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Preface

Archimedes in the 21st Century, a two-day world conference held in Spring 2013 at 
the Courant Institute of Mathematical Sciences, New York University, took place 
during what is believed to have been Archimedes’ 2300th birth year.

This conference was focused on the enduring and continuing influence of 
Archimedes in our modern world. Specifically, it celebrated his 23 centuries of 
influence on mathematics, science, and engineering.

Courant Institute Director Gérard Ben Arous opened the conference with this 
inspiring observation:

I’m impressed by the idea that, 23 centuries after his lifetime, we’re still looking at the 
influence of Archimedes in our modern world. It’s as close a shot at immortality as one can 
imagine.

Eight invited talks presented during the first day of the conference are printed in 
this volume. The conference speakers were chosen because they are actively 
involved in fields whose origins trace back to Archimedes. As well, many of the 
presenters have conducted and published research that extends Archimedes’ work in 
the twenty-first century.

The fields of mathematics, science, and engineering each claim Archimedes as 
one of their own. For that reason, the conference talks were divided into three cat-
egories: Archimedes the Mathematician/Geometer, Archimedes the Scientist, and 
Archimedes the Engineer.

Let me say a few words about what the conference was not.
Archimedes in the 21st Century was not a history of science conference, and 

therefore, no historians of science were invited to present. That was certainly no 
slight to the importance of the work of historians of science; many other confer-
ences have emphasized that aspect of Archimedean scholarship (e.g., [1]).

An example surrounding this distinction is the Archimedes Palimpsest, which is 
mentioned only tangentially in these conference proceedings. This collection of 
works of Archimedes, hidden beneath the text of a prayer book sometime in the 
thirteenth century, was unveiled and edited by Heiberg in 1906 [2] and analyzed 
with modern technology in the last twenty years [3]. Its discovery was of immense 
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value to historians, but its mathematical results had to be rediscovered indepen-
dently in the sixteenth and seventeenth centuries by the pioneers of the mathematical 
Renaissance. Had its contents not been obscured in the thirteenth century, it could 
have had a significant influence on twenty-first-century mathematics and science. 
But the window of opportunity for the palimpsest came and went, and so humankind 
took a different path in the tree of possibilities.

Our conference drew an audience of mathematicians, scientists, and engineers 
who were primarily interested in learning about the latest twenty-first-century appli-
cations of Archimedes’ works—along with their historical roots. Individuals already 
familiar with the history of Archimedes who were interested in learning what his 
works have led to in the twenty-first century also attended our conference.

As conference organizer and editor of these proceedings, I would now like to 
speak personally about our distinguished speakers:

Moshe Kam is the quintessential professional engineer and historian of sci-
ence, a university dean of engineering, and a former president of IEEE (Institute 
of Electrical and Electronics Engineers). Moshe was our opening speaker, and 
he presented a complete and thoughtful timeline of engineering from ancient 
times to the twenty-first century, highlighting Archimedes’ contributions to the 
field.

Larrie D. Ferreiro is an authority on military strategies and weaponry, a historian 
of naval architecture, a university professor of systems engineering, and an author 
of several books and many articles on these themes. Larrie’s focus on defense in 
depth was astute and compelling, particularly when he applied Archimedean ideas 
to twenty-first-century military stratagems [4].

Mamikon Mnatsakanian is the developer of Visual Calculus, an ingenious 
approach to solving many problems in geometry and integral calculus. He is the 
coauthor of a recently published geometry work that provides fresh and powerful 
insights to that field [5]. His richly illustrated conference talk brought Archimedes’ 
renowned tombstone theorem into the twenty-first century, extending it in numerous 
directions.

Horst Nowacki is a world authority on naval history and the author of Archimedes 
and Ship Stability [6]. Having extensively consulted with Horst during my own 
floating-bodies research [7, 8], I commend his encyclopedic knowledge of 
Archimedean laws as they have been applied to ship design over two millennia.

Dirk M. Nuernbergk is a world expert on the Archimedes Screw, particularly for 
the newest twenty-first-century application of operating Archimedes screws in 
reverse over rivers and streams in order to generate cheap electricity. This applica-
tion is proving to be a boon all across Europe, Canada, and New Zealand. Dirk is at 
the center of this innovative research, both as a consultant engineer and as the author 
of numerous engineering journal articles; he has also written a handbook for setting 
up a hydropower screw [9].

Michael T. Wright is an ancient technology scholar and a mechanician who brought 
two of his handwrought models to our conference: the much-acclaimed Antikythera 
Mechanism and his newly created Sphere of Archimedes—which he unveiled in pub-
lic for the first time at the conclusion of his talk. Michael’s Sphere is the first model of 

Preface



xi

an Archimedes’ sphere that anyone in any century has ever attempted to reconstruct; 
it is a clear precursor of our modern-day planetarium and a marvel to behold.

Mary Jaeger was the only invited non-STEM presenter at our conference. She is 
the author of the scholarly volume, Archimedes and the Roman Imagination [10], 
and presented the classicist’s perspective. In her well-researched talk, Mary chroni-
cled events and people who have brought Archimedes into our modern world—sur-
prisingly (and sometimes amusingly) perpetuating the anecdotes and myths about 
him.

At this conference, I presented the Archimedes the Mathematician segment along 
with Sylvain Cappell, Silver Professor of Mathematics at the Courant Institute of 
Mathematical Sciences.

You can view videos of all the Archimedes conference talks and learn more about 
the greatest mathematician and scientist of antiquity on my Archimedes website:

https://www.cs.drexel.edu/~crorres/Archimedes/AWC/
This site is the repository of my 50-year fascination with Archimedes. In it I’ve 

compiled knowledge about his inventions, the numerous fields of science and math-
ematics he engendered, discussions of many of his finished works, and my own 
research that extends and applies Archimedean principles to twenty-first-century 
problems. I created this website in 1995, and it has been under continual develop-
ment and expansion since then.
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Archimedes: Separating Myth From Science
The Ancient Greek’s work, though devoid of death rays, still 
inspires inventions.

By KENNETH CHANG

For the last time: Archimedes did not invent a death ray.
But more than 2,200 years after his death, his inventions are still driving techno-

logical innovations  — so much so that experts from around the world gathered 
recently for a conference at New York University on his continuing influence.

The death ray legend has Archimedes using mirrors to concentrate sunlight to 
incinerate Roman ships attacking his home of Syracuse, the ancient city-state in the 
southeast Sicily. It has been debunked no fewer than three times on the television 
show “Mythbusters” (the third time at the behest of President Obama).

Rather, it is a mundane contraption attributed to the great Greek mathematician, 
inventor, engineer and military planner — the Archimedes screw, a corkscrew inside 
a cylinder — that has a new use in the 21st century. For thousands of years, farmers 
have used this simple machine for irrigation: Placed at an angle with one end sub-
merged in a river or a lake, the screw is turned by a handle, lifting water upward and 
out at the other end.

A couple of decades ago, engineers found that running an Archimedes screw 
backward — that is, dropping water in at the top, causing the screw to turn as the 
water falls to the bottom — is a robust, economical and efficient way to generate 
electricity from small streams. The power output is modest, enough for a village, 
but with a small impact on the environment. Unlike the turbine blades that spin in 
huge hydropower plants like the Hoover Dam, an Archimedes screw permits fish to 
swim through it and emerge at the other end almost unscathed.

Such generators have been built in Europe, including one commissioned by 
Queen Elizabeth II of England to power Windsor Castle; the first in the United 
States could start operating next year.

And Archimedes’ ideas are showing up in other fields as well.
“He just planted the seeds for so many seminal ideas that could grow over the 

ages,” said Chris Rorres, an emeritus professor of mathematics at Drexel University, 
who organized the conference at N.Y.U.

A panoply of devices and ideas are named after Archimedes. Besides the 
Archimedes screw, there is the Archimedes principle, the law of buoyancy that 
states the upward force on a submerged object equals the weight of the liquid dis-
placed. There is the Archimedes claw, a weapon that most likely did exist, grabbing 
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onto Roman ships and tipping them over. And there is the Archimedes sphere, a 
forerunner of the planetarium—a hand-held globe that showed the constellations as 
well as the locations of the sun and the planets in the sky.

“Here was someone who just changed how we look at the universe,” Dr. Rorres 
said.

Only a handful of Archimedes’ writings survive, and much of what we think we 
know about him was written centuries after his death.

Some of the legends, like using mirrors to set the Roman ships afire, proved too 
good to be true. The same may go for the tale of Archimedes figuring out, while 
sitting in a bathtub, how to tell if the maker of a crown for the king had fraudulently 
mixed in some silver with the gold; according to this story Archimedes, too excited 
to put on clothes, ran naked through the streets of Syracuse shouting, “Eureka!”

As with the mirrors, the underlying principle works. But in practice, the tiny dif-
ference in volume between a crown made of pure gold and one made of a mixture 
of gold and silver is too small to be reliably measured.

Some of the talks at the conference were about using present-day ingenuity to 
figure out what Archimedes actually achieved in antiquity.

Michael Wright, a researcher at Imperial College London, has been trying to 
decipher how the Archimedes sphere showed the night sky. Although it is described 
in historical writings, no pieces or even drawings of it have survived. Others had 
already made celestial spheres, globes that show the positions of the 
constellations.

The Roman historian Cicero described the Archimedes sphere as uninteresting at 
first glance until it was explained. “There was a wonderful contrivance due to 
Archimedes inside,” he wrote. “He had devised a way in which a single rotation 
would generate the several non-uniform motions.”

If this description is taken literally, it would seem that Archimedes figured out 
the gearing needed to mimic the motion of the planets, including the retrograde 
motion where they appear to stop and reverse direction for a while before proceed-
ing in their usual direction.

“This instrument was just like any other celestial sphere, except with the addition 
of indicators for the Sun, Moon, the planets moving over the sphere and a mecha-
nism inside the sphere to move them,” Mr. Wright said.

In the spring, he began building his version of the Archimedes sphere. He pre-
sented it in public for the first time at the conference.

“I can’t guarantee that the original was like this,” Mr. Wright said. “What I can 
say is this, in the simplest way that I can imagine it, fits the evidence we have. We’ve 
been talking for 2,000 years about this thing that Archimedes made, and nobody 
seems to have offered to show people what it was like. I had an idea. I thought it was 
worth making, even if it was so people could have an argument about it and disagree 
with it. That’s a good way to get things going.”

Dr. Rorres said the singular genius of Archimedes was that he not only was able 
to solve abstract mathematics problems, but also used mathematics to solve phys-
ics problems, and he then engineered devices to take advantage of the physics. 

Preface



xv

“He came up with fundamental laws of nature, proved them mathematically and 
then was able to apply them,” Dr. Rorres said.

Archimedes oversaw the defenses of Syracuse, and while death ray mirrors and 
steam cannons (another supposed Archimedes invention debunked by “Mythbusters”) 
were too fanciful, the Archimedes claw appears to have been a real weapon used 
against the Roman navy.

It is very likely that it took advantage of two scientific principles Archimedes 
discovered.

With his law of buoyancy, he was able to determine whether a paraboloid (a 
shape similar to the nose cone of a jetliner) would float upright or tip over, a prin-
ciple of utmost importance to ship designers, and Archimedes probably realized that 
the Roman ships were vulnerable as they came close to the city walls.

“Archimedes knew about the stability of these kinds of ships,” said Harry 
G. Harris, an emeritus professor of structural engineering at Drexel who has built a 
model of the claw. “When it is moving fast through the water, it is stable. Standing 
still or going very slow, it is very easy to tip over.”

So using an Archimedean principle — the law of the lever, which enables a small 
force to lift a large weight, as in seesaws and pulleys — a claw at the end of a chain 
would be lowered and hooked into a Roman ship, then lifted to capsize the ship and 
crash it against the rocks.

Syracuse won the battle but was weakened under a long siege and fell three years 
later. And in 212 B.C., at the age of about 75, Archimedes was killed by a Roman 
soldier, supposedly furious that he refused to stop work on a mathematical drawing. 
His last words: “Do not disturb my circles!”

Of course, that bit about the circles is probably also a myth.
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Archimedes the Pragmatic Engineer

Moshe Kam

�Introduction

Let me begin by looking at an engineering timeline that starts with the first evidence 
of counting (Figure 1). For the sake of this discussion, let us remind ourselves when 
the first humans settled in Greece, when the bow and arrow was developed, and 
when people first started trying to control the environment in an organized manner 
(such as attempting flood control on the Nile).

Getting a little closer in terms of relevant events, the lever is already used extensively 
around 2000 BCE, and we have waterwheels and catapults in use around 400 BCE 
(Figure 2). Let us not forget Pythagoras (c. 570–c. 495 BCE) and Thales (c. 624–c. 546 
BCE) and, of course, the two major philosophers before Archimedes, namely, Aristotle 
(384–322 BCE) and Euclid (mid-fourth century to mid-third century BCE).

When we speak about Archimedes and his key contributions, we need to address 
the development of statics as a theoretical science, the science of hydrostatics (the 
principle of buoyancy and the stability of floating bodies), Archimedes’ contribu-
tion to the theory and practice of simple machines (specifically the lever, the pulley, 
and the screw), and a collection of useful inventions, from the water screw to the 
improved water organ.

Just a quick reminder what happened after Archimedes: we need to remind our-
selves that he lived before Ptolemy (90–168 CE) and that he lived before the inven-
tion of paper and certainly before the printing press:

M. Kam (*) 
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, 
Newark, NJ 07102, USA
e-mail: kam@njit.edu

mailto:kam@njit.edu
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Figure 1  A quick orientation in time (BCE)

Figure 2  A quick orientation in time (BCE)

M. Kam
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�Post-Archimedes (CE)

•	 Ptolemy (90–168); Almagest
•	 Paper (Tsai Lun, 105)
•	 Diophantus of Alexandria (third century) – Algebra
•	 Windmill (China, 400)
•	 Porcelain (China, 700)
•	 Gun powder (China 1000; Roger Bacon 1242)
•	 Perspective in painting (1428)
•	 Printing press

–– Movable wooden blocks 1450
–– Movable metal blocks 1452 (Gutenberg)

•	 [Start of the Renaissance, 1500]

�The Historical Record

We are lucky to have access to some of Archimedes’ major work through early cop-
ies and, most importantly, through transcriptions from the Archimedes Palimpsest. 
These books are perhaps the best information we have about him. As we shall see in 
a moment, the historical record from the various historians who speak about him has 
a few fundamental problems. The books we have are:

•	 On Plane Equilibriums (two books)
•	 On the Sphere and Cylinder (two books)
•	 On Spirals, Conoids and Spheroids
•	 On Floating Bodies (two books)
•	 Measurements of a Circle
•	 The Quadrature of a Parabola
•	 The Sand Reckoner
•	 Stomachion
•	 The Method of Mechanical Theorems
•	 The Cattle Problem

In addition to the works we have, there are several that were lost. Pappus (c. 290–350 
BCE) tells us about a work on semi-regular polyhedra. Archimedes himself mentions a 
work on the number system (now lost). There is a particularly interesting study on 
sphere-making that we will come back to. There is also a speculation about several other 
writings, now lost, on centers of gravity of solids, on plane figures, and on magnitudes.

Lost works:

•	 On semi-regular polyhedra (Pappus)
•	 On the number system proposed in the Sand Reckoner
•	 On balances and levers (Pappus)

Archimedes the Pragmatic Engineer
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•	 On sphere making (Pappus)
•	 About mirrors (Theon)
•	 Evidence for further lost works is discussed in T. Sato [10]

As we look at the historical record, we need to also understand the sources that 
provide us with information about Archimedes (Figure  3). We are talking about 
historians like Polybius, Livy, and Plutarch. It is useful to look again at the timeline 
and to realize that many of these historians were far removed in time from 
Archimedes. In fact, the only historian who could have spoken to people who lived 
in Archimedes’ time is Polybius (c. 200–118 BCE). Everyone else heard and learned 
from secondary and tertiary sources or read manuscripts of and about his works.

•	 Primary historians and writers:

–– Polybius (Greek, c. 200–118 BCE) Universal History
–– Livy (Roman, 59 BC–17 CE) History of Rome from its Foundation
–– Plutarch (Greek, c. 45–120 CE) Parallel Lives: Marcellus
–– Cassius Dio (Greek, c. 155–235 CE) Roman History

•	 Relevant technology is reviewed in De Architectura by Vitruvius (~15 BCE).
•	 A large number of apocryphal stories and texts were ascribed to Archimedes, 

including inventions that were not his.

An author who is very important to our discussion is Vitruvius (born c. 
80–70 BC, died after c. 15 BC). He lived about 170 years after Archimedes and 
wrote a lot about Roman technology (including his multivolume work De 
Architectura). Vitruvius makes many references to Archimedes—to apocryphal 
stories, documents, texts, and inventions, some of which Archimedes probably 

Figure 3  Archimedes and the historians

M. Kam
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did not make. Some of these references are now in the public domain—every-
body knows them. Still, the historical record is problematic.

One of the most famous and charming Archimedes stories is the one about the 
burning mirrors during the siege of Syracuse in the year 212 BCE. It describes how 
allegedly Archimedes used mirrors in order to focus the rays of the sun in order to 
burn the ships of the invading Romans (Figure 4).

There is no mention of this story by Plutarch, Polybius, and Livy. The earliest 
mention of fire in the context of the siege of Syracuse, I believe, is by Lucian (about 
125 CE–after 180 CE) who writes in the second century. He refers to the use of fire 
in different ways in the battle, but he does not refer to mirrors. Mirrors are men-
tioned explicitly by the physician Galen, (129 CE–c. 216 CE) who also lived in the 
second century. Actually, it is not until the sixth century that we have a book on 
burning mirrors; that, of course, had happened very far removed from Archimedes’ 
period. So in this case, and in other cases, we need to ask the question: What is the 
historical evidence and how convincing is it? As Simms [6] asks: Did Archimedes 
have the knowledge and skill, in this particular case, to design, build, and operate a 
burning mirror, specifically the kind of mirror that the commentators are describ-
ing? The most important question in this context, given what he had at his disposal, 
is “Would Archimedes have needed it, and would he have used it?” I let others who 
present their work at this conference to comment on this matter later.

The other comment that I want to make on the historical record comes from 
Plutarch. Of course it is Plutarch speaking, not Archimedes, but there is never-
theless something to his observations. Plutarch speaks about Archimedes’ 
inventions, and he writes:

Archimedes possessed so high a spirit, so profound a soul, and such treasures of scientific 
knowledge, that though these inventions had now obtained him the renown of more than 

Figure 4  Wall painting from the Stanzino delle Matematiche in the Galleria degli Uffizi (Florence, 
Italy) (Painted by Giulio Parigi (1571–1635) in the years 1599–1600)

Archimedes the Pragmatic Engineer
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human sagacity, he yet would not deign to leave behind him any commentary or writing on 
such subjects;

What are “such subjects?” Plutarch further writes about Archimedes:

…but, repudiating as sordid and ignoble the whole trade of engineering, and every sort of 
art that lends itself to mere use and profit, he placed his whole affection and ambition in 
those purer speculations where there can be no reference to the vulgar needs of life;

In spite of the fact that this is Plutarch’s, not Archimedes’, opinion, one should 
remember that when you look at the works of Archimedes that we have today, they 
are of a more abstract mathematical nature, and we don’t have works that describe 
specific devices (although there are mentions by Pappus that there was a book on 
spheres). Was Plutarch right when he described Archimedes as being focused on the 
“purer speculations” or was he, like us, deprived of works or writings on the “vulgar 
needs of life” that were lost over time?

Let us return to Archimedes the Engineer. We are talking about a rich set of con-
tributions with long-term impact on engineering disciplines—the systematic study of 
statics; Archimedes’ contribution to the use of three (out of five) simple machines 
known in antiquity, the winch, the lever, the pulley, the wedge, and the screw; the 
power of mechanical advantage; the introduction of hydrostatics (the equilibrium of 
fluids, the principle of buoyancy, and the stability of floating bodies); the introduction 
of the concepts of specific gravity and fluid pressure; and specific tools and devices 
(the Archimedean screw, the planetarium, and the water organ). Following Plutarch, 
let us, too, ask the question: What motivated Archimedes? This is not easy to discern. 
His inventions were, I think, motivated by his desire to test theory. I will demonstrate 
this claim with a quote or two. This matter is related to providing physical evidence 
for a geometric proof. Also, Archimedes was testing the physical limits; perhaps the 
ship Syracusia is a good example of that. Then there are practical problems in the 
physical world that he tried to solve. These focus on the defense of Syracuse and the 
needs of war. And finally, there were the requests of the government; there is no ques-
tion that Archimedes was working for the government of the time.

�The Sycarusia

Horst Nowacki’s article in this conference addresses Archimedes and ship design in 
much greater detail, but let me just touch on the Syracusia. Figure 5 is an artist’s 
concept of the glamorous Syracusia drawn in the 1800s.

We do know—or at least we speculate—from writings admittedly not very close 
to Archimedes’ time that Syracusia was a very large ship. It was about 110 meters 
(360 feet) long. It is sometimes claimed to be the largest transport ship of antiquity. 
It had three decks. It could carry about 1700 tons, about 1900 passengers, 200 sol-
diers, as well as a catapult. The Syracusia sailed only once, to berth in Alexandria 
where it was given to Ptolemy (Ptolemaios) III Euergetes of Egypt (reigned 246–
222 BCE) and was renamed the Alexandria. The reason that it did not continue 
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sailing was because it was gigantic—much too large for the time; there was not a 
harbor that could receive it. And it was too slow.

Nevertheless, there are several inventions that were connected directly or indi-
rectly to the Syracusia, depending on how much you believe people who wrote 
about it. These writers describe complex systems of winches and pulleys that 
allowed the ship to be launched by only a few men or to be carried to land. The 
Archimedes screw allegedly was used to haul water from the ship’s hulls, as a 
defense mechanism. Many years later, Athenaeus (who lived from the late second 
century to the early third century BCE) wrote: On these decks was placed a catapult 
which hurled a stone weighing what we would measure today to be about 75 kilo-
grams and an arrow that was about 5 meters long; this engine was devised and built 
by Archimedes and enabled every arrow to be thrown about 180 meters.

�The Archimedes Screw

We mentioned Archimedes screw—a solution to a practical problem which is still in 
use two millennia after its introduction (Figure 6). Dirk Nuernbergk will later discuss 
this device in depth. The Archimedes screw is a machine for raising water. It was 
used in Egypt for irrigation of fields which are not inundated directly by the water of 
the Nile. It was used in Spain to pump water out of mines. Allegedly it was used by 

Figure 5  An 1798 exaggerated depiction of the Syracusia, a large cargo and passenger transport 
ship of Ancient Greece and one of the largest of antiquity
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Archimedes to keep the hulls of the Syracusia dry. Although it is attributed to 
Archimedes, the correctness of this attribution has been disputed. Some writers say 
that Archimedes may have seen it when he was in Egypt and then adopted it. There 
is no attribution to Archimedes in the writings of Strabo, Philo of Byzantium, or 
Vitruvius (who wrote about the machine but did not attribute its design to Archimedes.)

The device is a screw inside a hollow pipe, usually turned by a windmill or by 
manual labor. As the shaft turns, the bottom end scoops up a volume of water. This 
water slides up in the spiral tube and pours out the other end. The contact surface 
between the screw and the pipe does not need to be perfectly watertight. Water from 
one section leaks into the next lower section so that a sort of mechanical equilibrium 
is achieved. Galileo was so impressed with this that he said, This is not only marvel-
ous, it is even miraculous (Non solo maravigliosa, ma miracolosa).

In 1983 when the Italian government wanted to commemorate Archimedes on 
a national stamp, it decided to use the Archimedean screw as one invention to put 
on the stamp (Figure 7).

Figure 8 is a picture from National Geographic magazine showing an Egyptian 
farmer using the Archimedes screw to irrigate a field, and Figure 9 is a picture of the 
Shipwreck Rapids water ride at SeaWorld Theme Park in San Diego.

A wastewater treatment plant outside of Memphis, Tennessee, uses seven huge 
Archimedean screws as part of its processing of debris-laden wastewater (Figure 10).

There are also descendants of the Archimedes screw, including the screw con-
veyor, that haul bulk materials with the pushing action of rotating blades (Figure 11). 
This device is used to convey powders, pellets, flakes, crystals, granules, and grains.

Several types of screw conveyors are built and used today in industrial plants, 
including a compact and totally enclosed design that is used in food processing 
plants; a 40 feet. long model that carries malt and rice from storage to a factory mill; 
and a helicoid screw conveyer that delivers 50 tons of coal per hour to a boiler-room 
bunker.

Figure 6  Archimedes screw
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Figure 7  1983 Italian stamp

Figure 8  Archimedes screw (Helen and Frank Schreider, National Geographic)
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Figure 9  Archimedes screw, SeaWorld Theme Park

Figure 10  Memphis TN Wastewater Treatment Plant [Manufactured by Lakeside Equipment 
Company of Bartlett, Illinois, USA]
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�Archimedean Astronomical Devices

On the other side of the spectrum of Archimedean inventions is an astronomical 
device that did not survive to modern times. Michael Wright is an expert on astro-
nomical devices that date back to Archimedes’ time, and he will speak about them 
later.

Archimedes’ mechanical model showed the motions of the sun, moon, and plan-
ets as viewed from the earth. It is a complete, spherical, open planetarium in which 
one revolution of the sun, moon, and planets performs the same motions relative to 
the sphere of the fixed stars as they do in the sky in one day—and in which one can 
also see the successive phases and eclipses of the moon. Rowley’s orrery from 1752 
(Figure 12) may resemble Archimedes’ device but shows the motions of the planets 
and moons of the solar system in a heliocentric model.

Much was said about the ingenuity of Archimedes’ planetarium. It represents the 
mutually independent and widely different motions of the sun, moon, and planets by 
one mechanism simultaneously. It appears that Archimedes himself attached great 
significance to this particular construction. Pappus tells us (actually quoting others 
in Collectio VIII, 3; 1026) that there was a lost work of Archimedes devoted to 
sphere-making. The Archimedes’ planetarium is praised by multiple authors. Cicero 
(106–43 BCE) writes that Archimedes must have been “endowed with greater 
genius than one would imagine it possible for a human being to possess” because he 
could build such a device. Claudius Claudianus (370–404 CE) writes a poem called 
“In sphaeram Archimedes.” In the poem, Jupiter looks from the sky and tells others 
in the heavens how impressed he is of this sphere of glass that The Old Man of 
Syracuse has made.

Figure 11  FMC 
Technologies recognizes 
the contribution of 
Archimedes in its 
commercial catalog; 
essentially Archimedes’ 
original design has not 
changed in 23 centuries
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The Archimedes’ planetarium found a role in philosophy and public debate—of 
course many years after Archimedes. Cicero uses it in order to argue against the 
Epicureans. In another context, Cicero uses the planetarium to claim that Archimedes 
was divine. Sextus Empiricus (160–210 CE) used it to claim the superiority of the 
creative intellectual principle against the material world. Lactantius (c. 250–c. 325 
CE) used it against the atheists using an argument which was repeated many times: 
If a human can produce such a thing—if a human could make something that mar-
velous—could not then God have created the prototype of that which the intelligence 
of his creature was capable of imitating? Hence, the proof of the existence of God.

�The Pulley, Multiple Pulley, and Catapult

We move now to much more practical Archimedean applications—the lever, the 
pulley, the multiple pulley, and the catapult. We all know the famous quote attrib-
uted to Archimedes: Give me a place to stand and I will move the Earth.

The lever and the wedge had been used in various forms for centuries prior to 
Archimedes. The lever appeared as early as 5000 BCE in the form of a simple bal-
ance scale. Several thousand years later, workers in the near east in India had built 
and used the shaduf, a crane-like lever that is used as an irrigation tool (Figure 13). 
It was first used in Mesopotamia about 3000 BCE. A shaduf is a long, wooden lever 
that pivoted on two upright posts. On one end, you have a counterweight and, on the 
other one, a pole with a bucket attached. To operate it, you push down on the pole to 
fill the bucket with water and then the counterweight helps lift the filled bucket. If 
you look up shaduf on YouTube, you can see some that are still in operation today.

Archimedes’ law of the lever states: Magnitudes are in equilibrium at distances 
reciprocally proportional to their weights. (The debate continues about what exactly 
Archimedes proved and what he assumed when he made this statement.) The inter-
esting thing for us, however, in addition to the great importance of the principle 

Figure 12  Rowley’s 
orrery
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itself, is the development of well-prescribed methodology. The problem that the 
lever solves is drawn from the physical world, but it is most illuminated when 
treated by an abstract mathematical approach. Archimedes advances the use of such 
treatment. Following in the footsteps of Euclid, he sets up a few axioms which are 
simple abstractions of everyday experience. From these axioms, he then derives, 
step by step, the less obvious properties.

I want to emphasize a point about the influence of physical world experimenta-
tion on Archimedes’ more abstract work. In the method, Archimedes writes:

... certain things first became clear to me by a mechanical method, although they had to be 
proved by geometry afterwards because their investigation by the said method did not fur-
nish an actual proof.

But it is of course easier, when we have previously acquired, by the method, some knowl-
edge of the questions, to supply the proof than it is to find it without any previous 
knowledge.

This is, I think, a virtual statement of what engineering is.
Archimedes’ contributions in this arena include a theoretical explanation consid-

ering that the pulley operates according to much the same principle as the lever. He 
introduces the principle of mechanical advantage—a measure for force amplifica-
tion that is achieved by a tool, a mechanical device, or a machine system.

By 400 BCE, the Greeks were already using compound pulleys. Whereas a sin-
gle pulley provides little mechanical advantage, compound pulleys that incorporate 

Figure 13  Painting of a shaduf in an ancient Egyptian tomb
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several wheels significantly reduce the effort needed to lift large weights. This com-
pound pulley mechanism was crucial to the development of large cranes and artil-
lery machines that interested Archimedes.

Archimedes appears to have perfected the existing technology, creating the first 
fully realized block-and-tackle system using compound pulleys and cranes to create 
a lifting machine. He demonstrated it, according to one story, by moving a fully 
loaded ship single-handedly while remaining seated some distance away. Whether 
or not this feat happened, we do not know, but the story amazed writers in antiquity. 
In our late modern era, compound pulley systems are widely used, for example, in 
everyday devices like elevators and escalators.

Plutarch describes a scene where Archimedes demonstrates his lifting machine 
for the King of Syracuse. When Archimedes made his proud boast about moving the 
earth, King Hiero, amazed by this claim, asked Archimedes for a practical demon-
stration. At the time, there was a ship in the dock that could not be drawn out except 
with a great deal of labor by many men. The ship was fully laden with passengers 
and freight. Plutarch then writes:

“[Archimedes] seated himself at a distance from her, and without any great effort, but qui-
etly setting in motion with his hand a system of compound pulleys, drew her towards him 
smoothly and evenly, as though she were gliding through the water.” (Plutarch's Lives, 
‘Marcellus’ xiv. 8–9)

This drawing from a book by Lazos [13], following Vitruvius, shows the kind of 
lifting machine ascribed to Archimedes (Figure  14). Lazos gives a step-by-step 
description on how to build such a system.

Figure 14  Lifting machine (trispaston) from Archimedes’ times (Lazos [13])
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�Machines of War

Plutarch describes—admittedly many years after his time—several of Archimedes’ 
war machines:

. . . when Archimedes began to ply his engine, he at once shot against the land forces all 
sorts of missile weapons, and immense masses of stone came down with incredible noise 
and violence against which no man could stand. For they knocked down those upon whom 
they fell in heaps, breaking all the rank and file.

Plutarch also describes the Archimedes’ claw or iron hand:

...the most formidable of his war machines ... a dreadful thing to behold that lifted ships up 
into the air by an iron hand or beak, like a crane’s beak. When they had drawn them up by 
the prow and set them on end, they plunged them to the bottom of the sea.

Models of the claw atop the walls of Syracuse and an approaching Roman quin-
quereme were built by my Drexel University colleague Harry G. Harris Figure 15). 
I believe this claw design is very close to the one Plutarch describes.

Figure 15  Archimedes claw lifting a Roman ship at the walls of Syracuse (Model by Harry 
G. Harris of Drexel University)
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�Archimedes’ Principle

Another very important contribution made by Archimedes to the fields of mathe-
matics, engineering, and science is Archimedes’ principle; it states: Any object, 
wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight 
of the fluid displaced by the object. Of course we all know the Eureka story that 
allegedly gave rise to Archimedes’ principle. Vitruvius tells it, describing how 
Archimedes allegedly developed a method for the precise measurement of the vol-
ume of irregular objects.

There was a crown. The crown was supposed to be made of gold. There was a 
suggestion that perhaps some silver had been poured in with the gold. Archimedes 
was given the task of finding out. While taking a bath, he gets the idea that by mea-
suring the amount of water displaced by a submerged crown, he could determine its 
density and compare it to the density of pure gold. He immediately jumps out of the 
bath shouting, “Eureka! I have found it.” He then he goes on to perform the experi-
ment in order to determine whether or not there was a deception. According to the 
story, there was a deception.

This is a nice story, but did it happen? The story does not appear in the known 
works of Archimedes. The practicality of the method—which incidentally was the 
object of many writers and experimenters all the way back to Galileo—is question-
able because if you write down the numbers, you find out that the accuracy that you 
need in order to determine the volume of the displaced water is not the one that 
Archimedes possessed. However, Archimedes could have applied his principle of 
the lever and what we now know as Archimedes’ principle to do what you see in 
Figure 16, namely, balance an amount of pure gold given to the goldsmith with the 
crown in air and then submerge the gold and crown in water. If indeed the crown 
was pure gold, it would balance the pure gold in both air and water. But if there was 
some silver in it, it would not balance in water. This can be observed quite nicely, 

Figure 16  Crown and gold nugget—balanced in air (left), but unbalanced in water (right)
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without having to resort to any exotic ways of measuring. It is conceivable that 
Archimedes’ principle was applied here.

Archimedes’ related principle of flotation states that any floating object displaces 
its own weight of fluid. The most important implication here is in the design and 
stability of vessels. The stability of different shapes of floating bodies in water is, of 
course, critical to the design of ships and boats.

Archimedes wrote two books on floating bodies. In Book 1, he provides the 
development of what is known now as Archimedes’ law of buoyancy. He gives a 
simple, elegant geometric proof that a floating segment of a homogeneous solid 
sphere is always in stable equilibrium when its base is parallel to the surface of the 
fluid—when it is either above or below the fluid surface. With this exposition, 
Archimedes initiates the science of hydrostatics and introduces the concept of fluid 
pressure. It is interesting that it took almost eighteen centuries until this work was 
continued (by Stevin, Galileo, Torricelli, Pascal, and Newton).

In Book 2, Archimedes extends stability analysis from a segment of a sphere to 
the right paraboloid. Additionally, he provides thorough studies of stability in equi-
librium. There are many sophisticated ideas and complex geometric constructions in 
Book 2, but for many centuries, there was little interest in Book 2. Once the book was 
augmented with algebra and trigonometry (remember that Archimedes is essentially 
pre-algebra), plus analytical geometry, and after the field of mechanics reached 
maturity, there was renewed interest in Book 2. Book 2 is inspiring many new studies 
today.

Referring to Figure 17, in Book 2, Archimedes developed certain mathematical 
criteria connecting the paraboloid’s tilt angle (θ) to its specific gravity (s) and its 
base angle (ϕ) when the paraboloid is floating stably. He did all that 1900 years 

Figure 17  (a) A right paraboloid. (b) The tilt angle (θ) and base angle (ϕ) of a floating right 
paraboloid
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before the invention of calculus. For example, in Proposition 8, Archimedes proved 
the following (we are using modern mathematical notation):

Contemporary researchers—including our Conference Chair, Chris Rorres—
continue to extend the conclusions of Archimedes’ On Floating Bodies Book 2 
(Rorres 2004; Girstmair & Kirchner 2008). They complete the book in the sense 
that they discuss cases that Archimedes most probably could not have worked on 
because he did not have the mathematical and computer tools we have today to 
apply to this problem.

�Concluding Remarks

More than 2000 years after his death, Archimedes’ work continues to be the focus 
of interest of engineers, mathematicians, and scientists. There is much ongoing use 
of his studies and inventions, and machines that use his ideas are designed, mar-
keted, and sold. His writings continue to be relevant. Archimedes continues to pro-
vide us with a model of a person who seeks, finds, and tests solutions to some of the 
most important technical challenges of his day.

Archimedes moves seamlessly between theory and practice. He triumphs when 
he uses a systematic and thorough scientific methodology, which is coupled with 
empirical observation.

Even if we strip away many of the legends from his story, it is still obvious that 
Archimedes can serve not only as a model of a scientist and engineer with unparal-
leled analytical abilities but also as a pragmatist with solid grounding in practical 
needs and challenges. Like engineers of all eras, he is attuned to the needs of his 
consumers and the political and business climate. He uses the challenges that his 
clients and the times pose to him (and the funding he receives) to advance both 
theory and practice, often well beyond the immediate needs or specification of a 
client. His imagination responds to the needs he and the society are faced with far 
ahead of the problem statement he is given by funders.

All of these timeless qualities I would very much like to instill and observe in my 
own engineering students.

Archimedes’ Proposition 8
A right paraboloid whose base angle ϕ satisfies 3 < tan2ϕ < 15/2 and whose 
relative density s satisfies s < (1-cot2ϕ)2, has precisely one stable equilibrium 
position with its base completely above the fluid surface.

The corresponding tilt angle θ is

q f= -( ) --tan tan1 22

3
1 2s

M. Kam



19

References

	 1.	Assorted quotes from: Polybius (Greek, c. 200-118 BC) Universal History; Livy (Roman, 59 
BC-17 AD) History of Rome from its Foundation; Plutarch (Greek, c. 45-120 AD) Parallel 
Lives: Marcellus

	 2.	E. J. Dijksterhuis: Archimedes, translated by C. Dikshoorn, Princeton University Press, 1956
	 3.	Vitruvius: De Architectura (as quoted by Dijksterhuis and others)
	 4.	Athenaeus: Deipnosophists, Book 5, http://www.attalus.org/old/athenaeus5b.html#c40
	 5.	Ph. Fleury, La mécanique de Vitruve, Caen, Presses Universitaires de Caen, 1993, p. 113
	 6.	D. L. Simms: “Archimedes and the Burning Mirrors of Syracuse”, Technology and Culture, 

Vol. 18, No. 1 (Jan., 1977), pp. 1-24.
	 7.	C.  Rorres: “Completing book II of Archimedes’s on floating bodies,” The Mathematical 

Intelligencer 26(3) (2004), pp. 32–42.
	 8.	C.  Rorres and H.  G. Harris, “A Formidable War Machine: Construction and Operation of 

Archimedes’ Iron Hand”, Proceedings of the Symposium on Extraordinary Machines and 
Structures in Antiquity, August 19-24, 2001, Olympia, Greece.

	 9.	K. Girstmair and G. Kirchner: “Towards a completion of Archimedes’ treatise on floating bod-
ies,” Espositiones Mathimaticae, 26 (2008), pp. 219-236

	10.	T. Sato: “Archimedes' lost works on the centers of gravity of solids, plane figures and magni-
tudes”, Historia Scientiarum, Japan. Stud. Hist. Sci. 20 (1981), pp, 1-41.

	11.	Claudian, Vol 2. Claudianus, Claudius. Maurice Platnaeur. William Heinemann; G.P. Putnam's 
Sons. London; New York. 1922.

	12.	T.  Chandras: “Archimedes’ life, works, and machines”, Mechanism and Machine Theory, 
Volume 45, Issue 11, 2010, pp. 1766-1775.

	13.	C.D. Lazos: Archimedes: The Ingenious Engineer, Aiolos Publishers, Athens (1995.) in Greek.
	14.	J. G. Landels, Engineering in the Ancient World, University of California Press, Berkeley & 

Los Angeles, 1978.

Web Resources

	15.	Chris Rorres: Archimedes Home Page. https://www.cs.drexel.edu/~crorres/Archimedes/con-
tents.html

	16.	J.  J. O'Connor and E F Robertson: Archimedes Biography. http://www-history.mcs.st-and.
ac.uk/Biographies/Archimedes.html

	17.	Engineering Timeline: http://www.preengineering.com/resources/timeline.htm
	18.	Gravity, Buoyancy, and the Stability of a Floating Objects: http://stemak.org/sites/default/files/

Buoyancy%20Experiment.pdf
	19.	Stability and Buoyancy: http://user.engineering.uiowa.edu/~me_160/lecture_notes/

lec04_2012.pdf

Archimedes the Pragmatic Engineer

http://www.attalus.org/old/athenaeus5b.html#c40
https://www.cs.drexel.edu/~crorres/Archimedes/contents.html
https://www.cs.drexel.edu/~crorres/Archimedes/contents.html
http://www-history.mcs.st-and.ac.uk/Biographies/Archimedes.html
http://www-history.mcs.st-and.ac.uk/Biographies/Archimedes.html
http://www.preengineering.com/resources/timeline.htm
http://stemak.org/sites/default/files/Buoyancy Experiment.pdf
http://stemak.org/sites/default/files/Buoyancy Experiment.pdf
http://user.engineering.uiowa.edu/~me_160/lecture_notes/lec04_2012.pdf
http://user.engineering.uiowa.edu/~me_160/lecture_notes/lec04_2012.pdf


21© Springer International Publishing AG 2017 
C. Rorres (ed.), Archimedes in the 21st Century, Trends in the History of 
Science, DOI 10.1007/978-3-319-58059-3_2

Archimedes the Military Engineer

23 Centuries of Defense-in-Depth,  
from 213 BCE to 2013 CE

Larrie D. Ferreiro

�Introduction

Archimedes was not the first engineer to apply the principles of defense-in-depth to 
a military campaign, but his unique and systematic approach to the problem caught 
the attention of his contemporaries as well as that of future generations. Indeed, 
David Lane, historian of operations research, cites Archimedes’ defense of Syracuse 
as a precursor to the systems approach to military operations, 23 centuries before 
the term was even invented.

Archimedes was far ahead of his time in other ways, as well. His carefully 
thought-out defensive approach suggests that he understood and followed the 
maxim later expressed by the great Prussian strategist Carl von Clausewitz in 1832: 
War is the continuation of politics by other means. Moreover, he saw that engineer-
ing was also the continuation of politics by other means, in that he developed his 
engineering approach to serve the political and military strategies. It was a clear 
demonstration that military and engineering strategies are most effective when they 
serve clear political goals.

Archimedes’ chosen strategy to counter the Roman siege of Syracuse is today 
known as defense-in-depth. This is more than merely a layered defensive system. 
Defense-in-depth acknowledges that no single line of defense is foolproof against 
an attack. Instead, a series of multiple, layered defenses cause an attack to lose 
momentum, often by exploiting different weaknesses that make it harder for the 
enemy to develop a set of countermeasures. An example from biology is the human 
body’s system of defense against infectious diseases, which consists of:
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•	 A physical barrier (skin) against infection entering the body
•	 An innate immune system (e.g., white blood cells) that provides immediate 

defense against any infection
•	 An adaptive immune system (e.g., antibodies) that “remembers” the body’s 

response to an infection and prepares itself for subsequent encounters with that 
same infection

This chapter examines four examples of defense-in-depth, from Archimedes’ 
time to the twenty-first century.

�213 BCE: Archimedes and the Defense-in-Depth of Syracuse 
Against the Romans

Archimedes (c. 287 BCE–212 BCE) lived his life while Syracuse was generally at 
peace. Syracuse was one of the several Greek city-states on the island of Sicily. At 
the beginning of the third century BC, the Mediterranean basin was controlled by 
the Carthaginians in the west and the Greeks in the east. The Romans controlled 
most of the Italian peninsula and looked to expand its control over Carthaginian 
territory.

The beginning of the First Punic War (264 BCE–241 BCE) between Rome and 
Carthage was marked by Syracuse’s King Hiero II attacking and laying siege to the 
rival city to the north, Messana. Archimedes, a member of Hiero’s family who was 
just 23 at the time, may have witnessed this siege, though from the attacker’s point 
of view. During the siege, Hiero aligned himself with Carthage, but after the Romans 
landed in Sicily, he switched his allegiance to Rome and thus avoided a costly bat-
tle. Hiero would hold the peace for the next half-century, until his death in 215 BCE.

During the long peace, Hiero built up his city and called upon Archimedes to 
oversee the defensive works against future sieges. Archimedes presumably spent 
much of the next five decades directing the extension and erection of walls on both 
the landward seaward sides, as well as incorporating a series of “engines” (machines) 
with varying ranges and capabilities to repel attacks “to any distance.” During this 
time, he apparently traveled at least once to Egypt, where he was reputed to have 
invented the water screw (Archimedes screw) for irrigation (Figure 1).

The Second Punic War (there would be three Punic Wars, at roughly 50-year inter-
vals) began in 218  BCE.  The first phase of the war was marked by Carthaginian 
attacks against Roman lands, including Hannibal’s famed crossing of the Alps with 
elephants and the Battle of Cannae. Hiero died during the conflict, and the next leader, 
his grandson Hieronymus, was assassinated after he tried to make peace with Carthage. 
The ruling faction that succeeded him was strongly pro-Carthaginian. Syracuse’s stra-
tegic position between the Roman and Carthaginian empires (Figure 2) led Rome to 
dispatch its general Marcus Claudius Marcellus to bring Syracuse to its side.

Marcellus began his siege on Syracuse in 213 BCE, when Archimedes was about 
74 years old. His defensive works had been untested since he began them, many 
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decades before. He had, however, thought meticulously about the Roman modes of 
attack and where to place his strongest defenses. The city-state was ringed on the 
landward side by a defensive wall built atop steep cliffs and crags, almost impossi-
ble to climb opposed. On the seaward side, a line of tall cliffs to the north provided 
similar protection from amphibious landings. The main harbor was protected by the 
island of Ortygia, which provided clear lines of fire and permitted a chain to be 
drawn across the harbor mouth to prevent incursions. The only accessible part of the 
city was therefore a thousand-yard stretch of seawall at Achradina, which was 

Figure 1  Archimedes’ screw

Figure 2  Rome and Carthage. Note Syracuse’s strategic position between them
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fronted by a shallow and rocky coast. Archimedes carefully used the natural defenses 
of the terrain to concentrate his defensive forces at the vulnerable points, so that, 
according to the historian Polybius, “that there was no need for the defenders to 
busy themselves with improvisations; instead they would have everything ready to 
hand, and could respond to any attack by the enemy with a counter-move.”

The Roman assault force consisted of both naval and army elements. Marcellus 
commanded a fleet of Roman ships that would attack the city-state at Achradina. At 
the same time, his joint commander Appius Claudius Pulcher brought troops with 
scaling ladders and towers to assault the north gate (Figure 3). Marcellus and Appius 
evidently expected that a quick siege would avoid more costly, time-consuming war 
by attrition. They were soon disabused of this by Archimedes’ defenses.

Polybius, writing almost 70 years after the siege, focused his narrative on the 
naval assault at Achradina. His sources were apparently particularly impressed by 
Archimedes’ system of defense-in-depth. In fact, Marcellus’ attacking force was 
only lightly armed, which greatly contributed to his being stymied by Archimedes’ 
superior firepower. Marcellus’ naval force consisted of 60 quinqueremes, which 
were oared, ram-equipped warships similar to the more famous triremes, but larger 
and with five rowers per tier of oars instead of three. The ram bows were of course 
useless against a seawall, so the actual assault was conducted using four sambucae 
(“harps”), each of which consisted of two quinqueremes lashed together side by 
side for stability, with a large scaling ladder mounted to the decks. These sambucae 

Figure 3  Syracuse under assault
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would only be able to attack where the rocky coast was deep enough to allow it to 
come right up to the seawall, so that they could lean their ladders against the wall, 
allowing Roman troops to assault by escalade. Surrounding the sambucae were the 
quinqueremes with archers and javelineers on deck, who would provide fire support 
against the defending Syracusians (Figure 4). Marcellus followed standard Roman 
practice of the time, which relied heavily on massed troops, and did not employ 
siege artillery such as stone launchers, catapults, and crossbows. Archimedes, by 
contrast, had amassed a large, integrated arsenal of these weapons, plus one of his 
own design. For many months, this would render the Roman siege impotent.

Archimedes had developed a system of defense-in-depth that took advantage of 
Rome’s inherent weakness in artillery and dependence on massed troops. The 
assaulting troops were massed against the city walls, and with javelineers throwing 
their spears upwards against defending troops, their effective range was about 15–20 
yards. Archers could fire at ranges up to 60–80 yards. Not only were these weapons 
relatively short-ranged, but their throw weight and penetrating power against shields 
and armor were quite limited. Against this, Archimedes had arrayed multiple layers 
of defense with greater range, throw weight and capabilities. Rome’s naval assault 
may have been doomed before it began (Figure 5).

Archimedes, by contrast, used a number of well-known Greek weapons to coun-
ter the Roman siege, one of which, the catapult, had been developed in Syracuse a 
century before his birth (Figure 6). At very short distances, he deployed cranes to 
drop large stones on the attacking sambucae and any quinquereme which happened 
to be just below the ramparts. Those ramparts would also (presumably) be lined 
with archers and javelineers whose height gave them a distinct advantage against 
the Romans in the ships below. At medium range and long ranges, a variety of stone 

Figure 4  A Rome’s naval siege at Achradina
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launchers, catapults, and crossbows, powered by twisted animal sinews that pro-
vided the requisite torque, hurled rocks and bolts at high speed with great penetrat-
ing force. The largest weapons, such as the petrobolos and oxybeleis, could hurl 
heavy artillery out to several hundred yards, far outranging the Roman archers. This 
not only allowed the Syracusians to begin attriting Marcellus’ shipborne troops long 
before they got into bow range but also denied them safe refuge upon retreat until 
they were far offshore. On the landward side, similar engines in a layered defensive 
array wreaked havoc on Appius’ soldiers.

Polybius made note of one unusual weapon, invented by Archimedes, which 
caught Marcellus by surprise:

Figure 5  Archimedes’ system of defense-in-depth

Figure 6  Well-known weapons used by Archimedes in the siege of Syracuse
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A grappling-iron attached to a chain would be let down, and with this the man controlling 
the beam would clutch at the ship. As soon as the bow was securely gripped, the lever of the 
machine inside the wall would be pressed down. When the operator had lifted up the ship’s 
bow in this way and made her stand on her stern, he made fast the lower parts of the 
machine, so that they would not move, and finally by means of a rope and pulley suddenly 
slackened the grappling-iron and the chain. The result was that some of the vessels heeled 
over and fell on the sides, and others capsized, while the majority when their bows were let 
fall from a height plunged under water and filled, and thus threw all into confusion.

Historians have argued endlessly over whether “Archimedes’ claw” ever existed. 
The description certainly appears fanciful in some parts: a fully laden quinquereme 
displaced around 100 tonnes, far greater than could be “lifted up by the bow” and 
which would certainly break the supporting beams. However, in 1999 and 2005, 
BBC and Discovery Channel (Figure 7) sponsored model and full-scale trials of a 
similar device and found that it could, conceivably, tip over such a vessel. (It should 
be noted that in 2010, the Discovery Channel’s show Mythbusters was “directed” by 
President Barack Obama to determine whether the legend of Archimedes using 
burning mirrors to destroy the Roman fleet was plausible. It was not.)

As Polybius noted, Marcellus’ operations were thus completely frustrated by 
these inventions of Archimedes. The system of defense-in-depth, with a mix of 
weapons and defenses that could protect the city at various ranges, made it impos-
sible for the Romans to develop any systematic means of counterattack. This did 
not, however, spell victory for Syracuse. Marcellus and Appius settled on a pro-
tracted siege that would starve out the inhabitants. Though Carthage was able to 
occasionally break through the Roman blockade, supplies soon dwindled. After a 
stalemate that lasted almost a year, in 212 BCE, Appius’ troops were able to breach 
the walls when they were left unguarded during a festival. Though Marcellus gave 

Figure 7  Archimedes’ claw
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strict orders to take Archimedes alive, he/Archimedes was killed by a soldier who 
apparently did not recognize him. Another 8 months of siege against the interior 
citadel starved the population into submission. Syracuse and the rest of Sicily fell 
under Roman rule. Ten years later, the Second Punic War ended with a Roman vic-
tory over Carthage. Rome now dominated the Western Mediterranean and was set 
firmly on the path to becoming the world’s greatest and most influential empire.

�1866: The Screw Propeller and the Ram: Naval 
Defense-in-Depth

Archimedes would have been familiar with the many varieties of oared warships of 
his age—triremes, quadriremes, and quinqueremes—distinguished by the number 
of rowers in each tier of oars. The navies of Greece, Rome, and Carthage maintained 
fleets of these warships to fight for dominance of the Mediterranean. They were all 
equipped with the same weapon—a massive bronze ram, sturdily fixed to the keel 
structure, which would hole the enemy ship by breaking apart hull timbers (Figure 8). 
Fleets would face head to head and execute complex maneuvers in order to ram the 
enemy. For a thousand years, from 500 BCE until 1500 CE, the oared ram galley 
was the primary maritime weapon of the Mediterranean.

The introduction of naval artillery in the 1500s vaulted the sailing warship to 
primacy. For almost three centuries, the sailing ship of the line, equipped between 
60 and 120 cannon that could devastate an enemy’s hull and rigging, became the 
symbol and reality of maritime power (Figure  9). Naval battles were no longer 

Figure 8  Ram bow of Olympias, a modern replica of a Greek trireme
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fought head to head, as in the day of the ram, but in long, parallel lines of battle 
where opposing fleets would sail side by side, pounding each other in hours-long 
gun duels.

Steam power began to take the place of sail by the middle of the nineteenth cen-
tury. At first, steam engines drove paddlewheels, a well-understood technology 
derived from the waterwheels which dotted every nation’s countryside. Steam 
power was soon adopted by navies, as it gave the advantage of not being reliant on 
the fickle wind. Steam came at a price; the massive propulsion machinery (boilers, 
pistons, and coal bunkers) demanded considerable volume and manpower, paddle-
wheels were vulnerable to being destroyed by gunfire, and the paddlewheel boxes 
took up valuable real estate in the center of the gun deck. This considerably reduced 
the firepower available. For example, a 3000 tonne sailing warship might carry 74 
guns, but a comparably sized steam warship would have just 20 guns (Figure 10).

The invention of the screw propeller, claimed by dozens of individuals from the 
1820s to the 1840s, solved many of these problems when it was adopted. The most 
influential inventor was a British farmer named Francis Pettit Smith, who was 
inspired by the Archimedes screw to develop a screw-shaped propulsion device for 
ships. Over several years, he refined his device from an elongated screw with several 
turns that resembled Archimedes’ original device, to a screw with two turns. Smith 
even dubbed his test ship for the screw propeller SS Archimedes, which was 
launched in 1839. Based on their experiences, Smith and others further refined the 
idea to a propeller with a single turn and multiple blades. The fact that the screw 
could be located below the waterline both reduced propulsion vulnerability to 

Figure 9  How battles were fought before steam: French and British ships of the line at the Battle 
of Chesapeake Capes, September 5, 1781
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gunfire and freed up deck space for weaponry, often doubling of the number of guns 
that could be carried by a warship, though still fewer than the older sailing ships of 
the line (Figure 11).

As steam propulsion was coming of age, iron was adopted over wood as the 
shipbuilding material of choice. For warship builders, this presented both a great 
advantage and a serious problem. On the defensive side, iron was stronger than 
wood and more resistant to damage, but on the offensive side, it was far more 

Figure 10  The problem with steam paddlewheel ships—lack of firepower

Figure 11  Screw propulsion comes of age
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difficult for naval artillery to damage an enemy ship. During the 1862 Battle of 
Hampton Roads between the Confederate and Union ironclads CSS Virginia and 
USS Monitor, shot bounced off the ships’ hulls and turrets even though they were 
firing at point-blank range (Figure 12).

The French navy had been the first to understand this problem and develop a 
solution that would provide the needed defense-in-depth. Just as the newfangled 
screw propeller hearkened back to the Age of Archimedes, its newest weapon, the 
ram, came from the same era and was, in fact, inspired by the Archimedes screw. 
Nicolas-Hippolyte Labrousse was a brilliant 22-year-old lieutenant in the French 
navy when in 1839 he witnessed the trials of Smith’s screw-propelled SS Archimedes. 
He quickly realized that the screw could be harnessed to turn the ship into a ram like 
the Greek and Roman galleys and overcome the numerical advantage of the British 
navy. Labrousse drafted his idea the following year in a memorandum that argued 
for the “absolute” combat of ramming: … as in Rome, the ram will re-establish 
equilibrium in favor of courage, and diminish superiority founded on greater num-
bers. The idea was widely discussed and even tested over the next 20, but it was not 
until French industry had advanced sufficiently that the ironclad warship Solferino 
with a heavy, pointed ram could be built (Figure 13). As its constructor Dupuy de 
Lôme said, the warship … could rip open by the shock, at even a moderate speed, 
any armored ship it attacked. The British navy responded by constructing its own 
ram-equipped warship. The idea spread quickly; within months, navies around the 
world were ordering ram-equipped warships. Even the aforementioned CSS Virginia 
was built with a ram.

The combination of iron, screw, and ram provided a novel system of defense-in-
depth that navies quickly adopted (Figure 14). First, the protection afforded by iron 
hulls and underwater screw propulsion allowed a ship to approach the gun-firing 

Figure 12  The problem with iron ships—protection
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Figure 13  The ram is introduced to iron warships: French ironclad Solferino, 1861

Figure 14  Screw and ram create defense-in-depth
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enemy vessel with relative impunity. Though the exchange of fire would likely 
cause superficial damage to both ships, the mortal wound would be inflicted when 
the ramming ship closed within striking distance and punched a hole in the enemy 
ship. The enemy vessel would immediately begin flooding as the ram was with-
drawn, causing it to sink rapidly.

This system of naval defense-in-depth saw widespread usage in the 1860s and 
1870s. The day before the ironclad duel during the aforementioned battle of 
Hampton Roads, CSS Virginia rammed and sank the Union frigate USS Cumberland. 
During the Third War of Italian Independence, the Austrian navy defeated the larger 
Italian navy at the Battle of Lissa (in the Adriatic) on July 20, 1866, in part because 
the Austrian flagship Erzherzog Ferdinand Max rammed and sank the Italian flag-
ship Re d’Italia. On May 21, 1879, in the Battle of Iquique during the War of the 
Pacific, the Peruvian ironclad monitor Huáscar rammed and sank the Chilean cor-
vette Esmeralda (Figure 15).

Thus, the Archimedes screw and the ram from antiquity combined to create a 
system of defense-in-depth that dominated naval thinking for several decades dur-
ing the late nineteenth century. However, technological developments in the form of 

Figure 15  Screw and ram in action
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underwater torpedo and improvements in artillery were already changing the nature 
of naval warfare. Torpedoes now allowed a ship to hole and sink an enemy vessel at 
long distances without ramming. At the same time, more powerful guns, larger 
exploding shells, and improved gunfire control made naval artillery more deadly 
against even well-armored ships. By the turn of the twentieth century, ramming had 
become the equivalent of the bayonet charge against machine guns and was quickly 
dropped.

�1940: The Maginot Line: A Case of Failure 
of Defense-in-Depth

The twentieth century ushered in more than just improvements to artillery and gun-
fire control. Warfare itself became industrialized, with revolutionary developments 
in communication, transportation, and weapon technologies that fundamentally 
altered the conduct of war. The World War I saw these elements brought together in 
devastating ways. The aftermath was staggering: 16 million dead, 21 million 
wounded or missing, and hundreds of billions of dollars in destruction. The effect 
upon France was shattering. Five percent of its population was killed outright—
higher than any other major power—and one person in ten was wounded. The 
national birth rate plummeted. By 1930, France had just 40 million inhabitants com-
pared with 70 million in Germany, on top of which there was a widespread shortage 
of military-aged men.

War planners knew that static defenses required fewer troops, so they carefully 
planned a large-scale system of defense-in-depth that would ensure the limited 
number of soldiers would be placed in the most advantageous positions (Figure 16). 
The primary defense, known as the Maginot Line, was directly along the French-
German border. Its purpose was to greatly slow down any German advance, attriting 
those forces and buying time for French troops to be mobilized to meet the onslaught. 
Further north, the planners assumed that the Ardennes Forest along the borders with 
Luxembourg and Belgium were too dense and rugged to permit large-scale mecha-
nized assault (tanks and mobile artillery) to cross. The region between the Ardennes 
and the English Channel would see the largest concentration of French troops to 
face down the anticipated German “right hook” through Belgium. At the same time, 
French planners anticipated that Britain would come in on their side if Belgian neu-
trality were violated.

The Maginot Line was built at enormous cost between 1930 and 1940. It was not 
a single barrier but rather a large-scale system of defense-in-depth (15–20 miles 
deep) that relied on a number of systems, tactics, and technologies to slow down and 
weaken the enemy (Figure 17). At the front was a series of antitank barricades to 
slow down tanks and other heavy vehicles, making them susceptible to counterfire. 
Behind those, blockhouses and strong houses, often camouflaged as residential 
homes, housed troops and antitank batteries to “sound the alarm” and provide 
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counterfire. About 6–10 miles behind the front was the principal line of resistance, 
a network of underground fortifications, aboveground turrets and casemates, out-
posts, and shelters. These self-contained works housed the primary artillery and 
infantry forces to attack the (presumably depleted) enemy advance. Behind the 

Figure 16  Maginot Line: part of French defense-in-depth

Figure 17  Defense-in-depth at the Maginot Line
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principal line of resistance were additional defenses, including rail artillery, which 
could be quickly moved to different zones to destroy German troops that had broken 
through the principal line of defense. Behind the Maginot Line, masses of French 
troops would mop up the remaining German forces.

The German invasion plan of France was designed to deal with the Maginot 
Line. The heart of its strategy was to avoid attacking the Line head-on, instead rely-
ing on a flanking attack through the Ardennes Forest. The French planners consid-
ered the forest too dense to allow tanks and heavy artillery to pass and only lightly 
defended the line opposite. The German army, in a stunning display of what is today 
called “asymmetrical warfare,” did not send tanks through the Ardennes but instead 
relied on the Luftwaffe (notably its JU 87 Stuka dive bombers) for fire support.

Germany first deployed a decoy force in front of the Maginot Line to draw off 
French forces from the main line of attack. On May 10, 1940, the German army 
invaded the Low Countries and crossed them in 2 days. As the army began invading 
France, the Luftwaffe flew over the Ardennes and destroyed French emplacements 
and army positions, paving the way for German troops to advance. German forces 
were well into France by May 16, reaching the Channel on May 21 (Figure 18). A 
month later, all resistance had collapsed and France signed an armistice with 
Germany, beginning a 4-year long occupation.

Though Maginot Line was, in fact, a well thought-out system of defense-in-
depth, it ultimately failed in its purpose to protect France from a German invasion. 
When the German army did attack the Line directly head-on, the French defenders 
were generally able to repel the attack. On the larger scale, however, advances in 
technology and tactics—notably the employment of air power—allowed the 

Figure 18  German forces bypass the Maginot Line and advance through Ardennes
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invading army to simply bypass the fortifications, surround them from the rear, and 
cut them off. In the face of these changes, the Maginot Line had simply become 
irrelevant to modern maneuver warfare.

�2013: Cyber Defense-in-Depth for the Twenty-First Century

Defense-in-depth in the twenty-first century is increasingly focused on protecting 
against “cyberattacks” on the software elements of key systems. This goes well 
beyond the military. Critical infrastructure is increasingly software-driven: power 
plants, electrical grids, oil rigs, chemical factories, etc. each requires millions of 
lines of code to operate. Malicious code (viruses, worms, etc.) can be stealthily 
inserted by an attacker, which can lie dormant and unseen for long periods before 
wreaking havoc on a system.

Such attacks are becoming more prevalent as both corporations and governments 
increasingly connect their computer systems via the Internet and other networks and 
store information in vast third-party systems known as “the cloud.” Cyberattacks 
can come from both state and non-state actors, and it is not easy to identify the 
source. In August 2012, Saudi Aramco, the largest oil production company in the 
world, was attacked by a virus which shut down most of its computers, causing the 
company to spend a week and many millions of dollars restoring services. Though 
a group of computer hackers claimed responsibility, suspicion also fell on rival 
companies and even the Iranian government. In March 2013, several South Korean 
TV stations and banks were attacked and their computer terminals shut down. 
Though some evidence pointed to North Korea as the source, a “hacktivist” attack 
has not been ruled out.

Cyberattacks have increased in both frequency and sophistication. Not only are 
the number of computer systems and users increasing almost exponentially, but the 
cyberattack tools available are also multiplying. Many of these tools are being 
offered as turnkey packages, which require little in the way of direct software skills 
and knowledge by a potential attacker (Figure 19).

Cyber defense, the deployment and use of systems and tactics against software 
attacks, has also grown more sophisticated, including the important realization that 
some attacks will get through any system of defense and to plan for recovery after-
wards. Defense-in-depth against cyberattacks now includes the following diverse 
elements:

•	 Intelligence: understanding the threat.
•	 Passive defense: antivirus, firewalls, etc. known to most computer users
•	 Active defense and offense: using intelligence to create preemptive attacks 

against intruders and developing rapid retaliation and response
•	 Redundancy and separation: avoiding single points of vulnerability, for example, 

having multiple software types across critical systems
•	 Resilience: the ability to restore services after an attack
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�Conclusions

Archimedes was one of the influential pioneers of defense-in-depth, which has 
proven to be a useful military and engineering strategy to meet varied political 
goals. The defense of Syracuse and the employment of the ram and screw showed 
how multiple, layered technical and tactical systems can prove effective in slowing 
down and countering an attack. However, even the best defense can be overcome; 
the Maginot Line was outflanked by rapid, unanticipated advances in technology 
and tactics, and the defenders were unable to recover from the assault when their 
carefully prepared protective works were simply bypassed.

The current generation of cyberwarfare planners is using lessons learned from 
these and other examples to create appropriate defense-in-depth for the modern era, 
especially in understanding that some attacks will get through, and provide accept-
able levels of operations after attack. As cyber defense continues to evolve, the les-
sons from Archimedes will continue to be relevant in the twenty-first century.

Bibliography

Archimedes and the Siege of Syracuse

	 1.	Mary Jaeger, Archimedes and the Roman Imagination. Ann Arbor: University of Michigan 
Press, 2008.

	 2.	David C. Lane, “High Leverage Interventions: Three Cases of Defensive Action and Their 
Lessons for OR/MS Today”, Operations Research 56/6 pp. 1535–1547, 2010.

Figure 19  Cyberattacks are becoming more sophisticated, yet require less skill by intruders

L.D. Ferreiro



39

	 3.	William M. Murray, The Age of Titans: The Rise and Fall of the Great Hellenistic Navies. 
Oxford: Oxford University Press, 2012.

	 4.	Mythbusters, Presidential Challenge: Archimedes, Discovery Channel http://dsc.discovery.
com/tv-shows/mythbusters, accessed May 2013.

	 5.	Stephanos A. Paipetis and Marco Ceccarelli (eds.). The Genius of Archimedes: 23 Centuries of 
Influence on Mathematics, Science and Engineering. Dordrecht: Springer, 2010.

	 6.	Chris Rorres, Archimedes, http://www.math.nyu.edu/~crorres/Archimedes/contents.html 
accessed May 2013.

The Screw Propeller and the Ram

	 7.	 James P. Baxter, The introduction of the ironclad warship. Cambridge: Harvard University 
Press, 1933.

	 8.	David K. Brown, From Warrior to Dreadnought. London: Chatham, 1997.
	 9.	Larrie D. Ferreiro, “The Social History of the Bulbous Bow”, Technology and Culture 52/2 

pp. 335–359, 2011.
	10.	Jack Greene and Alessandro Massignani, Ironclads at War: the Origin and Development of the 

Armored Warship, 1854-1891. Pennsylvania: Combined Publishing, 1998.
	11.	John Morrison, The age of the galley: Mediterranean oared vessels since pre-classical times. 

London: Conway Maritime, 2003.

The Maginot Line

	12.	Robert Boyce, French Foreign and Defence Policy, 1918-1940. Abingdon: Routledge, 1998.
	13.	J.E. Kaufmann and H. W. Kaufmann, Fortress France: The Maginot Line and French Defenses 

in World War II. Mechanicsburg: Stackpole, 2007.
	14.	Judith M. Hughes, To the Maginot Line: The Politics of French Military Preparation in the 

1920's. Cambridge: Harvard University Press, 1971.
	15.	Jean-Yves Mary, Alain Hohnadel and Jacques Sicard, Hommes et Ouvrages de la Ligne 

Maginot, 4 vols. Paris: Histoire & Collections, 2000–2009.

Cyberdefense

	16.	Myriam D. Cavelty, et al. (eds.), Power and Security in the Information Age: Investigating the 
Role of the State in Cyberspace. Surrey: Ashgate, 2008.

	17.	Paul Cornish, et al., On Cyber Warfare. London: Chatham House, 2010.
	18.	Martin C. Libicki, Brandishing Cyberattack Capabilities. Santa Monica: RAND, 2013.
	19.	Howard F. Lipson , Tracking and Tracing Cyber-Attacks: Technical Challenges and Global 

Policy. Pittsburgh: CMI/SEI, 2002.

Archimedes the Military Engineer

http://dsc.discovery.com/tv-shows/mythbusters
http://dsc.discovery.com/tv-shows/mythbusters
http://www.math.nyu.edu/~crorres/Archimedes/contents.html


41© Springer International Publishing AG 2017 
C. Rorres (ed.), Archimedes in the 21st Century, Trends in the History of 
Science, DOI 10.1007/978-3-319-58059-3_3

Archimedes the Geometer

Extending His Tombstone Theorem into  
the Twenty-First Century

Mamikon Mnatsakanian

M. Mnatsakanian (*) 
California Institute of Technology, Pasadena, CA, USA
e-mail: crorres@cs.drexel.edu

Archimedes was a great civilization all by himself. [1]

�Archimedes’ Tombstone Result

Archimedes was a physicist, engineer, mathematician, and astronomer—but above 
all he was a geometer. This is affirmed by the particular result that he wished to have 
inscribed on his tombstone (Figure 1).

This purely geometric result is described in his work On the Sphere and Cylinder [2]. 
Archimedes was obviously most excited with this amazing and simple “double ratio.”

We present here some results of ours extending Archimedes’ tombstone result. Our 
primary reference is The Works of Archimedes [2]. Many of our results were sepa-
rately published in mathematical journals from 1998 to 2012, coauthored with my 
colleague Tom Apostol, and also appear in our book New Horizons in Geometry [3].

�Solids Besides Cylinders with the Double Ratio 3:2

In his Method [2], Archimedes investigates the solid determined by the intersec-
tion of two cylinders (Figure 2 left), called a bicylinder. He constructs this solid 
by combining eight congruent cylindrical wedges shown in Figure  2 right. 
Archimedes finds the volume of this wedge and concludes that the volume of the 
bicylinder equals 2/3 that of its circumscribing cube. This is same volume ratio as 
in his tombstone result for the sphere and cylinder. He was excited with this spe-
cial result because, as he explains in The Method, never before was the volume of 
a solid with curved surfaces reduced to that of a solid bounded exclusively by 
planes, here a cube.
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In this connection, we should note that in Figure  1, the volume of the solid 
bounded by the more curved surface of the sphere is reduced to that of a solid with 
a less curved surface, the cylinder. The surface curvature is “reduced” in one 
direction.

What Archimedes didn’t know is that the surface area of the bicylinder is also 
equal to 2/3 of the total surface area of the cube. This can be seen by unwrapping 
the cylindrical surface of the wedge onto a plane (Figure 3). In this way, it turns into 
the region under a sine curve whose area is easy to find in an elementary way. Its 
area is that of the two small squares in Figure 3 circumscribing the base semicircle. 
From this it follows that the total surface area of the cube is 3/2 times as large as that 
of the bicylinder.

Now that we have two similar examples, it is easier to find others. Let’s combine 
not eight but another even number of cylindrical wedges, equal in pairs, so that they 
have a common inscribed sphere. These are actually intersections of semicylinders, 
which we call Archimedean pillows or globes. Figure 4 shows two such solids made 
with six wedges and eight wedges (the bicylinder).

In Figure 5 the top views of more Archimedean globes, starting with a triangular 
base, are shown.

Figure 1

Figure 2

Figure 3
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There are infinitely many Archimedean globes, differing in the number of wedges 
and the shapes. Each of these globes can be surrounded by a prismatic box, whose 
base is the equatorial polygon of the globe and whose height is the diameter of the 
cylinders. An example is given in Figure 6, where only one symmetric half is shown. 
The sphere is the limiting case of an Archimedean globe, and its circumscribing 
cylinder is the limiting case of its prismatic box.

All these solids have the same property: both the ratio of their volume and sur-
face area to those of the circumscribing prismatic box are the same, namely, 2:3, just 
as for the sphere and cylinder.

�Other Solids with Double Ratios, But Not Necessarily 3:2

Here in Figure 7, three solids circumscribing a sphere are shown besides the cylin-
der circumscribing a sphere. Does any have the same ratio of both volume and sur-
face area to that of its inscribed sphere?

Figure 4

Figure 5

Figure 6
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Figure 8 shows even simpler two-dimensional pictures. Which polygons 
circumscribing a circle have the same ratio of area and perimeter to the area and 
circumference of the circle?

Examples of such figures are given in Archimedes’ π-oneering work 
Measurements of the Circle. These are regular polygons circumscribing a circle. 
He uses the property that such a polygon has area equal to half its perimeter times 
the radius of the in-circle. In Figure 9 he imagines how a circle equals a triangle 
whose base is the circle’s circumference and whose height is its radius.

In fact, the traditional globes of Earth are Archimedean, usually made of 12 flat-
printed pieces, each of a double sine arch, bent as a cylindrical wedge surface, and 
then pressed to a sphere.

This “triangle property” is equivalent to the claim that the ratio of the area of the 
polygon to the area of the circle is the same as the ratio of the perimeter of the poly-
gon to the perimeter of the circle. It may be somewhat surprising, but this “triangle 
property” is common not only for regular polygons but for any polygon 
circumscribing a circle; moreover, it holds for any union of sectors of a circle and 
the corresponding union of the triangles determined by the sectors, each with one 
vertex at the center of the circle and one side tangent to the circle (Figure 10).

Figure 7

Figure 8

Figure 9
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We call such figures circum-gons. The pentagram in Figure  10 has no side 
touching the circle, but if extended, they all are tangent to the circle; i.e., the penta-
gram circumscribes the circle inside it.

Samples of corresponding three-dimensional solids are found in Archimedes’ 
work On the Sphere and Cylinder. He says: The sphere equals a cone whose base is 
the surface and height is the radius of the sphere. Of course he means that the vol-
ume is a third of base area times height. The same property has any sector of the 
sphere having its vertex at the center of the sphere, which is the limiting case of the 
solid bounded by truncated cones circumscribing the sphere.

Archimedes constructs such conical surfaces by rotating a regular polygon with 
the number of sides being a multiple of four or its discrete portions (Figure 11).

Archimedes does not mention anywhere that a similar property holds not only 
for conical sectors but for a cylindrical sector as well. This would simplify the deri-
vation of his tombstone result. A more general solid having such property, called a 
circum-solid, is built from building blocks whose outer surfaces, tangent to the same 
inscribed sphere, are flat, or conical, or cylindrical or spherical (Figure 12). Each of 
them is combined from tiny cones, whose tiny bases are nearly flat and whose 
heights are equal to the same radius of the circle. They all have the “cone property”; 
the volume is a third of the base times the height. Flat-faced polyhedra circumscrib-
ing a sphere are the simplest such examples.

More examples of circum-solids are shown in Figure 13. A circum-solid need not 
be closed; it can be any sector with outer surface tangent to and vertex at the center 
of the in-sphere.

Also, circum-solids need not be convex; they can be starlike objects as in 
Figure 14. Using the double-equality property, we find the volume of the regular 
stellated dodecahedron by finding its surface area, which in turn can be reduced to 

Figure 10

Figure 11
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finding the perimeter of the regular pentagram. Here, a three-dimensional volume is 
reduced to a two-dimensional pentagon’s perimeter.

The double-equality property also allows us to find the volume of the intersection 
of a cylinder with a cone (Figure 15). This is a more general solid than Archimedes’ 
solid of intersection of two cylinders and much harder to treat using ordinary meth-
ods. Note that if the cylinder touches the surface of the cone internally, there is a 
common sphere inscribed in both of them. Thus, our solid of intersection is a closed 
circum-solid, and finding its volume can be reduced to finding its total surface area 
first, then multiplying it by the radius of the in-sphere, and dividing by 3. The 
surface areas, in turn, can be found in an elementary manner because they represent 
certain regions bounded by sine curves when unwrapped onto a plane.

Figure 12

Figure 13

Figure 14
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�Simple Solids with a Common Double Ratio Other Than 3:2

We have just learned that there are infinitely many variations of solids circumscrib-
ing a sphere that have the same ratio of their volume and surface area to those of the 
inscribed sphere. Thus the Archimedes’ tombstone result is not so surprising now as 
it was at first glance. Archimedes may not have known these facts, or he was excited 
with the simplicity of the cylinder and of the ratio 3:2.

Can we surround a sphere with a simple object that has a simpler double ratio, 
say 2:1?

In Figure 16 the Archimedean sphere and cylinder are shown, together with three 
symmetric circum-solids made of conical surfaces circumscribing a sphere. The 
first one has a double ratio 2:1, and its point of tangency with the in-sphere is at an 
angle almost equal to 1 radian, but its exact measure is 0.9955… radian (too bad). 
The second solid is simpler; it’s a double cone with right vertex and intersection 
angles. The double ratio for it is “square root of 2.” The third solid is a truncated 
cone with a beautiful property: one base has radius equal to the famous “golden 
ratio,” if the sphere has unit radius, and the other one is shorter by 1. The base angle 
is the corner of a regular pentagram, with 72 degrees. Although the double ratio here 
is simpler, 2:1, the solid does not look as simple and nice as the cylinder does. By 
the way, as the angle changes, the double ratio takes its smallest value 3/2 when the 
truncated cone becomes a cylinder.

It seems that the answer to the question here is: there is no simpler result in 3D.

Figure 15

Figure 16
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�Circum-Solids with the Double Ratio 1:1

There are circum-solids with a double ratio of 1:1, but they are not bounded by 
closed surfaces because the double ratio would exceed 1. These must be sectors, but 
how simple can the sector be? Archimedes discovered his tombstone result first by 
balancing the sphere with a twice-larger (by base) cylinder and inscribed a cone in it. 
He was guided by geometric algebra or method of proportions, as shown in Figure 17. 
Later, looking for a rigorous proof, he came up with a nicer solution using the 
sphere’s volume and surface area cone property (Figure 18). He finds this area by 
exhausting it by cones of revolution of inscribed and circumscribed polygons.

From here he finds that the volume of the sphere is twice that of the inscribed 
double cone, and only then does he turn from a cone to a cylinder, formulating his 
tombstone result in terms of a cylinder. He didn’t look back again at his wished 
tombstone picture to see an even simpler proof of it. Here it is Figure 19: the sphere 
in the circum-cylinder that is punctured by an inscribed double cone.

The surface area of the sphere simply equals the lateral surface area of the punc-
tured cylinder, and the volume of the sphere simply equals the volume of that punc-
tured circum-cylinder.

In other words, the double ratio for the circumscribing punctured cylinder is 
perfectly 1:1. The same, perfect 1:1 ratio holds for infinitely many Archimedean 
globes and circumscribing punctured prisms (Figure 19). This can be seen by notic-
ing that the horizontal cross-sectional areas of the two solids are equal (Figure 20). 

Figure 17

Figure 18
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One is the Archimedean pillow shown with its punctured prismatic box. The sphere 
and punctured cylinder are the limiting case.

�Analogies of Archimedes’ Tombstone Result in Higher Spaces

Is there an analogy of Archimedes’ tombstone result in 2D with simple figures and 
a simple double ratio? Look at the circum-gons in Figure 8. Is the analogy a circle 
and a circumscribing square? This picture is simple, but the double ratio in this case 
is π/4, not a simple ratio, and fuzzy in Archimedes’ time. We have π involved in each 
regular polygon case, plus some trigonometric expression in general, leading to 
square roots. So, it looks like the answer is: there is no simple analogy in 2D.

Now we know that there are infinitely many circum-gons and circum-solids each 
having the “same” double ratio of “volumes” and “surface areas” with the inscribed 
“sphere,” but our analysis showed no simple ratio in 2D and in 3D, except for the 
cylinder. The concept of circum-solids is easily extended to higher dimensions as 
well. In higher dimensions, there are richer varieties, because there are more types 
of building blocks circumscribing n-sphere in higher spaces. Among them are also 
“familiar” n-cube, n-cone, n-cylinder, and so on, plus other types of n-solids having 
no analogies in 3-space. Which of these may have a simple rational double ratio?

For the n-cylinder, the ratio of its volume to that of the inscribed n-sphere is not 
simple for any n except for n = 3. In general, the volume of an n-cylinder is that of 
an (n − 1)-sphere times the height (the diameter of the inscribed n-sphere in our 
case). And there is no simple volume relation between n-spheres in consecutive 
dimensions.

What about Archimedean globes? In 3D, finding the volume and surface area of 
the wedge is very simple. Take a tiny spherical wedge {21} with a very small angle, 
and simply stretch it vertically. Everything increases linearly with height: the 

Figure 19

Figure 20
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volume, the surface area, and even the height of the center of gravity of the cylindrical 
wedge. As for the horizontal position of the center of gravity, it is exactly above that 
of the tiny spherical wedge. On the other hand, if we stretch this tiny spherical 
wedge angularly, along the circle with the base radius, we will get a spherical 
wedge, and the volume and the surface area of it will increase linearly with the 
stretched angle. So, the spherical and the cylindrical wedges are very closely related 
objects. For instance, the surface of the cylindrical wedge in Figures 3 and 21 is an 
arch of a sine curve, and so is the surface of the spherical wedge. Shown in Figure 22 
is the largest sine arch corresponding to the full spherical wedge, that is, a sphere. 
We see such maps of the earth globe and of the universe from outside. If we stretch 
angularly, along a circular arc of a given length, we get the same volume and surface 
area of the cylindrical wedge, the height being that arc length.

In a similar way, the spherical and cylindrical wedges are intrinsically related in 
all other dimensions, starting with 2D. The wedge in 2D is a right triangle, so com-
bining them into a closed object leads to the square in Figure 8. No help. Because 
the said volumes ratio is that of the spheres in two consecutive dimensions, this ratio 
involves at least a π in it, exactly like in 2D compared to 3D. Perhaps we should not 
look for very familiar circum-solid objects in n-space. But we definitely want to 
have the n-sphere inside of an n-circum-solid.

Let’s presume for now that the answer is that there are no analogies in dimen-
sions more than three. After all, for 2,000 years, nobody found a simple analogy to 
Archimedes’ tombstone result in any other dimension, despite all the efforts. Let’s 
look into Archimedes’ works even if we know that he didn’t look into higher dimensions. 

Figure 21

Figure 22
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In fact, there are even no pictures of 3D solids in Archimedes’ drawings; all figures 
are planar.

Here is what we find interesting. In his Method Archimedes writes: I apprehend 
that some of my contemporaries or successors with the use of the method once it is 
established will discover new theorems in geometry that didn’t occur to me. Here 
we go. His balancing method does really reduce the integrals of a power function to 
that with one lesser power. Archimedes uses his balancing method in a dozen prob-
lems and foresees a big future for the applications.

�How Archimedes Balanced the Volume  
of His Cylindrical Wedge

As we said above, finding the volume and surface area of a wedge is a simple 
stretching exercise. But how does Archimedes do it? He takes a cylinder, cuts it in 
half, and then chops out the wedge from one half (Figure 23). Now he makes an 
unexpected move: he says, if we slide the wedge and shift it back so that its center 
of gravity is exactly above the base circle of the initial cylinder, the wedge will be 
balanced by the semicylinder on the left. He doesn’t even know where the center of 
gravity of the wedge is. Apparently, he does not need to know, and he never finds it, 
even after the balancing. His proof of this balance is as simple as x*1 = 1*x, and 
now he can find the volume of the wedge for he knows the volume of the semicyl-
inder and its center of gravity. But where does Archimedes find the center of gravity 
of the semicylinder? We know it today; it’s the center of gravity of a semicircular 
disk. But how does Archimedes know it? Search again.

Finally, here it is in Figure 24: an ignored Archimedes’ exercise, lost at the very 
end of the book, at the end of The Method. It’s absolutely fantastic, his balance of 
the semi-disk with a triangle.

Archimedes doesn’t express any excitement with this balancing, though it is 
charming and very unexpected. Here Archimedes didn’t know that there is another 
balance in this picture: the arc length of the semicircle also is balanced with the 
vertical base of the triangle!

Figure 23
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This double balance picture leads directly to the Archimedean tombstone double 
ratio (Figure 25).

Rotate this picture around the balancing axis to obtain two solids: a sphere pro-
duced by the semicircle and a punctured cylinder (by a double cone) produced by 
the triangle. Because the areas are balanced, the volumes of the two solids are equal, 
by the Pappus’ rule.

Just multiply, in general, the equality of moments by 2π to get equal volumes of 
revolution (Figure 26).

And because the arc lengths are in balance, the surface area of the sphere is equal 
to the lateral surface area of the cylinder, by the second rule of Pappus (and multi-
plying by 2π). Note that the cylinder produced here circumscribes the sphere.

Archimedes proves the balance of areas by proving first the chord-by-chord 
balance with respect to the central axis. By the way, using another Pappus’ rule 

Figure 24

Figure 25

Figure 26
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(multiplying by 2π) (Figure  27), we conclude that the horizontal cross-sectional 
areas of the two solids are equal, from which again follows the Archimedean tomb-
stone result for the volumes.

To prove the chord-by-chord balance, Archimedes uses the Pythagorean theorem 
(PT). PT is a very powerful but very specialized tool, and any use of it may result in 
big limitations.

It is good for circles if the Cartesian equation is used because it is actually the PT 
relation.

How can we prove the double balance in some other way that is more revealing? 
Look. Figure 28 shows a circle and a line segment tangent at its midpoint to the circle.

On the other side of the vertical axis of the circle, a vertical tangent line to the 
circle is drawn. From similar triangles, it follows immediately that the line segment 
on the right is in balance with its projection on the vertical line on the left. The line 
segment is arbitrary, so we can combine several such segments, each tangent at its 
midpoint to the circle, and obtain a regular polygonal arc balanced on the right with 
its combined projection on the vertical tangent line on the left. In the limit, as we 
see, any arc of the circle itself is in balance with its vertical projection segment 
(Figure  29). Therefore, by rotating the picture around the balancing axis using 
Pappus’ rule, (and multiplying by 2π), we conclude that any horizontal spherical 
zone has an area equal to that of the corresponding horizontal zone of the lateral 
surface of the cylinder circumscribing the sphere (Figure 30).

In particular this leads to the balance of the semicircular arc with the base of the 
triangle as claimed above, which in turn leads to the equality of the surface areas of 
the sphere and cylinder in the Archimedes tombstone result.

Figure 27

Figure 28
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�Discovering New Results Using the Double Balance

Now we can consider various concentric circles and tangent lines to them. By com-
bining them, we can continuously fill sectoral areas as shown in Figure  31 and 
conclude about the areal balance of the polygonal trapezoidal sectors on the right 
and their simpler projection trapezoids on the left. In particular, we can fill the cir-
cular sector in the right that will be in balance with its projection triangle on the left. 
In the case of a semicircular disk, we obtain from here the original Archimedean 
areal balance in Figure 32. So by using simple similarity instead of the Pythagorean 
theorem, we have obtained richer balancing options for both areas and arc lengths, 
whereas the Archimedean semi-disk areal balance is a special case of these balanc-
ing pictures.

Figure 29

Figure 30

Figure 31
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The families of solids in Figure 33 are rotated polygons circumscribing a sphere. 
They resemble Archimedean circumscribing conical surfaces. But these are 2n-gons 
and are punctured by the central vertical double cone whose bases have the 
horizontal sides of the polygons as the diameters. The family exhibits double equal-
ity: the volumes of the solids are equal and the surface areas are equal. The sphere 
and the cylinder are the limiting, special cases. Again we see Archimedes’ tomb-
stone result as a special case here.

Because these solids are circum-solids, they have the same double ratio, but it 
changes from solid to solid, approaching the simplest value 3:2 for the cylinder.

A similar family can be obtained for polygonal prismatic wedges (Figure 34). 
The bases are the same even-sided polygons as above, and they are also punctured 
on the opposite sides of the polygons. The square and the sine arch are the special 
and limiting cases. They represent the Archimedean cylindrical wedge and the cir-
cumscribing cube. All solids in this family have equal volumes and equal lateral 
surface areas. The polygonal prismatic wedges circumscribe the Archimedean 
cylindrical wedge; therefore the ratio of their volumes and surface areas to those of 
the inscribed wedge is the same. This double ratio gets the value 3:2 for the limiting 
Archimedean cylindrical wedge.

Figure 32

Figure 33
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Not only can the double-equality results be easily generalized for infinite 
families of 3D solids, but using area-and-arc balancing in the plane, the balancing 
picture itself can be extended from 2D to 3D space, which then will lead to double-
equality results in 4D, etc. Here is how easily this can be done.

Take the double balancing picture in Figure 24 and rotate it around the horizontal 
axis. The result is the first picture in Figure 35: the hemisphere here (obtained from 
a semicircle) is balanced with the cone (obtained from a triangle). Moreover, these 
two solids are in double balance, meaning both are in balance: the volumes and the 
outer surface areas, that is, the hemispherical surface is in balance with the base of 
the cone. For more partial double balancing pictures related to these solids and some 
others, see [3].

The second picture represents the double balancing of the cone with the cylindri-
cal wedge. The third double balance follows from the first two. Interestingly these 
three balanced solids provide orthogonal projections exactly matching the one in 
Archimedes balancing of the semicylinder with the triangular prism that led him to 
discover the volume of the wedge.

Figure 36 shows one more interesting double balance of the cylindrical and 
spherical wedges of the same height. Note that the side view of these balanced sol-
ids presents two 2D figures, a circular sector and the corresponding projection tri-
angle (of the same height). As we have seen before, they are in double balance with 
each other: and the areas are balanced and the arc lengths are balanced. The double 
balance in Figure 24 is a particular case of this one.

Figure 35

Figure 34
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It should be noted that the type of polygonal balancing in Figures 33 and 34 does 
not allow simple extensions to higher dimensions.

�How “2:N-Grave” (“To Engrave”) Archimedes’ 
Hyper-Tombstone

Now we are going to extend Archimedes’ tombstone result to higher-dimensional 
spaces. We already know that a solid having the same double ratio of volumes and 
surface areas is not a problem. Every circum-solid satisfies that condition. And the 
variety of such solids grows with n quadratically. In 2D we had two building blocks; 
in 3D we had four of them. Of course there are more, but we should select, for their 
beauty, the simplest ones in their hyper-descriptions. The key to hyperspace exten-
sion is the punctured cylinder, for it has the simplest double ratio 1:1. But we have 
already mentioned that the cylinder (even punctured) has no simple double ratio in 
any other dimension but 3. The secret to our solution is that the 3-cylinder is in fact 
not a cylinder but a tricky appearance of another object that we call a cylindroid. 
This new object is as simple as the cylinder, but it’s different from the cylinder. Only 
in 3D does it coincide with the cylinder. What is the n-cylindroid?

Figure 37 shows 2D figures obtained from a simple 1D sphere and cylinder. If we 
translate a 1-sphere, we get a 2-cylinder (rectangle), but if we tumble a 1-cylinder 
about its end, we get a 2-cylindroid, which is actually a 2-sphere or a circular disk. 
So a 2-cylindroid and its inscribed 2-sphere are exactly the same objects with a 
perfect double ratio, 1:1. As we can see, the 2-cylindroid is also a punctured 
2-cylindroid so there is no contradiction in having double ratio 1:1. Recall that the 
2-cylinder discussed previously was a square with double ratio 4/π. Thus, we have 
resolved the main paradoxical issue: why, seemingly, is there no analogy of 
Archimedes’ tombstone result in 2D? Here it is, a circle and its circumscribing 
2-cylindroid (Figure 38).

Figure 36
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Now we move from 2D to 3D (Figure 38). As in the previous picture, when we 
translate a 2-sphere, we get a 3-cylinder, and when we tumble a 2-cylinder, we get 
a 3-cylindroid. In this case and only in this case, the 3-cylindroid is also a 3-cylinder; 
their directions are just exchanged. This coincidence will not happen in any other-
dimensional space, I promise.

Now we’ll construct a double balance and double equality of an n-hemisphere 
and an n-cone. Start with a 2D double balance and rotate it around the horizontal 
axis of symmetry (Figure 39). This produces a double balance of a hemisphere and 
its projection cone in 3D. Now rotate this balanced 3D picture through 4D space to 
get double balance of a four-dimensional hemisphere and its projection cone. It will 
help to visualize this process to flatten the 3D space into a hyperplane and look for 
its analogy with the previous 2D picture. Continuing in this way, we obtain a family 
of double balanced n-hemispheres and their projected n-cones in n-dimensional 
space starting with 2.

Now, take an (n − 1)-double balanced picture and revolve it around the vertical 
balancing axis. As a result, the n-hemisphere will produce an n-hemisphere, and the 
(n − 1)-cone will produce a punctured n-cylindroid, as in pictures in the second row 
in Figure 39. These two objects have equal volumes and equal surface areas (outer 
or lateral). And the double ratio of them is exactly 1:1 for every n starting with 2. 

Figure 38
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If we calculate the volume of the full, un-punctured n-cylindroid, we will get for its 
double ratio to the inscribed n-sphere, namely, n:2.

In the special case n = 2 and the double ratio 1:1, this 2:n-graving is already 
explained above (Figure 40).

�Other Archimedean Discoveries About Spheres

In his work On the Sphere and Cylinder, Archimedes discovered the seven funda-
mental properties of the sphere shown in Figure 41 by comparing it to simpler cones 
and cylinders.

All these seven properties hold exactly the same way for all Archimedean pil-
lows. For instance, the first one on the area of a spherical cap (segment) is general-
ized as follows: The area of a cap (segment) of an Archimedean globe equals that of 

Figure 39
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a polygon similar to its equatorial circum-gon that has the same apothem l as the cap 
(Figure 42). The second property also holds, because it holds for each of the wedges 
forming the globe (Figure 42). Property 3 is generalized as follows: the total surface 
area of any Archimedean globe is four times as large as its equatorial polygon. 

Figure 41

Figure 42
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We have already discussed properties 4 and 6–7 above. As for 5, it is also true for 
any globe: its volume is twice that of the inscribed double pyramid whose base is 
the equatorial circum-gon.

Thus, the Archimedean globe is a generalized sphere with all its properties, the 
sphere being the limiting case. More and interesting properties of the Archimedean 
globe, the sphere in particular, can be found in comparison with the punctured cir-
cumscribing box, related to centers of gravity of their segments, shells, and slices, 
as well as the corresponding volumes and inner and outer surface areas of such 
“washers” [3]. These are the properties of a cylindrical wedge as in Figure 42 that 
makes a peel of all Archimedean globes.

By the way, other properties of the sphere hold for the hyper-tombstone. For 
instance, the zone areas of the n-sphere and n-cylindroid are equal, also their cross-
sectional hyper-areas are equal, and the n-sphere has volume (n – 1) times as large 
as the inscribed in it double n-cone. Also the centroidal properties are similar. 
Interestingly, the areal centroid of an n-hemispherical surface is at the same altitude 
as the volume centroid of an (n – 2)-hemisphere. In particular, the areal centroid of 
a 3D hemisphere’s surface is at the middle of its height because the volume centroid 
of an1D hemisphere, that is, of a line segment being the radius, is at its midpoint.

�Concluding Remarks

We have discussed and extended those discoveries that directly relate to the tomb-
stone of Archimedes. Archimedes’ tombstone was lost and found and then lost 
again but never found again. However, his discoveries will live forever, to excite us 
with his vision, logic, and imagination and to still leave some room for doubt.
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“Archimedes will be remembered when Aeschylus is forgotten, 
because languages die and mathematical ideas do not.”

— G. H. Hardy [1]

I would like to discuss some of Archimedes’ mathematical ideas that are being used 
and applied twenty-three centuries after his lifetime. Although Archimedes’ fame 
among the general populace in antiquity was based on his military machines and 
other inventions, he earned his immortality through his mathematical works. Let me 
begin with a mathematical word problem that Archimedes posed which is still being 
discussed today.

�Archimedes’ Cattle Problem

A simple precursor of this problem appeared in The Odyssey where Homer implic-
itly challenged his audience to determine the number of cattle that belonged to 
Helios, the god of the Sun. Homer’s problem basically boiled down to computing 
the product 7×50. In Archimedes’ more difficult version, Helios’s cattle were divided 
into two genders (cows and bulls) and also into four different colors (white, black, 
dappled, and yellow). Archimedes gave certain mathematical relationships among 
the numbers of cattle in each of the resulting eight classes (white cows, dappled 
bulls, etc.) and challenged his colleague Eratosthenes to determine the total number 
of the cattle of the Sun. Here is the problem as it has been handed down to us [2]:

A Problem
which Archimedes solved in epigrams, and which he communicated to students of such 

matters at Alexandria in a letter to Eratosthenes of Cyrene.
If thou art diligent and wise, O stranger, compute the number of cattle of the Sun, who 

once upon a time grazed on the fields of the Thrinacian isle of Sicily, divided into four herds 
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of different colours, one milk white, another a glossy black, a third yellow and the last 
dappled. In each herd were bulls, mighty in number according to these proportions: 
Understand, stranger, that the white bulls were equal to a half and a third of the black 
together with the whole of the yellow, while the black were equal to the fourth part of the 
dappled and a fifth, together with, once more, the whole of the yellow. Observe further that 
the remaining bulls, the dappled, were equal to a sixth part of the white and a seventh, 
together with all of the yellow. These were the proportions of the cows: The white were 
precisely equal to the third part and a fourth of the whole herd of the black; while the black 
were equal to the fourth part once more of the dappled and with it a fifth part, when all, 
including the bulls, went to pasture together. Now the dappled in four parts were equal in 
number to a fifth part and a sixth of the yellow herd. Finally the yellow were in number 
equal to a sixth part and a seventh of the white herd.

If thou canst accurately tell, O stranger, the number of cattle of the Sun, giving sepa-
rately the number of well-fed bulls and again the number of females according to each 
colour, thou wouldst not be called unskilled or ignorant of numbers, but not yet shalt thou 
be numbered among the wise.

But come, understand also all these conditions regarding the cattle of the Sun. When the 
white bulls mingled their number with the black, they stood firm, equal in depth and 
breadth, and the plains of Thrinacia, stretching far in all ways, were filled with their multi-
tude. Again, when the yellow and the dappled bulls were gathered into one herd they stood 
in such a manner that their number, beginning from one, grew slowly greater till it com-
pleted a triangular figure, there being no bulls of other colours in their midst nor none of 
them lacking. If thou art able, O stranger, to find out all these things and gather them 
together in your mind, giving all the relations, thou shalt depart crowned with glory and 
knowing that thou hast been adjudged perfect in this species of wisdom.

The described relationships among the numbers of the various cattle can be 
expressed as nine equations in ten unknowns. In the following equations, W repre-
sents the number of white bulls, B the number of black bulls, w the number of white 
cows, and so forth:

W = (1/2 + 1/3)B + Y
B = (1/4 + 1/5)D + Y
D = (1/6 + 1/7)W + Y
w = (1/3 + 1/4)(B + b)
b = (1/4 + 1/5)(D + d)
d = (1/5 + 1/6)(Y + y)
y = (1/6 + 1/7)(W + w)
W + B = s2

Y + D = m(m +1)/2.

It is impossible for Archimedes to have solved these equations, even though he is 
regarded as the greatest mathematician of antiquity. To believe he could is like 
believing that the strongest man in antiquity could lift 100 tons. Just as some kind 
of mechanical machine is needed to lift 100 tons, some kind of computing machine 
is needed to solve Archimedes’ cattle problem, and such computing machines were 
not developed until the mid-twentieth century.

The first seven equations above are linear equations. The eighth equation 
expresses the fact that the white bulls plus the black bulls when joined together form 
a square herd; that is, a herd whose number is the square of some integer s. The last 
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equation says that when the yellow bulls plus the dappled bulls are joined together, 
they form a triangular herd; that is, a herd whose number is a triangular number: one 
that can be expressed as m(m+1)/2 for some integer m.

So we have this underdetermined system of nine equations in ten unknowns and 
we seek nonnegative integer solutions. This is a classic Diophantine equation, one 
of the most famous. Now without too much difficulty, we can first solve the seven 
linear equations. Archimedes could have solved them, although it is very unlikely 
that he did since the resulting numbers involved are enormous. With their solu-
tion we can then eventually boil down all nine equations to just the following 
equation:

	 x y2 2410 286 423 278 424 1= +, , , , 	

for which positive integers x and y are sought. If we can find such x and y, then y 
determines the total number of cattle T through the expression

	 T y= 224 571 490 814 418 2, , , , 	

This equation for x and y is an example of a Pell equation, an equation that has 
been studied for hundreds of years going back to seventh-century India. The general 
form is x2 = Ay2 + 1 where A is some positive integer.

In 1880, a German mathematician, A. Amthor, was able to solve Archimedes’ 
Pell equation [3]. He came up with the following explicit horrendous expression for 
the total number of cattle T:

	
T w w= - -25194541

184119152
4658 4658 2( )

	

where

	 w = +300426607914281713365 609 84129507677858393258 7766 	

This expression can be considered the solution to Archimedes’ cattle problem in 
that it can be evaluated using the basic arithmetical operations. Amthor was able to 
prove that the first three digits in T were 776 and that the total number of digits was 
206,545.

To determine all 206,545 digits, however, requires a computer. In 1965 three 
Canadian mathematicians/computer scientists found all 206,545 digits using an 
IBM 7040 computer [4]. It took them about eight hours of computing time. (Today 
it would take a few milliseconds on a computer with the power of an iPhone.) They 
published their results in the journal Mathematics of Computation, although they 
did not include the actual value of T in their paper. They simply stated that they had 
found it and had put it in the journal’s archives for anyone interested in seeing all 
206,545 digits.
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The first publication that contained all the digits was by Harry Nelson in 1980 
[5], who wanted to test his brand new Cray I computer. He generated all of the digits 
and published them in the Journal of Recreational Mathematics. In fact, he found 
several other solutions. These Pell equations have either no solution or infinitely 
many. The one that Nelson displayed was the smallest solution among the infinitely 
many that satisfy Archimedes’ Pell equation.

Entering the twenty-first century, a Finnish mathematician in 2001 came up with 
a simpler formula than Amthor’s [6]. His formula involved only integer arithmetic. 
No square roots are involved, and it can be calculated it in a matter of milliseconds 
on a laptop computer:

	
T uv=

48222351474

4657
2( )

	

Following are the first and last fifty digits of the 206,545 digits of T obtained 
using the above formula:

	

77602714064868182695302328332138866642323224059233

0599463



00144292500354883118973723406626719455081800 	

(All 206,545 digits were printed as a handout and memento of this conference.)

�Stomachion Puzzle

Another puzzle/challenge that Archimedes is credited with is called the Stomachion. 
It’s a tangram-type puzzle with 14 pieces that originally form a square (Figure 1, 
left). It was thought that the objective of the puzzle was to reassemble the pieces, as 
in tangram, to form interesting shapes, like the elephants in Figure 1, right. But in 
this century The New York Times ran a story on its front page titled, “In Archimedes’ 
Puzzle, a New Eureka Moment” written by Science Writer Gina Kolata [7]. The 
story reported that perhaps the purpose of the Stomachion was to rearrange the 
pieces in order to form the original square—as proposed by Stanford University 
professor, Reviel Netz [8].

Figure 2 exhibits two different ways that the fourteen pieces can be rearranged to 
form the original square. If the purpose of the Stomachion was to find such rear-
rangements, it leads to a problem in Combinatorial Mathematics of determining in 
how many ways the fourteen pieces can be rearranged.

The combinatorial problem was quickly solved by two (husband-and-wife) 
teams of mathematicians: Persi Diaconis and Susan Holmes at Stanford University 
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and Robert Graham and Fan Chung from the University of California, San Diego. 
And then independently a computer scientist, William Cutler, who simply used 
brute force rather than sophisticated mathematics, come up with the same solution, 
which is this: There are 17,152 ways to rearrange the pieces so that they form a 
square. We can reduce that number to 536 if we don’t count rotations and 
reflections.

So here is a puzzle of Archimedes that has survived into the twenty-first century 
and that continues to challenge mathematicians and scientists.

�Floating Bodies

Some of our speakers discussed their own research extending some of Archimedes’ 
results. Let me mention some of my own research in this direction.

You might have noticed that the logo for this conference shows Archimedes 
seated at a computer (Figure 3). In fact, much of my research could be subtitled, 
If Archimedes Had a Computer. But he did not have a computer; he was restricted 

Figure 1  The fourteen pieces of the Stomachion originally forming a square (left) and the pieces 
rearranged to form an elephant (right)

Figure 2  Two different 
arrangements of the 
Stomachion pieces that 
form a square
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to compass-and-straightedge constructions, and this was a severe restriction when 
he was trying to solve problems in mathematical physics.

For example, in his work On Floating Bodies, Archimedes was interested in find-
ing in how many different positions a paraboloid could float stably. He first found 
the obvious positions: the vertical up and vertical down positions. But for certain 
shapes and relative densities, a paraboloid can also float stably in a tilted position. 
Archimedes was able to determine those shapes and densities—but only when the 
base of the paraboloid was completely above or below the fluid level.

If the fluid level cuts the base, as shown on the computer screen in Figure 3, then 
we have a problem that cannot be solved by compass-and-straightedge construction. 
It’s like trying to square a circle—it simply can’t be done. Using a computer, how-
ever, I was able to analyze the cases when the fluid level cuts the base. The results 
appeared in The Mathematical Intelligencer in 2004 [9].

Figure 4 describes Archimedes’ and my results in graphical form. I don’t have 
space to fully explain this figure, but basically the left diagram depicts Archimedes’ 
compass-and-straightedge determination of the stable equilibrium positions for 
various shapes and densities of a floating parabola when the base is not cut by the 
water level, while the right diagram is my completion of his graph using computer 
computations.

The complete surface has all sorts of interesting features—bifurcations, fold 
catastrophes, cusp catastrophes. Modern mathematics and computers are needed to 
understand the full extent of how complicated the behavior of a floating paraboloid 
is. And this behavior has some interesting applications. For example, a melting ice-
berg in the shape of a paraboloid may lose its stability and tumble over quite sud-
denly from a stable vertical equilibrium position to a stable tilted equilibrium 
position.

Figure 3  Logo of the Archimedes World Conference (The seated image of Archimedes is a detail 
from an engraving of a painting by the nineteenth-century Italian artist Niccolò Barabino)
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Today, ships are told to stay away from icebergs—not because they might hit 
them (it’s not too difficult to avoid hitting an iceberg nowadays), but because a melt-
ing iceberg may suddenly, catastrophically tumble over without warning.

So this is what we can do with a computer to extend Archimedes’ results. To 
Archimedes, a computer would have been something like a god coming down from 
Mount Olympus to sit next to him and perform his computations on command.

�Archimedes Screw

Another discovery from antiquity that I have been interested in is the Archimedes 
screw. Figure 5 is an Italian stamp depicting an Archimedes screw, together with a 
supposed likeness of Archimedes.

The Archimedes screw has been in use for more than two millennia to raise water 
for irrigation and drainage purposes. Beginning in the twenty-first century, it is also 
being used to generate electricity by running in reverse; that is, by using the weight 
of falling water to turn the screw and drive an electric generator.

Through trial and error it is possible to arrive at a good estimate for the best 
design of an Archimedes screw—in particular, what should be the spacing of its 
blades and what should be its inner radius (the radius of its shaft) in order to raise or 
lower the most water with each turn of the screw. The ancients were pretty good at 
trial and error and came up with screw designs that were fairly efficient. But today 
with a computer, we can get precise optimal values of the screw parameters. Figure 6 
is a computer-generated diagram from a paper of mine on the optimal design of an 
Archimedes screw published in the Journal of Hydraulic Engineering [10].

The location of the peak of the surface in Figure 6 determines the values of two 
screw parameters (the pitch or spacing of the blades and the radius of the shaft) that 
optimize the amount of water that a screw can raise or lower in one turn.

Incidentally, the likeness of Archimedes depicted in the Italian stamp in Figure 5 
has also appeared on other stamps. Figure 7 shows this likeness on stamps from 

Figure 4  Archimedes’ compass-and-straightedge results in graphical form (left) and my comple-
tion of the graph using a computer (right)
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three other countries. This supposed likeness of Archimedes comes from the bust in 
Figure 7 that is found in the Archaeological Museum in Naples, Italy. Unfortunately, 
it is not a bust of Archimedes. It is a bust of Archidamos III, who was a fourth-
century BC king of Sparta [11]. Somewhere along the way the two names were 
confused—and so now the best representation of Archimedes is that of an obscure 
fourth-century BC king of Sparta. In fact, no image of Archimedes has survived to 
modern times. We have no idea what he looked like.

0.10

0.09

0.08

8-Bladed Screw

0.07

0.06

0.05

0.04

0.03

0.02

0.01
0
0

0.2

0.2

0.4

0.4

0.6
Pitch Ratio

Radius Ratio

0.60.8
0.8

1.0

1.0

0

Figure 6  Diagram for the determination of optimal screw parameters

Figure 5  Italian stamp (1983) depicting an Archimedes screw
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�Centers of Gravity

Another concept that Archimedes is associated with is the center of gravity of a 
body. The idea of a center of gravity existed before Archimedes, as did the tech-
nique of locating it by suspending the body from various points and seeing where 
the suspension lines cross.

However, previous works on the center of gravity were mainly philosophical 
discussions. Archimedes was the first to actually do anything with the concept—that 
is to say, he was the first to determine the centers of gravity of various solid bodies 
using geometric methods.

Figure 8 illustrates Archimedes’ technique for finding the center of gravity of a 
triangle. He first proved that if a triangle is suspended from one of its vertices, the 
suspension line must bisect the opposite side—that is, it must be a median of the 
triangle. Archimedes then concluded that the point common to the three medians is 
the center of gravity of the triangle.

Actually, all suspension lines of a body have a common intersection only if the 
gravitational field is uniform. In reading Archimedes’ writings, I became interested 
in seeing what happens if the gravitational field is not uniform. Mathematics and 
physics textbooks tell us that in a nonuniform gravitational field, the lines of suspen-
sion do not cross at a single point, but they don’t tell us what the lines of suspension 
do in this case.

So using a computer I came up with certain surfaces that non-crossing lines of 
suspension in a spherical gravitation field generate. These surfaces might be called 
“surfaces of gravity” and take the place of centers of gravity. Again, I don’t have 

Figure 7  Statue of Archidamos III together with three stamps from Greece (1983), Guinea-Bissau 
(2008), and San Marino (1982) that identify him as Archimedes

Archimedes the Mathematician



72

space to describe my results except in very vague terms. Each of the three surfaces 
in Figure 9 is a surface of gravity for three particular rigid bodies in a spherical 
gravitational field. This is work that Archimedes could have done if he had had a 
computer, but without that opportunity, we had to wait twenty-three centuries to 
explore this problem.

�The Archimedes Palimpsest

One final subject I want to discuss is the Archimedes Palimpsest. The rather severe 
looking gentleman in Figure 10 is Johan Heiberg, a famous Danish philologist who 
edited many of Archimedes’ works. Perhaps his most notable contribution to 
Archimedean studies was his discovery and transcription of the Archimedes 
Palimpsest in Constantinople (modern day Istanbul) in 1906.

The Archimedes Palimpsest is a manuscript that contains writings of Archimedes 
long thought to be lost [12]. Its most valuable content is a particular work of 
Archimedes entitled Geometrical Solutions Derived from Mechanics, now simply 
called The Method. An English translation [13] of its contents first appeared in 1909.

Figure 8  Finding the center of gravity of a triangle

Figure 9  Three possible “surfaces of gravity”
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Like Archimedes’ cattle problem, The Method concerns a challenge from 
Archimedes to Eratosthenes. It begins with Archimedes reminding Eratosthenes 
that he/Archimedes had previously challenged him with finding the volumes of two 
particular solids—and since he had not heard back from Eratosthenes, he/
Archimedes was now going to publish the results himself.

One of the solids whose volume Archimedes determined in The Method is the 
circular wedge shown in Figure 11. This wedge is formed by cutting off a piece of 
a cylinder by a plane that passes through a diameter of the cylinder’s base. 
Archimedes wanted to compare the volume of that wedge with the rectilinear wedge 
that contains it (Figure 12). (The volume of the containing rectilinear wedge is the 
square of the radius R of the cylinder times the height H of the wedge, or R2H.) So 

Figure 10  Johan Heiberg 
(1854–1928)

Figure 11  Circular wedge 
cut from a cylinder
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Archimedes asked: What is the ratio of the volume of the circular wedge to that of 
the rectilinear wedge?

Archimedes found the ratio by what we would now say is Calculus. He consid-
ered the wedge to be made up of infinitely many triangular slices and then added the 
areas of the slices together. In Calculus terminology, he integrated the areas of the 
triangular slices. This and other similar proofs in his collected works are why he is 
called The Father of the Integral Calculus.

What was particularly brilliant about his proof was that he basically reverted to 
an earlier problem that he had solved: the determination of the area of a parabolic 
segment. He had earlier shown that the area of a parabolic segment is two-thirds the 
area of the rectangle that contains it. And from this he was able to show that the 
volume of a circular wedge was precisely two-thirds the volume of the rectilinear 
wedge that contains it.

Figure 12 illustrates his approach to the problem. He first showed that the ratio 
of the area of the triangle BCD to that of triangle ACE is the same as the ratio of the 
length of line GH to that of line FN. (G lies on the parabola enclosed by the rect-
angle). This is a purely geometric result relating certain ratios of areas to certain 
ratios of lengths.

Archimedes then summed both sides of the equations in Figure 12. He was vague 
about what he meant by sum—and he knew that he was being vague. He did not 
consider this a rigorous proof; he considered it a heuristic proof and later in The 
Method he gave a more rigorous proof.

Figure 12  Determination of the volume of a circular wedge
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But first the heuristic proof: If we sum all infinitely many areas of the triangle, 
then on the left-hand side of the equations in Figure 12, we will come up with the 
ratio of the volume of the circular wedge to the volume of the rectilinear wedge, and 
that’s the same as the ratio of the parabolic segment to the circumscribing rectangle. 
And that previously was two-thirds:

	

Volume of Circular Wedge

Volume of Rectilineal Wedge

Area o
=

ff Parabolic Segment

Area of Circumscribing Rectangle
=

2

3 	

Archimedes’ final formula is this: the volume of a circular wedge is (2/3)HR2, 
where H is the height of the wedge and R is its radius.

He found this to be a particularly nice result because, as we would say today, it 
doesn’t involve pi. The circular wedge is thus a solid involving circular region that 
we can cube; that is, we can construct a cube using a compass-and-straightedge that 
has the same volume as a circular wedge. Although we cannot square a circle, we 
can cube this more complicated region because there is no pi, no transcendental 
number involved in the formula.

So here are some examples of Archimedes’ mathematical investigations, the last 
one leading to the basic ideas behind the Integral Calculus. It’s interesting that 
although Archimedes did several things in The Method using this idea of adding the 
areas of infinitely plane regions forming a solid, he did not regard his results as 
rigorous. He believed in the final results and he had tremendous intuition, but he 
knew that they did not fit into the logical scheme of things. Today we’re still arguing 
about the best way to understand how zero times infinity can sometimes be a finite 
number.

Remark  Many of the results I described in this paper are discussed in a website on 
Archimedes that I established in 1995 and continue to maintain [14].
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Archimedes and Ship Design

Horst Nowacki

�Introduction

Archimedes by many is regarded as the most eminent mathematician, mechanicist, 
and engineer in antiquity. He is also famous for his practical application of scientific 
knowledge in engineering design. His knowledge has influenced ship design for 
many centuries, either directly or indirectly. Yet it took two millennia before his 
basic insights were applied quantitatively in practice at the design stage of ships. 
Why this long delay? It appears worthwhile to trace the history of this tedious 
knowledge transfer from antiquity to modernity. How were these elements of 
knowledge created and justified by Archimedes, how were they passed on as his 
heritage, and how and when were they applied in ship design practice to this day?

Ship safety and stability considerations play a dominant role in the ship design 
decision process. One needs fundamental knowledge, based on physical principles, 
to design a safe ship. This kind of knowledge may be applied in two forms:

•	 As intuitive, qualitative knowledge, corroborated by observation and experience, 
augmented by a rational understanding of the mechanisms of stability. This sort 
of cause and effect feeling guides in numerous trade-off decisions on practical 
consequences of design measures.

•	 As a quantitative knowledge, based on calculations, to predict the stability per-
formance of a new design.

Archimedes’ principles have been exerting a strong influence in both categories, 
at least among those properly initiated. But it was a long and arduous road from his 
first creation and brilliant justification of the basic concepts of hydrostatics, which 
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lay buried in rare copies of scrolls in scientific libraries in antiquity, to their broader 
spreading after rediscovery during the Middle Ages and their wider circulation and 
gradual acceptance by printed media and at last to their practical application in 
design calculations. They have turned into routine design tools today. It is almost a 
miracle that we benefit today from these long buried principles for the safety of our 
maritime designs. They have turned into routine design tools today.

To recount this history and to understand how this happened, the following ques-
tions will be addressed in this article:

–– How did Archimedes create the fundamental knowledge and justify the laws of 
hydrostatics which until today form the foundation for judging ship floatability 
and stability in ship design?

–– How might Archimedes himself have applied these insights to contemporary 
practical projects in ship design in his era?

–– On what circuitous routes did Archimedes’ insights arrive in modernity?
–– How and when were the laws of Archimedes, supplemented by other fundamen-

tal methods, apt to be applied quantitatively and numerically to practical ship 
design calculations?

–– What role do Archimedes’ basic laws play today in modern ship design 
methodology?

It is the purpose of this paper to trace the history of the knowledge in ship float-
ability, stability, and design created by Archimedes and passed down through many 
centuries to its current relevance in modern ship design.

�Archimedes

�Precursors

Human knowledge on the risks of seafaring is ancient. The first human experiences 
in oceangoing navigation by waterborne vehicles date back well into prehistoric 
times. There is indirect, though conclusive, evidence of the first human settlers on 
the continent of then contiguous Australia/New Guinea arriving from mainland 
Southeast Asia between about 30000 and 40000 years ago by crossing a deep ocean 
water gap of about 100 miles using watercraft capable of carrying humans, animals, 
and cargo (Diamond [1]). In the Mediterranean Sea traces of waterborne navigation 
date back to about 10000 BC, notably in Egypt, Babylonia, later in Phoenicia, Crete, 
Cyprus, and Greece. Early ocean voyages, some of them across considerable dis-
tances, required seaworthy ships, safe against all hazards of the sea. Details are 
documented in the literature (Kemp [2], Johnson, Nurminen [3]).

Thus at the time of Archimedes during the third century BC, Greek shipbuilding 
and ship design, as he knew it, had already reached an advanced level of construc-
tion technology and design complexity for ships to be used in trade, cargo transport, 
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and even warfare. Safer and ever larger ships had evolved during many centuries. 
The safety of ships was judged, as today, by their ability to survive the risks of sink-
ing and capsizing, i.e., by their floatability and upright stability. These properties 
had to be assessed largely intuitively on the basis of experience, observation, and 
comparison with similar designs. It was difficult to predict the performance of new 
designs prior to building them for lack of physical insights as well as analytical and 
numerical methods of design evaluation. The rational foundations for design deci-
sions and for safe ship operations had not yet been laid.

It was Archimedes, the eminent mathematician, mechanicist, and engineer, who 
in a stroke of genius was able to combine these various viewpoints and to develop a 
rational theory of hydrostatics of floating objects, which was directly applicable to 
the issues of ship floatability and stability. Thus the physical principles of hydrostat-
ics were then well understood although the practical application to ship design was 
long delayed, actually by about two millennia, before numerical calculations of 
these important elements of ship safety could be performed routinely by numerical 
methods at the design stage. We will discuss the reasons for this long delay in a later 
section. Nevertheless Archimedes and his contemporaries on the basis of his 
involvement in ship hydrostatics contributed much to the physical understanding of 
ship stability and thereby to judging the potential effectiveness of certain design 
measures.

On the mathematical side and in the logic of rigorous proofs, Archimedes had 
several predecessors, too, in the tradition of earlier Greek philosophy and mathe-
matics. Table 1 gives an overview of some important precursors and contemporaries 
who influenced his work. It is important to single out Eudoxus [4], a pupil of Plato, 
who not only established rules and set standards for the rigor demanded in Greek 
proofs, but also worked out the method of exhaustion, an approximation scheme for 
evaluating integration hypotheses for curves and surfaces by successive refinement 
of inscribed or circumscribed polygons (or polyhedra). Archimedes made much use 
of this approximation technique, which was his tool for area, volume, and centroid 
evaluation of simple geometric figures, while integral calculus was not yet con-
ceived in antiquity. Archimedes was well trained in the contemporary methods of 

Table 1  Chronology of 
precursors and 
contemporaries of 
Archimedes

Thales of Milet (624–544 BC)
Pythagoras (580–496 BC)  
Demokritus (ca. 460-ca. 360 BC)
Plato (427–347 BC)
Eudoxus (410–356 BC)
Aristotle (384–322 BC)
Alexandria founded: 332 BC
Euclid (325 BC–ca. 265 BC?)
Mouseion in Alexandria: 286–47 BC
Archimedes (ca. 287–212 BC)
Eratosthenes (284–204 BC)
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Greek mathematics, both by his early education received in Syracuse, reportedly 
also by his father, an astronomer, and by his contacts with and probable visit to 
Alexandria, an ancient center of excellence in mathematics in this era. Details on 
the knowledge thus available to him are found in Heath [5].

Thus Archimedes was able to build his deductions on a solid tradition in Greek 
mathematics and logical rigor, but he also was very creative in developing his own 
mathematical tools when he needed new, original ones.

�On Floating Bodies

�Preparations

Archimedes of Syracuse laid the foundations for the hydrostatics of floating objects 
in his famous treatise On Floating Bodies (OFB) (περì òχουμένων) [6]. In this trea-
tise he was the first one single-handedly to establish the laws of equilibrium for a 
body at rest in a fluid, floating on top or submerged or even grounded, on a scientific 
basis by deduction from a few axioms or first principles. Thus although he never 
wrote about applications to ships, he did develop the physical foundation for judg-
ing the force and moment equilibrium of floating objects, including ships, i.e., their 
floatability (force equilibrium) and stability (moment equilibrium).

The Principle of Archimedes, based on force equilibrium of buoyancy and grav-
ity forces, holds for objects of any shape. The criterion of stability was first pro-
nounced by Archimedes for the special case of homogeneous solids of simple shape, 
a semisphere and a paraboloid of revolution. These results form the cornerstones of 
ship hydrostatics to this day.

We are fortunate that many, though not all, of Archimedes’ treatises have survived 
from antiquity to this day, essentially all in copies, some in Latin translation, some in 
Arabic, and a few even in the Greek language of the original. Many were originally 
lost in late antiquity and were often luckily rediscovered much later, which will be 
addressed in a later section. But from those which are preserved we are able to recon-
struct the train of thought that Archimedes took to arrive from the principles of 
geometry and engineering mechanics at his scientific foundation of hydrostatics.

Table 2 gives an overview of the essential preserved treatises by Archimedes. We 
cannot precisely date the first appearance of these works, but there is sufficient evi-
dence in their contents to suggest their sequence of publication. Compilations of 
Archimedes’ works exist in several classical and modern languages (Heath [5], 
Heiberg [6, 7], Dijksterhuis [8], Van Eecke [9], Czwalina-Allenstein [10, 11], etc.). 
They are essentially in agreement on the chronology of appearance. Thus it is in 
essence undisputed that OFB was preceded by a few other fundamental treatises, 
which we will briefly address here.
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�The Law of the Lever

In his treatise On the Equilibrium of Planes, Books I and II, Archimedes concerns 
himself with the “moment”equilibrium of objects on a lever system like a balance 
(Figure 1). The objects might be homogeneous solids or elements of thin planar 
areas of constant thickness, and homogeneous gravity distribution, which can be 
regarded as solids so that the same lever laws can be applied in dealing with their 
equilibrium and centroids.

The principle of the lever and especially of the balance was certainly known 
since prehistoric times, e.g., in ancient Babylonia, Egypt, and China (see Sprague 
de Camp [12], Renn and Schemmel [13]). Archimedes presumably was the first to 
pronounce the physical law of the lever and to apply it to many mechanical and 
geometric systems. The Greeks did not know the concept and terminology of 
moments, so he spoke of “the law of the lever” for the same purpose.

In this treatise Archimedes derives the following conclusions from the law of the 
lever:

–– The equilibrium of unequal weights on a balance of unequal arms (Figure 1) so 
that the weights are inversely proportional to their lever arms (“moment 
equilibrium”)

Table 2  Chronology of Archimedes’ preserved treatises

Item Title Probable sequence

1 On the Sphere and Cylinder, Books I and II (5)
2 Measurement of a Circle (9)
3 On Conoids and Spheroids (7)
4 On Spirals (6)
5 On the Equilibrium of Planes, Books I and II (1) and (3)
6 The Sandreckoner (10)
7 The Quadrature of the Parabola (2)
8 On Floating Bodies, Books I and II (8)
9 Stomachion

10 The Method of Mechanical Theorems (4)
11 Book of Lemmas

12 The Cattle Problem

Figure 1  Lever system. 
Balance with unequal arms 
(From Czwalina-Allenstein 
[10])
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–– How to lump two or more objects into a single compound object with a com-
pound centroid so that the statical moment of the compound object remains the 
same as for the sum of the separate objects

–– Removing, adding, or shifting objects in a system and finding the new centroid

To summarize, in this treatise Archimedes pronounces the following principles, 
to which he can later resort for the stability of floating bodies:

–– The law of the lever (moment equilibrium)
–– Lumping objects into their centroids, thus forming resultants
–– Finding compound centroids for a set of system components
–– Removing, adding, or shifting objects in a system and its effect on the centroid

�The Method of Exhaustion

In evaluating the area of planar figures or the volume of geometric solids, the ancient 
Greeks met with two major obstacles:

–– They had no concept of real numbers, let alone irrational or transcendental num-
bers, nor did they have a consistent system of units for measuring length, area, 
and volume. They circumnavigated this difficulty by restricting themselves to 
finding only the ratio of a figure area or volume to that of a known figure, e.g., a 
square or a triangle whose size is known. In this context real numbers were 
expressed by ratios of integers. Irrational or transcendental numbers were 
approximated as such ratios. For example, finding the area of a circle relative to 
a circumscribed square led to the famous “quadrature of the circle” type of 
problem.

–– They had no method to evaluate areas and volumes of figures equivalent to mod-
ern calculus. This is why they resorted to approximation methods based on a 
finite number of successive subdivisions of the given figure by simple shapes 
whose area and volume are known. The method of exhaustion, as it was named 
much later in the seventeenth century, is such an approximation method based on 
successive refinement of the result by means of a polygonal approximant whose 
deviation from a given figure shall be made as small as desired after a sufficient, 
finite number of subdivision steps. The method is not equivalent to integral cal-
culus since a limiting process to infinitesimal step size is not performed. But for 
geometrically well-defined figures of simple shapes, very accurate approxima-
tions can be obtained after a finite number of steps.

The method of exhaustion then proceeds as follows (Figure 2): Two additional 
triangles AZB and BHC are constructed between the parabola and the original tri-
angle by drawing parallels to the center line BD through the quarter points E and K 
of the baseline. For the parabola it can be shown that each of the new triangles has 
an area of (1/8) of triangle ABC, hence both together of (1/4) of the original 
triangle.
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In a process of successive refinement in each step, new triangles are added 
between the polygon sides and the parabolic arc, always halving the intervals along 
the baseline. It can be shown that for the parabola each new set of triangles adds (1/4) 
of the area of the preceding set of triangles. Thus in a process of continuing refine-
ment, the terms of triangle areas are added to a geometric progression whose quo-
tient is (1/4). The sum of this progression is either known on arithmetical grounds, 
viz., for the parabola, or estimated after a finite number of steps when the truncation 
error appears small enough. For the parabola the end result is (4/3) times the area of 
the first triangle ABC. Such a result is first asserted inductively and then proven rig-
orously by reductio ad absurdum of any deviating results. Details of this proof can be 
found in Archimedes’ original treatise (cf., e.g., Heath [5] or Nowacki [14]).

Archimedes, who seems to have adopted this method from Eudoxus, frequently 
used it for the evaluation of areas and volumes of simple shapes, i.e., for certain 
applications where modern analysis would use integral calculus. This explains why 
certain of his results were limited to simple geometric shapes, e.g., for the hydro-
static stability of floating objects, and were not extended to objects of arbitrary 
shapes, e.g., ships.

�The Method of Mechanical Theorems

In certain cases Archimedes also had another fast and efficient method available to 
derive hypotheses for geometric results from mechanical analogies. This technique 
is described in his treatise, The Method of Mechanical Theorems, which was long 
lost, but then was rediscovered first by J. L. Heiberg in 1906 in a Greek monastery, 
the Metochion, in Constantinople in an old twelfth-century palimpsest. The 
Archimedes text had been rinsed off, and a Greek prayer book (euchologion) was 
written on the same vellum sheets. But Heiberg was able to decipher most of the 
original Archimedes text under a magnifying glass, to document, transcribe, and 
translate it into German [15]. The interesting history of this palimpsest is described 
in more detail in sections “The Manuscripts” and “Codex C”.

Figure 2  Paraboloid 
segment AZBHC and 
inscribed triangles (From 
Czwalina-Allenstein [10])
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In this treatise Archimedes explains to Eratosthenes how he applies principles of 
mechanics in geometric reasoning to obtain inductive conclusions on geometric 
facts. Mechanical theorems are based on observation, hence inductively founded. 
Archimedes therefore uses these methods only to help propose hypotheses on geo-
metrical facts. Archimedes does not regard these results as validly proven, but a 
strict, deductive, purely geometric proof must follow to confirm the conjecture. 
Some of these subsequent geometric proofs are preserved; others are lost.

In his treatise The Method… Archimedes deals with the example of a solid 
paraboloid of revolution. He asserts:

The centroid of a right-handed conoid (here a paraboloid of revolution) cut off by a plane 
at right angles to its axis lies on the straight line which is the axis of the segment, and 
divides the said straight line in such a way that the portion of it adjacent to the vertex is 
double of the remaining portion.

The proof, based on the law of the lever and The Method …, is presented in detail 
in the treatise The Method… (Heath [5]), proposition 5, and is also fully explained 
by Nowacki [14]. This confirms that the centroid of the paraboloid segment is 
located at 1/3 of segment height above the baseline or 2/3 below the summit. Thus 
Archimedes was able to demonstrate geometric facts without needing to resort to 
calculus. Archimedes later uses this result in the context of his study on hydrostatic 
stability of a paraboloid in OFB.

�The Principle of Archimedes

The fundamental law of hydrostatics for a body at rest within or on top of a homo-
geneous liquid is pronounced and justified by Archimedes in his treatise OFB, Book 
I. It is deduced here strictly by an experiment of thought, i.e., without any experi-
mental observation or other empirical basis. It holds for a body of arbitrary shape.

The liquid is assumed to be homogenous and such that any liquid particle is 
pressed downward vertically by all particles in the vertical line above it (OFB, Book 
I, § 1). We would call this a hydrostatic pressure distribution in modern terminology, 
but the Greeks did not know the concept of “pressure” in antiquity. In Book 1, §5, 
Archimedes asserts for a body in a liquid at rest:

A body submerges in a specifically heavier liquid to the extent that the volume of the liquid 
displaced by it weighs as much as the whole body.

In modern terminology this Principle of Archimedes can be stated as:

Δ = γV, where
Δ = displacement = weight of body
V = displaced volume
γ = specific weight of liquid
γV = weight of displaced liquid volume
= buoyancy force
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Archimedes’ proof in OFB, Book 1, §5, is brilliantly elegant and brief (Figure 3):

•	 The surface of any liquid at rest is a spherical surface whose center point is the 
center of the earth (section ALMND).

•	 The body EZTH be specifically lighter than the liquid; hence it floats in the 
surface.

•	 We consider two neighboring equal sectors of the sphere, bounded by the sur-
faces LM and MN. The first sector contains the floating body whose submerged 
part is BHTC. The second sector instead has an equal volume RYCS filled with 
the liquid.

•	 The liquid is at rest. Thus the surfaces between XO and OP experience identical 
pressing loads. Thus the weights of the volumes on top of these surfaces are 
equal. But the weight of the liquid in the first sector, aside from the space BHTC, 
equals the liquid weight in the second sector, aside from the space RYCS. Therefore 
clearly the weight of the body EZTH equals the weight of the liquid volume 
RYCS. It follows that the liquid volume displaced by the body weighs as much 
as the whole body.

Note that this concise proof of the Principle of Archimedes is strictly deductive and 
is based entirely on an experiment of thought and very few axiomatic premises. It 
holds for arbitrary body shapes in an arbitrary type of liquid. It was derived for liquids 
and bodies at rest without knowledge of the pressure distribution anywhere.

�The Eureka Legend

The famous Eureka legend about Archimedes’ discovery of a hydrostatic law in the 
bathtub, which goes back to Vitruvius ([16], Book IX.3, published around the birth 
of Christ), is often misinterpreted and has led to confusion regarding this discovery. 
According to Vitruvius Archimedes was challenged by King Hieron to determine 
whether a wreath, made for the king by a goldsmith for a votive offering to the gods, 
was of pure gold or fraudulently made of gold mixed with silver. Archimedes is said 
to have observed how the water displaced by his body in a brimful bathtub was a 

Figure 3  Proof of 
Archimedes’ Principle 
(From Czwalina-Allenstein 
[10])
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measure of the displaced volume, which he regarded as a breakthrough in solving 
the king’s wreath problem. Archimedes was apparently so elated by this discovery 
that he jumped up from the bathtub and ran naked through the streets of Syracuse 
shouting “Eureka” (“I have found it”)! Vitruvius goes on to report how Archimedes 
then demonstrated the fraud. The wreath and two equally heavy pieces of pure gold 
and silver successively were each sunk in a bowl full to the brim of liquid. After 
removing the object its volume was determined by refilling the bowl to the brim and 
measuring the weight of the replacement liquid. This indeed gives a clue as to the 
relative densities of the two metals and the wreath, viz., the weight of the object 
related to the weight of the displaced water.

Thus Archimedes had discovered a method for measuring the volume of a sub-
merged object and thus, if the weight of the object is known, its specific weight (weight 
per unit volume). This is sufficient to prove the fraud of using a lighter, false metal in 
the wreath. The specific weight of the objects is used as a criterion of comparison.

But the Principle of Archimedes cannot be proven by a human sitting in the bath-
tub. The human body in this scenario is usually supported in part by a ground force 
so that the equality of body weight and buoyancy force does not hold. Thus we must 
credit Archimedes for deducing his famous Principle strictly by experiment of 
thought, as explained. Is it not another sign of his brilliance that he was able to 
deduce this Principle without resorting to a physical experiment, let alone an obser-
vation in a bathtub?

The legend of the wreath has attracted many critical reviews debating the practi-
cal difficulties in realizing sufficiently accurate results. Recent reviews and experi-
mental reconstructions of the wreath experiment are given by Costanti [17] and by 
Hidetaka [18]. There seems to be agreement among these scholars that it is feasible 
to reconstruct the experiments described by Vitruvius in a small enough bowl, 
though not in a large bathtub, in order to solve King Hieron’s fraud problem and to 
measure specific weights of solids, though not in order to find the Principle of 
Archimedes. The bathtub, if anything, might have served as an inspiration.

�Hydrostatic Stability of Floating Objects

In his treatise OFB Archimedes also deals with the stability of bodies floating on the 
surface of a liquid, especially of homogeneous solids of simple shape. His basic 
ideas are already shown in Book I, §§8-9, for a segment of a sphere. In Book II, §§ 
2 ff. the example of an axisymmetric paraboloid segment as shown in Figure 4 is 
even more illustrative and will be discussed here.

The stability criterion for hydrostatic equilibrium is based on the experiment of 
thought to incline the body from its upright condition and to determine whether the 
resultant gravity and buoyancy forces acting on the body in this condition will tend 
to restore it to its upright condition. The angle of inclination (heeling angle) is finite 
but so that the base of the paraboloid segment does not get wetted. For the stability 
of this body, Archimedes asserts in Proposition II.2:
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A homogeneous solid paraboloid segment cut off perpendicularly to its diameter, whose 
axis is not greater than 1.5 times the paraboloid’s halfparameter, whatever its specific 
weight, if it floats in a liquid so that its base does not touch the liquid surface, will not 
remain at rest unless its axis is vertically oriented, but will restore itself to the upright 
condition.

The proof is based on finding the centroid R of the homogeneous solid, through 
which the weight resultant D1+D2 is acting downward, i.e., the center of gravity in 
our terminology, and the centroid B of the submerged volume, i.e., the center of 
buoyancy, through which the equal and opposite resultant buoyancy force B1+B2 is 
acting upward. The lever arm between these two forces must be of such orientation 
that a positive restoring tendency (“moment”) results, which corresponds to our 
familiar positive righting arm requirement. However there is a subtle difference in 
Archimedes’ demonstration for the homogeneous solid: For the submerged part of 
the inclined solid alone, its center of gravity and its center of buoyancy are in the 
same position B so that this submerged part produces no lever arms (unlike in a 
ship). Thus it is sufficient to show that the gravity force D2 of the above surface part 
of the solid and its equal but opposite counterpart, the incremental buoyancy force 
B2, which acts through the center of buoyancy B, have a positive restoring arm. One 
can show that, if this “incremental righting arm” of B2 and D2 is positive, then the 
conventional righting arm of the forces (B1+B2) and (D1+D2) is also positive.

In the actual proof Archimedes applies several mechanical and geometric prin-
ciples which he deduced in this treatise or in earlier work. For more details see also 
Nowacki [14]. He proceeds in the following steps:

–– The paraboloid is intersected by a vertical plane in the parabola APOL and is 
inclined by a finite angle. The horizontal plane of the liquid surface intersects the 
paraboloid in JS. A tangent parallel to JS touches the parabola in P.

Figure 4  Inclined paraboloid segment (From Nowacki [14])
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–– A parallel line to the axis NO, drawn through P, bisects the chord length JS at 
midpoint F (proven in earlier in Quadrature of the Parabola, §19). PF is thus the 
axis of the submerged part of the paraboloid.

–– Archimedes now uses his theorem on the centroid of the paraboloid segment 
lying on its axis at a point 2/3 of the axis length above the summit, proven in his 
treatise on The Method…. Therefore PB = (2/3) PF. Thus B is both the center of 
buoyancy and the center of gravity of the immersed part. The immersed part 
therefore creates no moments and can be left out of consideration for moment 
equilibrium. Further let OR = (2/3) ON, so that R is the center of gravity of the 
whole solid.

–– Using the centroid shift theorem from his treatise On the equilibrium of planes, 
Book 1, §8, Archimedes constructs the center of gravity C of the above surface 
part JALS: If the immersed part JPOS, centroid B, is removed from the whole 
solid, centroid R, then the remaining above surface part JALS has a centroid C 
on the straight line BR, extended beyond R, such that

	
RC:RB immersed volume above surface volume= ( ) ( ):

	

–– Thus C lies on one side, B on the other side of R.
–– Therefore the vertical gravity force D2 through C and the equal but opposite 

buoyancy force B2 through B are not acting in the same vertical line, hence not 
in equilibrium of moments, but will tend to restore the paraboloid to its upright 
condition. Thus the investigated paraboloid is hydrostatically stable.

Although this derivation holds only for the homogeneous solid paraboloid, it can 
be shown that a similar reasoning can be developed for a solid of any shape and with 
nonhomogeneous mass distribution, hence also for ships. The incremental righting 
arm of the paraboloid is thus the ancestor of the conventional righting arm used in 
modern stability analysis. Positive righting arms are a necessary condition of upright 
ship stability.

�Achievements and Deficits

To summarize the state of knowledge in the hydrostatics of floating bodies achieved 
by Archimedes, as displayed in his treatise OFB, and to state the elements of infor-
mation still missing for a complete analytical and numerical evaluation of the 
hydrostatic properties of a ship design, the following presents a synopsis of his 
achievements and remaining deficits.

Archimedes contributed the following fundamental insights and methods perti-
nent to the hydrostatics of ships:

–– Archimedes defined the resultant gravity and buoyancy forces (displacement and 
buoyancy) acting on a floating body and pronounced the force equilibrium 
principle of their equality in the same line of action and in opposite directions 
(Principle of Archimedes).
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–– He devised methods for calculating the resultants of buoyancy and weight acting 
through the CB and CG, at least for solids of simple shape (method of exhaus-
tion, Method of Mechanical Theorems, Lumping of System Components into 
Compound Systems).

–– From the axiom of moment equilibrium, Archimedes deduced a criterion for 
hydrostatic stability by introducing the concept of righting moments or righting 
arms based on the couple of buoyancy and displacement forces.

With this information a qualitative understanding of which design measures have 
favorable or unfavorable influence on the design was at least possible.

To perform a complete, quantitative analysis of the hydrostatic properties of a 
ship at the design stage, the following elements were still missing for Archimedes:

–– A complete, continuous hull form definition for arbitrary ship shapes in whatever 
medium (mold, model, drawing)

–– A method to calculate the volume and volume centroid of the underwater hull 
form (center of buoyancy, CB) for an arbitrary ship shape

–– A practical scheme to calculate the weight of all component parts of the ship and 
therefrom the compound center of gravity, CG, of the entire ship

–– Data for the external heeling forces and moments acting by wind and seaway on 
the ship in order to assess the required safety margins in floatability and 
stability

In view of these deficits Archimedes and his contemporaries were not yet able at 
the design stage to quantitatively predict the design’s draft, trim and heel angles, 
and stability measures for the hull in empty and loaded conditions. This remained a 
matter of experience, observation, and empirical judgment. In case of doubt ballast 
might be taken in the lower hull to improve a ship’s initial stability.

�Archimedes’ Role in Practical Ship Design

Archimedes shared with traditional Greek philosophers the Platonic aristocratic dis-
dain of publishing any results of practical projects so that we have no evidence in 
his own writing of his involvement in technical inventions and engineering design. 
But we know from other, often much later writers (Vitruvius [16], Diodorus of 
Sicily, Plutarch [24] and others) that he excelled in innovative engineering work and 
in creative inventions for very practical purposes. His conception and realization of 
many practical devices and unique, original machines are well documented (e.g., by 
Dijksterhuis [8]). This has often raised the question to what extent Archimedes 
might also have been involved in practical ship design and ship construction 
projects.

The most prestigious shipbuilding project in Syracuse during Archimedes’ life-
time was without doubt the design and building of the Syrakosia (or Syracusia), a 
giant cargo ship, mainly for the transport of grain, an export commodity from Sicily. 
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King Hieron II of Syracuse had ordered the ship to be built around 235–230 BC in 
Syracuse. We are curious to know whether Archimedes was involved in this repre-
sentative project and was able to apply his theoretical knowledge in practice.

The most detailed technical report about the Syrakosia stems from Athenaeus 
who documented many details of the design and the history of this ship in his trea-
tise “Deipnosophistai” [19], published somewhat after AD 192, thus more than four 
centuries after Archimedes and the existence of this ship. The ship impresses by its 
size, cargo capacity, accommodation, and outfitting. A thorough reconstruction was 
recently performed by Bonino [20]. According to this source some of the main fea-
tures of the ship were:

Length = 80.0 m Beam = 15.5 m
Draft = 3.85 m Depth = 5.6 m
Displacement = 3010 metric tons Payload = 1940 metric tons
Block coefficient of submerged part of hull = 0.615

The ship had three masts and three decks. The combat deck had 8 towers with 
war machines. The complement was 825 people on board. Twenty horses with sta-
bles were accommodated, too. The accommodation spaces were of high, comfort-
able standard, with luxurious tiling on the floors, walls, and ceilings. A model of the 
ship was built by Tumbiolo based on Bonino’s reconstruction drawings. Further 
details on the design and the history of the ship can be found in Bonino [20].

King Hieron had recruited the prominent naval architect Archias from Korinth to 
take the overall responsibility for the design and building of the ship. Archimedes is 
mentioned by Athenaeus as a supervisor (ό γεωμέτρης ε’πόπτης, the geometer 
supervisor) or perhaps just advisor in this project. It is recorded that he played a 
decisive role in the launching of the ship. When the lower half of the hull had been 
assembled on the slipway with a lead sheathing already attached, she was ready to 
be launched in order to add the top half later when she was afloat. But she would not 
move down the slipway. Archimedes was called to help. He mounted a windlass 
with a multiple pulley system to the hull to drag her down into the water. He was 
able to crank the windlass alone and to launch the ship single-handedly. He was 
much admired for this ingenious solution. It is also conceivable that Archimedes 
designed some military equipment to be placed on board for the ship’s self-defense, 
e.g., catapults to fire arrows at enemy or pirate ships or a stone-hurler to shoot a 
stone of 180 pounds or a javelin of 18 foot length some 600 foot distance. Thus he 
was certainly welcome to contribute such ideas in his area of expertise.

But it very unlikely that he was prepared to offer an explicit stability analysis for 
the ship. The main reasons were explained in the preceding section: the lack of a 
continuous hull form definition, the difficulty in calculating volumes and centroids 
for an object of arbitrary shape, as well as the missing experience and data for 
setting target values for safe stability margins. Rather practitioners would know how 
to use ballast and cargo deep in the hold to improve stability when needed.
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Recent discussions in the literature (Zevi [21], Pomey and Tchernia [22], Pomey 
[23], Bonino [20]) are in agreement with this cautious opinion on Archimedes’ pos-
sible involvement in practical ship design.

�The Heritage

�The Commentators

Archimedes’ scientific work is quite authentically, though not completely, preserved 
in copies of his manuscripts although some copying errors, translation flaws, and 
lacunae cannot be ruled out. Thus it is important to know the history of the manu-
script copies and to examine their quality.

In the Hellenistic era and in late antiquity, most of his manuscripts were collected 
in the great library of scrolls in Alexandria, Egypt, at the Mouseion (286–47 BC) 
and later at the Serapeion (through AD 391).

Archimedes most likely had spent an extended study period in Alexandria around 
240 BC, as mentioned by Diodorus of Sicily. At the Mouseion many famous scien-
tists lived and worked there together. The Mouseion served as a center for collecting 
many thousands of scrolls but also for copying and distributing this body of knowl-
edge within the ancient scientific world. There Archimedes had met many contem-
porary scientists, e.g., Konon, Dositheos, Aristarchos, and Eratosthenes, among 
others, with whom he established lifelong friendships and communications. He sent 
them his manuscripts and thus probably made them available to the ancient scien-
tific world via Alexandria.

Unfortunately the libraries there fell victim to great fires and lootings at least 
twice, the Mouseion in 47 BC, the Serapeion later in AD 391. Yet copies of Archimedes 
essential works existed elsewhere in other libraries and scientific centers.

Table 3  Historians and 
commentators of Archimedes

Polybius (201–120 BC)
Cicero at tomb in Syracuse: 75 BC
Livy (59 BC–AD 17)
Vitruvius (ca. birth of Chr.) [14]
Diodorus of Sicily (ca. birth of Chr.)
Plutarch (AD 46–120.) [24]
Pappus of Alexandria (AD 290–?)
Serapeion library burnt: AD 391
Proclus (AD 400–ca. 485)
Eutokios of Askalon (AD 530–600)
Tzetzes, Byzantine writer: 12th 
cent.
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Table 3 shows the names of some of the main historians, biographers, and com-
mentators on Archimedes and his work during the centuries following his death. In 
this period access to his manuscripts still comprised a few that are now lost. This 
interest, mainly in the mathematical and mechanical treatises, continued for several 
centuries. Unfortunately OFB is nowhere mentioned by these authors.

�The Manuscripts

Archimedes’ own manuscripts are all lost. But fortunately several copies were made 
in antiquity and the early Middle Ages so that a total of 12 treatises of his are pre-
served and currently known (Table 2). Some of these manuscripts have survived in 
the original Greek language, others in Latin translation, a few even in Arabic.

In Alexandria, from where many of the master copies originated, Caesar had con-
fiscated many scrolls from the Mouseion as war booty in order to ship them to Rome 
but apparently most were burnt or lost during the uprisings in 47 BC. The majority 
of the remaining scrolls were lost when the Serapeion temple, which served as 
library, was set on fire by a Christian mob in AD 391 (Sprague de Camp [12]).

The Byzantine Empire was best positioned geographically and suited culturally 
to resurrect the classical Greek traditions. In fact, Leon of Thessaloniki, a Byzantine 
cleric, in the ninth century, undertook a collection of Archimedes’ dispersed works 
to which we owe the existence of at least three later master copies, called Codices 
A, B, and C by Heiberg [7] later, which became the master sources for all later pre-
served copies and translations. The treatise OFB was contained in Codices B and C.

In Sicily during the Norman and Hohenstaufen rule in the eleventh and twelfth cen-
tury, a blossoming of classical literature and science occurred, promoted in part by 
exiled Byzantine scholars, who apparently brought at least two sets of Archimedes man-
uscript copies with them to the West. When the Hohenstaufen empire collapsed after the 
battle of Benevento in AD 1266, these copies ended up in the papal libraries.

One of these sets, Codex A, in Greek without the OFB treatise, changed hands a 
few times, was however copied before it was irretrievably lost in 1564. For several 
centuries these copies of Codex A were the only available sources for Archimedes 
in Greek language.

Evidently a second set of manuscripts by Archimedes had existed in Sicily and 
then in the papal library, which contained OFB. This made it possible to Willem van 
Moerbeke, a Flemish Dominican monk, who worked as a translator at the papal 
court in Viterbo from 1268 to 1280, to produce a Latin translation of Archimedes’ 
preserved works based on both earlier sources and including OFB, published in 
1269. This Latin translation, later called Codex B by Heiberg [7], and its copies 
provided the principal access to Archimedes for the Latin reading community.

After about 1500 by means of the fast spreading of Gutenberg’s printing press, 
several printed editions of Archimedes’ work soon appeared in order to satisfy the 
growing interest in classical science. Among the first few we mention the editions 
by Tartaglia (Venice, 1543) and Curtius Trajanus (Venice, 1565). Both were Latin 
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translations, based on Codex B, the former with Book I, the latter with both books 
of OFB. Commandinos Latin editions (Venice, 1558/1565) based on Codex B, the 
1565 edition with OFB, were highly regarded for their quality. After 1600 many 
other editions have appeared in Greek, in Latin, and in modern languages 
(Dijksterhuis [8]).

Clagett [25] has presented a very thorough survey of the history of Archimedes’ 
works during the Middle Ages and through the revival in the Renaissance.

�Codex C

Miraculously in 1906 a third master copy of Archimedes’ collected works in Greek 
was rediscovered by J. L. Heiberg [15], a Danish scholar of classical languages, in a 
Greek monastery, the Metochion in Constantinople, later called Codex C. This copy 
was found in a palimpsest where Archimedes’ text of the tenth century had been 
rinsed off and the parchment pages were reused and reassembled in the thirteenth 
century for a Greek prayer book (euchologion). As Heiberg personally writes in the 
preface of his German translation of The Method, which appeared in 1907 [15]:

Last summer I have examined a manuscript at the Metochion (in Constantinople) of the 
Monastery of the Holy Sepulchre in Jerusalem that underneath a prayer book (eucholo-
gion) of the 13th c. contains treatises by Archimedes written in the beautiful minuscula of the 
10th c., which is only rinsed off, not scraped off, and is reasonably legible with a magnifying 
glass. The manuscript, no. 355. 4to, stemming from the monastery of St. Sabba near 
Jerusalem, is described by Papadopoulos Kerameus, who gives a sample of the writing 
below. From this it was immediately clear to me that the old text was Archimedes…… It is 
however more important that the manuscript contains the very nearly complete text of “On 
Floating Bodies”, from which in the past only the Latin translation by Willem van Moerbeke 
was available; its numerous lacunae and grave corruptions can now be healed 
completely.

Heiberg’s preface goes on to praise the value of the first ever discovery of The 
Method…. The new findings from this palimpsest were soon transcribed, docu-
mented in Greek, and used in subsequent translations [7].

The adventurous history of Codex C continues in style: During the upheavals of 
the Greek-Turkish war of 1920–1922, the collections of the Monastery Library in 
Constantinople are taken to Greece. There the palimpsest disappears. It seems to have 
been acquired by a French private owner. Its condition further deteriorated, also by 
failed attempts to sell it as a medieval prayer book with added illuminations. Incredibly 
enough it eventually resurfaced at an auction by Christie’s in New York in 1998, 
where it was bought by an anonymous American buyer for 2.2 million dollars.

Since then in 1999 the new owner lent the manuscript to the Walters Art Museum 
in Baltimore for secure conservation and renewed scientific evaluation. The museum 
team has been applying the most modern techniques for reconstructing the ancient 
text as accurately as possible. Advanced optical and computer-based methods have 
been used (multispectral imaging and confocal microscopy a.o.) to increase the con-
trast for the rinsed-off text and to focus on layers beneath the parchment surface to 
reconstruct the text from the badly damaged palimpsest.
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Important results of this painstaking work have been published by members of 
the Baltimore team (Netz, Noel [26], Noel, Netz, Tchernetska, Wilson [27]). From 
these results the excellent quality of the reconstruction is evident, and many new 
findings were reported that go well beyond the status reached by Heiberg, thus clos-
ing gaps in the text and removing lacunae. Thereby our understanding of OFB has 
been largely confirmed and improved in details. The first ever finding of The Method 
adds much substance to our insights into Archimedes’ lines of thought.

�The Treatisers

During the fifteenth to seventeenth centuries, a tradition developed in all major 
European seafaring nations to document the existing and evolving shipbuilding 
knowledge, whether practical or more theoretical, in more or less learned treatises 
for diverse purposes. The authors are often called treatisers. They came from practi-
cal shipbuilding or more theoretical background or sometimes both. The treatises 
served as technical notebooks, as introductory texts for the general public, or just as 
an opportunity to display scientific and technical expertise. Shipbuilding technol-
ogy and design methodologies underwent major changes during this period in prac-
tical and scientific know-how, so the treatises captured valuable elements of 
contemporary background knowledge. The treatises can serve to monitor the 
changes that occurred in ship design and production.

We will take a quick survey of the more essential treatises, mainly in order to 
identify traces of Archimedean knowledge during this period when Archimedes’ 
written work began to be more widely circulated in print. But before this knowledge 
in ship design could be applied, a few major prerequisites had to be met: A com-
plete, continuous hull form definition and an accurate methodology for evaluating 
areas, volumes, and centroids were indispensable.

During the Middle Ages and Italian Renaissance, Venice was a leading sea power 
and shipbuilding center in the Mediterranean. Some of the earliest treatises from 
Venice document the shipbuilding methodology practiced there. It is found in the 
treatises by Michael of Rhodes [28], ca.1434/1435; Trombetta [29], 1445; and later 
with more textual elaboration by Drachio [30], 1599. The ships were built “skeleton 
first,” i.e., a skeleton of transverse frames from the keel through the bottom and 
continued all the way up in the sides was erected first to which the hull planking was 
attached later. Thus the shape was predefined by the outer edges of the skeleton 
frames. The Venetians and other Mediterranean shipbuilders used a special “lofting” 
method to lay out the shape of the transverse frames by means of a “sesto,” i.e., a 
planar template for the master cross section of the hull with several schemes of 
marking, from which the shape of any other section at other stations along ship 
length can be derived by unique rules. Thus geometrically the frames of the skeleton 
are uniquely deduced from the master section by a process of translation, rotation, 
and clipping. Thus the hull surface is fully defined by the sesto (except for the ends 
of the ship). See, e.g., Alertz [31] for more details. In these treatises no reference to 
design calculations and to Archimedes’ OFB is found.
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In France, Spain, in Genova/Genoa, and at other Mediterranean cities, very simi-
lar lofting methods were used. In French the “maître gabarit” is the equivalent of the 
“sesto.” The French approach, also called the Mediterranean method, is well docu-
mented by Rieth [32]. Design calculations and reference to OFB are also still absent 
in the pertinent treatises.

Portugal, a successful seafaring nation during the Age of Exploration, also held 
a strong position in shipbuilding. Early Portuguese treatisers are Oliveira [33] 1580, 
Lavanha [34] 1614/16, and Fernandes [35] 1616. They deal primarily with ship 
geometry, molding rules, and ship construction. Lavanha develops precise ship 
drawings; Fernandes already presents a rudimentary ship lines plan. These sources 
however do not contain hydrostatic calculations nor references to Archimedes.

In England William Bourne (“Treasure for Travaylers” [36]), 1578, one of the 
first treatisers there, already describes an approximate practical method to obtain a 
ship’s volume estimate by taking its offsets when on a dry ground using measuring 
rods relative to some suitable reference plane outside the hull and up to the desired 
waterline. The offsets are then linearly connected to estimate cross-sectional areas 
up to the desired draft. This is done in several transverse sectional planes along ship 
length. The volume of any segment between measured neighboring cross sections at 
any given draft is then approximated by linear interpolants. Thus a rough volume 
estimate is obtained for the ship, which is converted to the ship’s weight or displace-
ment on that draft based on the Principle of Archimedes.

Other English treatisers (Mathew Baker/John Wells, 1570–1627, cf. R. Barker 
[37], R.  Dudley [38], 1646, Bushnell [39], 1664) further evolved methods for 
designing and molding ship geometry leading up to first ship lines plans on paper. 
However Anthony Deane [40], 1670, undertook the next steps of section area pla-
nimetry from lines plans by circular arc or rectangular/triangular approximants as 
well as volume estimation, segment by segment, between cross sections. The 
Principle of Archimedes was again used to find the displacement for any given draft. 
Stability analysis was not attempted.

During the same period early French treatisers (Fournier, 1643, Pardies, 1673) 
were mainly interested in nautical matters for the practice of seamanship. It was the 
Jesuit Père Paul Hoste [41], 1697, who first took on the challenge of estimating from 
lines plans the displacement (not unlike Bourne and Deane) and a measure of stability. 
Unfortunately his stability analysis was flawed because he misinterpreted Archimedes 
and missed the effects of the volume shifts due to a heeling inclination.

In the Netherlands the first pioneering scientific work on ship hydrostatics was 
performed by the Flemish/Dutch scientist Simon Stevin (1548–1620) to be 
addressed in more detail in the next section. His work has contributed to an early 
intuitive physical understanding of the principles of hydrostatics. The Dutch math-
ematician Johannes Hudde (1628–1704) had proposed a method in 1652 [42], later 
called the difference in drafts method, for measuring the cargo payload capacity or 
tonnage as a basis for port fees and taxes by taking the difference between the dis-
placement of the ship fully loaded and the displacement empty. Offsets were taken 
for the waterlines in both loading conditions, and the volume between the two 
waterlines was approximated numerically by means of trapezoids and triangles. 
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This volume was converted to weight by the Principle of Archimedes. Other treatis-
ers, in particular Witsen [43], 1671, and Van Yk [44], 1697, pursued similar paths, 
especially for estimates of volume, displacement, and payload capacity.

This short survey has been confined to traces of increasing Archimedean influ-
ence in ship hydrostatics. Many more details on the work of the treatisers are found 
in Barker [45] and Ferreiro [46].

In summary it is fair to state that by 1700 Archimedes’ text in OFB was known 
to scientists, but very little of his knowledge had found its way into ship design 
practice. However in this period the issues of a continuous hull form definition by 
ship lines plans and of volume and centroid estimates for ship hulls by numerical 
approximation had been brought to satisfactory practical solutions.

�Stevin, Galileo, Huygens

The rebirth of hydrostatics in the seventeenth century, directly based on Archimedes’ 
written work in OFB, and its extension to new foundations and applications is 
essentially owed to the work of three famous physicists, Simon Stevin (1548–1620), 
Galileo Galilei (1564–1642), and Christiaan Huygens (1629–1695). They thor-
oughly studied and understood Archimedes’ work, especially his treatise OFB, and 
were able to apply and extend it to practical applications in ship design. Blaise 
Pascal (1623–1662) achieved the equivalent in aerostatics.

Simon Stevin, the famous mechanicist, astronomer, and hydraulic engineer, 
worked on several fundamental problems of mechanics and also reestablished hydro-
statics. He introduced the concept of hydrostatic pressure, which the Greeks had not 
known. He axiomatically developed a body of propositions embracing the entire fun-
damentals of hydrostatics in his treatise The Elements of Hydrostatics [47] (1586 in 
Dutch, 1608 in Latin translation). His premises are tantamount to the Archimedean 
properties of the liquid. In a liquid at rest the hydrostatic pressure increases linearly 
with the depth in proportion to the specific weight of the liquid since the weight of the 
liquid column on top of a given point causes this pressure. This opens the door to 
treating hydrostatics as a special case of field theory in the context of continuum 
mechanics, as it would be regarded later. Where Archimedes had dealt only with 
force resultants, Stevin was able to discuss hydrostatic phenomena as the result of 
pressure distributions. For ships the results are the same, but the approach is different. 
Stevin in his work gave full credit to Archimedes whom he praised. Unfortunately 
Stevin had misunderstood Archimedes’ criterion of stability. By disregarding the 
effects of the volume shift in the heeled position of the vessel from the emerging to 
the immersed side, he came to the erroneous conclusion that for a stable ship the 
center of buoyancy B must always lie above the center of gravity G. This is actually 
a sufficient, but not a necessary, condition for upright stability.

Galileo, famous as a physicist and astronomer, also occupied himself with hydro-
statics, which is not so widely known. In Florence in 1612 he published a treatise 
Discourse on Bodies in Water [48], where he defends his Archimedean viewpoint on 
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the cause and magnitude of the buoyancy force against an opposition of Jesuit cler-
ics who held the Aristotelean scholastic position that bodies specifically heavier 
than a liquid need not sink in that liquid. According to Aristotle, whether a body 
specifically heavier than a liquid sinks or floats on the surface depends on its shape. 
Galileo refuted this view and defined buoyancy in the manner of Archimedes.

Christiaan Huygens in 1650, thus at the tender age of 21 years, fully understood 
Archimedes’ treatise OFB and was able to reconfirm Archimedes’ results for the 
stability of simple shapes (sphere and paraboloid) and to extend the stability crite-
rion to other homogeneous solids, the cone, the cylinder, and the parallelepiped 
[49]. He systematically varied the specific weight and the aspect ratios of these 
shapes, the main parameters for stability properties, and tested the stability of sev-
eral shapes for a full circle (360°) of initial positions. Many solids turned out to have 
more than one stable equilibrium position. Huygens used an approach based on the 
principle of virtual work to define equilibrium, which is equivalent to and thus 
reconfirms Archimedes’ results derived from force and moment equilibrium. He did 
not apply his methods to ships because he did not have a suitable, continuous ana-
lytical hull form definition.

Huygens did not want his three-volume treatise to be published, for he did not 
consider his results to be complete, useful, and original compared with Archimedes. 
Rather he wanted his manuscript to be burnt. But it was much later found in his 
legacy and at last published in 1908 in his Collected Works.

�Calculus

To approximate the areas, volumes, and centroids of simple shapes, Archimedes had 
used the method of exhaustion, usually attributed to Eudoxus. This method relies on 
small, but finite, not infinitesimal elements to represent curves and surfaces. The 
method is not directly applicable to ships as objects of arbitrary shape. It defines its 
geometries by a finite number of polygonal or polyhedral elements. Integration by 
infinitesimal calculus by contrast is based on a limiting process to an infinite num-
ber of polygonal elements and derives its results analytically, often by means of a 
summation of an infinite series. Thus calculus can be applied to any analytically 
defined shape, hence also to arbitrary ship shapes.

The invention of calculus has many precursors and contributors (cf. Boyer [50]). 
But consistent foundations and a well-defined methodology were at last developed 
by Newton and Leibniz in the late seventeenth century. These methods spread fast 
during the first few decades of the eighteenth century. Thus by about 1730, when 
two leading scientists, Pierre Bouguer (1698–1758) and Leonhard Euler (1707–
1783), simultaneously and independently, embarked on addressing the problems of 
ship hydrostatics again in a modern way, they had the mathematical methods and 
computational tools available to reformulate the integral quantities in Archimedes’ 
approach in terms of the elegant and precise notation of calculus. Analytical, graphi-
cal, and functional representation of ship hull shapes were now achievable so that a 
modern reformulation of Archimedean hydrostatics as an application of continuum 
mechanics to ships had become feasible.
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�Bouguer and Euler

In 1727 the Parisian Royal Academy of Sciences held a prize contest on the opti-
mum placement of masts in a sailing ship. Both Pierre Bouguer, a member of the 
academy, and Leonhard Euler, a Swiss citizen, then 20 years old and under the 
tutelage of Johann Bernoulli, participated in the contest and submitted contribu-
tions. The subject is closely related to ship hydrostatics because the optimum place-
ment of sail area is a direct function of the permissible heel angle of the ship, where 
heeling moment and restoring moment are in equilibrium. But in their papers sub-
mitted for the competition, neither Bouguer nor Euler indicated any knowledge of 
Archimedean hydrostatics. Bouguer won the award nonetheless, and Euler’s treatise 
was acknowledged as noteworthy by an “Accessit” verdict.

Neither scientist seems to have been satisfied by this intermediate result, for both 
of them continued to work intensively on ship hydrostatics during the next decade 
and a half, separately and independently without knowledge of the other’s results 
before they were published (Nowacki, Ferreiro [51]). Bouguer participated in a sci-
entific expedition to the Andes in Peru, today Ecuador, for geodesic measurements 
near the equator from 1735 to 1744 (Ferreiro [52]). He worked on his fundamental 
ship hydrostatics treatise Traité du Navire [53] mainly during this period. It was pub-
lished in 1746 soon after his return to France. Euler worked on the same subject as a 
member of the Russian Academy of Sciences in St. Petersburg from 1737 to 1741. 
This work resulted in his two volume treatise Scientia Navalis [54], which after a 
long delay in the publishing process appeared in 1749. Both scientists respectfully 
acknowledged the other’s work, which had led to largely equivalent results. They 
confirmed they had not known the other’s work prior to its publication.

Bouguer does not mention or give credit to Archimedes anywhere but treads 
firmly in Archimedes’ footsteps everywhere. For example, in Book II, Section I, 
chapter 1 of [53], he introduces the buoyancy force with an explanation that is tan-
tamount to the Principle of Archimedes:

The principle of hydrostatics, which must serve as a rule in this whole matter and which one 
must always have in mind, is that a body that floats on top of a liquid is pushed upward by 
a force equal to the weight of the water or liquid whose space it occupies.

Bouguer in another section also reconfirms this result by integration of the 
hydrostatic pressure over the submerged surface of the hull.

Euler freely acknowledges the debt he owes to Archimedes for the fundamentals 
of hydrostatics in buoyancy and stability. Euler begins his treatment of ship hydro-
statics with the following axiom in the spirit of Stevin and field theory:

The pressure which the water exerts on a submerged body in specific points is normal to the 
body surface; and the force which any surface element sustains is equal to the weight of a 
vertical water column whose basis is equal to this element under the water surface.

All other results in ship hydrostatics can be derived from this axiom. Euler pro-
ceeds to deduce the Principle of Archimedes by pressure integration over the sub-
merged part of the hull surface.
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Regarding ship stability Bouguer and Euler went distinctly different ways, both 
departing from Archimedes’ reasoning and both arriving at equivalent results, 
though expressed in different formulations.

For initial stability, i.e., the stability in the initial upright condition for very small 
(infinitesimal) angles of heel, Bouguer introduces the metacenter (point g in 
Figure 5) as the point of intersection of two infinitesimally neighboring buoyancy 
directions. In Figure 5 in the upright condition, the hydrostatic pressure resultant or 
buoyancy force acts through the volume centroid Γ of the submerged volume, also 
called center of buoyancy B in modern terminology. As the ship is slightly heeled, a 
slice of volume whose cross section is triangular in the figure is moved from the 
emerging side to the immersed side so that according to Archimedes’ shift theorem 
(law of the lever) the center of buoyancy moves parallel to the shift from Γ to γ. The 
new buoyancy force runs normal to the new liquid surface and intersects the upright 
line of buoyancy in point g, the metacenter. The metacenter is at the same time the 
center of curvature of the curve, that is, the locus of the centers of buoyancy as the 
ship heels continuously. Bouguer constructs the metacenter by means of calculus 
and numerical integration (trapezoidal rule). His stability criterion is that the center 
of gravity of the ship (point G in Figure 5) must not lie above the metacenter g. The 
ship is stable for positive metacentric height Gg.

Euler likewise begins with an inclined, heeling ship (Figure  6) in analogy to 
Archimedes. He then applies the shift theorem to the emerging and immersed volume 
elements and constructs the new location of the center of buoyancy by integration of 
cross-sectional data over ship length using a calculus formulation. This enables him 
to compute the restoring moment, i.e., the couple formed by the buoyancy and gravity 
forces in the inclined position. If a positive restoring moment (or positive righting 
arm, similar to Archimedes) is acting, then the ship tends to restore itself to the 
upright condition after a small heeling disturbance; hence it is stable.

Figure 5  Bouguer’s derivation of the metacenter (From Bouguer [53])
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For infinitesimal angles of heel, the metacentric approach by Bouguer and the 
restoring moment criterion by Euler lead to identical expressions. For finite angles 
of heel, both scientists have proposed valid methods and criteria, though in different 
form. Both can claim that they have achieved a stability analysis based on either the 
metacentric curve or on the restoring moment/righting arm, which can be imple-
mented by calculus and numerical integration. Both results are extensions to 
Archimedes’ theory applicable to ships of arbitrary shape.

Both Bouguer and Euler have also addressed stability criteria for finite angles of 
heel, viz., the metacentric curve or the restoring moment in the inclined position, 
respectively. Further they both demonstrated how to deal with longitudinal stability, 
i.e., the response of the ship to trimming moments, viz., the longitudinal metacenter 
or the longitudinal restoring moment and the trim angle. They proceeded to show 
how many other applications in ship design and operations can be treated once the 
basic hydrostatic stability responses of the ship are known. This includes calcula-
tions for the determination of the draft, heel angle, and trim angle of the ship for any 
loading condition, e.g., during the loading and unloading of the ship, ship motions 
under wind load and in waves, maneuvering dynamics under sail, and much else. 
Calculus formulations and their numerical evaluations paved the way toward practi-
cal application of hydrostatic analysis of ship performance in general.

Bouguer’s and Euler’s published fundamental treatises in ship theory experi-
enced quite contrasting reception and distribution. Bouguer’s French text was read-
ily understood and illustrated by many numerical examples. Textbooks for colleges 
were soon prepared in France on its basis. The French Navy soon made stability 
assessment by the metacenter criterion an official requirement for any new design. 
Euler’s Scientia was written in Latin, lacked numerical examples, did not reach 
many practitioners, and remained relatively unknown in shipbuilding practice. But 
it was recognized as a valuable reference in future scientific work.

Figure 6  Euler’s centroid 
shift in an inclined cross 
section (from Harris [55])
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�Chapman and Atwood

After the physical fundamentals of ship hydrostatics had been laid by Bouguer and 
Euler, the first attempts were made to apply this knowledge in practical ship design. 
Frederick Henrik Chapman (1745–1807) in Sweden and Thomas Atwood (1745–
1807) in Britain were two outstanding engineering scientists and designing naval 
architects who took advantage of this new knowledge and adapted it to their practi-
cal needs. This brought the physical insights of Archimedes to fruition in practical 
design for the first time in full scope after a long delay of about two millennia.

Chapman, the son of an English shipbuilder and immigrant to Sweden, grew up 
in an atmosphere of practical shipbuilding orientation and scientific openness. As a 
young man he was both practically trained and mathematically oriented, so he 
picked up a broad basic education. He also spent a few years in England, France, 
and the Netherlands in a sort of self-paid shipyard traineeship and thus became 
familiar with not only the practical skills of the trade but also with the recent scien-
tific know-how in those leading shipbuilding nations. He learned about the work of 
the Bernoullis, Bouguer, and Euler and knew how to apply it in his own ship design 
work. Thereby he was firmly entrenched in the tradition of Archimedes. He returned 
to Sweden in 1757 and soon acquired much responsibility in Swedish naval and 
merchant ship design, rose to high rank, and remained in a leading position in ship-
building throughout his lifetime. He was thereby able to test his basic new insights 
and methods in practical design work and shipbuilding (cf. Harris [55] for detailed 
biographical information).

He also took pleasure and pride in publishing his insights and practical methods 
in treatises of technical and scientific orientation, very suitable as texts for ship 
design education. His Treatise on Shipbuilding [56], 1775, stands out as a textbook 
on his design methodology. He applied his knowledge of Bouguer’s and Euler’s 
work and implemented numerical quadratures by Simpson’s rule, having taken pri-
vate lessons from Thomas Simpson in England. Chapman also was an excellent 
designer of ship lines plans. Reportedly he drew some 2000 lines plans in his pro-
fessional career. Many of these were documented in print and published. He made 
it a routine to calculate the displacement and a stability measure, the metacentric 
height, for every ship. Chapman also estimated the wind loads on the sails for criti-
cal operating conditions in order to provide sufficient safety margins in metacentric 
height for stability.

Chapman also knew how to influence hull shape and centroid location by geo-
metric variation in order to set favorable stability indices (like metacentric height), 
viz., enough stability to be safe against extreme heeling moments but not too much 
in order to avoid abrupt ship motions in rough sea states. This illustrates how a sta-
bility analysis based on Archimedes’ method was fully integrated into the design 
process.

George Atwood (1745–1807), an English mathematician and physicist, together 
with his French partner, the naval constructor Vial de Clairbois, recognized that the 
initial stability at small angles of heel was not sufficient to ensure a ship’s safety, as 
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Bouguer and Euler had already pointed out. Thus they investigated the ship’s righting 
moments at finite angles of heel, as Archimedes had done for the paraboloid. They 
used numerical quadrature rules to calculate the “righting arm” of the ship for a given 
draft, center of gravity, and heel angle over a wide range of heel angles (cf. [57]).

Thus by the end of the eighteenth century, all prerequisites were available to 
perform a complete displacement and stability analysis for a ship in its design and 
any other loading conditions. The application of Archimedes’s knowledge was 
thereby extended to actual ships.

�Archimedes in Modern Ship Design

�Scope

The hydrostatic principles of Archimedes govern the floatability and stability of 
ships, two crucial elements of ship safety. Safety considerations pervade the entire 
ship design process. Thus the principles of Archimedes are also deeply embedded in 
the modern ship design process.

All areas of ship design are interdependent and thereby closely connected with 
each other (Figure 7). They all contribute to the overall efficiency and safety of ship 
performance. At the same time decisions in one area influence the others. The mod-
ern design process is viewed as an integrated decision process and is judged by the 
overall performance in all categories.

Safety is a design target in its own right. Safety is not confined to Archimedean 
floatability and stability requirements. Rather it encompasses all aspects of hazard-
ous scenarios in the ship’s lifetime. This must hold for all operating and loading 
conditions of the ship, also when the ship is damaged and perhaps partially flooded. 
Safety in ship operations aims essentially at the protection of human lives; at the 
prevention of damages to or loss of property objects, including the total loss of the 
ship; and at the protection of the natural environment of the ship. Safety hazards 
may jeopardize any or all of these vulnerable goods. Thus design considerations 
must account for all known hazards, evaluate their risks, strive for prevention mea-
sures, and seek an adequate safety margin in all categories.

In modern Risk-Based Ship Design, this is performed by aiming at the most 
adequate, achievable combined risk for all hazards in a most cost-effective manner. 
This will be discussed in more detail later.

Safety performance and shape design strongly interact. As for the principal dimen-
sions, e.g., a shorter beamier ship of a given displacement tends to be more stable, 
though usually at the expense of a greater resistance, hence drawbacks in speed and 
power. Thus there are trade-offs between two important performance measures, a 
frequent situation in design. Therefore it is welcome that both of these effects can be 
quantified in design stage calculations, where Archimedes helps in modern design. 
The management of centroid locations and metacentric height by hull form changes 
is another example of interaction between safety and shape design.
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Structural integrity, especially in collision or grounding scenarios, is another 
concern for safety. The watertight subdivision of the ship, when damaged and par-
tially flooded, is crucial for the survival of the ship and the humans aboard and for 
the protection of the environment. But such compartmentation is only adequate, if 
the ship remains floatable and stable in the damaged condition. This was a bitter 
lesson from the sad Titanic disaster in 1912.

Matters of style, e.g., the layout and placement of decks and spaces between keel 
and superstructures, may much influence the stability and damage safety perfor-
mance of a ship, as some sad accidents have reminded us. Methods of production 
enter into the reliability of the structure (safety) but also weight distribution and 
centroid location (materials).

In summary, practically all essential areas of design interact with the safety 
parameters of the ship and must be monitored and controlled during the design pro-
cess. This must be done quantitatively at the design stage by keeping track of the 
ship’s floatability and stability in all operating conditions, especially after damaging 
accidents. Thus in modern times no certified ship can be designed without resorting 
to the principles and criteria of Archimedes.

�Developments and Trends in Ship Design for Safety

�Overview

Around 1800 a new era in shipbuilding and shipping was about to begin with the 
advent of steam-powered steel ships. It was a fortunate coincidence that by this time 
the scientific know-how in ship safety matters had reached sufficient maturity to be 

Figure 7  Structural elements of the ship design process
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applied to this new generation of ships. In the past the technology of wooden sailing 
ships had been in gradual evolution for many centuries so that new designs could be 
based on the experience with existing and past ships. But the degree of innovation 
in the new ships that arrived with the industrial revolution was far too radical to base 
the safety concepts on inadequate experience alone. Thus science and technology 
together had to arrive at new methodologies to ensure safety in ship design.

The transition from wooden sailing vessels to steam-powered steel ships, which 
lasted more than a century, brought along many subsequent changes with new tech-
nologies and new risks. Ships grew in size and speed for greater economy but were 
also equipped with an increasing number of auxiliary systems to improve their 
safety. New specialized ship types were developed for new commodities, e.g., tank-
ers for oil, later gas and chemical transport. The transoceanic passenger trade gained 
much momentum from the nineteenth into the twentieth century and created a large 
international fleet of fast, often luxurious passenger liners. This rapid diversification 
in shipping tasks and growth in seaborne trade volume generated many new techni-
cal challenges and operating risks. Simultaneously the value of the larger, faster 
ships and of their payload commodities grew immensely, hence also the economic 
risks of shipping investments.

�Classification Societies

Ship owners and insurance companies consequently were interested in assessing 
such risks and finding technical solutions to control them during the continuing 
process of technical innovation. They needed advice in technical and scientific 
expertise from impartial, qualified maritime experts familiar with shipbuilding and 
shipping practice and with the scientific state of the art. Such services from the 
beginning of the steel ship era to this day were provided by classification societies 
in several leading maritime countries.

Classification societies were established, mainly during the nineteenth century, 
as national bodies and as legally independent, nongovernmental organizations to 
promote the standards of safety at sea in close cooperation with the maritime indus-
tries. They perform their functions by developing and publishing classification rules 
for the design, production, and operation of ships (and other offshore structures) by 
surveying the design process for compliance with the rules, by issuing classification 
certificates to approved ships, and by periodic inspection of the ships in operation. 
Their certificates are the basis for obtaining marine insurance contracts.

A core activity of classification has always remained the promotion of safety in 
the areas of ship strength, ship stability, load lines, and ship subdivision for damage 
control. Thereby and through their International Association of Classification 
Societies (IACS), they have much contributed to the national and international ship 
safety legislation. Their activities remain consultative since they have no executive 
power in the marine industry.
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�National and International Rules and Conventions: The Load Line

Ship safety legislation was initially based on national, sometimes even local, rules 
and regulations, which were slow in gaining ground. Regarding the load line of 
ships, it was not before 1876 in England that a law was passed requiring a mark (the 
Plimsoll mark) to be placed on the vessel’s sides to prevent overloading the ship or 
to ensure a minimum freeboard. Sufficient freeboard is necessary to provide ade-
quate reserve floatability (against sinking due to excessive heave motions) and 
reserve stability (against capsizing due to large heeling moments). Grave accidents 
initially occurred with low freeboard vessels until legislation recognized the neces-
sity of reserve buoyancy above the load waterline. National rules set a trend, but it 
took until 1930 before the first International Load Line Convention was passed.

National legislation was insufficient to secure uniform safety precautions in 
international shipping. Conventions to prepare international agreements were long 
desired. It took until 1948 that a decisive step was taken. The United Nations in 
1948 inaugurated an international convention, first called Inter-Governmental 
Maritime Consultative Organization (IMCO), later in 1982 renamed International 
Maritime Organization (IMO), to be concerned internationally by cooperation 
between governments with matters of maritime safety to encourage and facilitate 
general adoption of the highest practicable standards in matters concerning 
maritime safety, efficiency of navigation, and prevention and control of marine pol-
lution from ships (cf. Lamb [58]).

The International Load Line Convention of 1930 was revised in 1966 and again 
in 2000 to account for the ship’s seakeeping dynamics under the management of 
IMCO/IMO.

�Damage Stability

The catastrophic accident of the Titanic in 1912 with the loss of many human lives 
caused international alarm and drew the attention to be focused on the safety of 
ships when damaged and partially flooded. An international Convention on Safety 
of Life at Sea (SOLAS) in 1914 presented new criteria for safety regulations for 
passenger vessels, but due to delays by two World Wars, the results were not passed 
and put into force until SOLAS 1948 under IMCO supervision. The regulations 
were gradually amended and stiffened, also in consequence of new grave accidents 
(SOLAS 60 and 74). Recent developments set safety standards for dry cargo ships 
in damaged condition (SOLAS 90) and moved on to probabilistic concepts of dam-
age assessment for dry cargo and passenger ships (SOLAS 2009). The purpose of 
these regulations is ensuring safe design by sufficient subdivision of the hull by 
watertight bulkheads controlling the size, location, and number of flooded spaces so 
as to control sinkage, trim, and heel in the damaged floating condition not to exceed 
a safe margin for the ship’s floatability and stability. The flooded spaces are either 
regarded as filled with added liquid weight or equivalently treated as lost volumes 
of buoyancy. In every other regard the analysis of the damaged condition is based 
on the same Archimedean principles as for the intact condition.
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�Protection of the Environment

The significant growth of ocean oil transport after WWII and sad accidents with 
tankers resulting in dramatic oil pollution in the ocean and on shores have caused 
growing concern over the threat of oil pollution in the maritime environment. This 
concern was addressed under the auspices of IMO at the MARPOL 73/78 conven-
tions, which went into force in 1983. To limit the potential oil outflow in the event 
of tanker damages by collision or grounding, the MARPOL regulations require 
from all new tankers of more than 20000 tons deadweight the arrangement of seg-
regated ballast tanks (clean tanks) in protective locations, i.e., to shield the cargo 
tanks. This has led to new compartment configurations in “double-hull” tankers 
with clean ballast tanks along the sides and in the double bottom. Such arrange-
ments also result in more potentially empty spaces and hence more freeboard, which 
adds to the reserve buoyancy. How these reserves can be used to the best advantage 
of ship safety has been the subject of recent discussions and design optimization 
studies (cf. Papanikolaou [59]).

�Risk-Based Ship Design

The design of complex systems operating under hazardous conditions and subject to 
threats of immense damages in the event of catastrophic failures has become a spe-
cialized discipline, now commonly called risk-based design. This approach has 
been a necessity in the nuclear industry for many decades and has also prevailed in 
aerospace design and in other industries with great public and economic risks. In the 
maritime field the offshore oil industry first introduced this approach by legislation 
based on risk analysis for offshore systems, e.g., in Norway in 1986, in the United 
Kingdom in 1992. For ships IMO is currently following a strong trend toward risk-
based ship design in the development of new safety standards (cf. Sames [60], 
Skjong [61]).
This entails a number of methodical elements:

•	 Future standards and some current pilot regulations are intended to replace, at 
least in part, the traditional rule-based approach of classification and regulations, 
which describes in technical detail how a safe design is to be realized, by Goal-
Based Standards, where a safety goal is set regardless of how it will be achieved. 
This requires quantitative risk analysis (QRA) with quantified risk assessment. 
Goal-Based Ship Design (GBSD) aims at an optimal solution for the overall 
safety of the ship. This is to be achieved in the most cost-effective manner.

•	 The risks will be defined for each hazardous operational scenario in probabilistic 
terms by the predicted probability of occurrence of the hazardous event multi-
plied by the economic value of the consequent damage. All damages, whether to 
the public, the ship owner, or to individual humans, are to be included in the 
analysis. The total risk is evaluated by combining the risks of all scenarios. The 
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total risk will be compared to the acceptable risk, chosen either relative to ships 
designed by existing IMO rules or in absolute terms based on forthcoming new 
IMO risk acceptance criteria (cf. Sames [60]),

•	 In optimizing designs simultaneously for their economic viability and their 
safety, safety is no longer regarded as a rule-based constraint but is treated as an 
objective in its own right. After all, the owner’s and the public’s interest lies in 
both economy and safety. Risk analysis quantifies safety targets in comparable 
units as the functional economic measures.

These features in the risk-based methodology set an ambitious scope for design 
studies. Yet, IMO discussions and pilot studies are well underway. Many details can be 
found in the recent book Risk-Based Ship Design (Papanikolaou [59]), which is in large 
measure a result of the EU-funded research project SAFEDOR. It contains example 
studies for a cruise ship (Vassalos [62]) and a double-hull tanker (Papanikolaou [63]).

�Formal Safety Assessment

A systematic methodical approach that is often followed in Risk-Based Ship Design 
is the Formal Safety Assessment (FSA). It is performed in five steps:

–– Identification of all relevant safety hazards
–– Quantification of the risks for each hazard
–– Enumeration of the design options
–– Cost-benefit analysis of all design options, including the effects of all hazards
–– Systematic comparison or optimization studies to recommend the chosen design

Figure 8 shows how the hazardous scenarios in ship safety are connected and 
depend on each other. The total risk analysis is probabilistic and must account for 
these interdependencies.

Interesting case studies have been performed (cf., e.g., [62, 63]). Papanikolaou 
and his team designed a double-hull AFRAMAX tanker, where the reference vessel 
was an existing rule-based design. Using a risk-based approach, it was possible to 
demonstrate in a multiobjective optimization study that the best goal-based designs, 
without changes in principal dimensions and hull form, varying double-hull tank 
dimensions and compartmentation, allow increases in cargo capacity and improve-
ments in environmental safety, viz., reduction in oil outflow according to MARPOL 
regulations, without drawbacks to the economic performance.

�Trends in Ship Design for Safety

To summarize the major developments in ship design safety, which have accompa-
nied the rise of modern shipping, the following long-term and recent trends can be 
recognized:
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–– From predominantly experience-based design to design on scientific-
technological foundations

–– From national to international rules and regulations
–– Safety studies advanced from late to early design
–– From deterministic to probabilistic design decision models
–– From prescriptive rules to goal-oriented methods
–– From feasible design to optimal design
–– From modeling safety requirements as constraints to treating them as objectives
–– From design against individual hazards to risk-based design for overall safety

All of these developments together have contributed to a much enhanced safety 
in modern ships for a greatly diversified spectrum of ship types. The ideas of the 
Principle of Archimedes and of his stability assessment have remained at the core of 
every modern ship safety assessment.

�Conclusions

Archimedes laid the foundations for the hydrostatics of floating systems in his trea-
tise OFB. He based his deductions on experiments of thought and very few physical 
axioms amounting to the equilibrium of forces and moments applied to an object 
floating in a liquid at rest. The Principle of Archimedes holds for objects of arbitrary 
shape, hence also for ships, and his stability criterion of positive righting arms can 
be extended to solids of nonhomogeneous mass distribution like ships.

However it is unlikely that Archimedes was involved in the stability analysis of 
contemporary ships built in Syracuse though he may have assisted in other ways, but 
evidently he did not have available continuous ship hull form definitions, methods of 
integration for areas, volumes and centroids for arbitrary shapes, and any data drawn 
from experience on safe margins for external heeling moments in critical scenarios.

Despite the initial lack of this further information, Archimedes’ insights were 
recognized throughout late antiquity and the Middle Ages as physical fundamentals 
by those few who had access to his work, and they may have been guiding principles 

Figure 8  Structure of hazardous scenarios in ship safety (Adapted from Vassalos [62])
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in qualitative assessment of design decisions. Prominent scientists, e.g., Stevin, 
Galileo, Huygens, Pascal, and practitioners in their treatises, made elementary con-
tributions in order to make Archimedes’ concepts applicable to ship design.

But it was only after continuous representations of ship hull forms, at least 
graphically by drawings, and methods of integration by calculus had become avail-
able by about 1700 that direct numerical application of Archimedes’ laws could be 
brought to bear on practical ship design in volume and stability analysis. We owe 
Pierre Bouguer and Leonhard Euler the decisive scientific steps toward quantitative, 
scientifically founded numerical evaluation of ship hull form and stability proper-
ties in practical design. Chapman and Atwood with Vial du Clairbois in the late 
eighteenth century are early witnesses of the practical use of such safety relevant 
calculations at the ship design stage.

The new era of iron ships, propelled by steam, and further rapid innovations in 
shipping during the industrial revolution created many new ship types and shipping 
scenarios which required a new, much broader approach to ship safety. A risk-based 
approach, integrating all relevant hazardous scenarios in a total risk analysis, has 
gradually matured and is entering into ship design practice. A core element in this 
modern comprehensive ship safety analysis has remained the assessment of hydro-
static ship properties by Archimedean principles.
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Archimedes Screw in the Twenty-First Century

New Developments of an Old Design

Dirk M. Nuernbergk

�Introduction

This article gives a short review of the Archimedes screw and its application in 
different areas of water pumping and water-power generation.

The Archimedes screw—a corkscrew inside a cylinder—is attributed to the great 
Greek mathematician, engineer, inventor, and military planner, Archimedes, who 
lived in the third century BC. For thousands of years, farmers have used this simple 
machine for irrigation and for draining mines or low-lying water. Placed at an angle, 
with one end submerged in a body of water, the screw is turned by hand (or some-
times by the feet) to lift water upward and out at the other end.

In the 1990s a German engineer, Karl-August Radlik, determined that running an 
Archimedes screw backward—that is, letting water flow in at the top—caused the 
screw to turn as the water fell to the bottom. He also noted that naturally flowing 
water in small streams could generate modest (but impressive) amounts of electric-
ity—enough, for example, to power a village or large farm. Increasingly, this system 
of power generation is proving to be a robust, economical, and efficient way to 
generate electricity from small streams and rivers.

Also impressive is the fact that this form of power generation has a small impact 
on the environment. Unlike the turbine blades that spin in huge hydroelectric power 
plants, an Archimedes screw permits fish to swim through it and emerge at the other 
end almost unscathed.

In recent years, Archimedes screws have been built across Europe, particularly in 
Germany, Austria, and the United Kingdom, where Queen Elizabeth II commis-
sioned two such screws to power Windsor Castle. The first unit in the United States 
is expected to begin operating next year.
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�Historical Overview

Archimedes screws as water-lifting devices have been in use for centuries (Figure 1). 
The invention of the screw is credited to Archimedes of Syracuse (ca. 287–212 BC). 
However, there is no written evidence that Archimedes invented the screw; nor is 
there a drawing of a screw design by Archimedes that has survived to the modern 
era. It may be that this type of water-lifting device is much older and that it was used 
by the Egyptians or the Assyrians before Archimedes’ time. The discussion on this 
controversial matter among historians of science continues [1–4]. From the author’s 
point of view, it makes much more sense to credit this important ancient invention 
to the most famous ancient mathematician, Archimedes, than to the Assyrian war-
lord, Sennacherib.

In the first century BC, the Roman engineer Vitruvius gave the first written evi-
dence of a water screw in his work, De Architectura (Figure 2). However, Vitruvius 
gave no credit to Archimedes or to anyone else for its invention.

The screw described by Vitruvius consisted of a central wooden cylindrical core 
on which where wrapped eight helicoidal blades constructed from long willow 
twigs. Wooden planks were then nailed to the blades to form an enclosing outer 
cylinder. This type of screw was used for many centuries to drain mines as well as 
for irrigation purposes.

Figure 1  (left) Modern depiction of an Archimedes screw turned by a farmer. (right) Egyptian 
terracotta figurine (about 30 BC)

Figure 2  Reproduction of 
an Archimedes screw 
described by Vitruvius
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Figure 3 shows a fresco of a screw such as Vitruvius described. It was found in 
the Roman city, Pompeii, devastated AD 79 by a volcanic eruption.

Koetsier [1] has reviewed the history of the development of the theory of the 
Archimedes screw. He states in his work that scientists and artists like Vitruvius, 
Cardano, Leonardo da Vinci, Galileo, Bernoulli [5], Hachette, Eytelwein [6], and 
Weisbach [7] have all analyzed the theory and design of the screw. His list read like 
a “Who’s Who” of the development of hydraulic engineering.

In the eighteenth century the famous Swiss mathematician Leonhard Euler for-
mulated fourteen mathematical problems that he considered unsolved. One of them 
was this:

A theory is sought for the rising of water by the screw of Archimedes. Even if 
this machine is used most frequently, still its theory is desired.

Most of the theoretical work addressing Euler’s problem was done in the last two 
centuries. A complete investigation on the discharge capacity and the efficiency was 
done by the Dutch engineer Muysken [8] in the year 1932. Muysken also gave the 
empirical equation for the proper rotational speed of a screw, which is still used by 
manufacturers today. The huge interest of Dutch engineers was motivated by the 
high water volume that could be transported by the screw and the fact that one 
fourth of the Netherlands is below sea level, which needed to be drained by wind-
mills. Recent publications of Nagel [9], Kantert [10], and Nuernbergk [11] refer to 
Muysken’s work. In the year 2000, Rorres [12] determined the optimal geometric 
parameters for a screw using analytical and numerical methods.

Figure 3  Roman Fresco from Pompeii (before AD 79) located in the “House of the Ephebe.” The 
Archimedes screw was turned by foot
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�Drainage and Irrigation

Today Archimedes screws are in widespread use throughout the world in many 
ways:

•	 Waste water treatment facilities [9, 11]
•	 Low-lying land pumping stations (polder pumps), as in the Netherlands [8, 13]
•	 Irrigation systems [4a]
•	 Rain detention dams
•	 Flood detention dams
•	 Industrial and fish conveyor systems [14]
•	 Water sports and recreational facilities

One reason for this widespread usage is the sturdiness of the screw against debris, 
as when the transport medium is highly polluted or when solid matter needs to be 
transported.

The screw is very suitable as a low-tech, high-volume pump to drain low-lying land 
areas using wind power to drive the screw. Two examples are given in Figures 4 and 5.

Figure 4  Flutter-Mill: Moorseer Windmill in Weser-Marsh, Germany, for the drainage of marsh 
land. Such wind-powered screws were also used for salt making (as in Spain)
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Archimedes screws come in various configurations, such as:

•	 Casing-Tube Screws—helicoidal blades are attached to a central inner cylinder 
and an outer cylinder. The entire structure is then rotated (Figures 1, 2, 3, and 4).

•	 Tube Screws—helicoidal blades are attached to a central inner cylinder and 
rotated in a fixed outer cylinder.

•	 Trough Screws—helicoidal blades are attached to a central inner cylinder and 
rotated in a fixed U-shaped trough. The trough is open to the surrounding air 
(Figure 6).

•	 Spiral Screws—helical tubes are wrapped around and attached to a central inner 
cylinder. The entire structure is then rotated.

The trough screw is the most widely used configuration by manufacturers today. 
The other three configurations have insufficient ventilation and have the tendency to 
“swallow-up” because locked air is compressed under certain unfavorable inflow 
conditions.

Until the twentieth century the main application of the Archimedes screw was for 
drainage of low-lying land and for wastewater treatment (Figure 7). However in the 
twenty-first century a new application has been found, as described in the next section.

Figure 5  Windmill in the 
Netherlands used as a 
pump for polders
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�Hydropower Screw

As mentioned in the introduction, in the 1990s, Karl-August Radlik proposed the 
idea that Archimedes screws running backward are suitable as power-generating 
devices, and he submitted a German patent application [16] for this new use. There 

Figure 6  Installation of a hydropower screw on the River Apfelstädt in Herrenhof, Germany. The 
installation of a screw with an integrated steel trough takes only a few days and is very cost 
effective

Figure 7  Wastewater treatment plant in Memphis, Tennessee, USA
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had been suggestions much earlier for the use of the screw as a kind of "water 
wheel” to generate mechanical power (cf. [17] Navier in Belidor’s “Architectura 
Hydraulica”). It appears to the author that the screw was not used to generate 
mechanical power until recently because of problems with transmitting the turning 
of the screw to the rotation of a drive shaft. Instead, more common under-, breast-, 
and overshot water wheels or turbines (Francis or Kaplan turbines) were used 
because the shaft of the wheel can go directly into a mill house where it is then easy 
to transmit its rotational energy to machinery via belt drives.

Figure 8 displays the typical parameters of a modern hydropower screw. The 
performance of an Archimedes screw used as a power generator depends on several 
factors: first, the inner parameters, including the inner diameter (Ri), outer diameter 
(Ra), screw pitch (S), and number of flights (N), and, second, the outer parameters, 
including the head difference (H), inclination (β), rotational speed (n), inlet and 
outlet water heights (h1 and h4), and flow rate (Q).

Screws were first used as hydraulic motors in 1993 (Brada [18, 19]) as a means 
to drive electric generators. Brada put the first water-powered screw into operation 
and measured its efficiency. He also investigated its application range and com-
pared the screw with turbines and water wheels. Most of his work was done in 
collaboration with Radlik.

Restrictions, however, apply when river or stream water flow is used for 
hydropower (Figure  9). Following the establishment of new European 
Community directives, increased instream flows are now required in most 
European rivers. This means a loss of available annual energy production for an 
owner of a hydropower site if the water is diverted from the main river. New 
water-powered devices have been investigated to compensate for this loss of 
hydraulic energy.

Figure 8  Geometric parameters of a hydropower screw
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According to Meißl [20] the required residual flow in the main riverbed can be 
10–30% of the discharge of the powerhouse of the hydropower site. On the other 
hand, at a typical water-diverting dam, a head difference of 30–70% of the head at 
the powerhouse is available. In addition, residual-flow water-powered devices such 
as the Archimedes screws can make use of a surplus of discharge at medium to high 
discharge conditions. In that way it is possible to increase the overall power of a 
particular hydropower site.

Because Archimedes screws have a robust design, are insensitive to debris, are 
fish-friendly, do not interfere with sediment transport, are cost-competitive, and 
have a higher rotational speed in comparison with water wheels [21, 22], they are 
often used at dams and weirs to make use of the residual flow. Water-powered 
screws do not interfere with downstream fish migration [23]. This is one of the most 
important advantages of Archimedes screws compared with water turbines.

Several investigations were carried out to check the fish-friendliness of the screw, 
for instance, Spaeh [24], Merkx [25], and Schmalz [23]. The effectiveness of the 
screw as a fish passage was proven, and improvements were suggested to avoid any 
harm to the fish by the blade edges of the screw, e.g., by [26].

The largest hydropower screw up to now was installed in 2012 (Figure 10). It 
has an outer diameter of 4.5 meters, a length of 10 meters, and a flow capacity of 8 
cubic meters/second and can provide electrical power of 180 kilowatts. The rota-
tional speed of the screw is controlled by a frequency converter so that the inlet 

Figure 9  Screw supplied by residual flow from the Werra River near Meinigen, Germany
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water level (h1) can be kept constant to achieve optimal filling resulting in very 
good hydraulic efficiency.

In the near future it is expected that larger screws will be used. Water flows (Q) 
as high as 15 cubic meters/second and electrical power output of 800 kilowatts have 
been announced by manufacturers. According to Lashofer [27], 180 such generators 
were installed in Europe in 2011, including those commissioned by Queen Elizabeth 
II of England to power Windsor Castle. The first commercial installation in Canada 
has been established this year, and the first unit in the United States could begin 
operating soon.

The work of Lashofer et al. [27] also presents a site enquiry, an operator survey, 
extensive field measurement, as well as a literature survey on the fish tolerance of 
the screw. The survey found that plants on the order of 10–60 kW were most com-
mon and that fixed-speed generators are much less tolerant of large flow variations 
than variable speed generators. The overall efficiency (the combined hydraulic effi-
ciency of the screw, the efficiency of the generator, the gear box, and the frequency 
inverter) was found to be in a range of 65–75%. The same research group published 
efficiency measurements of several hydropower screws during the last year showing 
excellent hydraulic efficiencies as high as 94% under partial-load conditions. Under 
full-load conditions the screw has an efficiency higher than 80%.

Figure 10  Hydropower screw manufactured by Landustrie in the Netherlands (Da = 4.5 meters)

Archimedes Screw in the Twenty-First Century



122

Figure 11 illustrates the efficiency ranges under three different operation modes 
of a particular screw depending on the water flow rate Q:

•	 Constant rotational speed operation (60  rpm adjusted by a gear box and a 
generator)

•	 Constant rotational speed operation with two fixed speeds (30 rpm and 60 rpm 
adjusted by a gear box and a generator with Dahlander windings)

•	 Variable rotational speed operation (30–60  rpm adjusted by a generator con-
trolled by a frequency inverter)

As previously mentioned, the variable-rotational-speed mode is the most effec-
tive because it can keep the screw optimally filled under changing water flow rates.

�Conclusions

The Archimedes screw has been in use for at least twenty three centuries, mainly to 
pump water or drain low-lying land. During the past ten years, Archimedes screws 
have also begun to be used for power generation. This new ultra-low-head technol-
ogy is still a niche application. However, Archimedes screw generators are begin-
ning to be widely adopted at low-head hydropower sites in Europe due to their high 
hydraulic efficiency (greater than 80% in most installations), competitive costs, and 
low environmental impact. They have the greatest applicability at low-head sites—
less than about 5 meters—and sites with high water flow rates.

Figure 11  Efficiency measurements of a hydropower screw at the University of Natural Sciences, 
Vienna (Ra = 0.403 m, Ri = 0.203 m, S = 0.806 m, N = 4, β= 22o) [28]
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As discussed, the performance of an Archimedes screw used as a power genera-
tor depends on several inner parameters (inner diameter, screw pitch, and number of 
flights) and outer parameters (outer diameter, head, inclination, and rotational 
speed), as well as the inlet and outlet water flow conditions. The optimization of this 
performance is currently an active research field.

Additional research in the Archimedes screws includes investigation of different 
blade shapes. Further progress is expected to be made in the near future towards the 
optimal design of hydropower screws.
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Archimedes, Astronomy, and the Planetarium

Michael T. Wright

Archimedes wrote a paper that we call The Sand Reckoner, in which he adopts the 
heliocentric cosmology of Aristarchus; but he does it only so as to get the largest 
possible estimate of the size of the universe, all the better to make good his claim 
that he is able to number the grains of sand that it would take to fill it. He also cites 
an estimate of the relative sizes of the Moon and Sun made by his father Pheidias. 
This suggests that his father was an astronomer, but we have no evidence that 
Archimedes himself ever studied the subject. Nevertheless we link Archimedes 
with astronomy through the planetarium. Following his death, there arose a strong 
tradition that Archimedes built some sort of planetarium and that in doing so he 
had achieved something new and remarkable. It is this tradition that lies at the 
heart of my paper.

The earliest records of this instrument are three separate passages in the writings 
of the Roman author Cicero. It is worth giving the most informative of them, from 
his De Re Publica (Book 1), fairly fully. The following is my translation:

Gallus … gave orders for the [celestial] globe to be brought out which Marcellus had 
carried off from Syracuse when that … city was taken. Although I had heard this globe 
mentioned quite frequently on account of the fame of Archimedes, when I actually saw it I 
was not particularly impressed. Indeed, the other globe made by Archimedes, which 
Marcellus had placed in the temple of Virtue at the same time, is more beautiful and more 
widely known.
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Yet, when Gallus began to give a very learned explanation of the instrument, I concluded 
that there was more of genius in that Sicilian than human nature seemed able to bear. 
Indeed, Gallus told us that the other kind of globe, solid and with no internal parts, was a 
very early invention. The first one of that kind had been turned by Thales of Miletus. Later, 
however, it was marked by Eudoxus of Cnidus (a disciple of Plato, it was said) with the stars 
that remain fixed in the sky. Many years later Aratus, having no knowledge of astronomy but 
some poetic talent, took the whole design and arrangement from Eudoxus and published it 
in verse.

However, this kind of globe incorporated the motions of the sun and moon and of those five 
wandering stars, the so-called planets, which it was impossible to include on the earlier, 
solid globe. There was a wonderful contrivance due to Archimedes inside; he had devised a 
way in which a single rotation would generate the several non-uniform motions. When 
Gallus set the globe in motion, the moon came into conjunction with the sun after just as 
many turns in that bronze instrument as it takes days for it to happen in the heavens. 
Therefore that very same eclipse of the sun would take place on the globe, and then the 
moon would pass into the cone which would be the shadow of the earth, since the sun … 
from the place …

… and there, to our frustration, is a break in the text.
So here were two instruments attributed to Archimedes. One was a simple celes-

tial globe, apparently handsomely finished, which was in a temple, on public view; 
and Cicero tells us his version of the history of this type of instrument. Attention is, 
however, focused on the other instrument which belonged to the heirs of the general 
Marcellus. It too was called sphaera, globe. It was a portable instrument of metal, 
which contained a mechanism so that—on working some input—the user made 
indicators for the Sun, Moon, and planets move in a reasonably realistic way. Later 
ancient authors suggest two further features: a display of the phase of the Moon and 
the ability to show the risings and settings of stars. In addition, we have the remarks 
of two scholars, Pappus and Proclus: Pappus says that he believes that Archimedes 
wrote a book on the making of such instruments but that he has not seen it; and 
Proclus says that Archimedes was the master of this art.

All this is well known, but, so far as I know, until today nobody has ever 
offered a plausible account of what this instrument might have been like and 
how it could have worked.

The word planetarium conjures up the image of a theatre presenting its audience 
with a view of the night sky. In the modern planetarium, light from a central device 
is projected onto a domed ceiling. Visits to the London Planetarium were high 
points in my school holidays. When I joined the staff of the Science Museum in 
1971, the regular shows in our own little planetarium were popular; but by then my 
interest was more closely focused on its wonderful Zeiss projector (Figure 1) than 
on the astronomy that it showed. Zeiss had completed the first such projector in 
1923, for the Deutsches Museum in Munich. Our little version was originally built 
for teaching astral navigation in the Luftwaffe.

Sadly, the Science Museum’s planetarium was closed decades ago, and the 
London Planetarium, though renamed the Star Dome, is now devoted to stars of 
another kind whose waxworks have invaded from Madame Tussaud’s next door. 
Other planetaria of this type—such as the Hayden Planetarium in New York—
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continue to flourish. But the thrill that children of my generation experienced 
must be just a little diminished by the ease with which a fairly good display of 
the night sky can now be generated anywhere, thanks to the wonders of modern 
digital electronics. We may not see much of the night sky in our over-lit cities, but 
today we can see images of it wherever and whenever we please, on a computer 
screen if not projected onto a dome.

Before Zeiss developed their projector, there were more primitive attempts to 
achieve a similar effect. In the eighteenth century, Dr. Roger Long of Pembroke 
College in Cambridge built a celestial sphere 18 feet in diameter which he called the 
Uranium. Students sat on a platform inside, while the sphere was rotated by the 
lecturer’s assistant. Dr. Long’s sphere is long gone, but the Gottorf Globe, a more 
polished instrument of even earlier date, survives—totally rebuilt after a fire—in St. 
Petersburg (Figure 2).

What has any of this to do with Archimedes or with the ancient world at all? 
Well, to begin with, this sort of device—and the star-dome display of the night sky 
generally—was a logical development of the celestial globe, a globe with stars and 
constellations marked on it.

The globe shown in Figure 3 may be the oldest to survive. It is no bigger than a 
tennis ball and shows only the constellation figures.

Figure 1  Zeiss 
planetarium projector.  
The Science Museum, 
London
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The same is true of the more famous example from antiquity in Figure 4, even 
though Atlas’s globe is over two feet across.

Perhaps the beautiful eighteenth-century example in Figure 5 makes the point 
more clearly. Here we see both the constellation figures and individual stars. As 
Cicero tells us, such an instrument, attributed to Archimedes, was taken from 
Syracuse and placed on public show in Rome.

The celestial globe illustrates man’s developing perception of the cosmos. First, 
it depends on the awareness that the stars form a practically unchanging pattern; and 

Figure 2  Gottorf Globe, seventeenth century, rebuilt

Figure 3  Celestial globe, 
second century BC to first 
century AD, Paris, Kugel 
Collection
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then, it could not have been devised until man came to think of the universe itself as 
spherical. So, the stars are marked on the surface of the globe just as they are imag-
ined to be embedded in a spherical shell in the sky; when we look at the sky, we see 
this supposed spherical shell from the inside, but on a globe we see the stars from 
the outside and have to imagine them as viewed from inside. The later Roman 
author Claudian wrote about the beautiful idea of a making a celestial sphere out of 
a transparent globe of glass, an idea that has given rise to a number of spectacular 
examples; Figure 6 shows a nineteenth-century example.

However, transparent glass and the technique of blowing it to form a globe were 
both discovered some time after the death of Archimedes, in about the first century BC.

Cicero ascribes the invention of the celestial globe to the philosopher Thales, 
who lived in the sixth century BC; but we need not take his statement too seriously 
because the name of Thales had become a byword for everything that was clever. 
We now think that the idea of the cosmos as a spherical thing came only later. The 
Pythagoreans thought of the Earth as spherical, which was a good start; but it is 
generally agreed that the concept of the celestial sphere was fully developed only in 
the fourth century BC.

Plato, active in the fourth century BC, was not himself an astronomer but he was 
a strong influence on others. The mosaic in Figure 7, from Pompeii, is supposed to 
show an astronomy lesson at Plato’s Academy; the central figure points with a rod 
to the celestial globe in its boxlike stand. Of course, the mosaic is later in date and 

Figure 4  Farnese Atlas, 
second century Roman 
sculpture, the National 
Archaeological Museum, 
Naples
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does not prove that the celestial globe actually existed in Plato’s day, but we have 
other evidence: in the Timaeus, Plato described how a divine being was supposed to 
have made the heavens, and the only way to make sense of what Plato wrote is to 
accept that what he had in mind was the making of a different instrument, an armil-
lary sphere. This instrument, made up of a set of rings fitted together, is simply an 
abstraction based on the celestial globe. Figure  8 shows examples of the two: a 
celestial globe on the left and an armillary sphere—just the reference rings of the 
sphere—on the right.

These ancestors of our planetarium dome date from before the time of 
Archimedes; but here I am using the word planetarium in the modern sense to mean 
a general display of the night sky, and this usage is fairly recent. Of course the word 
means, essentially, an instrument that demonstrates what is peculiar to the planets; 
this older usage is more directly relevant to what else I have to say.

Figure 5  Celestial globe, eighteenth century
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The so-called fixed stars form patterns that appear practically unchanging as they 
roll over us night after night, except that each night the patterns are seen a little 
further to the West until, after a year, we see just the same part of the pattern that we 
did at the same time a year earlier. This slow shift is the effect of our year-long orbit 
round the Sun or—as ancient man would think of it—of the year-long circuit of the 
Sun through the fixed stars. The Moon makes the same circuit, but in a month rather 
than a year. Because these two drift through the pattern of stars, some ancient 
authors include them among the planets; but while the Sun and Moon move continu-
ally Eastward against the Westward-rolling backdrop of stars, the bodies that we 
call planets—of which ancient man saw five: Mercury, Venus, Mars, Jupiter, and 
Saturn—behave more strangely; they show what we call retrograde motion. Most of 
the time the planets also shift Eastward through the fixed stars; but occasionally they 
stop, go the other way, then stop again, and resume the Eastward movement, making 
a looped or zigzag track in the sky.

All the time, though, Sun, Moon, and planets remain on much the same path, 
called the Zodiac. The groups of stars along the Zodiac were imagined to represent 
recognizable creatures, and this gave men a handy way of recording where each 
planet was at any time (Figure 9).

The Zodiac is just one idea that the Greeks inherited from the older civilization 
in Mesopotamia. Babylon and its other great cities had a long tradition of sky-
watching, and their astronomers kept written records on clay tablets. By analysis of 
these records, they became able to predict the movements of heavenly bodies with 
great success.

Figure 6  Swedish “Grand 
Sohlberg” transparent 
celestial globe, late 
nineteenth century
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Greek astronomers owed much to this earlier work, but they added something 
new. The Mesopotamian treatment was entirely arithmetical, but the Greeks—
thinking visually —looked for ways of describing the motion of the Sun, Moon, 
and planets in geometrical terms. It is hard to tell how far such geometrical, kine-
matic systems were seen merely as a convenient way of predicting a planet’s 
motion and how far they were thought of as the mechanism actually at work in the 
cosmos; but for our present purpose the point that matters is this: if the motion of 
a planet can be described in kinematic terms, then it becomes possible to think of 
a mechanical instrument that will model it. Kinematic theory leads to the idea of 
the planetarium.

Again, Plato provides a landmark. He seems to have expressed a prevailing view, 
in stating that it ought to be possible to account for the apparent behavior of each 
planet as a combination of uniform circular motions. After all, uniform motion in a 
circle was thought of as perfect and, Greek philosophers thought, only such perfec-
tion was fitting for heavenly bodies.

Figure 7  Mosaic from Pompeii, National Archaeological Museum, Naples, first century BC
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The first kinematic planetary theory that we know about was probably a direct 
response to this challenge. In the system of homocentric spheres, suggested by 
Plato’s pupil Eudoxus and later elaborated by Callippus and by Aristotle, nested 
spherical shells all roll about a common centre. Each shell turns on pivots planted in 
the one next outside it, but each axis points in a different direction so that the shells 
rotate obliquely inside one another. The overall result is that, although each shell 
rotates with a uniform motion, a point on the innermost one can be made to describe 
a zigzag path roughly like that of a planet. There are some lovely animations of this 
system on the Web; Figure 10 is a still from the website of my good friend Mogi 
Vicentini. It is hard to imagine, though, that this system could have been built in 
antiquity as an automated mechanical model: it presents difficulty both in transmit-
ting motion to all the shells and in bringing indications of the planets’ positions to 
the surface to be seen. Besides, this theory gives only a loose agreement with the 
motion of any planet; in detail the match is poor, and if we put in parameters for 
some of the planets, the system does not work at all.

After this came two theories that were much more successful in describing the 
planets’ motion (Figure 11). The epicyclic and eccentric hypotheses (to give them 
their usual names) appear different at first sight, but it was soon recognized that they 
could produce identical results. In modern terms, they simply represent the addition 

Figure 8  Left: seventeenth century celestial globe, modern facsimile. Right: sixteenth century 
armillary sphere, modern facsimile
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of two vectors in the alternative orders: B+A instead of A+B. An important point for 
us is that in their basic forms both these theories ignore the small side-to-side motion 
of the planets and concentrate on the main motion, forward and back along the 
Zodiac. As exercises in plane geometry, fully represented in flat diagrams, they are 
readily converted into mechanism as wheels and levers.

Unfortunately, we do not know when, or by whom, either theory was devised. 
The first we hear of either is that Apollonius of Perga studied the epicyclic theory, 
but still we do not know whether he was its originator. Apollonius was a younger 
contemporary of Archimedes; their lives overlapped by some 40 years. If this theory 

Figure 9  Frontispiece of an early edition of Ptolemy’s Tetrabiblos
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existed during that overlap, it is likely that it was known to Archimedes as well as to 
Apollonius; and if Apollonius were its inventor, it is likely that he would have told 
the older man about it.

Knowing, as we do from his Method, how Archimedes was accustomed to think 
about mathematical problems in a mechanical way, it seems inconceivable that his 
genius would not have led him to translate such a planetary theory into mechanism. 
I suggest that it was precisely the awareness that the motion of the planets could be 
described in a mathematical way and that the mathematics lent itself well to being 
translated into mechanism that led Archimedes to devise the world’s first 
planetarium.

Figure 10  Still frame from an animation by Massimo Mogi Vicentini
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There’s another point. The interesting thing about the way the planets move is 
not just that they seem to go around the sky at different rates; it is that each has those 
peculiar episodes of retrograde motion at roughly regular intervals. Cautious com-
mentators have suggested that early planetaria probably showed only the planets’ 
mean motions; but if so, the indicators for the planets Mercury and Venus—which, 
because they are between us and the Sun, are always seen close to it—would simply 
have moved along with the Sun in a cluster, and the other planets too would have 
had a pretty unrealistic motion. I cannot imagine Archimedes being interested in 
anything so dull, and so far from reflecting reality, as mere mean motions. Nor can 
I imagine such a model much exciting the interest of the general Marcellus—to the 
extent that he claimed no other spoils—or, later, of Cicero and the rest. It is not the 
same as having a Copernican orrery (a heliocentric model of the solar system) with 
mean motions; there uniform motion is a fair approximation, but in a geocentric 
model the planets really do have to make those bold zigzags. Besides all this, the 
Latin word dissimilis that Cicero uses to describe the motion of the planets on the 
instrument is a precise translation of the Greek anómalos, the technical term for just 
this peculiar motion.

This, I think, was the whole point of the planetarium of Archimedes; he had 
found a way to mechanize the new mathematical planetary theory based on super-
posed circular motions. To do this, he would have needed the use of toothed gear-
ing. But was it available?

The famous Antikythera Mechanism (Figure 12) shows that highly developed 
gearing existed in the first century BC at the latest, and some people argue that the 
instrument was built earlier, in the second century. In either case, the subtlety and 
accomplishment of its gearing suggest a prior history, though perhaps of simpler 
mechanism, reaching back at least some decades earlier still.

Figure 11  Diagram 
illustrating the equivalence 
of the epicyclic (A+B) and 
eccentric (B+A) 
hypotheses
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Working forward from earlier times, a passage in the Aristotelian Mechanical 
Problems, written about 300 BC, suggests that simple toothed gearing was 
known that early, and—according to Vitruvius—the water-clock of Ctesibius, of 
about the same time, included a wheel-and-rack gear (Figure  13). And then, 
some authorities credit Archimedes himself with the endless screw or worm-and-
wheel gear. So it does seem highly probable that Archimedes knew about toothed 
gearing and was able to use it in designing his planetarium.

How, though, might the gearing have been arranged? Here I think we can 
come right up to date and build on our growing understanding of the Antikythera 
Mechanism which comes, arguably, from the same tradition.

As this century dawned I had become convinced that the Antikythera 
Mechanism was, essentially, a planetarium, and I showed how we might restore 
the lost planetary part by a very simple process of modelling the astronomical 
theory in metal, using gear wheels to generate and combine the required circular 
motions, all driven from the one-rotation-per-year motion of the Sun (Figure 14). 
More recent work shows that my idea was certainly correct in outline. Variants 
on my restoration of the internal mechanism have been suggested, but so far 
there is no clear reason to prefer one scheme to another. All achieve the same 
result, and it makes no difference to the display which we choose.

In reaching for the correct restoration of the Antikythera Mechanism, we can also 
see something of how Archimedes could have achieved what the literary tradition 
claims for him. Here, in a sense that I think the organizers of this conference did not 
intend, is Archimedes in the 21st Century; it is our new understanding of the 
Antikythera Mechanism—the one extant specimen of Hellenistic astronomical 
modelling—that allows us to see more clearly the achievement of the man who, in 
later antiquity, was regarded as the first and greatest master of this art.

That said, what would the instrument have been like? Cicero, and all the other 
authors, call it sphaera, a globe; more than that, the way in which Cicero compares 

Figure 12  The 
Antikythera Mechanism, 
fragment A
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Figure 14  The author’s 
reconstruction of the 
Antikythera Mechanism

Figure 13  Water clock of 
Ctesibius, third century 
BC: a nineteenth-century 
reconstruction
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Figure 15  Detail of 
mosaic from Pompeii (cf. 
Figure 7)

it with a simple celestial globe shows that the mechanical instrument was similar in 
outward appearance and arrangement. It carried indicators for the positions of the 
Sun, Moon, and planets which were moved “with their various dissimilar motions” 
by a single “rotation”. The mechanism inside that drove them was worked when the 
demonstrator “moved the sphere”. Later authors refer to a display of the phase of 
the Moon and to the display of risings and settings. The simplest interpretation is 
that the instrument was, essentially, a celestial globe, supported in a stand.

Then Cicero’s “rotation” and “moving the sphere” would have been rotation of 
the globe about its pole by hand, in imitation of the diurnal rotation, just as in using 
a conventional celestial sphere showing only the fixed stars. To allow the user to 
observe risings and settings, the stand is usually fitted with some means of marking 
the horizon, a horizontal component with just half the globe visible above it. For the 
globe in the mosaic (Figure 15), the top of the box-base probably served this func-
tion. The angle of elevation of the globe’s polar axis corresponds to the observer’s 
latitude.

To show the individual motions of the Sun, Moon, and planets through the fixed 
stars, there had to be a set of pointers. There are two main possibilities: either, they 
all radiated from the crown of the globe, reaching round so that their tips moved 
over the Zodiac; or, the globe was divided in two by a slot around the Zodiac—like 
a yo-yo—and the pointers projected through the slot. Either is feasible, but the latter 
solution calls for quite a wide slot which would cut all the constellations of the 
Zodiac in two and spoil their appearance. The first option is easier, and it provides a 
way of displaying the Moon’s phase.

We come now to the mechanism working these pointers. If (as I argued just now) 
we can take the Antikythera Mechanism as our guide, this part of the scheme is 
straightforward. In the Mechanism we have straight pointers moving round a flat 
dial, but the problem is just the same. Like the dial of the Mechanism, the middle of 
our globe is marked out with the Zodiac. It makes no difference that the globe is 
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rotating, because the mechanism inside rotates with it. Whatever arrangement works 
for the Mechanism, a similar one can be fitted in the globe so long as the globe is 
large enough.

I have built an instrument according to this reconstruction (Figures 16 and 17). 
Notice one particular point: the Sun, Moon, and planets do not move round the 
equator of the globe, but around the zodiac which is tilted over to one side at an 
angle of about 24°. This means that the system of pointers, and the mechanism 
inside that drives them, have to be tilted up at this angle too, and the rotation of the 
globe that works them has to be transmitted through this angle as well.

The use of the diurnal motion for the input provides a pleasing completeness to 
the instrument that the Antikythera Mechanism lacks; but with the diurnal motion as 
the input, most of the output motions become very slow; the pointer for Saturn 
makes one full circuit of the Zodiac only after the globe has been rotated about 
10,800 times. Whether such a slow output would have been seen as a difficulty 

Figure 16  The author with his reconstruction of the Sphere of Archimedes
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Figure 17  Details of the author’s Sphere of Archimedes

depends wholly on how the instrument was to be used. In the hands of Cicero’s char-
acter Gallus, demonstrating how eclipses might occur, the typical change in setting 
from one eclipse-possibility to the next, a shift of five synodic months, would have 
called for some 148 revolutions of the globe. However, in my reconstruction the 
drive is intermittent; if the globe is held still at a point in its rotation when it is not 
engaged, the pointers can all be worked about 30 times faster by moving the Moon 
pointer by hand.

It remains to show what significance any of this still holds today. First, despite 
the progress of purely electronic instruments, the mechanical planetarium is still 
very much with us; although the output effect of these instruments is produced by 
the moving of beams of light on a dome rather than pointers on a dial or globe, the 
motion is still generated by gearing just as in ancient ones.

Much more generally, it has been said that the whole of our modern mechanical 
engineering is built on the ingenuity and skill of the clockmaker. But it is becoming 
ever clearer that the medieval clockmaker, in turn, drew on skills first developed in 
antiquity, in the building of models of the cosmos. And at the head of all these 
stands the Sphere of Archimedes.

Archimedes, Astronomy, and the Planetarium



143© Springer International Publishing AG 2017 
C. Rorres (ed.), Archimedes in the 21st Century, Trends in the History of 
Science, DOI 10.1007/978-3-319-58059-3_8

Archimedes in the Twenty-First Century 
Imagination

Mary Jaeger

Any discussion of Archimedes in the twenty-first century imagination must reach 
backward into the twentieth, because so much recent work arises from or responds 
to the sale of the codex containing the Archimedes Palimpsest at Christie’s in 
New York, on October 28, 1998, and its installation in the Walters Art Gallery in 
Baltimore in 1999. The years since have seen the publication of the palimpsest by 
Reviel Netz and Nigel Wilson and the rest of their team; images are online, as is a 
transcription of the text [1]. In addition, Netz has published part of his ongoing 
project of translating Archimedes: three volumes are to come out of Cambridge 
University Press, the first of which, The Two Books on the Sphere and Cylinder, 
appeared in 2004. Netz has also written a three-part study of Mediterranean math-
ematics: The Shaping of Deduction in GreekMathematics (1999); The Transformation 
of Mathematics in the Early Mediterranean World: from Problems to Equations 
(2004); and Ludic Proof (2009). Finally, and firmly in the twenty-first century, an 
international conference on Archimedes held at Syracuse in June 2010 has resulted 
in a hefty volume of conference papers (The Genius of Archimedes--23 Centuries of 
Influence on Mathematics, Science, and Engineering. eds. S. A. Paipetis, Marco 
Ceccarelli. Springer: New York).

Clearly the specialist in ancient mathematics has plenty to work with. What 
about the writers who aim at a general audience, and the nonspecialist scholars and 
artists themselves whose projects include pedagogical material, historical fiction, 
and artistic representation? With some exceptions, what has captured their imagina-
tions is not so much Archimedes’ mathematics as the stories about the man, espe-
cially three: [2] first, that in which the bathing Archimedes, noting the water 
displaced by the submerged part of his body, realized how he might determine 
whether a crown made for the Syracusan king Hieron was solid gold or not, and ran 
naked through the streets of Syracuse crying Eureka! Eureka! (“I have found it! I 
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have found it!”); second, the account of his defending Syracuse with his siege 
engines, including the fictitious “death ray” or burning mirrors; and third, the story 
of his death at the hands of a Roman soldier [3]. None of these stories was told by 
an eyewitness; every ancient source that reports them has its own agenda; but 
together they are compelling, forming as they do a neat narrative with a beginning, 
middle, and end.

The Eureka anecdote appears first probably because it is the most famous and 
possibly also because, although modern images invariably portray the bathing 
Archimedes as fully adult and bearded, if not old, Archimedes’ emerging from the 
bath with a new discovery makes a nice story of origins, like that of the emergence 
of life from a primordial ooze. Moreover, modern artists and writers have con-
structed and presented this story so as to make its Archimedes appealing to children. 
Consider, for example, the cover art for Pamela Allen’s 1994 children’s book Mr. 
Archimedes Takes a Bath, or a poster from Ogilvy and Mather’s 2004 ad campaign 
for Mentos [4]. In both cases the figure of Archimedes is that of a comical and there-
fore unthreatening old man, rather like the famous picture of Einstein sticking out 
his tongue.

The “middle” of the narrative, namely, the account of Archimedes’ siege engines 
and other mechanical inventions, has provided material for a number of reconstruc-
tive projects and documentaries: In 2001, Chris Rorres and Harry G. Harris pro-
duced a scale model and delivered a paper titled “A Formidable War Machine: 
Construction and Operation of Archimedes’ Iron Hand” [5]; a 2005 Discovery 
channel episode, from the series “Superweapons of the Ancient World,” records the 
activity of a crew of architects and engineers reconstructing Archimedes’ Claw (or 
‘hand’) in Tunisia; and every generation, it seems, explores anew the possibility of 
Archimedes’ using mirrors to set the Roman ships afire. After the show “Mythbusters” 
argued that it could not be done, in 2005 a group of students from David Wallace’s 
Product Development class at MIT showed that it was theoretically possible to set 
fire to a ship by using mirrors. And they did so, first setting fire to a mock-up using 
127 one-square-foot mirrors at a distance of 100 feet, then using something closer 
to what they thought approached the real thing. But they could achieve ignition only 
under ideal (i.e., windless) conditions.

I have found few recent images of Archimedes’ death. The New Hampshire-
based educator Marek Bennett devotes a 2014 comic strip to Valerius Maximus’ 
version (and quotes the Latin at the end); otherwise, we have to reach farther back, 
to the 1950s and 1960s, when the Greek surrealist poet and painter Nikos 
Engonopoulos was representing mythological and historical scenes, including “The 
Death of Archimedes, With Syracuse in Flames”; and to 1972, when the German 
sculptor Gerhard Thieme installed versions of a bronze sculpture of Archimedes in 
various sites in Germany [6]. Thieme’s bronze shows Archimedes contemplating 
geometrical figures drawn in the sand, just as Livy and Vitruvius say he was doing 
when the soldier killed him. Although this Archimedes seems absorbed in his work, 
his position and attitude themselves do not mean he is about to die. Unlike 
Archimedes in the bath, Archimedes about to die does not appear on the covers of 
children’s books, probably because their authors would rather extol the many virtues 
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of taking a bath than suggest that devotion to mathematics can be dangerous to one’s 
health. As of this writing, however, it was possible to buy a “Death of Archimedes 
in Sack of Syracuse Twin Duvet” on Cafe Press. I do not know what psychological 
effect being tucked into bed under such a scene of carnage will have on the freshly 
bathed young mathematician.

A number of writers, some of them educators, have used the interest in 
Archimedes’ story as a way of stimulating an interest in mathematics: the 2009 
book Eureka Man, for example, both discusses Archimedes’ biography and explains 
his mathematical contributions. (Its author, Alan Hirschfeld, a specialist in the his-
tory of physics and astronomy, directs the physics teacher-training program at the 
University of Massachusetts, Dartmouth.) The first chapter in mathematician 
Clifford Pickover’s Archimedes to Hawking: Laws of Science and the Great Minds 
Behind Them (2008) does pretty much the same. In 2010, John Monahan, a science 
teacher in Baltimore, published They Called Me Mad: Genius, Madness and the 
Scientists Who Pushed the Outer Limits of Knowledge. The book’s cover image, 
which includes the portraits of Einstein and Tesla, is just sufficiently a caricature to 
make both men appear less intellectually intimidating. The cover artists did not have 
to do this to Archimedes: Monahan’s first chapter is titled “Eureka! The Mad 
Scientist is Born”; and, once again, the bath story is enough to make Archimedes a 
nonthreatening archetype of the absent-minded professor.

These authors have laudable goals: to increase science literacy and inspire young 
people to study STEM subjects. As a classicist, however, I hope the Archimedes 
anecdotes will draw readers to explore their ancient sources and in doing so learn 
more about other great minds of classical antiquity: the historians Polybius and 
Livy, for example, and Cicero, Plutarch, and Vitruvius. For those whose interest 
tends toward the historical and literary, several scholars provide useful guides to the 
ancient sources. A good starting point for the nonspecialist is Chris Rorres’ 
Archimedes website, which offers information on all aspects of Archimedes’ life, 
career, and times [7]. In addition to essays on Archimedes’ mathematical and tech-
nical achievements, the site includes timelines, animations, videos, and a wide array 
of images.

Rorres’ website also includes a bibliography of the many valuable papers on 
Archimedes by D.L. Simms. A Londoner who entered the British Scientific Civil 
Service and earned his PhD for work on the ignition of materials through radiation, 
Simms spent his early career researching the ignition and spread of fires. (This 
experience proved useful as he refuted again and again the argument that Archimedes 
used burning mirrors against the Roman fleet at Syracuse.) Simms also wrote a 
major report on irrigation in Great Britain and spent the later part of his career work-
ing on projects that aimed at controlling pollution. Once retired, he engaged himself 
full time in his research on the history of science and technology [8]. A series of 
articles, beginning in 1965 (“The Legend of Archimedes and the Burning Mirrors of 
Syracuse” in Fire Research Notes), and continuing until 2010 (“Adventures of an 
Invention Through Two Millennia: The Water-Screw and its Variants; Part III: Back 
in Use” in Atti della Fondazione Giorgio Ronchi), covers all aspects of Archimedes’ 
life and technical achievements. Simms’ work displays a thorough knowledge of the 
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ancient sources on Archimedes and a rigorous and honest use of them in argument. 
Some of Simms’ papers, because they appeared in regional journals or proceedings 
of esoteric organizations, can be difficult to find. Rorres’ website has links to a 
number of them.

Readers of Italian will profit from Mario Geymonat’s II Grande Archimede [9]. 
Most classicists recognize the name of the late Geymonat for his magisterial edition 
of Vergil and his extensive work on the Vergilian commentators. However, Geymonat 
also had a lifelong interest in ancient science and, among his other editorial contri-
butions, published the first edition of the fragments of the Latin translation of Euclid 
[10]. II Grande Archimede (first ed., 2006) boasts both an introduction by the Nobel 
Prize-winning Zhores Alferov (2000, Physics) and a preface by the historian 
Luciano Canfora. Already in its third Italian edition by 2008, it has won the Corrado 
Alvaro award for Italian literary excellence. It has also appeared in English, trans-
lated and edited by Alden Smith (Baylor, 2010).

II Grande Archimede first surveys Archimedes’ life and times, including his 
experience in Alexandria and the contacts he made there with Eratosthenes, Conon, 
and Dositheus, his use of Doric and the style of his treatises, the intellectual range 
of his work, his method of argumentation, his ability to unite the theoretical and the 
practical, and the ancient world’s social and intellection prejudices against the prac-
tical application of theory. The rest of the book covers first Archimedes’ major 
mathematical contributions and then his mechanical inventions. The last chapter 
gives a history, sometimes whimsical, of legends about Archimedes, tracing them 
from Cicero to Walt Disney. An appendix lists references to Archimedes in Latin 
poetry. The book nicely interleaves the discussion of particular geometrical prob-
lems, the testimony of Archimedes himself and other ancient authors, and the 
ancient anecdotes.

Solving a problem by manipulating geometric features is essentially a visual 
activity; it is thus no surprise that a strong strand of interest in the visual runs 
through a number of the recent studies. Netz’s work, from the commentary to the 
popular Archimedes Codex, pays particular attention to the aesthetics of Archimedes’ 
treatises. In The Transformation of Mathematics in the Early Mediterranean World, 
Netz argues that the problems solved by Archimedes were essentially geometric 
problems, solved by manipulating lines, triangles, etc., as opposed to the essentially 
algebraic problems posed by the mathematicians of the Arab world. One of the fas-
cinating aspects of the Archimedes palimpsest is its barely preserved diagrams; and 
Netz points out repeatedly that the numerical systems in modern texts of the ancient 
mathematicians are anachronisms: schematic diagrams, representing the topologi-
cal features of a geometrical object, are what the Greeks used for clarity. When they 
used numbers, the result, which appears intended, was obfuscation. Netz also lays 
emphasis on the beauty of ancient diagrams as one of the aesthetic features of 
ancient Greek mathematics.

By its lavish use of historical illustrations, II Grande Archimede participates in 
this appreciation of the visual: the diagram of Archimedes’ first theorem from the 
Measurement of the Circle, taken from Jacopo of Cremona’s Latin translation, 
which gives viewers both a grasp of the relationship between the curved and the 
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straight and a clear impression of the beauty of early mathematical diagrams as 
drawings; the beginning of Measurement of the Circle, including text, with diagram; 
the end of Measurement of the Circle from Cardinal Bessarion’s copy of the Greek 
manuscript of Archimedes, also including text, with diagram; some sixteenth-, sev-
enteenth-, and eighteenth-century engravings taken from early editions of scientific 
and architectural works showing Archimedes solving inter alia the problem of spe-
cific gravity; and engravings of compound pulleys from Mazzucchelli’s eighteenth-
century biography of Archimedes. Other color plates include several of Giulio 
Parigi’s wall paintings from the Stanzino delle Matematiche in the Uffizi, including 
images of catapults, the burning mirrors, the great ship being pulled to shore by pul-
leys, the naked Archimedes running from the bath, and the highly anthropomor-
phized picture of the great iron claw (the “hand” of Archimedes) that stymied the 
Romans at Syracuse.

Smith’s English translation has kept the pictures, rearranged slightly the struc-
ture of the text, and made some additions to the bibliography. The translation has 
conflated the two original chapters on the ship Syracusia and the defense engines 
into one, and has raised the appendix on poetry to the status of a chapter. The trans-
fer of the material on poetry to the main text is welcome, for Geymonat’s knowledge 
of literary Latin together with his interest in the history of science has produced a 
dossier that will, I expect, lead to interesting results. Emma Gee’s Ovid, Aratus and 
Augustus: Astronomy in Ovid’s Fasti (Cambridge, 2000), has already shown how 
fruitful it can be to examine the interactions of science and poetry; Netz’s Ludic 
Proof goes so far as to suggest that Hellenistic poetry might have had a role in the 
shaping of scientific texts. II Grande Archimede joins these works in pointing the 
way to an exciting subfield of literary/mathematical studies.

The most widely known popular work on Archimedes, The Archimedes Codex, 
was published by Reviel Netz and William Noel in 2007 [11]. It has been translated 
into at least twenty languages to date and was made into a NOVA special [12]. The 
Archimedes Codex shows how cooperative effort at the highest level of a number of 
discrete disciplines (Greek paleography, language, literature and textual criticism; 
history ancient, medieval, and modern; art history; history of the book; mathemat-
ics; computer science; and digital humanities) can achieve path breaking, truly 
interdisciplinary results. The work on the palimpsest has given us the only text of 
the treatise called The Method; it has helped us understand further the relationship 
of diagrams to text in ancient mathematical works; and it has brought about a rein-
terpretation of the game called the Stomachion as an exercise in combinatorics.

�Part Two: The Fictional Archimedes

In relating first the perils faced by Archimedes’ manuscript through the centuries, 
then its rediscovery and restoration, then the new discoveries in the restored text, 
Netz and Noel have crafted a suspenseful and exciting narrative. Indeed, Ed 
Rothstein’s New York Times review of the “Secrets of Archimedes” exhibit at 
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the Walters (Oct. 16, 2011) compared The Archimedes Codex to that other 
twenty-first-century publishing phenomenon, Dan Brown’s 2003 The Da Vinci 
Code (the publisher of The Archimedes Codex includes on the cover a quote from 
the TLS that makes the same comparison). As is so often the case, the true story here 
is much, much more fascinating than fiction.

The allure of the mysterious artifact lost and then recovered and the compelling 
figure of the expert in esoteric knowledge who discovers ancient “secrets,” the very 
idea that time has created secrets to be “revealed,” have all proved inspiring to a 
number of first-time novelists [13]. Since the turn of the millennium, Archimedes 
has made several appearances as a fictional character in such works as: Theodore 
Homa’s Archimedes’ Claw, an anti-Da Vinci Code of a sort,  in which the hero finds 
himself at the center of a government conspiracy having to do with time travel, with 
The Claw serving as a propellant helping thrust him to and fro in time; in Monte 
R. Anderson’s Archimedes of Syracuse: the Chest of Ideas, which embeds the life of 
Archimedes within a night of Renaissance-era storytelling and shows the young 
mathematician enjoying the pleasures of Alexandria, including Egyptian beer and 
the city’s lovely and compliant woman; and, finally, in Padraic Fallon’s The Circles 
of Archimedes, which links the diagrams Archimedes was pondering at his death to 
Goddess worship and the stone circles at Avebury, England.

Together these novels show that the very scarcity of solid facts about Archimedes’ 
life leaves plenty of room for the imagination. The comic appeal of the story of the 
bath, the fascinating nature of his siege engines, and his tragic death at the hands of 
a Roman soldier together form a matrix into which each writer inserts their interests, 
fantasies, prejudices, and preconceptions. Moreover, they impose their own twenty-
first-century interests and experiences on the story and the figure of Archimedes.

The author of my last example imposes contemporary experience as well but, 
unlike the other authors, notes it explicitly. This is The Sand-Reckoner, which came 
from the pen of Gillian Bradshaw in 2000. As Bradshaw points out on her website, 
“real historical figures usually have too many inconvenient facts about their lives to 
allow for good fiction, but there aren’t that many facts known about Archimedes, so 
I got away with it.” [14] Bradshaw differs from the authors listed above in that she 
is a seasoned writer of historical and fantasy fiction; depending on how you count 
them, The Sand-Reckoner is her thirteenth or fifteenth novel. She is moreover, a 
trained classicist, who won prizes for her Greek at the University of Michigan, and 
then studied further at Cambridge. When she published her first historical novel and 
discovered that she could make a living by her writing, she said farewell to aca-
deme, except for the family connection she made by marrying the British academic 
physicist Robert Ball (University of Warwick). She writes of The Sand-Reckoner, 
“in a way it’s a very personal book, as I drew upon the many physicists I’ve known 
to portray the man.”

The Sand-Reckoner covers less than a year of Archimedes’ life: his return from 
Alexandria, the death of his father, and his first interactions with Hieron, tyrant of 
Syracuse. The book does a nice job of weaving some the most tenuous strands of the 
biographical tradition into a compelling narrative. For example, Plutarch says that 
Archimedes had a connection to the royal house of Syracuse. Accordingly, Bradshaw 
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gives Hieron a half-sister, Delia, who is an excellent musician on the aulos (the 
double-flute), as is Bradshaw’s Archimedes. Once Hieron realizes Archimedes’ 
importance to Syracuse’s defense system, he has to find a way to keep him there. 
What better way than encouraging a lot of duets on the aulos and an eventual 
marriage alliance?

Bradshaw has a secure knowledge of ancient history and an excellent grasp of 
the realia: there are fine descriptions of neighborhoods in Syracuse, of houses and 
banquets, of the nature of the double flute. Her Archimedes is a charming figure, a 
young man who is always thinking creatively, as when, lying in bed he watches the 
patterns of sunlight on the wall, or sees a dead fish floating belly-up in the harbor 
and loses track of a conversation as he wonders why it floats that way. And he is as 
absent minded as Plutarch claimed: someone (usually his fictional slave Marcus) 
has to wake him from his trance and drag him off to a meal, a haircut, or a bath. 
Bradshaw also captures Archimedes’ loneliness: his longing for Alexandria’s lively 
intellectual life; his panic at his father’s approaching death, which meant there 
would be no one at Syracuse at all capable of understanding his interests; and his 
desperate attempt to make himself clear to people who cannot understand what he’s 
talking about (he knows he’s not a good teacher). Or perhaps we should say instead 
“his research is stronger than his teaching,” because this Archimedes seems very 
much like a modern academic. He would make an excellent professor at a research 
university, if he had the office staff to keep him on schedule.

Bradshaw’s Archimedes is smart and creative; he is also considerate to slave and 
free and fond of strong women (Delia ends up running the practical side of their 
married life, including the considerable estate that was her dowry). He is a loyal citi-
zen; and he speaks truth to power (Hieron), because he knows that high-tech defense 
jobs are always available. But he feels the emotions, shared by so many mathemati-
cians and physicists of this past century, upon realizing that their calculations, 
embodied in weaponry, work as intended, which means that they wound and kill 
human beings.

In all these popular accounts of Archimedes, fiction and nonfiction alike, one 
phrase surfaces again and again: “killed by a Roman soldier.” Indeed, the figure of 
the Brutal Roman has become essential to the twenty-first-century portrait of 
Archimedes, even though that figure appears in various guises, whether as the killer 
himself, or as another character onto whom Roman brutality is transferred. 
Archimedes’ Claw begins with a brief scene of the kill; The Chest of Ideas saves it 
for nearer the end, as does The Circles of Archimedes. The Sand-Reckoner antici-
pates and prefigures it. Clifford Pickover (Archimedes to Hawking p.41) writes 
“Close to the time when Archimedes discovered his Principle of Buoyancy, the 
Septuagint Greek version of the Old Testament was being written, the La Tène Iron 
Age people invaded Britain, the first Roman prison Tullianum was erected, and the 
Carthaginian general Hannibal was born.” Note the tendentious nature of Pickover’s 
collocation of events: granted, archaeologists date the structure of Rome’s prison to 
some point in the third century BCE. But other things happened in Rome then: the 
transition in temple style from more Etruscan to Hellenistic, the development of 
native Roman drama, the development to its highest level of the native Italian meter 
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called Saturnians, and an act of translation that was in its own way as important as 
the translation of the Septuagint: Livius Andronicus’ translation of the Odyssey into 
Latin verse, the first translation we know of, of a literary text. But a prison is a use-
ful thing to list if you want to cast Romans as brutes.

The role of Brutal Roman extends even to the philhellenic general Marcellus: in 
the Chest of Ideas, we are told that he can barely read Latin much less Greek. After 
Archimedes’ death, Archimedes’ daughter tells Marcellus that her father wanted a 
diagram of the sphere and cylinder on his tomb. Marcellus answers:

When I was in Alexandria, I saw the defenses he constructed around the city; the signal 
towers, the catapults, and other machines. His idea of using mirrors to signal commands 
was ingenious. I saw his invention of the water screw being used in silver mines in Spain. 
They even called it the Archimedes Screw. I saw the ship he built, the Syracusia. It was 
magnificent. Had he been a general, he would have conquered the world by now. And yet, 
he thinks a mathematics formula is his crowning achievement. I will never understand these 
scholars.

Likewise, at the end of The Sand-Reckoner, in a scene that anticipates Archimedes’ 
death, Gaius Valerius, the brother of Archimedes’ Roman-born slave Marcus, 
returns to Syracuse to restore to its owner the flute Archimedes had lent Marcus, 
who is dead. Valerius’ friend Fabius comes along to translate. The interview turns 
sour when Fabius sees a contraption Archimedes is building, and asks what it is. 
Told it is a water-aulos, he infuriates Archimedes by saying what a comedown it is 
for the designer of great siege engines to be making musical instruments. When 
Fabius catches sight of Archimedes’ figures of sphere and cylinder, he asks, “What 
use is it?” His reaction further enrages our hero, who points out that this is what is 
wrong with Romans: they are brutes who understand only the practical. If Bradshaw’s 
Archimedes is the professor defending the liberal arts (especially music and math-
ematics), Fabius is the academic’s worst kind of barbarian: a provost advocating for 
purely vocational education.

Both the prefigured killer, and the figures of sphere and cylinder (which would 
later decorate the tomb) help make this scene anticipate Archimedes’ death. It con-
tinues to do so with Archimedes’ last actions, because he turns away from his guests 
to his geometry, the circles he would later defend (p.346):

The others [Gaius and Fabius] looked at him [Archimedes] in surprise, but he was already 
oblivious to them. The compass marked out its precise reckonings in the fine sand, and his 
face following it was rapt, intense, and joyful. For the first time in his life, Fabius felt the 
foundations of his own certainties tremble. The suddenly quiet room was filled with some-
thing that made the hair stand up along his arms, something that existed for no human use. 
Perspective altered dizzyingly, and he wondered what his own use was to a universe. 
Unaccountably afraid, he ducked his head and backed away.

If it feels as if some kind of conversion is imminent, that is no surprise. Bradshaw 
is very much a historical novelist of the old school; and The Sand-Reckoner, in 
many ways, resembles the sword-and-sandal novels of the nineteenth and early 
twentieth century. Consider, for example, Ben Hur, The Robe, and Bride of Pilate, 
all of which portrayed an extraordinary and mystifying character killed by Roman 
brutes who knew not what they did. In the imagination of the new millennium, the 
pure scientist dies for the sake of all scholars.
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Finally, one very different literary Archimedes: Peter Hobbs’ recent short story 
collection, I Could Ride All Day in My Cool Blue Train (Faber & Faber 2006), 
closes with “The Dead Ancients Trilogy,” three vignettes portraying Archimedes, 
Pythagoras, and Sisyphus. Hobbs’ figure of Archimedes combines the running 
Archimedes of the Eureka story and the idea expressed in the expression “give me 
a place to stand and I will move the world.” In his story, Archimedes runs on the 
surface of the earth, like a hamster on the outside of his wheel, the force of his foot-
steps making it rotate. Like the Archimedes of the Eureka story, he too is a comic 
old figure, who “has lifted his robes to his waist so as not to stumble when they 
become tangled with his legs. His long white beard has been thrown with similar 
intent over his right shoulder… He’s a wiry old man. His sandals flap a little as they 
kick back.” Hobbs plays imaginatively with the idea of leverage and the idea of 
Archimedes’ sphere. His Archimedes is on the verge of inventing the bicycle but 
restrains himself because the materials for such a thing are not yet available.

Archimedes continues to stimulate the imagination in a wide variety of ways: 
novelists rewrite his life; other writers meditate on his ideas; nor is reapplication of 
those ideas limited to literature. Let me close this survey with two examples of 
Archimedes’ influence on modern design: first, the Italian firm Acquacalda has pro-
duced an Archimedean measuring bowl, a ceramic bowl with a series of Plimsoll 
lines engraved and painted on the outside. Place bowl in water; place the item to be 
measured inside; read from the water level and the lines the exact amount of dis-
placement. Finally, according to Cicero, who said he saw it, Archimedes’ tomb had 
on it a representation of the sphere enclosed by a cylinder and some verses express-
ing the ratio of their volumes. Artists have traditionally represented this as a column 
with a three-dimensional sculpture on top, although Netz argues that the marker 
held a simple diagram. I think Archimedes would have liked the idea that one early 
use of a 3-D printer (before its use to print a working weapon!) brings together both 
the “beginning” and “end” of his story. It is a three-dimensional model illustrating 
the relationship of the volumes of sphere and cylinder by showing the volume of 
water each contains [15].
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