and raising
many children, one can dramatically increase the chance of that advantageous skill
and persistent efforts will redeem over time.

Let us consider a large group of individuals engaged in many different activi-
ties, each being characterized by some probability of initial success p0 > 0 and by
some probability increment ω > 0, after every successful trial. The state of getting
precisely n < nmax successful outcomes after t < tmax trials in every activity is then
characterized by the probability (3.14) where nmax and tmax are precisely determined
by p0 and ω given.

According to the second law of thermodynamics, the equilibrium state of such a
group striving for success in a variety of activities can be determined as a state of
maximum entropy,

H(p0,ω) = −
nmax∑
n=0

tmax∑
t=1

[
Pt (n) log2 Pt (n) + (1 − Pt (n)) log2 (1 − Pt (n))

]
,

(3.15)
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Fig. 3.2 The density plot of
entropy (3.15) as a function
of the learning efficiency (ω)
and the probability of initial
success (p0). The contours
correspond to the entropy
levels of 100, 200, 300, 400,
and 500 bits

which is featured by such a probability distribution Pt (n) that can be achieved in
the maximum number of ways, as being the most likely distribution to be observed
over all individuals in the group. The phenomenological entropic force driving the
group to increase its entropy of success can be expressed as the entropy gradient with
respect to the parameters p0 and ω, determining the chances for success.

It is worth a mention that the number of different (n, t)—states of having pre-
cisely n successful outcomes after t trials grows unboundedly when the probability
increment tends to zero, ω → 0, and therefore, entropy of success (3.15) does either.

In Fig. 3.2, we have presented the density plot of entropy (3.15) as a function
of the learning efficiency (characterized by the probability increment ω) and the
task simplicity (quantified by the probability of initial success p0). The contours
shown in Fig. 3.2 correspond to the rising entropy levels of 100, 200, 300, 400,
and 500 bits, respectively. As shown in Fig. 3.2, the value of entropy increases as
the number of states grows, as nmax, tmax ∼ ω−1 and tends to infinity for reducing
probability increments, ω → 0. The maximum entropy gradient is observed for the
initial probability of success p0 ≈ 1/3.

When initial success is random, skill does not necessarily play a role over time for
improving the future chances for success. Therefore, when success breeds success,
but initial success was random, the most likely behavior to be observed over the large
enough group of individuals engaged in a variety of activities is to make things into
a matter of routine, by continuously repeating actions over and over again, without
searching for any improvement of the future chances for success.

Extreme uncertainty can be a serious distressing factor, indeed. Interestingly, the
endless repetition of behavior, or life patterns, which was difficult (or distressing) in
previous life was a key concept in Freud’s understanding of mental life—repetition
compulsion [3].

Being in a group in the face of uncertainty, we are forced to repeat always the
same behavior pattern, without any improvement—as no lesson can been learnt
from the old experience. The essential character traits which remain always the same
and which are compelled to find expression in a repetition of the same experience
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appeared to Freud as ultimately contradicting with the organism’s search for pleasure
and thus justified Freud’s hypothesis [4]:

hypothesis of a compulsion to repeat - something that seemsmoreprimitive,more elementary,
more instinctual than the pleasure principle which it overrides.

In the later editions of his work, Freud had extended this point, by stating that

such the repetitions are of course the activities of instincts intended to lead to satisfaction;
but no lesson has been learnt from the old experience of these activities having led only to
unpleasure.

3.4 The Rich Get Richer—Pareto Principle

Sociologist R. Merton first recognized the phenomenon of accumulated advantage,
emerging when skill does not tell over time and diversification of activities is impos-
sible, and dubbed it “the Matthew Effect,” quoting a Bible passage in which the rich
get richer and the poor get poorer.

The self-reinforcing behavior of certain probability distributions and stochastic
processes is known since the early works of Gibrat [5] and Yule [6]. A stochastic urn
process—a process in which discrete units of wealth, usually called “balls” (◦), are
added continuously as an increasing function of the number of balls already present
in a set of cells, usually called “urns” (| |), arranged in linear order,

| ◦ ◦ ◦ ◦ | ◦ | | ◦ ◦ |,

is the well-known example [7].
Let the size of the kth cell, tk , be the number of balls in this cell plus one, i.e.,

the number of spaces existing in the cell: between two balls, or between two bars,
or between a ball and a bar. The steady-state distributions of the cell sizes can be
obtained if the number of cells n is increased proportionally as the number of balls
is increased.

At each round of the urn process, either a bar or a ball is selected with probability
α and 1 − α, respectively.

If a ball is selected, it is thrown in such a way that each space in all cells has an
equal chance of receiving it.

If a bar is selected, it is placed next to an existing bar, so that the new cell of unit
size emerges at a rate α.

The average size of cells is therefore a random variable with mean 1/α. It is
remarkable that the aggregate size

t =
n∑

k=1

tk (3.16)
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of all cells is increased steadily by one at the end of the round, regardless of whether
a bar or a ball is selected at any given round, either because the size of one of the
cells is increased by one or because a new cell of size 1 is added. Thus, we can use
t not only as the aggregate size but also as a counter for the number of rounds, i.e.,
time in the urn process.

Let p(x, t) be the expected value of the number of cells with size x when the
aggregate size of all cells is t . Then, for x = 1, we have

p(1, t + 1) − p(1, t) = α − (1 − α)

t
p(1, t) (3.17)

where α is the probability that p(1, t) is increased by one and (1 − α)p(1, t)/t is
the probability that p(1, t) is decreased by one as a result of a ball falling in one of
the unit-sized cells.

It is clear that at the steady state, for all x = 1, 2, ..., it should be

P(x) = p(x, t + 1)

α(t + 1)
= p(x, t)

αt
(3.18)

where αt is the expected value of the total number of cells after t rounds.
Setting x = 1, we can use the right-hand side of (3.18) in order to eliminate

p(x, t + 1) from (3.17),

p(1, t) = αt

2 − a
. (3.19)

For x > 1, we have

p(xt + 1) − p(xt) = (1 − α)

[
(x − 1)p(x − 1, t)

t
− xp(x, t)

t

]
. (3.20)

The latter equation assumes that the increase in the number of balls (accumulated
wealth) in a cell is proportional to current cell size; it is impossible to make any cell
better off (by increasing its wealth), without making at least one cell worse off.

Using (3.18) in (3.20), we then obtain

p(x, t)

p(x − 1, t)
= (1 − α)(x − 1)

(1 + (1 − α)x)
. (3.21)

If we define

ρ = 1

1 − α
, (3.22)
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it follows then from (3.21) that

p(x, t)

p(x − 1, t)
= x − 1

x + ρ
, (3.23)

for any time t , and therefore, for the stationary distribution, it will be also true that

P(x)

P(x − 1)
= x − 1

x + ρ
. (3.24)

Moreover, since the stationary probability to obtain a single unit of wealth is

P(1) = p(1, x)

αt
= 1

2 − α
= ρ

1 + ρ
, (3.25)

this stationary probability distribution can be calculated by the following product:

P(x) = x − 1

x + ρ

x∏
r=1

r − 1

r + ρ
. (3.26)

The product formula (3.26) immediately gives the expression for the Yule distribu-
tion,

P(x) = ρ
Γ (x)Γ (ρ + 1)

Γ (x + ρ + 1)
= ρB(x, ρ + 1) (3.27)

where Γ (x) and B(x) are the Gamma and Beta functions, respectively.
The cumulative distribution function for the Yule distribution (3.27),

F(x) =
∞∑
i=x

ρB(i, ρ + 1) = ρB(x, ρ) (3.28)

is characterized by the skewed, heavy-tailed asymptote for x → ∞, as

B(x, ρ) → Γ (ρ)x−ρ, (3.29)

so that the limiting cumulative distribution follows a power law,

lim
x→∞ F(x) = Γ (ρ + 1)

xρ
. (3.30)

According to (3.30), a relative change in the size of a cell (accumulated wealth)
always results in a proportional change in the probability of its occurrence over all
cells.
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The exponent ρ in (3.30) is the inverse probability to add a ball (a unit of wealth)
at a round that is nothing else but the average wealth per cell in the urn model.

The processes of accumulated advantage lead to the skewed, heavy-tailed (Pareto)
distributions of wealth. The approximate power law distributions similar to (3.30) are
observed over a wide range of magnitudes, in a wide variety of physical, biological,
and man-made phenomena where an equilibrium is found in the distribution of the
“small” to the “large” [8].

In particular, a power law distribution—the well-known Pareto distribution [9]—
had been suggested in the context of the distribution of upper incomes and wealth
among the population as early as in 1896:

F(x) = 1 − 1

xρ
, 1 ≤ x ≤ ∞ (3.31)

where ρ is a fixed parameter called the Pareto coefficient and x is the variable size.
It then follows that the probability density function for (3.31) can be described as
follows:

f (x) = ρ

xρ+1
, 1 ≤ x ≤ ∞, (3.32)

so that Zipf’s law may be thought of as a discrete counterpart of the Pareto distribu-
tion.

The Pareto distribution (3.31) was used to describe the allocation of wealth over
a population since a larger portion of the wealth is usually owned by a smaller
percentage of individuals in any society. Therefore, it is intuitive that as income
becomes larger, the number of observations is expected to decline, following a law
dictated by some constant parameter.

This idea is sometimes expressed more simply as the Pareto principle, or the
“80-20 rule”—the law of the vital few—which says that 20% of the population
controls 80% of the wealth. Although the 80-20 rule corresponds to a particular
value of ρ ≈ 1.161, it becomes a common rule of thumb in business, e.g., “80% of
sales come from 20% of clients.” Pareto suggested the negative of the slope ρ might
be an indicator of inequality in the underlying population, implying that small values
of ρ relates to a high inequality. Under uncertainty, only the vital few accumulates
advantage.

3.5 Inequality Rising from Risk Taking Under Uncertainty

An individual is risk averse if he is not willing to accept a fair gamble, with an
expected return of zero. “Anyone who bet any part of his fortune, however small, on
a mathematically fair game of chance acts irrationally,” wrote Daniel Bernoulli in
1738 [10]. It is reluctance of a person to accept a bargain with an uncertain payoff
rather than another bargain with a more certain, but possibly lower, expected payoff.
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Fig. 3.3 Risk aversion
implies that the utility
functions are concave

People’s preferences with regard to choices that have uncertain outcomes are
described by the expected utility hypothesis [11]. This hypothesis states that under
the quite general conditions the subjective value associated with an uncertain out-
come is the statistical expectation of the individual’s valuations over all outcomes. In
particular, a decision maker could use the expected value criterion as a rule of choice
in the presence of risky outcomes. The individual’s risk aversion is accounted by a
mathematical function called the utility function [10]. Utility refers to the perceived
value of a good (or wealth), and the utility function (viewed as a continuous function
of actual wealth) describes the attitudes toward risky projects of a “rational trader,”
whose objective is to maximize growth of his wealth in the long term. Such a trader
would attach greater weight to losses than he would do to gains of equal magnitude.
Thus, risk aversion implies that the utility functions of interest are concave (Fig. 3.3).
The plausible example of utility functions is given by

Uλ(w) = wλ − 1

λ
(3.33)

where 0 < λ < 1 is the risk tolerance parameter—as λ decreases, traders become
more risk averse and vice versa. In the limit of maximum risk avoidance, λ → 0,
and the function (3.33) turns into the Bernoulli logarithmic utility function [10],

lim
λ→0

Uλ(w) = lim
λ→0

d
dλ

(
eλ lnw − 1

)
d
dλ

λ
= lnw. (3.34)

Let us consider a population characterized by some distribution of wealth pw. The
expected utility over the population is

υ = 〈lnw〉 =
∑
w

pw lnw. (3.35)
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According to the maximum entropy principle [12, 13], the system would evolve
toward the state of maximum entropy characterized by the probability distribution
which can be achieved in the largest number of ways, being the most likely distrib-
ution to be observed. We are interested in the probability distribution of wealth over
the population pw with maximum entropy

Hw = −
∑
w

pw ln pw, (3.36)

under the condition of maximum risk avoidance. As soon as the expected logarithmic
utility (3.35) is given, it is well known [14] that the maximum entropy (3.36) is
attained for the power law distributed wealth.

Pareto distribution of wealth over the population arises under zero risk tolerance.
Given expected utility υ, the Lagrangian functional for entropy function Hw subject
to two constraints reads as

L = −z

(∑
w

pw lnw − υ

)
− (ln ζ − 1)

(∑
w

pw − 1

)
−

∑
w

pw ln pw, (3.37)

Then, the equation for the most likely wealth probability distribution to be observed
is

− z lnw − ln ζ − ln pw = 0. (3.38)

The explicit solution of (3.38) is nothing else but the Pareto distribution,

pw = w−z

ζ(z)
, w > 1 (3.39)

where ζ(z) = ∑
w w−z is the appropriate normalization constant. The value of the

Lagrange multiplier z, which becomes the exponent in the power law (3.39), can be
determined self-consistently as the solution of the equation υ(z) = −d ln ζ(z)/dz.

In the case of less risk-averse population when λ > 0, the variation of the corre-
sponding functional leads to the equation

− zUλ(w) − ln ζ − ln pw = 0, (3.40)

with the more uneven, exponential solution for the most likely wealth probability
distribution,

pw = 1

ζ(z)
e− z

λ (w
λ+1). (3.41)

Therefore, we conclude that wealth inequality can be viewed as a direct statistical
consequence of making decisions under uncertainty under the condition of zero risk
tolerance. Themore risk is taken by traders investing under uncertainty, and themore
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unequal distribution of assets among them is likely to be observed in the long term.
Wealth inequality among the population arises from taking risky decisions under
uncertainty by the vital few: The more adventurous traders, the more their fortune,
the less the number of lucky ones.

3.6 Generalized Mass-Action Principle—Emergence
of Hierarchies Under Uncertainty

A graph is a representation of a set of objects (called vertices, or nodes), in which
some pairs of objects may be connected by links (called edges). The degree of a
vertex in a graph is the number of edges incident to it—its valence.

The random graphs with scale–free probability distribution of node degrees are
ubiquitous inmany real-world networks such as theWorldWideWeb, social, linguis-
tic, citation, and biochemical networks; an excellent survey on scale–free properties
of real-world networks can be found in [15]. Many of them are formed according to
the preferential attachment principle, which together with its various modifications,
could be seen as a particular case of degree-mass-action principle since the degree
of a node acts in that as a positive affinity parameter (a mass) quantifying the attrac-
tiveness of the node for new vertices [16]. “Preferential attachment” is perhaps the
most recent of many names that have been given to processes, in which a quantity is
distributed over a number of units according to how much they already have.

Our first aim is to construct a family of static random graph models, in which
vertex degrees are distributed according to a power law while edges still have a high
degree of independence. Our aim is tomimic the community formation process under
uncertainty. As usual in random graph theory, we will entirely deal with asymptotic
properties in the sense that the graph size goes to infinity.

Weconsider graphswith the vertex setV = Vn = {1, ..., n}where an edgebetween
the vertices x and y (denoted by x ∼ y) is interpreted as a persistent contact between
the two. Given x ∈ V , its degree will be denoted by d(x). We view edges as being
generated by a pair-formation process, in which each individual vertex x chooses a
set of partners according to a specified x-dependent rule.

The set of individuals which has a contact with the vertex x can be divided into
two possibly not disjoint sets:

• the set of nodes which are chosen by x himself;
• the set of nodes which have chosen x as one of their partners.

We call the size of the first set the out-degree dout (x) of x and the size of the second
one—the in-degree din(x) of x . Obviously,

d(x) ≤ dout (x) + din(x), (3.42)

and if the choices of partners are sufficiently independent, one can expect the equality
in (3.42) to hold almost surely for infinitely large graphs, n → ∞.
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We partition the set of vertices Vn into groups {Ci (n)}i≥1 where all members of
the group Ci (n) choose exactly i partners by themselves (dout = i on Ci (n)).

Let P1
α (n, j) the probability for x to choose a fixed partner y ∈ C j (n) , among n

partners available for the choice, provided just a single choice will be made,

P1
α (n, j) = Aα(n)

jα

n
. (3.43)

Here, Aα(n) is a normalization constant such that

Aα(n)

(∑
i≥1

|Ci (n)| i
α

n

)
= 1, (3.44)

and α is a real parameter. Since we want Aα(n) → Aα, as n → ∞, we need that
the sum

∑
i |Ci (n)|iα/n to be bounded as a function of n which will impose the

constraints on the constant α.
The parameter α in (3.43) acts as the degree of affinity, tuning the tendency to

choose a partner with a high out-degree, or with low out-degree. Namely, if α = 0,
the choice is made without any preference, and Aα(n) ≡ 1. For α > 0, the “highly
active” individuals are preferred,whereas the individuals of “lowactivity” are favored
if α < 0.

We then obtain the basic probability of x and y are connected in the graph,

Pr[x ∼ y] � Aα(n)
i · jα
n

, x ∈ Ci , y ∈ C j . (3.45)

Concerning the size of the sets Ci (n), we shall make the following assumption:

|Ci (n)|
n

= pi (n) → c1
iγ

, as n → ∞. (3.46)

With this choice, we have to impose the restriction α < γ − 1 to ensure the conver-
gence of Aα (n) as n → ∞.

We also require γ > 2 since otherwise the expected in-degree for individuals
from a fixed group would diverge. Note that the fixed out-degree distribution defines
a probability distribution on each graph with vertex set Vn and therefore a random
graph space Gn (α, γ).

In order to compute the important pairing probabilities, we start with the easier
case α = 0:

Pr (x ∼ y | x ∈ Ci ; y ∈ Ck) = i + k

n
− ik

n2
∼n→∞

i + k

n
(3.47)

Likewise, one can compute the corresponding probabilities for α �= 0. Dropping the
details of calculations, we just state the result:
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Pr (x ∼ y | x ∈ Ci ; y ∈ Ck) � Aα
(kiα + kαi)

n
, n → ∞. (3.48)

It turns out that for α < 2 the typical community graphs in the model of community
formation still have a power law distribution for the node degree although being
characterized by the different exponents for the in-degree and out-degree compo-
nents.

Forα > 2,we obtain a degree distribution, which follows a power law on average.
In order to compare both domains, we will use the integrated tail distribution

Fk = Pr (d (x) > k) . (3.49)

We show that in both cases, α < 2 as well as α > 2, we, nevertheless, get the same
tail of the degree distribution.

Since the partner choice under uncertainty is sufficiently random and is not
strongly biased toward high degree individuals (i.e., the meaning of the condition
α ≤ γ − 1), it is easy to see that the in-degree distribution of a vertex from the group
Ci converges to a Poisson distribution with mean const · iα for n → ∞,

Pr(X=k) = λke−λ

k! , λ = const · iα. (3.50)

Furthermore, there are essentially two regimes of community formation in the para-
meter space:

• for which the expected in-degree is of smaller order than the out-degree over all
groups;

• for which the in-degree is asymptotically of larger order.

In the first case, it is clear that the in-degree is too small to have an effect on the
degree distribution exponent. In other words, the set of individuals with degree k
consists mainly of individuals whose out-degree is of order k. The further estimation
shows that the expected in-degree of individuals from the group i asymptotically
equals the power law

〈(din (x) | x ∈ Ci )〉 � const · iα. (3.51)

Therefore, the in-degree is of smaller order than the out-degree if α < 1. In the case
γ − 1 ≥ α ≥ 1, the set of individuals with degree k consists mainly of those whose
index is of order k1/α.

We conclude that under uncertainty when the cumulative advantage is at work,
there might be no parity of chances to choose a partner and to be chosen as a partner
by other individuals.

In uncertain romantic relationships, love triangles are inevitable. While aiming at
exclusive relationships with a partner, we always get an arrangement unsuitable to
one or more of the people that might be involved: We either have to compete with
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rivals for the love of the beloved, or have to split their attention between many love
objects, so that love triangles become inevitable.

Hierarchical organization within large human groups integrated by chains of com-
mand would emerge under uncertainty in the pretty same way. As the group size
grows, face-to-face interactions among all group members are not required, as the
accumulated advantage featuring selection of partners for interactions makes prob-
able only a few interactions between a superior and several subordinates, and this
is enough to maintain integrity within the entire group. In the face of uncertainty,
the group grows by adding hierarchical levels, and such a process obviously has no
physical limit. However, the downside of hierarchical organization is that it inevitably
leads to inequality [17].

By fostering hierarchical organization in a group, uncertainty ultimately leads
to inequality. An egalitarian social ethos typical for the most of hunter-gatherers
is possible only for small enough groups based on kinship and tribe membership,
as equality requires active maintenance by means of continuous face-to-face inter-
actions. While hierarchical organization emerges spontaneously amidst uncertainty
(as seen among chimpanzees, forming themselves into hierarchies dominated by an
alphamale), people living in small-scale societies possess numerous norms and insti-
tutions designed to control those individuals who attempt to dominate others [18].
However, such the norms cannot be efficiently implemented within large enough
groups and among distantly living individuals. Thus, the side effect of selection
for greater societal size was the appearance of permanent leaders and hierarchical
organization [19].

3.7 Inverse Mass-Action Principle—Inequality Due
to Uniqueness and Scarcity

In the economics of location theory introduced in [20] and developed by [21], a
city, or a particular city district, may specialize in the production of special goods
connected with a unique natural resource, the special education or capabilities of
inhabitants, efficient policy, or unusually low expenditures. Cities and city districts
can compete among themselves in a market of unique products that is not necessarily
connected with the quantity of their inhabitants. The demand for these unique and
precious products comes into the city district from everywhere and can be considered
as exogenous. The degree of attractiveness of such a place can be specified by a real
positive random variable ω > 0 [22]. In the present section, we describe an edge
formation principle in a random graph related to some degree of attractiveness a
priori imposed on the vertex set in a large graph [16, 23].

Namely, we assume that attractiveness can be described by a real positive random
variable ω that quantifies some attractive important property of an individual (such
as its wealth or popularity), or beauty and importance of a place. The degree of
attractiveness is distributed over the population (or all available places) with a given
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probability distribution ϕ (ω). We shall demonstrate below that the particular form
of the function ϕ is not important for the qualitative understanding of the advantage
accumulation process.

Furthermore, we assume that a link between the two individuals (or places), x and
y, arises as a result of a directed choice made by either x or y (symbolized by x → y
or y → x , respectively). Although the edge creation is certainly a directed process,
in the present section, we consider the resulting graph to be undirected since for
the majority of relevant transmission processes defined on the network, the original
orientation of an edge is irrelevant.

We suppose that the pairing probability follows an inverse mass-action principle:
The probability that x decides to connect to y characterized by its affinity value ω (y)
reads as

Pr {x → y | ω (y)} ∼ 1

N
· 1

ϕ (ω (y))α
, α ∈ (0; 1) (3.52)

where N being the total number of vertices. Let us note that it is not the actual value
ω (y) which plays a decisive role while pairing, but rather its relative frequency of
appearance over the population.

The proposed principle captures the essence of antiquity markets: The more rare a
property is, the higher is its value, and the more attractive it becomes for others. The
paring probability model described above is called the Cameo-principle, having in
mind the attractiveness, rareness, and beauty of the small medallion with a profiled
head in relief called Cameo. And it is exactly their rareness and beauty, which gives
them their high value [16, 23].

In practice, it is indeed difficult if ever possible to estimate exactly the actual value
of ω for any individual (or a place) since such an assessment is obviously referred to
both the economic and cultural factors at once that may vary greatly over the different
historical epochs and across the certain population groups.

In the framework of a probabilistic approach, it seems therefore natural to consider
the value ω as a real positive independent random variable distributed over the vertex
set of the graph uniformly, according to a smooth monotone decreasing probability
density function f (ω).

While introducing the model of Cameo graphs, we assume that

• The parameter ω is independent identically distributed (i.i.d.) over the vertex set
with a smooth monotone decreasing density function ϕ (ω) .

• Edges are formed by a sequence of choices. By a choice we mean that a vertex
x chooses another vertex, say y, to form an edge between y and x . A vertex can
make several choices although all choices are assumed to be made independently
of each other.

• If x makes a choice, the probability of choosing y as a partner depends only on
the relative density of ω (y) that is of the form (3.52).

• A predefined out-degree distribution determines the number of choices made by
the vertices. The total number of choices (and therefore the number of edges) is
assumed to be ∝ const · N .
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We focus on the striking observation that under the above assumptions a scale-
free degree distribution emerges independently of the particular choice of the ω−
distribution. Furthermore, it can be shown that the exponent in the degree distribution
becomes independent of ϕ (ω) if the tail of ϕ decays faster than any power law.

Let VN = {1, ..., N } be the vertex set of a random graph space. We are mainly
interested in the asymptotic properties for N � 1.We assign to each element x from
the set VN a continuous positive real random variable ω (x) taken from a distribution
with density function ϕ (ω). The variable ω can be interpreted as a parameterization
of VN . For a set

C ω0,ω1 = {x : ω (x) ∈ [ω0,ω1]} , (3.53)

we obtain

〈(
�C ω0,ω1

)〉 = N ·
ω1∫

ω0

ϕ (ω) dω (3.54)

where �C ω0,ω1 denotes the cardinality of the set (3.53). Without loss of generality,
we assume that ϕ > 0 on [0,∞) and that the the tail of the distribution for ϕ is a
monotone function of ω > ω0.

Edges are created by a directed process in which the basic events are choices
made by the vertices. All choices are assumed to be independently identically dis-
tributed. The number of times a vertex x makes a choice is itself a random variable
which may depend on x . We denote this random variable as dout (x). The number
of times a vertex x is chosen in the edge formation process is called the in-degree
din (x) . Although each choice generates a directed edge, we are interested in the
corresponding undirected graph. In the what following about, we refer just to the
original direction in the edge formation process.

Let the probability that a vertex y, with a fixed value of ω, is chosen by x is

pω = Pr {x → y | ω = ω (y)} . (3.55)

For a given realization ξ of the random variable ω, we assume that

pω (ξ, N ) = 1

N
· A (ξ, N )

[ϕ (ω)]α
(3.56)

where α ∈ (0, 1) and A (ξ, N ) is a normalization constant. It is easy to see that the
condition

∞∫

0

[ϕ (ω)]1−α dω < ∞ (3.57)
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is necessary and sufficient in order to get

A (ξ, N ) → A > 0, N → ∞, (3.58)

so that it should be α < 1.
One might argue that the choice probabilities should depend more explicitly on

the actual realization ξ of the random variable ω over VN , and not only via the
normalization constant. The reason not to do so is twofold: First, it is mathematically
unpleasant to work with the empirical distribution of ω induced by the realization
ξ since one had to use a somehow artificial N−dependent coarse graining. Second,
the empirical distribution is not really “observed” by the vertices (having in mind
for instance individuals in a social network). What seems to be more relevant is the
common believe about the distribution of ω. In this sense, our setting is a natural one.

The emergence of a power law distribution in the above settings is not a surprise.
The situation is best explained by the following example. Let us take

ϕ (ω) = C · e−ω

and define a new variable

ω∗ = 1

[ϕ (ω)]α
= eωα

Cα
.

The new variableω∗ can be seen as the effective parameter to which the vertex choice
process applies. Then, the induced distribution of ω∗ is

F (z) = Pr
{
ω∗ < z

} =
1
α lnCα·z∫

0

ϕ (ω) dω = − 1

z1/α
− C, (3.59)

and therefore, the ω∗−distribution is nothing else but a power law,

φ
(
ω∗) = 1

α
· 1

(ω∗)1+1/α ,

with an exponent depending only on α.

Weconclude that a commonbelief about rarity (or scarcity) of a resource or an item
automatically fosters inequality between individuals (or places) (i.e., revealed by the
highly skewed distributions of accumulated advantage) with respect to accessibility
to (or availability of) the scarce resource, independently of the particular choice of
the ω−distribution.

Scarcity always promotes inequality. It is remarkable that by no means an item
has to be important for survival, for it to be scarce. However, people have to be ready
to make a sacrifice by giving something up, or by making a trade-off in order to
obtain more of the resource that is wanted so much (and viewed as scarce).
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Thus, scarcity ultimately involves a scarifies for sake of keeping up with the
Joneses indicating benchmarks for a particular social class and demonstrating the
desire of an individual for upward social mobility.

Scarcity necessitates competition and fuel conspicuous consumption. Scarce
resources necessitate competition, as “people strive to meet the criteria that are being
used to determine who gets what” [24], and fuel conspicuous consumption, as people
always care about their standard of living in relation to their peers [25].

3.8 Cross-Database Analysis Suggests the Worldwide
Growth-Inequality Relation (U-Curve)

The American economist S. Kuznets had suggested [26] that as an economy devel-
ops, market forces first increase and then decrease economic inequality (see Fig. 3.4).
Kuznets demonstrated this relationship using cross-sectional data about income
inequality [27] collected in the middle of the twentieth century, in the USA. Accord-
ing to Kuznets, as a country develops, more capital is accumulated by the owners
of industry, introducing inequality. However, more developed countries move then
back to lower levels of inequality through various redistribution mechanisms, such
as social welfare programs. Kuznets himself expressed concerns about the “fragility
of the data” which underpinned the hypothesis and about that

even if the data turned out to be valid, they pertained to an extremely limited period of time
and to exceptional historical experiences [28].

The recent data show that after the 1970s the level of income inequality began to
rise in the USA again [29] although a worldwide pattern of declining inequality had
been intact until 1980 [30]. Then, a long and sharp period of increasing inequality
has been observed worldwide, starting from 1981 through the end of the century that
rather portrayed inequality as a globalmacroeconomic phenomenon in the globalized
world than a net result of the disparate effects of technology, trade in national labor
markets, and particular national policy choices [30].

The new databases that have become available recently can help us to understand
howeconomicgrowth and inequality are related:whether growthproduces inequality,
and that inequality is a necessity for overall growth [31]. In the present section, we

Fig. 3.4 As an economy
develops, market forces first
increase and then decrease
economic inequality, as
S. Kuznets suggested
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report on the unprecedented cross-database analysis of inequality and economic
performance for different world regions and time periods.

First, we have used all existent data series (1870–2014) in theWorld Top Incomes
Database [32] as the source of inequality statistics available for the moment for
30 countries,1 over the long period of time, including scattered and isolated data
patches, such as the top income data records for Denmark attributed to 1870. In
contrast to existing international databases, generally restricted to the post-1970 or
post-1980 period, the top income database covers (although partially) nearly all of
the twentieth century—a much longer period, which is important for the analysis
because structural changes in income and wealth distributions often span several
decades [32]. It is also important that by using data from the income tax records the
studies underlying the database [29, 33–36] used similar sources and methods as the
pioneering works by Kuznets [26, 27] for the USA.

Second, we have used the GDP historical database of the Maddison Project2 [37]
on the gross domestic product (GDP) per capita (per person) as the main source
of data on economic development and evolving living standards. GDP per capita
is a measure of product produced within a country’s borders (the sum of the gross
values added of all resident and institutional units engaged in production) divided
by the resident population on a given date, the primary indicator used to gauge the
health and size of a country’s economy. The major advantage of GDP per capita
as an indicator of standard of living is that the data are available for almost every
country in the world and the technical definition of GDP per capita is consistent
among different countries. The estimates of GDP per capita in the data of Maddison
Project are given in the US dollars of 1990. The underlying methodology and main
results on the economic growth in the world between AD 1 and 2010 were reported
by the Maddison Project in [38].

We have used the inverted Pareto–Lorenz coefficient (IPLC) proposed in [29] as
the measure of inequality. The IPLC is related to the standard Pareto coefficient for
the top income shares,

ρ = 1

1 − log10
(

S10
S1

) , (3.60)

by

IPLC = ρ

ρ − 1
= 1/ log10

(
S10
S1

)
(3.61)

1The data series for the following countries have been used: Argentina, Australia, Canada, China,
Colombia, Denmark, Finland, France, Germany, India, Indonesia, Ireland, Italy, Japan, Korea,
Malaysia, Mauritius, the Netherlands, New Zealand, Norway, Portugal, Singapore, South Africa,
Spain, Sweden, Switzerland, Taiwan, UK, USA, and Uruguay.
2The Maddison Project had been initiated in March 2010 by a group of close colleagues of Angus
Maddison.
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where S10 and S1 represent the income shares of the top 10%and1%of the population,
respectively.

Larger values of the IPLC correspond to larger top income shares while the oppo-
site is true for the standard Pareto coefficient (3.60), so that the IPLC provides a
direct snapshot indication of top incomes. Recent studies on top incomes [29] have
shown that the IPLC is effectively stable for any income distribution, in any given
year and country, although it can vary over time due to a combination of economic
and political factors.

We have presented all existent data series in theWorld Top Incomes Database [32]
against the relevant GDP per capita data of the Maddison Project [37] in Fig. 3.5.
Since the analyzed historical data on the relation between the economic growth and
inequality is attributed to the different countries and covers almost one and a half
century of economic development (1870–2014), we think that it might reveal a global
trend, independently of short-term national economic miracles and misadventures.

Inequality is closely correlated with low growth, yet with high growth either. The
entire data set (including marginal outliers) is best fitted by the parabolic trend line,

y = 2.5 − 0.114x + 0.004x2,

or, equally well, by the hyperbolic cosine, y = 0.72 + cosh(0.084x − 1.18). As
shown in Fig. 3.5, the level of inequality is maximum for low as well as for high
values of GDP per capita, but is minimum (IPLC ≈ 1.6) for the intermediate GDP
levels of approximately US$14,250. Interestingly, the observed GDP level of min-
imum inequality is very close to the mean GDP level of the world (US$14,402 for
2013) as estimated by the World Bank [39]. The observed trend may partially due
to the fact that unprecedented economic growth observed in the last decades in most

Fig. 3.5 All presently available data series (1870–2014) in the World Top Incomes Database [32]
are given against the GDP per capita data of the Maddison Project [37]. The parabolic trend line
(y = 2.5 − 0.114x + 0.004x2) fits the data best (the goodness of fit of linear regression over the
entire data set, including marginal outliers, is R2 = 0.26; the goodness of the parabolic fit for the
central part of the U-curve is R2 = 0.84)
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countries and expressed by the very high GDP figures goes along with growing
inequality. The trend, however, suggests that as the economic growth is a global
worldwide phenomenon, rising inequality accompanying that is a global worldwide
phenomenon either, occurring once the national economy is out of step with the
world average.

It is also remarkable that the observed trend in the relation between the economic
performance and inequality is precisely the opposite to Kuznets’s hypothesis [26]
sketched in Fig. 3.4. As economy had developed, differences in inequality across
rich countries were mostly down to the generosity of wealth redistribution. The eco-
nomic and social policy regimes, providing important social protection for millions
of industrial workers in developed countries, had proven to be adequate for a globally
dominant industrial economy, underlying three decades of widely shared economic
growth [40].

However, then the ever rising need to propel growth through risky entrepreneur-
ship and innovation, into an era of globalization, deindustrialization, and economic
dislocation fostered large financial rewards to the very top and bent incentives toward
the short-term maximization of share prices rather than planning for long-term
growth. The both factors apparently promote the unprecedented rise of inequality
during the last 30 years [41, 42]. No surprise the present level of income inequality
in the USA is comparable to that in Ghana and Turkmenistan. And, as reported in
the Global Wealth Report 2015 [43], just 0.7% of the world’s adult population yet
own 45% of all household wealth in 2015.

The empirically observed U-curve in the relationship between the economic per-
formance and income inequality (presented on Fig. 3.5) can be understood in the
context of probability models discussed in the present chapter. Namely, a stagnant
planned/ command/palace economy aiming at the complete elimination of risks (e.g.,
by rationing food) engenders scarcity of virtually everything in the society. We have
discussed in Sect. 3.7 on that scarcity might fuel ultimate inequality, as just a few
redistributing people get the unfettered access to the scarce resourceswhile the shares
of others dwindle continuously.

At the opposite end, increasingly risky entrepreneurship and adventurous innova-
tions necessary to propel economic growth foster inequality either, as we have proven
in Sect. 3.5. Therefore, the both ends of economic performance—the richest and the
poorest alike—are prone to live under conditions of rising inequality. Equality calls
for active maintenance, as usual. We might suggest that on average the dynamics of
inequality level is apt to obey the law of pendulum (Fig. 3.6), as it rises at the both
ends of economic performance while is minimum in the middle of span, very close
to the estimated mean GDP per capita of the world. The economy is growing there at
a pace sufficient to meet fundamental human needs and to avoid shortages although
the considerable share of earned income is redistributed among the entire society
by means of the various social mechanisms such as taxation, monetary policies, and
welfare at the cost of relative economic slowdown. The establishment and efficient
functioning of such the redistributive mechanisms naturally require a broad public
consensus to be reached about the necessity, harmlessness, and fairness of changes
that would take place within the social institutions. However, such a social consensus
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Fig. 3.6 The law of pendulum in inequality-growth relation. The level of inequality experiences
rises in both low- and high-performing economies

based on a reciprocal willingness to sacrifice particular interests, including the quest
for large domestic production and growth, for the common interest of rising social
trust is not that easy to achieve, unless people face an existential threat to their way of
life and their ultimate security. Perhaps, wars provide the most vital and compelling
motive to gladly embrace the “economy and equality of sacrifice-satisfied”3 that may
open the door to the efficient application of inequality reducing policies.

While running its trail, the pendulum of rising inequality in one country inevitably
pushes those in other countries. It is worth a mention that rampant inequality in
a “winner-take-all economy” [42] breeds political polarization and boosts social
mistrust, with a tendency to distort functioning of democratic institutions and to
further erode social capital in the society [40, 41]. For the service economy rewards
primarily highly educated and highly skilled elite while leaving displaced workers
and unprotected middle class behind, the latter social groups find themselves unable
to rely on the state for economic and social protection anymore. As the state fails
to carry out its basic social functions, it is not more served and admired by the
population majority, but rather endured and tolerated [44]. Rational country leaders
facing common dissatisfaction with domestic policies and aggravating economic
conditions that prompt their removal from office are likely to gamble on a risky
diversionary war, as the diversionary war theory (DWT) suggests [45]. The data
on the long-term inequality dynamics propose that during the last century the sharp
increases of inequality level occur in many countries synchronously (see Fig. 3.7).
Therefore, many a government at oncemay start considering the diversionary foreign

3Franklin D. Roosevelt: “A Call for Sacrifice,” 28 April, 1942.
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Fig. 3.7 The long-term
dynamics of inequality level
measured by the inverted
Pareto–Lorenz coefficient for
30 countries. The data are
taken from the World Top
Incomes Database [32]

policy as leaving room only for gain essentially when preying on weaker states.4

The use of modern hybrid warfare tactics that blend conventional warfare, irregular
warfare, and subversive efforts, with an intention to avoid attribution and retribution,
makes such a temptation almost irresistible.

The primary purpose of diversionary conflicts is to divert attention of the public
away from domestic issues, increasing that available time the government has to
address the internal troubles [46]. Furthermore, the external threat—either real or
illusory—certainly unifies the country through the rally round the flag effect by
creating a new out-group, other than the government, for the population to direct its
dissatisfaction and by increasing a short-run popular support of the country leader.
Moreover, when “freedom hath fled from the world”—in the absence of any prospect
to improve the well-being and quality of life, to guarantee personal freedom and civil
rights, and to promote upward social mobility, it is well known that “the soldier,
alone, is the freeman”.5 Taking part in a war as a mercenary or as a volunteer would

4The profound commentary on diversionary wars was given by Plato in The Republic: “But when
he [tyrant] has disposed of foreign enemies by conquest or treaty, and there is nothing to fear from
them, then he is always stirring up some war or other, in order that the people may require a leader.
To be sure. Has he not also another object, which is that they may be impoverished by payment
of taxes, and thus compelled to devote themselves to their daily wants and therefore less likely to
conspire against him?Clearly. And if any of them are suspected by him of having notions of freedom,
and of resistance to his authority, he will have a good pretext for destroying them by placing them
at the mercy of the enemy; and for all these reasons the tyrant must be always getting up a war. He
must.” (Translated by B. Jowett). Downloaded from The Internet Classics Archive, D.C. Stevenson,
Web Atomics (C) 1994–2000.
5From “The Camp of Wallenstein” by Friedrich Schiller, Musen-Almanach für das Jahr 1798,
137–140, Scene XI; translated by J. Churchill.

Now freedom hath fled from the world, we find
But lords and their bondsmen vile
And nothing holds sway in the breast of mankind
Save falsehood and cowardly guile.
Who looks in death’s face with a fearless brow,
The soldier, alone, is the freeman now.



76 D. Volchenkov

become a cherished desire and a welcome breath of freedom for most young people
vegetating in godforsaken provinces under the conditions of total social despair.

Of course, we may disagree with the general message of DWT, which is hard
to prove quantitatively [47]. Nevertheless, the data on the long-term dynamics
of inequality over 30 countries presented in Fig. 3.7 show convincingly that the
sharp picks of inequality level visible synchronously for many countries at once do
announce the periods of global conflicts and uncertainty of international relations a
good deal in advance. The growing number and scale of international conflicts we
are witnessing today apparently confirm this observation.

Rampant inequalitymay transform uncertainty of national economic development
into uncertainty of international relations. In face of common challenges, a moderate
economic growth, though might be considered as a relative backwardness, seems to
be not such a big disgrace, as well as the rapid economic advancements might not
look a source of that strong pride.

3.9 Conclusion

We have introduced and studied the probability model of success. The probability
increments of getting success in the future can be maximized over time when the
consistent efforts are made in a direction of highest positive impact and when the
personal role of an actorwithin a team is increasingly important. This can be achieved,
in particular, with the help of followers and supporters by commitment to the ethic
of reciprocity focused on the simultaneous success of those around us.

We have shown that the ones that succeeded themost under uncertainty are simply
the ones that tried more. The gradients of probability of getting a success “worsen”
the chances for luck if the number of trials is small, but “enhance” these chances
for longer trial sequences. Driving down cycle time in trials would allow for more
experiments, which can produce better results for those with early luck compounded.

However, domains with a lot of uncertainty have the highest likelihood of skilled
people failing.When initial success is random and not highly probable, skill does not
necessarily play a role over time for improving the future chances for success. We
have also demonstrated that being in a group facing uncertainty, we may be trapped
within the repetition compulsion and forced to repeat always the same behavior
pattern, without any improvement—as no lesson can been learnt from the old expe-
rience.

We have discussed on that the processes of accumulated advantage lead to the
highly skewed, heavy-tailed distributions of wealth. In particular, under uncertainty
only the vital few would accumulate advantage. When a trader would attach greater
weight to losses than he would do to gains of equal magnitude, we say that he is
risk averse. We have shown that the Pareto distribution of wealth corresponds to the
logarithmic wealth utility. Wealth inequality among the population rises from taking
risky decisions under uncertainty by the vital few: The more adventurous traders, the
more their fortune, the less the number of lucky ones.
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When the cumulative advantage is at work, there might be no parity of chances
to choose a partner and to be chosen as a partner by other individuals. By fostering
hierarchical organization in a group, uncertainty ultimately leads to inequality. A
common belief about rarity (or scarcity) of a resource, or an item automatically
fosters inequality between individuals with respect to accessibility to the scarce
resource. Scarcity also promotes inequality by necessitating competition and fueling
conspicuous consumption.

We have analyzed all existent data series in the World Top Incomes Database
[32] against the relevant GDP per capita data of the Maddison Project [37] and
demonstrated that income inequality is closely correlated with low growth, yet with
high growth either. The discovered trend suggests that rising income inequality is
a global worldwide phenomenon, occurring once the national economy is out of
step with the world average. Finally, we have discussed on how rampant inequality
may transform uncertainty of national economic development into uncertainty of
international relations.
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Chapter 4
Functional Differential Equations
with Piecewise Constant Argument

M.U. Akhmet

4.1 Introduction and Preliminaries

Differential equations with generalized piecewise constant argument, EPCAG, were
introduced in [1] and investigated in [2–17]. Extended information about these sys-
tems can be found in book [8]. These equations contain a subclass, differential equa-
tions with piecewise constant argument, EPCA, which were introduced in [22, 23]
and deeply analyzed in papers [19, 20, 23, 24, 26, 29, 36, 37, 40–47], and many
others.

In paper [1], we not only generalized EPCA to EPCAG, but, what is most impor-
tant, propose to investigate newly introduced systems by reduction them to integral
equations. This innovation has appeared to be very effective. There are two main
reasons for that. Firstly, it is possible to investigate systems, which are essentially
nonlinear, more precisely, nonlinear with respect to values of solution at discrete
moments of time, while the main and unique method of analysis for EPCA [47] is
reduction to discrete equation. Hence, only those equations are considered, where
values of solutions at the discrete moments appear linearly [47]. Secondly, we ana-
lyze existence and stability of solutions not only with specially fixed initial moments,
but arbitrarily chosen. Thus, we have deepen the analysis insight significantly. Fur-
ther our proposals were used not only in theoretical studies, but also in applications
[12, 13, 20, 38].

Recently, in papers [41, 45], delay differential equations with piecewise constant
argument have been investigated and interesting problems mainly related to the exis-
tence of periodic and almost periodic solutions were considered. Investigation in
these papers continues to be through reduction to discrete equations, and only linear
equations have been discussed. Though more general equations with piecewise con-
stant argument were introduced in our papers and the research has been implemented
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Fig. 4.1 The graph of the
argument β(t)
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for nonlinear systems. In the present chapter, we suggest to investigate more gen-
eral functional differential equations with functional response on piecewise constant
argument and describe the class.

We start with piecewise constant argument functions.
Let θi , i ∈ Z be a strictly ordered sequence of real numbers such that |θi | → ∞

as |i | → ∞. We define the argument function as β(t) = θi if θi ≤ t < θi+1, i ∈ Z.

The greatest integer function [t], which is equal to the maximal among all integers
less than t, is a β(t) function with θi = i, i ∈ Z. Similarly, β(t) = 2[t/2] if θi =
2i, i ∈ Z. One can see the graph of a β−type function in Fig. 4.1.

Let two real-valued sequences θi , ζi , i ∈ Z, be defined such that θi < θi+1, θi ≤
ζi ≤ θi+1 for all i ∈ Z, |θi | → ∞ as |i | → ∞.The argument function γ(t) is defined
by γ(t) = ζi , if θi ≤ t < θi+1, i ∈ Z.One can easily find, for example, that 2[ t+1

2 ] is
γ(t) function with θi = 2i − 1, ζi = 2i. In Fig. 4.2, the typical graph of γ(t) function
is seen.

Finally, we say that a function is ofχ−type and denote itχ(t), if ζi = θi+1, i ∈ Z.

The function [t + 1] is a good example of χ(t) function with θi = i, i ∈ Z.

Now, we can introduce the following differential equations,

x ′ = f (t, xt , xβ(t)), (4.1)

x ′ = f (t, xt , xγ(t)), (4.2)

and

x ′ = f (t, xt , xχ(t)). (4.3)
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Fig. 4.2 The graph of the
argument γ(t)
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In these equations, xt must be understood as for functional differential equations,
FDE, [21, 25, 28, 31]. More precise description will be given in next sections. We
shall call systems (4.1)–(4.3) functional differential equations with piecewise con-
stant deviation of argument and abbreviateFDEPCA.This is a large class of equations
and has the following three subclasses: with retarded constancy of argument, RCA;
with advanced constancy of argument, ACA; and with alternate (delay/advanced)
constancy of argument,MCA. Examples of these equations are provided in Sect. 4.6.

The models (4.1)–(4.3) are much more general than those investigated in [41,
45], where the delay is constant τ = 1 and it is equal to the step of the greatest
integer function, [t]. Moreover, it is the first time, when we introduce the functional
depending of xγ(t), when previous authors were busy with at most terms of the form
xγ(t).Thus, we can say that in this paperwe begin to investigate functional differential
equations with piecewise constant argument in the most general form.

Let us clarify that γ(t) is a function of the alternate constancy. Fix k ∈ N

and consider t ∈ [θk, θk+1). Then, γ(t) = ζk . If argument t satisfies θk ≤ t < ζk,
then γ(t) > t and the piecewise constant argument is advanced. Similarly, if ζk <

t < θk+1, then γ(t) < t, and the constancy is retarded. Consequently, (4.2) is
a retarded functional differential equation with alternate constancy of argument,
RFDEMCA. Equation (4.1) is a retarded functional differential equationwith retarded
constancy of argument, RFDERCA, and (4.3) is a retarded functional differen-
tial equation with advanced constancy of argument, RFDEACA. Since there are
three types of FDE: retarded, advanced, and neutral [31], we submit the follow-
ing classes: RFDERCA,RFDEMCA,RFDEACA, retarded functional differential
equations with piecewise constant argument; NFDERCA,NFDEMCA, NFDEACA,

neutral functional differential equations with piecewise constant argument; and
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AFDERCA,AFDEMCA,AFDEACA, advanced functional differential equationswith
piecewise constant argument. In the present paper, we focus on retarded functional
differential equations and neutral functional differential equations both with retarded
and alternate constancy of argument. That is, RFDERCA,RFDEMCA, NFDERCA,
and NFDEMCA are under discussion. It is obvious that they are functional differ-
ential equations. Existence and uniqueness of solutions, continuation, continuous
dependence, periodic and almost periodic solutions, integral manifolds, and asymp-
totic properties, that is, the standard list of problems for any theory of differential
equations, has to be under investigation for FDEPCA. Arguments, to ensure that
newly introduced systems can play important role in applications, are the same as
forFDE [35], since our systems areFDE in their generalized form. After all, they are
differential equations with piecewise constant argument. Consequently, applications
discussed in [8, 24, 47] are also suitable. Moreover, providing FDEPCA as a new
object for investigation, we are confident that it will provoke modeling activity, since
this has been true for any type of differential equations.

In this paper, we have formulated several theorems on existence and uniqueness of
solutions, continuous dependence, and continuation of solutions. Simple ideas how
to prove these assertions on the basis of their analogues for functional differential
equations [31, 35] are provided. Theorems on bounded, periodic, and almost periodic
solutions of quasilinear systems and their stability are proved. The important part of
the paper is the last section, where we have formulated several real-world problems
and consider systems for future investigations.

4.2 Retarded Functional Differential Equations
with Retarded Constancy of Argument

Fix a nonnegative real number τ ∈ R. Denote by C = C([−τ , 0],Rn) the set of
all continuous functions mapping interval [−τ , 0] into R

n, with the uniform norm
‖φ‖0 = max[−τ ,0] ‖φ‖. If a function x(t) is defined on intervals [σ − τ ,σ] and
[β(σ) − τ ,β(σ)], with fixed σ ∈ R, then we define functions xσ(t) = x(σ + t)
and xβ(σ)(t) = x(β(σ) + t), t ∈ [−τ , 0], respectively. One can easily see that
xσ(t), xβ(σ)(t) ∈ C , if x(t) is a continuous function.

Consider a subset D of R × C × C and introduce a continuous functional f :
D → R

n. We may assume that D = J × G × G, where J ⊆ R,G is a subset of C
and G = {φ ∈ C |‖φ‖0 < H} with some positive H ∈ R.

Let us define initial conditions for (4.1). Fix a number σ ∈ J and two functions
φ,ψ ∈ C . We shall say that a solution x(t) of Eq. (4.1) satisfies the initial con-
dition and write x(t) = x(t,σ,φ,ψ), t ≥ σ, if xσ(s) = φ(s), xβ(σ)(s) = ψ(s), s ∈
[−τ , 0]. We assume, in what follows, that equality φ(s) = ψ(s + σ − β(σ)) is true
for all s ∈ [−τ ,β(σ) − σ], provided that set [β(σ) − τ ,β(σ)] ∩ [σ − τ ,σ] is not
empty. One can easily see that the last condition is valid, if β(σ) = σ, that is, σ = θi ,
for some i ∈ Z. Remember that β(σ) ≤ σ, and we do not exclude that intervals
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[β(σ) − τ ,β(σ)] and [σ − τ ,σ] may be disjoint. Thus, we can write the following
initial conditions,

(IC) xσ(s) = φ(s), xβ(σ)(s) = ψ(s), s ∈ [−τ , 0].
Thus, we obtain the following initial value problem, I V P,

x ′ = f (t, xt , xβ(t)),

xσ(s) = φ(s), xβ(σ)(s) = ψ(s), s ∈ [−τ , 0]. (4.4)

Now, one can give the following definition.

Definition 1 A function x(t) = x(t,σ,φ,ψ) is a solution of (4.4) on [σ,σ +
a), a > 0, if:

(i) It satisfies the initial condition (IC);
(ii) x(t) is continuous on [σ,σ + a);
(iii) The derivative x ′(t) exists for t ≥ σ with possible exception of the points σ and

θi , where one-sided derivatives exist;
(iv) Equation (4.4) is satisfied by x(t) for all t > σ, except possibly points θi , and

it holds for the right derivative of x(t) at the points θi .

Remark 1 If θk ≤ σ < θk+1 for some fixed k ∈ Z, then Eq. (4.1) has the form

x ′ = f (t, xt , xθk ). (4.5)

Hence, for all t ∈ [θk, θk+1), the equation is just a RFDE (not RFDEPCA), since xθk

is the fixed function for the interval.

Lemma 1 Let σ ∈ J, φ,ψ ∈ G be given. Then, the initial value problem (4.4) is
equivalent to the following integral equation,

xσ = φ, xβ(σ) = ψ,

x(t) = φ(0) +
∫ t

σ

f (s, xs, xβ(s))ds, t ≥ σ.
(4.6)

The necessity for Lemma1 can be easily proved, if we utilize Lemma2.1,Chap.2,
[31] on continuity of function xt , and Remark 1. Sufficiency can be verified very
similarly to the proof of Lemma 3.1 from [2] or Lemma 3.2 from [8], for differential
equations with piecewise constant argument.

Theorem 1 (Existence and Uniqueness) Suppose that f is continuous on an open
subset D of R × C × C , and local Lipschitz condition for the second argument is
valid. If (σ,φ,ψ) ∈ D, then there exists a unique solution of (4.4) passing through
(σ,φ,ψ).
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Proof Fix an integer k, θk ≤ σ < θk+1, and a number α such that 0 < α < min
{θk+1 − σ, τ }. Consider the space P of continuous on [σ − τ ,σ + α] functions π,

such that π(σ + s) = φ(s), s ∈ [−τ , 0], ‖π(t) − φ(0)‖ < H,σ ≤ t ≤ σ + α.
Denote M = supσ≤t≤σ+α,P || f (t,π,ψ)||.

Define the operator T on P such that

Tπ(σ + s) = φ(s), s ∈ [−τ , 0], Tπ(t) = φ(0) +
∫ t

σ

f (u,πu,ψ(u))du, t ≥ σ.

First verify that T : P → P. Indeed,

‖Tπ(t) − φ(0)‖ ≤ Mα < H,

if α is sufficiently small.
Moreover, we have that

‖Tπ1(t) − Tπ2(t)‖ ≤ Lα‖π1(t) − π2(t)‖α,

where ‖π(t)‖α = maxσ≤t≤σ+α ‖π(t)‖ is the norm for continuous on [σ,σ + α]
functions.

Assume thatα < 1/L .Now, apply the contraction mapping theorem to prove that
there exists a unique solution of (4.4). The theorem is proved.

Applying Lemma 1, Remark 1, Schauder theorem, and theorems in [31, 35], one
can prove the following assertions about existence, continuous dependence [31], and
continuation theorems [31, 35] for (4.4). They are very similar to those in [31]. So,
let us, formulate them without proof.

Theorem 2 (Existence) Suppose that f is continuous on an open subset D of R ×
C × C . If (σ,φ,ψ) ∈ D, then there is a solution of (4.4) passing through (σ,φ,ψ).

Theorem 3 (Continuous dependence) Suppose that f is continuous on an open
subset D of R × C × C , and x(t) is a solution of (4.4) through (σ,φ,ψ) ∈ D,

which exists and unique on [σ, a]. Let K ⊂ D be a compact set defined by K =
{(t, xt } : t ∈ [σ, a]}, and let W be a neighborhood of K on which f is bounded. If
(σk,φk,ψk, fk), k ∈ N, satisfies σk → σ,φk → φ,ψk → ψ, supW ‖ f k − f ‖ → 0
as k → ∞, then there is a number N ∈ N, such that, for k ≥ N , each solution xk

through (σk,φk,ψk) of

x ′(t) = f k(t, xt , xβ(t))

exists on [σk, a] and max[max (σ,σk ),a] ‖xk − x‖ → 0 as k → ∞.

Assume that x(t) = x(t,σ,φ,ψ) is a solution of (4.4) on an interval [σ, a), a > σ.

A solution x1(t) = x(t,σ,φ,ψ) of (4.4) is a continuation of x(t), if it is defined on
[σ, b)with b > a and x1(t) = x(t), t ∈ [σ, a).Asolution x of (4.4) is saturated (non-
continuable), if no continuation exists, and interval [σ, a) is the maximal interval of
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existence of the solution x . The existence of the saturated solution is a consequence
of Zorn’s lemma. It is obvious that the maximal interval of existence is open from
the right.

Theorem 4 Suppose that f is defined on an open subset D of R × C × C , and
x(t) = x(t,σ,φ,ψ) is a non-continuable solution of (4.4) on [σ, a). Then, for any
compact set V in D there exists a number tV such that (t, xt ) /∈ V, if tV ≤ t < a.

4.3 Retarded Functional Differential Equations
with Alternate Constancy of Argument

Let us consider equations with alternate constancy of argument (4.2). The initial
conditions for equations with MCA are more complicated than those for equations
with retarded constancy of argument. Namely, if θi ≤ σ < θi+1, for some i ∈ Z,

then one has to consider two cases:

1. (IC1) xσ(s) = φ(s),φ ∈ G, s ∈ [−τ , 0] if θi ≤ σ ≤ ζi < θi+1;
2. (IC2) xσ(s) = φ(s), xγ(σ)(s) = ψ(s),φ,ψ ∈ G, s ∈ [−τ , 0], if θi ≤ ζi < σ <

θi+1.

We assume, in what follows, that equality φ(s) = ψ(s + σ − γ(σ)) is true for all
s ∈ [−τ , γ(σ) − σ], provided that set [γ(σ) − τ , γ(σ)] ∩ [σ − τ ,σ] is not empty.

Considering Eq. (4.2) with these conditions, we shall say about initial value prob-
lem, IVP, for system (4.2). Thus, we can provide the following definition now.

Definition 2 A function x(t) is a solution of (4.2) with (IC1) or (IC2) on [σ,σ + a)

if:

(i) It satisfies the initial condition;
(ii) x(t) is continuous on [σ,σ + a);
(iii) The derivative x ′(t) exists for t ≥ σ with the possible exception of the points

θi , where one-sided derivatives exist;
(iv) Equation (4.2) is satisfied by x(t) for all t > σ, except, possibly, points θi , and

it holds for the right derivative of x(t) at the points θi .

All the discussions made for the retarded constancy argument are valid for also
case (IC2) For example, the local existence and uniqueness theorem proved for FDE
[31, 35] can be extended. While for (IC1), the analysis is much more complicated.
The following example is a good evidence for that.

Example 1 Consider the following scalar FDEPCA,

x ′ = x(t − 1) + x2([t + 1]). (4.7)

Solve this equation with σ = 0, x(t) ≡ x0, for t ≤ 0. We have that x(t) = x0 +
(x0 + z2)t for t ∈ [0, 1], where z = x(1). Then, z2 − z + x0 = 0. Solution of the
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last quadratic equation is z = 1
2 ±

√
1
4 − 2x0. One can see that the solution exists

not for all x0 as well that uniqueness is not valid for certain initial values.

The last example shows that more attention to existence and uniqueness theorems is
needed, if the constancy of argument is alternate.

Let us make the following assumptions.

(C1) functional f satisfies the Lipschitz condition in the second and third arguments,
if

‖ f (t,φ1,ψ1) − f (t,φ2,ψ2)‖ ≤ �(‖φ1 − φ2‖0 + ‖ψ1 − ψ2‖0),

where (t,φ1,ψ1) and (t,φ2,ψ2) are from D .

(C2) There exists a positive number θ̄ such that

θi+1 − θi ≤ θ̄

for all i ∈ Z.

(C3)
M = sup

D
‖ f ‖ < ∞.

(C4)
2�θ̄ < 1.

Consider the space P(σ, r,φ) of continuous on [σ − τ , r ], r ≥ σ, functions π,

such that π(σ + s) = φ(s), s ∈ [−τ , 0], ‖π(t) − φ(0)‖ < M θ̄,σ ≤ t ≤ r.

Theorem 5 Assume that conditions (C1)–(C4) are fulfilled. The initial moment,
σ, is such that θi ≤ σ < ζi < θi+1, for some i ∈ Z, and, if π ∈ P(σ, ζi ,φ), then
πt ∈ G, for all t ∈ [σ, ζi ]. Then, the IVP for (4.2) admits a unique solution x(t,σ,φ)

on interval [σ, ζi ].
Proof Construct sequence xi (t) ∈ P(σ, ζi ,φ), i = 0, 1, 2, . . . , x0(t) = φ(0), t ≥
σ, such that

xi+1(t) = φ(0) +
∫ t

σ

f (u, xiu, x
i
γ(u))du.

By using the contraction mapping theorem for the operator T : P → P,

Tπ(σ + s) = φ(s), s ∈ [−τ , 0], Tπ(t) = φ(0) +
∫ t

σ

f (u,πu,πγ(u))du, t ≥ σ,

one can prove that sequence xi converges uniformly on [σ, ζi ] to the unique solution
of (4.2). The theorem is proved.
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The main peculiarity of the last assertion is that the existence and uniqueness is
not local, it is rather global one. We cannot consider the problem locally, since of
alternate constancy of argument.

Let us formulate the following Theorems 6–8. Proofs of these assertions can be
done by using technique for Theorem 5 similarly to results in [35].

Theorem 6 Assume that conditions (C1)–(C3) are fulfilled. Moreover, the ini-
tial moment, σ, is such that θi ≤ ζi ≤ σ < θi+1, for some i ∈ Z, there exists a
real number h > 0 such that if π ∈ P(σ,σ + h,φ), then πt ∈ G, t ∈ [σ,σ + h],
and 2�h < 1. Then, the IVP for (4.2) admits a unique solution x(t) on interval
[σ,min{σ + h, θi+1}].
Theorem 7 Suppose that f is defined on an open subset D of R × C × C , con-
ditions (C1)–(C4) are fulfilled, and x is a non-continuable solution of the IVP for
(4.2) on [σ, a). Then, for any compact set V inD there exists a number tV such that
(t, xt ) /∈ V, if tV ≤ t < a.

Theorem 8 Assume that J = R
+ = [0,∞), conditions of the last theoremare valid,

x(t),σ ≥ 0, is a non-continuable solution of the IVP for (4.2). Moreover, there exists
a positive number h, 2�h < 1, such that for all δ ≥ σ, if x(t) ∈ P(δ, δ + h, xδ) then
xt ∈ G for all t ∈ [δ, δ + h]. Then the solution is continuable to ∞.

The last theorem is useful for stability analysis and theorems on existence of bounded,
periodic, and almost periodic solutions.

4.4 Quasilinear Systems: Preliminaries

Let us introduce the following functional differential equations,

x ′(t) = A0(t)x(t) + A1(t)x(γ(t)) + f (t, xt , xγ(t)), (4.8)

where t ∈ R, x ∈ R
n. In Eq. (4.8), terms xt , xγ(t)(s), must be understood in the way

used for FDE [31, 35]. That is, xt (s) = x(t + s), s ∈ [−τ , 0], xγ(t)(s) = x(γ(t) +
s), s ∈ [−τ , 0]. Let us clarify that the argument function γ(t) is of the alternate type.
Fix k ∈ N and consider the function on the interval [θk, θk+1). Then, the function
γ(t) is equal to ζk . If the argument t satisfies θk ≤ t < ζk, then γ(t) > t and it is
of advanced type. Similarly, if ζk < t < θk+1, then γ(t) < t , and hence, it is of the
delayed type. Consequently, it is worth pointing out that the Eq. (4.8) is with alternate
constancy of argument. If the argument function is of β−type or χ−type, we shall
say about retarded constancy and advanced constancy of argument, respectively.

Consider a subsetD of the productR × C × C and introduce a continuous func-
tional f : D → R

n . To be concrete, we assume that D = R × C × C . Let s ∈ R

be a positive number. We denote Cs = {φ ∈ C |‖φ‖0 ≤ s}. Let C0(R) (respectively
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C0(R × CH × CH ) for a given H ∈ R, H > 0) be the set of all bounded and con-
tinuous functions on R (respectively on R × CH × CH ).

The following assumptions will be needed:

(Q1) A0, A1 are n × n matrices, and their elements are from C0(R);
(Q2) f ∈ C0(R × CH × CH ) for each positive H ∈ R;
(Q3) f satisfies the Lipschitz condition in the second and third arguments:

‖ f (t,φ1,ψ1) − f (t,φ2,ψ2)‖ ≤ L(‖φ1 − φ2‖0 + ‖ψ1 − ψ2‖0),

where (t,φ1,ψ1) and (t,φ2,ψ2) are from D, for some positive constant L;
(Q4) infR ‖A1(t)‖ > 0;
(Q5) There exist positive numbers θ̄, ζ̄ > 0 such that θi+1 − θi ≤ θ̄, ζi+1 − ζi ≤

ζ̄, i ∈ Z.

One can easily see that system (4.8) has the form of a functional differential
equation,

z′(t) = A0(t)z(t) + A1(t)z(ζi ) + f (t, zt (t), zζi ), (4.9)

if t ∈ [θi , θi+1), i ∈ Z.That is, this systemhas the structure of a functional differential
equation with continuous time within intervals [θi , θi+1), i ∈ Z.

Consider the following linear system,

z′(t) = A0(t)z(t) + A1(t)z(γ(t)), (4.10)

which corresponds to Eq. (4.1). Systems of type (4.10) have been investigated in [4,
8]. In what follows, we will give a short information from the book.

Let I be an n × n identity matrix. Denote by X (t, s), X (s, s) = I , t, s ∈ R,

the fundamental matrix of solutions of the system

x ′(t) = A0(t)x(t) (4.11)

which is associated with systems (4.8) and (4.10). We introduce the following matrix
function

Mi (t) = X (t, ζi ) +
∫ t

ζi

X (t, s)A1(s)ds, i ∈ Z.

This matrix is very useful in what follows.
From now on, we make the assumption:

(Q6) For every fixed i ∈ Z, det[Mi (t)] = 0, ∀t ∈ [θi , θi+1].
We shall call C(6) the regularity condition.
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Remark 2 It is easily seen that the last condition is equivalent to the following one:

det[I +
∫ t

ζi

X (ζi , s)A1(s)ds] = 0,

for all t ∈ [θi , θi+1], i ∈ Z.

Definition 3 A function x(t) is a solution of (4.8) (4.10) on R if:

(i) x(t) is continuous;
(ii) The derivative x ′(t) exists for all t ∈ Rwith the possible exception of the points

θi , i ∈ Z, where one-sided derivatives exist;
(iii) Equations (4.1) (4.3) is satisfied by x(t) for all t ∈ R, except points of θ, and it

holds for the right derivative of x(t) at the points θi , i ∈ Z.

Theorem 9 ([4, 8]) If condition (Q1) is fulfilled, then for every (t0, z0) ∈ R × R
n

there exists a unique solution z(t) = z(t, t0, z0), z(t0) = z0, of (4.3) in the sense of
Definition 3 if and only if condition (Q6) is valid.

Using the last theorem, one can easily prove [4, 8] that the set of the solutions
of (4.10) is an n−dimensional linear space. Hence, for a fixed t0 ∈ R, there exists a
fundamental matrix of solutions of (4.8), Z(t) = Z(t, t0), Z(t0, t0) = I , such that

dZ

dt
= A0(t)Z(t) + A1(t)Z(γ(t)).

Let us show how to construct the fundamental matrix. Without loss of generality,
assume that θi < t0 < ζi for a fixed i ∈ Z and define the matrix only for increasing
t, as the construction is similar for decreasing t.

We have

Z(t) = Ml(t)
[ i+1∏

k=l

M−1
k (θk)Mk−1(θk)

]
M−1

i (t0), (4.12)

if t ∈ [θl, θl+1], for arbitrary l > i.
Similarly, if θ j ≤ t ≤ θ j+1 < . . . < θi ≤ t0 ≤ θi+1, then

Z(t) = Mj (t)
[ i−1∏
k= j

M−1
k (θk+1)Mk+1(θk+1)

]
M−1

i (t0). (4.13)

Next, it is obtained that Z(t, s) = Z(t)Z−1(s), t, s ∈ R, and a solution z(t),
z(t0) = z0, (t0, z0) ∈ R × R

n, of (4.8) is equal to z(t) = Z(t, t0)z0, t ∈ R.

One can easily see that (Q4)–(Q7) imply the existence of positive constants m,

M , and M̄ such thatm ≤ ‖Z(t, s)‖ ≤ M, ‖X (t, s)‖ ≤ M̄ for t, s ∈ [θi , θi+1], i ∈ Z.



90 M.U. Akhmet

From now on, we make the assumptions

(Q7) 2M̄L(1 + M)θ̄ < 1.

Lemma 2 Suppose that conditions (Q1)–(Q7), hold, and fix i ∈ Z. Then, for
every (σ,φ,ψ) ∈ [θi , θi+1] × C × C , there exists a unique solution x(t) = x(t,σ,

φ,ψ) of (4.1) on [θi , θi+1].
Proof Existence. Fix i ∈ Z.Weassumewithout loss of generality that θi ≤ σ ≤ ζi ≤
θi+1. That is, we consider (IC1) this time and the solution x(t,σ,φ).

Set ‖x(t)‖0 = max
[σ,θi+1]

‖x(t)‖, take x0(t) = Z(t,σ)φ(σ), and define a sequence

{xk(t)}, k ≥ 0, by

xk(t) = φ(t), t ≤ σ,

xk+1(t) = Z(t, ξ)
[
φ(σ) +

∫ ζi

σ

X (ζi , s) f (s, x
k
s , x

k
ζi
)ds

]

+
∫ t

ζi

X (t, s) f (s, xks , x
k
ζi
)ds, t ≥ σ.

The last expression implies that

‖xk+1(t) − xk(t)‖0 ≤ [2M̄L(1 + M)θ̄]k+1M‖φ(σ)‖.

Thus, there exists a unique solution x(t) = x(t,σ,φ) of the equation

x(t) = Z(t, ξ)
[
φ(σ) +

∫ ζi

σ

X (ζi , s) f (s, xs, xζi )ds
]

(4.14)

+
∫ t

ζi

X (t, s) f (s, xs, xζi )ds, t ≥ σ. (4.15)

which is a solution of (4.8) on [θi , θi+1] as well. This proves the existence.
Uniqueness. Denote by x j (t) = x(t,σ,φ), j = 1, 2, the solutions of (4.8), where
θi ≤ σ ≤ θi+1. Without loss of generality, we assume that σ ≤ ζi .

We have that

x1(t) − x2(t) = Z(t, ξ){
∫ ζi

σ

X (ζi , s)[ f (s, x1s (s), x1(ζi )) − f (s, x2s (s), x
2(ζi ))]ds}

+
∫ t

ζi

X (t, s)[ f (s, x1s (s), x1(ζi )) − f (s, x2s (s), x
2(ζi ))]ds.

Hence,

‖x1(t) − x2(t)‖ ≤ M̄L θ̄(1 + M)‖x1ζi − x2ζi ‖0 + M̄L(1 + M)

∣∣∣
∫ t

ξ

‖x1s − x2s ‖0ds
∣∣∣.
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Let ‖x1(η) − x2(η)‖ = max[θi ,θi+1] ‖x1(t) − x2(t)‖.Then, from the last two inequal-
ities, it follows that

‖x1η − x2η‖0 ≤ 2M̄L θ̄(1 + M)‖x1η − x2η‖0.

Since of (Q7), it is possible if only ‖x1η − x2η‖0 = max[θi ,θi+1] ‖x1(t) − x2(t)‖ = 0.
The lemma is proved.

The next lemma can be proved exactly in the way that is used to verify Lemma
2.2 from [8], see also [4], if we use Lemma 2.

Lemma 3 Suppose that conditions (Q1)–(Q7), hold. Then, for every (σ,φ,ψ) ∈
[θi , θi+1] × C × C , there exists a unique solution x(t) = x(t,σ,φ,ψ), t ≥ σ, of
(4.8), and it satisfies the integral equation

x(t) = Z(t,σ)[φ(σ) +
∫ ζi

σ

X (σ, s) f (s, xs, xγ(s)) ds]

+
j−1∑
k=i

Z(t, θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, xs, xγ(s)) ds

+
∫ t

ζ j

X (t, s) f (s, xs, xγ(s)) ds, (4.16)

where θi ≤ σ ≤ θi+1 and θ j ≤ t ≤ θ j+1, i < j.

4.5 Bounded Solutions of Quasilinear Systems

We will make the following assumption,

(Q8) ‖Z(t, s)‖ ≤ K e−α(t−s), s ≤ t, where K ,α are positive numbers.

Lemma 4 Suppose that conditions (Q1)–(Q8), hold. Then, a bounded on R func-
tion x(t) is a solution of (4.8) if and only if it satisfies the following integral equation

x(t) =
∫ t

ζ j

X (t, s) f (s, xs, xγ(s)) ds +
k= j−1∑
k=−∞

Z(t, θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, xs, xγ(s)) ds, (4.17)

where θ j ≤ t ≤ θ j+1.

Proof We consider only sufficiency. The necessity can be proved by using (4.16)
and (Q8), in very similar way to the ordinary differential equation case. Since the
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solution is bounded, one can suppose that there is a positive constant Mx , such that
sup

R
‖ f (s, xs, xγ(s))‖ = Mx < ∞. Then,

‖
∫ t

ζ j
X (t, s) f (s, xs , xγ(s)) ds +

k= j−1∑
k=−∞

Z(t, θk+1)

∫ ζk+1

ζk
X (θk+1, s) f (s, xs , xγ(s)) ds‖ ≤

|
∫ t

ζ j

M̄Mxds| +
k= j−1∑
k=−∞

K e−α(t−θk+1)

∫ ζk+1

ζk

M̄Mx ds ≤ M̄Mx [θ̄ + ζ̄
K eαθ̄

1 − e−αθ
].

That is, the series and integral in (4.17) are convergent. Let us differentiate (4.17).
We have that

x ′(t) =
∫ t

ζ j

A0(t)X (t, s) f (s, xs, xγ(s)) ds + f (s, xs, xγ(s))

k= j−1∑
k=−∞

[A0(t)Z(t, θk+1) + A1(t)Z(ζ j , θk+1)]
∫ ζk+1

ζk

X (θk+1, s) f (s, xs, xγ(s)) ds =

A0(t)x(t) + A1(t)x(γ(t)) + f (s, xs, xγ(s)).

The lemma is proved.

We shall need the following assumptions:

(Q9) M̄L[θ̄ + ζ̄ K eαθ̄

1−e−αθ ] < 1;
(Q10) L 2K M̄(1+eαθ̄)eαθ̄eατ

α
< 1;

(Q11) there exist positive numbers θ, ζ > 0 such that θi+1 − θi ≥ θ, ζi+1 − ζi ≥
ζ, i ∈ Z;

(Q12) LK M̄ eθ̄

1−e−αθ < 1;
(Q13) 2MM̄L θ̄ < 1.

Now, we apply the result of the last lemma to prove the existence of a unique
bounded on R solution of (4.8). Then, we find conditions of its stability. So, we will
prove that the following theorem is valid.

Theorem 10 Suppose that conditions (Q1)–(Q9), hold. Then, (4.8) admits a unique
bounded of R solution. If, additionally, conditions (Q10)–(Q13) are valid then the
solution is exponentially stable.

Proof Consider the setC0(R)of continuous functions, uniformlyboundedonR.That
is, if a continuous function y(t) ∈ C0(R), then ‖y‖1 ≡ sup

R
‖y(t)‖ < ∞.Define on

C0(R) the operator Π such that
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Πy ≡
∫ t

ζ j

X (t, s) f (s, ys , yγ(s)) ds +
k= j−1∑
k=−∞

Z(t, θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, ys , yγ(s)) ds.

One can show that ‖Πy‖1 < ∞. Let us verify that this operator is contractive.
Indeed, if u, v ∈ C0(R), then

‖Πu(t) − Πv(t)‖ ≤ |
∫ t

ζ j

M̄ L‖u − v‖1ds +
k= j−1∑
k=−∞

K e−α(t−θk+1)

∫ ζk+1

ζk

M̄ L‖u − v‖1 ds ≤

M̄L[θ̄ + ζ̄
K eαθ̄

1 − e−αθ
]‖u − v‖1.

Since of (Q9), the operator is contractive. That is, Eq. (4.8) admits a unique solution
u(t) from C0(R).

Let us investigate its stability. We apply representation (4.16) for this. We have
that if u, v, are solutions of the equation with initial data (σ,φ,ψ), (σ, η,π), then

u(t) − v(t) = Z(t,σ)[(φ(σ) − η(σ)) +
∫ ζi

σ
X (σ, s)( f (s, us , uγ(s)) − f (s, vs , vγ(s))) ds]+

+
k= j−1∑
k=i

Z(t, θk+1)

∫ ζk+1

ζk

X (θk+1, s)( f (s, us , uγ(s)) − f (s, vs , vγ(s))) ds+

∫ t

ζ j

X (t, s)( f (s, us, uγ(s)) − f (s, vs, vγ(s))) ds.

Denote by w(t) the difference u(t) − v(t). Then, w satisfies the following integral
equation

w(t) = Z(t,σ)[(φ(σ) − η(σ)) +
+

∫ ζi

σ
X (σ, s)( f (s, us , uγ(s)) − f (s, us + ws , uγ(s) + wγ(s))) ds] +

+
k= j−1∑
k=i

Z(t, θk+1)

∫ ζk+1

ζk

X (θk+1, s)( f (s, us , uγ(s)) − f (s, us + ws , uγ(s) + wγ(s))) ds

+
∫ t

ζ j

X (t, s)( f (s, us , uγ(s)) − f (s, us + ws , , uγ(s) + wγ(s))) ds. (4.18)

We will solve this equation for σ = 0, and initial function wσ = φ(s) − η(s),
‖φ(s) − η(s)‖ < δ,where δ > 0,will be given precisely later, assuming that γ(0) ≤
0.

Fix ε > 0 and denote L(l, δ) = K eατ δ

1−L 2K M̄(1+eαθ̄ )eαθ̄eατ

α

.Take δ so small that L(l, δ) < ε.
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Let Ψδ be the set of all continuous functions which are defined on [−τ ,∞) such
that:

1. πσ = φ(s) − η(s);
2. π(t) is uniformly continuous on [0,+∞);
3. ||π(t)|| ≤ L(l, δ) exp(−α

2 t) if t ≥ 0,

for all π ∈ Ψδ.

Define on Ψδ an operator Π̃ such that

Π̃π =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ(t) − η(t), t ∈ [−τ , 0]
Z(t, 0)[(φ(0) − η(0) + ∫ ζi

0 X (0, s)( f (s, us, uγ(s))−
− f (s, us + πs, uγ(s) + πγ(s))) ds]+
+∑k= j−1

k=i Z(t, θk+1)
∫ ζk+1

ζk
X (θk+1, s)( f (s, us, uγ(s))−

− f (s, us + πs, uγ(s) + πγ(s))) ds+∫ t
ζ j
X (t, s)( f (s, us, uγ(s)) − f (s, us + πs, , uγ(s) + πγ(s))) ds, t > 0.

We shall show that Π̃ : Ψδ → Ψδ. Indeed, for t ≥ 0, it is true that

||Π̃π|| ≤ K exp(−αt)[δ +
∫ ζi

0
M̄L(‖πs‖0 + ‖πs‖γ(s)‖)ds]

j−1∑
k=i

K exp(−α(t − θk+1)

∫ ζk+1

ζk

M̄ L(‖πs‖0 + ‖πγ(s)‖0‖)ds+

∫ t

ζ j

M̄ L(‖πs‖0 + ‖πγ(s)‖0‖)ds ≤ L(l, δ) exp(−α

2
t).

Let π1,π2 ∈ Ψδ. Then,

sup
t≥0

||Π̃π1 − Π̃π2|| ≤ LK M̄
eθ̄

1 − e−αθ
sup
t≥0

||π1 − π2||.

Using a contraction mapping argument, one can conclude that there exists a unique
fixed point v(t, δ) of the operator Π̃ : Ψδ → Ψδ which is a solution of (4.18).

To complete the proof, we should show that there is no other solutions of the
initial value problem. Consider first the interval [θ0, θ1].Assume that on this interval,
(4.18) has two different solutions v1, v2 of the problem. Denote w = v1 − v2, m̄ =
max[θ0,θ1] ||w(t)|| and assume, on contrary, that m̄ > 0. We have that on the interval

||w(t)|| ≤ ||
∫ ζi

0
MM̄L2m̄ds +

∫ t

ζi

M̄ L2m̄ds ≤ 2MM̄L θ̄m̄.



4 Functional Differential Equations with Piecewise Constant Argument 95

The last inequality contradicts condition (Q13).Now, using induction, one can easily
prove the uniqueness for all t ≥ 0. The theorem is proved.

4.5.1 Periodic Solutions

Assume that there are two numbers,ω ∈ R, p ∈ Z, such that θk+p = θk + ω, ζk+p =
ζk + ω, k ∈ Z. Then, denote by Q the product

∏p
k=1 Gk, where matrices Gk are

equal to M−1
k (θk)Mk−1(θk), k ∈ Z. The matrix Q is the monodromy matrix, and

eigenvalues of the matrix, ρ j , j = 1, 2, . . . , n, are multipliers. It is clear that system
(4.8) admits a periodic solution, if there exists a unit multiplier. Generally, all the
results known for linear homogeneous ordinary differential equations based on the
unit multipliers can be identically repeated for the present systems. Our main goal in
this section is to study the non-critical systems and find formulas for solutions. We
assume that the system is ω− periodic. That is, in addition to the above conditions,
A j (t + ω) = A j (t), j = 1, 2, f (t + ω,φ,ψ) = f (t,φ,ψ), t ∈ R. In what follows,
we assume without loss of generality that ζ0 = 0 and consider t0 = ζ0.

Consider the solution z(t) = z(t, 0, z0). We have that

z(t) = Z(t, 0)z0 +
k= j−1∑
k=0

Z(t, θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, zs, zγ(s)) ds +
∫ t

ζ j

X (t, s) f (s, zs, zγ(s)) ds, (4.19)

and

z(ω) = Z(ω, 0)z0 +
k=p−1∑
k=0

Z(ω, θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, zs, zγ(s)) ds.

In papers [15, 16], we proved the Poincaré criterion for EPCAG. According to
this, z(t) is a periodic solution if and only if z0 satisfies

[I − Z(ω, 0)]z0 =
k=p−1∑
k=0

Z(ω, θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, zs, zγ(s)) ds.

By conditions of non-criticality,

det[I − Z(ω, 0)] = 0, (4.20)
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and the last equation admits a unique solution,

z∗ = [I − Z(ω, 0)]−1
k=p−1∑
k=0

Z(ω, θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, zs, zγ(s)) ds.

Thus, we have obtained that

z(t) = Z(t, 0)[I − Z(ω, 0)]−1
p−1∑
k=0

Z(ω, θk+1)

∫ ζk+1

ζk
X (θk+1, s) f (s, zs , zγ(s)) ds +

j−1∑
k=0

Z(t, θk+1)

∫ ζk+1

ζk
X (θk+1, s) f (s) ds +

∫ t

ζ j
X (t, s) f (s, zs , zγ(s)) ds. (4.21)

Use formula (4.21) to obtain

z(t) =
k= j−1∑
k=0

Z(t)[I − Z(ω)]−1Z−1(θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, zs, zγ(s)) ds +
k=p−1∑
k= j

Z(t)[I − Z(ω)]−1Z(ω)Z−1(θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, zs, zγ(s)) ds +
∫ t

ζ j

X (t, s) f (s, zs, zγ(s)) ds. (4.22)

One can easily verify by substitution that (4.22) is a solution, and it is a continuous
function. One can construct the following Green function for the periodic solution,
GP(t, s), t, s ∈ [0,ω], [9].

If t ∈ [θ j , θ j+1), j = 0, 2, . . . , p − 1, then

GP (t, s) =

⎧⎪⎨
⎪⎩

Z(t)[I − Z(ω)]−1Z−1(θk+1)X (θk+1, s), s ∈ [ζk , ζk+1), k < j,
Z(t)[I − Z(ω)]−1Z(ω)Z−1(θk+1)X (θk+1, s), s ∈ [ζk , ζk+1)\ ˆ[ζ j , t], k ≥ j,
Z(t)[I − Z(ω)]−1Z(ω)Z−1(θk+1)X (θk+1, s) + X (t, s), s ∈ ˆ[ζ j , t]

Now, apply the last formula in (4.22) to see that the periodic solution satisfies

z(t) =
∫ ω

0
GP(t, s) f (s, zs, zγ(s))ds.

Denote M̃ = maxt,s∈[0,ω] ‖G(t, s)‖ < ∞. By applying the last integral equation,
one can easily verify that the following theorem is valid.

Theorem 11 ([10]) Suppose that conditions (Q1)–(Q9) are valid, inequalities
(4.20) and M̃Lω < 1 hold. Then, (4.8) admits a unique ω− periodic solution.
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4.5.2 Almost Periodic Solutions

In this section, we will continue study system (4.8), assuming that all notations of
the last section are valid. Concerning conditions (Q1)–(Q13), we have to say that
some of them are consequences of the almost periodicity.

For f ∈ C0(R) (respectively C0(R × C × C ) and τ ∈ R, a translation of f
by τ is a function Qτ f = f (t + τ ), t ∈ R (respectively Qτ f (t,φ,ψ) = f (t +
τ ,φ,ψ), (t,φ,ψ) ∈ R × C × C ).Anumber τ ∈ R is called an ε− translation num-
ber of a functional f ∈ C0(R) ( C0(R × C × C )) if ||Qτ f − f || < ε for every
t ∈ R ( (t,φ,ψ) ∈ R × C × C ). A set S ⊂ R is said to be relatively dense if there
exists a number l > 0 such that [a, a + l] ∩ S = ∅ for all a ∈ R.

Definition 4 ([32]) A function (functional) f ∈ C0(R)(Q0(R × C × C )) is said
to be almost periodic (almost periodic in t uniformly with respect to φ,ψ ∈ CH ×
CH , H > 0) if for, every ε ∈ R, ε > 0, there exists a relatively dense set of ε−
translation numbers of f.

Denote by A P(R) (A P(R × CH × CH )) the set of all such functions.

Definition 5 A sequence ai , i ∈ Z, is almost periodic, if for any ε > 0 there exists
a relatively dense set of its ε−almost periods.

Let ζ
j
i = ζi+ j − ζi , θ

j
i = θi+ j − θi for all i and j. We call the family of sequences

{ζ j
i }i , j ∈ Z, equipotentially almost periodic [8, 30, 39] if for an arbitrary positive

ε there exists a relatively dense set of ε−almost periods, common for all sequences
{ζ j

i }i , j ∈ Z.

We assume that the following conditions are valid throughout this section:

(A1) A0, A1 ∈ A P(R);
(A2) f ∈ A P(R × CH × CH ) for each H > 0;
(A3) sequences ζ

j
i , j ∈ Z, as well sequences θ

j
i , j ∈ Z, are equipotentially almost

periodic.

One can easily see that (A1) implies (Q1). From condition (A3), it follows [8,
30, 39] that there exist positive numbers θ̄ and ζ̄ for (Q5), and |θi |, |ζi | → ∞, as
|i | → ∞. Let us prove an auxiliary assertion.

Lemma 5 Let ω ∈ R be a common η− almost period of matrices A0(t), A1(t), then

there exists a function R(η) = RM̄eαθ̄

α
η such that

‖Z(t + ω, s + ω) − Z(t + ω, s + ω)‖ < R(η)e− α
2 (t−s), s ≤ t. (4.23)

Proof Set W (t, s) = Z(t + ω, s + ω) − Z(t + ω, s + ω). Then

∂W

∂t
= A0(t)W (t, s) + A1(t)W (γ(t), s) + [A0(t + ω) − A(t)]W (t + ω, s + ω)+

[A1(t + ω) − A(t)]W (γ(t) + ω, s + ω).
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Since W (s, s) = 0, from the last equation it follows that

W (t, s) = Z(t, s)
∫ ζi

s
X (s, u)[A0(u + ω) − A(u)]Z(u + ω, s + ω)+

[A1(u + ω) − A(u)]Z(γ(u) + ω, s + ω)] du+
k= j−1∑
k=i

Z(t, θk+1)

∫ ζk+1

ζk

X (θk+1, u)[A0(u + ω) − A(u)]Z(u + ω, s + ω)+

[A1(u + ω) − A(u)]Z(γ(u) + ω, s + ω)] du+

∫ t

ζ j

X (t, u)[A0(u + ω) − A(u)]Z(u + ω, s + ω) + [A1(u + ω) − A(u)]Z(γ(u) + ω, s + ω)] du.

Then, we have that

‖W (t, s)‖ ≤
∫ ζi

s
RM̄ηe−α(t−s−θ̄)du +

k= j−1∑
k=i

∫ ζk+1

ζk

RM̄ηe−α(t−s−θ̄)du +
∫ t

ζ j

RM̄ηe−α(t−s−θ̄)du ≤

∫ t

s
RM̄ηe−α(t−s−θ̄)du = RM̄ηe−α(t−s−θ̄)(t − s) ≤ RM̄eαθ̄

α
ηe− α

2 (t−s).

The lemma is proved.

The following assertion can be proved by the method of common almost periods
developed in [18] (see, also, [39]).

Lemma 6 ([30]) Assume that f (t,φ,ψ), and ξ j (t), j = 1, 2, . . . , k, are Bohr
almost periodic in t. Conditions (Q11), (A3) are valid. Then, for arbitrary H, η >

0, 0 < ν < η, there exist a respectively dense set of real numbers Ω and integers Q,

such that for ω ∈ Ω, q ∈ Q, it is true that

1. ‖ f (t + ω,φ,ψ) − f (t,φ,ψ)‖ < η, for all φ,ψ ∈ CH ;
2. ‖ξ j (t + ω) − ξ j (t)‖ < η, j = 1, 2, . . . , k, t ∈ R;
3. |ζqi − ω| < ν, i ∈ Z;
4. |θqi − ω| < ν, i ∈ Z.

Let us formulate the following assertion.

Theorem 12 ([10]) Assume that conditions (A1)–(A3), (Q3), (Q4), (Q6)–(Q9),
are valid. Then, (4.8) admits a unique almost periodic solution. If, additionally,
conditions (Q10)–(Q13) are valid then the solution is exponentially stable.
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Proof It follows from Theorem 10 that (4.8) admits a unique bounded onR solution
u(t), which is exponentially stable. We shall show that it is an almost periodic
function. Consider the operator

Πy ≡
∫ t

ζ j

X (t, s) f (s, ys , yγ(s)) ds +
k= j−1∑
k=−∞

Z(t, θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, ys , yγ(s)) ds,

again.
It is sufficient to verify that Πy(t) is almost periodic, if y(t) is. Fix positive ε.

Suppose that ω and q satisfy conditions of Lemma 6, such that ω is an η− translation
number for y. We assume that θ j + η < t < θ j+1 − η. Then, t + ω ∈ (θi , θi+1) and
i = j + q [18, 39]. We have that

Πy(t + ω) − Πy(t) =
∫ t+ω

ζi

X (t + ω, s) f (s, ys, yγ(s)) ds+

k=i−1∑
k=−∞

Z(t + ω, θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, ys , yγ(s)) ds −
∫ t

ζ j

X (t, s) f (s, ys , yγ(s)) ds+

k= j−1∑
k=−∞

Z(t, θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, ys, yγ(s)) ds,

Transform the last expression to

Πy(t + ω) − Πy(t) =
∫ t

ζi

X (t + ω, s + ω) f (s + ω, ys+ω, yγ(s+ω)) ds +
k= j−1∑
k=−∞

Z(t + ω, θk+1+q )

∫ ζk+1+q

ζk+q

X (θk+1+q , s) f (s, ys , yγ(s)) ds

−
∫ t

ζ j

X (t, s) f (s, ys , yγ(s)) ds +
k= j−1∑
k=−∞

Z(t, θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, ys , yγ(s)) ds =
∫ t

ζi

[X (t + ω, s + ω) f (s + ω, ys+ω, yγ(s+ω)) − X (t, s) f (s, ys , yγ(s))] ds +
k= j−1∑
k=−∞

{Z(t + ω, θk+1+q )

∫ ζk+1+q

ζk+q

X (θk+1+q , s) f (s, ys , yγ(s)) ds −

Z(t, θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, ys , yγ(s)) ds}. (4.24)

Let us begin with estimation of the first integral in the last expression, if |t − s| ≤
θ̄. We have that
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‖X (t + ω, s + ω) f (s + ω, ys+ω, yγ(s+ω)) − X (t, s) f (s, ys, yγ(s))‖ ≤

‖X (t + ω, s + ω) − X (t, s)‖‖ f (s + ω, ys+ω, yγ(s+ω))‖+

‖X (t, s)‖‖ f (s + ω, ys+ω, yγ(s+ω)) − f (s, ys, yγ(s))‖.

At first, let us observe that ‖X (t + ω, s + ω) − X (t, s)‖ < R1(η), since of the
“diagonal almost periodicity” of the fundamental matrix of solutions [18, 39].

Next, we have that

‖ f (s + ω, ys+ω, yγ(s+ω)) − f (s, ys , yγ(s))‖ ≤ ‖ f (s + ω, ys+ω, yγ(s+ω)) − f (s, ys+ω, yγ(s+ω))‖+

‖ f (s, ys+ω, yγ(s+ω)) − f (s, ys, yγ(s+ω))‖ + ‖ f (s, ys, yγ(s+ω)) − f (s, ys, yγ(s))‖

Let us estimate the last three norms. The first one is less than η, since of the almost
periodicity of f in t. The second one is less than Lη, since of the almost peri-
odicity of y and the Lipschitz condition. To evaluate the last one, we use again
Lemma 6 and consider ν > 0 so small such that |y(t ′) − y(t ′′)| < η, if |t ′ − t ′′| < ν.

Then, we obtain that ‖yγ(t+ω) − yγ(t)‖ = ‖y(ζi+q + s) − y(ζi + s)‖ ≤ ‖y(ζi+q +
s) − y(ζi + ω + s)‖ + ‖y(ζi + ω + s) − y(ζi + s)‖ < 2η, for all t ∈ R, s ∈ [0,ω],
since |ζi+q − ζi − ω| < ν. Thus, the third norm is less than 2Lη. Now, from bound-
edness of ‖ f (s + ω, ys+ω, yγ(s+ω))‖ and ‖X (t, s)‖, it implies that

‖X (t + ω, s + ω) f (s + ω, ys+ω, yγ(s+ω)) − X (t, s) f (s, ys, yγ(s))‖ ≤ R2(η),

and consequently, the first integral is less than R2(η)θ̄, where R2 → 0, as η → 0.
Let us now estimate the sum in (4.24),

k= j−1∑
k=−∞

{Z(t + ω, θk+1+q )

∫ ζk+1+q

ζk+q

X (θk+1+q , s) f (s, ys , yγ(s)) ds − Z(t, θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, ys , yγ(s)) ds}.

We fix k in the sum and consider

‖Z(t + ω, θk+1+q )

∫ ζk+1+q

ζk+q

X (θk+1+q , s) f (s, ys , yγ(s)) ds − Z(t, θk+1)

∫ ζk+1

ζk

X (θk+1, s) f (s, ys , yγ(s)) ds‖ ≤

‖Z(t + ω, θk+1+q) − Z(t, θk+1)‖‖
∫ ζk+1+q

ζk+q

X (θk+1+q , s) f (s, ys, yγ(s)) ds‖+

‖Z(t, θk+1)‖‖
∫ ζk+1+q

ζk+q

X (θk+1+q , s) f (s, ys , yγ(s)) ds −
∫ ζk+1

ζk

X (θk+1, s) f (s, ys , yγ(s)) ds‖.

We have that
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‖Z(t + ω, θk+1+q) − Z(t, θk+1)‖ ≤ ‖Z(t + ω, θk+1+q) − Z(t + ω, θk+1 + ω)‖+

‖Z(t + ω, θk+1 + ω) − Z(t, θk+1)‖.

Then,

‖Z(t + ω, θk+1+q) − Z(t + ω, θk+1 + ω)‖ ≤

‖Z(t + ω, θk+1+q)‖‖I − Z(θk+1+q , θk+1 + ω)‖ ≤ K R3(η)e−α(t+ω−θk+1+q ),

where R3 → 0 as η → 0. Moreover,

‖Z(t + ω, θk+1 + ω) − Z(t, θk+1)‖ ≤ R(η)e− α
2 (t−θk+1),

since of Lemma 5.
Thus, it is true that

‖Z(t + ω, θk+1+q) − Z(t, θk+1)‖ ≤ R4(η)e− α
2 (t−θk+1).

There exist numbers ν1, ν2, |ν j | < η, j = 1, 2, such that ζk+q+1 = ζk+1 + ω + ν2
and ζk+q = ζk + ω + ν1. Let us make the following transformations,

∫ ζk+1+q

ζk+q

X (θk+1+q , s) f (s, ys, yγ(s)) ds −
∫ ζk+1

ζk

X (θk+1, s) f (s, ys, yγ(s)) ds =

∫ ζk+ω

ζk+ω+ν1
X (θk+1+q , s) f (s, ys , yγ(s)) ds −

∫ ζk+1+ω

ζk+1+ω+ν2
X (θk+1+q , s) f (s, ys , yγ(s)) ds+

∫ ζk+1

ζk

[X (θk+1+q , s + ω) f (s + ω, ys+ω, yγ(s+ω)) − X (θk+1, s) f (s, ys, yγ(s))] ds

Apply to the last expressions discussion similar to that made above to obtain that

‖
∫ ζk+1+q

ζk+q

X (θk+1+q , s) f (s, ys , yγ(s)) ds −
∫ ζk+1

ζk

X (θk+1, s) f (s, ys , yγ(s)) ds‖ ≤ R5(η),

where R5 → 0, as η → 0.
Write M̃ = sup

Z
‖ ∫ ζk+1+q

ζk+q
X (θk+1+q , s) f (s, ys, yγ(s)) ds‖ < ∞ and obtain that

‖Πy(t + ω) − Πy(t)‖ ≤ R2(η)θ̄ +
k= j−1∑
k=−∞

{R4(η)M̃e− α
2 (t−θk+1) + R5(η)K e−α(t−θk+1)} ≤
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R2(η)θ̄ + R4(η)M̃
e

α
2 θ̄

1 − e− α
2 θ

+ R5(η)K
eαθ̄

1 − e−αθ
.

From the properties of functions R j , it follows that if η is sufficiently small, then

‖Πy(t + ω) − Πy(t)‖ ≤ ε/2,

if θi + η < t < θi+1 − η. Now, use uniform continuity of Πy and take η so small
that ‖Πy(t ′) − ΠY (t ′′)‖ < ε/2, if |t ′ − t ′′| < η. Then, ω is an ε−almost period of
Πy(t).

The theorem is proved.

4.5.3 Examples

Example 2 Let us give examples of the function f (t, xt , xγ(t)) in (4.8).

1.
m∑
j=1

A j (t)x(t − τ j ) +
k∑

i=1

Bi (t)x(γ(t) − ω j ),

where τ j and ωi are fixed positive numbers. The linear function is with constant
delays and alternate constancy of argument;

2.
m∑
j=1

A j (t)x(t − τ j (t)) +
k∑

i=1

Bi (t)x(γ(t) − ω j (t)),

where τ j (t) and ωi (t) are fixed bounded positive functions. This linear function
is with variable delays and alternate constancy of argument;

3. ∫ 0

−τ

K (s, x(t + s))ds +
∫ 0

−γ(t)
L(s, x(β(t) + s))ds.

The function is with bounded distributed delay, and constancy of argument is of
two types, alternate and retarded.

4. ∫ 0

−∞
K (s, x(t + s))ds +

∫ 0

−∞
L(s, x(β(t) + s))ds.

The function is with unbounded distributed delay and retarded constancy of
argument.

One can easily see that the Lipschitz condition is valid for the last exam-
ples, if coefficient functions A j and Bi are bounded, and functions K and L are
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Lipschitzian. Finally, one can remark that functions of the form f (t, x(t), x(γ(t)))
are also particular case of the functional f (t, xt , xγ(t)).

Example 3 Consider the system

z′(t) = A0z(t) + A1z(γ(t)) + f (t, zt , zγ(t)), (4.25)

where z =
(
z1
z2

)
, and A0 =

(
0 0
a 0

)
, A1 =

(
k 0
0 0

)
.

We find that X (t, s) =
(
1 0
0 ea(t−s)

)
, and

Mi (θi ) =
(
1 + k(θi − ζi ) 0

0 ea(θi−ζi )

)
, Mi−1(θi ) =

(
1 + k(θi − ζi−1) 0

0 ea(θi−ζi−1)

)
, i ∈ Z.

Next, we have that

G = M−1
i (θi )Mi−1(θi ) =

( 1+k(θi−ζi−1)

1+k(θi−ζi )
0

0 ea(ζi−ζi−1)

)
.

From (4.12), it implies that the zero solution of (4.10) is uniformly exponentially
stable, if

sup
i

|1 + k(θi − ζi−1)

1 + k(θi − ζi )
| < 1, sup

i
ea(ζi−ζi−1) < 1.

Assume that the last two inequalities are correct. Then, system (4.25) admits
uniformly asymptotically stable bounded, periodic, or almost periodic solution, if the
Lipschitz constant is sufficiently small and sequences θ, ζ and functional f satisfy
appropriate properties of periodicity and almost periodicity mentioned for Theorems
10–11.

Let us discuss more specific cases. Assume, first, that θi = ζi = i, i ∈ Z. Then,
matrix

G =
(
1 + k 0
0 ea

)
, i ∈ Z.

Denote by ρ j , j = 1, 2, eigenvalues of matrix G. They are multipliers of system
(4.25). From (4.12), it implies that the zero solution of (4.3) is exponentially stable,
if and only if absolute values of both multipliers are less than one. Easy to see that
|ρ1| = |1 + k|, |ρ2| = ea, and sufficient conditions for uniform asymptotic stability
of the bounded solution are a < 0,−2 < k < 0.

Now, suppose that the piecewise constant argument is advanced, θi+1 = ζi =
i + 1. This time ρ1 = (1 − k)−1, ρ2 = ea, and sufficient conditions for asymptotic
stability are a < 0, k > 0 or k < −2.
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Example 4 Consider the following sequence, θi = i + ai , where ai = 1
4 | sin(i) −

cos(i
√
2)|. By repeating proof of [18, 39], one can verify that θ satisfies the condi-

tions of the last theorem. That is, sequences θ
j
i are equipotentially almost periodic,

and there are positive numbers θ̄ and θ such that θ < θi+1 − θi ≤ θ̄, i ∈ Z. Now,
introduce a sequence ζ such that ζi = θi+1+θi

2 .One can easily verify that this sequence
also satisfies all conditions of the theorem. Moreover, ζ̄ = θ̄, ζ = θ. So, we fix the
chosen sequences and define on this basis the function γ(t). Introduce the following
RFDEPCA,

x ′(t) = αx(t) + βx(γ(t)) + f (t, xt , xγ(t)), (4.26)

in which α,β are fixed real constants, the identification function γ(t) is defined
above, and function f can be chosen, for example, as the following one,

f (t, xt , xγ(t)) = L sin(γ(t))cos2(πt)
∫ 0

−2
[x2(t + s) + x4(γ(t) + s)]ds.

It is obvious that it remains to check whether the zero solution of the equation

y′(t) = αy(t) + βy(γ(t)), (4.27)

is uniformly exponentially stable.
We investigated the equation in [4, 18] with simple case of γ(t).One can evaluate

that

Mi (t) = eα(t−ζi ) +
∫ t

ζi

eα(t−s)βds = eα(t−ζi ) + β

α

(
eα(t−ζi ) − 1

)
.

Then,

Mi (θi ) = e−α
θi+1−θi

2 + β

α
(e−α

θi+1−θi
2 − 1),

Mi−1(θi ) = eα
θi−θi−1

2 + β

α
(eα

θi−θi−1
2 − 1),

and

M−1
i (θi )Mi−1(θi ) = eα

θi−θi−1
2 + β

α
(eα

θi−θi−1
2 − 1)

e−α
θi+1−θi

2 + β
α
(e−α

θi+1−θi
2 − 1)

.
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Now, we assume that α < 0,β > 0, and |β|
|α| < 1. Then, one can find that

∣∣∣∣∣
eα

θi−θi−1
2 + β

α
(eα

θi−θi−1
2 − 1)

e−α
θi+1−θi

2 + β
α
(e−α

θi+1−θi
2 − 1)

∣∣∣∣∣ ≤ q < 1, i ∈ Z,

with some positive number q. The last inequality is sufficient for the zero solution
of (4.27) to be uniformly exponentially stable, and then, Eq. (4.26) admits a unique
almost periodic solution, if the constant L is sufficiently small.

4.6 Further Investigations

In this part of the chapter, we describe some of problems, which can be studied on the
basis of our present results. Firstly, several models (population dynamics, optimal
control, ship stabilization) will be considered. Secondly, we introduce differential
equations, which are much more general, in some sense, than those we investigated
in the paper, but they still are FDEPCA.

A number of models with piecewise argument are considered in [8, 22, 24]. In
what follows, we propose a very short list of models which are FDEPCA.

One may investigate the following prey–predator Volterra system with piecewise
constant argument,

x ′(t) = [a1 − b1y(t) −
∫ 0

−τ

Q1(s)y(β1(t) + s)ds]x(t),

y′(t) = [a2 + b2y(t) +
∫ 0

−τ

Q2(s)x(β2(t) + s)ds]y(t). (4.28)

In this equation, we assume that the effect of the species accumulation is seen only
near the moments of discontinuity, which can, for example, depend on seasonal
behavior of animals. It is natural that two different constancy functions, β1,β2, are
considered, for each of the two species. The model is RFDERCA.

Similar arguments for investigation can be accepted for the following equation of
an isolated population [27],

x ′(t) = −α[
∫ 0

−τ

x(β(t) + s)dη(s)](1 + x(t)). (4.29)

More biological arguments for equations with piecewise constant argument can
be found in our book [8].

It is obvious that piecewise continuous control is easier to apply than continuous
one. The following control problem for FDE withMCA can be investigated,
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x ′(t) = P(t)x(t) + B(t)u(γ(t)),

y(t) = Q(t)x(t),

u′(t) =
∫ 0

−τ

[dsη(t, s)]y(γ(t) + s) +
∫ 0

−τ

[dsμ(t, s)]u(γ(t) + s). (4.30)

which is the generalization of the optimal control problem in [34]. One has to empha-
sis that alternate constancy function γ does not make theoretical investigation more
difficult as it is for advanced argument in FDE [31, 35].

Consider one technical problem, ship stabilization. The following retarded func-
tional differential equation is discussed in [33],

aφ
′′′
(t) + bφ

′′
(t) + cφ′(t − τ ) + dφ(t − τ ) = 0,

In the last equation, φ is the ship deviation angle. The time lag τ is utilized, since
it is impossible to measure ship deviation instantaneously. Technically, it is easy to
use the deviation function β(t) for control. So, we obtain the following FDEPCA,

aφ
′′′
(t) + bφ

′′
(t) + cφ′(t − τ ) + dφ(t − τ ) + eφ′(β(t)) + f φ(β(t)) = 0.

Finally, anticipated deviation one can be considered for control, and we obtain the
following FDEPCA,

aφ
′′′

(t) + bφ
′′
(t) + cφ′(t − τ ) + dφ(t − τ ) + eφ′(β(t)) + f φ(β(t)) + gφ′(χ(t)) + hφ(χ(t)) = 0.

Thus, FDE with RCA and MCA can be investigated for the ship stabilization.
Next, we consider argument functions of more general type than those have been

analyzed in the main body of the paper. Denote by θ = {θi }, i ∈ Z, θ ⊂ R, a strictly
ordered sequence of real numbers such that |θi | → ∞ as |i | → ∞. Let, also, ζ =
{ζi }, i ∈ Z, be another sequence of elements of R. This sequence may be strictly
increasing or non-decreasing, and it is not necessary that ζi ∈ [θi , θi+1]. We say that
a function, which is defined on R, is of the η−type and denote it η(t), if it is equal
to ζi , whenever θi ≤ t < θi+1, i ∈ Z. This type of functions has been introduced in
[8]. Now, we can suggest to consider the following functional differential equation
with piecewise constant argument,

x ′(t) = f (t, xt , xη(t)). (4.31)

What is the main difference between the last system and Eqs. (4.1)–(4.3)? Values of
function η are not necessary in the interval of constancy,where t lies in. Consequently,
one has more interesting opportunities in investigation. For example, one can request
that η(t) = θi+1 for t ∈ [θi , θi+1). It is of great mathematical interest to investigate
these type o equations, as well it provides more opportunities for applications.

Since any differential equation with piecewise constant argument is a differential
equationwith deviated argument, one can suppose that they are functional differential
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equations. We, on the basis of our experience, propose to consider two classes of
equations, which relate to each other similarly to ordinary differential equations and
functional differential equations. That is, there have to be EPCAG and FDEPCA.

If one considers Eqs. (4.1)–(4.3), there is no doubt that they are FDEPCA. Let us
introduce another example to illustrate our point of view,

x ′ = f (t, x(t), x(η1(t)), x(η2(t)), . . . , x(ηm(t))), (4.32)

where t ∈ R, x ∈ R
n, function f is continuous in all arguments,η j , j = 1, 2, . . . ,m,

are piecewise constant functions of η−type. We call (4.32) differential equation with
piecewise constant argument (EPCAG, and not FDE), if the following condition
holds,

(A) For each j = 1, 2, . . . ,m, and t ∈ J, the values of function η j (t) and t are in
the same interval of constancy of η j (t).

If there is a function η j in (4.32) such that (A) does not hold for all t from the
domain, then (4.32) is a functional differential equation with piecewise constant
argument, FDEPCA.

Assume that function f in (4.32) is defined not for all t ∈ R, but in some subset
J ⊂ R. In this case, one should request that η j (t) ∈ J for all j and t ∈ J.

Let us provide more concrete examples. Fix strictly increasing sequences of real
numbers θ

j
i , i ∈ Z, j = 1, 2, . . . ,m, and sequences ζ

j
i , θ

j
i ≤ ζ

j
i ≤ θi+1, i ∈ Z, j =

1, 2, . . . ,m. Define functions η j (t) = ζ
j
i , if t ∈ [θ j

i , θ
j
i+1). One can easily see that

(4.32) is EPCAG, and this system is not FDEPCA. Now, define η j (t) = ζ
j
i−1, if

t ∈ [θ j
i , θ

j
i+1). In this case, condition (A) is not valid, and (4.32) is FDEPCA. One

can call it retarded functional differential equationwith piecewise constant argument.
Nevertheless, this equation is not of the same type as (4.2).

Finally, we suggest a new name for functional differential equations with piece-
wise constant argument, functional differential equations with functional response
on piecewise constant argument, FDEFRPCA. This class of systems may involve all
equations considered in the present paper, and moreover, we suggest to investigate
and to apply in modeling of real-world problems the following types of equations,

x ′ = f (t, xt , xβ(t−τ (t))), (4.33)

x ′ = f (t, xt , xγ(t−τ (t))), (4.34)

and

x ′ = f (t, xt , xχ(t−τ (t))), (4.35)

where τ (t) is a deviation function, which is positive, negative, or alternate type.
Our proposals that have been formulated just above show that the there are various

functional differential equations with piecewise constant argument, and they may
provide more theoretical challenges and ways of solutions for real- world problems.
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Chapter 5
Grazing in Impulsive Differential Equations

M.U. Akhmet and A. Kıvılcım

5.1 Introduction

Grazing phenomenon is one of the attractive features for nonlinear dynamics
[7, 8, 23]. There are two approaches for the definition of grazing in literature. One
is presented in the studies of Bernardo, Budd and Champneys [7, 8], Bernardo and
Hogan [9], and Luo [17, 18, 20, 21]. In these studies, it is asserted that grazing occurs
when a trajectory hits the surface of discontinuity tangentially. In [24–27], Nordmark
defines grazing as the approach of the velocity to zero in the neighborhood of the
surface of discontinuity which is the case of the studies conducted in [7–9, 17–21].
Our comprehension of grazing in this study is close to that one in [7, 9, 17].

In this study, wemodel the dynamics with grazing impacts by utilizing differential
equations with impulses at variable moments and applying the methods of [1–3]. As
a consequence of such methods, the role of the mappings [24–27] is diminished. One
can observe that a trajectory at a grazing point may have tangency to the surface of
discontinuity, which is parallel to one or several coordinate axises. Particularly, it
means the velocity approaches to zero [24–27].

The papers [7–9, 17–21, 24–27] can be combined in the following way; that is,
vector field is the function of both time and space variables, and the jump functions
and the surfaces are defined only through space variables. Then, it is easy to call
these ones non-autonomous systems with stationary impulses. However, there are
some systems whose vector fields, surfaces of discontinuity and jump functions
are defined only through space variables, then these ones are called autonomous
system. Moreover, under certain conditions, some autonomous systems define a
discontinuous dynamical system [3]. Eventually, there are some impulsive systems
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whose vector field and the surfaces of discontinuity are the functions of both time
and space variables. These systems are called non-autonomous impulsive differential
equations.

For investigation of autonomous differential equations, it is convenient to utilize
properties of dynamical systems. The studies of discontinuous dynamical systems
with transversal intersections of orbits and surfaces, B-smooth discontinuous flows,
can be found in [1–3]. In this research, the dynamics is approved for systems with
grazing orbits. Moreover, the definitions of orbital stability and asymptotic phase are
adapted to grazing cycles. The orbital stability theorem is proved, which cannot be
underestimated for theory of impactmechanisms. In the second half of the chapter,we
consider grazing in non-autonomous systems with stationary impulsive conditions
and give appropriate definitions, obtain the variational system for the grazing periodic
solutions, investigate the stability of them and analyze regular perturbations around
the grazing periodic solutions.

5.2 Discontinuous Dynamical Systems

Let R, N and Z be the sets of all real numbers, natural numbers and integers, respec-
tively. Consider the set D ∈ R

n such that D = ∪Di , where Di , i = 1, 2, . . . , k,
components of D, are disjoint open connected subsets of R

n. To describe the sur-
face of discontinuity, we present a two times continuously differentiable function
Φ : Dr → R

n . The set can be defined as Γ = Φ−1(0) and is a closed subset of D̄,
where D̄ is the closure of D.Denote ∂Γ as the boundary ofΓ.One can easily see that
Γ = ∪k

i=1Γi , where Γi are parts of the surface of discontinuity in the components of
D. Denote Γ̃ = J (Γ ), Φ̃(x) = Φ(J−1(x)). Denote an r -neighborhood of D in R

n

for a fixed r > 0 as Dr . Let Γ r be the r -neighborhood of Γ in R
n, for a fixed r > 0

and define functions J : Γ r → Dr and J̃ : Γ̃ r → Dr , such that, J (Γ ), J̃ (Γ̃ ) ⊂ D.

Assume that a function f (x) : Dr → R
n is continuously differentiable in Dr . Set

the gradient vector of Φ as ∇Φ(x).
The following definitions will be utilized in the remaining part of the study. Let

x(t−) be the left limit position of the trajectory and x(t+) be the right limit of
the position of the trajectory at the moment t. Define Δx(t) := x(t+) − x(t−) as
the jump operator for a function x(t) such that x(t) ∈ Γ and t is a moment of
discontinuity (discontinuity moment). In other words, the discontinuity moment t is
the moment when the trajectory meets the surface of discontinuity Γ. The function
I (x) will be used in the following part of the chapter which is defined as I (x) :=
J (x) − x, for x ∈ Γ.

The following assumptions are needed throughout this study.

(C1) ∇Φ(x) �= 0 for all x ∈ Γ,

(C2) J ∈ C1(Γ r ) and det
[

∂ J (x)
∂x

]
�= 0, for all x ∈ Γ r \ ∂Γ,

(C3) Γ
⋂

Γ̃ ⊆ ∂Γ ∩ ˜∂Γ ,
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(C4) 〈∇Φ(x), f (x)〉 �= 0 if x ∈ Γ \ ∂Γ,

(C5) 〈∇Φ̃(x), f (x)〉 �= 0 if x ∈ Γ̃ \ ∂Γ̃ ,

(C6) J (x) = x for all x ∈ ∂Γ,

(C7) J̃ (x) = x for all x ∈ ∂Γ̃ .

One can verify that Γ̃ = {x ∈ D|Φ̃(x) = 0} and J̃ (x) �= x on Γ̃ since of (C2).
Condition (C1) implies that for every x0 ∈ Γ, there exist a number j and a
function φx0(x1, . . . , x j−1, x j+1, . . . , xn) such that Γ is the graph of the function
x j = φx0(x1, . . . , x j−1, x j+1, . . . , xn) in a neighborhood of x0. Same is true for every
x0 ∈ Γ̃ .Moreover,∇Φ̃(x) �= 0, for all x ∈ Γ̃ , can be verified by using the condition
(C2). The conditions (C2), (C6), (C7) imply that the equality J̃ (x) = x is true for all
x ∈ ∂Γ̃ .

Let A be an interval in Z. We say that the strictly ordered set θ = {θi }, i ∈ A ,

is a B-sequence [3] if one of the following alternatives holds: (i) θ = ∅, (i i) θ is a
non-empty and finite set, (i i i) θ is an infinite set such that |θi | → ∞ as i → ∞. In
what follows, θ is assumed to be a B-sequence.

The main object of our discussion is the following system,

x ′ = f (x),

Δx |x∈Γ = I (x). (5.1)

In order to define a solution of (5.1), we need the following function and spaces.
A function φ(t) : R → R

n, n ∈ N, θ is a B-sequence, is from the set PC(R, θ)

if it: (i) is left continuous, (i i) is continuous, except, possibly, points of θ, where it
has discontinuities of the first kind.

A function φ(t) is from the set PC1(R, θ) if φ(t), φ′(t) ∈ PC(R, θ), where the
derivative at points of θ is assumed to be the left derivative. If φ(t) is a solution of
(5.1), then it is required that it belongs to PC1(R, θ) [3].

We say that x(t) : I → R
n,I ⊂ R, is a solution of (5.1) on I if there exists

an extension x̃(t) of the function on R such that x̃(t) ∈ PC1(R, θ), the equality
x ′(t) = f (x(t)), t ∈ I , is true if x(t) /∈ Γ, x(θi+) = J (x(θi )) for x(θi ) ∈ Γ and
x(θi+) ∈ Γ̃ , θi ∈ I . If θi is a discontinuity moment of x(t), then x(θi ) ∈ Γ, for
θi > 0 and x(θi ) ∈ Γ̃ , for θi < 0. If x(θi ) ∈ ∂Γ or x(θi ) ∈ ∂Γ̃ , then x(θi ) is a point
of discontinuity with zero jump.

Definition 1 A point x∗ from ∂Γ or ∂Γ̃ is a grazing point of system (5.1) if
〈∇Φ(x∗), f (x∗)〉 = 0 or 〈∇Φ̃(x∗), f (x∗)〉 = 0, respectively.

Definition 2 An orbit γ (x∗) = {x(t, 0, x∗)|x∗ ∈ D, t ∈ R} of (5.1) is grazing if
there exists at least one grazing point on the orbit.

Consider a solution x(t) : R → R
n and {θi } be the moments of the discontinuity,

they are the moments where solution x(t) intersects Γ as time increases and the
moments when the solution it intersects Γ̃ as time decreases.

A solution x(t) = x(t, 0, x0), x0 ∈ D of (5.1) locally exists and is unique if the
conditions (C1)–(C3) are valid [3].
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In what follows, let ‖ · ‖ be the Euclidean norm; that is, for a vector x =
(x1, x2, . . . , xn) in R

n, the norm is equal to
√
x21 + x22 + . . . + x2n .

The following condition for (5.1) guarantees that any set of discontinuitymoments
of the system constitutes a B-sequence and we call the condition B-sequence con-
dition.

(C8) supD ‖ f (x)‖ < +∞, and inf x0∈Γ̃ (x0, y(ζ, 0, x0)) > 0.

In [3], some other B-sequence conditions are provided.
We will request for discontinuous dynamical systems that any sequence of dis-

continuity moments to be a B-sequence.
Let us set the system

y′ = f (y) (5.2)

for the possible usage in the remaining part of the study.
Consider a solution y(t, 0, x0), x0 ∈ Γ̃ , of (5.2). Denote the first meeting point

of the solution with the surface Γ, provided the point exists, by y(ζ, 0, x0). The
following conditions are sufficient for the continuation property.

(C9) (a) Every solution y(t, 0, x0), x0 ∈ D, of (5.2) is continuable to either ∞ or
Γ as time increases,
(b) Every solution y(t, 0, x0), x0 ∈ D, of (5.2) is continuable to either −∞ or
Γ̃ as time decreases.

To verify the continuation of the solutions of (5.1), the following theorems can
be applied.

Theorem 1 ([3]) Assume that conditions (C8) and (C9) are valid. Then, every solu-
tion x(t) = x(t, 0, x0), x0 ∈ D of (5.1) is continuable on R.

Now, we will present a condition which is sufficient for the group property.

(C10) For all x0 ∈ D, the solution y(t, 0, x0) of (5.2) does not intersect Γ̃ before it
meets the surface Γ as time increases.

In other words, for each x0 ∈ D and a positive number s such that y(s, 0, x0) ∈ Γ̃ ,

there exists a number r , 0 ≤ r < s, such that y(r, 0, x0) ∈ Γ.

Theorem 2 ([3]) (The groupproperty) Assume that conditions (C1)–(C10) are valid.
Then, x(t2, 0, x(t1, 0, x0)) = x(t2 + t1, 0, x0), for all t1, t2 ∈ R.

Denote by [̂a, b], a, b ∈ R, the interval [a, b], whenever a ≤ b and [b, a], other-
wise. Let x1(t) ∈ PC(R+, θ1), θ1 = {θ1

i }, and x2(t) ∈ PC(R+, θ2), θ2 = {θ2
i }, be

two different solutions of (5.1).
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Definition 3 The solution x2(t) is in the ε-neighborhood of x1(t) on the interval
I if

• the sets θ1 and θ2 have same number of elements in I ;
• |θ1

i − θ2
i | < ε for all θ1

i ∈ I ;
• the inequality ||x1(t) − x2(t)|| < ε is valid for all t, which satisfy t ∈ I \ ∪θ1

i ∈I
(θ1

i − ε, θ1
i + ε).

The topology defined with the help of ε-neighborhoods is called the B-topology.

5.2.1 B-Equivalence to a System with Fixed
Moments of Impulses

In order to facilitate the analysis of the system with variable moments of impulses
(5.1), a B-equivalent system [3] to the system with variable moments of impulses
will be utilized in our study. Below, we will construct the B-equivalent system.

Let x(t) = x(t, 0, x0 + Δx) be a solution of system (5.1) neighbor to x0(t) with
small ‖Δx‖. If the point x0(θi ) is a (β)- or (γ )-type point, then it is a boundary point.
For this reason, there exist two different possibilities for the near solution x(t) with
respect to the surface of discontinuity. They are:

(N1) The solution x(t) intersects the surface of discontinuity, Γ, at a moment near
to θi ,

(N2) The solution x(t) does not intersect Γ, in a small time interval centered
at θi .

Consider a solution x0(t) : I → R
n, I ⊆ R, of (5.1). Assume that all disconti-

nuity points θi , i ∈ A are interior points ofI .There exists a positive number r , such
that r -neighborhoods of Di (r) of (θi , x0(θi )) do not intersect each other. Consider r
is sufficiently small and so that every solution of (5.2) which satisfies condition (N1)
and starts in Di (r) intersects Γ in Gi (r) as t increases or decreases. Fix i ∈ A and
let ξ(t) = x(t, θi , x), (θi , x) ∈ Di (r), be a solution of (5.2), τi = τi (x) the meeting
time of ξ(t) with Γ and ψ(t) = x(t, τi , ξ(τi ) + J (ξ(τi ))) another solution of (5.2).
Denoting by Wi (x) = ψ(θi ) − x, one can find that it is equal to

Wi (x) =
∫ τi

θi

f (ξ(s))ds + J (x +
∫ τi

θi

f (ξ(s))ds) +
∫ θi

τi

f (ψ(s))ds (5.3)

and maps an intersection of the plane t = θi with Di (r) into the plane t = θi .

Let us present the following system of differential equationswith impulses at fixed
moments, whose impulse moments, {θi }, i ∈ A , are the moments of discontinuity
of x0(t),
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y′ = f (y),

Δy|t=θi = Wi (y(θi )). (5.4)

The function f is the same as the function in system (5.1), and the maps Wi ,

i ∈ A , are defined by Eq. (5.3). If ξ(t) = x(t, θi , x) does not intersect Γ near θi
then we take Wi (x) = 0.

Let us introduce the sets Fr = {(t, x)|t ∈ I, ‖x − x0(t)‖ < r}, and D̄i (r), i ∈
A , closure of an r -neighborhood of the point (θi , x0(θi+)). Write Dr = Fr ∪
(∪i∈A Di (r)) ∪ (∪i∈A D̄i (r)). Take r > 0 sufficiently small so that Dr ⊂ R × D.

Denote by D(h) an h-neighborhood of x0(0). Assume that conditions (C1)–(C10)
hold. Then systems (5.1) and (5.4) are B-equivalent in Dr for a sufficiently small r
[3]. That is, if there exists h > 0, such that:

• for every solution y(t) of (5.4) such that y(0) ∈ D(h), the integral curve of y(t)
belongs to Dr and there exists a solution x(t) = x(t, 0, y(0)) of (5.1) which sat-
isfies

x(t) = y(t), t ∈ [a, b]\ ∪m
i=−k (τ̂i , θi ], (5.5)

where τi are moments of discontinuity of x(t).One should precise that we assume
τi = θi , if x(t) satisfies (N2). Particularly,

x(θi ) =
{
y(θi ), if θi ≤ τi ,

y(θ+
i ), otherwise,

y(τi ) =
{
x(τi ), if θi ≥ τi ,

x(τ+
i ), otherwise.

• Conversely, if (5.4) has a solution y(t) = y(t, 0, y(0)), y(0) ∈ D(h), then there
exists a solution x(t) = x(t, 0, y(0)) of (5.1) which has an integral curve in Dr ,

and (5.5) holds.

Consider a solution x0(t) : R → R
n, x0(t) = x(t, 0, x0), x0 ∈ D with discontinuity

moments {θi }. Fix a discontinuity moment θi . At this discontinuity moment, the
trajectory may be on Γ and Γ̃ . All possibilities of discontinuity moment should be
analyzed. For this reason, we should investigate the following six cases:

(α) x0(θi ) ∈ Γ \ ∂Γ ,
(α′) x0(θi ) ∈ Γ̃ \ ∂Γ̃ ,
(β) x0(θi ) ∈ ∂Γ & 〈∇Φ(x0(θi )), f (x0(θi ))〉 �= 0,
(β ′) x0(θi ) ∈ ∂Γ̃ & 〈∇Φ̃(x0(θi )), f (x0(θi ))〉 �= 0,
(γ ) x0(θi ) ∈ ∂Γ & 〈∇Φ(x0(θi )), f (x0(θi ))〉 = 0,
(γ ′) x0(θi ) ∈ ∂Γ̃ & 〈∇Φ̃(x0(θi )), f (x0(θi ))〉 = 0.

If a discontinuity point x0(θi ) satisfies the case (α), ((α′)) the case (β), ((β ′))
and the case (γ ), ((γ ′)) we will call it an (α)-type point, a (β)-type point and a
(γ )-type point, respectively.

Besides, we present the following definition which is compliant with Definition 2.
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Definition 4 If there exists a discontinuity moment, θi , i ∈ A , for which one of the
cases (γ ) or (γ ′) is valid, then the solution x0(t) = x(t, 0, x0), x0 ∈ R

n of (5.1) is
called a grazing solution, and t = θi is called a grazing moment.

Next, we consider the differentiability properties of grazing solutions. The theory
for the smoothness of discontinuous dynamical systems’ solutions without grazing
phenomenon is provided in [3].

Denote by x̄(t), j = 1, 2, . . . , n, a solution of (5.4) such that x̄(0) = x0 +
Δx, Δx = (ξ1, ξ2, . . . , ξn), and let ηi be the moments of discontinuity of x̄(t).

The following conditions are required in what follows.

(A) For all t ∈ [0, b]\ ∪i∈A (̂ηi , θi ], the following equality is satisfied

x̄(t) − x0(t) =
n∑

i=1

ui (t)ξi + O(‖Δx‖), (5.6)

where ui (t) ∈ PC([0, b], θ).

(B) There exist constants νi j , j ∈ A , such that

η j − θ j =
n∑

i=1

νi jξi + O(‖Δx‖); (5.7)

(C) The discontinuitymoment η j of the near solution approaches to the discontinuity
moment θ j , j ∈ A , of grazing one as ξ tends to zero.

The solution x̄(t) has a linearization with respect to solution x0(t) if the condition
(A) is valid and, moreover, if the point x0(θi ) is of (α)- or (β)-type, then the condition
(B) is fulfilled. For the case x0(θi ) is of (γ )-type the condition (C) is true.

The solution x0(t) is K -differentiable with respect to the initial value x0 on [0, b]
if for each solution x̄(t) with sufficiently small Δx the linearization exists. The
functions ui (t) and νi j depend on Δx and uniformly bounded on a neighborhood of
x0.

It is easy to see that the differentiability implies B-continuous dependence on
solutions to initial data.

Define the map ζ(t, x) as ζ(t, x) = x(t, 0, x), for x ∈ D.

A K -smooth discontinuous flow is a map ζ(t, x) : R × D → D, which satisfies
the following properties:

(I) The group property:

(i) ζ(0, x) : D → D is the identity;
(ii) ζ(t, ζ(s, x)) = ζ(t + s, x) is valid for all t, s ∈ R and x ∈ D.

(II) ζ(t, x) ∈ PC1(R) for each fixed x ∈ D.

(III) ζ(t, x) is K -differentiable in x ∈ D on [a, b] ⊂ R for each a, b such that the
discontinuity points of ζ(t, x) are interior points of [a, b].
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In [3], it was proved that if the conditions of Theorem 1 and (C1)–(C10) are ful-
filled, then system (5.1) defines a B-smooth discontinuous flow [3] if there are no
grazing points for the dynamics. It is easy to observe that the B-smooth discontinuous
flow is a subcase of the K -smooth discontinuous flow. In the next section, we will
construct a variational system for (5.1) in the neighborhood of grazing orbits. That is,
we will assume that some of the discontinuity points are (γ )-type points. Lineariza-
tion around a solution and its stability will be taken into account. Thus, analysis of
the discontinuous dynamical systems with grazing points will be completed.

5.2.2 Linearization Around Grazing Orbits
and Discontinuous Dynamics

The objective of this section is to verify K -differentiability of the grazing solution.
Consider a grazing solution x0(t) = x(t, 0, x0), x0 ∈ D, of (5.1). We will demon-
strate that one can write the variational system for the solution x0(t) as follows:

u′ = A(t)u,

Δu|t=θi = Biu(θi ), (5.8)

where the matrix A(t) ∈ R
n×n of the form A(t) = ∂ f (x0(t))

∂x . The matrices Bi ,

i = 1, . . . , n, will be defined in the remaining part of the study. The matrix Bi

is bivalued if θi is a grazing moment or of (β)-type.
The right-hand side of the second equation in (5.8) will be described in the remain-

ing part of the study for each type of the points. As the linearization at a point of
discontinuity, we comprehend the second equation in (5.8).

5.2.2.1 Linearization at Non-grazing Points

Discontinuity points of (α) and (α′) types are discussed in [3]. In this subsection, we
will outline the results of the book. For non-grazing point, the points are of the form
(α) or (β). Let us start with an (α)-type point.

Assume that x(θi ) is an (α)-type point. It is clear that the B-equivalent system
(5.4) can be applied in the analysis. The functions τi (x) and Wi (x) are described in
Sect. 5.2.1. Differentiating Φ(x(τi (x))) = 0, we have

∂τi (x0(θi ))

∂x j
= −

Φx (x0(θi ))
∂x0(θi )
∂x0 j

Φx (x0(θi )) f (x0(θi ))
. (5.9)

Then, considering (5.3), we get the following equation,
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∂Wi (x0(θi ))

∂x0 j
= ( f (x0(θi )) − f (x0(θi ) + J (x0(θi ))))

∂τi

∂x0 j
+ ∂ I

∂x

(
e j + f

∂τi

∂x0 j

)
,

(5.10)

where e j = (0, . . . , 1︸ ︷︷ ︸
j

, . . . , 0).

The matrix Bi ∈ R
n×n in Eq. (5.8) is defined as Bi = Wix , where Wix is the

n × n matrix of the form Wix = [ ∂Wi (x0(θi ))
∂x1

, ∂Wi (x0(θi ))
∂x2

, . . . , ∂Wi (x0(θi ))
∂xn

]. Its vector-

components ∂Wi (x0(θi ))
∂x0 j

, j = 1, . . . , n, evaluated by (5.10). Moreover, the compo-
nents of the gradient ∇τi have to be evaluated by formula (5.9).

Then, consider x(θi ) is an (β)-type point. There exist two different possibilities
with respect to the surface of discontinuity for a near solution, such as it intersects
it or not. Above, we consider that as (N1) and (N2). In light of (N1) and (N2), the
matrix Bi in (5.1) can be expressed as follows:

Bi =
{
On, if (N1) is valid,

Wix , if (N2) is valid,
(5.11)

where On is n × n zero matrix, Wix is evaluated by formula (5.10) and ∇τ(x) eval-
uated by formula (5.9).

The differentiability properties for the cases (α′) and (β ′) can be investigated
similarly.

5.2.2.2 Linearization at a Grazing Point

Fix a discontinuitymoment θi and assume that one of the cases (γ ) or (γ ′) is satisfied.
We will investigate the case (γ ). The case (γ ′) can be considered in a similar way.

Considering condition (C1) with the formula (5.9), it is easy to see that one
coordinate of it is infinity at a grazing point. This gives arise singularity in the
system, which makes the analysis harder and the dynamics complex. Through the
formula (5.9), one can see that the singularity is just caused by the position of the
vector field with respect to the surface of discontinuity, and the impact component
of the dynamical system does not participate in the appearance of the singularity. To
handle with the singularity, we will rely on the following conditions.

(A1) A grazing point is isolated. That is, there is a neighborhood of the point with
no other grazing points.

(A2) The map Wi (x) in (5.3) is differentiable at the grazing point x = x0(θi ).
(A3) The function τi (x) does not exceed a positive number less than θi+1 − θi near

a grazing point, x0(θi ), on a set of points which satisfy condition (N1).

In this study, we analyze the case, when the impact functions neutralize the sin-
gularity caused by transversality. That is, the triad: impact law, the surface of dis-
continuity and the vector field is specially chosen, such that condition (A2) is valid.
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Presumably, if there is no this type of suppressing, complex dynamics near the graz-
ing motions may appear [8, 18, 24, 25]. In the examples stated in the remaining part
of the study, one can see the verification of (A2), in details.

Let us prove the following assertion.

Lemma 1 If conditions (C1), (C4), (C6), (C8) and (A3) hold, then, τi (x) is contin-
uous near a grazing point x0(θi ), on a set of points, which satisfy condition (N1).

Proof Let x0(θi ) be a grazing point. If x̄ is not a point from the orbit of the graz-
ing solution, the continuity of τi (x) at the point x = x̄ can be proven using similar
technique presented in [3]. Now, the continuity at x0(θi ) is taken into account. On
the contrary, assume that τi (x) is not continuous at the point x = x0(θi ). Then, there
exists a positive number ε0 and a sequence {xn}n∈Z such that τi (xn) > ε0 whenever
xn → x0(θi ), as n → ∞. Moreover, from condition (A3), one can assert that there
exists a subsequence τi (xnk )which converges to a number ε0 ≤ τ0 < θi+1 − θi .With-
out loss of generality, assume that the subsequence converges the point where the
sequence {xn}n∈Z converges. Because of the continuity of solutions in initial value,
x(τi (xn), 0, xn) approaches to x(τ0, 0, x(θi )). But x(τi (xn), 0, xn) is on the surface
of discontinuity Γ, x(τ0, 0, x0(θi )) /∈ Γ. This contradicts with the closeness of the
surface of discontinuity Γ. The continuity at other points of the grazing orbit is valid
by the group property.

Due to the B-equivalence of systems (5.1) and (5.4), wewill consider linearization
around x0(t) as solution of the system (5.4), consequently, only formula (5.6) will be
needed. Finally, the linearization matrix for the grazing point also has to be defined
by the formula (5.11), where Wix exists by condition (A2).

5.2.2.3 Linearization Around a Grazing Periodic Solution

Let Ψ (t) : R → D be a periodic solution of (5.1) with period ω > 0 and θi , i ∈ Z,

are the points of discontinuity which satisfy (ω, p)-property, i.e., θi+p = θi + ω, p
is a natural number.

Let us fix a solution x(t) = x(t, 0, Ψ (0) + Δx) and assume that linearization of
Ψ (t) with respect to x(t) exists and is of the form

u′ = A(t)u,

Δu|t=θi = Biu. (5.12)

The matrix Bi is determined by (5.11). It is known that A(t + ω) = A(t), t ∈ R.

But, the sequence Bi may not be periodic in general, because of (5.11). This makes
the analysis of the neighborhood of Ψ (t) difficult. For this reason, we suggest the
following condition.
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(A4) For each sufficiently small Δx ∈ R
n, the variational system (5.12) satis-

fies Bi+p = Bi , i ∈ Z. There exist a finite number m ≤ 2l , where l is the
number of points of (β)- or (γ )-type in the interval [0, ω], of the periodic
sequences Bi .

To distinguish periodic sequences Bi in the assumption (A4), we will apply the
notation Bi = D( j)

i , i ∈ Z and j = 1, 2, . . . ,m.

In the next example, we will demonstrate that the system constitutes K -smooth
discontinuous flow although it has grazing points in the phase space.

Example 1 Consider an impact model

y′
1 = y2,

y′
2 = −y1 + 0.001y2, (5.13a)

Δy2|y∈Γ1 = −y2 − R1y
2
2 ,

Δy2|y∈Γ2 = −(1 + R2)y2, (5.13b)

with the domain D = R
2, R1 = exp(−0.0005π) and R2 = 0.9. In the paper [10],

it is stated that the coefficient of restitution for low velocity impact still remains
as an open problem. In the study [4], by considering Kelvin–Voigt model for the
elastic impact, we derived quadratic terms of the velocity in the impact law. These
arguments make the quadratic term for the impulse equation (5.13b) reasonable.

Let us describe the set of discontinuity curves by Γ = Γ1 ∪ Γ2. The compo-
nents Γ1 and Γ2 are intervals of the vertical lines y1 = exp(0.00025π) and y1 = 0,
respectively, and they will be precised next. Fix a point P = (0, ȳ2) ∈ D, with
ȳ2 > 1. Let y(t, 0, P) be a solution of (5.13a) and it meets with the vertical
line x1 = exp(0.00025π), x2 > 0 at the point P2 = (exp(0.00025π), y2(θ1, 0, P)),

where θ1 is the meeting moment with the line. Consider the point on the Γ̃1 which
is Q2 = (exp(0.00025π),−R1y2(θ1, 0, P2)2) and denote Q1 = (0, y2(θ2, 0, Q2)),

where θ2 is the moment of meeting of the solution y(t, 0, Q2) with the vertical line
x1 = 0, x2 < 0. We shall need also the point P1 = (0,−R2y2(θ2, 0, Q2)). Finally,
we obtain the region G in yellow and blue between the vertical lines and graphs
of the solutions in Fig. 5.1. The region G contains discontinuous trajectories, and
outside of this region all trajectories are continuous. Moreover, both region G and
its complement are invariant.

Define Γ1 = {(y1, y2)| y1 = exp(0.00025π), 0 ≤ y2 ≤ y2(θ1, 0, (0, ȳ2))}, and
Γ2 = {(y1, y2)| y1 = 0, y2(θ2, 0,−R1y2((θ1, 0, (0, ȳ2)))2) ≤ y2 ≤ 0}. The bound-
ary of the curve, Γ = Γ1 ∪ Γ2, has of four points, they are

∂Γ = {(0, 0), (exp(0.00025π), 0), (exp(0.00025π), y2(θ1, 0, (0, ȳ2))),

(0, y2(θ2, 0,−R1y2(θ1, 0, (0, ȳ2)))}.
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Fig. 5.1 The region G for
system (5.13) is depicted in
details. The curves of
discontinuity Γ = Γ1 ∪ Γ2
and Γ̃ = Γ̃1 ∪ Γ̃2 are drawn
as vertical lines in red and
green, respectively, and the
grazing orbit in magenta
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In the following part of the example, we will show that two of them, y∗ = (y∗
1 , y

∗
2 ) =

(exp(0.00025π), 0) and the origin, (0, 0) are grazing points. Moreover, it can be
easily validated that other two points are of β-type.

Issuing from system (5.13), the curve of discontinuity Γ̃ consists of two compo-
nents Γ̃1 and Γ̃2. The components are the following sets

Γ̃1 = {(y1, y2)| y1 = exp(0.00025π), −R1y2(θ1, 0, (0, ȳ2))
2 ≤ y2 ≤ 0}

and
Γ̃2 = {(y1, y2)| y1 = 0, 0 ≤ −R2y2(θ2, 0, Q2)}.

One can verify that the function

Ψ (t) =
{
exp(0.0005t)

(
sin(t), cos(t)

)
, if t ∈ [0, π),

(0, 1), if t = π,
(5.14)

is a discontinuous periodic solution of (5.13) with period ω = π, whose disconti-
nuity points (0, 1) and (0,− exp(0.0005π)) belong to Γ̃ and Γ, respectively. The
expression

〈∇Φ((exp(0.00025π), 0)), f ((exp(0.00025π), 0))〉
= 〈(1, 0), (0,− exp(−0.00025π))〉 = 0

verifies that y∗ is a (γ )-type point, i.e., a grazing point of the solution Ψ (t). It is
easily seen that the grazing is axial. Now, we can assert that the periodic solution
(5.14) is a grazing solution in the sense of Definition 4. Its simulation is depicted in
Fig. 5.2.

Since the complement of G is invariant in both directions and consists of con-
tinuous trajectories of the linear system (5.13a), one can easily conclude that the
complement is a continuous dynamical system [13]. Thus, to verify the dynamics
for the whole system, one need to analyze it in the region G. This set is bounded,
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Fig. 5.2 The grazing orbit
of system (5.13)
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consequently for solutions in it conditions (C8) and (C9) are fulfilled and by Theo-
rem 1, they admit B-sequences and continuation property.

Consider a function

ζ(y2) : [y2(θ2, 0, Q2), y2(θ1, 0, P)] → [y2(θ2, 0, Q2), y2(θ1, 0, P)]

such that it is continuously differentiable, satisfies ζ(y2) = −R2y2 in a neighbor-
hood of y2 = 0 and is the identity at the boundary points, i.e., ζ(y2(θ1, 0, P)) =
y2(θ1, 0, P) and ζ(y2(θ1, 0, P)) = y2(θ1, 0, P). It is easily seen that such function
exists. On the basis of this discussion, let us introduce the following system,

y′
1 = y2,

y′
2 = −y1 + 0.001y2, (5.15)

Δy2|y∈Γ = ζ(y2) − y2.

It is apparent that system (5.15) is equivalent to (5.13) near the orbit of periodic
solution Ψ (t). That is, they have the same trajectories there.

Specifying (5.1) for (5.15), it is easy to obtain thatΦ(y1, y2) = Φ̃(y1, y2) = (y1 −
exp(0.00025π))y1, f (y1, y2) = (y2,−y1 + 0.001y2) and J (y) = (y1, ζ(y2)).

Now, we will verify that system (5.15) defines a K -smooth discontinuous flow.
First, condition (C1) is verified since ∇Φ1(y) = ∇Φ2(y) = (1, 0) �= 0, for all
y ∈ D. The jump function J (y) = (y1, ζ(y2)) is continuously differentiable func-
tion. So, condition (C2) is valid. It is true that Γ ∩ Γ̃ ⊆ ∂Γ ∩ ˜∂Γ . Inequalities
〈∇Φ1(y), f (y)〉 = 〈(1, 0), (y2,−y1 + 0.001y2)〉 = y2 �= 0 and 〈∇Φ2(y), f (y)〉 =
〈(1, 0), (y2,−y1 + 0.001y2)〉 = y2 �= 0, if y ∈ Γ \ ∂Γ, validate the condition (C4).
Moreover, we have 〈∇Φ̃1(y), f (y)〉 = 〈(1, 0), (y2,−y1 + 0.001y2)〉 = y2 �= 0 and
〈∇Φ̃2(y), f (y)〉 = 〈(1, 0), (y2,−y1 + 0.001y2)〉 = y2 �= 0, if y ∈ Γ̃ \ ∂Γ̃ . Condi-
tions (C6) and (C7) hold as the function ζ is such defined. Thus, conditions (C1)–
(C10) have been verified. Consequently, the system (5.13) defines the K -smooth
discontinuous flow for all motions except the grazing ones. To complete the discus-
sion, one need to linearize the system near the grazing solutions. First, we proceed
with the linearization around the grazing periodic orbit (5.14).



124 M.U. Akhmet and A. Kıvılcım

The solution Ψ (t) has two discontinuity moments θ1 = π
2 and θ2 = ω in the

interval [0, ω]. The corresponding discontinuity points are of (γ )- and (α)-types,
respectively. Next, we will linearize the system at these points. The linearization
at the second point exists [3], and the details of this will be analyzed in the next
example. This time, we will focus on the grazing point y∗.

First, we assume that y(t) = y(t, 0, y∗ + Δy), Δy = (Δy1,Δy2) is not a grazing
solution.Moreover, the solution intersects the lineΓ1 at time t = ξ near t = θ1 as time
increases. The meeting point ȳ = (ȳ1, ȳ2) = (y1(ξ, 0, (y∗ + Δy)), y2(ξ, 0, (y∗ +
Δy)), is transversal one. It is clear ȳ1 = exp(0.00025π) and ȳ2 > 0. In order to
find a linearization at the moment t = θi , we use formula (5.3) for y(t) and find that

∂Wi (y)

∂y01
=

τ(y)∫

θi

∂ f (y(s))

∂y

∂y(s)

∂y01
ds + f (y(s))

∂τ (y)

∂y01
+ Jy(y)

(
e1 + f (y(s))

∂τ (y)

∂y01

)

+ f (y(s) + J (y(s))) ∂τ(y)
∂y01

+
θi∫

τ(y)

∂ f (y(s) + J (y(s)))

∂x

∂y(s)

∂y01
ds, (5.16)

where e1 = (1, 0)T , T denotes the transpose of a matrix. Substituting y = ȳ to the
formula (5.16), we obtain that

∂Wi (y(ξ, 0, y∗ + Δy))

∂y01
= f (y(ξ, 0, y∗ + Δy))

∂τ (y(ξ, 0, y∗ + Δy))

∂y01

+Jy(y(ξ, 0, y∗ + Δy))

(
e1 + f (y(ξ, 0, y∗ + Δy)))

∂τ (y(ξ, 0, y∗ + Δy)))

∂y01

)
(5.17)

+ f (y(ξ, 0, (J (y(ξ, 0, y∗ + Δy)))))
∂τ (J (y(ξ, 0, y∗ + Δy)))

∂y01
.

Considering the formula (5.9) for the transversal point ȳ = (ȳ1, ȳ2), the first

component
∂τ(ȳ)

∂y01
can be evaluated as

∂τ(ȳ)

∂y01
= − 1

ȳ2
. From the last equality, it is

seen how the singularity appears at the grazing point. Finally, we obtain that

∂Wi (ȳ)

∂y01
=
[

ȳ2 − R1(ȳ2)2

−ȳ1 − 0.001(ȳ2 − R1(ȳ2)2)

] (
− 1

ȳ2

)

+
[
1 0
0 −2R1 ȳ2

]⎡
⎣

0
ȳ1 + 0.001ȳ2

ȳ2

⎤
⎦ . (5.18)

Calculating the right-hand side of (5.18), we have

∂Wi (ȳ)

∂y01
=
[ −R1 ȳ2 − 1
0.001(1 − R1 ȳ2) + 2R1(0.001ȳ2 − ȳ1)

]
. (5.19)
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The last expression demonstrates that the derivative is a continuous function of its
arguments in a neighborhood of the grazing point. Since it is defined and continuous
for the points, which are not from the grazing orbit by the last expression and for
other points, it can be determined by the limit procedure. Indeed, one can easily show
that the derivative at the grazing point y∗ is

[ −1
0.001 − 1.8 exp(0.00025π)

]
. (5.20)

Similarly, all other points of the grazing orbit can be discussed.
Next, differentiating (5.3) with y(t) again we obtain that

∂Wi (y)

∂y02
=

τ(y)∫

θi

∂ f (y)

∂y

∂y(s)

∂y02
ds + f (y(s))

∂τ (y)

∂y02
+ Jy(y)(e2 + f (y(s))

∂τ (y)

∂y02
)

+ f (y + J (y)) ∂τ(y)
∂y02

+
θi∫

τ(y)

∂ f (y(s) + J (y(s)))

∂x

∂y(s)

∂y02
ds, (5.21)

where e2 = (0, 1)T . Calculate the right-hand side of (5.21) at the point ȳ = (ȳ1, ȳ2)
to obtain

∂Wi (y(ξ, 0, y∗ + Δy))

∂y02
= f (y(ξ, 0, y∗ + Δy))

∂τ (y(ξ, 0, y∗ + Δy))

∂y02

+Jy(y(ξ, 0, y∗ + Δy))

(
e2 + f (y(ξ, 0, y∗ + Δy)))

∂τ (y(ξ, 0, y∗ + Δy))

∂y02

)
(5.22)

+ f (y(ξ, 0, y∗ + Δy))
∂τ (y(ξ, 0, y∗ + Δy))

∂y02
.

To calculate the fraction
∂τ(y(ξ, 0, y∗ + Δy))

∂y02
in (5.22), we apply formula (5.9)

for the transversal point ȳ = (ȳ1, ȳ2). The second component
∂τ(ȳ)

∂y02
takes the form

∂τ(ȳ)

∂y02
= 0. This and formula (5.22) imply

∂Wi (ȳ)

∂y02
=
[

0
−2Rȳ2

]
. (5.23)

Similar to (5.20), one can obtain that

∂Wi (y∗)
∂y02

=
[
0
0

]
. (5.24)
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Joining (5.20) and (5.24), it can be obtained that

Wiy(y
∗) =

[ −1 0
0.001 − 1.8 exp(0.00025π) 0

]
. (5.25)

The continuity of the derivatives in a neighborhood of y∗ implies that the function
W is differentiable at the grazing point y = y∗, and the condition (A2) is valid.

Now, on the basis of the discussion made above, one can obtain the bivalued
matrix of coefficients for the grazing point as

B1 =

⎧⎪⎨
⎪⎩

O2, if (N1) is valid,[
−1 0

0.001 − 1.8 exp(0.00025π) 0

]
, if (N2) is valid.

Thematrix D(1)
1 = O2 is for near solutions of (5.14) which are in the region where

Z in, see Fig. 5.1, and do not intersect the curve of discontinuity Γ1. The matrix

D(2)
1 =

[ −1 0
0.001 − 1.8 exp(0.00025π) 0

]

is for near solutions of (5.14), which intersects the curve of discontinuity Γ1. They
start in the subregion, where the point Y is placed. Thus, the linearization for
Ψ (t) at the grazing point exists. Moreover, since another point of discontinuity
(0, exp(0.0005π)) is not grazing, the linearization at the point exist as well as lin-
earization at points of continuity [3, 28]. Consequently, there exist linearization
around Ψ (t).

To verify condition (A3), consider a near solution y(t) = y(t, 0, ȳ) to Ψ (t),
where ȳ = (0, ȳ2), ȳ2 > Ψ2(0) = 1, which satisfy the condition (N1). It is true that

θi+1 − θi = π

2
= ω

2
.The first coordinate of the near solution toΨ (t) can be obtained

as y1(t) = ȳ exp(0.0005t) sin(t) and y1(
ω
2 ) = y1(

π

2
) = ȳ exp(0.00025π) > exp

(0.00025π) = Ψ1(
ω

2
). Thus, the meeting moment of near solution y(t) with the

surface of discontinuity is less than ω
2 . So, it implies that 0 < τ(y) < π

2 − ε for a
small number ε if the first coordinate of ȳ is close to exp(0.00025π). This validates
condition (A3). Now, Lemma 1 proves the condition (C).

Now, let us consider the point (0, 0). We have that 〈∇Φ((0, 0)), f ((0, 0))〉 =
〈(1, 0), (0, 0)〉 = 0. That is the origin is a grazing point. In the same time, it is a fixed
point of the system. For this particular grazing point, we can find the linearization
directly. Indeed, all the near solutions satisfy the linear impulsive system,

x ′
1 = x2,

x ′
2 = −x1 + 0.001x2, (5.26)

Δx2|x1=0 = −(1 + R2)x2.
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Consider a solution x(t) = x(t, 0, x0), where x0 = (x01 , x
0
2 ) �= (0, 0) with

moments of discontinuity θi , i ∈ Z, then the linearization system for the equation
around the equilibrium is

u′
1 = u2,

u′
2 = −u1 + 0.001u2, (5.27)

Δu2|t=θi = −(1 + R2)u2.

Indeed, if u1(t), u1(0) = e1, u2(t), u2(0) = e2, are solutions of (5.27), then one can
see that x(t) − (0, 0) = x01u1(t) + x02u2(t), for all t ∈ R.

We have obtained that linearization exists for both grazing solutions Ψ (t) and the
equilibrium at the origin. Moreover, conditions (C1)–(C10) are valid, and all other
solutions are B-differentiable in parameters [3]. Thus, the system (5.13) defines a
K -smooth discontinuous flow in the plane.

In the next example, we will finalize the linearization around the grazing solution
Ψ (t).

Example 2 (Linearization around the grazing discontinuous cycle) We continue
analysis of the last example and complete the variational system for Ψ (t).

Let us consider this time, the linearization at the non-grazing momentω = π. The
discontinuity point is c = (0,− exp(0.0005π)) and it is of (α)-type, since

〈∇Φ(c), f (c)〉 = 〈(1, 0)(− exp(0.0005π),−0.001 exp(0.0005π))〉
= − exp(0.0005π) �= 0.

Utilizing formula (5.9), the gradient is computed as∇τ(c) = (exp(−0.0005π), 0).
Then, utilizing ∇τ(c) and formula (5.10), one can determine that the matrix of

linearization at the moment π is

B2 =
[
exp(−0.0005π) 0

0.001 0

]
.

From the monotonicity of the jump function, −R1y22 , it follows that the
yellow and blue subregions of G are invariant. Consequently, for each solution near
to Ψ (t), the sequences Bi are of two types Bi = D( j)

i , i ∈ Z and j = 1, 2, where

D(1)
2i−1 = O2, D(2)

2i−1 = D(2)
1 =

[ −1 0
0.001 − 1.8 exp(0.00025π) 0

]
, D(1)

2i = D(2)
2i =

[
exp(−0.0005π) 0

0.001 0

]
, i ∈ Z. That is, the condition (A4) is valid and the linearization

around the periodic solution (5.14) on R is of two subsystems:
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u′
1 = u2,

u′
2 = −u1 + 0.001u2, (5.28)

Δu|t=θ2i−1 = D(1)
2i−1u,

Δu|t=θ2i = D(1)
2i u,

and

u′
1 = u2,

u′
2 = −u1 + 0.001u2, (5.29)

Δu|t=θ2i−1 = D(2)
2i−1u,

Δu|t=θ2i = D(2)
2i u,

where θ2i−1 = (2i−1)π
2 and θ2i = iπ .

The sequences {D( j)
i }, j = 1, 2, are 2-periodic. It is appearant that system (5.28)

+ (5.29) is a (ω, 2)-periodic. Thus, the variational system for the grazing solution is
constructed.

5.2.3 Orbital Stability

In this section,we proceed investigation of the grazing periodic solutionΨ (t).Analy-
sis of orbital stability will be taken into account. Denote by B(z, δ), an open ball
with center at z and the radius δ > 0 for a fixed point z ∈ Γ \ ∂Γ.By condition (C3),
the ball is divided by surface Γ into two connected open regions. Denote c+(z, δ),
for the region, where solution x(t) = x(t, 0, z) of (5.2) enters as time increases. The
region is depicted in Fig. 5.3.

Set the path of the periodic solution Ψ (t) as

η := {x ∈ D : x = Ψ (t), t ∈ R}.

Define dist (A, a) = infα∈A ‖α − a‖, where A is a set, and a is a point.

Fig. 5.3 The region c+(z, δ)

z
c (z,+ )
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Definition 5 The periodic solutionΨ (t) : R → D of (5.1) is said to be orbitally sta-
ble if for every ε > 0, there corresponds δ = δ(ε) > 0 such thatdist (x(t, 0, x0), η) <

ε, for all t ≥ 0, provided dist (x0, η) < δ and x0 /∈ ∪i c+(Ψ (θi ), δ),for i = 1, . . . ,m,

where m is the number of points Ψ (θi ) ∈ Γ \ ∂Γ.

The point x0 is not considered in regions c+(Ψ (θi ), δ), i = 1, . . . ,m, since solu-
tions which start there move continuously on a finite interval, whileΨ (t) experiences
a nonzero jump at t = θi and this violates the continuity in initial value, in general.
In the same time, we take into account any region adjoint to points of ∂Γ, since the
jump of Ψ (t) is zero there and, consequently, the continuous dependence in initial
value is valid for all near points.

Definition 6 The solutionΨ (t) : R+ → D of (5.1) is said to have asymptotic phase
property if a δ > 0 exists such that to each x0 satisfying dist (x0, η) < δ and x0 /∈
∪i c+(Ψ (θi ), δ), f or i = 1, . . . ,m, there corresponds an asymptotic phase α(x0) ∈
R with property: for all ε > 0, there exists T (ε) > 0, such that x(t + α(x0), 0, x0)
is in ε-neighborhood of Ψ (t) in B-topology for t ∈ [T (ε),∞).

Let us consider the following system, which will be needed in the following
lemmas and theorem

x ′ = A(t)x,

Δx |t=ζi = Biu, (5.30)

where A(t) and Bi are n × n function-matrices, A(t + ω) = A(t), for all t ∈ R and
there exists an integer p such that ζi+p = ζi + ω and Bi+p = Bi , for all i ∈ Z.

Lemma 2 Assume that system (5.30) has a simple unit characteristic multiplier and
the remaining n − 1 ones are in modulus less than unity. Then, the system (5.30) has
a real fundamental matrix X (t), of the form

X (t) = P(t)

(
1 0
0 exp (Bt)

)
, (5.31)

where P ∈ PC1(R, θ) is a regular,ω-periodic matrix, and B is an (n − 1) × (n − 1)
matrix with all eigenvalues have negative real parts.

The proof of above lemma is same as proof of Lemma 5.1.1 in [11].
Throughout this section, we will assume that (A4) is valid. That is, the variational

system (5.12) consists of m periodic subsystems. For each of these systems, we
find the matrix of monodromy,Uj (ω) and denote corresponding Floquet multipliers
by ρ

( j)
i , i = 1, . . . , n, j = 1, . . . ,m. In the next part of the study, the following

assumption is needed.

(A5) ρ
( j)
1 = 1 and |ρ( j)

i | < 1, i = 2, . . . , n for each j = 1, . . . ,m.
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Lemma 3 Assume that the assumptions (A4) and (A5) are valid. Then, for each
j = 1, . . . ,m, the system (5.12) admits a fundamental matrix of the form

Uj (t) = Pj (t)[1, exp(Hjω)], t ∈ R, (5.32)

where Pj ∈ PC1(R, ζ ) is a regular, ω-periodic matrix and Hj is an (n − 1) × (n −
1)-matrix with all eigenvalues have negative real parts.

The proof of Lemma 3, can be done similar to that of Lemma 2.

Theorem 3 Assume that conditions (C1)–(C7), (C10), and assumptions (A1)–(A5)
hold. Then ω- periodic solution Ψ (t) of (5.1) is orbitally, asymptotically stable and
has the asymptotic phase property.

Proof According to the group property, we may assume Ψ (0) is not a discontinuity
point. Then, one can displace the origin to the pointΨ (0), and the coordinate system
can be rotated in such away that the tangent vectorΨ ′

0 = Ψ ′(0) points in the direction
of the positive x1 axis i.e. the coordinates of this vector are Ψ ′

0 = (Ψ ′
01, 0, . . . , 0),

Ψ ′
01 > 0.
Let θi , i ∈ Z, be the discontinuity moments of Ψ (t). Denote the path of the solu-

tion by η = {x ∈ X : x = Ψ (t), t ∈ R}. There exists a natural number p, such that
θi+p = θi + ω for all i. Because of conditions (C1)–(C7) and K -differentiability of
Ψ (t), there exists continuous dependence on initial data, and consequently, there
exists a neighborhood of η such that any solutions which starts in the set will have
moments of discontinuity which constitute a B-sequence with difference between
neighbors approximately equal to the distance between corresponding neighbor
moments of discontinuity of the periodic solutionΨ (t). Consequently, we can deter-
mine variational system for Ψ (t), with points of discontinuity θi , i ∈ Z.

On the basis of discussion in Sect. 5.2.1, one can define in the neighborhood of η

a B-equivalent system of type (5.4). The variational system of it takes the form

z′ = A(t)z + r(t, z),

Δz|t=θi = D( j)
i z + qi (z), j = 1, 2, . . . ,m. (5.33)

The functions in (5.33) have the property that r(t, z) = [ f (Ψ (t) + z) − f (Ψ (t))] −
A(t)z and qi (z) = Wi (Ψ (θi ) + z) − Wi (Ψ (θi )) − D( j)

i z, are continuous functions,
and matrices D( j)

i satisfy condition (A4). The functions are continuously differen-
tiable with respect to z. One can verify that r(t, 0) ≡ qi (0) ≡ 0 and r(t + ω, z) =
r(t, z) for t ∈ R.Moreover, the derivatives satisfy r ′(t, 0) ≡ q ′

i z(0) ≡ 0 and the func-
tions r(t, z) → 0, qi (z) → 0, r ′

z(t, z) → 0 and q ′
i z(z) → 0, as z → 0 uniformly in

t ∈ [0,∞), i ≥ 0. Each system (5.33) for j = 1, 2, . . . ,m, corresponds to a region
adjoint to initial value, x0 such that these regions cover a neighborhood of x0.

Fix a number j and denote Y j (t) the fundamental matrix of adjoint to (5.33) linear
homogeneous system
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y′ = A(t)y,

Δy|t=θi = D( j)
i y, (5.34)

of the form (5.32). One can verify that

Y j (t)Y
−1
j (s) = Pj (t)

(
1 0
0 exp(Hj (t − s))

)
P−1
j (s), (5.35)

for −∞ < t, s < ∞.

We can write
(
1 0
0 exp(Hj (t − s))

)
=
(
0 0
0 exp(Hj (t − s))

)
+
(
1 0
0 On−1

)
,

where On−1 is the (n − 1) × (n − 1) zero matrix. Then it can be driven

Y j (t)Y
−1
j (s) = G( j)

1 (t, s) + G( j)
2 (t, s) = G( j)(t, s),

where

G( j)
1 (t, s) = Pj (t)

(
0 0
0 exp(Hj (t − s))

)
P−1
j (s),

G( j)
2 (t, s) = Pj (t)

(
1 0
0 On−1

)
P−1
j (s).

Denote the eigenvalues of the matrix Hj by λ
( j)
2 , . . . , λ

( j)
n . By means of the

Lemma 2 and 3, there exits a number α > 0, such that Re(λ( j)
k ) < −α, k =

2, 3, . . . , n, where Re(z) means the real part of the number, z. Taking into account
that the matrices Pj and P−1

j are regular and periodic, the following estimates can
be calculated

|G( j)
1 (t, s)| ≤ K ( j) exp(−α(t − s)), (5.36)

|G( j)
2 (t, s)| ≤ K ( j), (5.37)

where K ( j) is a positive real constant.
Denote the first column of the fundamental matrix Y by χ1. By the Eq. (5.32), χ1

is equal to the first column of Pj , this means that it is a ω-periodic solution of (5.12).
By assumptions of the theorem, the variational system (5.33) satisfies the condi-

tions of Lemma 3, and one can verify that the following estimate is true [11]

|Y j (t)| ≤ K ( j)
1 exp(−αt) f or t ≥ 0, (5.38)

where K ( j)
1 is a positive constant. Let us setup the following integral equation
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z( j)(t, a) = Y j (t)a +
t∫

0

G( j)
1 (t, s)r(s, z(s))ds −

∞∫

t

G( j)
2 (t, s)r(s, z(s))ds

+
∑

0<θk<t

G( j)
1 (t, θk+)qk(z(θk)) −

∑
t<θk<∞

G( j)
2 (t, θk+)qk(z(θk)), (5.39)

where a = [0, a2, . . . , an], ai ∈ R, i = 2, 3, . . . , n, are orthogonal to Ψ ′(0), i.e.,
with the zero first coordinate.

Let z( j)
0 (t, a) ≡ 0, and consider the following successive approximations

z( j)
k (t, a) = Y j (t)a +

∞∫

0

G( j)(t, s)r(s, zk−1(s))ds +
∞∑
k=1

G( j)(t, θk+)qk(zk−1(θk)),

(5.40)
for k = 1, 2, . . . . By using the approximation (5.40) and estimation (5.38), one can
verify that

|z( j)
1 (t, a)| ≤ K ( j)

1 |a| exp(−αt/2). (5.41)

We will show that the bounded solution of (5.39) exists and satisfies (5.33). For
arbitrary positive small number L , there exists a number δ = δ(L) such that for
|z1| < δ, |z2| < δ

|r(t, z1) − r(t, z2)| ≤ L|z1 − z2| (5.42)

and
|qi (z1) − qi (z2)| ≤ L|z1 − z2|, (5.43)

uniformly in t ∈ [0,∞).

Denote by L1 = 4K ( j)
( 2
α

− 1

1 − exp(−αθ/2)

)
.

Next, by using mathematical induction, we are going to show that z( j)
s (t, a), s =

1, 2, . . . , are defined for t ∈ [0,∞) and satisfy

|z( j)
s+1(t, a) − z( j)

s (t, a)| ≤ K ( j)
1 |a| exp(−αt/2)/2s, s = 0, 1, 2, . . . , (5.44)

if L < L1.Utilizing Lemma 3 and inequalities (5.38), (5.42), (5.43) and θi+1 − θi ≥
θ, i ∈ Z, one can verify that

|z( j)
k+1(t, a) − z( j)

k (t, a)| ≤ K ( j)
1 |a|L1 exp(−αt/2)/(2kα). (5.45)

As a consequence of (5.44), the sequence z( j)
k+1(t, a) converges uniformly on t ∈

[0,∞), |a| < δ/2K ( j)
1 , and

|z( j)
s (t, a)| ≤ 2K ( j)

1 |a| exp(−αt/2), s = 1, 2, . . . .
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Therefore, the limit function z( j)(t, a) exists on the same domain, it is piecewise
continuous, satisfies (5.39) and the following estimate

|z( j)(t, a)| ≤ 2K ( j)
1 |a| exp(−αt/2). (5.46)

Denote by z(t) = z( j)(t, a), for j = 1, 2, . . . ,m. Next, we will verify that z( j)

(t, a) satisfies (5.33). For it, differentiate (5.39)

z′(t) = Y ′
j (t)a + G( j)

1 (t, t)r(t, z(t)) + G j
2(t, t)r(t, z(t)) +

t∫

0

G( j)
1t (t, s)r(s, z(s))ds

−
∞∫

t

G( j)
2t (t, s)r(s, z(s))ds +

∑
0<θk<t

G( j)
1t (t, θk+)qk(z(θk)) −

∑
t<θk<∞

G( j)
2t (t, θk+)

× qk(z(θk)) = A(t)Y j (t)a + G( j)(t, t)r(t, z(t)) +
∞∫

0

A(t)G( j)(t, s)r(s, z(s))ds

+
∑

0<θi<t

A(t)G( j)(t, θk+)qk(z(θk)) = A(t)z(t) + r(t, z(t)).

Fix θk, k ∈ Z, then

z(θk+) − z(θk) = Y j (θk+)a +
θk∫

0

G( j)
1 (θk+, s)r(s, z(s))ds −

∞∫

θk

G( j)
2 (θk+, s)

× qk(z(θk)) +
∑

0≤θi<θk

G( j)
1 (θk+, θi+)qi (z(θi+)) −

∑
θk<θi<∞

G( j)
2 (θk+, θi+)

× qi (z(θi+)) − Y j (θk)a −
θk∫

0

G( j)
1 (θk, s)r(s, z(s))ds +

∞∫

θk

G( j)
2 (θk, s)r(s, z(s))ds

−
∑

0≤θi<θk

G( j)
1 (θk, θi+)qi (z(θi )) +

∑
θk≤θi<∞

G( j)
2 (θk, θi+)qi (z(θi+))

= D( j)
k z(θk) + qk(z(θk)).

The above discussion proves that z( j)(t, a), j = 1, , 2, . . . ,m, are bounded solutions
of system (5.33).

We will determine the initial values of bounded solutions in terms of (n − 1)
parameters a( j)

2 , . . . , a( j)
n , j = 1, , 2, . . . ,m. Denote a( j) = [0, a j

2 , a
j
3 , . . . , a

j
n ]. By

using (5.39), we obtain
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z( j)(0, a( j)) = Y j (0)a
( j) −

∞∫

0

G( j)
2 (0, s)r(s, z(s))ds −

∑
0<θk<∞

G( j)
2 (0, θk+)qk(z(θk))

= Pj (0)a
( j) − Pj (0)

(
1 0
0 On−1

) ∞∫

0

P−1
j (s)r(s, z(s))ds

−
∑

0<θk<∞
P−1
j (s)qk(z(θk)).

In the way utilized in [11], one can show that the coordinates of the initial value
(x1, . . . , xn) ∈ D of the solution z( j) satisfy the equation

x1 +
n∑

i=2

c j
i xi − h j (x2, . . . , xn) = 0, (5.47)

where h j ∈ C1, j = 1, , 2, . . . ,m.

One can see that Eq. (5.47) determines (n − 1) dimensional hypersurfaces S j ⊂
D, j = 1, 2, . . . ,m, in a neighborhood of the origin such that each solution which
starts at the surface satisfies inequality (5.46). From the analytical representation,
it follows that the equation of the tangent space of S j at the origin is described by

the equation x1 +
n∑

i=2
c j
i xi , and the first coordinate of the gradient of the left-hand

side in (5.47) is unity. Moreover, the path η intersects S j transversely. This and
condition (A4) imply that the path of every solution φ(t) near Ψ (t) intersects one of
the manifolds S j , j = 1, 2, . . . ,m, at some t̄ ∈ [0, 2ω].

Because of the continuous dependence on initial values, a δ(ε) > 0 exists for a
given ε > 0, such that if dist (x0, ηδ) < δ(ε), then the solution φ(t, x0) is defined
on [0, 2ω], and dist (φ(t, x0), η) < ε ≤ ε1 for t ∈ [0, 2T ]. Therefore, the path
of φ(t, x0) intersects S j for some j = 1, 2, . . . ,m and t1 ∈ [0, 2ω]. The solu-
tion φ(t, φ(t1, x0)) = φ(t + t1, x0) has its initial value in S j , consequently, sat-
isfies (5.46). In light of the B-equivalence, the corresponding solution x(t), x(0) =
φ(0) − Ψ (0), of (5.33) satisfies the property that for all ε > 0, there exists T (ε) such
that x(t) is in an ε-neighborhood of Ψ (t) for t ∈ [T (ε),∞). That is, the solution
Ψ (t) is orbitally, asymptotically stable, and there exists an asymptotical phase.

Because of the continuous dependence on initial values, a δ(ε) > 0 exists for a
given ε > 0, such that if dist (x0, ηδ) < δ(ε), then the solution φ(t, x0) is defined
on [0, 2ω], and dist (φ(t, x0), η) < ε ≤ ε1 for t ∈ [0, 2T ]. Therefore, the path
of φ(t, x0) intersects S j for some j = 1, 2, . . . ,m and t1 ∈ [0, 2ω]. The solu-
tion φ(t, φ(t1, x0)) = φ(t + t1, x0) has its initial value in S j , consequently, sat-
isfies (5.46). In light of the B-equivalence, the corresponding solution x(t), x(0) =
φ(0) − Ψ (0), of (5.33) satisfies the property that for all ε > 0, there exists T (ε) such
that x(t) is in an ε-neighborhood of Ψ (t) for t ∈ [T (ε),∞). That is, the solution
Ψ (t) is orbitally, asymptotically stable and there exists an asymptotical phase.
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Fig. 5.4 The red
discontinuous cycle of (5.13)
grazes Γ at (0.00025π), 0),
and (0,− exp(−0.0005π)) is
an (α)-type point. The blue
arcs are of the trajectory
with initial value (0.8, 1.2).
It can be observed that it
approaches the grazing one
as time increases
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Definitions of the orbital stability and an asymptotic phase as well as theorem
of orbital stability for non-grazing periodic solutions are also presented in [29]. In
our study, we suggest the orbital stability theorem for grazing periodic solutions,
its proof and formulate the definitions for the stability. They are different in many
aspects from those provided in [29]. It is valuable that they also valid, if the solution
is non-grazing.

To shed light on our theoretical results, we will present the following examples.

Example 3 We continue with the system presented in Examples 1 and 2. In
Example 1, we verified that system (5.15) defines a K -smooth discontinuous flow
in the plane, and the variational system (5.28) + (5.29) around the grazing periodic
solution Ψ (t) is approved.

Using systems (5.28) and (5.29), one can evaluate the Floquet multipliers as
ρ

(1)
1 = 1, ρ

(1)
2 = 0.8551, ρ

(2)
1 = 1 and ρ

(2)
2 = 0. This verifies condition (A5).

The conditions (C1)–(C7) and (C10) are validated, and the assumptions (A4) and
(A5) verified. By using Theorem 3, we can assert that the solution, Ψ (t) is orbitally,
asymptotically stable. The stability is illustrated in Fig. 5.4. The red one is for a
trajectory of the discontinuous periodic solution (5.14) of (5.13), and the blue one is
for the near solution of (5.13) with initial value y0 = (0.8, 1.2). It can be observed
from Fig. 5.4 that the blue trajectory approaches the red one as time increases.

5.2.4 Small Parameter Analysis and Grazing Bifurcation

In this part, wewill discuss existence and bifurcation of cycles for perturbed systems,
if the generating one admits a grazing periodic solution. In continuous dynamical
systems, a small parameter may cause a change in the number of periodic solutions
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in critical cases. In this analysis, we will demonstrate that the change may happen in
non-critical cases, because of the non-transversality. That is why, one can say that
grazing bifurcation is under discussion. Let us deal with the following system

x ′ = f (x) + μg(x, μ),

Δx |x∈Γ (μ) = I (x) + μK (x, μ), (5.48)

where x ∈ R
n, t ∈ R, Γ (μ) = {x | Φ(x) + μφ(x, μ) = 0}, μ ∈ (−μ0, μ0), and μ0

is a sufficiently small positive number. Functions f (x), I (x) and Φ(x) are contin-
uously differentiable up to second order, g(x, μ), K (x, μ) are continuously differ-
entiable in x and μ. The function φ(x, μ) is continuously differentiable in x up to
second order and to first order in μ. We assume that the generating system for
(5.48) is the system (5.1) with all conditions assumed for the system, earlier. The
main assumption of this section is that (5.1) admits a ω-periodic solution, Ψ (t). Let
Ψ (0) = (ζ 0

1 , ζ 0
2 , . . . , ζ 0

n ) be the initial value of the solution.
Our aim is to find conditions that verify the existence of periodic solutions of

(5.48) with a period T such that for μ = 0, the periodic solutions of (5.48) are
turned down to Ψ (t). It is common for the autonomous systems that the period T
does not coincide with ω. Thus, in the remaining part of the study, we will consider
the period T as an unknown variable.

SinceΨ (0) is not an equilibrium, there exists a number j = 1, 2, . . . , n, such that
f j (ζ 0

1 , ζ 0
1 , . . . , ζ 0

n ) �= 0. In other words, the vector field is transversal to x j = ζ 0
j near

the point. Hence, to try points near to Ψ (0) for the periodicity, it is sufficient to con-
sider those with j-th coordinate is equal to ζ 0

j , [22]. For the discontinuous dynamics,
the choice of the fixed coordinate can be made easier if the surface of discontinuity
is provided with a constant coordinate. It will be demonstrated in examples. Denote
the initial values of the intended periodic solution by ζ1, ζ2, . . . , ζn.Assume that one
initial value ζ j is known, i.e., ζ 0

j . Thus, the problem contains n-many unknowns,
they can be presented as ζ1, ζ2, . . . , ζ j−1, ζ j+1, . . . , ζn,T . Denote the solution of
(5.48) by xs(t, ζ1, ζ2, . . . , ζn, μ)with initial conditions xs(0, ζ1, ζ2, . . . , ζn, μ) = ζs .

To determine the unknowns, we will consider the Poincaré criterion, which can be
written as

Sk(T , ζ1, ζ2, . . . , ζn, μ) ≡ xk(T , ζ1, ζ2, . . . , ζn, μ) − ζk = 0, k = 1, 2, . . . , n,

(5.49)

where ζ j = ζ 0
j . The Eq. (5.49) is satisfied with μ = 0,T = ω, ζi = ζ 0

i , i = 1,
2, . . . , n, since Ψ (t) is the periodic solution.

The following condition for the determinant is also needed in the remaining part
study.
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(A6)

∣∣∣∣∣∣∣∣∣∣∣

∂(S1(ω,ζ 0
1 ,ζ 0

2 ,...,ζ 0
j−1,ζ

0
j+1,...,ζ

0
n ,0))

∂T . . .
∂(S1(ω,ζ 0

1 ,ζ 0
2 ,...,ζ 0

j−1,ζ
0
j+1,...,ζ

0
n ,0))

∂ζn
∂(S2(ω,ζ 0

1 ,ζ 0
2 ,...,ζ 0

j−1,ζ
0
j+1,...,ζ

0
n ,0))

∂T . . .
∂(S2(ω,ζ 0

1 ,ζ 0
2 ,...,ζ 0

j−1,ζ
0
j+1,...,ζ

0
n ,0))

∂ζn
...

. . .
...

∂(Sn(ω,ζ 0
1 ,ζ 0

2 ,...,ζ 0
j−1,ζ

0
j+1,...,ζ

0
n ,0))

∂T . . .
∂(Sn(ω,ζ 0

1 ,ζ 0
2 ,...,ζ 0

j−1,ζ
0
j+1,...,ζ

0
n ,0))

∂ζn

∣∣∣∣∣∣∣∣∣∣∣

�= 0 (5.50)

Theorem 4 Assume that condition (A6) is valid. Then, (5.48) admits a non-trivial
periodic solution, which converges in the B-topology to the non-trivial ω-periodic
solution of (5.48) as μ tends to zero.

We will present the following example to realize our theoretical results.

Example 4 Let us consider the following systemwith variable moments of impulses
and a small parameter

x ′
1 = x2,

x ′
2 = −0.0001[x22 + (x1 − 1)2 − (1 + μ)2]x2 − x1 + 1, (5.51)

Δx2|x∈Γ = −(1 + Rx2 + μx32)x2 + μ2,

where R = 0.9 and Γ = {x |x1 = 0, x2 ≤ 0}. It is easy to see that system (5.51) is
of the form (5.48) and Φ(x1, x2) = x1 = 0. The system has a periodic solution

Ψμ(t) = (1 + (1 + μ) cos(t),−(1 + μ) sin(t)), (5.52)

where t ∈ R for μ ∈ (−2, 0].
The generating system of (5.51) has the following form

x ′
1 = x2,

x ′
2 = −0.0001[x22 + (x1 − 1)2 − 1]x2 − x1 + 1, (5.53)

Δx2|x∈Γ = −(1 + Rx2)x2,

and admits the periodic solution Ψ0(t) = (1 + cos(t),− sin(t)). By means of the
equality 〈∇Φ(x∗), f (x∗)〉 = 〈(1, 0), (0, 1)〉 = 0 with x∗ = (0, 0) ∈ ∂Γ, it is easy
to say that x∗ is a grazing point of Ψ0(t).

Considering the same way done in Example 1, it is easy to obtain

Wiy(y
∗) =

[ −1 0
0.0003R 0

]
, (5.54)
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and

Bi =

⎧⎪⎨
⎪⎩

O2, if (N1) is valid,[
−1 0

0.0003R 0

]
, if (N2) is valid.

(5.55)

By means of the formula (5.55), the linearization system for (5.53) around the
grazing cycle Ψ0(t) consists of the following two subsystems

u′
1 = u2,

u′
2 = −0.0001 sin(2t)u1 + 0.0002 sin2(t)u2, (5.56)

and

u′
1 = u2,

u′
2 = −0.0001 sin(2t)u1 + 0.0002 sin2(t)u2, (5.57)

Δu|2π i =
[ −1 0
0.0003R 0

]
u.

The system (5.56) + (5.57) is (2π, 1) periodic. The Floquet multipliers of system
(5.56) + (5.57) are ρ

(1)
1 = 1, ρ

(1)
2 = 0.939, ρ

(2)
1 = 1, ρ

(2)
2 = 0.912. Thus, condition

(A5) is validated. Moreover, the conditions (C1)–(C7) and (A1)–(A4) can be verified
utilizing similarway presented in Example 1. Consequently, Theorem3 authenticates
that the grazing periodic solution (cycle),Ψ0(t)of the system (5.53) is orbitally stable.
The simulation results demonstrating the orbital stability of Ψ0(t) are depicted in
Fig. 5.5.

Next, we will investigate two sorts of periodic solutions of system (5.51) with a
periodT near to 2π.Thefirst one is continuous, and the second admits discontinuities
once on a period. For those solutions, corresponding linearization systems around
the grazing cycle Ψ0(t) are (5.56) and (5.57), respectively. Let us start with the

Fig. 5.5 The grazing cycle
of system (5.53) is in red.
The blue arcs are the
trajectory of the system with
initial point (0.5, 1.2), and
the green continuous orbit is
with initial value (0.1, 0).
They demonstrate stability of
the grazing solution
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continuous periodic solutions of (5.51). For continuous periodic solution, we will
consider the linearization system (5.56).

To apply Theorem 4, denote Ψ0(0) = (ζ 0
1 , 0). That is, consider ζ 0

2 = 0. Then,
applying the above discussion, obtain that the Poincarè condition admits the form of
the following equations,

S1(T , ζ1, μ) = x1(T , ζ1, μ) − x1 = 0,

S2(T , ζ1, μ) = x2(T , ζ1, μ) = 0. (5.58)

Because solutions of the system (5.53) have continuous derivatives with respect to
the time, phase variables and parameters, we can calculate the following determinant

∣∣∣∣∣∣∣∣

∂S1(ω, ζ 0
1 , 0)

∂T

∂S1(ω, ζ 0
1 , 0)

∂x01
∂S2(ω, ζ 0

1 , 0)

∂T

∂S2(ω, ζ 0
1 , 0)

∂x01

∣∣∣∣∣∣∣∣
. (5.59)

First, we need the monodromy matrix of the system (5.56). It is

[
0.939 −0.0001407

−0.0003165 1

]
. (5.60)

It is easy to see that first column of the determinant (5.59) is computed by utilizing
(5.53), and the second column is evaluated by means of the first column of the matrix
(5.60). From this discussion, one can obtain that the determinant (5.59) is equal to

∣∣∣∣
0 −0.061
1 −0.0003165

∣∣∣∣ = 0.061 �= 0. (5.61)

Thus, in light of Theorem 4, we can conclude that for sufficiently small |μ|, there
exists a unique periodic solution of the system

x ′
1 = x2,

x ′
2 = −0.0001[x22 + (x1 − 1)2 − (1 + μ)2]x2 − x1 + 1. (5.62)

It is exactly the cycle (5.52)with a periodT = 2π. Ifμ < 0, the solution is separated
from the set Γ. Consequently, it is a periodic continuous solution of the Eq. (5.51).
It is orbitally stable by the theorem for continuous dynamics [13], because of the
continuous dependence of multipliers on the parameter. The function Ψμ(t), μ > 0,
intersects Γ and cannot be a solution of Eq. (5.51). Thus, the system does not admit
a continuous periodic solution near to Ψ0(t), if the parameter is positive.

Considering those solutions which have one moment of discontinuity in a period,
one can find that the corresponding linearization of Ψ0(t) is the system (5.57).
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The monodromy matrix of (5.57) can be evaluated as

[
0.939 −0.00052

−0.000427 1

]
. (5.63)

It can be easily observed that the discontinuous solution intersects the line x1 = 0.For
this reason, one can specify the first coordinate of the initial value as ζ1 = ζ 0

1 ≡ 0.
In light of these discussions and the formula (5.49), the following equations are
obtained:

S1(T , 0, ζ2, μ) = x1(T , 0, ζ2, μ) = 0,

S2(T , 0, ζ2, μ) = x2(T , 0, ζ2, μ) − ζ2 = 0. (5.64)

Then, taking the derivative of the system (5.64) with respect to T and ζ2, and
calculating it at T = ω, ζ2 = ζ 0

2 = 0, and for μ = 0, the following determinant is
obtained

∣∣∣∣∣∣∣∣

∂S1(ω, 0, ζ 0
2 , 0)

∂T

∂S1(ω, 0, ζ 0
2 , 0)

∂ζ2
∂S2(ω, 0, ζ 0

2 , 0)

∂T

∂S2(ω, 0, ζ 0
2 , 0)

∂ζ2

∣∣∣∣∣∣∣∣
=
∣∣∣∣
0 −0.0006
1 0.0009

∣∣∣∣ = −0.0006 �= 0. (5.65)

Thus, condition (A6) holds. Then, utilizing Theorem 4, it is easy to conclude that for
sufficiently smallμ there exists a unique periodic solution of the system (5.51) with a
period ≈2π. It is true that for positive and negative μ. Moreover, these solutions are
orbitally, asymptotically stable because of the continuous dependence of solutions
on parameter and initial values, and they meet the discontinuity line transversally.

For each fixed μ �= 0, solutions near to the periodic ones intersect the line of dis-
continuity Γ transversally once during the time approximately equal to the period.
That is, the smoothness which is requested for the application of the Poincarè con-
dition is valid, since the smoothness for the grazing point has already been verified.
It is clear that there can not be another solutions with period close to 2π. Thus, one
can make the following conclusion. The original system (5.51) admits two orbitally
stable periodic solutions, continuous and discontinuous, if μ < 0. There is a sin-
gle orbitally stable continuous solution (grazing) if μ = 0. Additionally, there is
a unique discontinuous orbitally stable periodic solution for positive values of the
parameter. Consequently, grazing bifurcation of cycles appears for the system with
small parameter.

We have obtained regular behavior in dynamics near grazing orbits by Poincarè
small parameter analysis. Nevertheless, outside the attractors irregular phenomena
may be observed.

In Fig. 5.6, the solutions of the system (5.51) with parameter μ = −0.2 are
depicted through simulations. The red arcs are the trajectory of the system (5.51) with
initial value (0.7, 0.05), and the blue arcs are the trajectory of the system (5.51) with
initial value (0.4, 0.05). It is seen that both red and blue trajectories approach the
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Fig. 5.6 The blue, red and green arcs constitute the trajectories of system (5.51) with μ = −0.2.
The first two approach as time increases to the discontinuous limit cycle and the third one is the
continuous limit cycle itself
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Fig. 5.7 The red and blue arcs constitute the trajectories of the system (5.51) with μ = 0.2. Both
orbits approach to the discontinuous limit cycle, as time increases

discontinuous periodic solution of (5.51), as time increases. So, the discontinuous
cycle is orbitally stable trajectory. Moreover, the green one is a continuous peri-
odic trajectory of (5.51) with initial value (0, 0.05) and it is orbitally, asymptotically
stable. To sum up, there exists two periodic solutions of (5.51) for the parameter
μ = −0.2, one is continuous, the other one is discontinuous, and both solutions are
orbitally, asymptotically stable.

In Fig. 5.7, the red arcs are the orbit of the systemwith initial value (0, 0.1), and the
blue arcs are the trajectory of it with initial value (0, 0.4). Both trajectories approach
to the discontinuous cycle of system (5.51), as time increases. Thus, Fig. 5.7 illustrates
the existence of the orbitally stable discontinuous periodic solution if μ = 0.2.
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5.3 The Grazing Solutions of Non-autonomous Systems
with Stationary Impulsive Conditions

Let Φ : G → R be a function, differentiable up to second order with respect to x ,
S = Φ−1(0) is a closed subset of G. Define a continuously differentiable function
J : G → G such that J (S) ⊂ G. The function I (x) will be used in the following
part of the paper which is defined as I (x) := J (x) − x, for x ∈ S.

The following definitions will be utilized in the remaining part of the paper. Let
x(θ−) be the left limit of a function x(t) at the moment θ, and x(θ+) be the right
limit of the solution. DefineΔx(θ) := x(θ+) − x(θ−) as the jump operator for x(t)
such that x(θ) ∈ S and t = θ is a moment of discontinuity. Discontinuity moments
are the moments when the solution meets the surface of discontinuity.

In this chapter, we take into account the following system

x ′ = f (t, x),

Δx |x∈S = I (x), (5.66)

where (t, x) ∈ R × G, the functions f (t, x) is continuously differentiable with
respect to x up to second order and continuous with respect to time. We will con-
sider the surface of discontinuity as Γ = {(t, x)|Φ(x) = 0} ⊆ R × S. We say that
the system is with stationary impulse conditions, since the function I (x) and the
surface S do not depend on time.

For the convenience in notation, let us separate the differential equation of the
impulse system as

y′ = f (t, y). (5.67)

Assume that the solution x0(t) = x(t, t0, x0), t0 ∈ R, x0 ∈ G of (5.66) intersects
the surface of discontinuity Γ, at the moments t = θi , i ∈ Z.

Set the gradient vector of Φ with respect to x as ∇Φ(x). The normal vector of
Γ at a meeting moment, t = θi , of the solution x0(t) can be determined as −→n =
(0,∇Φ(x0(θi ))) ∈ R

n+1, where 〈, 〉 means the dot product. For the tangency, the
vectors −→n and (1, f (θi , x0(θi ))) should be perpendicular. That is,
〈∇Φ(x0(θi )), f (θi , x0(θi ))〉 = 0.

Consider the function H(t, x) := 〈∇Φ(x), f (t, x)〉, with (t, x) ∈ R × S.

Let us start with the following definitions.

Definition 7 A point (θi , x0(θi )) is a grazing point and θi a grazing moment for a
solution x0(t) of (5.66) if H(θi , x0(θi )) = 0 and I (x0(θi )) = 0.

Definition 8 A solution x0(t) of (5.66) is grazing if it has a grazing point (θi , x0(θi )).
The moment θi is the grazing moment of the solution x0(t).

Definition 9 A point (θi , x0(θi )) is a transversal point and θi a transversal moment
for a solution x0(t) if H(θi , x0(θi )) �= 0.
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Fig. 5.8 The red line is a
grazing solution x0(t) of
(5.66) with the grazing point
P = (θi , x0(θi )). The yellow
region is the tangent plane to
the surface Γ at the grazing
point. Vector v is tangent to
the integral curve at P

t

X

P

v

1

x2

Figure5.8 is drawn to illustrate the grazing phenomenon. The red line is a grazing
solution x0(t) of (5.66), and it intersects the surface Γ at the point P = (θi , x0(θi )).
The yellow region is the tangent plane to the surface at the point. Vector v is tangent
to the integral curve at P. It belongs to the tangent plane. This is why the point is
grazing.

In what follows, we will assume that the following condition is valid.

(H1) For each grazing point (θi , x0(θi )), there is a number δ > 0 such that H(t, x) �=
0 and J (x) /∈ S if 0 < |t − θi | < δ and 0 < ‖x − x0(θi )‖ < δ.

It is also clear that function H(t, x) �= 0 near a transversal point.
Consider a solution x(t) = x(t, θi , x0 + Δx) of (5.66) with a small ‖Δx‖.

Because of the geometrical reasons caused by the tangency at the grazing point,
this solution may not intersect the surface of discontinuity near (θi , x0(θi )). For
this reason, there exist two different behaviors of it with respect to the surface of
discontinuity, they are:

(N1) The solution x(t) intersects the surface of discontinuity Γ at a moment near
to θi .

(N2) There is no intersection moments of x(t) close to θi .

We say that θ = {θi } is a B-sequence if one of the following alternatives holds:
(i) θ = ∅, (i i) θ is a non-empty and finite set, and (i i i) θ is an infinite set such that
|θi | → ∞ as i → ∞. In what follows, we will consider B-sequences.

In order to define a solution of (5.66), the following functions and sets are needed.
A function φ(t) : R → R

n, n ∈ N, is from the set PC(R, θ) if it: (i) is left con-
tinuous, (i i) is continuous, except, possibly, points of θ, where it has discontinuities
of the first kind.

A function φ(t) is from the set PC1(R, θ) if φ(t), φ′(t) ∈ PC(R, θ), where the
derivative at points of θ is assumed to be the left derivative. If φ(t) is a solution
of (5.66), then it is required that it belongs to PC1(R, θ). We say that x(t) : I →
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R
n,I ⊂ R, is a solution of (5.66) on I if there exists an extension x̃(t) of the

function on I such that x̃(t) ∈ PC1(R, θ), the equality (5.67) t ∈ I , is true if
x(t) /∈ S, x(θi+) = J (x(θi )) for x(θi ) ∈ S and θi ∈ I .

5.3.1 B-Equivalence

The systemwith variablemoments of impulses is a difficult task for the investigations.
In order to facilitate the analysis, in [3], a powerful instrument was suggested which
reduces the systems with variable moments of impulses to those with fixed moments
of impulses, which preserves the dynamical properties of (5.66). The system with
fixed moment of impulses is called a B-equivalent system to the system with variable
moments of impulses. The B-equivalent system can be constructed as follows.

Consider a solution x0(t) : I → R
n, I ⊆ R, of (5.66). Assume that all discon-

tinuity points θi of x0(t), i ∈ A , are interior points ofI . WhereA is an interval in
Z. There exists a positive number r , such that r -neighborhoods Gi (r) of (θi , x0(θi ))
do not intersect each other. Fix i ∈ A and let ξ(t) = x(t, θi , x), (θi , x) ∈ Gi (r),
be a solution of (5.67), which satisfies (N1), and τi = τi (x) the meeting time of
ξ(t) with S and ψ(t) = x(t, τi , ξ(τi ) + J (ξ(τi ))) another solution of (5.67). Denote
Wi (x) = ψ(θi ) − x and one can define the map Wi (x) as

Wi (x) =
∫ τi

θi

f (s, ξ(s))ds + J (x +
∫ τi

θi

f (s, ξ(s))ds) +
∫ θi

τi

f (s, ψ(s))ds

(5.68)
It is a map of an intersection of the plane t = θi with Gi (r) into the plane t =
θi . Let us present the following system of differential equations with impulses at
fixed moments, whose impulse moments, θi , i ∈ A , correspond to the points of
discontinuity of x0(t),

y′ = f (t, y),

Δy|t=θi = Wi (y(θi )). (5.69)

The function f is the same as the function in system (5.69), and the map Wi ,

i ∈ A , is defined by Eq. (5.68) if x(t) satisfies condition (N1). Otherwise, if a
solution x(t) satisfies (N2), then we assume that it admits the discontinuity moment
θi with zero jump such that Wi (x(θi )) = 0.

Let us introduce the sets Fr = {(t, x)|t ∈ I , ‖x − x0(t)‖ < r}, and G+
i (r), i ∈

A , an r -neighborhood of the point (θi , x0(θi+)). Write Gr = F1 ∪ (∪i∈A Gi (r)) ∪
(∪i∈A G+

i (r)). Take r sufficiently small so that Gr ⊂ R × G. Denote by G(h) an
h-neighborhood of x0(0).

Definition 10 Systems (5.66) and (5.69) are said to be B-equivalent in Gr if there
exists h > 0, such that:
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• for every solution y(t) of (5.69) such that y(0) ∈ G(h), the integral curve of y(t)
belongs to Gr there exists a solution x(t) = x(t, 0, y(0)) of (5.66) which satisfies

x(t) = y(t), t ∈ [a, b]\ ∪m
i=−k (τ̂i , θi ], (5.70)

where τi are moments of discontinuity of x(t). Particularly:

x(θi ) =
{
y(θi ), if θi ≤ τi ,

y(θi+), otherwise,

y(τi ) =
{
x(τi ), if θi ≥ τi ,

x(τi+), otherwise.

(5.71)

• Conversely, if (5.66) has a solution x(t) = x(t, 0, x(0)), x(0) ∈ G(h), then there
exists a solution y(t) = y(t, 0, x(0)) of (5.69) which has an integral curve in Gr ,

and (5.70) holds.

5.3.2 Variational System for Grazing Solutions

The objective of this section is to investigate the smoothness of the grazing solu-
tion. Consider a grazing solution x0(t) = x(t, 0, x0), x0 ∈ G, of (5.66) which was
introduced in the last section. We will demonstrate that one can write the variational
system for the solution as follows:

u′ = A(t)u,

Δu|t=θi = Biu(θi ), (5.72)

where the matrix A(t) ∈ R
n×n of the form A(t) = ∂ f (t,x0(t))

∂x . We call the second
equation in (5.72) as the linearization at a moment of discontinuity or at a point
of discontinuity. It is different for transversal and grazing points. However, the first
differential equation in (5.72) is common for all type of solutions. The matrices Bi

will be described in the remaining part of the paper for each type of the points.

5.3.2.1 Linearization at a Transversal Moment

Linearization at the transversal point has been analyzed completely in Chap.6, [3].
Let us demonstrate the results shortly. The B-equivalent system (5.69) is involved
in the analysis, since the solution x0(t) satisfies also the Eq. (5.69) at all moments of
time, and near solutions do the same for all moments except small neighborhoods
of the discontinuity moment θi . Consequently, it is easy to see that the system of
variations around x0(t) for (5.66) and (5.69) is identical. Assume that x(θi ) is at a
transversal point.We consider the reduced B-equivalent system and use the functions
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τi (x) and Wi (x), defined by Eq. (5.68), are presented in Sect. 5.3.1 for linearization.
Differentiating Φ(x(τi (x))) = 0, we have

∂τi (x0(θi ))

∂x0 j
= −

〈Φx (x0(θi )),
∂x0(θi )
∂x0 j

〉
〈Φx (x0(θi )), f (θi , x0(θi ))〉 , j = 1, . . . , n. (5.73)

The JacobianWix (x0(θi )) = [ ∂Wi (x0(θi ))
∂x01

, ∂Wi (x0(θi ))
∂x02

, . . . , ∂Wi (x0(θi ))
∂x0n

] is evaluated by

∂Wi (x0(θi ))

∂x0 j
= ( f (θi , x0(θi )) − f (θi , x0(θi ) + I (x0(θi ))))

∂τi

∂x0 j

+ ∂ I

∂x0

(
e j + f (θi , x0(θi ))

∂τi

∂x0 j

)
, (5.74)

where e j = (0, . . . , 1︸ ︷︷ ︸
j

, . . . , 0), j = 1, 2, . . . , n. Next, by considering the second

equation in (5.69) and using mean value theorem, one can obtain that
Δ(x(θi ) − x0(θi )) = Wi (x(θi ) − x0(θi )) = Wix (x0(θi ))(x(θi ) − x0(θi )) +

O(‖x(θi ) − x0(θi )‖).
From the last expression, it is seen that the linearization at the transversal moment

is determined with the matrix Bi = Wix (x0(θi )).

5.3.2.2 Linearization at a Grazing Moment

Fix a discontinuity moment θi and assume that it is of grazing type. Considering
Definition 7 with the formula (5.73), it is appearant that at least one coordinate of the
gradient,∇τ(x), is infinity at the grazing point. This causes singularity in the system,
which makes the analysis harder and the dynamics complex. Through the formula
(5.73), one can see that the singularity is just caused by the position of the vector
field with respect to the surface of discontinuity, and the impact does not participate
in the appearance of the singularity. To get rid of the singularity, we will consider
the following conditions.

(A1) The map Wi (x) in (5.68) is differentiable if x = x0(θi ).
(A2) τi (x) < θi+1 − θi − ε for some positive ε on a set of points near x0(θi ),which

satisfy condition (N1).

The appearance of singularity in (5.73) does not mean that the JacobianWix (x) is
infinity. Because, in order to find the Jacobian, not only the surface of discontinuity
and the vector field are required, but also the jump function is also needed. The
regularity of the Jacobian can be arranged by means of the proper choice of the
vector field, surface of discontinuity and jump function. In other words, if they are
specially chosen, the map can be differentiable, and this validates condition (A1).
Thus, in this chapter, we analyze the case, when the impact functions neutralize the
singularity. Presumably, if there is no this type of suppressing, complex dynamics
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near the grazing motions may appear [8, 18, 24, 25]. In the examples stated in the
remaining part of the paper, one can see the verification of (A1), in details.

There are many ways are suggested to investigate the existence and stability of
periodic solution of systems with graziness in literature [14, 26]. They investigate
them by constructing special maps around the grazing point. In this chapter, we
suggest to investigate the existence and stability by using the method of Floquet
multipliers for dynamicswith continuous time. It is awell-knownmethod in literature
[3, 29], but this is notwidely applied to the analysis of the stability of grazing solutions
because of the tangency of the grazing solution with the surface of discontinuity. This
is the main novelty of our chapter.

By means of these discussions, one can conclude that the matrix Bi in (5.72) is
the following

Bi =
{
On if (N1) is valid,

Wix if (N2) is valid,
(5.75)

where On denotes the n × n zero matrix.
Denote by x̄(t), j = 1, 2, . . . , n, a solution of (5.66) such that x̄(t0) = x0 +

Δx, Δx = (ξ1, ξ2, . . . , ξn), and let η j be the moments of discontinuity of x̄(t). The
solution x̄(t) has a linearization with respect to solution x0(t) if the condition (A) is
valid. Moreover, if x0(θi ) is a grazing point, then the condition (C) is fulfilled and
condition (B) is true if x0(θi ) is a transversal point.

The solution x0(t) is K -differentiablewith respect to the initial value x0 onI , t0 ∈
I , if for each solution x̄(t) with sufficiently small Δx the linearization exists. The
functions ui (t) and νi j depend on Δx and uniformly bounded on a neighborhood
of x0.

Lemma 4 Assume that the conditions (H1) and (A2) are valid. Then, the function
τi (x) is continuous on the set of points near a grazing point which satisfy condition
(N1).

Proof of the lemma can be done similarly with that of Lemma 1.
The systems (5.66) and (5.69) are B-equivalent, for this reason it is acceptable to

linearize system (5.69) instead of system (5.66) around x0(t) = x(t, t0, x0), which
is a solution of both systems. Thus, by applying linearization to (5.69), the sys-
tem (5.72) is obtained. Additionally, the linearization matrix Bi in (5.72) for the
grazing point also has to be defined by the formula (5.75), where Wix exists by
condition (A2).

On the basis of the discussion made in Sects. 5.3.2.1–5.3.2.2, one can conclude
that the variational system for the solution x0(t) with the grazing points can be
constructed as a system (5.72).
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5.3.3 Stability of Grazing Periodic Solutions

In this part of the chapter, bymeans of the discussionsmade in the previous part of the
chapter, we will investigate the stability of a periodic solution. Consider the system
(5.66) again and the function f (t, x) : R × D → R

n, where D is open connected
subset of R

n. Additionally assume that f (t, x) is T -periodic in time, i.e., f (t +
T, x) = f (t, x), for T > 0.

Let Ψ (t) : R+ → D be a periodic solution of (5.66) with period T and θi , i ∈ Z,

be the points of discontinuity which satisfy (T, p)-property, i.e., θi+p = θi + T, p
is a natural number.

Fix a solution x(t) = x(t, t0, Ψ (t0) + Δx) and assume that the linearization of
that solution aroundΨ (t) exists, and there are l many transversal and k many grazing
discontinuity moments of Ψ (t) in [t0, t0 + T ]. It is easily seen that the matrix A(t)
in the variational system (5.72) for Ψ (t) is T -periodic. However, in general, through
the formula (5.75), the sequence Bi may not be periodic. For this reason, in what
follows we assume the validity of the next condition.

(A3) For each Δx ∈ R
n, the variational system for the near solution x(t) = x(t, t0,

x0 + Δx) to Ψ (t) is one of the following m periodic homogeneous linear
impulsive systems

u′ = A(t)u,

Δu|t=θi = B( j)
i u, (5.76)

such that B( j)
i+p = B( j)

i , i ∈ Z, j = 1, . . . ,m, where the number m cannot be
larger than 2k .

We will call the collection of m systems (5.76) the variational system around the
periodic grazing orbit. This assumption is valid for many low-dimensional models
and those which can be decomposed into two-dimensional subsystems.

So, the variational system (5.76) consists of m periodic subsystems. For each of
these systems, we find the matrix of monodromy, Uj (T ) and denote corresponding
Floquetmultipliers byρ

( j)
i , i = 1, . . . , n, j = 1, . . . ,m.Next,we need the following

assumption,

(A4) |ρ( j)
i | < 1, i = 1, . . . , n, for each j = 1, . . . ,m.

Theorem 5 Assume that the conditions (H1), (A1)–(A4) are valid. Then T -periodic
solution Ψ (t) of (5.66) is asymptotically stable.

The proof of Theorem can be done in a similar way with that of presented in Sect. 7
as Theorem 7.1.1 in [3]. The next example is presented to authenticate the above
theorem.

Example 5 In this example,we consider the following systemof differential equation
with variable moments of impulses
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Fig. 5.9 The periodic solution Ψ (t) of (5.78) and the black vertical line is the surface of disconti-
nuity S

x ′′ + 0.002x ′ + x = −1 − 0.002 sin(t),

Δx ′|x∈S = −(1 + 0.9x ′)x ′, (5.77)

where S = {(x, x ′)|Φ(x, x ′) = x = 0}. Let us rewrite the system (5.77) in the form

x ′
1 = x2,

x ′
2 = −0.002x2 − x1 − 1 − 0.002 sin(t), (5.78)

Δx2|x∈S = −(1 + 0.9x2)x2,

where x = (x1, x2) and the discontinuity surface S can be written in the form S =
{(x1, x2)|Φ(x) = x1 = 0}. It has a periodic solutionΨ (t) = (−1 + cos(t),− sin(t)).
The orbit of which is pictured in Fig. 5.9

The system (5.78) has discontinuity surfaces S = {(x1, x2)| x1 = 0, x2 > 0}.
Then, we have Φ(x) = x21 . Consider the function H(t, x) at the point (θi , Ψ (θi )) =
(2π i, Ψ (2π i)), i ∈ Z. It is true that H(2π i, Ψ (2π i)) = 0, J (Ψ (2π i)) = 0 and
H(t, x) �= 0 for some number δ > 0, such that |t − 2π i | < δ and ‖x − Ψ (2π i)‖ <

δ.So, bymeansofDefinitions 7 and8,wecan say that (θi , Ψ (θi )) = (2π i, Ψ (2π i)) =
(2π i, 0, 0) is a grazing point, and the periodic solution Ψ (t) contains the grazing
point (2π i, 0, 0), then we can say that Ψ (t) is a grazing periodic orbit. Addition-
ally, all points (2π i, Ψ (2π i)), i ∈ Z are grazing points. This validates the condition
(H1).

In the remaining part, we will investigate the stability of the grazing orbit by the
linearization of (5.78) around the solution. Because the point (2π i, 0, 0) is a grazing
point, we will consider the linearization by applying formulas (5.73) and (5.75). By
means of condition (H1), it is true that the solutions intersects the surface of disconti-
nuity transversely near the grazing one. For this reason, consider a point x̄ = (0, x̄2)
on the surface of discontinuity Γ near x∗ = (0, 0). Because of the transversality of
x̄, the first component ∂τ(x̄)

∂x1
of the gradient ∇τ(x̄) can be determined by formula

(5.73), it is obtained as ∂τ(x̄)
∂x1

= − 1
x̄2

. At the grazing point, the first component can

be evaluated as ∂τ(x∗)
∂x1

= −∞.
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First, we assume that x(t) = x(t, 0, x∗ + Δx), Δx = (Δx1,Δx2) is not a grazing
solution. That is, the point x∗ + Δx is not an orbit point ofΨ (t).Hence, the meeting
point x̄ = (x̄1, x̄2) = (x1(ξ, 0, (x∗ + Δx)), x2(ξ, 0, (x∗ + Δx)), is transversal one.
Moreover, ξ is the meeting moment with Γ.

It is clear x̄1 = 0 and x̄2 < 0. In order to find a linearization at the moment t = θi ,

we use formula (5.3) and find that

∂Wi (x)

∂x01
=

τ(x)∫

θi

∂ f (s, x(s))

∂x

∂x(s)

∂x01
ds + f (s, x(s))

∂τ (x)

∂x01
+ Jx (x)(e1 + f (s, x(s))

× ∂τ(x)
∂x01

) + f (s, x(s) + J (x(s))) ∂τ(x)
∂x01

+
θi∫

τ(x)

∂ f (s, x(s) + J (x(s)))

∂x

∂x(s)

∂x01
ds, (5.79)

where e1 = (1, 0)T , T denotes the transpose of a matrix. Substituting x = x̄ to the
formula (5.79), we obtain that

∂Wi (x(ξ, 0, x∗ + Δx))

∂x01
= f (ξ, x(ξ, 0, x∗ + Δx))

∂τ (x(ξ, 0, x∗ + Δx))

∂x01

+Jx (x(ξ, 0, x∗ + Δx))

(
e1 + f (ξ, x(ξ, 0, x∗ + Δx)))

∂τ (x(ξ, 0, x∗ + Δx)))

∂x01

)

+ f (ξ, x(ξ, 0, (J (x(ξ, 0, x∗ + Δx)))))
∂τ (J (x(ξ, 0, x∗ + Δx)))

∂x01
. (5.80)

Considering the formula (5.73) for the transversal point x̄ = (x̄1, x̄2), the first

component
∂τ(x̄)

∂x01
can be evaluated as

∂τ(x̄)

∂x01
= − 1

x̄2
. From the last equality, it is

seen how the singularity appears at the grazing point. By taking into account (5.77)
with (5.80), one can obtain that

∂Wi (x̄)

∂x01
=
[

x̄2
−x̄1 − 0.002x̄2 − 1 − 0.002 sin(ξ)

] (
− 1

x̄2

)
+
[
1 0
0 −2Rȳ2

]

×
(
e1 +

[
x̄2

−x̄1 − 0.002x̄2 − 1 − 0.002 sin(ξ)

] (
− 1

x̄2

))

−
[ −R(x̄2)2

−x̄1 + 0.002R(x̄2)2 − 1 − 0.002 sin(ξ)

] (
− 1

x̄2

)
(5.81)

=
[

x̄2 − R(x̄2)2

−x̄1 − 0.002(x̄2 − R(x̄2)2)

] (
− 1

x̄2

)

+
[
1 0
0 −2Rx̄2

] [
1 + −x̄2

x̄2

x̄1 + 0.1x̄2 − 1 − 0.002 sin(ξ)

x̄2

]
.

Calculating the right-hand side of (5.81) we can obtain that
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∂Wi (x̄)

∂x01
=
[

Rx̄2 − 1
0.1(1 − Rx̄2) + 2R(0.1x̄2 − x̄1 − 1 − 0.002 sin(ξ))

]
. (5.82)

Similarly, differentiating (5.3) with x(t) one can find that

∂Wi (x)

∂x02
=

τ(x)∫

θi

∂ f (s, x)

∂x

∂x(s)

∂x02
ds + f (s, x(s))

∂τ (x)

∂x02
+ Jx (x)(e2 + f (s, x(s))

∂τ (x)

∂x02
)

+ f (s, x + J (x))
∂τ (x)

∂x02
+

θi∫

τ(x)

∂ f (s, x(s) + J (x(s)))

∂x

∂x(s)

∂x02
ds, (5.83)

where e2 = (0, 1)T . Calculate the right-hand side of (5.83) at the point x̄ = (x̄1, x̄2)
to obtain

∂Wi (x(ξ, 0, x∗ + Δx))

∂x02
= f (ξ, x(ξ, 0, y∗ + Δx))

∂τ (x(ξ, 0, x∗ + Δx))

∂x02

+Jx (x(ξ, 0, x∗ + Δx))

(
e2 + f (ξ, x(ξ, 0, x∗ + Δx)))

∂τ (x(ξ, 0, x∗ + Δx))

∂x02

)

+ f (ξ, x(ξ, 0, x∗ + Δx))
∂τ (x(ξ, 0, x∗ + Δx))

∂x02
. (5.84)

To calculate the fraction
∂τ(x(ξ, 0, x∗ + Δx))

∂x02
in (5.84), we apply formula (5.73)

for the transversal point x̄ = (x̄1, x̄2). The second component
∂τ(x̄)

∂x02
= 0. This and

formula (5.84) imply

∂Wi (x̄)

∂x02
=
[

0
−2Rx̄2

]
. (5.85)

Joining (5.82) and (5.85), the matrix Wix (x̄) can be obtained as

Wiy(x̄) =
[

Rx̄2 − 1 0
0.1(1 − Rx̄2) + 2R(0.1x̄2 − x̄1 − 1 − 0.002 sin(ξ)) −2Rx̄2

]
. (5.86)

Taking into account formula (5.86), we can assert that the map Wi (x) is differen-
tiable at x = x∗. Thus, this verifies the condition (A1). Let consider a near solu-
tion to (θi , Ψ (θi )), there are two possibilities for the near solution it satisfies (N1)
an d (N2). The meeting moment τ(x) cannot be taken into account whenever it
satisfies (N1). So, to validate the condition (A2), we should only consider those
which satisfies (N2). To verify it, let us take into account a solution of the first
equation in (5.77) which starts at the point x̄ = (0, x̄2) ∈ S . The solution of (5.77)
at x̄ is the form x(t, 0, x̄) = x̄2√

1−(0.01)2
exp(0.01t) sin(

√
1 − (0.01)2t). This solution
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meets the surfaceS at themoment t̄ = 2π√
1−(0.01)2

, again. Thus, themeetingmoment

τi (x) = t̄ < 2π − ε, where ε is a small positive number and this verifies (A2). Let
us come back to the linearization part. The last expression (5.86) demonstrates that
the Jacobian is continuous function of its arguments in a neighborhood of the grazing
point. Indeed, it is defined and continuous for the points, which are not from the orbit
of grazing solution. For the orbit points of the grazing solution, the Jacobian can be
determined by the limit procedure. We apply it when x → x∗, as well as ξ → 2π,

where 2π is the first grazing discontinuity point of periodic solution Ψ (t), then we
obtain that

Wiy(y
∗) =

[ −1 0
0.1 − 2R 0

]
. (5.87)

Consequently, the function Wi (x) is differentiable at the grazing point x = x∗ and
(A1) is valid.

Utilizing (5.75) with above discussion, we obtain that

B1 =

⎧⎪⎨
⎪⎩

O2, if (N1) is valid,[
−1 0

0.1 − 2R 0

]
if (N2) is valid.

. (5.88)

On the basis of the above discussion, we can assert that the variational system
consists of m = 2 linear homogenous subsystems:

z′ = A(t)z,

Δz|t=θi = B(1)z, (5.89)

and

z′ = A(t)z,

Δz|t=θi = B(2)z, (5.90)

where A(t) =
[
0 1

−1 −0.02

]
, θi = 2π i, B(1) = O2 and B(2) =

[
0 0

−0.6 0.4

]
.One can

check easily that A(t + 2π) = A(t), for all t ∈ R, B(1)
i = B(1), B(2)

i = B(2), and
2π(i + 1) = 2π i + 2π. Thus, {B( j)

i }, j = 1, 2 are 1-periodic. Moreover, system
(5.89) + (5.90) is a (2π, 1)-periodic system this validates (A3). The monodromy
matrices for (5.89) and (5.90) have multipliers ρ

(1)
1 = 0.9844, ρ

(1)
2 = 0.9844, ρ

(2)
1 =

0.9844, ρ(2)
2 = 0.098.Thus, the condition (A4) is valid. Consequently, the conditions

(H1) and (A1)–(A4) are valid, by means of Theorem 5, it is easy to say that the
periodic solutionΨ (t) is asymptotically stable. InFig. 5.10, the red curve corresponds
to the periodic solution Ψ (t), the blue line is the discontinuity surfaces S and S̃, and
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Fig. 5.10 The red curve is the periodic solution Ψ (t) of (5.78), the blue ones are the phase portrait
of the solution of (5.78) with initial value x0 = (−0.01, 0.5), and the blue line is the surface of
discontinuity S

the black curves are the phase portrait of a solution of (5.78) with initial value
x0 = (−0.01, 0.5). One can observe that the black curves approach the red one as
time increases.

5.3.4 Regular Perturbations Around the Grazing
Periodic Solution

In the previous part of the chapter, we analyze the existence and stability of periodic
solutions of non-autonomous systems with a stationary impulse condition. In this
part, we will investigate the bifurcation of grazing periodic solutions by applying
regular perturbation to the system. Under certain conditions, the perturbation gives
rise the existence of periodic solution in impulsive systems. Due to the complexity
of the grazing behavior, there may be different type of bifurcation scenarios. In this
part of the chapter, we will demonstrate the increment in the number of periodic
solutions with the variation of the parameter μ.

Tomake our investigations, we take into account the following perturbed system:

x ′ = f (t, x) + μg(x, μ),

Δx |x∈S(μ) = I (x) + μK (x, μ), (5.91)

where (t, x) ∈ R × G, μ ∈ (−μ0, μ0), μ0 is a fixed positive number. The system
(5.91) is T -periodic system, i.e., f (t + T, x) = f (t, x) and g(t + T, x, μ) =
g(t, x, μ) with some positive number T . Additionally, f (t, x, μ) is two times dif-
ferentiable in x , continuous in time and first-order differentiable in μ. The function
K (x, μ) is differentiable in x and μ, and I (x) is differentiable in x . The surface of
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discontinuity of (5.91), S(μ) is defined as S(μ) = {x ∈ G| Φ(x) + μφ(x, μ) =
0}, where Φ(x) second-order differentiable in x , and φ(x, μ) is second- and first-
order differentiable in x and μ, respectively.

The generating system of (5.91) is the system (5.66). In the previous section, we
assumed that the generating system has a periodic solution Ψ (t). All assumptions
and conditions (H1), (A1)–(A4) are also valid in this section.

Let us seek the periodic solutions of (5.91) around the grazing one. Generally,
the investigation on the periodic solutions of such systems is carried out by utilizing
Poincare map which is based on the values of solutions at the period moment. For
this reason, we will analyze the existence of the periodic solution of (5.91) in light
of this map. But, it may not be differentiable near a grazing point [6, 19, 24]. To
handle with this problem, we make use of the condition (A1). It can be understood
from (5.76) that there exist m-many different partition around the grazing periodic
solution. Fix some partition j , where j ∈ 1, 2, . . . ,m. Denote a solution of system
(5.91) by

x ( j)
i (t, γ ( j)

1 , . . . , γ ( j)
n , μ), i = 1, 2, . . . , n, (5.92)

with initial values

x ( j)
i (0, γ ( j)

1 , . . . , γ ( j)
n , μ) = γ

( j)
i , i = 1, 2, . . . , n. (5.93)

Moreover, considering the periodic solution Ψ (t) = (Ψ1(t), . . . , Ψn(t)) of the gen-
erating system, it is easy to obtain that

x ( j)
i (t, Ψ1(0), . . . , Ψn(0), 0) ≡ Ψi (t), i = 1, 2, . . . , n. (5.94)

In order to verify the existence of such periodic solution of (5.91), it is necessary
and sufficient to check the validity of the following equality

P ( j)
i (γ

( j)
1 , . . . , γ ( j)

n ) = x ( j)
i (T, γ

( j)
1 , . . . , γ ( j)

n , μ) − γ
( j)
i , i = 1, 2, . . . , n. (5.95)

By means of the Eq. (5.92) conditions (5.93)–(5.95) are satisfied for μ = 0, γi =
Ψi (0), since the generating solution is periodic.

The following conditions for the determinant will be needed for the rest of the
chapter.

(A5) ∣∣∣∣∣∣∣∣

∂P( j)
1 (γ1,...,γn)

∂γ1
· · · ∂P( j)

1 (γ1,...,γn)

∂γn
...

. . .
...

∂P( j)
n (γ1,...,γn)

∂γ1
· · · ∂P( j)

n (γ1,...,γn)

∂γn

∣∣∣∣∣∣∣∣
�= 0. (5.96)

Assume that the assumptions and conditions (H1) and (A1)–(A5) are valid. Then,
(5.66) admits a non-trivialm T -periodic solution, which converges in the B-topology
to the T-periodic solution of (5.91) as μ tends to zero.
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Let us verify the above assertion. Without loss of generality, assume that the
moments of discontinuity of the periodic solution Ψ (t) admits that 0 < θ1 < . . . <

θp < T Let x ( j)(t) = x(t, 0, x ( j), μ) be a solution of the perturbed system (5.91)with
initial values x ( j)(0) = x ( j).Taking into account the conditions and assumptions (H1)
and (A1)–(A4), it is easy to verify that the discontinuity moments of x ( j)(t) satisfy
that 0 < η1 < · · · < ηp < T and there exists a neighborhood Ψ (0) which does not
intersect . Applying the formulas (5.92)–(5.95), the following can be obtained

P ( j)(y, μ) = X (T, 0, y, μ) − y = 0. (5.97)

It is satisfied with y = z( j). Now, let us apply implicit function theorem to verify the
existence of the periodic solutions of (5.91) with the help of (5.97) in the neighbor-
hood of (Ψ (0), 0). For μ = 0, it is easy to obtain the following variational system

u′ = A(t)u,

Δu(θi ) = B j)
i u(θi ), (5.98)

where i ∈ Z and j = 1, . . . ,m. The K -derivatives of the solution x ( j)(t) in x ( j)

form the fundamental matrix Y ( j)(t, x ( j)(t), μ), of the variational system (5.98)
with Y ( j)(0, x ( j)(t), μ) = I, where I is an identity matrix. The uniqueness of the
periodic solution Ψ (t) implies that

P ( j)
y (y, μ) = Z ( j)(T, 0, y, μ) − I �= 0. (5.99)

Thus, the Eq. (5.97) has a unique solution in the neighborhood ofΨ (0) for sufficiently
small |μ|.The suggestedperiodic solution takes the form z( j)(t) = z(t, 0, z( j)(μ), μ),

where z( j)(μ) are the initial values of that solution which are obtained uniquely from
the Eq. (5.97). This solution became closer to Ψ (0) as μ tends to zero. Thus, we can
conclude that the system (5.66) admits a non-trivial β-many T -periodic solution,
which converge in the B-topology to the T-periodic solution of (5.91) as μ tends to
zero.

Denote the number of periodic solution by β and it can be vary from 0 to m. The
above part is verified only for a fixed j , but it can be done for all possible β-many
periodic solutions. This assertion will be realized in the example thoroughly.

Our theoretical results will be exemplified in the following one.

Example 6 Consider the following perturbed system of differential equation with
variable moments of impulses:

x ′′ + 0.002x ′ + x = −(1 + μ) − 0.002 sin(t),

Δx ′|x∈S = −(1 + 0.9x ′)x ′, (5.100)

where S = {(x, x ′)|Φ(x, x ′) = x = 0}. The surface of discontinuity is,
S = {x | x = 0}.
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Defining the variables as x1 = x, x2 = x ′, (5.100) can be rewritten as

x ′
1 = x2,

x ′
2 = −0.002x2 − x1 − (1 + μ) − 0.002 sin(t), (5.101)

Δx2|x∈S = −(1 + 0.9x2)x2,

where x = (x1, x2) and the discontinuity surface S can be written in the form
S = {(x1, x2)|Φ(x) = x1 = 0}. If μ ∈ (−2, 0], the system (5.100) admits periodic
solution Ψμ(t) = (−1 − μ + cos(t),− sin(t)).

Forμ = 0, the system (5.100) is reduced to (5.78). In the remainder, we will seek
the periodic solutions of (5.100) for sufficiently small μ.

Two sorts of periodic solutions of (5.100) exist around the grazing one. One of
them has no impulse during the period since it does not cross the line of discontinuity.
The other sort is the periodic solution which intersects the line x1 = 0 and intersects
the line x1 = 0. We will show the existence of both type of periodic solutions if |μ|
sufficiently small.

Let us start with the second type. Denote the initial values of the periodic solution
by ζ1 and ζ2. By specifying the formula for the system (5.78), it is easy to obtain the
following expressions

P (1)
1 (T, ζ1, ζ2, μ) = x1(T, ζ1, ζ2, μ) − ζ1 = 0,

P (1)
2 (T, ζ1, ζ2, μ) = x2(T, ζ1, ζ2, μ) − ζ2 = 0. (5.102)

Next, taking the derivative of the expressions in (5.102), we can obtain the fol-
lowing

∣∣∣∣∣∣∣∣

∂(P (1)
1 (T, ζ1, ζ2, μ)

∂ζ1

∂(P(1)
1 (T,ζ1,ζ2,μ)

∂ζ2

∂(P (1)
2 (T, ζ1, ζ2, μ)

∂ζ1

∂(P(1)
2 (T,ζ1,ζ2,μ)

∂ζ2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∂x1(T, ζ1, ζ2, μ)

∂ζ1

∂x1(T,ζ1,ζ2,μ)

∂ζ2

∂x2(T, ζ1, ζ2, μ)

∂ζ1

∂x2(T,ζ1,ζ2,μ)

∂ζ2

∣∣∣∣∣∣∣
. (5.103)

The determinant (5.103) is calculated by means of the monodromy matrix of
(5.78), with the impulse matrix D(1)

1 = O2, i.e.,
[

1 −0.0317
1.0158 −0.1014

]
. (5.104)

Taking into account the system (5.107) with (5.104) at ζ1 = ζ 0
1 = 0 and ζ2 =

ζ 0
2 = 0 and T = ω for μ = 0, one can derive that

∣∣∣∣∣∣∣∣

∂(P (1)
1 (T, ζ 0

1 , ζ 0
2 , 0)

∂ζ1

∂(P(1)
1 (T,ζ 0

1 ,ζ 0
2 ,0)

∂ζ2

∂(P(1)
2 (T,ζ 0

1 ,ζ 0
2 ,0)

∂ζ1

∂(P (1)
2 (T, ζ 0

1 , ζ 0
2 , 0)

∂ζ2

∣∣∣∣∣∣∣∣
= 0.76 exp(

0.01π

2
√
3.99

) �= 0. (5.105)
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This verifies condition (A5). Thus, condition (A5) is valid, then by utilizingwe can
assert that the system (5.101) admits a non-trivial periodic solution, which converges
in the B-topology to the non-trivial T -periodic solution of (5.78) as μ tends to zero.

Now, let us verify that system (5.78) has a circle which intersects the line x1 = 0
in the neighborhood of (0, 0). So, the periodic solution will attain a discontinuity
moments in a period. Denote the initial values of the periodic solution by ζ1 and ζ2.

In light of the expressions (5.95)

P (2)
1 (T, ζ1, ζ2, μ) = x1(T, ζ1, ζ2, μ) − ζ1 = 0,

P (2)
2 (T, ζ1, ζ2, μ) = x2(T, ζ1, ζ2, μ) − ζ2 = 0. (5.106)

Taking the derivative of the expressions (5.95) with respect to variables ζ1 and ζ2,

one can obtain the following

∣∣∣∣∣∣∣∣

∂(P (2)
1 (T, ζ1, ζ2, μ)

∂ζ1

∂(P(2)
1 (T,ζ1,ζ2,μ)

∂ζ2

∂(P (2)
2 (T, ζ1, ζ2, μ)

∂ζ1

∂(P(2)
2 (T,ζ1,ζ2,μ)

∂ζ2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∂x1(T, ζ1, ζ2, μ)

∂ζ1

∂x1(T,ζ1,ζ2,μ)

∂ζ2

∂x2(T, ζ1, ζ2, μ)

∂ζ1

∂x2(T, ζ1, ζ2, μ)

∂ζ2

∣∣∣∣∣∣∣
.

(5.107)

For μ = 0, the determinant (5.107) can be determined as

∣∣∣∣∣∣∣∣

∂(P (2)
1 (2π, 0, 0, 0)

∂ζ1

∂(P(2)
1 (2π,0,0,0)

∂ζ2

∂(P (2)
2 (2π, 0, 0, 0)

∂ζ1

∂(P(2)
2 (2π,0,0,0)

∂ζ2

∣∣∣∣∣∣∣∣
= −0.02 exp(0.001/

√
3.99) �= 0. (5.108)

This verifies condition (A5). So, we can conclude that the perturbed system (5.78)
admits a non-trivial periodic solution which converges in the B-topology to the non-
trivial T -periodic solution of (5.78) as μ tends to zero.

By taking into account the condition (A5), we can say that (5.100) admits a
periodic solution. Consequently, we can say that system (5.78) admits two periodic
solutions with the variation of μ around zero. It means that the number of periodic
solution increases with the help of the small change inμ.Wewill call this bifurcation
of the grazing periodic solution.

In general, the analysis of periodic solutions by using implicit function theorem is
not applicable in systems which have graziness, because grazing point may violate
the differentiability of the Poincare map. For this, in literature, many methods have
been used such as Nordmark map [24–27] and zero-time discontinuity mapping
(ZDM) [5]. By using special assumptions, we investigate the existence and stability
of periodic solution of the perturbed system without disrupting the nature of the
mechanisms with impacts.
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5.4 Conclusion

The Poincare map is a significant method for the investigation of the existence and
stability of periodic solutions of autonomous and non-autonomous systems. The sta-
bility of them is determined by considering the derivative of the Poincare map with
respect to the initial data. However, in some systems, a periodic solution may meet
the surface of discontinuity tangentially, this causes the singularity in the derivative
of the Poincare map. For this reason, the Poincare method cannot be applied. For
them, in literature different mapping approaches are presented such as zero-time
discontinuity mapping [5] and Nordmark mapping [24–27]. As distinct from the
mapping results, Ivanov [15, 16] analyzed the stability of the grazing periodic solu-
tion under a parameter variation in the vector field through the variational system
approach. Our approach is different than those inmany aspects. They are:We analyze
the grazing periodic solutions of the system through the variational system which
can be obtained by means of the position of with respect to the grazing periodic
solution and through which we can consider such systems more deeply. We provide
some examples with simulations to demonstrate the practicability of our theoretical
results. In addition, this work can be applied the integrate and fire neuron models
which intersects the threshold tangentially. For the first part of our study, we take into
account the autonomous system and we propose the sufficient condition for it to be
a discontinuous dynamical system. Orbital stability of periodic solution is analyzed,
and the small parameter analysis is applied around this solution, and existence of
grazing bifurcation is observed in a specific example. In the second half, we consider
non-autonomous systems with stationary impulsive conditions. By applying regular
perturbations to the autonomous and non-autonomous system, we investigate the
existence of periodic solution of the perturbed system. We derive rigorous mathe-
matical method for the analysis of discontinuous trajectories near grazing orbits. If
there is no impacts in models, our results can be easily reduced to those for finite-
dimensional continuous dynamics. That is why, this method is convenient to inves-
tigate infinite-dimensional problems and cycles of functional differential equations
and bifurcation theory.
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Chapter 6
On Local Topological Classification
of Two-Dimensional Orientable,
Non-Orientable, and Half-Orientable
Horseshoes
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Smale horseshoes of new types, the so called half-orientable horseshoes, have been
found in [1]. Such horseshoes can exist as invariant sets for endomorphisms of the
disk and for diffeomorphisms of non-orientable two-dimensional manifolds as well.
They have many features different from those of the classical orientable and non-
orientable horseshoes. In particular, half-orientable horseshoes may have boundary
points of arbitrary periods. It follows from this fact that there are infinitely many
types of such horseshoes with respect to the local topological conjugacy. To prove
this and similar results, an effective geometric construction is proposed.

6.1 Introduction

This chapter is devoted to dynamical and topological properties of Smale horseshoes
of new types, the so-called half-orientable horseshoes, and also to comparison of
these horseshoes with the classical Smale ones. For this, we usemainly the properties
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of boundary points of hyperbolic basic sets. The boundary points of basic sets of two-
dimensional diffeomorphisms have been introduced and applied in the papers by
V. Afraimovich, V. Grines, R. Plykin, and A. Zhirov for classification and dynamical
behavior problems of diffeomorphisms.

Half-orientable horseshoes have been discovered quite recently (Refs. [1, 2])
while studying the hyperbolic dynamics of generalized Hénon maps of the form

x̄ = y, ȳ = γy(1 − y) − bx + αxy, (x, y) ∈ R
2, (6.1)

with b and α small enough and γ large enough. We will use often the abbreviation
GHM (Generalized Hénon Map) when we refer to the map (6.1). As shown in [1],
for any fixed γ > 4 and sufficiently small α and b, GHM has the so called geometric
Smale horseshoe. The latter means that there exists a square Qβ = [−β, 1 + β] ×
[−β, 1 + β]with β = β(α, b) → +0 as (α, b) → 0, which is mapped under (6.1) to
a figure that resembles the horseshoe shape, but unlike the classical horseshoes, the
horseshoes considered in [1] have a degenerate point (“the collapse point”, compare
Fig. 6.1 with Fig. 6.6). Such a geometry implies that on Qβ , there is an invariant set
� = �(α, b) and that the map (6.1) has no non-wandering points outside Qβ .

It seems that people think of Smale horseshoes as of the simplest non-trivial (zero-
dimensional) hyperbolic setswhich are completely understood. In fact, all horseshoes

Fig. 6.1 Geometric construction of the linear Smale horseshoe Source (figures of this paper are
borrowed from our paper [2])
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are the same from the point of view of�-conjugacy, i.e., topological conjugacy on�,
the set of non-wandering orbits. Remark that for any horseshoe (on two-dimensional
manifold), the topological (and, in fact) the geometric structure of � is the direct
product of two interval Cantor sets, while the restriction of the map on� is conjugate
to the topological Bernoulli shift B2 with two symbols. However, if one is interested
not only in trajectories from�, but also in trajectories fromsomeneighborhood, i.e., if
one studies horseshoes from the point of viewof the local topological conjugacy, then
the horseshoes can be distinguished. Even linear horseshoes (seeSect. 6.2 below)may
differ, and, moreover, there are 10 different types of linear horseshoes (see Figs. 6.2,
6.3, and Proposition6.1). Six of them (such as in Fig. 6.2) may occur for plane
diffeomorphisms. Four types of linear horseshoes, which are represented in Fig. 6.3,
may occur for diffeomorphisms on two-dimensional non-orientable manifolds or for
two-dimensional endomorphisms (smooth non-invertible maps). In nonlinear case,
there are much more types of different horseshoes but if one considers only the
plane diffeomorphisms (more precisely, the diffeomorphisms of the disk), then the
six types indicated in Fig. 6.2 represent all the possibilities.

On the other hand, if one considers endomorphisms instead of diffeomorphisms,
or if one considers diffeomorphisms on non-orientable manifolds, then, as has been

(a) (b) (c)

(d) (e) (f)

Fig. 6.2 Types of horseshoes for plane diffeomorphisms a–c in orientable case, d–f in non-
orientable case
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(g) (h) (i) (j)

Fig. 6.3 Types of linear half-orientable horseshoes

shown in [1], there exist infinitely many types of horseshoes; more precisely, almost
all of them (with the exception of two types: orientable and non-orientable ones)
belong to the class of the so called half-orientable horseshoes.

Note thatwhile studying the (non-trivial) hyperbolic basic sets of two-dimensional
maps, one canget very important information from the structure of the set ofboundary
points, see Definition6.2. It is known (see [3]) that in two-dimensional case, the
boundary points are periodic, and their stable and/or unstable manifold form the
natural invariant border of the hyperbolic set, so that from one side of this manifold,
there are no points of this set, while from the other side of the manifold there are
such points.

In the present chapter, we study the problem on topological classification of Smale
horseshoes in terms of the boundary points. As mentioned above, linear horseshoes
will be represented by 10 different types (their boundary points are described in
Proposition6.1), and, in contrast, for half-orientable hyperbolic horseshoes, the clas-
sification provides countably many types.

Unlike the well-known orientable and non-orientable Smale horseshoes (see
Fig. 6.2), half-orientable horseshoes are not so popular (some examples of linear
half-orientable horseshoes are shown in Fig. 6.3, and of nonlinear ones in Figs. 6.6
and 6.11). It seems that their study begins from [1], in which paper such horseshoes
were discovered for GHM.

The structure of the chapter is as follows. In Sect. 6.1, we consider mainly linear
Smale horseshoes and classify them in terms of the type of their boundary periodic
points (see Statement 1). Main attention in Sect. 6.2 is paid to the problems of hyper-
bolic of GHM (6.1).We show that dynamical behavior of GHM is related to existence
of both the usual orientable/non-orientable horseshoes and also of half-orientable
ones. The regions where such horseshoes exist are described in Theorem6.1 (we cite
the result from [1]), and in Lemma6.1. Then in Sect. 6.2, we prove Theorem6.2 on
existence of countably many different types (with respect to the local topological
conjugacy) of half-orientable horseshoes. This fact is known from [1], but we give
here totally different proof, which is geometric and constructive. By using similar
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geometric construction, we prove Theorem6.3 on existence of boundary points of
arbitrary (given) period. Since the proof of Theorem6.3 is constructive, it is actually
a realization theorem.

6.2 Linear Smale Horseshoes and Their Boundary Points

From the geometrical point of view, the construction of the horseshoe map T can
be easily described; see Fig. 6.1 for the linear horseshoe construction. Indeed, the
map T here is constructed as the composition of two maps T1 T2, i.e., T = T2T1.
First, the square Q is mapped under T1 (which can be linear) into the long narrow
rectangle T1(Q), so that T1 contracts Q in the horizontal direction and expands it in
the vertical one. Then under the map T2 (which always is essentially nonlinear), the
rectangle T1(Q) is bent into the horseshoe shape and laid onto the square Q, with
the horseshoe vertexes being outside Q. The geometric properties of the horseshoe
are as follows (see Fig. 6.1)

(i) T (Q) ∩ Q consists of two components: T (q1) ∩ Q and T (q2) ∩ Q;
(ii) T (q0) ∩ Q = ∅;
(iii) the segments [a′, d ′] = T ([a, d]) and [b′, c′] = T ([b, c]) are outside Q.

The conditions above are sufficient for the horseshoe to exist in the case when
the maps T1 and T2

∣
∣
T1(qi )

, i = 1, 2 are linear, and in this case we have the linear
horseshoe. However, in the general situation, one needs not only conditions (i),
(ii), and (iii) but also some contraction and expansion estimates in order to provide
hyperbolicity of the invariant set

� =
+∞
⋂

n=−∞
T n(Q) (6.2)

Actually, the set� itself is called bymany authors the Smale horseshoe, for exam-
ple, it is defined in this way in [4]. This set is a locally maximal (on Q), uniformly
hyperbolic, invariant set, and besides, it is zero-dimensional and homeomorphic to
the direct product of two Cantor interval sets.Moreover, for any horseshoe, the corre-
sponding dynamical system restricted on it, i.e., T

∣
∣
�
, is conjugate to the topological

Bernoulli shift B2 with two symbols. The latter fact along with hyperbolicity of � is
considered often as the definition of the horseshoe. This is why one may say that all
the horseshoes are the samewith respect to such equivalence relation as�-conjugacy,
i.e., conjugacy on the non-wandering set.

However, if one considers stronger equivalence relations, then it is possible to
distinguish Smale horseshoes. There is well-known equivalence relation in the theory
of dynamical systems which is called local topological equivalence.

Definition 6.1 Let T and T ′ be two maps that have closed invariant sets � and
�′, respectively. One says that T and T ′ are locally topologically equivalent on
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� and �′ if for any their neighborhoods V = V (�) and V ′ = V ′(�′) there exist
smaller neighborhoods U ⊂ V , U ′ ⊂ V ′, and a homeomorphism h̃ : U → U ′ such
that h̃(�) = �′ with commutative diagram

U (�)
T−→ U (�)

↓ h̃ ↓ h̃

U ′(�′) T ′−→ U ′(�′)
(6.3)

Local topological equivalence is also called local topological conjugacy. Thus,
the homeomorphism h̃ provides not only correspondence between trajectories of the
systems (restrictions) T

∣
∣
�
and T ′∣∣

�′ but also between trajectories from some their
neighborhoods (more precisely, between (possibly finite) parts of trajectories which
belong to these neighborhoods).

Evidently, local topological conjugacy implies�-conjugacy, but the inverse state-
ment is not true in general, even for the Smale horseshoes (which can be thought of as
the simplest hyperbolic sets). Moreover, there are different types of linear horseshoes
with respect to local topological equivalence.1 Let us remind that for a linear horse-
shoe, the map T1 is (by its definition) a saddle linear map of the form (for appropriate
coordinates) x̄ = λx + α1, ȳ = γy + α2 with |λ| < 1/2, |γ| > 2, while the vector
(α1,α2) provides some translation. The map T2 is always nonlinear; however, for
a linear horseshoe, it is nonlinear only on the middle part T1(q0) of the rectangle
T1(Q), and it is linear on two other parts, i.e., on rectangles T1(q1) and T1(q2), see
Fig. 6.1. For a linear horseshoe, the conditions |λ| < 1/2 and |γ| > 2 guarantee that
T (Q) intersects Q correctly.

It is not hard to find certain invariants of local topological conjugacy. Such invari-
ants are, in particular, the signs of multiplicators of horseshoe fixed points. Note
that any horseshoe contains precisely two fixed points O1 and O2. Assume, with-
out loss of generality, that O1 ∈ q1, O2 ∈ q2. Then, the point O1 corresponds to
the sequence (. . . , 0, . . . , 0, . . . ), and the point O2 corresponds to the sequence
(. . . , 1, . . . , 1, . . . ) in Bernoulli shift B2. By using this notation, we can easily
represent 10 different types of linear horseshoes (with respect to local topological
conjugacy).

Six types of them can appear for plane diffeomorphisms, see Fig. 6.2. Here three
cases (a), (b), and (c) correspond to orientable horseshoes, i.e., when the map T is an
orientable diffeomorphism, in which cases every fixed point has both multiplicators
(eigenvalues) of the same sign. In the case (a), the point O1 has positivemultiplicators,
while the point O2 has negative ones. We denote this case as {O1(+,+), O2(−,−)},
where the first sign in brackets is the sign of the stable multiplicator (which is less
than one in absolute value) and the second sign is the sign of unstable multiplicator

1To be precise, the linear property is not very important in the case when one has two horseshoes
with the same geometry, in which case those two horseshoes are just topologically equivalent. The
fact is that some types of geometry are impossible for linear horseshoes; for example, there are no
linear horseshoes such as in Fig. 6.6a, c, d, f or in Fig. 6.11 below.
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(bigger than one in absolute value). For these notations, the horseshoe in case (b) will
be denoted as {O1(+,+), O2(+,+)}, and in case (c) as {O1(−,−), O2(−,−)}. The
cases (d)–(f) in Fig. 6.2 correspond to non-orientable horseshoes of different types
(here both fixed points have multiplicators of different signs), namely case (d) is
denoted as {O1(−,+), O2(+,−)}; case (e) is denoted as {O1(−,+), O2(−,+)};
and case (f) as {O1(+,−), O2(+,−)}.

However, onemay assume that the horseshoemap T is “half-orientable,” i.e., it has
different orientations on the components T (qi ) ∩ Q, i = 1, 2 (this means that either
the map T : q1 → Q is orientable and the map T : q2 → Q non-orientable or vice
versa). In fact, this may happen even for linear horseshoes in the situations when T is
a plane endomorphism (rather than diffeomorphism) or when T is a diffeomorphism
on non-orientable two-dimensional manifold (one can imagine that the square Q lies
in the Moebius band and the image T (Q) passes round this band). It is not hard to
see that in this situation, there are four essentially different combinations of signs
for multiplicators of the points O1 and O2; these combinations correspond to four
different types of half-orientable linear horseshoes, see Fig. 6.3. More precisely, the
horseshoe (g) corresponds to the type {O1(+,+), O2(+,−)}; the horseshoe (h) to
the type {O1(−,+), O2(−,−)}; the horseshoe (i) to the type {O1(+,+), O2(−,+)};
and, at last, the horseshoe (j) to the type {O1(+,−), O2(−,−)}. Hence, one has that
in cases (g) and (i), themap T is orientable onq1 and non-orientable onq2; conversely,
in cases (h) and (j), the map T is non-orientable on q1 and orientable on q2.

There are other invariants that can be used to classify horseshoes. We will use
for this purpose the set of boundary periodic points. It is known (see [3]) that
boundary points serve as invariants of topological conjugacy for transitive hyper-
bolic sets on two-dimensional manifolds (and the Smale horseshoes surely satisfy
these conditions).2

We will use the following definition of boundary periodic points.

Definition 6.2 Let � be a closed invariant transitive hyperbolic set of two-
dimensional map. A saddle periodic point P ∈ � is called an s-boundary point, if
segment W s

loc(P) of its stable manifold divides any sufficiently small neighborhood
V = V (P) of P into two open disks V1 and V2 (i.e., V = V1 ∪ V2 ∪ (W s

loc ∩ V )) with
V1 ∩ � = ∅ and V2 ∩ � �= ∅. Similarly, P ∈ � is called a u-boundary point, if such
division takes place for W u

loc. If P is simultaneously s-boundary and u-boundary, we
will call it an (s, u)-boundary point.

Classificationof linear horseshoes (orientable, non-orientable, andhalf-orientable)
in terms of their boundary periodic points has been done in [1, 2]. In some cases not
only fixed points O1 and O2 are used as boundary points but also points P1 and P2

2Remark that the problem on classification of hyperbolic diffeomorphisms and hyperbolic sets on
two-dimensional manifolds is one of the most important and well known in the hyperbolic theory.
For this classification, the boundary points have been applied essentially as principal invariants
in [3] (see also [5]). However, to our knowledge, this problem was not considered for horseshoes
(perhaps, because of seemingly trivial setting from usual point of view, such a view is not correct
as we will show).



168 S.V. Gonchenko et al.

of period-2 cycle, i.e., T (P1) = P2, T (P2) = P1 with P1 �= P2. It is well known that
for any horseshoe such a cycle exists and is unique.

The following statement from [1, 2] characterizes boundary periodic points for
all 10 types of linear horseshoes.

Proposition 6.1 For each of ten types of linear horseshoes (plotted and listed in
Figs.6.2 and 6.3), the set of boundary periodic points � can be classified as follows:

(a) � = {O1}, where O1 is an (s, u)-boundary point;
(b) � = {O1, O2}, where both points O1 and O2 are (s, u)-boundary;
(c) � = {P1, P2}, where P1 and P2 are (s, u)-boundary points which form 2-cycle;
(d) � = {O1, O2}, where O1 is s-boundary and O2 is u-boundary;

(a)
(b) (c)

(d) (e)
(f)

(g) (h) (i) (j)

Fig. 6.4 Figure shows for each of the ten cases, the boundary periodic points along with the parts of
their invariant manifolds. The bold points here are the fixed points O1 and O2, light circles denote
homoclinic points, and black small triangles denote the points P1 i P2 of the 2-cycle
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(e) � = {O1, O2, P1, P2}, where O1 and O2 are s-boundary, while P1 and P2 are
u-boundary points;
(f) � = {O1, O2, P1, P2}, where O1 and O2 are u-boundary, while P1 and P2 are
s-boundary points;
(g) � = {O1, O2}, where O1 is (s, u)-boundary, and O2 is u-boundary;
(h) � = {O1, P1, P2}, where O1 is an s-boundary point, while (P1, P2) are
u-boundary points which form 2-cycle;
(i) � = {O1, O2}, where O1 is (s, u)-boundary, and O2 is s-boundary;
(j) � = {O1, P1, P2}, where O1 is u-boundary and P1,P2 are s-boundary points.

The above proposition is illustrated in Fig. 6.4which shows for each of the 10 cases
that boundary periodic points and their stable and unstable manifolds are responsible
for creating the principal geometry of the horseshoe �.

6.3 Horseshoes in Generalized Hénon Maps
and Their Topological Properties

Smale horseshoes as hyperbolic sets appear in any systemwhich admits rough (trans-
verse) homoclinic Poincaré trajectories. This fundamental result goes back to works
by Smale [6] and Shilnikov [7]. In their papers, Smale and Shilnikov have described
the set N of trajectories which lie entirely in a neighborhood of rough homoclinic
orbit.3 It was also shown in [7] that in dynamical systems under consideration, the
Smale horseshoe may exist as a part (non-trivial invariant subset) of N . Note that
Smale horseshoes (even infinitely many of them) may exist in dynamical systems
with homoclinic loops to a fixed point of the saddle-focus type (see [8, 9]), in systems
with homoclinic tangencies (see [10]), etc. Note also that horseshoes appear often via
non-local bifurcations. In particular, there are bifurcations of this type that start from
Morse-Smale systems and lead to systems with complicated dynamics. All these
bifurcations can be united by the common term “homoclinic �-explosion.” The
characteristic property of these bifurcations is that they result in countably many
horseshoes which appear immediately (by “explosion”) at the moment when the
system reaches the bifurcation border (see surveys [11, 12] and refereces therein
concerning these bifurcations).

Amongmany specificmodelswhich containSmale horseshoes, the originalHénon
map seems to be the most popular. However, this map cannot have half-orientable
horseshoes: Its horseshoes can be either orientable or non-orientable (depending on
parameter b in its Eq. (6.4) below), see also Fig. 6.5. On the other hand, in [1] it
has been shown that even small perturbation of the original Hénon map (so that the
Jacobian of the map becomes non-constant) may create half-orientable horseshoes,

3Note that in [7] such a result was obtained without additional technical assumption on smooth
reducibility to the linear form in a neighborhood of the saddle, while in [6] such reducibility was
assumed. Of course, this improvement has expanded the scope of applications including important
classes of dynamical systems (e.g., Hamiltonian, conservative, and invertible systems.).
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(a)

(b)

Fig. 6.5 Geometry of the original Hénon map (6.4) in the hyperbolicity region when M is big
enough and b is small enough a orientable (for b > 0) and b non-orientable (for b < 0)

such as those from Sect. 6.1 and besides, many others as well. Moreover, with respect
to the local topological equivalence, there are infinitely many types of half-orientable
horseshoes. It is remarkable that any such horseshoe can be realized as a (half-
orientable) horseshoe of a diffeomorphism on two-dimensional manifold (actually,
non-orientable). We will observe these results below.

The original (classical) Hénon map is of the form

x̄ = y, ȳ = 1 − bx − ay2, (x, y) ∈ R
2,

where a and b are parameters (b being the Jacobian determinant). The equation above
can be given (if a �= 0) in the equivalent form

x̄ = y, ȳ = M − bx − y2, (6.4)

(where M = −a) which is usually called the standard form of the Hénon map. Note
that in homoclinic dynamics, the Hénon map usually appears in the standard form
(6.4) (see [10, 13, 14]).

It is well known that for M big enough, e.g. for

M > 1/4(5 + 2
√
5)(1 + |b|)2, b �= 0 (6.5)
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theHénonmap (6.4) has hyperbolic dynamicswhich can be described precisely as the
Smale horseshoe (orientable for b > 0 and non-orientable for b < 0), see [15–18])
and Fig. 6.5.

If the Hénon map (6.4) has two fixed points, i.e., if M > − (b + 1)2

4
, its equation

can be rewritten also in the following form (sometimes called the parabolic form)

x̄ = y, ȳ = γy(1 − y) − bx, (6.6)

where γ = b + 1 +
√

(b + 1)2 + 4M . This form of the Hénon map is convenient
for further investigations because after rescaling above the whole non-wandering
set of (6.6) is contained in the square Qβ = [−β, 1 + β] × [−β, 1 + β], where β
is independent of γ, and β tends to 0 as b → 0 (see [19]). Here the hyperbolicity
condition (6.5) will be rewritten as γ > (|b| + 1)(2 + √

5).
For b = 0 the Hénon map (6.6) degenerates to the following form

x̄ = y, ȳ = γy(1 − y), (6.7)

whose dynamics is one-dimensional: Any point from R
2 after one iteration lies

on the invariant curve (invariant parabola) y = γx(1 − x) and then its movement
is governed by the parabola map ȳ = γy(1 − y). It is well known that the non-
wandering set �̃(γ) of this map is contained in the interval [0, 1]. If γ > 4, then
�̃(γ) is a Cantor set and the restriction of the map on �̃(γ) is conjugate to one-sided
Bernoulli shift B2+ with two symbols. One may say that hyperbolicity here takes
place merely in one-dimensional setting (due to definitions from one-dimensional
dynamics). Note that in general, by embedding of one-dimensional map (like (6.7))
into a family of two-dimensional maps, the hyperbolicity could be lost. Fortunately,
in the case of the family (6.6) of Hénon maps, the hyperbolic set �̃(γ) (which is
one-dimensional at b = 0) transforms for b �= 0 into a genuine hyperbolic set, the
Smale horseshoe, which is orientable for b > 0 and non-orientable for b < 0 (see
Fig. 6.5).

The hyperbolic dynamics of generalized Hénon maps (6.1) have been studied
in [1]. Note that the form (6.1) for GHM (as well as its analogs) was introduced
in [20, 21] as the normal form for the Poincaré map near homoclinic tangency.
Unlike the original (standard) Hénon map, GHM (6.1) undergoes non-degenerate
bifurcations of periodic trajectories with multiplicators e±iϕ, and thus it may help in
studying corresponding bifurcations in numerous classes of dynamical systems with
non-rough homoclinic and heteroclinic trajectories.

From now on, we will denote the map (6.1) by T , assuming that b and α are
small enough, while γ is big enough (actually, we assume that γ > 4). It is worth
noting that the generalized Hénon map (6.1) is not a diffeomorphism on R

2. Its
Jacobian determinant J (T ) is equal to J = b − αy, and, hence, it vanishes on the
line y = b/α. It is easy to see that the image of this line under T is just one singular
point
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(a) (b) (c)

(d) (e) (f)

Fig. 6.6 a–c left-orientable horseshoes; d–f right-orientable horseshoes. D0 and D1 are the regions
on Q which lie, respectively, below and above the line y = b/α (on this line, the Jacobian deter-
minant of T vanishes)

P∗ =
(

b

α
,
γb

α
(1 − b

α

)

,

We will call this point the collapse point.4 The presence of this singularity is a
crucial factor in dynamical properties of the map (6.1) in a whole. The influence of
the collapse pointmanifests itself even in the casewhen one has hyperbolic dynamics,
in which case one may have usually a singular hyperbolicity. However, if the line
y = b/α does not intersect Qβ , the hyperbolic dynamics is proper, and one has either
orientable (for b > 0), or non-orientable (for b < 0) horseshoe. Otherwise (when the
line y = b/α does intersect Qβ) there appears a new hyperbolic dynamics related to
existence of half-orientable horseshoes. Some examples of them see in Figure6.6.

The following result from [1] describes the parameter regions for which GHM
(6.1) has horseshoes of different types.

Theorem 6.1 Let γ > 4 be fixed. Then in any small neighborhood V of the origin
in the plane (α, b), there is a cone-like region D̂ (adjoint to the point (0, 0))

4In the theory of non-invertible smooth maps there is another term for such a point, namely, the
“knot point” [22].
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0 <
b

α
< 1 + ρ(α, b), (6.8)

with ρ(α, b) → 0 as α, b → 0 and such that

(1) if (α, b) ∈ V \D̂ then the non-wandering set �(T ) is the Smale horseshoe, which
is either orientable (for b > 0) or non-orientable (for b < 0);
(2) the region D̂ contains infinitely many open cone-like domains adjoint to the point
(0, 0), and for any parameters from these domains, �(T ) is a half-orientable horse-
shoe;
(3) the border b = 0 of the region D̂ is responsible for the first bifurcation at which
moment the point P∗ coincides with the fixed point O1 (and O1 has got zero multi-
plicator at this moment));
(4) the border b = α(1 + ρ(α, b)) is responsible for the last bifurcation, at which
moment the point P∗ becomes (at the last time) homoclinic to O1.

Figure6.7 illustrates the above theorem. Here the important bifurcation moments
have been indicated: for first bifurcation at b = 0 see Fig. 6.7, items (d) and (h), and
for the last bifurcation at b/α = 1 + ρ(α, b) see Fig. 6.7, items (b) and (f).

(h)
(a) (b)

(c)

(d)(e)(f)

(g)

Fig. 6.7 An illustration to Theorem6.1: the partition of a neighborhood of the origin of (α, b)-
plane (for fixed γ > 4) is shown. The cone-like region adjoint to the point (0, 0) corresponds to the
existence of half-orientable horseshoes in Q; other two regions correspond to existence of orientable
and non-orientable Smale horseshoes
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The following result represents an improved version of statement 2 of Theo-
rem6.1.

Lemma 6.1 The region D̂ contains countably many open cone-like domains gi , i =
1, ...,∞, whose borders correspond to the situations when P∗ ∈ W s(O1). If (α, b) ∈
G = ⋃

gi , then the non-wandering set �(T ) is a half-orientable hyperbolic horse-
shoe. The closed set K = D̂ \ G is a one-dimensional cone over Cantor set, and if
one has in addition that (α, b) ∈ K, then �(T ) is a singular horseshoe.

Proof First we show that the point O1 is always s-boundary for the non-wandering
set �(T ). Indeed, let ls be that curve (connected component) of the set W s(O1) ∩ Q
which contains the point O1. Then by using the properties of horseshoe geometry
for GHM, we have that all the points on Q below the curve ls are wandering. That is
why the process of constructing the horseshoe involves construction which indicates
the gaps, i.e., open horizontal domains on Q which do not contain non-wandering
points. In our case, the set of invariant borders of such gaps is the countable set
W s(O1) ∩ Q of horizontal curves (segments) on Q. These gaps can be enumerated
in accordance with the following standard algorithm.

Let Ĝ ⊂ T (Q) ∩ Q be the upper part of T (Q), i.e., the part of the horseshoe that
lies above the square Q, see Fig. 6.8a. Let G ⊂ Q be the band on the square Q, which
is mapped into Ĝ, i.e., T (G) = Ĝ. In its turn, the set G has two preimages G0 and
G1 such that T (Gi ) = G, i = 0, 1, where G0 lies above G while G1 lies below it,
see Fig. 6.8a.

Next, we define the bands G00, G01 such that T (G0i ) = G0, i = 0, 1, and the
bands G10, G11 such that T (G1i ) = G1, i = 0, 1. As before, we assume that G j0 lies

(a) (b)

Fig. 6.8 An illustration to Lemma 6.1. The cone-like region contains infinitely many "cones" gi
such that if (α,β) ∈ gi , then the collapse point P∗ is wandering (it belongs to some gap Gβ ⊂ Q
that leave Q under iterations of T ). Then, if (α,β) ∈ gi the map T has a half-orientable hyperbolic
horseshoe
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below G j1, see Fig. 6.8a. With proceeding by induction, we will get countable set of
bands Gβ0, Gβ1, and corresponding set of indexes β = [β1, ...,βn], n = 1, 2..., with
βi ∈ {0, 1}, such that T (Gβ0) = T (Gβ1) = Gβ and Gβ0 lies below Gβ1. At last, we
divide each of the bands Gβ into two parts: Gl

β and Gr
β which lie in Q left and right

from the line x = 1/2, respectively.
Definitely, wemay assume that all the bands Gβ have invariant borders (upper and

lower ones) which correspond to appropriate parts of the stable manifold W s(O1).
Now the correspondence between cone-like domains gi from Theorem6.1 and

the domains Ĝ, G, and Gl,r
β can be easily established. Indeed, those parameters

(α, b) for which P∗ ∈ Ĝ correspond to domain g1; parameters for which P∗ ∈ Gl

and P∗ ∈ Gr correspond to domains g2 and g3; parameters for which P∗ ∈ Gl
0 and

P∗ ∈ Gr
0 correspond to domains g4 and g5; parameters for which P∗ ∈ Gl

1 and
P∗ ∈ Gr

1 correspond to domains g6 and g7, etc., see Fig. 6.8b. This completes the
proof. �

Next by using the geometric construction fromLemma6.1,we prove the following
result which has been also established in [1] by another (non-constructive) method.

Theorem 6.2 There exist countably many types of half-orientable horseshoes with
respect to the local topological conjugacy.

The proof easily comes after the following lemma.

Lemma 6.2 Let T and T ′ be GHM maps with half-orientable horseshoes � and �′,
respectively, such that P∗ ∈ Gβ and P∗′ ∈ Gβ′ . The restrictions T |� T ′|�′ are not
locally topologically conjugate provided that one of the following conditions holds:

(i) β �= β′, or
(ii)β = β′, and P∗ ∈ Gl

β, P∗′ ∈ Gr
β (or P∗ ∈ Gr

β, P∗′ ∈ Gl
β).

Proof Consider first the case when β �= β′ and let Sββ′ be the band between Gβ and
Gβ′ , see Fig. 6.9a, b. Evidently, it contains periodic points because it follows from the

(a) (c)
(b) (d)

Fig. 6.9 An illustration to Lemma6.2. a and b If the collapse points belong to different gaps Gβ of
Q, then the corresponding half-orientable horseshoes have periodic points p̃ and p̃′ with the same
coding but with different type of orientability. c and d the same is true when the collapse points
belong to Gl

β and Gr
β , respectively
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horseshoe construction that any band is not contained completely in some domain
Gβ (conversely, such a band contains infinitely many smaller gaps). Also, due to the
horseshoe properties, among these periodic trajectories, there is a trajectory whose
point (or, more precisely, odd number of points) belongs to Sββ′ . Denote this point p̃
for themap T and let p̃′ be the correspondingpoint for themap T ′ (here corresponding
means that periodic trajectories O( p̃) and O( p̃′) have the same coding. However,
it is evident that the trajectories O( p̃) and O( p̃′) have different type of orientation.
Since the codes are invariants of topological conjugacy, it follows that T |� and T ′|�′
cannot be conjugate.

Now let β = β′ and let P∗ and P∗′ belong to Gl
β and Gr

β , respectively (or P∗ ∈
Gr

β, P∗′ ∈ Gl
β). Then, we can adjust the above proof if we consider in the capacity

of Sββ′ the band Sβ that lies in Q over Gβ , see Figure6.9c, d. After this, the proof
becomes similar to that in the previous case. �

Let us revisit the Theorem6.1 and Fig. 6.7, where the cone-like regions H O1

and H O2 are indicated. We will call the half-orientable horseshoes, corresponding
to the region H O1 of parameters (α, b), the right-orientable horseshoes, and those
corresponding to the region H O2, the left-orientable horseshoes (see also Fig. 6.6).
Obviously left- and right-orientable horseshoes cannot be locally conjugate to each
other while two horseshoes of the same type (i.e., left- or right-orientable both) can
be locally conjugate. Let H G∗ be the set consisting of countably many disjoint open
domains Ĝ, Gl , Gr along with domains Gl

β and Gr
β for arbitrary finite symbolic

segments β compiled by two symbols (“0” and “1”). Then, by using the proof of
Lemma6.2 we get the following result.

Theorem 6.3 Two half-orientable hyperbolic horseshoes � and �′ of the same type
(left- or right-orientable both) are locally topologically conjugate if and only if the
collapse points P∗ and P∗′ belong to the same connected component of the set H G∗.

Now it is evident that if we know the position of the collapse point P∗, then we
have the whole information about topological properties of the corresponding half-
orientable horseshoe �. Though it is not always a simple problem to determine the
position of the collapse points in the domains under consideration, nevertheless we
can describe one result of this kind which illustrates the non-trivial dynamics (even
for hyperbolic horseshoes).

Theorem 6.4 Let � be a right-orientable horseshoe.

(1) If P∗ ∈ Gl
β , where β = [

n
︷ ︸︸ ︷

0, . . . , 0], then u-boundary point of � is periodic with

period (n + 3) and has periodic coding {[
n+2

︷ ︸︸ ︷

0, 0, . . . , 0, 1]}.
(2) If P∗ ∈ Gl, then u-boundary point of � is periodic with period three and has

coding {[
3

︷ ︸︸ ︷

0, 0, 1]}.
(3) If P∗ ∈ Ĝ, then u-boundary point of � is periodic with period two.
(4) If P∗ ∈ Gr or P∗ ∈ Gr

β and moreover, Gβ lies below G, then u-boundary point
of � is the fixed point O2.



6 On Local Topological Classification of Two-Dimensional … 177

Proof The statement (3) concerning the point of period two has been proved in [1]
(see Theorem6.2 there).

We prove now the statement (2). Since the collapse point P∗ lies in the band Gl , it
follows that this point is the image under the map T of the whole line l0 ⊂ G0. Due
to geometry of the horseshoe, any (curvilinear) segment in the square Q connecting a
point from the side [a, d] of Q with a point from the line l0 and lying in the domain q̂0

below l0 is mapped into a segment which intersects [a, d] and contains P∗ as the end
point. First in the capacity of these segments, we choose invariant ones, actually we
choose some parts of unstable manifolds of horseshoe points. Since� is a hyperbolic
basic set, it has a periodic point which is a u-boundary point. Then among the parts of
the unstable manifold connecting the side [a, d] with the line l0, one can choose the
rightmost. Denote it by q̂0. Since the map T is non-orientable on q̂0, it follows that
the image T (Ŝ0) is the leftmost part among the invariant segments connecting P∗
with [a, d]. As P∗ ∈ G, we have that T (P∗) ∈ Ĝ and also that the invariant segment
T 2(Ŝ0) intersects vertically the square Q. Note that the segment T 2(Ŝ0) consists
of two parts with the common point P∗, namely the lower part is the rightmost on
Tl(Q), while the upper part is the leftmost on Tl(Q) and contains the point p3. The
T -image of this segment is the rightmost invariant curve on Tr (Q), whose end points
are T (P∗) ∈ Ĝ and T 2(P∗), the second end point being below the side [a, d]. This
implies that the curve T 3(Ŝ0) contains Ŝ0. Since the map T is expanding on Ŝ0, it
follows that on Ŝ0 there is (a unique) point of period three, namely the point p1. The
prescribed symbol for this point is “1” because it belongs to Qr , the right-hand part
of Q. The points p2 = T (p1) and p3 = T (p2) lie in Ql , the left-hand part of Q, that

(a) (b)

Fig. 6.10 Examples of half-orientable horseshoes with a the boundary point of period 3; b the
boundary point of period 4
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is why the prescribed symbol for them is “0.” So, the cycle {p1, p2, p3} of period
three has periodic coding {[0, 0, 1]} (see Fig. 6.10a which illustrates right-orientable
horseshoe with a boundary point of period three).

To prove the statement (1), we use the same arguments. Let P∗ ∈ Gl
β , where

β = [
n

︷ ︸︸ ︷

0, . . . , 0]. Consider the segment ln ∈ Gβ0 such that T (ln) = P∗. Let us choose
in the domain q̂n on Q below ln , the rightmost invariant part of W u(�). Denote
this segment by Sn . Its T -image, T (Ŝn), is a segment from the invariant curve,
and, moreover, it is the leftmost segment among invariant curves connecting P∗ with
[a, d]. Under iterates of T , this segment becomes longer and longer (due to expansion
property). Since P∗ ∈ Gl

β , it follows from the definition of the band Gβ , that after

(n + 1) iterations of the map T , the image T n+1(T (Ŝn)) intersects Q vertically. And
then just the next iteration will cover Ŝn . This implies that in Ŝn , there exists a point
of period (n + 3), and this point is u-boundary by the construction (see Fig. 6.10b
which shows right-orientable horseshoe which has boundary point of period four).

At last, we prove statement (4). Let L̂1 be a segment on Qr which is the rightmost
invariant segment among those connected parts of W u(�) on Qr whose first end
point is P∗ and the second end point lies on the side [b, c]. Then, the end points of
the segment T (L̂1) will be T (P∗) ∈ Ĝ and also another point which lies on [b′, c′]
below [a, d]. It is obvious that the part of the segment T (L̂1) from the point T (P∗)
to the collapse point P∗ is the rightmost segment among parts of W u(�) with lower
end point P∗. This means that T (L̂1) ⊃ L1 and, in its turn, the segment L1 contains
fixed point. More precisely, this fixed point is obviously O2. �

Let us remark that half-orientable horseshoes of different types can be realized
as horseshoes for diffeomorphisms on non-orientable manifolds. Indeed, with any

(a) (b)

Fig. 6.11 a a half-orientable horseshoe for a plane endomorphism; b the same horseshoe for a
diffeomorphism on a non-orientable surface (Moebius band)
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half-orientable horseshoe of the map T , one can associate (by using the “surgery
operation” on the wandering set) a horseshoe of the same type on the manifold (see
Fig. 6.11 for such construction on the Moebius band). In principle, the above results
concerning generalized Hénon maps can be adjusted for this case. However, the
description of horseshoes for GHM given in Theorem6.1 will not (in general) take
place here (there will be only finitely many hyperbolicity regions, and transitions
between them will correspond to regions of non-rough systems having homoclinic
tangencies).
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Chapter 7
From Chaos to Order in a Ring of Coupled
Oscillators with Frequency Mismatch

Alexander N. Pisarchik and Mariano Alberto García-Vellisca

7.1 Introduction

Synchronization is commonly understood as a dynamical process to reach a
collective state of coupled oscillatory systems. Generally, synchronization requires
some relation between the functionals of different processes due to their interaction
[1, 2]. As a result of synchronization, coupled systems adjust their individual fre-
quencies in a certain ratio. Numerous examples of synchronization can be found in
almost all fields of science and in nature, from mechanics and electronics to physics,
chemistry, and biology. Therefore, the study of synchronization of coupled oscilla-
tors is of extreme importance for understanding the dynamical processes underlying
this phenomenon. Themechanisms behind the cooperative synchronous behavior are
different for each system and determined by its properties. The knowledge of these
mechanisms will allow the understanding of the principles of self-organization of
the matter.

The notion of synchronization was first used to describe the cooperative behavior
of periodic systems, such as the Huygens’s clocks, but it was later extended to chaotic
systems [3] able to adjust their individual behaviors from uncorrelated oscillations
to a completely identical motion as the coupling strength increases. The ever-present
demand for secure communication was one of the primary motivations for studying
the synchronization of chaotic systems. This demand, especially in military applica-
tions, ledLouis Pecora andThomasCarroll [4] to develop amethod for synchronizing
two chaotic systems that continue to be a reason for innovation in this field nowadays
[5, 6]. They revealed the necessary conditions needed for synchronization and indi-
cated that secure communication using a chaotic carrier was possible. If a receiver
synchronizes with a transmitter, a message can be extracted from themask. Although
their simple method for encrypting a signal in chaos is easily defeated by cryptanaly-
sis, such as synchronization attacks [7], synchronous chaotic oscillators continue to
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stimulate many researchers in developing new increasingly sophisticated methods to
improve communication security [8].

Synchronization of simple systems composed by two identical chaotic oscillators
has been extensively studied (see, e.g., [1, 9] and references therein) and is now rela-
tivelywell understood.Many types of chaos synchronization have been identified and
characterized using typical synchronization measures, such as synchronization error,
cross-correlation, similarity function, and phase difference. Among them, it is worth
mentioning complete synchronization [4], phase synchronization [10], antiphase syn-
chronization [11], lag synchronization [12], anticipating synchronization [13], and
generalized synchronization [14]. A route to synchronization depends on both type of
coupling and the coupling configuration. In the simplest case of two identical chaotic
oscillators, the most common synchronization scenario from asynchronous motion
to complete synchronization, as the coupling strength is increased, is as follows:
imperfect phase synchronization→ perfect phase synchronization→ complete syn-
chronization [1]. A different scenario occurs in the presence of a mismatch between
natural frequencies of coupled oscillators. When the natural frequency of the slave
oscillator is smaller than the natural frequency of the master oscillator, the oscillators
synchronize with lag; in the opposite case, the slave oscillator anticipates the master
oscillator dynamics [15, 16].

More sophisticated routes to synchronization occur in systems with three and
more coupled chaotic oscillators, especially in the presence of frequency mismatch.
The synchronization of such systems is not well understood yet. Complex networks
formed by many oscillators exhibit other, more interesting types of synchronization,
e.g., chimera states [17] and explosive synchronization [18]. Even three coupled
oscillators can display synchronous states not observed in two coupled oscillators.
For example, three chaotic oscillators unidirectionally coupled in a ring exhibit sta-
bilization of a periodic orbit, when their natural frequencies are detuned. The study
of synchronization of three coupled oscillators is very important for understanding
the dynamics of complex networks, because three coupled oscillators represent the
simplest network motif, where each oscillator is nothing more than a node. The net-
workmotifs were explored byUri Alon and his colleagues [19] in the gene regulation
(transcription) network of the bacteria Escherichia coli, and then they were found in
a large set of natural networks [20]. Network motifs repeat themselves in a specific
network or even among various networks and can be responsible for particular func-
tions. Synchronization in network motifs is one of the hottest research topics, still
poorly explored. In addition to biological applications, network motifs are also used
in computational graphs [21].

In this chapter, we describe the route to synchronization in three chaotic oscillators
unidirectionally coupled in a ring.Wewill show how synchronization emerges in this
system as the coupling strength increases. We also address the important question
of how the distance (frequency mismatch) between the oscillators affects synchro-
nization. Numerical simulations and electronic experiments with Rössler oscillators
allow us to answer these questions.
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The rest of the chapter is organized as follows: In Sect. 7.2, we introduce the
model and present the results of numerical simulations. In Sect. 7.3, we describe the
experimental setup, analyze experimental results, and compare them with numerical
ones. Finally, in Sect. 7.4, we summarize the content of the chapter.

7.2 Theory

7.2.1 General Equation

The system of three oscillators in the ring configuration shown in Fig. 7.1 can be
described in the following general form

ẋi = F(xi , ωi ) + σ j i (x j − xi ), (7.1)

where x j,i are vectors of state variables of the j-th and i-th oscillators, respectively, F
is a vector function, and σ j i is a coupling strength. For simplicity, we consider almost
identical oscillators. The oscillators are only distinct by their natural frequencies
(ω j �= ωi ). Due to nonlinearity, the dominant frequency � j in the chaotic power
spectrum of an uncoupled j-th oscillator usually does not coincide with its natural
frequency (� j �= ω j ). When the oscillators are unidirectionally coupled, the j-th
oscillator drives the i-th oscillator. Thus, the former acts as a master, while the latter
acts as a slave. For sufficiently strong coupling, the master oscillator j entrains the
dominant frequency �i of the slave oscillator i that results in phase synchronization
[10]. The time-averaged difference between the oscillators’ phases δi j = 〈ϕi − ϕ j 〉
is negative if the frequency mismatch is �i j = ωi − ω j < 0 and positive if �i j > 0.
In the former case, the phase of the slave oscillator is locked by the master oscillator
with lag, whereas in the latter case with anticipation [15].

7.2.2 Rössler Model

Without loss of generality, we focus on the Rössler model, the prototypical system
frequently used for studying synchronization of chaotic oscillators [1]. The dynamics

1 2 3
21 32

13

Fig. 7.1 Ring of three coupled oscillators i, j = 1, 2, 3. �i j (i �= j) is the distance between i and
j oscillators in units of frequency mismatch
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Fig. 7.2 Numerical
bifurcation diagram of peak
x with respect to natural
frequency of the uncoupled
Rössler oscillator Eq. (7.2)
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of the ring-coupled oscillators shown inFig. 7.1 are described by the following system
of equations

ẋi = −ωi yi − zi ,
ẏi = ωi xi + ayi + σ j i (y j − yi ),
żi = b + zi (xi − c),

(7.2)

where i, j = 1, 2, 3 (i �= j) is the oscillator number, and xi , yi , zi are the state vari-
ables of the i th oscillator. Slave oscillator i is coupled to neighboringmaster oscillator
j through variable y j .When uncoupled (σ = 0), the oscillators, Eq. (7.2), are chaotic
for a = 0.165, b = 0.2, and c = 10. In the configuration shown in Fig. 7.1, the cou-
pling strength between each pair of oscillators is the same, σ21 = σ32 = σ13 = σ and
σ12 = σ23 = σ31 = 0, i.e., the oscillator 1 acts as a master for the oscillator 2 and as
a slave for the oscillator 3.

In Fig. 7.2, we plot the bifurcation diagram of the solitary oscillator using its
natural frequencyω as a control parameter. One can see from the bifurcation diagram
that the oscillator is chaotic in a wide range of its natural frequency ω. This allows
us to vary significantly the distance � (frequency mismatch) between the oscillators
so that it is inside the chaotic range.

Let the natural frequencies be ω1 = 0.95, ω2 = 0.97, and ω3 = 0.99. Starting
from different initial conditions, the uncoupled oscillators with different natural fre-
quencies exhibit asynchronous motion as seen from the time series in Fig. 7.3a.
The power densities of the chaotic power spectra of the system variables, shown
in Fig. 7.3b, exhibit maxima at dominant frequencies �0

1 ≈ 0.975, �0
2 ≈ 0.998, and

�0
3 ≈ 1.02. These frequencies are a little different from the natural frequencies of

the corresponding oscillators, because nonlinearity relates the amplitude with the
frequency of oscillations [22].

Quantitatively, phase synchronization between a pair of oscillators i and j can be
characterized by the difference between their instantaneous phases [1]

θi j = φi − φ j , (7.3)

where
φi, j = arctan(yi, j/xi, j ). (7.4)
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Fig. 7.3 a Time series and b power spectra of x variables of uncoupled Rössler oscillators with
natural frequencies ω1 = 0.95, ω2 = 0.97, and ω3 = 0.99. The oscillators exhibit asynchronous
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3 in the power spectra

Since the oscillators have different natural frequencies, θi j of the uncoupled oscil-
lators either monotonically increases or decreases in time depending on a sign of
the frequency mismatch. The oscillators interact already for a very small coupling
strength σ > 5 × 10−3. The interaction manifests itself in the form of irregular win-
dows of phase synchronization. Within these windows, a master oscillator locks the
phase of a slave oscillator so that both have the same dominant frequency in their
power spectra. The windows intermittently appear and disappear in the time series,
and therefore this regime is called intermittent phase synchronization.

This situation is illustrated in Fig. 7.4, where we plot the time dependences of θ21
for three different coupling strengths. When the oscillators’ phases are not well syn-
chronized, the phase difference θi j increases or decreases monotonically depending
on its sign. The horizontal intervals in these dependences result from the windows



186 A.N. Pisarchik and M.A. García-Vellisca

Fig. 7.4 Time-dependent
phase difference θ21 between
oscillators 2 and 1 for
σ = 6.6 × 10−3 (upper blue
line), 2.6 × 10−2 (middle
green line), and 4.6 × 10−2

(lower red line). The dashed
line is a linear fit of the
middle dependence with
slope α. The horizontal parts
of these dependences
correspond to the regions of
intermittent phase
synchronization
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of phase synchronization, where the dominant frequency of the slave oscillator is
locked by the corresponding master oscillator. Within these windows, θi j increases
or decreases monotonically in time but fluctuates around a certain value, similar to
a Brownian motion. As the coupling σ is increased, these windows enlarge leading
finally, for sufficiently strong σ , to permanent phase synchronization.

Intermittent phase synchronization can be quantitatively characterized by the
slope α of the fitting straight line, determined by the phase difference averaged
over the whole time series. The smaller α the lager the duration of the phase syn-
chronization windows. When the slope α = 0, as in the lowest red horizontal line,
we deal with permanent phase synchronization, i.e., the dominant frequency of the
slave oscillator is always entrained by the corresponding master oscillator.

In the following subsections, we will describe the synchronization scenarios with
respect to the coupling strength and frequency mismatch.

7.2.3 Route to Synchronization with Respect to Coupling
Strength

We have already shown in the previous subsection that, as the coupling strength is
increased, the oscillators, on the route from asynchronous motion to lag or antici-
pating synchronization, first represent intermittent phase synchronization and then
permanent phase synchronization. We will consider these two types of synchroniza-
tion in detail.
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Fig. 7.5 a Time-averaged dominant frequencies
〈
�i

〉
and b slopes αi j of time-dependent phase

differences as a function of the coupling strength

7.2.3.1 Intermittent Phase Synchronization

Due to frequency locking in the phase synchronization windows, the dominant fre-
quency of a slave oscillator is equal to the dominant frequency of its master oscillator,
whereas out of these windows, the oscillators have distinct dominant frequencies.
In other words, the locking of the dominant frequency of the slave oscillator by its
master oscillator leads to phase synchronization. To characterize intermittent phase
synchronization, we use the time-averaged dominant frequency

〈
�

〉
in the chaotic

power spectrum and the slope α of the time dependence of the phase difference θi j
(time-averaged θi j ). The closer

〈
�i

〉
to

〈
� j

〉
, the better the synchronization.

Figure7.5a shows how time-averaged dominant frequencies
〈
�i

〉
of every oscil-

lator depend on the coupling strength σ . The corresponding slopes αi j of the time-
dependent phase differences are plotted in Fig. 7.5b. One can see that these two
characteristics of intermittent phase synchronization are strongly correlated.

As the coupling σ increases, both
〈
�2

〉
and

〈
�3

〉
of the slave oscillators 2 and 3,

respectively, slowly decreases because the duration of intermittent frequency-locked
windows increases (Fig. 7.5a). However, almost no changes occur in

〈
�1

〉
because

the distance (frequency mismatch) between the oscillators 3 and 1 is too large. Only
as σ approaches 0.048, the oscillator 1 adjusts very fast its time-averaged dominant
frequency

〈
�1

〉
to the arithmetic average of the dominant frequencies of the uncoupled

oscillators

(
3∑

i=1
�0

i /3

)
.

The oscillators begin to interact already for a very small coupling strength
(σ > 5 × 10−3) giving rise to the irregular windows of phase-synchronized oscilla-
tions in the time series. Within these windows, a master oscillator locks the phase
of the corresponding slave oscillator so that their dominant frequencies match. As
a consequence, within these windows, θi j neither increases nor decreases monoton-
ically in time but fluctuates near a certain average value. This regime is known as
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intermittent phase synchronization. The slopes αi j in Fig. 7.5b reflect changes in the
time-averaged dominant frequencies. One can see that oscillators 1 and 2 synchronize
first, and then they all synchronize with the remaining oscillator 3.

7.2.3.2 From Phase to Lag (or Anticipating) Synchronization

As soon as the oscillators’ phases have synchronized, synchronization quality can be
characterized by comparing amplitudes of coupled oscillators. The commonly used
measures for lag and anticipating synchronization are cross-correlation function C
and similarity function S defined, respectively, as [12]

Ci j (τ ) =
〈[
x j (t) − 〈

x j
〉][

xi (t + τ) − 〈
xi

〉]〉

√[
x j (t) − 〈

x j
〉]2[

xi (t) − 〈
xi

〉]2
(7.5)

and

S2i j (τ ) =
〈[
x j (t) − xi (t + τ)

]2〉

√〈
x j (t)2

〉〈
xi (t)2

〉 , (7.6)

where τ is the time shift between two signals and
〈
...

〉
denotes time average. The higher

the maximum of cross-correlation Cmax and the lower the minimum of similarity
function Smin, the better synchronization.

Figure7.6 shows how these two characteristics vary with the coupling strength. At
the coupling strength σ = 0.18, intermittent phase synchronization becomes perma-
nent that results in increasingCmax and decreasing Smin. The phase difference θ drifts
around its average value but never exceeds the modulation period, i.e., θ ∈ [−π, π ].

(a)
(b)

Fig. 7.6 a Maximum cross-correlation function and b minimum similarity function via coupling
strength for every pair of oscillators
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As σ is further increased, the amplitude of these fluctuations decreases resulting in
perfect phase synchronization.

On the route from phase to lag (anticipating) synchronization, the oscillators
adjust their amplitudes, as σ increases. The best synchronization occurs between
the oscillators 3 and 2, for σ = 0.4, these oscillators display identical dynamics
with anticipation because Cmax = 1 and Smin = 0. Evidently, the oscillators 1 and
3 are worse synchronized because the mismatch between their natural frequencies
is higher. Complete synchronization cannot be achieved in this system, because the
oscillators are not identical; however, for strong enough coupling, the amplitudes are
highly correlated (when the time lag is compensated). The time shift between the
waveforms of the slave and master oscillators is always equal to 2π(1/ωi − 1/ω j ),
where ωi and ω j are the natural frequencies of the slave and master oscillators,
respectively.

Interestingly, for a certain coupling strength, the oscillators’ dynamics become
more coherent. The coherence enhancement in a chaotic Rössler oscillator subjects
to a chaotic input from another, almost identical Rössler oscillator has been first
demonstrated in Ref. [23]. The coherence enhancement has a resonance character
with respect to both the coupling strength and the mismatch between the natural
frequencies of the slave andmaster oscillators.A similar effect occurs in the ringof the
chaotic oscillators. The coherence enhancement can be seen in Fig. 7.7,wherewe plot
the bifurcation diagrams versus the coupling strength. The shrink of the bifurcation
diagrams indicates the increasing amplitude coherence referred to as deterministic
coherence resonance. One can see that such resonances occur at σ ≈ 0.08 and 0.18
for� = 0.03 and 0.07, respectively. One can see in the right-hand column of Fig. 7.7
that for large mismatch (� = 0.25) and strong coupling (σ > 0.18) the oscillators
behave periodically.

We should note that this synchronization scenario is almost independent of the
coupling direction. In the other words, it does not matter whether ω1 < ω2 < ω3

or ω1 > ω2 > ω3. The only difference is that in the former (forward) coupling the
oscillators synchronize with anticipation, whereas in the latter (backward) coupling
with lag. For very strong coupling, the oscillators 3 and 2 for forward and 1 and 2
for backward coupling completely synchronize, when the time shift is compensated.

7.2.4 Route to Synchronization with Respect to Frequency
Mismatch

We consider, for simplicity, a symmetric case when the distances between the oscil-
lators 1 and 2 and the oscillators 2 and 3 are the same, i.e.,�21 = �32 = �13/2 = �.
To study the influence of the distance on synchronization,wefix the natural frequency
of the oscillator 2 to ω2 = 0.9 and vary �.

In Fig. 7.8, we plot the times series, phase portraits, and power spectra of the x
variable of the uncoupled (Fig. 7.8a, c) and coupled (Fig. 7.8b, d) oscillators.
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Fig. 7.7 Bifurcation diagrams of peak x of three oscillators with the coupling strength as a control
parameter for (left-hand column) � = 0.03, (middle column) � = 0.07, and (right-hand column)
� = 0.25

The uncoupled oscillators have different dominant frequencies in their power
spectra (Fig. 7.8c). As the coupling strength σ is increased, the oscillators adjust
their dominant frequencies (Fig. 7.8d) that result in phase synchronization. A further
increase in the coupling results in stabilization of a period-2 orbit as seen from
Fig. 7.8b.

The system stability is analyzed by calculating the Lyapunov exponents. In
Fig. 7.9, we plot nonzero Lyapunov exponents in the parameter space of the cou-
pling strength σ and frequency mismatch �.

When the oscillators’ frequencies are very close to each other, they are chaotic
for any coupling strength, whereas for larger distances their dynamics become more
regular. However, for large distances (� > 0.1) and intermediate coupling (0.1 <

σ > 0.4), the leading (largest) Lyapunov exponent takes a negative value; in this
parameter region, a period-2 orbit is stable.

The route to phase and lag synchronization is clearly shown in Fig. 7.10, where
we plot the maximum cross-correlation Cmax and minimum similarity function S2min
for each pair of the oscillators as a function of mismatch � and coupling σ .

One can see that the weakly coupled oscillators (σ < 0.1) synchronize only
when their natural frequencies are very close (� < 0.05), whereas stronger coupling
(σ > 0.2) makes them synchronized for any frequency mismatch in the considered
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Fig. 7.8 Numerical (a, b) time series, phase portraits, and (c, d) power spectra of three (a, c)
uncoupled and (b,d) coupledRössler oscillator forσ = 0.33 and� = 0.2, respectively. The coupled
oscillators become periodic

range. The blue dark regions in right-hand column of Fig. 7.10 bound the regime of
perfect phase synchronization where Smin = 0. One can see that the best synchro-
nization is observed for the oscillator 2 and 3, while the oscillators 1 and 3 are worse
synchronized. It is quite evident because the distance between the oscillator 1 and 3
is double of the distance between 2 and 3. By comparing Fig. 7.10 with Fig. 7.9, it can
be seen that in the periodic regime (for � > 0.1 and 0.1 < σ > 0.4) the oscillators
reach perfect phase synchronization, i.e., Smin = 0.

7.3 Experimental Implementation

7.3.1 Electronic Circuits

The experimental setup is constructed on the base of the electronic circuits shown in
Fig. 7.11. These circuits are analog implementations of the Rössler oscillators and
the unidirectional coupling.

The Kirchhoff’s mesh analysis yields the following equations:
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Fig. 7.9 Lyapunov exponents in (�, σ )-parameter space. The blue (dark) tongue indicates the
region of periodicity for large � and intermediate σ

V̇x j = −αA(Vyj + Vzj ),

V̇y j = α[BVx j + CVyj + σ j i (Vyi − Vyj )],
V̇z j = α[D + EVzj (Vx j − F)],

(7.7)

where Vx j , Vyj , and Vzj are the output voltages of the three meshes, α = 103 s−1 is
the time scale coefficient, σ j i is the coupling strength between the oscillators j and i
defined by the parameters of the coupler (Fig. 7.11b), and A, B,C, D, E, and F are
the parameters expressed in terms of electronic components as
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Fig. 7.10 (Left column) maximum cross-correlation Cmax and (right column) minimum similarity
S2min for oscillators a 1 and 2, b 2 and 3, and c 1 and 3 in (�, σ )-parameter space for unidirectionally
coupled oscillators

A = C1R1, B = R5

C1R2R6
= 1,C = R5

C1R2R7
,

D = V0

10C3R3

(
1 − 2R10

R8 + R9 + R10

)
, E = 15

V0
= 1,

F = V0

10C3R3

(
1 − 2R8

R8 + R9 + R10

)
,

(7.8)

where V0 = 15V is the power voltage of each mesh.
Although in Eq. (7.7) the coupling is realized through variable Vy , our experi-

ments show that there is no principal difference if the oscillators are coupled through
variable Vx . Since, we observe coherence resonance in both cases, here we will only
present the results for the coupling given by Eq. (7.7).

We consider three chaotic Rössler oscillators unidirectionally coupled in a ring.
The natural frequencies of the oscillators are determined by resistors R1 and R6,
different for every oscillator. Since these resistors are not variable in the experiments,
we do not use the natural frequencies as control parameters because variable resistors
with the required variation step are not available. The full experimental process
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Fig. 7.11 Electronic schemes of a Rössler oscillator and b coupler

is controlled with a virtual interface developed in LABVIEW 8.5, which can be
considered as a state machine. The coupling strength is regulated by variable resistor
R50 = 3 ÷ 300k� with a step of 3k�. Since σ j i ∼ 1/R50, the oscillators can be
considered to be uncoupled, when R50 is high (R50 = 300k�).

The experimental procedure is realized as follows: First, the coupling is set to
the minimum value (R50 = 300k�). After a waiting time of 500ms (roughly corre-
sponding to 60 cycles of the autonomous system), the output signals from all circuits
are acquired by analog ports. Once the dynamics of the whole system is recorded,
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the value of R50 is decreased by one step (3k�), and the signals are again stored
in the PC for further analysis. This process is repeated until the maximum coupling
(R50 = 3k�) is reached.

7.3.2 Experimental Results

In the ring of three unidirectionally coupled chaotic Rössler oscillators, each oscil-
lator acts simultaneously as a master for one oscillator and a slave for another. All
oscillators are coupled with the same coupling strength σ21 = σ32 = σ13 = σ . Since
the coupling is unidirectional, σ12 = σ23 = σ31 = 0. The resistors R1 and R6 in each
of the three circuits are chosen so that the dominant frequencies in the chaotic power
spectra of the uncoupled oscillators are in an ascending order, i.e., f1 < f2 < f3,
where f1 = 152Hz, f2 = 168Hz, and f3 = 177Hz. The time series and power spec-
tra of the uncoupled oscillators are shown in Fig. 7.12.

As the coupling is increased (Rc decreases), the oscillators adjust their dominant
frequencies as shown in Fig. 7.13. First, all three frequencies decrease, then, the
frequencies of the oscillators 1 and 2 are locked at Rc ≈ 200k�, and finally, the
frequencies of all oscillators are entrained at Rc ≈ 125k�. This means that for
sufficiently strong coupling, the oscillators are in phase synchronization.

While being uncoupled or weakly coupled, the oscillators are chaotic; for cer-
tain intermediate coupling, their dynamics become more coherent. This situation is
illustrated in Fig. 7.14, where we plot the bifurcation diagrams and the normalized
standard deviations of the peak amplitude of the x variable. As soon as the oscil-
lators’ phases synchronize (for 1/Rc > 0.8 × 10−5 �−1), the bifurcation diagrams
shrink, meaning partial stabilization of a periodic orbit (in our case, a period 2). Such
coherence enhancement has a resonant character as can be seen in the lower panels,

(a) (b)

Fig. 7.12 Experimental (a,b) time series, phase portraits, and (c,d) power spectra of three (a,c)
uncoupled and (b,d) coupled Rössler oscillators at 1/R50 ≈ 2 × 10−5 �−1
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Fig. 7.13 Dominant frequencies as a function of the coupling strength between three ring-coupling
oscillators. For relatively strong coupling, all oscillators have the same dominant frequency close
to the dominant frequency of the oscillator with highest energy (in our case this is the oscillator 3)

(a) (b) (c)

Fig. 7.14 (Upper row) bifurcation diagrams and (lower row) normalized standard deviations (NSD)
of peak x as a function of the coupling strength. Certain couplingmakes the oscillatorsmore periodic

where the minima indicate the location of the deterministic coherence resonance. As
the coupling is further increased, all oscillators again behave chaotically in the crisis
bifurcation at 1/Rc ≈ 1.5 × 10−5 �−1.

7.4 Conclusion

We have demonstrated the route to synchronization in a ring of three unidirection-
ally coupled Rössler oscillators with small mismatch between their natural frequen-
cies ω1 < ω2 < ω3 for the forward coupling direction (1 → 2 → 3 → 1). As the
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coupling strength increases, the oscillators first synchronize their phases intermit-
tently and then adjust their amplitudes. We have quantitatively characterized inter-
mittent phase synchronization by the time-averaged dominant frequency of the
power spectrum of every oscillator and the linearly approximated slope of the time-
dependent phase difference for every pair of the coupled oscillators. The route to
synchronization is as follows: intermittent phase synchronization→ imperfect phase
synchronization→perfect phase synchronization→ lag or anticipating synchroniza-
tion. The lag or anticipation depends on the frequency mismatch sign.

As the coupling strength increases, the oscillator with lowest natural frequencyω1

first entrains dominant frequency �2 of the oscillator with middle natural frequency
ω2 so that its time-averaged dominant frequency becomes equal to approximately the
dominant frequency of uncoupled oscillator 1 (i.e.,

〈
�2

〉 ≈ �0
1), while their phases

remain synchronized, and then their common time-averaged dominant frequency
slowly increases until being rapidly adjusted (within a narrow range of the coupling
strengths) to the arithmetic average frequency of all three oscillators. At the same
time,

〈
�3

〉
decreases almost linearly with the coupling strength.

It should be noted that in the case of the backward coupling direction, i.e., when
ω1 < ω2 < ω3, the route to synchronization is very similar. First, the oscillators 2
and 3 synchronize their phases and adjust their time-averaged dominant frequencies〈
�2

〉
and

〈
�3

〉
to average frequency (�0

2 + �0
3)/2, and then their common time-

averaged dominant frequency slowly decreases to the arithmetic average frequency
of all three oscillators, while

〈
�1

〉
first slowly increases and then rapidly adjusts its

value, within a very narrow range of the coupling strength, to the arithmetic average
dominant frequency of all oscillators. Interestingly, for this configuration, phase
synchronization occurs for lower coupling strengths, i.e., the backward coupling is
more favorable than the forward one. In other words, phase synchronization is more
easily achieved when a master is faster than a slave. The reason for such asymmetry
is still unclear.

As soon as the oscillators start to oscillate with the same dominant frequency,
their phases synchronize, and as the coupling further increases, they adjust their
amplitudes going to almost synchronization. Since in our system, the oscillators are
not identical, complete synchronization is never achieved. However, for large enough
coupling, the oscillations are strongly correlated being shifted in time with either lag
or anticipation depending on the sign of the frequency mismatch. As expected, the
oscillators with closer natural frequencies synchronize better than the oscillators with
larger mismatch.

A surprising behavior occurs for intermediate distances between the oscillators,
when the oscillators are in phase synchronization. For certain coupling strength, the
oscillators exhibit regular dynamics, i.e., they behave periodically. The analysis of
the Lyapunov exponent spectra has shown that all Lyapunov exponents take negative
values in a certain range of the frequency mismatch and coupling strength. This is
the evidence of how an order appears in chaotic systems due to their interaction.
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Chapter 8
Dynamics of Some Nonlinear
Meromorphic Functions

P. Domínguez, M.A. Montes de Oca and G.J.F. Sienra

8.1 Introduction

In many situations, we need to iterate a function in order to solve a problem. For
example, in certain conditions, the logistic function Lλ(x) = λx(1 − x) models the
behaviour of the population in the following manner: if x is the initial population,
then Lλ(x) indicates the total population at the end of one unit of time u (could
be a second, a day, a year, etc.). The parameter λ depends on initial conditions. So
Lλ(Lλ(z)) = L2

λ(z) indicates the total population at the end of 2u. In order to predict
the behaviour of the population, we need to iterate the function, and the n-th iteration
tells us the total population at nu units of time. Also, the Newton’s method which is
used to find roots requires an iterative process.

Discrete dynamical systems are very useful for modelling different phenomena
and also for a wide variety of problems in mathematics. Usually, we only need an
endomorphism of a space X to define the discrete dynamical system, f : X → X .
As wewill see further, we need to work with functions that are not endomorphism, so
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some special situations have to be considered.When the behaviour of an element in X
depends on its size and there is a rotation involved, we expect to have a holomorphic
function involved.

The theory of iteration of rational holomorphic functions began in the early
twentieth century with P. Fatou and G. Julia. Once the computer became a powerful
tool, many more researchers got involved in field and the Mandelbrot set became an
icon.

The tools in complex analysis are very important to understand the dynamics of
holomorphic functions. Although we will try to focus on the dynamical definitions
and results, we expect that readers with basic concepts on complex analysis and
topology will be able to understand this work. Also we expect that readers familiar-
ized with holomorphic discrete dynamical systems to find this text useful, since we
want to show some differences between transcendental meromorphic functions with
at least one non-omitted pole and other kind of meromorphic functions.

Meromorphic functions are divided into two disjoint subclasses:

1. the class of rational functions Rat and
2. the class of transcendental meromorphic functions Mer.

We recall that rational functions are quotient of polynomial functions. The func-
tions inMerwithout poles define the class of transcendental entire functions, denoted
by E . Such kind of functions are analytic on C, which means that its Taylor series
converges uniformly on every compact set of C, some examples are ez and sin z. A
transcendental meromorphic function is a quotient of a rational function and tran-
scendental entire functions, the result should not be a rational function. Examples
of transcendental meromorphic functions not in class E are −ez + 1/z, sin z + 1/z
and tan z. For further reading concerning the complex analysis, see [1, 29].

Since we are interested in functions from the complex plane C to the Riemann
sphere C, we are mainly interested in singularities with the Picard property:

Definition 8.1 Let f ∈ Mer. We say that z0 ∈ C has the Picard property if every
punctured neighbourhood of z0 is mapped into the Riemann sphere infinitely many
times except for at most two points.

If f −1(w) is empty, we say that w is an omitted value of f ; if f −1(w) is finite, we
say that w is a Picard exceptional value of f .

Functions inMer have only one singularity at∞, and functions in Rat have none.
By the Picard’s Property, functions in Mer may have at most two omitted values
or two Picard exceptional values. For example, (i) the exponential map ez has two
omitted values, zero and ∞; (ii) for the function ez/z, zero is an omitted value and
∞ is a Picard exceptional value, but is not an omitted value and, (iii) the function
−ez + 1/z has no omitted values but ∞ is a Picard exceptional value.
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Some dynamical aspects in classMer depend on how many points are eventually
mapped to ∞, such points are called pre-poles of the function. Some dynamical
properties of the following subclasses in classMer will be presented in this chapter.

1. E = { f ∈ Mer has no poles},
2. P = { f ∈ Mer has only one pole and it is an omitted value} and
3. M = { f ∈ Mer has at least one pole which is not an omitted value}.

These three classes are disjoint and the union is Mer. Examples of functions
in classes defined above are ez ∈ E , ez/z ∈ P and −ez + 1/z ∈ M . Observe that
tan z has infinitely many poles, so infinitely many of them are not omitted. In fact,
functions with two or more poles are in class M .

A point w is an asymptotic value of f ∈ Mer if there is a curve γ : [0,∞) → C

such that limt→∞ γ (t) = ∞ and limt→∞ f (γ (t)) = w.

Definition 8.2 The set of finite singular values of f ∈ Mer denoted by SV ( f ) is the
closure in C of the set of critical values and finite asymptotic values. The set SV ( f )
is also known as the set of singularities of the inverse function f −1.

For instance, zero and ∞ are asymptotic values of ez , since γ1(t) = −t and
γ2(t) = t are the corresponding curves mentioned above, so SV (ez) = {0}.

It can be proved that all omitted values and Picard exceptional values are asymp-
totic values. See [12] for the classification of this kind of singularities. The following
classes of functions in Mer can be defined in terms of the set SV ( f ).

1. S = { f ∈ Mer such that SV ( f ) is finite}.
2. B = { f ∈ Mer such that SV ( f ) is bounded}.

Observe thatS is contained inB. Functions in these classes have special dynam-
ical properties that will be mentioned further. Some examples of functions in class
S are:

(a) ez ∈ S ∩ E , where SV (ez) = {0};
(b) ez/z ∈ S ∩ P , where SV (ez/z) = {0} and
(c) tan z ∈ S ∩ M , where SV (tan z) = {±i}.
Observe that the functions sin z + 1/z and −ez + 1/z are in class B − S .

From now on, when we mention a function f without specifying in which class
it belongs, we mean it belongs to classMer. In the following sections, we will study
the dynamics of some families in classM ⊂ Mer and their Stable and Chaotic sets
related to them.

8.2 Holomorphic Discrete Dynamical Systems

As we mentioned before, Fatou and Julia developed the theory of iteration of holo-
morphic functions at the beginning of the XXth century, and they focused on func-
tions in Rat. For our interests, constant and linear functions are not considered when
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rational functions are mentioned. Fatou extended some results of functions in Rat
to functions in class E . At the end of the century, when many researchers recovered
interest in the area, the theory was extended by Baker, Kotus and Lü for functions
in M . For further reading concerning the dynamics of all the classes of functions
mentioned above, see [4, 6]–[9–11, 13, 16, 20, 25, 28].

Let be f : C → C a transcendental meromorphic function. We refer to f n =
f ◦ f ◦ ... ◦ f n times as the n-th iterate of f . When n = 0, we define f 0(z) = z
and f 1(z) = f (z). We denote by { f n}n≥1 the set of iterations of f . The sequence
O+(z, f ) = {z, f (z), . . . , f n(z), . . .} is the (forward) orbit of z under f ; while
O−(z, f ) = ⋃

n≥0 f −n(z) is the backward orbit of z under f . The full orbit of z
under f is O(z, f ) = O+(z, f ) ∪ O−(z, f ).

Remark The class Rat is a semi-group under composition, as well as the class E ,
whileP orM is not. However, all the iterations of functions inP are holomorphic
in the punctured plane, C − {0}.
Proposition 8.1 For functions in M , the backward orbit of ∞ is infinite.

Proof If f ∈ M , there is a non-omitted pole p. Since f have at most two Picard
exceptional values, there are three cases: (a) f −1(∞) is infinite, (b) f −1(p) is infinite
and (c) f −1(∞) and f −1(p) are finite, then there is z ∈ C such that f (z) = p and z
is not a Picard exceptional value, so f −3(∞) is infinite. If p ∈ O−(∞, f ), we say
that p is a pre-pole of f ; therefore, in all cases the set of pre-poles is infinite.

If f (z) = z, we say that z a fixed point of f . If there is n ≥ 1 such that f n(z) = z,
we say that z is a periodic point, when n is the less positive integer for which this
happens, we say that the period of z is n. If for some n ≥ 1 the point f n(z) is periodic
and z is not periodic, then we say that z is pre-periodic.

The classification of a periodic point z of a holomorphic function is as follows:
(a) when |( f n)′(z)| < 1, z is called an attracting periodic point, in the case that
|( f n)′(z)| = 0, z is a super-attracting periodic point; (b) when |( f n)′(z)| > 1, then
z is a repelling periodic point and (c) when |( f n)′(z)| = 1, then z is an indifferent
periodic point. Additionally if ( f n)′(z) is a root of the unit, we say that z is rationally
indifferent or a parabolic periodic point, while if it is not a root of the unit and
indifferent, it is called irrationally indifferent.

The basic problem on discrete dynamical systems is to understand the behaviour
of the orbits of a function f . There are many other ways that an orbit may behave,
for instance, either it can converge to a point or it can be dense in C. The problem to
predict the behaviour of the orbits leads us to define the Stable and the Chaotic sets
of a meromorphic function f .

Definition 8.3 Let be f ∈ Mer. The Chaotic set J ( f ) is the closure of the repelling
periodic points and the Stable set F( f ) is its complement.

In holomorphic dynamical systems, J ( f ) is known as the Julia set of f and F( f )
is known as the Faotu set of f .
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In what follows we shall explain what a chaotic behaviour means. Following the
idea of Devaney in [13], the chaotic behaviour of f in J ( f ) is because it satisfies two
conditions: (a) the set of repelling points is dense in J ( f ) and (b) f has topological
transitivity on J ( f ). We say that the function f has topological transitivity on J ( f )
if for any two non-empty open sets U and V in J ( f ), there is n ∈ N such that,
f n(U ) ∩ V �= ∅.
The density of periodic points in J ( f ) and the topological transitivity imply that f

has sensitivity to initial conditions. The sensitivitymeans that for any point z ∈ J ( f ),
there is an arbitrarily close pointw such that eventually their orbits are very different.
On the other hand, for every point z in the Stable set, there is a neighbourhood of z
where all points behave essentially the same.

We can predict the behaviour of an orbit if we have an initial condition in the Stable
set, otherwise we cannot because of the uncertainty to determine with precision the
initial conditions when we are modelling a phenomenon. A clear example on how
different the orbits behave in J ( f ) is that in every open set of J ( f ), on one side, we
have points with an orbit dense in the Chaotic set, and on the other hand, we have
periodic points.

Equivalently to the Definition 8.3, we have that z is in the Stable set F( f ) if { f n}
is a normal family of functions on a neighbourhood of z. The Chaotic set J ( f ) is its
complement. For the casewhen f ∈ M , as we have discussed before, O−(∞, f ) has
infinite cardinality, therefore the following Proposition is another characterization of
J ( f ) for such functions.

Proposition 8.2 Let f ∈ M . The Chaotic set J ( f ) is the closure of the set of
pre-poles.

We can think of the Stable set as the bigger open set where all the iterates of f are
well defined, and the behaviour of the orbits is predictable. Depending on the context,
the Stable and Chaotic sets are in the complex plane or in the Riemann sphere. In
the latter case, ∞ is always in the Chaotic set for f ∈ Mer.

The Stable and Chaotic sets have the following basic properties:

1. F( f ) is open and J ( f ) is closed,
2. J ( f ) is non-empty and perfect,
3. F( f ) and J ( f ) are completely invariant (see below),
4. F( f ) = F( f n) and J ( f ) = J ( f n) for all n ∈ N.

A set U ⊆ C is (forward) invariant for f if f (U ) ⊆ U , it is backward invari-
ant if f −1(U ) ⊆ U and U is completely invariant if it is both. For all functions,
the set of periodic points Per( f ) is invariant, but if a function f has pre-periodic
points, then Per( f ) is not backward invariant. The union of Per( f ) with the set
of pre-periodic points is completely invariant, while the set of pre-periodic points is
backward invariant but not invariant.

All orbits in one connected component U of the Stable set behave essentially the
same. We usually refer to these components as domains of the Stable set.
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Definition 8.4 Let f ∈ Mer andU a component in F( f ).We say thatU is a periodic
component if there is n ≥ 1 such that f n(U ) ⊆ U ; U is a pre-periodic component
if there is n ≥ 0 such that f n(U ) is contained in a periodic component and U is
wandering component if it is not pre-periodic. U is a wandering component if and
only if for all n < m, f n(U ) is not contained in f m(U ).

Definition 8.5 Let f ∈ Mer and U , U1 be periodic components in F( f ).
(a) If n is the smallest positive integer for which f n(U ) ⊆ U , we say that U has

period n.
(b) LetU1 with period n, consider the set C = {U1,U2, . . . ,Un}, where f (Ui ) ⊆

Ui+1 for all i ∈ {1, . . . , n − 1} and f (Un) ⊆ U1 and allUi are components in F( f ),
we say that C is a cycle of period n of components in F( f ).

The dynamics in periodic components of the Stable set is classified by the fol-
lowing theorem.

Theorem 8.1 ([6]) Classification of periodic components in the Stable set
Let f ∈ Mer andU be a periodic component in F( f ) of period n. ThenU satisfies

one of the following options:

1. U contains an attracting periodic point z0 of period n, then f kn(z) → z0 for all
z ∈ U as n → ∞. U is called the immediate attracting basin of z0.

2. ∂U contains a parabolic periodic point z0 of period n, then f kn(z) → z0 for
all z ∈ U as n → ∞ and ( f n)

′
(z0) = 1. U is called either a Leau domain or a

parabolic component.
3. U is called a Siegel disc if there exists an analytic homeomorphism ϕ : U → D,

where D is the unit disc such that ϕ( f n(ϕ−1(z))) = e2π iαz for some α ∈ R − Q.
4. U is called aHerman ring if there exists an analytic homeomorphism ϕ : U → A,

where A is an annulus A = {z : 1 < |z| < r}, r > 1, such that ϕ( f n(ϕ−1(z))) =
e2π iαz for some α ∈ R − Q.

5. U is called a Baker domain if there exists z0 ∈ ∂U such that f kn(z) → z0, for all
z ∈ U as n → ∞, but f n(z0) is not defined.

Let us call z0 an absorbing point ofU in the previous theorem in any of the three
cases 1, 2 or 5. Using this concept, we are able now to explainmore about the previous
theorem. In a periodic domain U of the Stable set, there are two possibilities: (a)
there is an absorbing point z0 to which all orbits in U converge under f n or, (b) U
has no absorbing point so f n behaves essentially as an irrationally rotation. Now
if U has an absorbing point z0, then we have three possibilities: (1) z0 is in U , (2)
z0 ∈ ∂U and f n(z0) is well defined and (3) z0 ∈ ∂U or z0 is a pre-pole. WhenU has
no absorbing point, then f n is a rotation on U , and there are two options: U can be
either simply connected or U has connectivity 2.
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8.2.1 Dynamical Differences Between Classes of Functions
in Class Mer

In each class of functions described in the introduction, there are functions which
have attracting, parabolic or a Siegel disc component. But there are classes without
Herman rings or Baker domains.

By the Maximum Principle Theorem in complex analysis, functions in class E ∪
P do not have Herman rings. In [18], several examples are presented of functions
in classM with Herman rings.

In [21], Fatou gave the first example for f ∈ E of a Baker domain, by this time it
was called indetermination domain. For functions in this class, the absorbing point
of Baker domains is ∞. Functions in classM may have a Baker domain with finite
absorbing point, for instance, the function−ez + 1/z, see [8]. This is a very important
difference between functions in class E and class M .

Concerning the connectivity of periodic domains in F( f ), there is the following
Theorem.

Theorem 8.2 ([11]) If f ∈ Mer, the connectivity of a periodic component in F( f )
is 1, 2 or ∞. For invariant components, it is 2 only for Herman rings.

In contrast to the connectivity of periodic components, it is known that wandering
domains may have any connectivity for functions in classM , [7]. For further reading
concerning wandering domains, we refer to [3, 5, 23, 30].

Periodic components of functions in class E are simply connected, so the Chaotic
set is never totally disconnected, see [2], but it may contain a totally disconnected
subset as the following theorem shows.

Theorem 8.3 ([16]) Let f ∈ M ∪ E and U a component of F( f ). If U has con-
nectivity at least five, then the set of singleton components of J ( f ) is dense in J ( f ).
In particular, if f ∈ M , this result remains valid if the connectivity of U is three.

We define the post-critical set of f ∈ Mer by SV+( f ) = ⋃
n∈N f n(SV ( f )). The

relation between singular values of f and the periodic components is as follows.

Theorem 8.4 ([11]) Let f ∈ Mer and C = {U1, . . . ,Un−1} a cycle of periodic
components in F( f ).

1. If the domains in C are attracting basins or parabolic domains, then some Ui

contains one singular value, say z0, of f . The point z0 is not pre-periodic, and if
z0 is periodic, then it is a super-attracting periodic point.

2. If the domains in C are Siegel discs or Herman rings, then for all i , ∂Ui is
contained in the closure of SV+( f ).

The relation between SV ( f ) and Baker domains as well with wandering domains
is more complicated, although there is the following result.

Theorem 8.5 ([11]) If f ∈ S , then f has no Baker or wandering domains.
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As we mentioned before, all Baker domains for functions in class E have ∞ as
the absorbing point, so they are unbounded, while functions in class E ∩ B do not
have Baker domains. As we will see in Sect. 8.4, in classM , there are functions with
bounded Baker domains, with a finite absorbing point even when the functions are
inB.

8.3 The Escaping Set in Class Mer

In [20], the escaping set I ( f ) of a function f in class E was defined and in [16] it
was generalized to transcendental meromorphic functions as follows.

I ( f ) = {z ∈ C| lim
n→∞ f n(z) = ∞ and f n(z) �= ∞ for all n ∈ N}.

If z ∈ I ( f ), we say that z is an escaping point of f . Observe that escaping points
are not pre-poles.

Theorem 8.6 ([16]) For f ∈ Mer, I ( f ) satisfies the three following properties:

1. I ( f ) �= ∅;
2. I ( f ) ∩ J ( f ) �= ∅ and,
3. ∂ I ( f ) = J ( f ).

We refer to these as the basic properties of the escaping set. The third property
is very useful in programming the computer to visualize the Chaotic set as we will
see in the following section. Observe that I ( f ) is neither a closed set nor an open
set, since periodic points and escaping points in the Chaotic set accumulate on each
other.

If f has no Baker or wandering domains (as it is the case for functions in S ),
then I ( f ) ⊂ J ( f ) and then I ( f ) = J ( f ). If U is an invariant Baker domain of f ,
thenU ⊂ I ( f ). Baker domains of entire functions are contained in the escaping set.
Also wandering domains may be contained in I ( f ) or not.

There are examples for which the components of I ( f ) may be points or curves.
We will show some examples in the following section.

Theorem 8.7 ([31]) Let f ∈ Mer of finite order.

1. If f has finitely many poles and f ∈ B, then every escaping point of f can be
connected with ∞ or to a pre-pole of f by a curve contained in I ( f ).

2. If f has a logarithmic singularity over∞, then J ( f ) contains uncountable many
curves to ∞ contained in I ( f ).

The set of escaping curves contained in J ( f ) connected with the same pre-pole
p is called an escaping bouquet at p. We call its closure a bouquet of the Chaotic
set at p. As an example of these definitions, for the exponential family Eλ(z) = λez
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for 0 < λ < 1/e, we have that J ( f ) is one bouquet at ∞ and it is a Cantor bouquet;
this kind of set has special topological and dynamical properties. For more about
Cantor bouquets, see [14]. In the next section, wewill showmore examples involving
escaping bouquets.

8.4 Three Families of Functions in Class M ⊂ Mer

In this section, we present some results concerning the dynamics of three families in
classM ; these are some examples known in this class. In what follows we introduce
the families which has been investigated in [19, 22, 26, 27]. In all the families below,
λ and μ are nonzero complex numbers and k is a nonzero integer.

(a) Tλ(z) = λ tan z,
(b) Sλ,μ,k(z) = λ sin z + μ

z−kπ , and
(c) Eλ,μ(z) = λez + μ

z .

We recall that whenwe study the dynamics of functions f ∈ M , we are interested
in the behaviour of the orbits and also in special sets; some examples are the Stable
set F( f ), the Chaotic set J ( f ), the escaping set I ( f ) and their components. When
we identify special sets from a dynamical point of view in the domain of a function,
we call it a dynamical plane of f . As the dynamics of a function f become more
complicated to describe, the computer helps us to visualize the dynamical plane of
f . So they are very helpful for explaining the dynamics of the function for a broader
public, as well as for research and artistic purposes, since many of them are visually
interesting.

In order to get the dynamical plane with the computer, we can use the set I ( f ) to
depict J ( f ) and F( f ). Colours in the dynamical plane mean that such points have
an iteration with its modulus bigger than a selected value, and we refer to this value
as the escaping value of the dynamical plane.

In Sects. 8.4.1, 8.4.2 and 8.4.3, in all the dynamical planes, the colour discs show
where are some pre-poles. Usually F( f ) is on black, otherwise it is pointed out, J ( f )
is on colour and the points on white show an orbit (the white lines show the order of
the iteration). Naturally, these are approximations, remember that the Chaotic set is
either the whole complex plane or its interior is empty.

8.4.1 The Tangent Family

For the family Tλ(z) = λ tan z, in the context of complex analysis,∞ is not an isolated
singularity since it is an accumulation point of poles. For us, the only singularity is
∞. It is in classS , so it has no Baker or wandering domains. It has no critical points,
and±λi are the only asymptotic values. Since Tλ is symmetric respect the origin, the
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Fig. 8.1 Dynamical plane of 0.9 tan z

behaviour of these singular values is the same. So Tλ may have at most two periodic
cycles in the Stable set. Also because of this symmetry, the Stable and Chaotic sets
are symmetric respect to zero.

As mentioned before, in class M there are functions for which the Chaotic set
is totally disconnected. The following result shows that the family Tλ presents a
dichotomy. The Chaotic set is either a totally disconnected or a connected set.

Theorem 8.8 ([22]) For Tλ either

1. |λ| < 1, the Chaotic set of Tλ is a Cantor set in the Riemann sphere and the Stable
set is a single completely invariant component infinitely connected U, or

2. |λ| ≥ 1, the Chaotic set of Tλ is connected and the Stable set consists of either
exactly two components or infinitely many simply connected components.

Observe that for all λ, zero is a fixed point and its derivative is λ. Thus, if |λ| < 1,
then U is the immediate attracting basin of zero.

In Fig. 8.1, for the function T0.9, the Chaotic set is a Cantor set in the Riemann
sphere (a perfect and totally disconnected set) contained in the real line. Zero is an
attracting fixed point, and the Stable set is a single completely invariant component
U , the orbits of all points in U converge to zero. So U is an attracting basin with
connectivity ∞ (U has an uncountable set of holes).

When λ = 1, zero is a parabolic fixed point and F(T1) is the union of the upper
and the lower half planes, which are completely invariant simply connected parabolic
domains, and J (T1) is the real line.

In Fig. 8.2, we consider the function 2 tan z, the Chaotic set is the real line, so it is
a connected set. The Stable set is the union of two completely invariant components,
each one is an attracting basin simply connected.

In Fig. 8.3, for the function 2i tan z, the Chaotic set is also connected, so all the
stable components are simply connected, but in this case the Stable set has infinitely
many of them. Experimentally we find that this function has two attracting cycles of
period two {A, B} and {U, V }. The orbit depicted in the Figure starts in a preimage
of V .

In contrast to Fig. 8.3, if we use a bigger escaping value to compute the dynamical
plane, the Chaotic set begins to shade away, see Fig. 8.4. If we use even bigger
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Fig. 8.2 Dynamical plane of 2 tan z

Fig. 8.3 Dynamical plane of 2i tan z

escaping values, J ( f ) seems to vanish completely. One reason for this is that in
some cases, it is bigger the number of iterations needed for a escaping point to grow
more than the escaping value. On the other hand, for a small escaping value M , there
are points that in the first iterations they grow bigger than M , but they are not really
escaping points of f .

8.4.2 The Sine Family with One Pole

The function Sλ,μ,k(z) = λ sin z + μ

z−kπ , for nonzero λ and μ complex numbers has
only one pole which is not an omitted value. It has no finite asymptotic values, but it
has infinitely many critical values which accumulate at ±λ. So Sλ,μ,k is in class B
and it is not in classS .
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Fig. 8.4 Dynamical plane of 2i tan z computed with a bigger escaping value

Theorem 8.9 ([19]) Let λ,μ be real, 0 < |λ| < 1 or λ = 1, 0 < μ sufficiently small
and k a nonzero integer. The family Sλ,μ,k has an attracting completely invariant
component in the Stable set which is multiply connected.

The region T , which is a horizontal strip intersecting the complement of a disc
containing the pole, is invariant and contains all the critical values and an attracting
fixed point. Therefore, T is contained in an attracting component A. So the func-
tions do not have more periodic Stable components. Also in [19], it is proved that
the functions do not have wandering domains. Since A is invariant and not simply
connected, because of Theorem 8.2, the connectivity is ∞.

As a consequence of Theorem 8.3, the components of the Chaotic set with one
point are dense in J (Sλ,μ,k).

If λ = 0.75, μ = 0.75π2/(16
√
2) and k = 2, then J (Sλ,μ,k) is disconnected but

not totally disconnected. From Theorem 8.7, we know that the escaping set contains
an uncountable set of curves attached to any pre-pole; these curves are contained
in the Chaotic set. The Stable set is a single completely invariant attracting basin A
depicted in Fig. 8.5. Also in its dynamical plane, we can see the bouquet containing
the pole, which is the small orange decoration on the right side surrounded by A. We
expect that the big orange decorations are part of the bouquet at ∞.

8.4.3 The Exponential Family with One Pole

The function Eλμ(z) = λez + μ/z has one non-omitted pole at zero and has infinitely
many critical values accumulating at zero; zero is the only finite asymptotic value.
So this function is in classes M and B but not in S . The preimages of zero are



8 Dynamics of Some Nonlinear Meromorphic Functions 211

Fig. 8.5 Dynamical plane of 0.75 sin z + 0.75π2

16
√
2(z−2π)

contained in a left-hand semi-plane. This exponential with one pole has infinitely
many fixed points, and only a finite number of them are non-repelling. The repelling
fixed points are contained in a right-hand semi-plane.

In [8], it is shown that the function E−1,1 has a cycle of period two of Baker
domains. So the following result is a generalization for a family of this kind of
exponentials with one pole.

Theorem 8.10 ([26]) If Re(λ) < 0 and |Im(λ)| < 1
2 |Re(λ)|, then Eλ,μ has a cycle

of period two of Baker domains. For one of them ∞ is the absorbing point and the
other one has zero as the absorbing point.

To prove it, a non-empty open setW is shown to be E2
λ,μ-invariant . This happens

because the distance from E2
λ,μ(z) to z + λ is sufficiently small.W is not empty since

it contains (−∞, a] for some negative real number a. All points in W converge to
∞ with the even iterations of Eλ,μ, so W is contained in a Baker domain, and all
points in W converge to zero with the odd iterations of the function. Therefore, the
Baker domain A is of period two with ∞ as its absorbing point, and there is B a
Baker domain with zero as its absorbing point.

Evenmore, if Re(λ) < 0 and |Im(λ)| < 1
2 |Re(λ)| − 4, then A has infinitelymany

critical points and B has infinitely many critical values.
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Concerning the connectivity of these Baker domains, there is the following result.

Theorem 8.11 ([27]) For all (λ, μ) in a neighbourhood of (−20, 1/4), the Baker
domains of Eλ,μ are infinitely connected.

The proof consists in showing that a closed simple curve γ is contained in one
of the Baker domains B. One of the preimages of γ in A contains a simple closed
curve surrounding a region with a preimage of zero and no asymptotic values, so A
is not simply connected. Using the following result, we conclude that A and B have
at least connectivity three.

Theorem 8.12 ([27])Let f be ameromorphic functionwith finitelymany asymptotic
values. If U and W are components of the Fatou set such that f (U ) ⊆ W and W
has connectivity ∞, then U is multiply connected.

Since the connectivity of periodic components is 1, 2 or ∞ and the connectivity
of A and B is at least three, then their connectivity is ∞. Again, as a consequence
of Definition 8.3, the components of the Chaotic set with one point are dense in
J (Eλ,μ).

The function E−20,1/4 has a cycle of period twoofBaker domainswith connectivity
∞, one of them with infinitely many critical points and the other one with infinitely
many critical values. Also from Theorem 8.7, we know that the escaping set contains
an uncountable set of curves attached to any pre-pole; these curves are contained in
the Chaotic set.

In Fig. 8.6, the cycle is {A, B}, the points in A converge to ∞ with the second
iteration of the function and points in B converge to zero. So the modulus of points

Fig. 8.6 Dynamical plane of −20ez + 1
4z
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Fig. 8.7 Dynamical plane of −20ez + 1
4z with a smaller escaping value

in A and B eventually grow bigger than any selected escaping value, fortunately for
this kind of functions the orbits in Baker domains grow slow, so with an appropriate
escaping value the computer choose black for points in these domains. Observe that
points in these Baker domains are not in the escaping set of the function since its
orbits do not converge to ∞. See [24] for more about the dynamics in the Baker
domains.

Also there is a negative repelling fixed point x0 in the real line, (−∞, x0) is con-
tained in A and (x0, 0) is contained in B. Using this, it is shown that B is unbounded.
Also in the dynamical plane of E−20,1/4, we can see small decorations which are the
bouquets of different pre-poles. We expect that the big ones are part of the bouquet
at ∞.

InFig. 8.7, the dynamical planeof−20ez + 1/(4z) is displayed again but changing
the escaping value for a smaller one, so points in Baker domains are in colour.

The family Eλ,μ has a bifurcation concerning the connectivity of the Baker
domains. There is a function in this family with a cycle of period two of Baker
domains simply connected. Also the Baker domain B in Fig. 8.8 is bounded and
is surrounded by an attracting basin U which has connectivity ∞. Remember that
entire transcendental functions do not have bounded Baker domains.

8.5 Bifurcation Diagrams

For any one family of functions, we want to understand the locus of the bifurcations,
it means, the set of parameters for which the functions change their dynamics. It is
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Fig. 8.8 Dynamical plane of a function λez + μ
z for small values λ and μ

beyond the scope of this text to precise the meaning of it, but for instance, there is a
bifurcation in the family if the number of attracting cycles change, or their period or
their classification. Now we are dealing with the second main type of problem when
we study dynamics; it is how the dynamics change when a function is perturbed.

When the family has one complex parameter, the family is the parameter plane.
So when we find special sets from a dynamical point of view and their properties,
we are studying the dynamics of the family. Sometimes the computer is very helpful
to depict those sets, we refer to such figures as parameter planes.

With Theorem 8.8, we can say that the unit circle centred at zero is contained in the
locus of bifurcations of Tλ(z) = λ tan z. Observe that for any λ0 such that |λ0| = 1,
there is λ arbitrarily close to λ0 such that Tλ0 and Tλ have different dynamics. That
is why we say that the family has a bifurcation at λ0.

The dynamics of the exponential family Eλ(z) = λez has been studied by several
authors. The family Eλ,μ(z) = λez + μ/z can be thought as a singular perturbation
of Eλ, in the same way that a function like z2 + c/z is a singular perturbation of
z2. For such kind of perturbations, see [15]. So Sλ,μ,k(z) = λ sin z + μ/(z − kπ) is
a singular perturbation of Sλ(z) = λ sin z, for the dynamics of the latter family see
[17]. The problem is that the singular perturbed families havemore than one complex
parameter, so the parameter set is no longer a subset of the plane.

To study the bifurcations of such kind of families is more complicated. Not only
because of the dimension of the parameter set but also the families Eλ, Sλ and Tλ

have either one singular value or have two. In the latter case, the functions behave
symmetrically, so it is necessary to follow the orbit of only one singular value to
study the dynamics of the families. The problem to understand the bifurcations of
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Fig. 8.9 A cut of the parameter set of the family Sλ,μ,k

Eλ,μ and Sλ,μ,k is much more complicated because SV ( f ) is infinite. Despite the
difficulties, below we present some cuts of the parameter sets of the families Eλ,μ

and Sλ,μ,k .
If in the family Sλ,μ,k we set the critical point to be z0 = 7

4π , the pole to be 2π

and k = 2, we have μ = π2λ

16
√
2
. Thus, we obtain the sub-family Sλ,z0,2(z) = λ sin z +

π2λ

16
√
2(z−2π

. Figure8.9 is the parameter plane of this sub-family, which is a cut of the
parameter set of Sλ,μ,k . On colour are the parameters for this sub-family for which
the orbit of the critical point is unbounded. Therefore, the region on black shows
the parameters for which the orbit of z0 is bounded. The boundary is the bifurcation
locus for this sub-family, which is contained in the locus of the original family. The
white point indicates the parameter λ = 0.75, for which we obtained the dynamical
plane in the previous section.

The following parameter plane is a special cut of the parameter space of Eλ,μ,
since the axis is for real parameters λ and μ. Instead of fixing a critical point, follow
its orbit. In Fig. 8.10, the curves show for which parameters the family has a real
fixed point with real parameters. The blue line L−1 is for which the fixed point has
derivative −1, for the black curve L1 the derivative of the fixed point is 1, so in
both cases, the family has an indifferent real fixed point. The red curve L0 are the
parameters for which the family has a super-attracting fixed point. Then the regions
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Fig. 8.10 A real section of
the parameter set of the
family λez + μ/z

delimited by L−1 and L1 containing L0 is the set of real parameters for which the
family has a real-attracting fixed point. We call this parameter plane a real section of
the parameter set of the family Eλ,μ.

Open Problems

While this chapter was under preparation, the following interesting questions arise.

• Is there non-invariant components of connectivity 2 which are not Herman rings
in class M ?

• Let {U1, . . . ,Un} is a cycle of components in the Stable set. Are allUi of the same
dynamical type?

• Let Sλ,μ,p = λ sin z + μ

z−p , p any complex number. How can we compute the set
of parameters for which the function Sλ,μ,p has a completely invariant multiply
connected attracting basin?

• Let Eλ,μ the family as in Sect. 8.5. For which parameters the Baker domains are
completely invariant for the second iteration of the function?

• How can we compute the set of parameters for which the function Eλ,μ has a cycle
of multiply connected Baker domains?

• Find dynamical planes for functions in class M with either multiply connected
parabolic domain, a Siegel disc, Herman ring or wandering domain.

• Is there a non-invariant Baker domain with connectivity 2 for a function in class
M ?

• Is there a non-invariant attracting basin with connectivity 2 in classM ?
• Is there a non-invariant parabolic domain with connectivity 2 in classM ?
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Chapter 9
Dynamics of Oscillatory Networks
with Pulse Delayed Coupling

Vladimir Klinshov, Dmitry Shchapin, Serhiy Yanchuk
and Vladimir Nekorkin

Introduction

The networks of pulse-coupled oscillators have been widely studied as models for
various physical and biological systems such as spiking neurons [1–3], fireflies com-
municating by short light pulses [3–5], impacting mechanical oscillators [6], elec-
tronic oscillators [7–10], optical systems [11–13], cardiac [14–18], respiratory [19,
20] or circadian [21] rhythms. In all these cases, the common feature is that the
oscillators exchange signals which have the duration much smaller than the intrinsic
period of the oscillations.

A common approach to describe the interaction between the oscillators in such
networks is to use the so-called phase resetting curves (PRC) [3, 5, 22–27]. In the
framework of this concept, each oscillator is characterized by its phase only, and the
PRC describes how the input pulse advances or delays the oscillator depending upon
in what phase it is applied. In its representation as a phase oscillator, each oscillatory
system possesses a characteristic PRC corresponding to a particular stimulus. Hence,
parameter changes in the neuron or the stimulus are reflected by changes in the shape
of the PRC. Pulse-coupled systems can be considered either as stand-alone models,
or as approximations of more complex systems. Among the advantages of such
models is their simple numerical implementation, their lower dimension, as well as
the possibility to adjust the PRC numerically and measure it experimentally [28–32].
A number of important results have been obtained for the model of pulse-coupled
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oscillators. The stability of synchronous [5, 26, 33–35] and asynchronous [36] states
has been studied, as well as stable clusters [22, 37–39] and splay states [40].

In realistic networks of various physical nature, pulses propagate with finite speed
leading to nonzero coupling time delays. The influence of delays has been proven
significant in many cases and may result in new dynamical phenomena, such as
multi-stability [33, 41–43], oscillations death [44], strong and weak chaos [45], and
other complicated regimes [46–50]. The particular attention was paid to the influence
of the delay on synchronization of oscillatory networks, especially neural networks.
Synchronization of brain areas is believed to be crucial for cognitive functions and to
act as an integrative mechanism bringing a widely distributed set of neurons together
into a coherent ensemble for a cognitive act [51]. For example, synchronous γ-rate
activity of various areas in visual cortex underlies binding of numerous features of
an object for its perception [52]. Synchronization is also assumed to be involved in
memory and learning [53],motor control [54], and, on the opposite site, in pathologies
such as Parkinson’s disease or schizophrenia [55].

In this chapter, we present our results on networks of phase oscillators with pulse
delayed coupling. This chapter is organized as follows. In Sect. 9.1, we introduce the
general model of a network of phase oscillators with pulse delayed coupling.We also
introduce the approachwhich allows to reduce such the system to afinite-dimensional
map. Further, we utilize this technique to study networks of various configurations.
We study the so-called jittering regimes of one oscillatorwith pulse delayed feedback,
in Sect. 9.2, and jitteringwaves in rings of oscillators in Sect. 9.3. Then,we investigate
mutual synchronization of two oscillators, for the case of small frequency detuning
in Sect. 9.4 and large detuning in Sect. 9.5. In Sect. 9.6, we illustrate the richness
of the dynamics of even small networks on the example of four oscillators with
heterogeneous coupling. Section9.7 is devoted to global synchronization of large
networks with all-to-all coupling.

9.1 General Model and the Reduction Technique

In the most general form, such a network is described by the following system:

dϕ j (t)

dt
= ω j +

N∑

k=1

⎛

⎝ f jk(ϕ j (t))
∑

t pk

δ(t − t pk − τ jk))

⎞

⎠ . (9.1.1)

Here, j = 1, N , ϕ j , and ω j are the phase and the intrinsic frequencies of the j th
oscillator. When the j th oscillator reaches the threshold ϕ j = 1, it emits a pulse and
resets its phase to zero. The functions f jk(ϕ) are the phase resetting curves describing
the interaction between the kth and the j th oscillators. When a pulse comes from
the kth oscillator to the j th oscillator, it causes the instant shift of the phase of the
latter one �ϕ j = f jk(ϕ j ). Note that the topology of the network is reflected by
these functions as well: If there is no link from the kth oscillator to the j th one, the
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function f jk is set to zero. The values τ jk are the delays for pulses to come from the
kth oscillator to the j th one. The first sum in the right part of (9.1.1) runs over all the
oscillators and the second sum runs over all the moments t pk when the kth oscillator
produces pulses.

The common approach to study the networks of pulse-coupled oscillators is the
construction of maps from one discrete event to the next event. In the case of zero
delays, these discrete events are related to emitting of the pulse by one on the oscil-
lators which causes immediate perturbation of the phases of the other oscillators. In
this case, all information which is necessary to predict the dynamics of the network
in future is contained in the instant values of the phases ϕ j (t). In other words, the
values ofϕ j (t) fully characterize the state of the system. These values allow to define
which of the oscillators emits pulse next and to calculate what phase shifts it causes
in the other oscillators [5, 22, 23, 26, 56–58].

In the presence of delays, the situation becomes more complicated. The informa-
tion about the instant values of the phases is now not enough to predict the future
dynamics which is influenced by the signals produced in the past. Thus, the infor-
mation on the past activity of the network is required to describe the full state of the
system and to construct the map. The larger the delays, the longer the time interval
in the past has to be considered. Because of the pulsatile nature of the coupling, the
only important information about the past activity of the network is the timing of the
produced pulses. The question is what exact number of the recently produced pulses
past have to be taken into account and if this number is finite or not.

In [59], we have defined the conditions under which just a finite number of the
recent pulses influence the future dynamics of the network. Under these conditions,
system (9.1.1) can be characterized by the current phases ϕ j and the timing t pk of the
last P pulses of each oscillator. The conditions are as follows:

1. The coupling is not very strong, namely

F <
1

2N
, (9.1.2)

where F = max
j,k

max
ϕ∈[0;1]

f jk(ϕ).

2. For t ∈ [−∞; t0], the oscillators produced pulses sparsely such as for all k and p

t pk − t p−1
k ≥ �, (9.1.3)

where � = (1 − 2FN )/�, � = max
j,k

ω j .

Then, for any given time t > t0 not more than P , recent pulses produced by each
oscillator can influence the future dynamics of the network, with P given by

P = 1 +
[
T

�

]
, (9.1.4)

where T = max
j,k

τ jk .
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Thus, the state of system (9.1.1) can be fully described by the following set of
N (P + 1) numbers:

1. Phases ϕ j of the oscillators.
2. The timing t pj of the latest P produced pulses of each oscillator.

For further studying, it is convenient to introduce the state vector

ξ(t) =
(
ϕ1(t),ϕ2(t), ..., ϕN (t), x11 , x21 , ...., x P1 , x12 , x12 , ..., x P2 , ..., x1N , x2N , ..., x PN

)
,

(9.1.5)

where x p
j = t − t pj is the timewhich passed from themomentwhen that j th oscillator

emitted his pth pulse. x1j corresponds to the latest produced pulse, x
2
j corresponds to

the previous one, and so on. The state vector ξ fully describes the state of the system
(9.1.1) and allows to predict its future dynamics.

Now, we construct the map describing the evolution of the state vector with time.
All the components of the vector grow uniformly except certain moments when they
undergo stepwise changes. These moments are related to the so-called G-events
which are either emissions or receptions of the pulses.

When the phase of the j th oscillator reaches unity, it emits a new pulse with
t pj = t + θ j , where

θ j = 1 − ϕ j

ω j
. (9.1.6)

Then, the state vectors change as follows:

ϕ j (t
′) = 0,

ϕk(t
′) = ϕk(t) + ωkθ j ,

x1j (t
′) = 0, (9.1.7)

x p
j (t

′) = x p−1
j (t) + θ j , p ∈ [2; P],

x p
k (t ′) = x p

k (t) + θ j , p ∈ [1; P]

where k �= j . Denote transformation (9.1.7) as the map E j : ξ(t) �→ ξ(t ′).
When a pulse produced by the kth oscillators reaches the j th oscillator after the

delay, the phase of the latter oscillator instantly shifts. For the given ( j, k) pair, this
will happen at the moment t ′ = t + ϑ jk , where

ϑ jk = τ jk − xkq , (9.1.8)

where q = max{p|x p
k < τ jk}. The state vector changes as follows:

ϕ j (t
′) = ϕ j (t) + ω jϑ jk + f jk

(
ϕ j (t) + ω jϑ jk

)
,

ϕm(t ′) = ϕm(t) + ωmϑ jk, p ∈ [1; P] (9.1.9)
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x p
j (t

′) = x p
j (t) + ϑ jk, p ∈ [1; P]

x p
m(t ′) = x p

m(t) + ϑ jk, p ∈ [1; P] (9.1.10)

where m �= j . Denote transformation (9.1.9) as the map Fjk : ξ(t) �→ ξ(t ′).
To determine the nearest G-event, one should find the minimum value δmin of the

values θ j and ϑ jk for all j and k. The system state between the subsequent G-events
changes according to the map

G : ξ(t) �→ ξ(t ′) =
{
Ek, δmin = θk,
Fmk, δmin = ϑmk .

(9.1.11)

If any two ormoreG-events coincide, onemust sequentially apply the corresponding
transformations in arbitrary order.

We have shown that under certain conditions, system (9.1.1) can be described by
state vector (9.1.5) and its dynamics is governed by the map (9.1.11). Further, we
will utilize these findings to study networks of particular configuration.

9.2 Jittering Regimes of Single Oscillator with Feedback

In this section, we consider a single oscillator with pulsatile delayed feedback [60,
61]. The study on this basic and very common “motif” [62] is important for under-
standing the behavior of larger delay-coupled networks [63]. For instance, a loop
consisting of one excitatory and one inhibitory neuron with delayed connection
shows similar behavior to a neuron with delayed self-feedback [64–66], and also,
the behavior of rings of several neurons is, in some cases, related to the behavior of
a single neuron with delayed feedback [67–69]. In fact, a larger neuronal feedback
delay might firstly arise due to a chained propagation of action potentials along a
ring of neurons.

It turns out that an oscillatory system with delayed pulsatile feedback may gener-
ically exhibit a very surprising phenomenon. Under some conditions, a periodical
regime of regular spiking destabilizes in a degenerate manner such that several mul-
tipliers (Lyapunov exponents) become critical at once. The number of the critical
multipliers is proportional to the feedback delay and can be arbitrary large. Thus, the
dimension of the unstable manifold of the regular spiking solution changes abruptly
from zero to an arbitrary large value, which we call the “dimension explosion”
phenomenon. As a result of such a bifurcation, we show that there appear multi-
ple coexistent periodic solutions with larger periods, characterized by distinct ISIs.
Remarkably, the numerous jittering regimes emerge at once at the bifurcation point
which leads us to adopt the name “multi-jitter” bifurcation.We prove that the number
of the emergent jittering solutions grows exponentially with the delay.

We consider an oscillator with delayed pulsatile feedback of the form [22, 26, 39,
60, 70–72]:
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dϕ

dt
= 1 + Z(ϕ)

∑

t j

δ(t − t j − τ ). (9.2.1)

The oscillator is described by its phase ϕ, which changes on the circle [0, 1] with
ϕ = 0 and ϕ = 1 identified. In the case without delayed feedback, the phase grows
uniformly with normalized frequency ω = 1. When the phase reaches unity, the
oscillator is assumed to emit a pulse. The instants when the pulses are emitted are
denotedby t j , j = 1, 2, . . . . The emitted pulses propagate along the feedback line and
affect the oscillator after the delay τ at the time instants t∗j = t j + τ . When a pulse is
received, the phase of the oscillator undergoes an instantaneous, discontinuous shift
and changes its value to the newvalueϕ(t∗j + 0) = ϕ + Z (ϕ) ,whereϕ = ϕ(t∗j − 0)
and the function Z(ϕ) is the PRC [71, 73, 74]. For numerical illustrations, we
consider the PRC

Z(ϕ) = κ × (sin (πϕ))q , (9.2.2)

Here, κ > 0 is the feedback strength, and q > 1 is a parameter that controls the
steepness of the PRC, which is the crucial quantity for the dynamical phenomena
reported in this paper.

Following the approach from the previous section, we derive a map governing the
dynamics of (9.2.1). It is convenient to write it the ISIs Tj = t j − t j−1:

Tj+1 = 1 − Z

⎛

⎝τ −
j∑

k= j−P+1

Tk

⎞

⎠ . (9.2.3)

This form is valid under the assumption that exactly one spike arrives per ISI.
Here, P is the number of ISIs between the emission time and the arrival time of each
pulse.

The basic dynamical regime of the oscillator is regular spiking when the it emits
pulses periodically with Tj = T . These solutions correspond to a fixed point of
(9.2.3), and therefore, all possible periods T are given as solutions to

T = 1 − Z (τ − PT ) (9.2.4)

where P = [τ/T ] is the number of full periods within one-delay interval ([·] denotes
the integer part). Thus, τ = PT + ψ with ψ := τ mod T .

Let us analyze the linear stability of the RS solutions. For this purpose, we intro-
duce small perturbations δ j to the initial conditions such that Tj = T + δ j , and study
whether the perturbations are damped or amplified with time. Since small perturba-
tions do not violate the property that only one spike occurs within each interval
[t j , t j+1], the map (9.2.3) can be used to study their evolution relevant to the stability
of the corresponding RS solution. We substitute Tj = T + δ j into (9.2.3), linearize
the obtained expression and arrive to the characteristic equation
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χP,α (λ) = λP − α

P−1∑

k=0

λk = 0 (9.2.5)

whereα := Z ′(ψ). If Eq. (9.2.5) has onlymultipliers with |λ| < 1, the corresponding
RS regime is locally stable. The following statements summarize properties of the
multipliers:

(A) For −1 < α < 1/P, all multipliers have absolute values less than one. As a
result, the RS solution is asymptotically stable.
(B)Atα = 1/P , one critical multiplier crosses the unit circle atλ = 1. Forα > 1/P ,
this multiplier remains unstable.
(C) At α = −1, there are P critical multipliers λk = ei2πk/(P+1), k = 1, . . . , P ,
crossing |λ| = 1 simultaneously. For α < −1, there are P unstable multipliers with
|λk | > 1, k = 1, . . . , P .

The most remarkable destabilization scenario is related to the transition at the
parameter value α = −1, where P multipliers become unstable simultaneously if α
is decreased. At this point, the dimension of the unstable manifold increases abruptly
from 0 (stable RS solution) to P , which can be arbitrary large depending on the size
of the delay τ . Although this “dimension explosion” seems to be very degenerate,
it occurs generically within our setup. In the following, we study this surprising
bifurcation.

A bifurcation diagrams in Fig. 9.1 illustrates the dimension explosion. It depicts
the observed ISIs of the system for continuously varying delay τ andq = 28. For each
value of the delay τ , we simulated the system 20 times starting from random initial
conditions (initial ISIswere drawn from a uniformdistribution in [0.9, 1.0]). For each
simulation, all different values of ISIs Tj , which could be observed after a transient,
were saved and plotted by red dots. Note that q = 28 is the case close to criticality
with αmin ≈ −1.017 < −1. The panels Fig. 9.1b–d show enlarged neighborhoods of
the intervals near the bifurcation for P = 1, 3, 4.

For the regular spiking, there is only one ISI for each delay τ .However, two points
ψA,B ∈ (0, 1) exist for which Z ′(ψA,B) = −1. This means that when ψ = τ modT
equals either to ψA or ψB , the dimension explosion takes place. This happens for the
following two values of the delay for each P ∈ N:

τ P
A,B = P(1 − Z(ψA,B)) + ψA,B, (9.2.6)

for which the dimension of the unstable manifold of the regular spiking solution
explodes from 0 to P .

Note that for the case P = 1, the only multiplier λ = −1 crosses the unit circle at
the bifurcation points. In this case, the bifurcation is a supercritical period doubling
giving birth to a stable period-2 solution. For this solution, the spiking regime is
“jittering”: the ISIs Tj are not equal anymore, but they form an alternating sequence
with T2 j+1 = T1 and T2 j = T2, with T1 �= T2. The temporal dynamics of the ISIs for
the period-2 solution is illustrated in Fig. 9.1e together with a corresponding cobweb
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Fig. 9.1 (Color online) aNumerical bifurcation diagram for (9.2.1)with PRC (9.2.2)whereq = 28.
The delay τ is varied in the range [0, 5]. Red dots correspond to ISIs observed in direct simulations;
the blue dashed lines corresponds to unstable RS; squares indicate fold bifurcations. b–d are zooms
into regions of a where irregular spiking occurs; stars indicate multi-jitter bifurcations. e Left panel
one-dimensional map describing the dynamics of ISIs for P = 1 (τ = 1.5), together with a cobweb
diagram for a trajectory converging to the stable period-2 solution. Right panel temporal dynamics,
ISIs Tj versus time. f Bipartite period-4 solution (T1, T1, T2, T2) for P = 3 (τ = 3.38). Left panel
a trajectory converging to this solution in the (Tj+1, Tj )-plane; Right panel temporal dynamics

diagram. In the bifurcation diagram, Fig. 9.1a, a period-2 solution corresponds to a
pair of points (τ , T1) and (τ , T2).

For P ≥ 2, bifurcations take place, where P multipliers simultaneously becoming
unstable at τ = τ P

A,B . The regular spiking solution loses its stability inside the interval
τ ∈ [

τ P
A , τ P

B

]
, and various stable “jittering” regimes with nonequal ISIs appear. In

numerical studies, we observe that the emerging solutions have period (P + 1).
However, a consistent property of these period-(P + 1) solutions is that their ISIs
consist of only two (or less often three) different values of Tj . An example of such
a period-4 solution at P = 3 is given in Fig. 9.1f.

It turns out that a large number of “jittering” solutions, i.e., solutionswith different
ISIs, emerges in the dimension explosion bifurcation, which allows to adopt the name
“multi-jitter” bifurcation also. To show this, consider the equation
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1 − T = Z(T − θ), (9.2.7)

where θ > 0 is a constant and T ∈ [θ, θ + 1]. It is easy to show that when this
equation has several different solutions, one can construct an arbitrary (P + 1)-
periodic sequence (T1, T2, ..., TP+1) where each Tj is a solution to (9.2.7), and this
sequence will be a solution of the map (9.2.3) for

τ =
⎛

⎝
P+1∑

j=1

Tj

⎞

⎠ − θ. (9.2.8)

This statement is readily confirmed by a direct check. When Z(ϕ) has parts with
slope < −1, (9.2.7) can have up to three different solutions, which allows to con-
struct “jittering” solutions with distinct ISIs. The solutions consisting of two dis-
tinct ISIs we call bipartite, and of three tripartite. A series of the solution branches
obtained in this way is shown in Fig. 9.2 for q = 28 and P = 1, ..., 4, and P = 10.
The obtained stable solutions coincide with the attractors from the bifurcation dia-
grams in Fig. 9.1b–d and complement the diagrams by parts which are difficult to
obtain by direct simulation.

The stability of the jittering solutions requires a separate study. After carrying it
out it can be shown that each bipartite solution has its interval of stability. It is easy
to estimate the number of different bipartite solutions which exist for a given P . It is
equal to the number of (nontrivial) binary sequences of the length P + 1 which can
be estimated as

#{bipartite solutions for P} ≥ (
2P+1 − 2

)
/(P + 1). (9.2.9)

Fig. 9.2 (Color online) a–d Branches of RS (blue or light gray), bipartite (red or dark gray), and
tripartite (black) solutions in system (9.2.1) with PRC (9.2.2) and q = 28, for different values of P
as indicated in the plots. Stable parts of the branches are shown by thick and unstable by thin lines;
stars indicate multi-jitter bifurcations
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Thus, the number of the emerging solutions grows exponentially with P . So we
have shown that the “dimension explosion” of the unstable manifold, which takes
place at the multi-jitter bifurcation of the RS regime, is also a “solution explosion.”
In this bifurcation, numerous bipartite solutions branch off, and the number of the
emergent solution grows exponentiallywith the delay τ . Since each of these solutions
corresponds to a jittering regime, we adopt the term “multi-jitter bifurcation.” Each
multi-jitter bifurcation is accompanied by the emergence of numerous “jittering”
periodic solutionswith distinct ISIs. Thus, when the delay is increased, the number of
different solutions grows combinatorially causing high multi-stability and extremely
complex structure of the system’s phase space.

9.3 Jittering Waves in Rings of Oscillators

In this section, we investigate unidirectional rings of phase oscillators with pulse
delayed coupling [75, 76]. A feed-forward ring is one of the fundamental network
motifs that often appears in nature [77–81]. It is a natural extension of one oscillator
with the feedback loop considered in the previous section. We start with an analyt-
ical study of rotating waves and demonstrate that they may destabilize through the
multi-jitter bifurcation. Subsequent numerical and experimental study shows that
jittering waves with distinct ISIs are born at the bifurcation points. The period of
these regimes is proportional to the delay, and their number grows exponentially.
The most interesting distinctive feature is that in rings, the jittering regimes appear
at much shorter delays than in a single oscillator with delayed feedback.

The ring of N oscillators with pulse delayed coupling is governed by the equations

dϕ j

dt
= ω j + Z(ϕ j )

∑

t j−1
s

δ(t − t j−1
s − τ j ). (9.3.1)

Here, j = 1, ..., N is the oscillator number, and each oscillator is described by its
phase ϕ j ∈ S

1. Without coupling, the phase grows uniformly with dϕ j/dt = ω j .
When the phase reaches unity, it resets to zero and the oscillator emits a spike. The
instants when this happens are denoted by t js , s ∈ Z. Each j th oscillator receives
input from its previous neighbor, the ( j − 1)st oscillator (the first one receives input
from the last one, so we identify 0 and N ). This means that each spike produced
by the ( j − 1)-st oscillator at t j−1

s results in a pulse arriving to the j th one after the
delay τ j . When the oscillator receives a pulse, its phase instantly changes to the new
value: ϕ j �→ ϕ j + Z

(
ϕ j

)
, where the function Z(ϕ) is the phase resetting curve

(PRC) [71]. We consider identical oscillators with ω j = 1.
The basic dynamical regimes observed in rings of unidirectionally coupled oscil-

lators are rotating waves [72, 82, 83]. Such waves are characterized by the same
dynamical profile of all oscillators that is shifted by a constant time lag between the
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neighbors, i.e.,ϕ j (t) = ϕ j−1(t + �). Suppose that system (9.3.1) demonstrates such
a regime with the period T and the lag �. Then, each oscillator receives one pulse
per period at phase ψ = (τ − �) mod T , which allows to determine the period as
T = 1 − Z(ψ), which is the time between the consecutive spikes of one oscilla-
tor. The total time lag over the whole ring must be a multiple of the period, i.e.,
� = RT/N , where R = 0, ..., N − 1 is the wavenumber which characterizes the
type of the rotation wave. Taking this into account, the equations for the rotating
waves can be written as

T = 1 − Z(ψ), � = RT/N , τ = PT + � + ψ. (9.3.2)

Here, ψ ∈ [0, 1] is the phase at which oscillators receive input. The wavenumber
R = 0 corresponds to a complete synchronization, R = 1 to the splay state, etc. P
is the integer number controlling the value of the delay or, more exactly, the number
of full periods in the delay τ .

Further, we study the local stability of the rotating waves. For this, we consider a
perturbed solution with spiking times t js = sT + j� + δ

j
s , where δ

j
s � T are devi-

ations from the periodic regime. Let k be the wavenumber of the perturbation (not to
be confused with R) δ

j
s ∼ exp(ik j), then the stability of this kth mode can be found

from the ansatz δ
j
s = λ(k)s exp(ik j), where λ is the multiplier of the rotating wave

corresponding to the spatial perturbationmode exp(ik j).We obtain the characteristic
equation

λP+1(k) − (1 + α)λP(k) + αe−ik = 0. (9.3.3)

The properties of (9.3.3) can be summarized as follows. Its spectrum has the form
� ∪ {1}, whereλ(0) = 1 is the trivial multiplier corresponding to the neutral stability
along the phase shift. Stability of the limit cycle is definedby the set�, which includes
critical multipliers only in the following cases:

– α = 1/P: one critical multiplier λ(0) = 1 for k = 0.
– α = 0: (N − 1) critical multipliers λ(k) = 1 for k = 2πn/N , n = 1, ..., N − 1.
– α = −1: N (P + 1) − 1 critical multipliers λm(k) = exp(−ik + i2πm/(P + 1)),
where m = 0, ..., P for k �= 0 and m = 1, ..., P for k = 0.

Thus, the rotating wave may change its stability only at the parameter values
α ∈ {−1, 0, 1/P}. Themore remarkable scenario is observed again atα = −1where
allmultipliers become critical at once. The rotatingwave loses its stability, and the so-
called jittering waves or regimes with distinct inter-spike intervals emerge. Because
of the coexistence of a big number of these solutions, the corresponding scenario is
called a “multi-jitter bifurcation”, see also [60, 61].

For the numerical illustration, we chose the PRC in the form [39]

Z(ϕ) = κ

2

(
1 − cos(2πϕ2)

)
(9.3.4)

Here, κ = 0.185 is the coupling strength and controls both the magnitude and slope
of the PRC.
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We varied the delay and simulated system (9.3.1) directly for N = 6 starting from
20 different initial conditions for each value of τ . For each trial, the initial phases
of the oscillators at t = 0 were chosen randomly with a uniform distribution, and it
was assumed that no spikes were produced by any of the oscillators for t < 0. The
obtained numerical results are depicted in Fig. 9.3a by dots. The color of each dot
corresponds to the wavenumber of the established regime (see the legend). Gray dots
correspond to asymmetric regimes. Thebranches obtained theoretically are plotted by
thin dashed lines. The points of the stability loss are marked by circles (for α = 0)
and stars (for α = −1). One can see that the numerically obtained dots coincide
with the stable parts of the theoretical branches. There are also several branches of
asymmetric regimes, but, most importantly, the jittering wave regimes are observed,
which emerge from the multi-jitter bifurcations (stars).

Jittering waves are characterized by distinct inter-spike intervals, and they emerge
from the rotating wave at the multi-jitter bifurcation, see Fig. 9.3b–e. Each such
solution is close to the rotating wave from which it is born. However, the intervals
between the consecutive spikes of each oscillator are not constant anymore, but
constitute a periodic sequence of two distinct ISIs. We use this property to encode
the jittering regimes by binary sequences, where 0 corresponds to the shorter and 1
to the longer interval. For example, a regime when oscillators produce two long and
then one short ISIs periodically is encoded as 110 (see Fig. 9.3b). The other regimes
shown are 1100 (c), 1110000 (d), and 1110010 (e). Note that in Fig. 9.3, the plots of
the ISIs for different oscillators are shifted along the vertical axis.

We have shown that rotating waves in rings of oscillators may destabilize in the
multi-jitter bifurcation. In such a scenario, all the multipliers of the corresponding
limit cycle become critical simultaneously. When the rotating wave destabilizes, it
gives rise to the so-called jittering wave regimes with distinct ISIs. In the jittering
regime, each oscillator produces a periodic sequence of long and short ISIs. These
sequences are the same for all oscillators although shifted in phase. A lot of common
features are shared by the multi-jitter bifurcations observed in a single oscillator with
delayed feedback and in a ring of oscillators considered here. First, the condition for
the bifurcation is exactly the same for the both systems. Namely, the slope of the
PRC at the phase at which the oscillator is simulated must be equal−1. Secondly, the
properties of the emergent jittering regimes are quite similar. The most surprising
feature also observed in the both cases is the following: For an arbitrary binary
sequence of a given period, the parameter interval does exist where the corresponding
jittering regime is present and stable.

Multi-jitter bifurcation in rings still has an important distinction from that in
one oscillator with feedback. For one oscillator, the value of the delay must be large
compared to the oscillator’s natural period. The period of jittering regimes is roughly
the delay divided over the natural period. Thus, to obtain jittering regimes with long
periods, one needs delays several times larger than the natural period. For rings,
the situation is different. The period of the emergent jittering solutions is roughly
proportional to the delay times the number of oscillators or the total delay along the
ring. As a consequence, even short coupling delays may result in higher-periodical
jittering regimes if the number of oscillators is large enough.
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(b)
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(a)

Fig. 9.3 Periodic rotating waves and jittering wave regimes in a ring of N = 6 oscillators. a The
bifurcation diagram, the observed inter-spike intervals versus the delay. Different colors correspond
to the different wavenumbers, see the legend. Thin dashed and thick lines correspond to unstable
and stable rotating waves, respectively. Stars denote the multi-jitter bifurcations. Jittering regimes
are characterized by several distinct ISIs for the same value of delay. b–e Examples of jittering
regimes. In the top of each panel, the ISI demonstrated by each oscillator is plotted versus time.
The plots are shifted along the vertical axis for the convenience. In the bottom of each panel, the
time instants of the spikes emission are depicted by dots. Note that the firing patterns are close to
the rotating waves, and the deviations are visible only after a careful examination or a zoom
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9.4 Synchronization of Two Oscillators
with Pulse Delayed Coupling

In the present section, we consider a system of two oscillators with pulse time-
delayed coupling [41]. We show that nonidentical oscillators can be synchronized
with arbitrary large coupling delay. The same type of coupling may lead to in-phase,
antiphase or out-of-phase synchronization. The system of delay-coupled oscillators
can manifest multi-stability that consists of either coexistence of different synchro-
nous regimes or both synchronous and asynchronous regimes.

Let us consider a pair of pulse oscillators with time-delay coupling and different
intrinsic frequencies ω1 �= ω2 and time delay τ . The dynamics of the system is
governed by the following equations:

dϕk(t)

dt
= ωk +

∞∑

j=1

δ(t − (tmj + τ j )) f (ϕk(t)), (9.4.1)

where k,m = 1, 2, k �= m, δ(t) is the Dirac delta-function, tmj are the times of the
mth unit firing, and ϕm(tmj ) = 1. For the sake of certainty, we consider the case of
symmetric coupling, so that τ1 = τ2 = τ . However, generalization to the case of
distinct delays is straightforward [84]. Thus, tmj + τ are the instants of time when
pulses from the mth unit come to the kth unit. The phase ϕk instantly changes at
these times.

Amap describing changes of the state vector (9.1.5) can be constructed as (9.1.11).
Using this map, we consider the mutual synchronization of the oscillators.We under-
stand the term “synchronization” periodically firing of both units with the same
period. To study synchronization, we introduce the Poincare section ϕ2 = x21 = 0
and examine how the state of the system changes during one period between the two
instants of the second unit firing t2j and t2j+1. During this time, the G-events may
occur in different order. Taking into account all possible cases, we get the map

H :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ1 = ω1(T − �) + a,

x11 = T − �,

x1,2j = x1,2j−1 + T, j ∈ [2; M],
(9.4.2)

where

� = 1 − ϕ1 − b

ω1
,

T = 1 − c

ω2
,

a = (1 − α) f
(
ω1(τ − � − x2n2)

)
,
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b = α f
(
ϕ1 + ω1(τ − x2n2)

)
,

c = f
(
ω2(τ − x1n1)

)
,

n1 =
[
τ + �

T

]
,

n2 =
[ τ

T

]
+ 1,

α =
{
0, � < τ mod T,

1, � > τ mod T ;

if n1 = 0, we take x10 ≡ −�.
Synchronous regimes of the system correspond to fixed points of map (9.4.2)

defined as

x1j = jT − �, j = 1, M

x2j = ( j − 1)T, j = 2, M (9.4.3)

ϕ1 = ω1(T − �) + a.

This fixed point corresponds to the periodic solution of system (9.4.1). The values
T and � have simple physical sense: T is the period of unit firing, and � is the time
interval between the instants of first and second unit firing, or interspike lag. Using
(9.4.3), we obtain the following equations for T and �:

f (ω1 ((τ − �) mod T ))) = 1 − ω1T,

f (ω2 ((τ + �) mod T ))) = 1 − ω2T .
(9.4.4)

By solving these equations, we can get the expressions for the values of T and
� that fully characterize the synchronous regime. To study its stability, we linearize
map (9.4.2) near its fixed point (9.4.3).

For numerical illustrations, we use f (ϕ) = −μ sin 2πϕ. The diagrams in Fig. 9.4
represent the solutions of (9.4.4).We plot the value of the relative interspike lag�/T
versus the coupling time delay τ . Black lines correspond to stable solutions, and gray
lines correspond to unstable ones. The coupling strength μ = 0.1 is a constant for
all the diagrams, and the intrinsic frequency of the first unit ω1 = 1 is a constant too,
while the intrinsic frequency of the second unit increases from (a) to (c).

Figure9.4a represents synchronous regimes for a pair of identical pulse oscillators.
One can see that for different values of coupling delay τ , in-phase or antiphase syn-
chronization is possible. In Fig. 9.4b, c, synchronous regimes of nonidentical oscil-
lators are illustrated. For any nonzero value of frequency mismatch ζ = ω2 − ω1

system (9.4.1) has a number of periodic solutions that exist in the corresponding
intervals of delay τ . In each interval, there is a pair of stable and unstable solutions
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Fig. 9.4 a–c Periodic solutions of (9.4.1): relative interspike lag �/T versus the coupling delay
τ . The parameters μ = 0.1 and ω1 = 1 are constant, while ω2 increases from a to c: a ω2 = 1,
b ω2 = 1.05, c ω2 = 1.2. d Bifurcation diagram for μ = 0.1, and ω1 = 1. Synchronization zones.
Light gray corresponds to the in-phase synchronization,whiledark gray corresponds to the antiphase
one. Black overlap areas correspond to multi-stability

that appear and disappear through saddle-node bifurcation of periodic points. Syn-
chronization occurs inside these intervals; therefore, we call them synchronization
intervals. The interspike lag� between the oscillators strongly differs from one syn-
chronization interval to another. Depending on the relative interspike lag �/T , we
differ ‘in-phase” and “antiphase” synchronization. For nonidentical oscillators, these
terms are used not in strict sense, because � is not equal exactly 0 or T/2. Notice
that the intervals corresponding to in-phase and antiphase synchronization alternate
while τ grows. The width of synchronization intervals decreases with growth of the
frequency mismatch ζ (compare Fig. 9.4b, c). Synchronization occurs for frequency
mismatches

ζ ≤ ζ0 = 2μω1

1 − μ
.

Outside the synchronization intervals, system (9.4.1) does not have any periodic
solutions: The units oscillatewith different periods, and phase locking does not occur.

In Fig. 9.4d, we plot a bifurcation diagram on the parameter plane τ − ζ. Here, we
see a set of the so-called synchronization zones, in which periodic solutions of (9.4.1)
exist and synchronization takes place. These zones correspond to synchronization
intervals in the previous figures. Light gray-colored zones correspond to the in-phase
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synchronization, and dark gray zones correspond to the antiphase synchronization.
The width of each zone along τ decreases with growth of ζ; for ζ > ζ0, the zones
disappear. Let us draw your attention to the fact that different zones may overlap. The
overlaps are colored black and correspond to the parameter areas where the system
is multi-stable. Outside the synchronization zones, there is no periodic solutions of
the system and the oscillators have different periods of firing.

One of themost interesting points is that synchronization of oscillators is observed
for arbitrary large values of coupling delay. Thus, two nonidentical oscillators can
be synchronized even if they interact with time delay which is much larger than their
native periods. Other specific properties of coupling with large delay are as follows:
(1) increasing of synchronization zones size in parameter space with delay growth;
(2) appearance of multi-stability as a consequence; (3) quick growth of the transient
time (as τ 3). All this shows that the case of large coupling delays appeared to be
interesting and providing new dynamical effects.

9.5 Cross-Frequency Synchronization of Two Oscillators

In this section, we investigate the case of cross-frequency, or harmonic synchroniza-
tion of two oscillators which is observed for large frequency mismatch [9]. Cross-
frequency synchronization is a periodical regimewhen the frequencies of the individ-
ual oscillators are locked and relate as small integer numbers. For a pair of coupled
oscillators, this means a relation f1 : f2 = m : n, which regime is called m : n syn-
chronization. Cross-frequency synchronization of oscillators of various nature was
in a focus of some previous works [85], but the influence of the delays has not been
explored sufficiently. In our study, we consider two oscillators with time-delayed
pulsatile coupling. We systematically study m : n synchronization of the oscillators
and obtain analytical criteria for existence of these regimes in the limit of weak cou-
pling. In order to confirm the obtained theoretical results, we developed an electronic
circuit implementing the system and explored its dynamics experimentally.

The basic model considered in this section is (9.4.1). We also assume without
loss of generality ω1 = 1, and denote ω ≡ ω2. We define m : n synchronization as a
periodical regime when the first oscillator emits m pulses per period and the second
one emits n pulses per period, where m and n are incommensurable (further, we
suppose m ≥ n). For m = n = 1, this means phase locking in the ordinary sense,
otherwise it is cross-frequency synchronization. The ratio m : n is also called the
rotation number ρ.

Let us study solutions of system (9.4.1) corresponding to m : n synchronization.
We consider the case of weak coupling and replace the PRC f (ϕ) by ε f (ϕ) where
ε � 1. Suppose thatϕ1(t = 0) = 0 andϕ2(t = 0) = η, and the period of the sought-
for solution is P . This means that the first (second) oscillator emitted m (n) pulses
for t ∈ [0; P) Denote t11 , t

2
1 , ..., t

m
1 the moments when the first oscillator produces

pulses, and t12 , t
2
2 , ..., t

n
2 the moments when the second one does. Then, the moments

when the oscillators receive input pulses equal (t p2 + τ ) mod P, p = 1, 2, ..., n
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for the first oscillator, and (t p1 + τ ) mod P, p = 1, 2, ...,m for the second one.
Denote the values of the phases just before the moments of the pulses arrival asϕ

p
1 =

ϕ1
(
t = (t p2 + τ ) mod P

)
and ϕ

p
2 = ϕ2

(
t = (t p1 + τ ) mod P

)
. Then, the values

of the phase shifts caused by the pulses equal �ϕ
p
j = εω j f (ϕ

p
j ). This means that

the values of the phases for t = P equal

ϕ1(P) =
⎛

⎝P + ε

n∑

p=1

f (ϕp
1 )

⎞

⎠ mod 1 = P + ε

n∑

p=1

f (ϕp
1 ) − m,

ϕ2(P) =
⎛

⎝η + ωP + ωε

m∑

p=1

f (ϕp
2 )

⎞

⎠ mod 1 = η + ωP + ωε

m∑

p=1

f (ϕp
2 ) − n.

Provided ϕ1(P) = 0, one may obtain an equation for the period P:

P = m − ε

n∑

p=1

f (ϕp
1 ),

and calculate the new phase difference η = ϕ2(P) − ϕ1(P):

η = η + ωm − n + ωε

⎛

⎝
m∑

p=1

f (ϕp
2 ) −

n∑

p=1

f (ϕp
1 )

⎞

⎠ . (9.5.1)

This equation is a Poincare map governing dynamics of the phase difference η in
vicinity of the periodical solution. The regime of m : n synchronization corresponds
to a stable fixed point of the map (9.5.1). Let us study the map (9.5.1) for small
ε → 0. It is easy to see that for ε = 0

t p1 = p,

t p2 = p − η

ω2
,

ϕ
p
1 = t p2 + τ = p − η

ω
+ τ , (9.5.2)

ϕ
p
2 = η + ω(t p1 + τ ) = η + ω(p + τ ) (9.5.3)

The map (9.5.1) reduces to
η = η + ωm − n,

which has a (neutrally) stable fixed point for ω = n/m. For 0 < ε � 1, variations
of ϕ

p
j with respect to the values (9.5.2)–(9.5.3) are of the order of ε, and the map

(9.5.1) transforms into
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η = η + ωm − n + ωε

⎛

⎝
m∑

p=1

f (η + ω(p + τ )) −
n∑

p=1

f

(
p − η

ω
+ τ

)⎞

⎠ + O(ε2),

which implies ω = n/m + O(ε) and allows further simplification:

η = η + ωm − n + εωSmn
τ (η), (9.5.4)

where

Smn
τ (η) =

m∑

p=1

f
(
η + n

m
(p + τ )

)
−

n∑

p=1

f
(m
n

(p − η) + τ
)

,

the terms O
(
ε2

)
omitted. The shape of the function Smn

τ (η) depends on the shape of
the PRC f (ϕ), as well as the values of m, n, and the delay τ . The synchronization
is possible when at least one stable fixed point exists which implies the following
condition:

m

n
+ εAmn

τ

n
≤ μ ≤ m

n
+ εBmn

τ

n
, (9.5.5)

where μ ≡ 1/ω is the autonomous period of the second oscillator, Amn
τ := supη∈(0,1)

Smn
τ (η) and Bmn

τ := infη∈(0,1) Smn
τ (η). The double inequality (9.5.5) defines the so-

called synchronization zone—the area in the parameter space inside which m : n
synchronization is observed.

For the illustration purposes, we choose f (ϕ) = − sin (2πϕ). The synchroniza-
tion zones for such the PRC are depicted in Fig. 9.5.

The most interesting fact about the synchronization zones is that they last to
infinity along the τ axis. This means that synchronization with arbitrary rotation
number is possible for arbitrary large coupling delays. Moreover, the width of the
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Fig. 9.5 (Color online) Synchronization zones for the sinusoid PRC f (ϕ) = − sin(2πϕ). The
rotation numbers of the zones are given in the bars. a The plane μ − τ for the fixed value of
ε = 0.1. b The plane μ − ε for the fixed value of τ=0.5
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synchronization zone is a periodical function of the delay. For a special case of
the sinusoid PRC, this width is constant for m > n = 1 and very small (O(ε2)) for
m > n > 1. For nonsinusoid PRCs, all the zones have width of the order of ε, and
the borders if all the zones are periodical with respect to τ .

9.6 Phase Patterns in a Small Network
with Heterogeneous Delays

Even small networks of oscillators may possess rich variety of different structures
and demonstrate diverse dynamics [86]. In this section, we illustrate this diversity by
the study of phase patterns emerging in a small network of just four oscillators with
heterogeneous delays. We consider a network of four globally coupled oscillator
(neurons) which is depicted in Fig. 9.6a. Four neurons are located in corners of a
square, delays between neighboring neurons equal τ/2, and delays between diagonal
neurons equal τ . The PRC for each connection is given as f (ϕ) = −μ sin 2πϕ, and
the coupling strength equals μ = 0.1. Frequencies ω j have Gaussian distribution
with the mean ω = 1 and dispersion σ = 0.01. We set them not identical to study the
influence of possible parameters varying and make sure that the regimes we obtain
are not sensible to them.

Studying of the network showed that depending on the delay parameter τ it may
produce a number of various rhythmic patterns. We mark these patterns with sets of
four numbers (ϕ1,ϕ2,ϕ3,ϕ4), where ϕ j means the phase lag between the first and
the j th neurons firing. The most typical are the following patterns: (i) the pattern (0,
0, 0, 0) of global synchronization, when all the units fire simultaneously in the same
phase; (ii) the pattern (0, 0.5, 0, 0.5) or partial pairwise synchronization, when the
first unit fires in phase with the third one, and the second unit fires sin phase with the
fourth one, while these pairs fire in antiphase; (iii) the pattern (0, 0.25, 0.5, 0.75) of
sequential firing, when all the units fire one after another with the quarter-period lag.

(a)
(b)

Fig. 9.6 a CPG consisting of four neurons with delayed coupling. b Possible output rhythmic
patterns and τ intervals inside which they exist. Sequences of black dots determine series of pulses
emitted by the oscillators
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Each of these three patterns exists in definite interval of delay coefficient τ . These
intervals are depicted in Fig. 9.6b. One can see that the key features of the system
dynamics are similar as in the case of two units. Slow increasing of the parameter
τ results in sequential switching between the patterns. For τ = 0, the only pattern
(0, 0.5, 0, 0.5) exists. When τ = τ1 ≈ 0.37 the second pattern (0, 0.25, 0.5, 0.75)
appears. And for τ = τ2 ≈ 0.61 the third pattern (0, 0, 0, 0) appears. The switching
between the patterns is concerned with hysteresis which comes from the system
instability near the points in which new patterns are born. For example, the pattern
(0, 0.25, 0.5, 0.75) appears for τ = τ1, but the pattern (0, 0.5, 0, 0.5) disappears
only for τ = τ ′

1 ≈ 0.48. This means that when τ increases the switching (0, 0.5,
0, 0.5)→(0, 0.25, 0.5, 0.75) takes place for τ = τ ′

1. But when the τ decreases the
opposite switching takes place only for τ = τ1.

Our results show that coupling delays may be an instrument for control of rhyth-
mic patterns of small oscillatory networks, for example central pattern generators.
Varying delays in a small network of coupled oscillatory neurons allows to change
phase relationships between the units. In the previous papers, it was shown that spe-
cial tuning of the oscillators parameters can be used to establish the certain phase
relations [87–91]. Here, we show that switching of the patterns may occur when only
one parameter, the delay, is changed.

9.7 Global Synchronization of All-to-All Coupled Networks

In the last section, we study the dynamics of large all-to-all connected networks with
pulse delayed coupling [92]. The dynamical regime we focus on is the global syn-
chronizationwhen all the oscillators produce spikes simultaneously. In neuroscience,
the synchronization of neuron populations plays an important role and might even
lead to pathological effects [93]. In an ensemble of all-to-all pulse-coupled oscilla-
tors without delays, the global synchronization is destabilized via the emergence of
various two-cluster states [39]. Here, we study how coupling delays influence this
scenario.

A network of globally pulse-coupled oscillators with time-delayed coupling is
governed by the following dynamical system:

ϕ̇ j (t) = 1 + ζ
(
ϕ j (t)

) N∑

k=1

∑

t pk

δ(t − t sk − τ ), j = 1, ..., N . (9.7.1)

Here, ϕ j ∈ [0; 1] are the phases of the oscillators. When the phase ϕ j reaches unity
the j th oscillator produces a pulse and its phase resets to zero. The instants when this
happens are denoted as t sj . Each emitted pulse reaches all the oscillators (including
the one which produced it) after the time delay τ . When a pulse reaches an oscillator,
its phase shifts instantly by a certain amount �ϕ. This phase shift depends on the
phase value before the pulse arrival: �ϕ = ζ (ϕ(t − 0)), where ζ(ϕ) is the phase
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resetting curve. In the rest of the paper, we scale the PRC with the network size, so
that ζ(ϕ) = κ

N Z(ϕ), where κ is the coupling coefficient. Thus, after a pulse arrival
the oscillator’s phase is changed so that ϕ (t + 0) = μ (ϕ(t − 0)), where

μ (ϕ) = ϕ + κ

N
Z (ϕ) . (9.7.2)

If several, saym, pulses happen to arrive simultaneously, themap (9.7.2) is applied
m times, so that ϕ (t + 0) = μm (ϕ(t − 0)).

Consider the regime of global synchronization when all the oscillators produce
pulses simultaneously with the same period T . In this regime, the instants t sj = sT
and the pulses produced at t = sT are received by all the oscillators simultaneously
at t = sT + τ . Before the arrival of this burst of pulses, the phases of the oscillators
equal ψ = τ − PT = τ mod T , where P = [τ/T ]. After reception of the pulses,
the phases of the oscillators change to the value μN (ψ). Hence, the period T must
satisfy the equation

τ mod T + 1 − μN (τ mod T ) = T . (9.7.3)

To study the stability of the regular spiking solution, we introduce perturbations
so that t sj = sT + δsj and explore dynamics of the perturbations δsj . It is rather com-
plicated to study the network dynamics for an arbitrary perturbation, so we first
introduce some specific classes of perturbations. Consider a regime when the units
of the network are split into two clusters: The first cluster of size M includes the
nodes from 1 to M , and the second one of the size N − M includes the rest of the
network. The oscillators of each cluster fire in synchrony. The described regimes
form a subset

�M := {δsj = δs1, 1 < j ≤ M} ∩ {δsj = δsN , M ≤ j < N }.

Note that the subset�M is invariant: Since theoscillators of each cluster receive the
same input, theywill stay synchronous. Let us now study the dynamics of the network
in this invariant subspace. The bursts of pulses produced by the clusters at t s−P

1 and
t s−P
N and are received by the network at between the instants at t∗1 = t s−P

1 + τ and
t∗N = t s−P

N + τ , respectively. Assume that the first cluster fires first, i.e., t sN > t s1 .
Then, if the perturbations are small, the sequence of the events is as follows: t s1 <

t sN < t∗1 < t∗N < t s+1
1 < t s+1

N .Denote the intercluster distance�s = t sN − t s1 , then one
can calculate �s+1 as follows:

�s+1 = μN−M
(
μM

(
ψ + δs−P

1 − δsN

)
+ �s−P

)
− μN−M

(
μM

(
ψ + δs−P

1 − δs1

)
+ �s−P

)
.

Linearization of () leads to

�s+1 = (
μN−M

)′ (
μM (ψ)

) × (
μM

)′
(ψ) × (

δsN − δs1
) = β�s,



9 Dynamics of Oscillatory Networks with Pulse Delayed Coupling 241

where β = (
μN

)′
(ψ). The linearized map () describes dynamics of the intercluster

distance for perturbations from the subset �M . For |β| < 1, this distance converges
to zero which means that the perturbation converges to the subset �0 for which the
phases of all the oscillators are equal.

Notice now that an arbitrary perturbation
−→
δ of (9.7.1) that preserves the phase

order can be represented as a superposition of perturbations
−→
δM ∈ �M for M =

0, 1, ..., N − 1. If |β| < 1, all these perturbations converge to the subset �0. Thus,
the stability of the regular spiking is determined by the dynamics of perturbations
from this subset. Note that in this subset, the networks behaves like a single oscillator
with delayed feedback. As was shown in Sect. 9.2, the stability of the regular spiking
is given by the condition −1 < α < 1/P, where α = β − 1.

For weak coupling iterative, the map μN (ϕ) can be approximated as

μN (ϕ) ≈ ϕ + κZ(ϕ),

and α ≈ κZ ′(ψ). Taking into account that T ≈ 1, the condition for the global syn-
chronization stability can be written as

− 1 < f ′(τ mod 1) < 0, (9.7.4)

where f (τ ) ≡ Z(τ mod 1) is the PRC.
To illustrate the results of the theoretical analysis, we have performed a series of

numerical simulations of the ensembles for the sin-shape phase reset curve f (ϕ) =
− sin 2πϕ, which corresponds to the isochronal clock model [26]. The stability
criterion (9.7.4) for this case says that the global synchronization is stable for

(τ mod 1) <
1

4
and (τ mod 1) >

3

4
, (9.7.5)

and is unstable for the other values of τ .
The results of the numerical simulations are given in Fig. 9.7 which represents the

bifurcation diagram for N = 10. The horizontal axis is the coupling delay, and the
vertical axis is the coupling strength. The condition (9.7.4) defines a series of vertical
stripes in this plane which are plotted by light gray. The areas in which the regime
of global synchronization is observed in numerical simulations are plotted by dark
gray. For weak coupling, these areas coincide with the areas predicted analytically,
but when the coupling strength grow they widen. This widening is more pronounced
for large delays. The other feature of the strong coupling appearance of the bistability
areas plotted by black. In these areas, the global synchronization is observed for some
initial conditions and does not occur for the others. The rest of the plane is colored
white and corresponds to the asynchronous states.
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Fig. 9.7 The bifurcation
diagram for the ensemble of
N = 10 units for the sin-shape
phase reset curve. Gray are
the areas of the global
synchronization (light gray –
analytical estimates, dark
gray – numerical results),
black are the multi-stable
areas, white are the areas
without synchronous state
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9.8 Conclusions

We have presented the results of the study of the influence of the coupling delays on
the dynamics of networks of pulse-coupled oscillators. For all the network configura-
tions considered this influence is significant. For large networks of all-to-all coupled
oscillators, the delay controls the global synchronization. For smaller networks, it
may switch the phase patterns established. For two coupled oscillators, the delay
defines in-phase, antiphase, out-of-phase, and cross-frequency synchronization. For
the cross-frequency synchronization, the synchronization zones of the higher orders
do not depend on the delay only for the particular case of harmonical coupling func-
tion. For the PRC containing more than one Fourier harmonic, the synchronization
zones do depend on the delay.

Probably, themost interesting and unexpected example of the delay-induced effect
was observed in the most simple configuration of a single oscillator with feedback.
In this case, the introduction of a sufficiently large delay leads to the emergence of a
completely new type of behavior. The regular spiking changes to irregular “jittering”
regimes with distinct inter-spike intervals. The larger is the delay, the longer is the
periods of the jittering regimes.

One of the common properties of dynamical systems with delays is their multi-
stability. A typical mechanism for the emergence of multi-stability for large delays
is the so-called reappearance of periodical solutions [43]. This mechanism leads to
the linear growth of the number of coexisting regimes with the delay. However, in
oscillators and rings with delayed feedback, we have reported a new combinatorial
mechanism due to which the multi-stability develops exponentially.
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Chapter 10
Bifurcation Trees of Period-3 Motions
to Chaos in a Time-Delayed Duffing
Oscillator

Albert C.J. Luo and Siyuan Xing

The time-delayed Duffing oscillator is extensively applied in engineering and
particle physics. Determination of periodic motions in such a system is signifi-
cant. Thus, here in, period-1 motions in the time-delayed Duffing oscillator are
discussed through a semi-analytical method. The semi-analytical method is based on
the implicit mappings constructed by discretization of the corresponding differential
equation. Complex period-3 motions are predicted, and the corresponding stability
and bifurcation analysis are completed. From predictions, complex periodic motions
are simulated numerically, and the harmonic amplitudes and phases are presented.
Through this study, the complexity of periodic motions in the time-delayed Duffing
oscillator can be better understood. This chapter is dedicated to Professor Valentin
Afraimoich’s 70th birthday.

10.1 Introduction

In recent decades, time-delay nonlinear systems have received great attentions. Peri-
odic solutions in nonlinear dynamical systems have been of great interest for a long
time. However, one still cannot obtain adequate solutions of periodic motions to
chaos in nonlinear dynamical systems.

In 1788, Lagrange [1] investigated periodic motions of three-body problem
through a perturbation of the two-body problem with the method of averaging. In
the end of 19th century, Poincare [2] developed the perturbation theory for periodic
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motions of celestial bodies. In 1920, van der Pol [3] employed the method of aver-
aging for the periodic solutions of oscillation systems in circuits. Until 1928, the
asymptotic validity of the method of averaging was not proved. Fatou [4] gave the
proof of the asymptotic validity through the solution existence theorems of differ-
ential equations. In 1935, Krylov and Bogoliubov [5] further developed the method
of averaging for nonlinear oscillations in nonlinear vibration systems. Since then,
one extensively used the perturbation method to investigate periodic solutions in
nonlinear dynamical systems. In 2012, Luo [6] developed an analytical method for
analytical solutions of periodic motions in nonlinear dynamical systems. Luo and
Huang [7] applied such a method to the Duffing oscillator for approximate solutions
of periodic motions, and Luo and Huang [8] gave the analytical bifurcation trees
of period-m motions to chaos in the Duffing oscillator (also see, Luo and Huang
[9, 10]).

The approximate solutions of periodicmotion in the time-delayed nonlinear oscil-
lators were investigated by the method of multiple scales (e.g., Hu et al. [11], Wang
and Hu [12]). The harmonic balance method was also employed for approximate
solutions of periodic motions in time-delayed nonlinear oscillators (e.g., MacDon-
ald [13]; Liu and Kalmar-Nagy [14]; Lueng and Guo [15]). However, these methods
are not accurate enough to give reliable results. For instance, the multiple scale
method can only be applied to dynamical systems with weak nonlinear terms. The
harmonic balance method is based on one or two harmonic terms. In 2013, Luo [16]
systematically presented an analytical method for periodic motions in time-delayed,
nonlinear dynamical systems. Luo and Jin [17] applied such an analytical method to
the time-delayed, quadratic nonlinear oscillator, and the analytical bifurcation trees
of period-1 motions to chaos were obtained. In Luo and Jin [18], complex period-1
motions of the periodically forced Duffing oscillator with a time-delayed displace-
ment were investigated, which cannot be obtained from the traditional harmonic
balance and perturbation methods. In Luo and Jin [19], the period-m motions of the
time-delayed Duffing oscillator were investigated analytically, and complex period-
m motions were observed in such a time-delayed Duffing oscillator. The bifurcation
trees of period-1 motion to chaos were also discussed.

To determine stability of time-varying coefficient systems with time-delay,
Insperger and Sepan [20] developed the semi-discretization method, and the detailed
description of such a method can be found in Insperger and Sepan [21]. In 2011,
based on the ideas of finite element method, Khasawneh and Mann [22] developed
the spectral element approach for stability of delayed systems. In 2016, Lehotzsky,
Insperger, and Stepan [23] extended this idea for time-periodic delayed, differential
equations with multiple and distributed delay. Such a method cannot be applied to
periodic motions in nonlinear time-delay systems. In 2015, Luo [24] developed a
semi-analytical method to determine periodic motions in nonlinear dynamical sys-
temswith/without time-delay throughdiscrete implicitmaps. Luo [25] systematically
discussed the discretization methods of continuous dynamical systems with/ without
time-delay. Luo and Guo [26] applied such an approach to investigate bifurcation
trees of the Duffing oscillator, and nonlinear frequency-amplitude characteristics of
periodic motion to chaos.
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This semi-analytical method for time-delayed, nonlinear dynamical systems is
different from the aforementioned semi-analyticalmethod for non-time-delayed non-
linear dynamical systems. Thus, for a periodically forced, time-delayed, harden-
ing Duffing nonlinear oscillator, the different semi-analytical method was adopted
in Luo and Xing [27] for determining complex symmetric and asymmetric period-1
motions. With decreasing excitation frequency, symmetric and asymmetric period-1
motions become very complicated. From the asymmetric period-1 motions, the cor-
responding period-doubling bifurcations were observed. Thus, period-2 motions
should be discovered. If the period-doubling bifurcations of period-2 motions exist,
the period-4 motions will be discovered. In Luo and Xing [28], the bifurcation
trees of periodic motions to chaos in the hardening Duffing oscillator were dis-
cussed. The double-well Duffing oscillators extensively exist in engineering and
physical systems, and one often used displacement feedback to control periodic
motions in such a twin-well Duffing oscillator. Thus, the bifurcation trees of peri-
odic motions to chaos in such a time-delayed Duffing oscillator are of great interest
for a better understanding of global pictures of periodic motions switching and com-
plexity. Before determining bifurcation trees, period-3 motions should be
determined first.

In this chapter, the semi-analytical method will be used to investigate period-3
motions in a periodically forcedDuffing oscillatorwith time-delay. This time-delay is
caused by the displacement feedback. The analytical predictions of period-3 motions
will be completed, and the corresponding stability and bifurcation will be carried out
through the eigenvalue analysis. To understand the motion complexity, the numerical
simulationswill be completed and harmonic amplitudes and phaseswill be presented.

10.2 Discrete Mappings

Consider a time-delayed, Duffing oscillator

ẍ + δ ẋ + α1x − α2x
τ + βx3 = Q0 cos�t (10.1)

where x = x(t) and xτ = x(t − τ). In state space, the above equation becomes

ẋ = y,
ẏ = Q0 cos�t − δy − α1x + α2xτ − βx3.

(10.2)

Let x = (x, y)T and xτ = (xτ , yτ )T. For discrete time tk = kh (k = 0, 1, 2, . . .),
xk = (xk, yk)T and xτ

k = (xτ
k , y

τ
k )

T. Using a midpoint scheme for the time interval
t ∈ [tk−1, tk] (k = 1, 2, . . .), the foregoing differential equation is discretized to form
an implicit mapPk :



250 A.C.J. Luo and S. Xing

Pk : (x(m)
k−1, x

τ(m)
k−1 ) → (x(m)

k , xτ(m)
k )

⇒ (x(m)
k , xτ(m)

k ) = Pk(x
(m)
k−1, x

τ(m)
k−1 )

(10.3)

The corresponding implicit relations for the implicit map are

xk = xk−1 + 1
2h(yk + yk−1),

yk = yk−1 + h[Q0 cos�(tk−1 + h
2 ) − 1

2δ(yk + yk−1)

− 1
2α1(xk + xk−1) + 1

2α2(xτ
k + xτ

k−1) − 1
8β(xk + xk−1)

3].
(10.4)

The time-delay node xτ
k ≈ x(tk−τ ) of xk ≈ x(tk) lies between xk−lkand xk−lk−1 (lk =

int(τ/h)). The time-delay nodes can be expressed by an interpolation function of
two points xk−lkand xk−lk−1. For a time-delay node xτ

j ( j = k − 1, k), we have

xτ
j = h j (xr j−1, xr j , θr j ) for r j = j − l j . (10.5)

For instance, the time-delay discrete node xτ
j is determined by the simple Lagrange

interpolation, i.e.,

xτ
j = x j−l j−1 + (1 − τ

h + l j )(x j−l j − x j−l j−1),

yτ
j = y j−l j−1 + (1 − τ

h + l j )(y j−l j − y j−l j−1).
(10.6)

Thus, the time-delaynodes are expressedbynon-time-delaynodes.Thediscretization
of differential equation for the time-delayed Duffing oscillator is completed. In the
next section, the discrete mapping will be used to determine period-3 motions in the
time-delayed Duffing oscillator.

10.3 Period-m Motions and Stability

To represent the period-m motion in such a Duffing oscillator, a discrete mapping
structure, presented in Luo [20], is constructed as

P = PmN ◦ PmN−1 ◦ · · · ◦ P2 ◦ P1
︸ ︷︷ ︸

mN−actions

: (x(m)
0 , xτ(m)

0 ) → (x(m)
N , xτ(m)

N ) (10.7)

with

Pk : (x(m)
k−1, x

τ(m)
k−1 ) → (x(m)

k , xτ(m)
k )

(k = 1, 2, · · · ,mN ).
(10.8)

By applying a midpoint scheme discretization, the corresponding algebraic equa-
tions of Pk are obtained as follows:
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Pk :

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

x (m)
k = x (m)

k−1 + 1
2h(y(m)

k + y(m)
k−1),

y(m)
k = y(m)

k−1 + h[Q0cosω(t + 1
2h) − 1

2δ(y
(m)
k + y(m)

k−1)

− 1
2α1(x

(m)
k + x (m)

k−1) + 1
2α2(x

τ(m)
k + xτ(m)

k−1 )

− 1
8β(x (m)

k + x (m)
k−1)

3]
(k = 1, 2, · · · ,mN ).

(10.9)

Application of the simple Lagrange interpolation, the time-delay node xτ
j =

h j (xr j−1, xr j , θr j ) is expressed as

xτ(m)
k = x (m)

k−lk−1 + (1 − τ
h + lk)(x

(m)
k−lk

− x (m)
k−lk−1),

yτ(m)
k = y(m)

k−lk−1 + (1 − τ
h + lk)(y

(m)
k−lk

− y(m)
k−lk−1).

(10.10)

Then, the set of points on the periodic motion are computed by

gk(x
(m)∗
k−1 , x(m)∗

k ; xτ(m)∗
k−1 , xτ(m)∗

k ,p) = 0
xτ(m)∗
j = h j (x

(m)∗
r j−1, x

(m)∗
r j , θr j ), j = k, k − 1

}

(k = 1, 2, · · · ,mN )

x(m)∗
0 = x(m)∗

mN and xτ(m)∗
0 = xτ(m)∗

mN

(10.11)

Once the node points x(m)∗
k (k = 1, 2, · · · ,mN ) of the period-mmotion are obtained,

the stability of period-m motion can be discussed through the eigenvalue analysis of
the corresponding Jacobian matrix.

k
∑

j=k−1

∂gk
∂x(m)

j


x(m)
j + ∂gk

∂xτ(m)
j

(
∂xτ(m)

j

∂xτ(m)
r j


xτ(m)
r j + ∂xτ(m)

j

∂xτ(m)
r j−1


xτ(m)
r j−1) = 0

with r j = j − l j , j = k − 1, k; (k = 1, 2, · · · ,mN ).

(10.12)

As in Luo [20], new vectors are introduced as

y(m)
k = (x(m)

k , x(m)
k−1, · · · , x(m)

rk−1
)T,

y(m)
k−1 = (x(m)

k−1, x
(m)
k−2, · · · , x(m)

rk−1−1)
T,


y(m)
k = (
x(m)

k ,
x(m)
k−1, · · · ,
x(m)

rk−1
)T,


y(m)
k−1 = (
x(m)

k−1,
x(m)
k−2, · · · ,
x(m)

rk−1−1)
T.

(10.13)

The resultant Jacobian matrices of the periodic motions are

DP = DPmN (mN−1)···1 =
[

∂y(m)
mN

∂y(m)
0

]

= AmNAmN−1 · · ·A1 (10.14)

with


y(m)
k = A(m)

k 
y(m)
k−1, A

(m)
k ≡

[

∂y(m)
k

∂y(m)
k−1

]

(y(m)∗
k−1 ,y(m)∗

k )

(10.15)
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and

A(m)
k =

[

B(m)
k (a(m)

k(rk−1−1))2×2

I(m)
k 0(m)

k

]

2(s+1)×2(s+1)

, s = 1 + lk−1

B(m)
k = [(a(m)

k(k−1))2×2, 02×2, · · · , (a(m)

k(rk−1))2×2],
I(m)
k = diag(I2×2, I2×2, · · · , I2×2)2s×2s,

0(m)
k = (02×2, 02×2, · · · , 02×2

︸ ︷︷ ︸

s

)T;

(10.16)

a(m)
k j = [ ∂gk

∂x(m)
k

]−1 ∂gk
∂x(m)

j

,

a(m)
kr j

= [ ∂gk
∂x(m)

k

]−1 ∂gk
∂x(m)τ

j

∂x(m)τ
j

∂x(m)τ
r j

,

a(m)

k(r j−1) = [ ∂gk
∂x(m)

k

]−1 ∂gk
∂x(m)τ

j

∂x(m)τ
j

∂x(m)τ
r j−1

with r j = j − l j , j = k − 1, k;

(10.17)

∂gk
∂x(m)

k−1

=
[−1 − 1

2h

 1

2δh − 1

]

,
∂gk

∂x(m)
k1

=
[

1 − 1
2h


 1
2δh + 1

]

,

∂gτ(m)
j

∂x(m)
r j−1

=
[

0 0
τ
h − l j 0

]

,
∂gτ(m)

j

∂x(m)
r j

=
[

0 0
1 − τ

h + l j 0

]

,

∂gk
∂xτ(m)

j

=
[

0 0
0 − 1

2hα2

]

,


 = 1
2h[α1 + β(xk + xk−1)].

(10.18)

The eigenvalues of DP for such periodic flow are determined by

|DP − λI2(s+1)×2(s+1)| = 0. (10.19)

(i) If the magnitudes of all eigenvalues of DP are less than one (i.e., |λi | <
1, i, 1, 2, · · · , 2(s + 1)), the approximate periodic solution is stable.

(ii) If at least the magnitude of one eigenvalue of DP is greater than one (i.e., |λi | >
1, i ∈ {1, 2, · · · , n(s + 1)}), the approximate periodic solution is unstable.

(iii) The boundaries between stable and unstable periodic flowwith higher-order sin-
gularity give bifurcation and stability conditions with higher-order singularity.

The bifurcation conditions are given as follows.

(1) If λi = 1 with |λ j | < 1(i, j ∈ {1, 2, · · · , 2(s + 1)} and i 	= j), the saddle-node
bifurcation (SN) occurs.
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(2) If λi = −1 with |λ j | < 1(i, j ∈ {1, 2, · · · , 2(s + 1)} and i 	= j), the period-
doubling bifurcation (PD) occurs.

(3) If |λi, j | = 1 with |λl | < 1(i, j, l ∈ {1, 2, · · · , 2(s + 1)} and λi = λ̄ j l 	= i, j),
Neimark bifurcation (NB) occurs.

10.4 Frequency-Amplitude Analysis

From the node points of period-m motions in the time-delayed Duffing oscillator,
x(m)
k = (x (m)

k , y(m)
k )T (k = 0, 1, 2, · · · ,mN ), the period-m motions can be approxi-

mately expressed by the Fourier series, i.e.,

x(m)(t) ≈ a(m)
0 +

M
∑

j=1

b j/m cos(
k

m
�t) + c j/m sin(

k

m
�t) (10.20)

The (2M + 1) unknown vector coefficients of a(m)
0 ,b j/m, c j/m should be determined

from discrete nodes x(m)
k (k = 0, 1, 2, · · · ,mN ) with mN + 1 ≥ 2M + 1. For M =

mN/2, the node points x(m)
k on the period-mmotion can be expressed for tk ∈ [0,mT ]

x(m)(tk) ≡ x(m)
k = a(m)

0 +
mN/2
∑

j=1

b j/m cos(
j

m
�tk) + c j/m sin(

j

m
�tk)

= a(m)
0 +

mN/2
∑

j=1

b j/m cos(
j

m

2kπ

N
) + c j/m sin(

j

m

2kπ

N
) (10.21)

(k = 0, 1, · · · ,mN − 1)

where

T = 2π
�

= N
t;�tk = �k
t = 2kπ
N

a(m)
0 = 1

N

∑mN−1
k=0 x(m)

k ,

b j/m = 2

mN

mN−1
∑

k=1

x(m)
k cos(k

2 jπ

mN
),

c j/m = 2

mN

mN−1
∑

k=1

x(m)
k sin(k

2 jπ

mN
)

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

( j = 1, 2, · · · ,mN/2)
(10.22)

and

a(m)
0 = (a(m)

01 , a(m)
02 )T,b j/m = (b j/m1, b j/m2)

T, c j/m = (c j/m1, c j/m2)
T. (10.23)
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The harmonic amplitudes and phases for the period-m motions are expressed by

A j/m1 =
√

b2j/m1 + c2j/m1, ϕ j/m1 = arctan c j/m1

b j/m1
,

A j/m2 =
√

b2j/m2 + c2j/m2, ϕ j/m2 = arctan c j/m2

b j/m2
.

(10.24)

Thus, the approximate expression of period-mmotions in Eq. (10.20) can be given as

x(m)(t) ≈ a(m)
0 +

mN/2
∑

j=1

b j/m cos(
k

m
�t) + c j/m sin(

k

m
�t). (10.25)

For the time-delayed Duffing oscillator,

{

x (m)(t)
y(m)(t)

}

≡
{

x (m)
1 (t)
x (m)
2 (t)

}

≈
{

a(m)
01

a(m)
02

}

+
mN/2
∑

j=1

{

A j/m1 cos( k
m�t − ϕ j/m1)

A j/m1 cos( k
m�t − ϕ j/m2)

}

.

(10.26)

To reduce illustrations, only frequency-amplitude curves of displacement x (m)(t)
for period-mmotions are presented. However, the frequency-amplitudes for velocity
y(m)(t) can also be done in a similar fashion. Thus, the displacement for period-m
motion is given by

x (m)(t) ≈ a(m)
0 +

mN/2
∑

j=1

b j/m cos(
k

m
�t) + c j/m sin(

k

m
�t) (10.27)

or

x (m)(t) ≈ a(m)
0 +

mN/2
∑

j=1

A j/m cos(
k

m
�t − ϕ j/m) (10.28)

where
A j/m =

√

b2j/m + c2j/m , ϕ j/m = arctan
c j/m
b j/m

. (10.29)

10.5 Bifurcation Trees of Period-3 to Period-6 Motions

In this section, a complete picture of P-3 motions and bifurcation trees of P-3 to
P-6 motions will be presented. The corresponding stability and bifurcation will be
investigated through eigenvalue analysis. Consider a set of parameters under strong
excitation as

α1 = 2.0, α2 = 1.0, β = 4.0, δ = 0.2, Q0 = 100.0 (10.30)



10 Bifurcation Trees of Period-3 Motions … 255

Excitation Frequency, Ω
6.0 12.5 19.0 25.5 32.0Pe

rio
di

c 
N

od
e 

D
is

pl
ac

em
en

t, 
x m

od
(k

,N
)

-7.0

-3.5

0.0

3.5

7.0 SNSN

P-3

X0

XN

X2N

Excitation Frequency, Ω

Pe
rio

di
c 

N
od

e 
V

el
oc

ity
, y

m
od

(k
,N

)

-50.0

-25.0

0.0

25.0

50.0 SNSN

P-3
y0

yN

y2N

Excitation Frequency, Ω
4.9 5.1 5.3 5.5Pe

rio
di

c 
N

od
e 

D
is

pl
ac

em
en

t, 
x m

od
(k

,N
)

-2.0

1.0

4.0

7.0 SNSN

P-3

X0

XN

X2N

SN SN

Excitation Frequency, Ω
4.9 5.1 5.3 5.5

Pe
rio

di
c 

N
od

e 
V

el
oc

ity
, y

m
od

(k
,N

)

-50.0

-25.0

0.0

25.0

50.0 SNSN

P-3

y0

yN

y2N

SN SN

6.0 12.5 19.0 25.5 32.0

(a) (b)

(c) (d)

Fig. 10.1 Period-3 motions a displacement, b velocity for � ∈ (9.385, 28.943), c displacement,
d velocity for � ∈ (4.987, 5.425)

and the time-delay term τ = T/4 where T = 2π/�.

Two branches of simple symmetric period-3 motions and another two branches of
period-3 to period-6 motions are presented in Figs. 10.1 and 10.2, respectively. For
each branch of periodic motions, the displacement and velocity of periodic nodes
xmod(x,N ) and ymod(x,N ) for mod(x, N ) = 0 are presented. Two simple symmetric
period-3 motions exist in � ∈ (9.385, 28.943) and � ∈ (4.987, 5.425), while two
period-3 to period-6 motions exist in � ∈ (2.812, 3.352) and � ∈ (2.277, 2.762).
The acronyms ‘SN’ and ‘PD’ denote saddle-node bifurcation and period-doubling
bifurcation, respectively. The letters ‘A’ and ‘S’ are for asymmetric and symmetric
motions, respectively. The black solid curve is for the stable periodic motions while
the red-curve for the unstable periodic motions. For the first branch of period-3
motion, two saddle-node bifurcations are observed at � ≈ 9.385 and � ≈ 28.943.
For the second branch of period-3motion, four saddle-node bifurcations are observed
at � ≈ 4.987,� ≈ 4.943,� ≈ 5.143, and � ≈ 5.452, respectively. Two of them
where � ≈ 4.987 and � ≈ 5.143 are for jump phenomena. No period-doubling
bifurcation is observed in these two branches of period-3 motions. Thus, no higher
periodic motions appear. For the first period-3 to period-6 motions, two saddle-
node bifurcations for jump phenomena are observed at � ≈ 3.352 and � ≈ 3.289.
Two saddle-node bifurcations for symmetric to asymmetric period-3 motions occur
at � ≈ 2.880 and � ≈ 3.180. Two period-doubling bifurcations for period-3 to
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Fig. 10.2 Bifurcation trees of period-3 to period-6 motions a displacement, b velocity for � ∈
(2.812, 3.352); c displacement, d velocity for � ∈ (2.277, 2.762)

period-6motions appear at� ≈ 2.916 and� ≈ 3.106. Two period-doubling bifurca-
tions for period-6 to period-12motions emerge at� ≈ 3.097 and� ≈ 2.920. For the
second period-3 to period-6 motions, no saddle-node bifurcations for jump phenom-
ena are observed. Saddle-node bifurcations for symmetric to asymmetric period-3
motions appear at � ≈ 2.287 and � ≈ 2.714. Period-doubling bifurcations occur at
� ≈ 2.289 and � ≈ 2.701 for period-3 to period-6 motions and at � ≈ 2.290 and
� ≈ 2.699 for period-6 to period-12 motions.

10.6 Numerical Illustrations

The analytical prediction of period-3 to period-6 motions was predicted analytically
for the bifurcation trees of period-3 to period-6 motions. To illustrate complexity of
periodic motions in the time-delayed Duffing oscillator, initial conditions from the
analytical prediction will be used for numerical simulations of period-3 to period-6
motions in the bifurcation trees, and the corresponding harmonic amplitudes of peri-
odic motions will be presented to show harmonic terms effects on periodic motions.
The system parameters in Eq. (10.30) are used. Numerical and analytical results
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Fig. 10.3 A stable symmetric period-3 motion for � = 3.3. a trajectory, b displacement versus
time, c harmonic amplitude spectrum, d harmonic phase spectrumwith initial conditions (x0, ẋ0) ≈
(2.714985,−14.294936) (α1 = −10.0, α2 = 5.0, β = 10.0, δ = 0.5, Q0 = 100.0, τ = T/4)

are presented by solid curves and symbols, respectively. The initial time-delay is
presented through blue circular symbols. The delay-initial starting and delay-initial
finishing points are ‘D.I.S’ and ‘D.I.F,’ respectively.

Consider a stable symmetric period-3 motion of � = 3.3, and the initial con-
dition (x0, ẋ0) ≈ (2.714985,−14.294936) is computed from the analytical predic-
tion. Trajectory and displacement for such a simple symmetric period-3 motion
are presented in Fig. 10.3a, b, respectively. The initial time-delay is presented by
green symbols. The numerical solution of the stable period-3 motion is presented
by solid curves, and the analytical prediction is depicted by red symbols. The
corresponding harmonic amplitudes and phases are presented in Fig. 10.3c, d,
respectively. The harmonic terms An/3 = 0(n = 0, 2, 4, 6, . . .). The main harmonic
amplitudes are A1/3 = 1.1264, A1 = 2.7333, A5/3 = 0.4010, A7/3 = 2.0006, A3 =
0.3755, A11/3=0.0621, A13/3=0.2879, A5=0.0300, A17/3=0.1362, A19/3=0.0607,
A7 = 0.0288, A23/3 = 0.0288, A25/3 = 8.3549e-3, and A9 = 0.0119. Other
harmonic amplitudes lie in A(2l−1)/3 ∈ (10−15, 10−3) (l = 15, 16, · · · , 80), and
6.2469e-15. For such a period-3 motion, one can use 150 harmonic terms to approx-
imate exact solution.
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Fig. 10.4 A pair of stable
asymmetric period-3 motion
for � = 3.15. a, b trajectory,
c harmonic amplitude
spectrum, d harmonic phase
spectrum with initial
conditions a (x0, ẋ0) ≈
(3.567230,−10.284055)
and b (x0, ẋ0) ≈
(2.899588, 9.507185)
(α1 = −10.0, α2 = 5.0,
β = 10.0, δ = 0.5, Q0 =
100.0, τ = T/4)
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Fig. 10.5 A pair of stable asymmetric period-6 motion for � = 3.10. a, b trajectory,
c harmonic amplitude spectrum, d) harmonic phase spectrum with initial 0 conditions a (x0, ẋ0) ≈
(4.039509, 19.992432) and b (x0, ẋ0) ≈ (4.044199,−6.483031) (α1 = −10.0, α2 = 5.0,
β = 10.0, δ = 0.5, Q0 = 100.0, τ = T/4)

Consider a pair of asymmetric period-1 motions at � = 3.15, as shown in
Fig. 10.4. The initial conditions are obtained from the analytical prediction. x0 ≈
3.567230 and ẋ0 ≈ −10.284055 are for the asymmetric period-3motion in Fig. 10.4a
and x0 ≈ 2.899588 and ẋ0 ≈ 9.507185 are for the asymmetric period-3 motion in
Fig. 10.4b. The harmonic amplitudes and phases are presented in Fig. 10.3c, d, respec-
tively. The center of the trajectory is far away from the origin compared to the previous
symmetric period-3 motion. That is, ablack0 = −ablue0 = A0 = 0.0220.

The main harmonic amplitudes for the two asymmetric period-3 motions
are A1/3 ≈ 1.1178, A2/3 ≈ 0.0161, A1 ≈ 2.7884, A4/3 ≈ 0.0625, A5/3 ≈ 0.3811,
A2 ≈ 0.1265, A7/3≈1.5774, A8/3≈0.4019, A3 ≈ 0.6085, A10/3 ≈ 0.0360, A11/3 ≈
0.0561, A4 ≈ 0.0560, A13/3 ≈ 0.2871, A14/3≈0.0725, A5≈0.0738, A16/3≈0.0131,
A17/3 ≈ 0.0820, A6≈0.0542, A19/3≈0.0737, A20/3≈0.0253, A7 ≈ 0.0185, A22/3 ≈
0.0149, A23/3 ≈ 0.0241, A8 ≈ 0.0164, A25/3 ≈ 0.0120. Other harmonic amplitudes
lie in Al/3 ∈ (10−14, 10−3) (l = 26, 27, · · · , 150) and A50 ≈ 7.2626e-14. The two
asymmetric period-3 motions need about 150 harmonic terms in the finite Fourier
series for an approximate analytical expression. The first and third harmonic terms
play very important roles on such symmetric period-3 motions. Because harmonic
amplitude of even terms is relatively small, such harmonic terms make the two
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asymmetric period-3 motions be close to asymmetric period-3 motions. In addi-
tion, harmonic phase distribution varying with harmonic orders is clearly presented.
The gray circular symbols are for the harmonic phases of the upper asymmetric
period-3 motion and the red symbols are for the harmonic phases of the lower asym-
metric period-3 motion. The harmonic phase relations between the two asymmetric
period-3 motions are ϕblack

k/(2lm)
= mod(ϕblue

k/(2lm)
+ ((m + 2r)k/(2lm) + 1))π, 2π) for

l = 0,m = 3, r = 1 and t0 = rT with r ∈ {0, 1, · · · , 2lm − 1}.
Consider a pair of asymmetric period-6 motions at � = 3.10, as shown in

Fig. 10.5. The initial conditions are obtained from the analytical prediction. x0 ≈
4.039509 and ẋ0 ≈ 19.992432 are for the asymmetric period-6 motion in Fig. 10.5a
and x0 ≈ 4.044199 and ẋ0 ≈ −6.483031 are for the asymmetric period-6 motion
in Fig. 10.5b. The harmonic amplitudes and phases are presented in Fig. 10.5c,
d, respectively. The center of the trajectory is far away from the origin com-
pared to the previous asymmetric period-3 motion. That is, ablack0 = −ablue0 =
A0 = 0.0319. The main harmonic amplitudes for the two asymmetric period-
1 motions are A1/6 ≈ 0.0131, A1/3 ≈ 1.0622, A1/2 ≈ 0.0160, A2/3 ≈ 0.0646, A5/6

≈ 3.7917e-3, A1≈2.6545, A7/6≈6.2608e-4, A4/3≈0.0345, A3/2 ≈ 1.8623e-3, A5/3

≈ 0.3432, A11/6 ≈ 7.8357e-3, A2 ≈ 0.0910, A13/6 ≈ 0.0139, A7/3 ≈ 1.2285, A5/2

≈ 0.0305, A8/3 ≈ 0.2763, A17/6 ≈ 0.0124, A3 ≈ 1.0138, A19/6 ≈ 7.2666e-3, A10/3

≈ 0.0509, A7/2 ≈ 3.1323e-4, A11/3 ≈ 0.0866, A23/6 ≈ 1.6868e-3, A4 ≈ 0.0.0280,
and A25/6 ≈ 3.7414e-3, A13/3 ≈ 0.0.2680, A9/2 ≈ 6.9915e-3, A14/3 ≈ 0.0667,
A29/6 ≈ 2.9448e-3, A5 ≈ 0.1699, A31/6 ≈ 8.1422e-4, A16/3 ≈ 0.0.2680, A11/2 ≈
7.9530e-4, A17/3 ≈ 0.0433, A35/6 ≈ 2.6005e-3, A6 ≈ 0.0306, A37/6 ≈ 2.8367e-3,
A19/3 ≈ 0.1016, A13/2 ≈ 3.0073e-3,A20/3 ≈ 0.0285, A41/6 ≈ 9.4470e-4, A7 ≈ 0.
0398, A43/6 ≈ 1.0742e-3,A22/3 ≈ 9.9107e-3, A15/2 ≈ 5.8637e-3,A23/3 ≈ 0.0217,
A47/6 ≈ 1.3083e-3, A8 ≈ 0.0139, A49/6 ≈ 8.0876e-4, A25/3 ≈ 0.0264. Other
harmonic amplitudes lie in Al/6 ∈ (10−14, 10−3) (l = 51, 52, · · · , 300), and A50 ≈
2.4131e-13. The two asymmetric period-6 motions need about 300 harmonic terms
in the finite Fourier series for an approximate analytical expression. The first
and third harmonic terms play very important roles on such asymmetric period-
6 motions. Because harmonic amplitude of even terms is relatively small, such
harmonic terms make the two asymmetric period-6 motions be close to asym-
metric period-3 motions. In addition, harmonic phase distribution varying with
harmonic orders is clearly presented. The gray circular symbols are for the har-
monic phases of the upper asymmetric period-6 motion, and the blue symbols are
for the harmonic phases of the lower asymmetric period-6 motion. The harmonic
phase relations between the two asymmetric period-6 motions are for ϕblue

k/(2lm)
=

mod(ϕblack
k/(2lm)

+ ((m + 2r)k/(2lm)(2lm) + 1))π, 2π) for l = 1,m = 3, r = 5 and

t0 = rT with r ∈ {0, 1, · · · , 2lm − 1}.
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10.7 Conclusions

The symmetric and asymmetric period-3 motions in the time-delayed, double-well
Duffing oscillator were predicted through the semi-analytical method. The semi-
analytical method is based on the implicit mappings constructed by discretization of
the corresponding differential equation. The corresponding stability and bifurcation
analysis were studied. From the analytical predictions, numerical simulations of
complex periodic motions were presented, and the harmonic amplitudes and phases
were presented. The harmonic effects on period-3 motions can be clearly observed.
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Chapter 11
Travelable Period-1 Motions to Chaos
in a Periodically Excited Pendulum

Yu Guo and Albert C.J. Luo

In this chapter, the analytical bifurcation trees of travelable period-1 motions to chaos
in a periodically excited pendulum are presented with varying excitation amplitude.
The analytical prediction of bifurcation trees of periodic motions is based on the
implicit discrete maps obtained from the midpoint scheme of the corresponding
differential equation. Using the discrete maps, mapping structures are developed
for various periodic motions, and analytical bifurcation trees of periodic motions to
chaos can be obtained. The corresponding eigenvalue analysis provides the stability
and bifurcation conditions. Finally, numerical illustrations of periodic motions on the
bifurcation trees are presented in verification of the analytical prediction. This chapter
is dedicated to Professor Valentin Afraimovich’s 70th birthday for his contributions
in nonlinear dynamics.

11.1 Introduction

A periodically driven pendulum is one of the typical nonlinear oscillators that pos-
sesses complicated dynamical behaviors. The periodic solutions and bifurcation
analysis of such a nonlinear oscillator have been of great interests to researchers for
a long time. The history of investigations on periodic motions in nonlinear systems
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can be chase back to as early as seventeenth century, when Lagrange [10] introduced
the method of averaging to investigate the three-body problems as a perturbation
of the two-body problems. Poincare [17] further developed such a perturbation the-
ory and applied it on the investigation of the motions of celestial bodies. Since
then, researchers started to show interest on the perturbation theory to approximate
the analytical periodic solutions of nonlinear systems. van der Pol [19] used the
method of averaging to determine the periodic solutions of an oscillator circuits.
Fatou [4] proved the asymptotic validity of such a perturbation method. Krylov and
Bogolyubov [9] further developed the method of averaging. Hayashi [8] presented
the perturbation methods including averaging method and principle of harmonic bal-
ance. Barkham and Soudack [1, 2] extended the Krylov–Bogoliubov to approximate
the solutions of nonlinear autonomous second-order differential equations. Rand and
Armbruster [18] used the perturbation method and bifurcation theory to determine
the stability of periodic solutions; at the same time, Garcia-Margallo and Bejarano [7]
determined the approximated solutions of nonlinear oscillations with strong nonlin-
earity using a generalized harmonic balance approach. Yuste and Bejarano [20–22]
used the elliptic functions rather than trigonometric functions to improve the Krylov–
Bogoliubov method. Coppola and Rand [3] obtained approximation of limit cycle
using the averaging method with elliptic functions.

On the other hand, one was also interested in chaotic behavior in such a nonlinear
pendulum systems. Zaslavsky and Chirikov [23] discussed the resonance overlap and
the stochastic (chaotic) instability of nonlinear oscillation based on a periodically
excited pendulum. Luo and Han [14] presented a more accurate method to predict the
resonance and stochastic layer of a periodically driven pendulum. Luo [11] devel-
oped an analytical method for obtaining approximate analytical solutions of periodic
motions in nonlinear dynamical systems based on the generalized harmonic balance
method. Then, Luo and Guo [13] applied such a method on Duffing oscillator to
obtain approximate analytical solutions of periodic motions. In addition, Luo and
Huang [16] also provided the bifurcation trees of period-m motions to chaos in such
a nonlinear oscillatory system.

Although the aforementioned method in Luo [11] was very successful on some
nonlinear systems, it cannot be applied for nonlinear dynamical systems with non-
polynomial functions such as the pendulum system. Thus, Luo [12] developed a
semi-analytical method based on implicit mappings between discrete nodes in order
to obtain predictions in complicated nonlinear dynamical systems. The mapping
structures developed from such implicit mapping can be used to describe different
periodic motions. To verify this semi-analytical method, Guo and Luo [5] applied
such a method to predict bifurcation trees of periodic motions to chaos in the Duffing
oscillators as compared to the approximated analytical solutions obtained in Luo and
Huang [15]. The two methods give the same solutions of periodic motions to chaos
in the Duffing oscillators. More prediction results are presented in Guo and Luo [6].

Thus, herein the aforementioned approach in Luo [12] will be applied to inves-
tigate the rich nonlinear dynamical behaviors in a periodically excited pendulum.
The discrete implicit maps between two discrete nodes will be developed. Based on
the implicit maps, mapping structures will be constructed. Analytical predictions of
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bifurcation trees from travelable period-1 motions to chaos will be presented. The
corresponding stability and bifurcation conditions will be determined from eigenval-
ues using the theory of discrete dynamical systems. Finally, numerical illustrations
of periodic motions on the bifurcation trees will be demonstrated.

11.2 Method

In this section, a semi-analytical method for periodic motions in the periodically
excited pendulum will be presented through the corresponding implicit discrete map-
pings under specific computational accuracy. The mapping structures of periodic
motions will be employed, and the corresponding stability and bifurcation will be
discussed.

11.2.1 Discrete Mappings

A periodically driven pendulum system is described as

ẍ + δẋ + α sin x = Q0 cos �t (11.1)

where δ is the damping coefficient, α is stiffness, Q0 and � are excitation amplitude
and frequency, respectively. In phase space, such a system can be rewritten as

ẋ = y,
ẏ = Q0 cos(�t) − δẋ + α sin x .

(11.2)

Using a midpoint scheme for the time interval t ∈ [tk−1, tk], the above system can
be discretized to form an implicit map Pk (k = 0, 1, 2, ...) as

Pk : (xk−1, yk−1) → (xk, yk) ⇒ (xk, yk) = Pk(xk−1, yk−1) (11.3)

with the implicit relations

xk = xk−1 + 1

2
h(yk−1 + yk),

yk = yk−1 + h{Q0 cos �(tk−1 + 1

2
h) − 1

2
δ(yk−1 + yk) − α sin[1

2
(xk−1 + xk)]}.

(11.4)

The above discretization experiences an accuracy of O(h3) for each step. To keep
computational accuracy less than 10−9, h < 10−3 needs to be maintained.
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11.2.2 Periodic Motions

In general, a period-m periodic motion in the periodically excited pendulum system
can be represented by a discrete mapping structure, i.e.,

P = PmN ◦ PmN−1 ◦ · · · ◦ P2 ◦ P1
︸ ︷︷ ︸

mN−actions

: (x (m)
0 , y(m)

0 ) → (x (m)
mN , y(m)

mN ) (11.5)

with
Pk : (x (m)

k−1, y
(m)
k−1) → (x (m)

k , y(m)
k )

⇒ (x (m)
k , y(m)

k ) = Pk(x
(m)
k−1, y

(m)
k−1)

(k = 1, 2, · · · ,mN ).

(11.6)

From Eq. (11.4), the corresponding algebraic equations can be obtained by

x (m)
k = x (m)

k−1 + 1
2h(y(m)

k−1 + y(m)
k ),

y(m)
k = y(m)

k−1 + h{Q0 cos �(tk−1 + 1
2h)

− 1
2δ(y(m)

k−1 + y(m)
k ) − α sin[ 1

2 (x (m)
k−1 + x (m)

k )]}

⎫

⎬

⎭

for Pk .

(k = 1, 2, · · · ,mN )

(11.7)

The corresponding periodicity conditions are given as

(x (m)
mN , y(m)

mN ) = (x (m)
0 + 2lπ, y(m)

0 ), l = 0,±1,±2, · · · ;m = 1, 2, · · · (11.8)

From Eqs. (11.6) and (11.8), nodes at the discretized Duffing oscillator can be deter-
mined by 2(mN + 1) equations. Once the node points x(m)∗

k (k = 1, 2, · · · ,mN )

of the period-m motion are obtained, the corresponding stability and bifurcation of
period-m motion can be discussed by the corresponding Jacobian matrix. For a small
perturbation in vicinity of x(m)∗

k , x(m)
k = x(m)∗

k + �x(m)
k , (k = 0, 1, 2, · · · ,mN ),

�xmN = DP�x(m)
0 = DPmN · DPmN−1 · . . . · DP2 · DP1

︸ ︷︷ ︸

mN -multiplication

�x(m)
0 . (11.9)

with

�x(m)
k = DPk�x(m)

k−1 ≡
[

∂x(m)
k

∂x(m)
k−1

]

(x(m)∗
k ,x(m)∗

k−1 )

�x(m)
k−1,

(k = 1, 2, · · · ,mN )

(11.10)

where

DPk =
[

∂x(m)
k

∂x(m)
k−1

]

(x(m)∗
k ,x(m)∗

k−1 )

=
⎡

⎢

⎣

∂x (m)
k

∂x (m)
k−1

∂x (m)
k

∂y(m)
k−1

∂y(m)
k

∂x (m)
k−1

∂y(m)
k

∂y(m)
k−1

⎤

⎥

⎦

(x(m)∗
k ,x(m)∗

k−1 )

(11.11)

for k = 1, 2, · · · ,mN .
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The corresponding eigenvalues are computed by

|DP − λI| = 0 (11.12)

where

DP =
1

∏

k=mN

[

∂x(m)
k

∂x(m)
k

]

(x(m)∗
k ,x(m)∗

k−1 )

. (11.13)

For stability analysis, if all |λi | < 1 for(i = 1, 2), the periodic motion is stable; if one
of |λi | > 1 for (i ∈ {1, 2}), the periodic motion is unstable. As one of λi = −1 and
|λ j | < 1 for (i, j ∈ {1, 2} and j �= i), the period-doubling bifurcation of periodic
motion occurs. As one of λi = −1 and |λ j | > 1 for (i, j ∈ {1, 2} and j �= i), the
unstable period-doubling bifurcation of periodic motion occurs. As one of λi = 1
and |λ j | < 1 for (i, j ∈ {1, 2} and j �= i), the saddle-node bifurcation of the periodic
motion occurs. As one of λi = 1 and |λ j | > 1 for (i, j ∈ {1, 2} and j �= i), the
unstable saddle-node bifurcation of the periodic motion occurs. When |λ1,2| = 1 is a
pair of complex eigenvalues, the Neimark bifurcation of the periodic motion occurs.

11.3 Frequency-Amplitude Characteristics

From the node points of period-m motions in periodically forced pendulum, x(m)
k =

(x (m)
k , y(m)

k )T (k = 0, 1, 2, · · · , mN ), the period-m motions can be approximately
expressed by the Fourier series, i.e.,

x(m)(t) ≈ a(m)
0 +

M
∑

j=1

b j/m cos(
k

m
�t) + c j/m sin(

k

m
�t). (11.14)

The (2M + 1) unknown vector coefficients of a(m)
0 , b j/m, c j/m should be determined

from discrete nodes x(m)
k (k = 0, 1, 2, · · · , mN ) with mN + 1 ≥ 2M + 1. For M =

mN/2, the node points x(m)
k on the period-mmotion can be expressed for tk ∈ [0,mT ]

x(m)(tk) ≡ x(m)
k = a(m)

0 +
mN/2
∑

j=1

b j/m cos(
j

m
�tk) + c j/m sin(

j

m
�tk)

= a(m)
0 +

mN/2
∑

j=1

b j/m cos(
j

m

2kπ

N
) + c j/m sin(

j

m

2kπ

N
) (11.15)

(k = 0, 1, · · · ,mN − 1)
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where

T = 2π

�
= N�t; �tk = �k�t = 2kπ

N

a(m)
0 = 1

N

mN−1
∑

k=0

x(m)
k ,

b j/m = 2

mN

mN−1
∑

k=1

x(m)
k cos(k

2 jπ

mN
),

c j/m = 2

mN

mN−1
∑

k=1

x(m)
k sin(k

2 jπ

mN
)

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

( j = 1, 2, · · · ,mN/2)

(11.16)

and

a(m)
0 = (a(m)

01 , a(m)
02 )T, b j/m = (b j/m1, b j/m2)

T, c j/m = (c j/m1, c j/m2)
T. (11.17)

The harmonic amplitudes and phases for the period-m motions are expressed by

A j/m1 =
√

b2
j/m1 + c2

j/m1, ϕ j/m1 = arctan c j/m1

b j/m1
,

A j/m2 =
√

b2
j/m2 + c2

j/m2, ϕ j/m2 = arctan c j/m2

b j/m2
.

(11.18)

Thus, the approximate expression of period-m motions in Eq. (11.14) becomes

x(m)(t) ≈ a(m)
0 +

mN/2
∑

j=1

b j/m cos(
k

m
�t) + c j/m sin(

k

m
�t). (11.19)

For the periodically forced pendulum, we have

{

x (m)(t)
y(m)(t)

}

≡
{

x (m)
1 (t)

x (m)
2 (t)

}

≈
{

a(m)
01

a(m)
02

}

+
mN/2
∑

j=1

{

A j/m1 cos( k
m�t − ϕ j/m1)

A j/m2 cos( k
m�t − ϕ j/m2)

}

.

(11.20)

To reduce illustrations, only frequency-amplitude curves of velocity y(m)(t) for
period-m motions are presented. However, the frequency-amplitudes for displace-
ment x (m)(t) can also be done in a similar fashion. Thus, the velocity for period-m
motion is given by

y(m)(t) ≈ a(m)
0 +

mN/2
∑

j=1

b j/m cos(
k

m
�t) + c j/m sin(

k

m
�t) (11.21)
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or

y(m)(t) ≈ a(m)
0 +

mN/2
∑

j=1

A j/m cos(
k

m
�t − ϕ j/m) (11.22)

where
A j/m =

√

b2
j/m + c2

j/m , ϕ j/m = arctan
c j/m
b j/m

. (11.23)

11.4 Bifurcation Trees

In this section, bifurcation trees are presented to show analytical predictions of the
travelable period-1 motions to chaos in the periodically excited pendulum. The eigen-
value analysis will be illustrated to demonstrate stability and bifurcation conditions.
The solid and dashed curves represent the stable and unstable motions, respectively.
The black and red colors indicate pairs of asymmetric motions, respectively. The
acronyms ‘SN,’ ‘PD,’ and ‘USN’ represent the saddle-node, period-doubling, and
unstable saddle-node bifurcations, respectively. The symmetric and asymmetric peri-
odic motions are labeled by ‘S’ and ‘A,’ respectively. The following parameters are
considered for such a periodically excited pendulum.

α = 4.0, δ = 0.1,� = 2.0. (11.24)

The bifurcation trees of travelable period-1 motions to chaos will be presented
through the analytical predictions of period-1 to period-2/period-4 motions. An
overview of analytical bifurcation trees is illustrated in Fig. 11.1 with varying excita-
tion amplitude Q0. Figure 11.1a, b present the predictions of displacement and veloc-
ity of the periodic nodes mod(x mod (k,N ), 2π) and y mod (k,N ) for mod(k, N ) = 0,
respectively. The period-1, period-2, and period-4 motions are labeled by P-1, P-2,
and P-4, respectively. There are totally four different branches of bifurcation trees
shown in Fig. 11.1. Each of them are indicated by ‘B1,’ ‘B2,’ ‘B3,’ and ‘B4,’ respec-
tively. Different branches could have overlap in the range of existing, but the motions
do not interfere with each other. For all four branches, no symmetric motions exist.
Thus, in the bifurcation trees, the asymmetric period-1 motions are independent of
symmetric period-1 motions. Such asymmetric period-1 motions form a closed loop
with itself in the same branch through jumping phenomenon. The period-2 motions
appear from period-doubling bifurcations of the asymmetric period-1 motions, and
period-4 motions appear from period-doubling bifurcations of the period-2 motion.
Such period-doubling bifurcations corresponds to either stable- or unstable saddle-
node bifurcations of period-1 or period-2 motions. In addition, the period-2 and
period-4 motions are asymmetric. The cascaded period-doubling bifurcations con-
tinue thereafter, introducing period-8, period-16 motions, and so on, which eventually
go to chaos. The real part, imaginary parts, and magnitudes of eigenvalues for all
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Fig. 11.1 Bifurcation tree of travelable period-1 to period-4 motions varying with excitation ampli-
tude Q0. a Node displacement x mod (k,N ), b node velocity y mod (k,N ), c real part of eigenvalues,
d imaginary part of eigenvalues, e eigenvalue magnitudes (α = 4.0, δ = 0.1, � = 2.0)

periodic motions are illustrated in Fig. 11.1c–e, respectively. For a better illustration
of these bifurcations trees, the separated view of each of the branches in the win-
dows of Q0 ∈ (0.0, 18.0), (14.0, 30.0), (26.0, 42.0), and (34.0, 46.0) is shown in
Figs. 11.2, 11.3, 11.4, and 11.5, respectively. The corresponding bifurcation points for
each of the branches are tabulated in Tables 11.1, 11.2, 11.3, and 11.4, respectively.
In Tables 11.1, 11.2, 11.3, and 11.4, the acronyms ‘SN,’ ‘PD,’ and ‘USN’ indicates
saddle-node, period-doubling, and unstable saddle-node bifurcations, respectively.
In the parentheses, the acronym ‘J’ indicates the bifurcation points associated with
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Fig. 11.2 Branch1 separated view. a Periodic node displacement mod(x mod (k,N ), 2π), b periodic
node velocity y mod (k,N ), c, d zoomed view for Q0 ∈ (6.0, 9.0): (α = 4.0, δ = 0.1, � = 2.0). mod
(k, N ) = 0

jumping phenomenon; and the acronym ‘Pm’ with m = 1, 2, 3 ... indicates the
bifurcation point is transiting to period-m motions.

The first branch (‘B1’) of the bifurcation trees exists for the range of Q0 ∈
(0.6663, 17.3588), as presented in Fig. 11.2. The asymmetric period-1 motions are
stable for the ranges of Q0 ∈ (0.6663, 0.7684), (6.5996, 8.5712), and (17.2820,

17.3588). These stable period-1 motions are connected together by the unstable
period-1 motions for Q0 ∈ (0.7684, 6.5996) and (8.5712, 17.2820). In addition,
these period-1 motions encounter SN bifurcations associated with jumping phenom-
ena at Q0 ≈ 0.6663 and 17.3588. The introduced unstable period-1 motion connects
the two SN bifurcation points together, which forms a closed loop of the period-
1 motions. Furthermore, the asymmetric period-1 motions experience two pairs
of PD bifurcations for Q0 ≈ 0.7684, 17.2820 and Q0 ≈ 6.5996, 8.5712, which
also correspond to SN bifurcations of period-2 motions. Each pair of the PD bifur-
cations encloses a period-2 motion. The period-2 motions in the range of Q0 ∈
(0.7684, 17.2820) experience three pairs of PD bifurcations that introduce period-4
motions and further cascaded period doublings to chaos. These three pairs of PD
bifurcations exist at locations of Q0 ≈ 0.7937, 12.4310, Q0 ≈ 11.6760, 16.1026,
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Fig. 11.3 Branch2 separated view for Q0 ∈ (14.0, 30.0). a Periodic node displacement mod
(x mod (k,N ), 2π), b periodic node velocity y mod (k,N ), c, d zoomed view for Q0 ∈ (20.0, 23.0):
(α = 4.0, δ = 0.1, � = 2.0). mod(k, N ) = 0

and Q0 ≈ 13.9267, 17.2819, respectively. The same period-2 motions in the range
of Q0 ∈ (0.7684, 17.2820) also experience two pairs of SN bifurcations associated
with jumping phenomena, at Q0 ≈ 10.5220, 12.4314 and Q0 ≈ 13.9266, 16.1026,
respectively. The other period-2 motions exist for Q0 ∈ (6.2636, 8.6264), which are
introduced by the PD bifurcations of period-1 motions at Q0 ≈ 6.5996, 8.5712. This
period-2 motion encounters one pair of PD bifurcations at Q0 ≈ 6.3320, 6.4500,
introducing period-4 motions and further cascaded period doublings to chaos. In
addition, it experiences a pair of SN bifurcations associated with jumping phenom-
ena at Q0 ≈ 6.2636, 8.6264. A detailed view for the range of Q0 ∈ (6.0, 9.0) is
provided in Fig. 11.2c, d for a better illustration.

The second branch (‘B2’) of the bifurcation trees exists for the range of Q0 ∈
(14.2157, 29.0904) as presented in Fig. 11.3. The asymmetric period-1 motions are
stable for Q0 ∈ (14.2157, 14.4494), (20.2191, 22.2001), (23.6701, 24.9181), and
(28.8655, 29.0904). These stable period-1 motions are connected together by the
unstable period-1 motions for Q0 ∈ (14.4494, 20.2191), (22.2001, 23.6701), and
(24.9181, 28.8655). In addition, these period-1 motions encounter SN bifurcations
associated with jumping phenomena at Q0 ≈ 14.2157 and 29.0904. The induced
unstable period-1 motion connects the two SN bifurcation points together, which
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Fig. 11.4 Branch3 separated view for Q0 ∈ (26.0, 42.0). a Periodic node displacement mod
(x mod (k,N ), 2π), b periodic node velocity y mod (k,N ), c, d zoomed view for Q0 ∈ (32.0, 36.0):
(α = 4.0, δ = 0.1, � = 2.0). mod(k, N ) = 0

forms a closed loop of the period-1 motions. Furthermore, the asymmetric period-1
motions experience three pairs of PD bifurcations for Q0 ≈ 14.4494, 23.6701, Q0 ≈
20.2191, 22.2001, and Q0 ≈ 24.9181, 28.8655. The PD bifurcation at Q0 ≈

Table 11.1 Bifurcation points of Branch1 motions (Q0 ∈ (0.0, 18.0), α = 4.0, δ = 0.1,

� = 2.0)

Period-doubling bifurcations Saddle-node bifurcations

Q0 Left Right Q0 Left Right

P1 (0.7684, 17.2820) PD (P2) PD (P2) (0.6663, 17.3588) SN (J) SN (J)

(6.5996, 8.5712) PD (P2) PD (P2) – – –

P2 (0.7937, 12.4310) PD (P4) PD (P4) (0.7684, 17.2820) SN (P1) SN (P1)

(6.3320, 6.4500) PD (P4) PD (P4) (6.2636, 8.6264) SN (J) SN (J)

(11.6760, 16.1026) PD (P4) PD (P4) (6.5996, 8.5712) SN (P1) SN (P1)

(13.9267, 17.2819) PD (P4) PD (P4) (10.5220, 12.4314) SN (J) SN (J)

– – – (13.9266, 16.1026) SN (J) SN (J)
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Fig. 11.5 Branch4 separated
view for Q0 ∈ (34.0, 46.0).
a Periodic node displacement
mod(x mod (k,N ), 2π),
b periodic node velocity
y mod (k,N ).
(α = 4.0, δ = 0.1,

� = 2.0). mod(k, N ) = 0
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20.2191 corresponds to the USN bifurcation of period-2 motions. The rest of
the PD bifurcations all correspond to SN bifurcations of the period-2 motions,
which lead to stable period-2 motions. There are total of three pieces of period-2
motions introduced. The first period-2 motions in Q0 ∈ (14.4494, 23.6701) expe-
rience three pairs of PD bifurcations that introduce period-4 motions and further
cascaded period doublings to chaos. The three pairs of PD bifurcations exist at
Q0 ≈ 14.5039, 17.5725, Q0 ≈ 15.8362, 19.2654, and Q0 ≈ 18.9544, 23.3417,
respectively. These period-2 motions also experience three pairs of SN bifurcations
associated with jumping phenomena, existing at Q0 ≈ 15.8361, 17.5726, Q0 ≈
18.9481, 19.3433, and Q0 ≈ 23.1041, 23.3912, respectively. The second piece
of period-2 motions exist for Q0 ∈ (20.2191, 22.5622), which are introduced by
the PD bifurcations of period-1 motions at Q0 ≈ 20.2191, 22.2001. As mentioned
before, the PD bifurcation at Q0 ≈ 20.2191 corresponds to the USN bifurcation



11 Travelable Period-1 Motions to Chaos … 275

Table 11.2 Bifurcation points of Branch2 motions (Q0 ∈ (14.0, 30.0), α = 4.0, δ = 0.1,

� = 2.0)

Period-doubling bifurcations Saddle-node bifurcations

Q0 Left Right Q0 Left Right

P1 (14.4494, 23.6701) PD (P2) PD (P2) (14.2157, 29.0904) SN (J) SN (J)

(20.2191, 22.2001) PD (P2) PD (P2) – – –

(24.9181, 28.8655) PD (P2) PD (P2) – – –

P2 (14.5039, 17.5725) PD (P4) PD (P4) (15.8361, 17.5726) SN (J) SN (J)

(15.8362, 19.2654) PD (P4) PD (P4) (18.9481, 19.3433) SN (J) SN (J)

(18.9544, 23.3417) PD (P4) PD (P4) (20.2191, 22.2001) USN (P1) SN (P1)

(25.3770, 27.4937) PD (P4) PD (P4) (20.2191, 22.5622) USN (P1) SN (J)

(27.1549, 28.8023) PD (P4) PD (P4) (21.8361, 22.2236) SN (J) SN (J)

– – – (23.1041, 23.3912) SN (J) SN (J)

– – – (27.1548, 27.5008) SN (J) SN (J)

Table 11.3 Bifurcation points of Branch3 motions (Q0 ∈ (26.0, 42.0), α = 4.0, δ = 0.1,

� = 2.0)

Period-doubling bifurcations Saddle-node bifurcations

Q0 Left Right Q0 Left Right

P1 (27.9872, 33.1591) PD (P2) PD (P2) (27.5912, 41.1842) SN (J) SN (J)

(34.7730, 35.9030) PD (P2) PD (P2) – – –

(38.3290, 40.7450) PD (P2) PD (P2) – – –

P2 (28.0910, 29.5565) PD (P4) PD (P4) (29.3783, 29.5614) SN (J) SN (J)

(29.3835, 31.1640) PD (P4) PD (P4) (27.9872, 33.1591) SN (P1) USN (P1)

(32.8132, 33.4130) PD (P4) PD (P4) (33.1591, 34.9693) USN (P1) SN (J)

(38.7920, 39.6830) PD (P4) PD (P4) (34.7160, 34.7730) SN (J) USN (P1)

(39.7760, 40.5837) PD (P4) PD (P4) (34.7730, 35.9030) USN (P1) SN (P1)

– – – (38.3290, 40.7450) SN (P1) SN (P1)

of period-2 motions, which means it introduces unstable period-2 motions instead
of stable ones. Thus, these period-2 motions start at Q0 ≈ 20.2191 as unstable ones
and end at Q0 ≈ 22.2001 as stable ones. No PD bifurcations are observed. Thus, no
period-4 motions and further cascaded period doublings to chaos exist. Instead, these
period-2 motions experience two jumping phenomena. The first jumping phenom-
enon is enclosed by the USN and SN bifurcations at Q0 ≈ 20.2191 and 22.5622, and
the other one is enclosed by a pair of SN bifurcations at Q0 ≈ 21.8361, 22.2236. A
detailed view for Q0 ∈ (20.0, 23.0) is in Fig. 11.3c, d for a better illustration. Finally,
the third piece of period-2 motions exist for Q0 ∈ (24.9181, 28.8655), which is
introduced by the pair of PD bifurcations at Q0 ≈ 24.9181, 28.8655. These period-
2 motions experience two pairs of PD bifurcations at Q0 ≈ 25.3770, 27.4937 and
Q0 ≈ 27.1549, 28.8023, which introduce period-4 motions and further cascaded
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Table 11.4 Bifurcation points of Branch4 motions (Q0 ∈ (34.0, 46.0), α = 4.0, δ = 0.1,

� = 2.0)

Period-doubling bifurcations Saddle-node bifurcations

Q0 Left Right Q0 Left Right

P1 (35.1315, 45.0020) PD (P2) PD (P2) (34.6814, 45.5469) SN (J) SN (J )

P2 (35.2908, 36.4180) PD (P4) PD (P4) (35.1315, 45.0020) SN (P1) SN (P1)

(36.5660, 37.4640) PD (P4) PD (P4) – – –

(44.1730, 44.6500) PD (P4) PD (P4) – – –

period z-4 to chaos. In addition, they also encounter a pair of SN bifurcations asso-
ciated with jumping phenomena at Q0 ≈ 27.1548, 27.5008.

The third branch (‘B3’) of the bifurcation trees exists for the range of Q0 ∈
(27.5912, 41.1842) as presented in Fig. 11.4. The asymmetric period-1 motions are
stable for the ranges of Q0 ∈ (27.5912, 27.9872), (33.1591, 34.7730), (35.9030,

38.3290), and (40.7450, 41.1842). These stable period-1 motions are connected
together by the unstable period-1 motions for Q0 ∈ (27.9872, 33.1591), (34.7730,

35.9030), and (38.3290, 40.7450). In addition, these period-1 motions encounter
SN bifurcations associated with jumping phenomena at Q0 ≈ 27.5912 and 41.1842.
The introduced unstable period-1 motion connects the two SN bifurcation points
together, which forms a closed loop of the period-1 motions. Furthermore, the
asymmetric period-1 motions experience three pairs of PD bifurcations for Q0 ≈
27.9872, 33.1591, Q0 ≈ 34.7730, 35.9030, and Q0 ≈ 38.3290, 40.7450. The
PD bifurcations at Q0 ≈ 33.1591 and 34.7730 correspond to the USN bifurca-
tions of period-2 motions, which introduce unstable period-2 motions instead of
stable ones. The rest of the PD bifurcations all correspond to SN bifurcations of the
period-2 motions, which lead to stable period-2 motions. There are total of three
pieces of period-2 motions introduced. The first period-2 motions in the range of
Q0 ∈ (27.9872, 34.9693) experience three pairs of PD bifurcations that introduce
period-4 motions and further cascaded period doublings to chaos. These three pairs
of PD bifurcations exist at Q0 ≈ 28.0910, 29.5565, Q0 ≈ 29.3835, 31.1640, and
Q0 ≈ 32.7320, 33.4130, respectively. These period-2 motions also experience two
jumping phenomena. The first jumping phenomenon is enclosed by a pair of SN
bifurcations at Q0 ≈ 29.3783, 29.5614; and the other one is enclosed by a USN
bifurcation and a SN bifurcation at Q0 ≈ 33.1591 and 34.9693, respectively. The sec-
ond piece of period-2 motions exist for Q0 ∈ (34.7160, 35.9030), which are intro-
duced by the PD bifurcations of period-1 motions at Q0 ≈ 34.7730, 35.9030. No
PD bifurcations are observed. Thus, no period-4 motions and further cascaded period
doublings to chaos exist. Instead, these period-2 motions experience a jumping phe-
nomenon, which is enclosed by the SN and USN bifurcations at Q0 ≈ 34.7160 and
34.7730. A detailed view for the range of Q0 ∈ (32.0, 36.0) is provided in Fig. 11.4c,
d for a better illustration of the USN bifurcations and jumping phenomenon. Finally,
the third piece of period-2 motions exist for the range of Q0 ∈ (38.3290, 40.7450),
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which is introduced by the pair of PD bifurcations at Q0 ≈ 38.3290, 40.7450. These
period-2 motions experience two pairs of PD bifurcations at Q0 ≈ 38.7920, 39.6830
and Q0 ≈ 39.7760, 40.5837, which introduce period-4 motions and further cas-
caded period doublings to chaos. In addition, they also encounter a pair of SN bifur-
cations associated with jumping phenomena at Q0 ≈ 38.3290, 40.7450.

The fourth branch (‘B4’) of the bifurcation trees existing in the range of Q0 ∈
(34.6814, 45.5469) is relatively simply, as presented in Fig. 11.5. The asymmet-
ric period-1 motions are stable for the ranges of Q0 ∈ (34.6814, 35.1315) and
(45.0020, 45.5469). These stable period-1 motions are connected together by the
unstable period-1 motions for Q0 ∈ (35.1315, 45.0020). Such period-1 motions
encounter SN bifurcations associated with jumping phenomena at Q0 ≈ 34.6814
and 45.5469. The introduced unstable period-1 motion connects the two SN bifurca-
tion points together, forming a closed loop. Only one pair of PD bifurcations exist for
such period-1 motions at Q0 ≈ 35.1315, 45.0020. The enclosed period-2 motions
experience three pairs of PD bifurcations that introduce period-4 motions and further
cascaded period doublings to chaos. These three pairs of PD bifurcations exist at
Q0 ≈ 35.2908, 36.4180, Q0 ≈ 36.5660, 37.4640, and Q0 ≈ 44.1730, 44.6500,

respectively. No jumping phenomena are observed.

11.5 Simulation and Illustrations

Using the same parameters in Eq. (11.24), different excitation amplitudes Q0 will
be selected from the bifurcation trees to demonstrate different travelable periodic
motions. For such travelable periodic motions, the displacement does not return to
the initial point. Instead, it always returns to a point that is 2Nπ, N = 1, 2, 3...

away from the initial point, which still indicates same position of the pendulum. On
the other hand, the velocity of such travelable periodic motions is purely periodic.
In these illustrations, time histories of displacement and velocity, trajectories and
harmonic amplitudes, and phases of velocity will be presented from numerical and
analytical results. The numerical and analytical results will be presented by solid
curves and hollow circles, respectively. The initial points and periodic nodes are
indicated by green circles. For asymmetric motions, the black and red colors indicate
the motions are on black and red branches on the bifurcation trees, respectively.
‘IC’ indicates the initial conditions. For travelable periodic motions of pendulum,
no Fourier series expression displacements of periodic motions exists. Herein, the
harmonic amplitudes and phases of velocity for travelable periodic motions will be
presented. The travelable periodic motions of pendulum possess x0 = mod(xmT , 2π)

but x0 �= xmT . Physical motion is indeed a closed periodic motion. However, the
periodic solution of displacement for the pendulum is not closed. So, the Fourier
series of displacement does not exist.

In Fig. 11.6, a pair of travelable asymmetric period-1 motions are presented
for Q0 = 7.0. The initial time is t0 = 0.0. The initial conditions are x0 ≈ 6.2751,

ẋ0 ≈ 2.9956 for the black branch and x0 ≈ 6.2541, ẋ0 ≈ −2.4295 for the red branch.



278 Y. Guo and A.C.J. Luo

Time, t
0.0 2.0 4.0 6.0 8.0

D
is

pl
ac

em
en

t, 
m

od
(x

,2 2

TIC

Time, t
0.0 2.0 4.0 6.0 8.0

V
el

oc
ity

, y

-3.0

0.0

3.0

6.0
T

IC

Time, t
0.0 2.0 4.0 6.0 8.0

D
isp

la
ce

m
en

t, 
m

od
(x

,2 3

TIC

Time, t
0.0 2.0 4.0 6.0 8.0

V
el

oc
ity

, y

-6.0

-4.0

-2.0

0.0

2.0

T

IC

(a) 

(b) (d) 

(c) 

Displacement, mod(x,2 )

V
el

oc
ity

, y

-3.0

0.0

3.0

6.0

IC
1T

V
el

oc
ity

, y

-6.0

-3.0

0.0

3.0

IC
1T

Displacement, mod(x,2 )

Harmonic Order, k
0 5 10 15 20

V
el

oc
ity

 H
ar

m
on

ic
 A

m
pl

itu
de

, A
k

1e+1

1e-4

1e-8

1e-12

a0

A20

A1

Harmonic Order, k
0 5 10 15 20

V
el

oc
ity

 H
ar

m
on

ic
 P

ha
se

, 
k

1

2

3

20

5
19

4

11

(e)

(f) (h)

(g)

Fig. 11.6 Asymmetric period-1 motion (Q0 = 7.0): a, b displacement and velocity (black), c,
d displacement and velocity (red), e, f trajectories, g, h harmonic amplitudes and phases. IC:
t0 = 0.0, Black branch (x0 ≈ 6.2751, ẋ0 ≈ 2.9956), Red branch (x0 ≈ 6.2541, ẋ0 ≈ −2.4295).
(α = 4.0, δ = 0.1, � = 2.0)
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These initial conditions are obtained from the analytical predictions. The time histo-
ries of displacement and velocity are presented in Fig. 11.6a, b for the black branch
and in Fig. 11.6c, d for the red branch, respectively. Figure 11.6e, f present the trajec-
tories of periodic motions on the black and red branches, respectively. In Fig. 11.6g,
h, the harmonic amplitudes and phases of velocity for the periodic motions are pre-
sented. In all plots, displacements of pendulum are presented with a modulus to 2π.
From the figures, the periodic motion on the black branch starts at a little bit less than
2π. The pendulum motion goes through one full rotation counterclockwise to 4π and
swings back and forth once around 4π to complete one period. The velocities at end-
ing point and initial point are exactly the same, while the displacement at ending point
is 2π away from the initial point. The motion of the red branch also starts at a little bit
lower than 2π. It first swings back and forth once around 2π and then goes through
one full rotation clockwise to a little bit lower than 0 to complete two periods. Thus,
the velocities at ending point and initial point are exactly the same, while the displace-
ment at ending point is −2π away from the initial point. From two trajectories, the
motion on the black and red branches is of the skew symmetry to each other according
to the point (π, 0). From the harmonic amplitudes of velocity, aR

0 = −aB
0 = −2.0.

The main harmonic amplitudes are A1 ≈ 3.1491, A2 ≈ 0.7280, A3 ≈ 0.1199, and
A4 ≈ 0.0100. The other velocity harmonic amplitudes are Ak ∈ (10−13, 10−2). The
harmonic phases of velocity are ϕR

k = mod(ϕB
k + (k + 1)π, 2π) for k = 0, 1, 2, · · · .

xT − x0 = 2π for the black branch and xT − x0 = −2π for the red branch.
As mentioned previously in the bifurcation trees, such asymmetric period-1

motions encounter a PD bifurcation at Q0 ≈ 8.5712, introducing period-2 motions.
Thus, at Q0 = 8.6, a pair of travelable asymmetric period-2 motions are presented
in Fig. 11.7. The initial time is t0 = 0.0. The initial conditions are x0 ≈ 5.5369,

ẋ0 ≈ 3.4309 for the black branch and x0 ≈ 5.5315, ẋ0 ≈ −2.6347 for the red
branch. Again, these initial conditions are obtained from the analytical predictions.
The time histories of displacement and velocity are presented in Fig. 11.7a, b for
the black branch and Fig. 11.7c, d for the red branch, respectively. Figure 11.7e, f
present the trajectories of the black and red branches, respectively. In all figures, the
displacement of pendulum is presented with a modulus to 2π. The periodic motion
on the black branch starts at a little bit less than 2π. It first goes through one full
rotation counterclockwise to 4π and swings back and forth once around 4π. Then,
the motion goes through another full rotation counterclockwise to 6π and swings
back and forth once again around 6π to complete two periods. The velocities at
ending point and initial point are exactly the same, while the displacement at end-
ing point is 4π away from the initial point. The periodic motion of the red branch
also starts at a little bit lower than 2π. It first swings back and forth once around
2π and goes through one full rotation clockwise to zero. Then, it swings back and
forth once again around zero and goes through one more full rotation clockwise to a
little bit lower than −2π to complete two periods. Thus, the velocities at ending and
initial points are exactly the same, while the displacement at ending point is −4π
away from the initial point. Furthermore, from trajectories, motions on the black
and red branch are of skew symmetry to each other according to the point (π, 0).
From the harmonic amplitudes of velocity, a(2)R

0 = −a(2)B
0 = −2.0. The main
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harmonic amplitudes are A1/2 ≈ 0.5136, A1 ≈ 5.4078, A1/2 ≈ 0.1609, A2 ≈ 0.7335,
A3/2 ≈ 0.1643, A3 ≈ 0.2115, A7/2 ≈ 0.1072, A4 ≈ 0.1201, A9/2 ≈ 0.0166, and
A5 ≈ 0.0116. The other velocity harmonic amplitudes are Ak ∈ (10−13, 10−2).

The harmonic phases of velocity are ϕR
k/2 = mod(ϕB

k/2 + ((1 + 2r)k/2 + 1)π, 2π)

for k = 0, 1, 2, · · · and r = 0. t0 = rT r ∈ {0, 1}. x2T − x0 = 4π for the black
branch and x2T − x0 = −4π for the red branch.

11.6 Conclusions

In this chapter, the travelable period-1 motions to chaos of a periodically excited
pendulum were presented. The implicit discrete maps were obtained from the mid-
point scheme of the corresponding differential equation of such a periodically excited
pendulum. Using the discrete maps, mapping structures were developed for various
periodic motions, from which analytical bifurcation trees of periodic motions to
chaos can be obtained. The complete bifurcation trees of travelable periodic motions
in the system were obtained from analytical prediction with varying excitation ampli-
tude. The corresponding stability and bifurcation conditions were achieved through
eigenvalue analysis of discrete dynamical system. Finally, numerical illustrations
of periodic motions on the bifurcation trees were presented in verification of the
analytical prediction.
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Chapter 12
Automorphic Systems and
Differential-Invariant Solutions

A.A. Talyshev

12.1 Introduction

Further, we use following notations: X = Rn is a space of independent vari-
ables, Y = Y0 = Rm is a space of depended variables, Zk = X × Y0 × · · · × Yk ,
k = 0, 1, . . ., where Yk = Rm ⊗ Sk Rn , k = 1, . . . are prolonged spaces. The vectors
of the spaces Yk are denoted by y

k
and their components is denoted by yα , where

α = (α1, . . . , αn) are multi-indexes and |α| = α1 + · · · + αn = k. Dimension of the
space Zk is denoted by νk , i.e.

νk = dim(Zk) = n + m

(
n + k
n

)
.

By ρk+1
k , denote the canonical projection Zk+1 onto Zk :

ρk+1
k (x, y, y

1
, . . . , y

k
, y
k+1

) = (x, y, y
1
, . . . , y

k
).

The total derivative operators are denoted by Dj , i.e.

Dj = ∂x j +
∑
|α|�0

yα+γ j ∂yα
j = 1, . . . , n,

where |γ j | = 1 and the j th component of the multi-index γ j is equal to 1.
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12.2 Symmetries of Prolonged Systems

The algorithm for calculation of admitted Lie group of point transformations
described, for example, in the paper [7, Sect. 5]; in general, itself is applicable to
any set of differential equations, even if the set of solutions of this system is empty.

The classic property involutiveness [2, 11] ensures that the prolongation of invo-
lutive system is always an involution and that any system of a finite number of
prolongations given to the involutive or algebraically contradictory system.

The paper [12] shows that in the class of tangent transformations (on the solutions
of the system), group Lie admitted involutive system is equal to group Lie admitted
prolongation of this system.

In this section, present study establishes that under certain conditions the shape
of the recording system of differential equations each of its point symmetry admitted
of the prolonged system. It follows that at the points of general position, involutive
system resulting from prolonged not loosing none from the point symmetry of the
original system. The example of isobaric gas motions demonstrates that the group
may extends after actuation system to involutive form (see the paper [13]).

In this section, we consider differential equations in the form

Φ(x, u, ∂xu, . . . , ∂k
x u) = 0, (12.1)

x ∈ X = Rn, u : Rn → Y0, Y0 = Rm,

∂ i
xu : X → Yi , Yi = Rm ⊗ Si Rn, i = 1, . . . , k,

Φ : Zk → Rs, Zi = X × Y0 × · · · × Yi , i = 0, 1 . . .

Group analysis of differential equations using geometric representation of dif-
ferential equations and their solutions as finite-dimensional manifolds in the space
Zk . This approach imposes a condition on the shape of the recording system. This
condition means that together with all the algebraic consequence φ = 0 of order
l < k, algebraic consequences are equations whose left sides are all derivative from
the φ to the independent variables to the order k − l inclusive. For example, the
Navier–Stokes equations must be added four more obtained by differentiating the
equation divu = ux + vy + wz = 0 all the independent variables. It is assumed that
this agreement on the form of the recording system (12.1) is satisfied. It also assumes
that from (12.1) should not be any relationships linking variables x and u, i.e.

dim ρk
0 ({z ∈ Zk : Φ(z) = 0}) = n + m. (12.2)

In this section, we consider the point transformations, i.e. transformations of
the dependent and independent variables for the needs of the differential equations
prolonged to the space Zk .
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One-parameter local Lie group of point transformations completely determines
infinitesimal operator

L =
n∑

i=1

ξ i (x, u)∂xi +
m∑
j=1

ζ j (x, u)∂u j . (12.3)

The prolongation of L on the space Zk is written as

Lk = L +
|α|�k∑
|α|>0

ζα∂uα
,

where

ζα+γ j = Djζα −
n∑

i=1

uα+γi D jξ
i , j = 1, . . . , n. (12.4)

System (12.1) admits operator (12.3) if and only if the following condition be
satisfied

LkΦ
∣∣
Φ=0 = 0. (12.5)

It follows from formulas (12.4) that

L∞Dj = Dj L
∞ −

n∑
i=1

Dj (ξ
i )Di , j = 1, . . . , n. (12.6)

In the paper [7, Sect. 4.9], formulas (12.6) named lemma on commutator.

Lemma 12.1 An prolonged system of partial differential equations admits each
symmetry of an original system.

Proof To prove the lemma is needed to establish that

Lk+1DjΦ
∣∣
Φ=0,Φ1=0 = 0, j = 1, . . . , n (12.7)

follows from (12.5), where Φ1 = {D1Φ, . . . , DnΦ}.
Operators Lk and Lk+1 in the expressions (12.5) and (12.7) can be replaced by

the infinity prolonged operator L∞. After this substitution, the formulas (12.6) allow
to move the left-hand of expression (12.7) as
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L∞DjΦ
∣∣
Φ=0,Φ1=0 =

(
Dj L

∞Φ −
n∑

i=1

Dj (ξ
i )DiΦ

)∣∣∣∣∣
Φ=0,Φ1=0

=

= Dj L
∞Φ

∣∣
Φ=0,Φ1=0 , j = 1, . . . , n. (12.8)

Expression (12.8), in general, is not required zero. But it follows from the theorem
on the representation of a non-singular invariant manifold (see [7, Sect. 18.7]) that
allows to select as a mappingΦ in (12.1) invariant of the operator Lk in the space Zk .
Indeed, by condition (12.2) it follows that manifold (12.1) is non-singular invariant
manifold under any one-parametric group Lie admitted by system (12.1). �

Corollary 12.1 The manifold

Θ = pk+1
k ({z ∈ Zk+1 : Φ(pk+1

k (z)) = 0, Φ1(z) = 0})

is invariance under any Lie symmetry admitted by system (12.1).

Proof Obviously, that Θ ⊆ F = {z ∈ Zk : Φ(z) = 0}. If the manifold Θ is empty
or is equal to F , then statement of Lemma is true. If Θ ⊂ F , then there exits the
mapping ϕ : Zk → Rs1 such that Θ = {z ∈ Zk : Φ(z) = 0, ϕ(z) = 0}.

For any infinitesimal operator L , the set of equations

(L∞Φ, L∞Φ1)
∣∣
Φ=0,Φ1=0 = 0

is equal the set of equations

(L∞Φ, L∞ϕ, L∞Φ1)
∣∣
Φ=0,ϕ=0,Φ1=0 = 0.

Last set is equal to the union of two next sets of equations:

(L∞Φ, L∞ϕ)
∣∣
Φ=0,ϕ=0 = 0, (12.9)

(L∞Φ1)
∣∣
Φ=0,Φ1=0 = 0.

If system (12.1) admits the operator L , then by Lemma 12.1 it follows that (12.9)
is true. But the set of Eq. (12.9) is not equal the set of Eq. (12.5), firstly because
of reduced number of variables over which the splitting Eq. (12.5) and secondly
because of the addition of the new equations ϕ = 0 in the system. So it is possible
the emergence of the new symmetries of the system Φ = 0, ϕ = 0. Isobaric gas
motion example demonstrates such an extension group [13]. �

Bringing the system to involutive form carried out by means of prolongations.
Any system of partial differential equations is a finite number of prolongations to
the involutive form or contradictory system [11, Sect. 63]. So, if the system can
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be brought to mind involutive finite number of prolongations, is a finite number of
applications of Lemma 12.1 and Corollary 12.1 establish the validity the following
statement.

Corollary 12.2 The system of differential equations reduced to involutive form
admits all point symmetry of the original system at the points of general position.

12.3 Automorphic Systems

Definition 12.1 If any solution of a system of differential equations is obtained
from one fixed solutions by means of action of the group transformations G, then
this system is called automorphic with respect to the group G [7, Sect. 25.1].

We consider the Lie group Gr (h) of the finite dimension r generated by the
mapping h : Z × B → Z , where B = Rr . There exists unique prolongation of
the mapping h on the space Zk for all k > 0. Here, this prolongation is written
in the form

h
k

: Zk × B → Zk .

Starting with some k the general rank rk of the group Gr on the space Zk is equal to
r . Here, this value of k is denoted by k1.

The mapping u : X → Y for every k � 0 determines the manifold in the space
Zk (‘graph of mapping’)

U
k

=
{
x, yα = ∂ |α|u

∂xα1
1 . . . ∂xαn

n
, 0 � |α| � k

}
. (12.10)

The result of the action of the group Gr on the manifold (12.10) is called an orbit
of the manifold and is denoted by h

k
(U
k
, O), where O is a neighbourhood 0 in the

space B. Dimension of the orbit dk satisfies inequalities

max{n, rk} � dk = dim h
k
(U
k
, O) � min{n + rk, νk}. (12.11)

It is obvious that for all k � 0

ρk+1
k

(
h

k+1
(U
k+1

, O)

)
= h

k
(U
k
, O). (12.12)

Obviously, there exists k2 � k1 (k2 depends of the mapping u) such that the orbit
is a own manifold of the space Zk for all k � k2. When k � k2 there exist mappings
ψk : Zk → Rsk such that
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h
k
(U
k
, O) = {zk ∈ Zk : ψk(zk) = 0},

where sk = νk − dk . Due to (12.12) the mappings ψk can be chosen such that the set
of the mappings ψk+1 for every k is an expansion of the set of the mapping ψk .

The relations
ψk(z) = 0, z ∈ Zk (12.13)

give a system of differential equations of the order k on m functions of n variables
and mapping u is the solution of this system.

The system

p(ψk)(z) = {ψk(ρ
k+1
k (z)), (D1ψk)(z), . . . , (Dnψk)(z)} = 0, z ∈ Zk+1

is called the first prolongation of the system (12.13). Accordingly, the manifold

p(h
k
(U
k
, O)) = {z ∈ Zk+1 : p(ψk)(z) = 0}

is called the first prolongation of the orbit h
k
(U
k
, O).

Lemma 12.2 The following relation holds for every k � k2:

p(h
k
(U
k
, O)) ⊇ h

k+1
(U
k+1

, O). (12.14)

Proof By Lemma 12.1, it follows that an prolonged system of partial differential
equations admits each symmetry of an original system. Hence, prolonged system
p(ψk(z)) = 0 admits the group Gr and the mapping u is the solution of this system.
Therefore, the prolongation of the orbit u from the space Zk contains the orbit of the
solution u in the space Zk+1. �
Lemma 12.3 The following equality holds for every k � k2:

ρk+1
k (p(h

k
(U
k
, O))) = h

k
(U
k
, O).

Proof On the one hand, the obvious embedding holds

ρk+1
k (p(h

k
(U
k
, O)) ⊆ h

k
(U
k
, O).

On the other hand, applying the projection ρk+1
k to both sides of the relation (12.14)

and using equality (12.12) provides the reverse embedding. �
Restriction of the Pfaff system

dyα −
n∑

j =1

yα+γ j dx j = 0, 0 � |α| < k
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on the manifold h
k
(U
k
, O)) provides the Pfaff system with the given independent

variables x . This system is equivalent to the system of differential equations (12.13).
The opposite also holds: every Pfaff system with given independent variables corre-
sponds to an equivalent system of differential equations. The equivalence in this case
is understood as the fact that there is a bijection between integral manifolds of the
system of exterior equations and solutions of the system of differential equations. In
terms of this equivalence, a system of differential equations is called here completely
integrable if the equivalent Pfaff system is completely integrable. Further forms of
the Pfaff system equivalent to the system (12.13) are denoted by ω(ψk).

Theorem 12.1 There exits k3 � k2 such that for every k � k3 the system (12.13) is
completely integrable.

Proof Due to the right-hand inequalities (12.11), there exists k3 such that

dk3−1 = dk3 < νk3−1.

It follows that

rank
∂ψk3

∂ y
k3

= νk3 − νk3−1 = dim Yk3 ,

i.e. the system of differential equations ψk3 = 0 can be solved with respect to all
higher derivatives. Therefore, the system p(ψk3) = 0 is also solvable with respect to
all higher derivatives and, consequently,

dim p(h
k3
(U
k3

, O)) = dim h
k3
(U
k3

, O) = dk3 . (12.15)

Therefore, by Lemma 12.2, it follows that dk = dk3 for all k > k3.
It follows from Lemma 12.3 that for all k � k3 the ideal generated by the system

ω(ψk) = 0 is closed with respect to the operation of the exterior differentiation.
Hence, the statement of the Lemma follows from the Frobenius theorem. �

Theorem 12.2 The system (12.13) is automorphic for every k � k3.

Proof The system of exterior equations ω(ψk)with k � k3 is completely integrable,
i.e. the unique integral manifold passes through every point of the orbit h

k
(U
k
, O)

(see the paper [11]). On the other hand, for any point z ′ ∈ h
k
(U
k
, O) there exist a

transformation g ∈ Gr and a point z ∈ U
k
such that the transformation g maps the

point z into the point z ′. Therefore, this unique integral manifold coincides with the
image of the manifold U

k
under the action of the transformation g. �

Remark 12.1 It follows from the Eq. (12.15), in particular, that the system
ψk+1(z) = 0 for every k � k3 is the first prolongation of the system ψk(z) = 0.
Consequently, all the systemsψk(z) = 0 are prolongations of the system ψk3(z) = 0
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when k > k3. The system ψk3(z) = 0, as Example 1 (variant 7) shows, is not always
the prolongation of the system ψk3−1(z) = 0.

Remark 12.2 Lemmas 12.2 and 12.3 also hold for the infinite-dimensional Lie
groups if there exists the finite k2. If the mapping u is the solution of the system
of differential equations, admitting a group, then the finite k2 exists and does not
exceed the order of the system.

12.4 Construction of Automorphic Systems

To construct automorphic systems, one uses according to the paper [7, Sect. 25.3], the
Theoremon representation of a non-singular invariantmanifold.Due to thisTheorem,
one can choose the invariant of the group Gr of the corresponding dimension as ψk3 .
This invariant is expressed via the universal invariant J

k3
of the order k3, i.e.

ψk3(z) = Ψ (J
k3
(z)) = 0. (12.16)

The requirement of complete integrability of this system imposes conditions on the
mappingΨ . These conditions give a system of differential equations on the mapping
Ψ , this system is called the ‘resolving system’ (see the paper [7, Sect. 26.1]).

The algorithm of construction of all the automorphic systems of the given group
consists in investigating all possible dimensions of orbits determined by the inequal-
ities (12.11). One and the same dimension of the orbit, at least from the point of view
of the inequalities (12.11), can be obtained for different values k3. The number of
these different values is finite. Therefore, up to the operation of prolongation, there
is a finite number of different automorphic systems. But not all the variants admitted
by the inequalities (12.11) are realized.

It is stated in the paper [7, Sect. 25.4] that for given n, m, and r the type of the
automorphic system is completely determined by one parameter: rank, defect, or
dimension of the orbit (these three values quantities are uniquely expressed via each
other). As shown in Example 1 (variants 6 and 7), apart from defect the value k3, i.e.
the order of the automorphic system is also important.

The system (12.16) is written, as a rule, in the solved form with respect to the part
of invariants. The relations (12.12) allows to write the system (12.16) in the form

J ′′ = ϕ(J ′), (12.17)

J ′′′ = ψ(J ′), (12.18)

where the order of the invariants J ′ and J ′′ is lower then k3 and all invariants of
the order k3 are denoted by J ′′′. Dividing the invariants into J ′ and J ′′ is not always
unique and ‘the branching’ of the process is possible. ‘The branching’ is also possible
for further calculations.
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In addition to the inequalities (12.11), there is one more restriction on the dimen-
sion of the orbit. This restriction is connected with consideration of orbits of ‘graphs’
of the mappings u : X → Y . Therefore, the equations of orbits should not impose
restrictions on variables of the space X , i.e. the following inequality should hold

νk − dk � rank

(
∂v J

k

)
, v = (y, y

1
, . . . , y

k
), k = k3 − 1. (12.19)

The set of invariants J ′′ should be chosen such that ∂v J ′′ � νk3−1 − dk3−1.
If u is not an arbitrary mapping but a solution of a system of differential equations

E admitting a group Gr , then the following condition is imposed on the functions ϕ

andψ from (12.17), (12.18): the system E should be a differential-algebraic corollary
of the Eqs. (12.17), (12.18). If the order of the system E does not exceed k3, then
it is expedient to include the system E , written via invariants of the group, into the
system (12.17), (12.18).

12.5 Invariant and Partially Invariant Solutions

Invariant and partially invariant solutions [7, Sect. 19, 22] are solutions of corre-
sponding automorphic systems. For invariant solutions, k3 = 1.

Invariant solutions exist when the inequality (12.19) holds. So the Eq. (12.17) is
solvable with respect to the variables y and the Eq. (12.18); due to Lemma 12.3 and
Theorem 12.1, simply provides expressions for the functions ψ . Therefore, there is
no need to calculate invariants of the first order and the resolving system is obtained
after substitution of expressions of the variables y into the initial systemof differential
equations. That is the technology of construction of invariant solutions with the use
of the notion of automorphic systems does not differ from that described in the paper
[7, Sect. 19].

To construct partially invariant solution with the use of automorphic systems, one
needs differential invariants of the first or, possibly, a higher order. This complicates
the algorithm as compared to the one described in the paper [7, Sect. 22]. But there
is no need to use the notion of ‘redundant’ functions.

12.6 On ‘Simple’ Solutions

When r � n, the minimal possible dimension of the orbit is equal to r . In case of this
minimal dimension sk3 = νk3 − r , i.e. it coincides with the dimension of the space
of invariants. Therefore, the set of invariants J ′ from (12.17), (12.18) is empty and
the functions ϕ and ψ are constants. The resolving system in this case is the system
of algebraic equations for these constants. For the case r = n, such automorphic
systems provide invariant solutions, which are called in the paper [10] ‘simple’. By
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analogy, solutions of such automorphic systems can be also called ‘simple’ even
when r > n. We use this term up to the end of this section.

If H is a subgroup of the group Gr , then every ‘simple’ solution with respect to
the subgroup H is a ‘simple’ solution with respect to the group Gr . Indeed, every
differential invariant of the group Gr is a differential invariant of the subgroup H
and the subgroup H also has other invariants. Therefore, the system (12.17), (12.18)
for the subgroup H is an expansion of a similar system for the group Gr .

12.7 Example 1

Equations of one-dimensional dynamics of polytropic gas

ut + uux + ρ−1 px = 0, ρt + uρx + ρux = 0, pt + upx + γ pux = 0, (12.20)

admit the group with the Lie algebra

∂t , ∂x , t∂x + ∂u, t∂t + x∂x , t∂t − u∂u + 2ρ∂ρ, p∂p + ρ∂ρ. (12.21)

Differential invariants of the first order can be chosen in the form

J1 = ρ(ut + uux )

px
, J2 = ρt + uρx

ρux
, J3 = pt + upx

pux
,

J4 = px
ux

√
ρp

, J5 = ρx
√
p

ux

√
ρ3

.

The given set of invariants forms a basis, i.e. any invariant can be obtained from this
set by means of algebraic operations and actions of the operators of the invariant
differentiation

Λ1 = 1

ux
Dt + u

ux
Dx , Λ2 = ut + uux

u2x
Dx .

Below, we use the following set of differential invariants of the second order:

J21 = ptt + 2uptx + u2 pxx
pu2x

, J22 = (ptx + upxx )px
ρpu3x

, J23 = pxx p2x
ρ2 pu4x

,

J24 = (ρt t + 2uρt x + u2ρxx )p2x
ρ2 pu4x

, J25 = (ρt x + uρxx )p3x
ρ3 pu5x

, J26 = ρxx p4x
ρ4 pu6x

,

J27 = (utt + 2uutx + u2uxx )ρ

pxux
, J28 = utx + uuxx

u2x
, J29 = uxx px

ρu3x
.



12 Automorphic Systems and Differential-Invariant Solutions 293

The system (12.20) is written in the space of invariants in the form

J1 = −1, J2 = −1, J3 = −γ. (12.22)

The inequalities (12.11) admit the following variants of automorphic systems for
the Eq. (12.20):

No. d1 d2 d3 d4 k3 δ

1 6 6 6 6 2 4
2 6 7 7 7 3 5
3 6 7 8 8 4 6
4 6 8 8 8 3 6
5 7 7 7 7 2 5
6 7 8 8 8 3 6
7 8 8 8 8 2 6

Here δ = dk3 − n is the defect of invariance. Further, we construct the systems
(12.17), (12.18) for every variant from the table and investigate the resolving system
for some of them.

For variants 1–4, the dimension d1 = 6, i.e. s1 = ν1 − d1 = 5 and coincides with
the number of the invariants of the first order. Therefore, all invariants of the first
order should be equal to constants, i.e. the Eq. (12.22) should be supplemented by
the equations

J4 = c4, J5 = c5, (12.23)

where c4 and c5 are some constants.
Since the complete set of invariants of a higher order can be obtained by the

action of operators of invariant differentiation on the invariants of the first order, the
invariants of a higher order should be equal to zero. Therefore, the arbitrary way
in construction of the system (12.17), (12.18) for variants 1–4 does not exceed two
constants.

The system (12.22), (12.23) is compatible if c5 = (c24 − γ + 1)/c4 and the first
prolongation of these equations is completely integrable under the condition c24 �= γ .
Under these conditions and when γ �= 1 the solution of the system (12.22), (12.23)
has the form

u = ax + u1(t), ρ = ρ1 p
α, p = (p1(t) + 0.5(1 − α)c4a

√
ρ1x)

2/(1−α),

where

α = (c24 − γ + 1)/c24, a = 1/(c6 + 0.5(1 + γ )t), ρ1 = c7(c6 + 0.5(1 + γ )t)2/(1+γ ),

c6, c7 are constants and the functions u1(t) and p1(t) satisfy the linear system of
ordinary differential equations
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du1
dt

= −a

(
u1 + c4√

ρ1
p1

)
,

dp1
dt

= −γ − 1

2c24
a(c4

√
ρ1u1 + γ p1).

If c24 = γ , then system (12.22), (12.23) is involutive and none of its prolongations
is completely integrable. Hence, in particular, there are no automorphic systems of
variants 2, 3, 4 for the system (12.20).

For variant 5, the Eqs. (12.17), (12.18) consist of the Eq. (12.22) and one of the
following systems of equations

J4 = ϕ(J5), J2i = ψi (J5), i = 1, . . . , 9,

J5 = c5, J2i = ψi (J4), i = 1, . . . , 9.

For variant 6, the Eqs. (12.17), (12.18) consist of the Eq. (12.22) and one of the
following system of equations

J4 = ϕ0(J5), J2i = ϕi (J5, J26), i ∈ {1, . . . , 9}, i �= 6, Λ2 J26 = ψ(J5, J26),

J5 = c5, J2i = ϕi (J4, J23), i ∈ {1, . . . , 9}, i �= 3, Λ2 J23 = ψ(J4, J23).
(12.24)

The condition of complete integrability of the system (12.22), (12.24) gives the
following equations for determining the functions ϕi :

ϕ21 = (γ 2 J 2
4 + γ J23 + γ J 2

4 + J 4
4 )/J 2

4 , ϕ22 = −J 2
4 (γ + 1), ϕ24 = J23 + 2J 2

4 ,

ϕ25 = ϕ26 = ϕ29 = 0, ϕ27 = γ + 1, ϕ28 = −(J23 + J 2
4 )/J 2

4 ,

c5 = 0 and ψ = θ(J23/J 4
4 )J 6

4 , where θ is an arbitrary function of one argument.
For variant 7 the Eq. (12.17) coincide with the Eq. (12.22) and the Eq. (12.18) are

written in the form
J2i = ψi (J4, J5), i = 1, . . . , 9. (12.25)

Six of the functions ψi are determined from the condition of complete integrability
of the system (12.22), (12.25) by the equations

ψ1 = (γ 2 J 2
4 − γ J 3

4 J5 + γ J 2
4 + γψ3 + J 4

4 )J−2
4 ,

ψ2 = −(γ J 2
4 + γψ9 + J 2

4 ),

ψ4 = 2J 2
4 + ψ3,

ψ5 = −J 2
4 (2J4 J5 + ψ9),

ψ7 = (γ J 2
4 + γψ9 + J 2

4 )J−2
4 ,

ψ8 = (J 3
4 J5 − J 2

4 − ψ3)J
−2
4 ,
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and the rest of them satisfy the system of quasi-linear equations

J 3
4 Aψ9 + Bψ3 + 2J4(γ J 4

4 ψ9 + γ J 2
4 ψ2

9 + 2J 6
4 J

2
5 + 3J 5

4 J5ψ9 +
+J 4

4 ψ3 + J 2
4 ψ9ψ3 − J 2

4 ψ6 − 2ψ2
3 ) = 0,

γ Bψ9 + J4Aψ3 + 2J4(2γ J 4
4 ψ9 + γ J 3

4 J5ψ9 + 3γ J 2
4 ψ2

9 + 2γ J 2
4 ψ3 +

+γψ9ψ3 + J 4
4 ψ9 + 4J 3

4 J5ψ3 − 2J 2
4 ψ3 − 4ψ2

3 ) = 0,

J4Bψ9 + Aψ6 + 2(3γ J 2
4 ψ6 + 4γψ9ψ6 + 4J 5

4 J5ψ9 + 3J 4
4 ψ2

9 +
6J 3

4 J5ψ6 − J 2
4 ψ9ψ3 − 3J 2

4 ψ6 − 6ψ6ψ3) = 0,

where

A = J4α1
∂

∂ J4
+ α2

∂

∂ J5
, B = J 2

4 α3
∂

∂ J4
+ α4

∂

∂ J5
,

α1 = −γ J 2
4 − 2γψ9 − 2J 3

4 J5 + J 2
4 + 2ψ3,

α2 = −γ J 2
4 J5 − 2J 3

4 J
2
5 + J 2

4 J5 − 2J4ψ9 + 2J5ψ3,

α3 = −J 4
4 − J 3

4 J5 − 2J 2
4 ψ9 + 2ψ3,

α4 = J 5
4 J5 − 3J 4

4 J
2
5 − 2J 3

4 J5ψ9 + 2ψ6.

12.8 Example 2

The example of the present section demonstrates that the automorphic system of the
infinite-dimensional Lie group is not necessarily completely integrable.

Group foliation for the Karman–Guderley equation

− ϕxϕxx + ϕyy + ϕzz = 0 (12.26)

was constructed in the paper [3] with respect to the infinite-dimensional group with
the infinitesimal operator f (y, z)∂ϕ , where f (y, z) is an arbitrary harmonic function.
This operator determines the transformation ϕ → ϕ + f (y, z).

Group foliation of the Eq. (12.26) is given, as shown in the paper [3], by the
automorphic system

ϕx = a, ϕyy + ϕzz = aax (12.27)

and the resolving equation

−aaxx − a2x + ayy + azz = 0.

The difference of any two solutions of the system (12.27) is a harmonic function
of variables y, z and does not depend on the variable x . Therefore, the system (12.27)
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is in fact automorphic. The system (12.27), where a satisfies the resolving equation,
is involutive but not completely integrable.

Remark 12.3 If the system of differential equations E admits the finite-dimensional
Lie group Gr , then any solution of the system E is the solution of some automorphic
system of the group Gr . An automorphic system is relatively simply integrable,
but the resolving system can be significantly more complex than the initial system
E . Example 1 (variant 7) demonstrates it. An exception is provided by automorphic
systems of aminimal defect. In this case, the resolving system is a system of algebraic
equations for the totality of constants.

The fact that an automorphic system should be completely integrable allows to
write representation of the system of a given type (or several representations like
in variants 5 and 6 of Example 1) immediately. There is no need to write all the
equations of the system (12.18) for definite calculations.

12.9 On Integration of Automorphic Systems
of Finite-Dimensional Lie Group

In the present section for completely integrable Pfaff systems, we prove theorems
on order reducing for the system admitting Lie symmetry, on a sequential order
reducing for the system admitting more than one-parametric Lie symmetries, and on
the integrating factor for one-dimensional systems.

The first and the third theorems are direct generalization of similar theorems for
ordinary differential equations described in the paper [7, Sect. 8.5]. Other ways of
employing an admitted Lie symmetry for the order reducing of ordinary differential
equations are described in the papers [4–6].

Generally speaking, the calculation of admitted group for completely integrable
Pfaff system (as for a system of ordinary differential equations) is not simple than
integrating the original system. But the automorphic system of a finite-dimensional
Lie group G admits a Lie group which is given ‘for free’: this group is the restriction
of group G on the manifold determined by the system.

12.9.1 Symmetries for Pfaff System

We consider the completely integrable Pfaff system

ω = dy − ϕ1(x, y) dx1 − · · · − ϕn(x, y) dxn = 0, x ∈ Rn, y ∈ Rm . (12.28)

System (12.28) is called completely integrable in some domain of space Rn ×
Rm if for each point of this domain an n- dimensional integral surface of system
(12.28) passes through (in this case for each point just one surface passes through)
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[11, Sect. 23]. In accordance with Frobenius theorem [11, Sect. 26], system (12.28)
is completely integrable if and only if the external derivatives dω belongs to the ideal
generated by formsω. The latter is true if and only if dω|ω=0 = 0. And this condition
is equivalent to the expressions

[Di , Dj ] = 0, i, j = 1, . . . , n, (12.29)

where
Di = ∂xi + ϕi · ∂y, i = 1, . . . , n. (12.30)

Indeed,

dω|ω=0 = −
∑
i, j

D jϕ
i dx j ∧ dxi = −

∑
j>i

(Djϕ
i − Diϕ

j ) dx j ∧ dxi .

The one-parametric group with the infinitesimal operator

L = ξ(x, y) · ∂x + η(x, y) · ∂y (12.31)

is admitted by system (12.28) if and only if

[L̃, Di ] = 0, i = 1, . . . , n, (12.32)

where

L̃ = L − ξ 1D1 − · · · − ξ nDn = (η − ξ 1ϕ1 − · · · − ξ nϕn) · ∂y = η̃ · ∂y . (12.33)

This fact can be established straightforwardly or one can employ a similar statement
for the generalized symmetries in the papers [6, Lemma5.12], [1]. The matter is that
the generalized symmetries of system (12.28) coincide with point ones.

It follows from relations (12.32) and (12.33) that, in particular, each linear combi-
nation of operators (12.30) with coefficients depending on variables x , y is admitted
by system (12.28), and these linear combinations form an ideal of the algebra admit-
ted by system (12.28). It is also clear that component ξ of field L is an arbitrary
vector-function of variables x , y.

12.9.2 Order Reducing for Pfaff System

Theorem 12.3 Suppose Pfaff system (12.28) is completely integrable and admits
the one-parametric Lie group with operator (12.31). Then, once m > 1, the knowing
of the universal invariant for operator (12.33) allows us to reduce the dimension of
system (12.28) by one.
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Proof Universal invariant of operator (12.33) can be chosen as

x1, . . . , xn, J 1(x, y), . . . , Jm−1(x, y).

If an one-dimensional mapping ψ(x, y) is so that L̃ψ = 1, then rank ∂(J, ψ)/∂y
= m [7, Sect. 8.5], and hence, for each x the mapping

y ′ = J (x, y) = (J 1(x, y), . . . , Jm−1(x, y)), y ′′ = ψ(x, y) (12.34)

is a local transformation of space Rm . By (12.32), operators (12.30) are the operators
of invariant differentiation for the algebra generated by the operator (12.33). There-
fore, the mapping DJ is an invariant of this algebra and is expressed by its universal
invariant, i.e. there exists a mapping θ such that DJ = θ(x, J ). In view of this fact,
in terms of variables x , y ′, y ′′ system (12.28) is written as

dy ′ = Jxdx + Jydy = DJdx = θ(x, y ′)dx, (12.35)

dy ′′ = Dψdx = ϑ(x, y ′, y ′′)dx . (12.36)

System (12.35) consists of m − 1 equations for m − 1 functions. Equation (12.36)
should be integrated after the integration of system (12.35). �

Remark 12.4 If function ψ satisfies additional conditions

Diψ = 0, i = 1, . . . , n, (12.37)

then Eq. (12.36) casts into the form dy ′′ = 0, i.e. it can be written as the relation
y ′′ = const. It is clear that there always exists a function ψ satisfying conditions
(12.37). The question is just how to find its analytic representation. But the same
concerns the universal invariant.

The requirement L̃ψ = 1 is not always convenient and can be replaced by
L̃ψ �= 0.

12.9.3 Further Reduction of Order

Lemma 12.4 Let the operators L1 = ξ1 · ∂z , L2 = ξ2 · ∂z , D = η · ∂z acts in space
Rk and satisfy the conditions

[L1, D] = 0, [L2, D] = 0.

Let also the mappings φ : Rk → Rk−1 obey the conditions

L1φ = 0, L1ψ = 1, Dψ = 0, ∂φ/∂x = k − 1.
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Then,
[L2|M , D|M ] = [L2, D]|M = 0,

where M = {z ∈ Rk : ψ(z) = 0}.
Proof After the change of variables

z ′ = φ(z), z ′′ = ψ(z)

operators L2 and D are written as

L ′
2 = ξ ′

2(z
′, z ′′)∂z ′ + ξ ′′

2 (z ′, z ′′)∂z ′′ , D ′ = η′(z ′)∂z ′ .

Indeed, Dφ is the invariant of operator L1, and thus, it is expressed in terms of
universal invariant φ. Then,

[L ′
2, D

′]∣∣M = ((η′
z ′ξ

′
2(z

′, z ′′) − ξ ′
2z ′(z ′, z ′′)η′) · ∂z ′ + (. . . )∂z ′′)|M =

= (η′
z ′ξ

′
2(z

′, 0) − ξ ′
2z ′(z ′, 0)η′) · ∂z ′ = [ L ′

2

∣∣
M , D ′∣∣

M ].

It is clear that [L ′
2, D

′] = 0, and therefore, the restriction of this commutator on
manifold M vanishes. �

Lemma 12.4 implies the theorem which allows one to reduce sequentially the
order of the system once the group is wide enough.

Theorem 12.4 Each symmetry of system (12.28) transformed by (12.34) and
restricted then to the space of variables (x, y ′) is admitted by system (12.35).

12.9.4 First Order (m = 1)

Theorem 12.5 Suppose that Pfaff system (12.28) is completely integrable, admits
one-parametric Lie group with infinitesimal operator (12.31) and m = 1, i.e. we
are given one Pfaff equation. Then, μ = 1/η̃ is an integrating factor for this Pfaff
equation.

Proof To prove the theorem, we need to establish the existence of a function u(x, y)
such that

∂u

∂y
= 1

η̃
,

∂u

∂xi
= −ϕi

η̃
, i = 1, . . . , n.

In its turn, such function u exists if

∂

∂xi

1

η̃
+ ∂

∂y

ϕi

η̃
= 0,

∂

∂x j

ϕi

η̃
− ∂

∂xi

ϕ j

η̃
= 0, i, j = 1, . . . , n. (12.38)
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These conditions are satisfied by virtue of (12.29), (12.32). Indeed, the left-hand
side of the former expression in (12.38) after the differentiation is written as
η̃−2(η̃xi + η̃yϕ

i − ϕi
y η̃) and up to a factor it coincides with the left-hand side of

expression (12.32). The left-hand side of the latter expression (12.38) after the dif-
ferentiation is written as η̃−2(ϕi

x j
η̃ − ϕi η̃x j − ϕ

j
xi η̃ + ϕ j η̃xi ). And substituting then

in this expression the η̃xi , η̃x j from (12.32) and ϕi
x j

from (12.29), we see that it
vanishes. �

12.9.5 Automorphic Systems

The restriction of Pfaff system

dyα −
n∑

j =1

yα+γ j dx j = 0, 0 � |α| < k

on the manifold determined by an automorphic (with respect to r -parametric Lie
group Gr ) system of order k gives completely integrable Pfaff system. Here, α =
(α1, . . . , αn) aremulti-indexes, |α| = α1 + · · · + αn , |γ j | = 1 and the j th component
of the multi-index γ j is equal to 1.

The restriction of kth prolongation of group Gr on the manifold determined by an
automorphic system is obviously admitted by Pfaff system. Application of Theorems
12.3–12.5 allows us to reduce the order of Pfaff system or completely integrate under
the sufficient rank of the group.

12.10 Example 3

Pfaff system
du = − (

u + c
√
p/ρ

)
u1dt + u1dx,

dρ = −
(
ρ + u(c2 − γ + 1)/c

√
ρ3/p

)
u1dt +

+ (c2 − γ + 1)/c
√

ρ3/p u1dx,

dp = − (
γ p + uc

√
ρp

)
u1dt + c

√
ρpu1dx,

du1 = −(γ + 1)/2u21dt

(12.39)

is equivalent to the automorphic system

ut + uux + ρ−1 px = 0, ρt + uρx + ρux = 0, pt + upx + γ pux = 0,

px = c
√

ρp ux , ρx = (c2 − γ + 1)/c
√

ρ3/p ux , uxx = 0
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from Example 1 (12.22), (12.23). Here, constant c4 (c24 �= γ ) is replaced by constant
c. Below we treat the case γ �= 1.

The restrictions of first prolongation of the operators (12.21) on the manifold
determined by the system (12.39) is written as

L1 = ∂t , L2 = ∂x , L3 = t∂x + ∂u, L4 = t∂t + x∂x − u1∂u1 ,

L5 = t∂t − u∂u + 2ρ∂ρ − u1∂u1 , L6 = p∂p + ρ∂ρ.

Inwhat follows, for the order reducing of the systemwe employ sequentially oper-
ators L6, L3 and L2. In each step we indicate the universal invariant, functionψ , new
representations of operators Dt , Dx , and remained operators L̃ . New representation
for the Pfaff system is not written since it is completely determined by operators Dt ,
Dx . The superscript indicates the step. While writing out the universal invariant, we
introduce the notations for new variables. In each step, function ψ obeys condition
(12.37).

First step (operator L̃6). Universal invariant is t, x, u, u1, p1 = p/ρ.

ψ1 = ln ρ − 2(c2 − γ + 1)/(γ − 1) ln
(
2c

√
p/ρ

)
+ 2(c2 − γ )/(γ + 1) ln u1,

D1
t = ∂t − u1(c

√
p1 + u)∂u − u21(γ + 1)/2∂u1 + p1u1(1 − γ )(1 + u/(c

√
p1))∂p1 ,

D1
x = ∂x + u1∂u + p1u1(γ − 1)/(c

√
p1)∂p1 ,

L̃1
3 = (1 − tu1)∂u + (p1tu1(1 − γ ))/(c

√
p1)∂p1 ,

L̃1
2 = −u1∂u − p1u1(γ − 1)/(c

√
p1)∂p1 .

Second step (operator L̃1
3). Universal invariant is t, x, u1, p2 = 2

√
p1 − tuu1

(γ − 1)/(c(tu1 − 1)).

ψ2 = u − 2c
√
p1/(γ − 1),

D2
t = ∂t − u21(γ + 1))/2∂u1 + (p2u1(γ − 1))/(2(tu1 − 1))∂p2 ,

D2
x = ∂x + (u1(−γ + 1))/(c(tu1 − 1))∂p2 ,

L̃2
2 = (u1(γ − 1))/(c(tu1 − 1))∂p2 .

Third step (operator L̃6). Universal invariant is t, x, u1.

ψ3 = (2cp2tu1 − 2cp2 − γ 2tu1 + 2γ u1x + 2γ + tu1 − 2u1x − 2)/(2u1(γ − 1)),

D3
t = ∂t − u21(γ + 1)/2∂u1 ,

D3
x = ∂x .

Finally, we obtain one-dimensional Pfaff system

du1 + u21(γ + 1)/2 dt = 0,

which is easily integrated u1 = 2/((γ + 1)t + c4), where c4 is some constant.
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Returning back to the original variables and employing the expressions for the
invariants and relations ψ i = ci , i = 1, 2, 3, where ci are some constants, we obtain
the general solution of system (12.39):

u = (c2(γ − 1)t + 2x + c4 − 2c3 + c2c4)/((γ + 1)t + c4),

ρ = c1(4c
2 p1)

c2/(γ−1)−1u2(γ−c2)/(γ+1)
1 , p = p1ρ, u1 = 2/((γ + 1)t + c4),

where p1 = (γ − 1)2(x − c2t + c4/2 − c3)2/(c(c4 + (γ + 1)t))2.

12.11 Example 4

In the paper [3], there was found an admitted group and there was constructed a
group foliation for the Karman–Gooderley equation

− uxuxx + uyy + uzz = 0 (12.40)

with respect to the infinite-dimensional part of the admitted group. To construct
the automorphic system, here there was used a finite-dimensional subgroup of the
admitted group generated by the operators

L1 = ∂x , L2 = ∂y, L3 = ∂z, L4 = z∂y − y∂z,
L5 = y∂y + z∂z − 2u∂u, L6 = x∂x + 3u∂u .

(12.41)

The solutions to Eq. (12.40) which form six-dimensional orbits in the prolonged
spaces under the action of the group generated by operators (12.41) satisfy one of
two following automorphic systems:

ux = (3/2)2/3(u2y + u2z )
1/3, uxx = (3/2)1/3(u2y + u2z )

2/3/u,

uxy = (3/2)2/3(u2y + u2z )
1/3uy/u, uyy = 3/2 u2y/u, (12.42)

uxz = (3/2)2/3(u2y + u2z )
1/3uz/u, uyz = 3/2 uyuz/u, uzz = 3/2 u2z/u;

ux = (3/2)1/3(u2y + u2z )
1/3, uxx = (3/2)−1/3(u2y + u2z )

2/3/u,

uxy = (3/2)1/3(u2y + u2z )
1/3uy)/u, uyy = (3u2y − u2z )/(2u), (12.43)

uxz = (3/2)1/3(u2y + u2z )
1/3uz/u, uyz = (2uyuz)/u, uzz = (−u2y + 3u2z )/(2u).



12 Automorphic Systems and Differential-Invariant Solutions 303

In what follows, to reduce the order of automorphic system (12.42), we employ
sequentially operators L2, L4. Pfaff system equivalent to system (12.42) can be
written as

du − (3/2)2/3(v2 + w2)1/3dx − vdy − wdz = 0,

dv − (3/2)2/3(v2 + w2)1/3vdx − 3/(2u)v2dy − 3/(2u)vwdz = 0,

dw − (3/2)2/3(2+w2)1/3wdx − 3/(2u)vwdy − 3/(2u)w2dz = 0.

Then, the restrictions of first prolongation of operators L2, L4 on the manifold deter-
mined by system (12.42) followed by the factorization with respect to the ideal are
written as follows

L̃2 = −v∂u − 3/(2u)(v2∂v + vw∂w),

L̃4 = (−vz + wy)∂u + (2uw − 3v2z + 3vwy)/(2u)∂v +
+ (−2uv − 3vwz + 3w2y)/(2u)∂w.

First step (operator L̃2). The universal invariant is x, y, z, v1 = v/u3/2,w1 =
w/u3/2.

ψ1 = 2u/v + y + zw/v,

D1
x = ∂x + (3/2)2/3(v21 + w2

1)
1/3(∂u + v1∂v1 + w1∂w1),

D1
y = ∂y, D1

z = ∂z, L̃1
4 = w1∂v1 − v1∂w1 .

Second step (operator L̃1
4). The universal invariant is x, y, z, v2 =

√
v21 + w2

1.

ψ2 = arctan (v1/w1) + 32/32−5/3x − 3/2(v21 + w2
1)

−1/3,

D2
x = ∂x − (3/2)2/3/2v5/32 ∂v2 , D2

y = ∂y, D2
z = ∂z .

As a result, we get one-dimensional Pfaff system dv2 + (3/2)2/3/2v5/32 dx = 0,
which can be easily integrated v2 = (x/ 3

√
12 + c3)−3/2. Returning back to the original

variables and employing the expressions for the invariants and relations ψ i = ci ,
i = 1, 2, where ci are some constants, we obtain the general solution to system
(12.42):

u = 4(x/ 3
√
12 + c3)

3/(y sin(c2) + z cos(c2) + c1)
2. (12.44)

In the same way, one can obtain the general solution to system (12.43):

u = 2/9(x + c1)
3/((y + c2)

2 + (z + c3)
2). (12.45)



304 A.A. Talyshev

Remark 12.5 The above examples of solutions demonstrate application of the results
of the Sect. 12.9 and we do not claim that other known methods can not be applied
here. In particular, solutions (12.44), (12.45) as c1 = c2 = c3 = 0 equal 2/9x3/(y2 +
z2), respectively, and they are self-similar solutions to Eq. (12.40). Hence, solutions
(12.44), (12.45) can be obtained from self-similar solutions by means of translations
and rotations.

12.12 Example 5

An example, this section shows that undecidability Lie algebra does not prevent a
decrease of the order ordinary differential equation on the value of algebra dimension.

Consider a system of differential equations

d2x

dt2
= xg(r),

d2y

dt2
= yg(r),

d2z

dt2
= zg(r), r = x2 + y2 + z2, (12.46)

where g is some function of one argument. The system (12.46) admit undecidable
Lie algebra with operators:

M1 = y∂z − z∂y, M2 = x∂z − z∂x , M3 = x∂y − y∂x . (12.47)

System (12.46) is equivalent to the following Pfaff system:

dx − udt = 0, du − xgdt = 0,

dy − vdt = 0, dv − ygdt = 0, (12.48)

dz − wdt = 0, dw − zgdt = 0.

Prolongation of the operators (12.47) are

M1 = y∂z − z∂y + v∂w − w∂v,

M2 = x∂z − z∂x + u∂w − w∂u, (12.49)

M3 = x∂y − y∂x + u∂v − v∂u .

The total derivative operator of the system (12.48) is

Dt = ∂t + u∂x + v∂y + w∂z + xg∂u + yg∂v + zg∂w.

The system (12.48) admit operators (12.49), then

[Dt , Mj ] = 0, j = 1, 2, 3.
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Invariants of the operator M3

t1 = t, x1 =
√
x2 + y2, z1 = z, w1 = w,

u1 = (ux + vy)/
√
x2 + y2, v1 = (vx − uy)/

√
x2 + y2,

and function

ψ1 = arctan
( y

x

)
− arctan

(
uyz − vxz

uxz + vyz − wx2 − wy2

)
,

M3ψ1 = 1, Dtψ1 = 0

may be select as new variables. Operator Dt in this variables is written as

D1
t = ∂t + u1∂x1 + w1∂z1 + (g1x

2
1 + v21)/x1∂u1 + (−u1v1)/x1∂v1 + g1z1∂w1 .

Pfaff system (12.48) is written as

dx1 − u1dt = 0, du1 − (g1x21 + v21)/x1dt = 0,

dv1 − (−u1v1)/x1dt = 0,

dz1 − w1dt = 0, dw1 − z1g1dt = 0.

(12.50)

Here,
g1 = g(x21 + z21).

Operators M1 and M2 in this variables and restricted to manifold ψ1 = 0 is written
as

M̄1
1 = ρ−1(v1z

2
1∂x1 − v1x1z1∂z1 + v1z1(−u1z1 + 2w1x1)x

−1
1 ∂u1 +

+ (u21z
2
1 − 2u1w1x1z1 + w2

1x
2
1 )x

−1
1 ∂v1 − v1w1x1∂w1),

M̄1
2 = ρ−1(z1(−u1z1 + w1x1)∂x1 + x1(u1z1 − w1x1)∂z1 +

+ (−u1w1x1z1 − v21z
2
1 + w2

1x
2
1 )x

−1
1 ∂u1 +

+ v1z1(u1z1 − w1x1)x
−1
1 ∂v1 + (u21z1 − u1w1x1 + v21z1)∂w1),

where

ρ =
√

(u1z1 − w1x1)2 + v21z
2
1.

Let M1
1 = ρ M̄1

1 and M1
2 = ρ M̄1

2 , then

[D1
t , M̄

1
j ] = 0, [D1

t , M
1
j ] = 0, j = 1, 2 [M̄1

1 , M̄
1
2 ] �= 0, [M1

1 , M
1
2 ] = 0,
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[D1
t , M

1
1 ] = 0, [D1

t , M
1
2 ] = 0, [ρM1

1 , ρM
1
2 ] = 0.

Invariants of the operator M1
1

t2 = t, x2 =
√
x21 + z21, u2 = (2u1x1z1 − w1x

2
1 + w1z

2
1)/(2z1

√
x21 + z21),

v2 = (u21z
2
1 − 2u1w1x1z1 + v21z

2
1 + w2

1x
2
1 )/z

2
1, w2 = w1

√
x21 + z21/z1,

and function

ψ2 = −arctan

⎛
⎝

√
u21z

2
1 − 2u1w1x1z1 + v21z

2
1 + w2

1x
2
1

v1x1

⎞
⎠ ,

D1
t ψ2 = 0, M1

1ψ2 �= 0

may be select as new variables. Operator D1
t in this variables is written as

D2
t = ∂t + (2u2 + w2)/2∂x2 + (gx22 − 2u22 + u2w2 + 2v2)/(2x2)∂u2+

+(−2v2w2)/x2∂v2 + (2gx22 + 2u2w2 − w2
2)/(2x2)∂w2 .

Pfaff system (12.50) is written as

dx2 − (2u2 + w2)/2dt = 0,

du2 − (g2x22 − 2u22 + u2w2 + 2v2)/(2x2)dt = 0,

dv2 − (−2v2w2)/x2dt = 0,

dw2 − (2g2x22 + 2u2w2 − w2
2)/(2x2)dt = 0.

(12.51)

Here, g2 = g(x22 ). Operator M
1
2 in this variables and restricted to manifold ψ2 = 0

is written as
M2

2 = v2x2(−1/2∂u2 + (w2 − 2u2)∂v2 + ∂w2),

[D2
t , M

2
2 ] = 0.

Invariants of the operator M2
2 are

t3 = t, x3 = x2, u3 = u2 + w2/2, v3 = v2 + 2u2w2.

Operator D2
t in the space of invariants is written as

D3
t = ∂t + u3∂x3 + (g3x

2
3 − u23 + v3)/x3∂u3 + 2g3u3x3∂v3 .
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Finally, Pfaff system (12.51) is written as

dx3
dt

= u3,

du3
dt

= g3x23 − u23 + v3
x3

,

dv3
dt

= 2g3u3x3,

where g3 = g(x3).

12.13 Differential-Invariant Solutions

Automorphic system of maximal rank take part in the group foliation [7, Sect. 26.1].
A solution of automorphic systems of lower rank is named differential-invariant
solutions.

In recent years, the efforts of a number of researchers, and above all
L.V. Ovsyannikov, managed to restore some order in the set of invariant and partially
invariant solutions. This is due to the concept of an optimal system of subalgebras
[8], the reduction theorem [7, Sect. 22.7], Lemma LOT [9].

Naturally, there is a desire to impose some order in a set of differential-invariant
solutions. But the task is complicated by the fact that any solution of a system of
differential equations is some differential-invariant solution regarding any subgroup
of the admitted group (in fact, not necessarily admitted).

Acknowledgements I wish to thank organizers and participants of the conferences MOGRAN.
Many useful discussions on MOGRAN conferences stimulated the author to those described in this
chapter of the study.

For bulky calculationswe employed systemof analytic calculations ‘Reduce (FreeCSLversion)’
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