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Abstract This paper addresses analytical solution to the Kantorovich mass transfer
problem. Through an ingenious approximation mechanism, the Kantorovich prob-
lem is first reformulated as a variational form, which is equivalent to a nonlinear
differential equation with Dirichlet boundary. The existence and uniqueness of the
solution can be demonstrated by applying the canonical duality theory. Then, using
the canonical dual transformation, a perfect dual maximization problem is obtained,
which leads to an analytical solution to the primal problem. Its global extremality
for both primal and dual problems can be identified by a triality theory. In addition,
numerical maximizers for the Kantorovich problem are provided under different cir-
cumstances. Finally, the theoretical results are verified by applications to Monge’s
problem. Although the problem is addressed in one-dimensional space, the theory
and method can be generalized to solve high-dimensional problems.

1 Introduction

The Monge–Kantorovich mass transfer model is widely used in modern economic
activities, medical science, andmechanical processes. In these respects, some typical
examples include the logistics of transport for industrial products, purification of
blood in the kidneys and livers, shape optimization, etc. Interesting readers can refer
to [1, 2, 9, 23, 24, 28, 29] for more details.

The original transfer problem, which was proposed by Monge [28], investigated
how to move one mass distribution to another one with the least amount of work.
In this paper, we consider the Monge–Kantorovich problem in the 1-D case. Let
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Ω = [a, b] and Ω∗ = [c, d], a, b, c, d ∈ R and denote U := Ω ∪ Ω∗ = [a, b] ∪
[c, d]. Here we focus on the closed case, and other bounded cases can be discussed
similarly. Moreover, f + and f − are two nonnegative density functions inΩ andΩ∗,
respectively, and satisfy the normalized balance condition

∫
Ω

f +dx =
∫

Ω∗
f −dx = 1.

Let c : Ω × Ω∗ → [0,+∞) be a cost function, which indicates the work required
to move a unit mass from the position x to a new position y. There are many types
of cost functions while dealing with different problems [2, 5, 9, 27]. In Monge’s
problem, the cost function is proportional to the distance |x − y|,

c(x, y) = |x − y|.

The Monge’s problem consists in finding an optimal mass transfer mapping s∗ :
Ω → Ω∗ to minimize the cost functional I (s):

I (s∗) = min
s∈N

{
I [s] :=

∫
Ω

|x − s(x)| f +(x)dx
}
, (1)

where s : Ω → Ω∗ belongs to the classN of measurable mappings driving f +(x)

to f −(y),
s# f + = f −,

which means, for ∀x ∈ Ω ,

f +(x) = f −(s(x))|det(J (s(x)))|,

where J (s(x)) is the Jacobian matrix of the mapping s.

In the 1940s, Kantorovich [23, 24] relaxed Monge’s transfer problem (1) and
proposed the task of finding a Kantorovich potential u∗ ∈ L solving

K [u∗] = max
w∈L

{
K [w] :=

∫
U

w f dz =
∫

U
w( f + − f −)dz

}
, (2)

where L is the class of functionals w : U → R satisfying

Lip[w] := sup
x �=y

|w(x) − w(y)|
|x − y| ≤ 1.

As a matter of fact, the Kantorovich’s problem (2) is not a perfect maximization dual
of Monge’s minimization problem (1). Following the procedure of [5, 9], one can
prove the dual criteria for optimality in the bounded case.
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Lemma 1.1. Let s∗ ∈ N and u∗ ∈ L . If the following identity holds,

u∗(x) − u∗(s∗(x)) = |x − s∗(x)|,

then

• s∗ is an optimal mass transfer mapping in Monge’s problem (1);
• u∗ is a Kantorovich potential maximizing Kantorovich’s problem (2);
• The minimum I [s∗] in (1) is equal to the maximum K [u∗] in (2);
• Every optimal mass transfer mapping s∗ and Kantorovich potential u∗ satisfy the

above identity.

Due to the implicitness of u∗, L.C. Evans, W. Gangbo, and J. Moser [6, 8, 9]
provided an ODE recipe to build s∗ by solving a flow problem involving Du. This
method is indeed useful but very complicated. In 2001, L.A. Caffarelli, M. Feldman,
R.J. McCann, N.S. Trudinger, and X.J. Wang showed a much simpler approach to
construct optimal mappings by decomposition of transfer sets and measure theory
[5, 30]. Once an analytical Kantorovich potential u∗ is found, by checking the above
identity, one can immediately judge whether it is possible to construct a suitable
optimal mapping s∗ by virtue of u∗. However, due to the nonuniform convexity of
the cost function c(x, y), it is difficult to find optimal mass allocation. In order to gain
some insight into this problem, many approximating mechanisms were introduced.
For example, L.A. Caffarelli, W. Gangbo, R.J. McCann and X.J. Wang [4, 13, 14,
30], etc. utilized an approximation of strictly convex cost functions

cε(x, y) = |x − y|1+ε ε > 0.

The existence and uniqueness of the optimal mapping s∗ε can be proved by convex
analysis. Then let ε tends to 0, and one can construct an optimal mapping s∗ using
transfer rays and transfer sets invoked by L.C. Evans andW. Gangbo [8]. In addition,
N.S. Trudinger and X.J. Wang used the approximation

cε(x, y) =
√

ε2 + |x − y|2

in the discussion of regularity [27, 30]. All the above-mentioned approximations con-
centrate upon the cost function c(x, y). In this paper, we are eager to explore whether
the approximation of Kantorovich’s problem can bring more useful information.

Let L0 be a subset of L ,

L0 :=
{
φ ∈ W 2,∞

0 (U ) ∩ C(U )

∣∣∣ |φx | ≤ 1, φ = 0 on Ω ∩ Ω∗
}
,

where W 2,∞
0 (U ) is a Sobolev space. Here, when Ω ∩ Ω∗ = ∅, C(U ) represents

C(Ω) and C(Ω∗). We restrict our discussion of Kantorovich’s problem (2) in L0,
namely,
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K [u] = max
w∈L0

{
K [w] :=

∫
U

w f dz =
∫

U
w( f + − f −)dz

}
. (3)

In the survey paper [10], L.C. Evans proposed a sequence of approximated dual prob-
lems of (3).Nowwe explain themechanism.We consider a sequence of approximated
primal problems

(P (k)) : min
wk∈L0

{
J (k)[wk] :=

∫
U

(
H (k)(wk,x ) − wk f

)
dx

}
, (4)

where wk,x is the derivative of wk with respect to x , H (k) : R → R
+ is defined as

H (k)(γ ) := 1

k
e

k
2 (γ 2−1),

and J (k) is called the potential energy functional. Notice that when |γ | ≤ 1, then
lim

k→∞ H (k)(γ ) = 0 uniformly. From [10], it is clear that

− lim
k→∞ min

wk∈L0

J (k)[wk] = max
w∈L0

K [w].

Consequently, once a sequence of functions {u∗
k}k satisfying J (k)[u∗

k ] = min
wk∈L0

J (k)[wk] globally is obtained, then it will help us find a Kantorovich potential
u = lim

k→∞ u∗
k which solves (3).

In this paper, we investigate analytic solutions to the Kantorovich potential u∗ of
problem (3) using canonical duality theory. This theorywas developed fromGao and
Strang’s original work on nonconvex/nonsmooth variational problems [21]. During
the last few years, considerable effort has been taken to illustrate these nonconvex
problems from the theoretical point of view [16, 17]. Interesting readers can refer to
[18–20, 22].

Before we state the main results, we introduce some useful notations.

• θk is the corresponding Gâteaux derivative of H (k) with respect to wk,x given by

θk(x) = e
k
2 (w2

k,x −1)wk,x .

• Φ(k) : L0 → L∞(U ) is a nonlinear geometric mapping given by

Φ(k)(wk) := k

2
(w2

k,x − 1).

For convenience’s sake, denote

ξk := Φ(k)(wk).



Kantorovich Mass Transfer Problem 109

It is evident that ξk belongs to the function space U given by

U :=
{
φ ∈ L∞(U )

∣∣∣φ ≤ 0
}
.

• Ψ (k) : U → L∞(U ) is a canonical energy defined as

Ψ (k)(ξk) := 1

k
eξk ,

which is a convex function with respect to ξk .
• ζk is the corresponding Gâteaux derivative of Ψ (k) with respect to ξk given by

ζk = 1

k
eξk ,

which is invertible with respect to ξk and belongs to the function space V (k),

V (k) :=
{
φ ∈ L∞(U )

∣∣∣0 ≤ φ ≤ 1

k

}
.

• λk is defined as
λk := kζk,

and belongs to the function space V ,

V :=
{
φ ∈ L∞(U )

∣∣∣0 ≤ φ ≤ 1
}
.

Now we are ready to introduce the main theorems.

Theorem 1.2. For positive density functions f + ∈ C(Ω), f − ∈ C(Ω∗), we can
always find a sequence of analytical functions {u∗

k ∈ L0}k minimizing the approxi-
mated problems (4) globally.

By canonical duality method, we are able to find an analytical Kantorovich poten-
tial for (3).

Theorem 1.3. For positive density functions f + ∈ C(Ω), f − ∈ C(Ω∗), we can
always find an analytical global maximizer u ∈ L0 for Kantorovich’s mass transfer
problem (3).

Remark 1.4. Generally speaking, there are plenty of approximating schemes, for
example, one can also let

H (k)(γ ) := 1

k
(γ 2 − 1)2.

Then by following the procedure in dealing with double-well potentials in [19, 21],
we could definitely find an analytical Kantorovich potential.
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Remark 1.5. Through applying the canonical duality method, we have devised a
systematic procedure in finding an analytical minimizer. In fact, for other types of
cost functions, for instance, c(x, y) = |x − y|p, p ∈ [1,∞), we can also use this
method to construct an analytical Kantorovich potential u∗. Compared with former
results [8, 9], we obtain an explicit representation of Kantorovich potential, which
helps us construct an optimal mapping s∗ according to Lemma 1.1. This question
will be discussed in detail in the application part.

The rest of the paper is organized as follows. In Sect. 2, first we apply the canonical
dual transformation to establish a sequence of perfect dual problems and a pure
complementary energy principle. Next we explain the canonical duality theory and
triality theory. In particular, the triality theory provides global extremum conditions
for the problem (4). Afterward, we construct a sequence of analytical functions
minimizing J (k) globally and a Kantorovich potential maximizing K [w] of (3). In
the final analysis, we use a product allocationmodel in 1-D to illustrate our theoretical
results.

2 Proof of the Main Results: Technique of Canonical
Duality Method

2.1 Proof of Lemma 1.1 in the Bounded Case:

Proof. Similar as [5], for any s ∈ N and w ∈ L0, we compute

I [s] = ∫
Ω

|x − s(x)| f +(x)dx

= ∫
U |x − s(x)| f +(x)dx

≥ ∫
U (w(x) − w(s(x))) f +(x)dx

= ∫
U w(x) f +(x)dx − ∫

U w(y) f −(y)dy

= K [w].

Taking into account the given identity, we complete the proof.

2.2 Proof of Theorem 1.2:

Here we apply the variational method to discuss problem (4). Now we show an
important lemma in this respect.
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Lemma 2.1. The Euler–Lagrange equation for (P (k)) takes the following form,

θk,x + f = (e
k
2 (u2

k,x −1)uk,x )x + f = 0, in U. (5)

Remark 2.2. The term e
k
2 (u2

k,x −1) is called the transport density. Clearly, like
p−Laplace operator, e

k
2 (u2

k,x −1) is a highly nonlinear and nonlocal function of
uk ∈ L0. With the hidden boundary value uk = 0 on ∂U, we are able to prove the
existence and uniqueness of the solution of (5). This important fact will be explained
later.

Proof. Indeed, the Gâteaux derivative of J (k) with respect to uk belongs to L1(U ).
For any given μ > 0 and any test function φ ∈ L0, by integrating by parts, we have

lim
μ→0+

J (k)[uk + μφ] − J (k)[uk]
μ

= lim
μ→0+

∫
U

{ 1
k e

k
2 ((uk+μφ)2x −1) − 1

k e
k
2 (u2

k,x −1)

μ
− φ f

}
dx

=
∫

U

{1
k
e

k
2 (u2

k,x −1) lim
μ→0+

e
k
2 (μ2φ2

x +2μuk,x φx ) − 1
k
2 (μ

2φ2
x + 2μuk,xφx )

·
k
2 (μ

2φ2
x + 2μuk,xφx )

μ
− φ f

}
dx

=
∫

U

{1
k
e

k
2 (u2

k,x −1)kuk,xφx − φ f
}

dx

= −
∫

U

{
(e

k
2 (u2

k,x −1)uk,x )xφ + φ f
}

dx .

Actually, since uk and φ are both in L0, then for any given μ < 0, when μ → 0−,
the above calculation still holds.

Now we are going to apply the canonical duality method invoked by David Y.
Gao [17]. By Legendre transformation, we define aGao–Strang total complementary
energy functional.

Definition 2.3. With the notations in Sect. 1, we define a Gao–Strang total comple-
mentary energy Ξ(k) in the form

Ξ(k)(uk, ζk) :=
∫

U

{
Φ(k)(uk)ζk − Ψ (k)

∗ (ζk) − f uk

}
dx, (6)

where the function Ψ
(k)∗ : V (k) → L∞(U ) is defined as

Ψ (k)
∗ (ζk) := ξkζk − Ψ (k)(ξk) = ζk(ln(kζk) − 1). (7)
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Next we introduce an important criticality criterium for the Gao–Strang total
complementary energy functional.

Definition 2.4. (ūk, ζ̄k) ∈ L0 × V (k) is called a critical pair of Ξ(k) if and only if

Duk Ξ
(k)(ūk, ζ̄k) = 0, (8)

and
Dζk Ξ

(k)(ūk, ζ̄k) = 0, (9)

where Duk , Dζk denote the partial Gâteaux derivatives of Ξ(k), respectively.

By variational method, we explore the criticality criterium (8) and (9). Indeed, on
the one hand, we have the following observation from (8).

Lemma 2.5. For a fixed ζk ∈ V (k), (8) leads to the equilibrium equation

(λk ūk,x )x + f = 0, in U. (10)

Remark 2.6. It is easy to check the equilibrium equation (10) is consistent with (5)
except that the transport density is replaced by λk = kζk . We will use this fact to
construct a sequence of analytical solutions later.

Proof. Indeed, the partial Gâteaux derivative of Ξ(k) with respect to uk belongs to
L1(U ). For ∀μ > 0 and any test function φ ∈ L0, by integrating by parts, we have

lim
μ→0+

Ξ(k)(ūk + μφ, ζk) − Ξ(k)(ūk, ζk)

μ

= lim
μ→0+

∫
U

Λ(k)(ūk + μφ) − Λ(k)(ūk)

μ
ζkdx −

∫
U

f φdx

= lim
μ→0+

∫
U

k(ūk,x + μφx )
2 − ū2

k,x )

2μ
ζkdx −

∫
U

f φdx

=
∫

U
kūk,xφxζkdx −

∫
U

f φdx

= −
∫

U

{
(kζk ūk,x )xφdx + f φ

}
dx .

Since uk and φ are both inL0, then for ∀μ < 0, whenμ → 0−, the above calculation
still holds.
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On the other hand, from (9), we have the following observation.

Lemma 2.7. For a fixed uk ∈ L0, (9) is in fact the constructive law

Φ(k)(uk) = Dζk Ψ
(k)
∗ (ζ̄k). (11)

Remark 2.8. It is worth noticing that (11) is consistent with the notations in Sect.1.

Proof. Indeed, the partial Gâteaux derivative of Ξ(k) with respect to ζk belongs to
L1(U ). For ∀μ > 0 and any test function φ ∈ L0, by integrating by parts, we have

lim
μ→0+

Ξ(k)(uk, ζ̄k + μφ) − Ξ(k)(uk, ζ̄k)

μ

= lim
μ→0+

∫
U

{
Φ(k)(uk)φ − Ψ

(k)∗ (ζ̄k + μφ) − Ψ
(k)∗ (ζ̄k)

μ

}
dx

=
∫

U

{
Φ(k)(uk) − Dζk Ψ

(k)
∗ (ζ̄k)

}
φdx .

Since uk and φ are both inL0, then for ∀μ < 0, whenμ → 0−, the above calculation
still holds.

Lemmas 2.5 and 2.7 indicate that ūk from the critical pair (ūk, ζ̄k) solves (5). Now
we introduce the canonical duality theory. For our purpose, we define the following
Gao–Strang pure complementary energy functional.

Definition 2.9. From Definition 2.3, we define a Gao–Strang pure complementary
energy J (k)

d in the form
J (k)

d [ζk] := Ξ(k)(ūk, ζk), (12)

where ūk solves (5).

For the sake of convenience, we give another representation of J (k)
d by the

following lemma.

Lemma 2.10. The pure complementary energy functional J (k)
d can be rewritten as

J (k)
d [ζk] = −1

2

∫
U

{ θ2
k

kζk
+ kζk + 2ζk(ln(kζk) − 1)

}
dx . (13)

Remark 2.11. ūk is included in this representation in an implicit manner, which
will simplify our further discussion considerably.



114 X. Lu and D.Y. Gao

Proof. With Definition 2.3, by integrating by parts, we have

Ξ(k)(ūk, ζk) =
∫

U

{(k

2
(ū2

k,x − 1
)
ζk − Ψ (k)

∗ (ζk) − f ūk

}
dx

=
∫

U

{
kζk ū2

k,x − f ūk

}
dx

− ∫
U

{
k
2 (ū

2
k,x − 1)ζk + kζk + ζk(ln(kζk) − 1)

}
dx

= −
∫

U

{
(kζk ūk,x )x + f

}
ūkdx

︸ ︷︷ ︸
(I )

− 1

2

∫
U

{
kζk ū2

k,x + kζk + 2ζk(ln(kζk) − 1)
}

dx .

︸ ︷︷ ︸
(I I )

(14)

Since ūk solves (5), then the first part (I ) disappears. Keeping in mind the definition
of θk , we reach the conclusion immediately.

With the above discussion, next we establish the dual variational problem of (4).

(P (k)
d ) : max

ζk∈V (k)

{
J (k)

d [ζk] = −1

2

∫
U

{ θ2
k

kζk
+ kζk + 2ζk(ln(kζk) − 1)

}
dx

}
. (15)

By variational calculus, we have the following lemma.

Lemma 2.12. The variation of J (k)
d with respect to ζk leads to the dual algebraic

equation(DAE), namely,
θ2

k = kζ̄ 2
k (2 ln(kζ̄k) + k), (16)

where ζ̄k is from the critical pair (ūk, ζ̄k).

Proof. Indeed, by calculating the Gâteaux derivative of J (k)
d with respect to ζk , we

can prove the lemma immediately.

Remark 2.13. Taking into account the notation of λk , we can rewrite (16) as

θ2
k = λ2

k ln(eλ
2
k
k ). (17)

From (17), we know that θ2
k is monotonously increasing with respect to λk > e− k

2 .

As a matter of fact, we have the following asymptotic expansion of θ2
k .
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Lemma 2.14. When k ≥ 3, θ2
k has the expansion of the form

θ2
k = (1 − 2

k
)λ2

k + 2

k
λ3

k + Rk(λk),

where the remainder term |Rk(λk)| ≤ 1
k uniformly for any λk ∈ [e− k

2 , 1]. In particu-
lar, for a fixed x ∈ U, if lim

k→∞ λk = λ and lim
k→∞ θk = θ in L∞, then we have the limit

version of (17),
θ2 = λ2. (18)

Remark 2.15. In the 1-D case, later on we will demonstrate how to find the limit θ

of the sequence {θk}k as k tends to infinity.

Proof. Since λk ∈ [e− k
2 , 1], we can rewrite (17) using Taylor’s expansion formula

for ln λk at the point 1,

θ2
k = λ2

k

(
1 + 2

k
(λk − 1) − 1

kη2
k

(λk − 1)2
)

= (1 − 2

k
)λ2

k + 2

k
λ3

k − 1

k

λ2
k

η2
k

(λk − 1)2,

where ηk ∈ (λk, 1). It is evident that

|1
k

λ2
k

η2
k

(λk − 1)2| ≤ |1
k

λ2
k

λ2
k

(λk − 1)2| ≤ 1

k
.

This concludes our proof.

By comparing (5) with (10), we deduce that an analytical solution of (5) can be
given as

ūk(x) =
∫ x

x0

θk(t)

λk(t)
dt + C, (19)

where x, x0 ∈ U . Together with (18), we see that

lim
k→∞ |ūk,x | = 1,

which is consistent with the conclusion in [9]. Summarizing the above discussion,
we have the following duality theorem.

Theorem 2.16 (Canonical Duality Theory). For positive density functions f + ∈
C(Ω), f − ∈ C(Ω∗), if θk is a solution of the Euler–Lagrange equation (5), which
is not identically equal to 0, then (17) has a unique positive root λ̄k due to the
monotonicity property. Furthermore, an analytical function given by

ūk(x) =
∫ x

x0

θk(t)

λ̄k(t)
dt + C (20)
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is a local minimizer of (4) and satisfies the following duality identity locally,

J (k)[ūk] = J (k)
d [ζ̄k], (21)

where (ūk, ζ̄k) is a critical pair for Ξ(k).

Proof. It suffices to prove the identity (21). Indeed, this identity is obtained by direct
variational calculus of J (k)[uk] and J (k)

d [ζk] in (4) and (15), respectively.

J (k)[ūk] = Ξ(k)(ūk, ζ̄k) = J (k)
d [ζ̄k]. (22)

Remark 2.17. Theorem 2.16 demonstrates that the maximization of the pure com-
plementary energy functional J (k)

d is perfectly dual to the minimization of the potential
energy functional J (k). In effect, the identity (22) indicates there is no duality gap
between them.

Up to now, we have constructed a critical pair (ūk, ζ̄k) satisfying (22) locally.
Next we verify that ūk and ζ̄k are exactly a global minimizer for J (k) and a global
maximizer for J (k)

d , respectively. In the following theorem, we apply the triality
theory to obtain the extremum conditions for the critical pair.

Theorem 2.18 (Triality Theory). For positive density functions f + ∈ C(Ω), f − ∈
C(Ω∗), we have, θk is the unique solution of the Euler–Lagrange equation (5) with
hidden Dirichlet boundary. Moreover, ζ̄k is a global maximizer of J (k)

d over V (k),
and the corresponding ūk in the form of (20) is a global minimizer of J (k) over L0,
namely,

J (k)(u∗
k) = J (k)(ūk) = min

uk∈L0

J (k)(uk) = max
ζk∈V (k)

J (k)
d (ζk) = J (k)

d (ζ̄k). (23)

Proof. We divide our proof into three parts. In the first and second parts, we discuss
the uniqueness of θk . Extremum conditions will be illustrated in the third part.

First Part:

Without loss of generality, we consider the disjoint case Ω = [a, b] and Ω∗ =
[c, d], b < c. InΩ , we have a general solution for the nonlinear differential equation
(5) in the form of

θk(x) = −F(x) + Ck, F(x) :=
∫ x

a
f +(x)dx, x ∈ [a, b].

Since f + > 0, then F ∈ C[a, b] is a strictly increasing function with respect to
x ∈ [a, b] and consequently is invertible. Let F−1 be its inverse function, which is
also a strictly increasing function, then

F−1 : [0, 1] → [a, b].
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From Remark 2.13, we see that there exists a unique piecewise continuous function
λk(x) > e− k

2 except for the point x = F−1(Ck). By paying attention to the fact that
ūk(a) = 0, we represent the analytical solution ūk in the following form:

ūk(x) =
∫ x

a

−F(x) + Ck

λk(x)
dx, x ∈ [a, b].

Since

lim
x→F−1(Ck )−

−F(x) + Ck

λk(x)
= 0, lim

x→F−1(Ck )+

−F(x) + Ck

λk(x)
= 0,

thus ūk is continuous at the point x = F−1(Ck). As a result, ūk ∈ C[a, b]. Recall
that

ūk(b) =
∫ F−1(Ck )

a

−F(x) + Ck

λk(x)
dx +

∫ b

F−1(Ck )

−F(x) + Ck

λk(x)
dx = 0,

and we can determine the constant Ck ∈ (0, 1) uniquely. Indeed, let

M(t) :=
∫ F−1(t)

a

−F(x) + t

λk(x, t)
dx +

∫ b

F−1(t)

−F(x) + t

λk(x, t)
dx,

where λk(x, t) is from (17). It is evident that λk depends on Ck . As a matter of fact,
M is strictly increasing with respect to t ∈ (0, 1), which leads to

Ck = M−1(0).

Indeed, for t1 < t2, t1, t2 ∈ (0, 1), by keeping in mind the identity (17), we have

M(t1) =
∫ F−1(t1)

a

−F(x) + t1
λk(x, t1)

dx +
∫ b

F−1(t1)

−F(x) + t1
λk(x, t1)

dx

=
∫ F−1(t1)

a

−F(x) + t1
λk(x, t1)

dx +
∫ F−1(t2)

F−1(t1)

−F(x) + t1
λk(x, t1)

dx +
∫ b

F−1(t2)

−F(x) + t1
λk(x, t1)

dx

<

∫ F−1(t1)

a

−F(x) + t2
λk(x, t2)

dx +
∫ F−1(t2)

F−1(t1)

−F(x) + t2
λk(x, t2)

dx +
∫ b

F−1(t2)

−F(x) + t2
λk(x, t2)

dx

= M(t2).

More information concerned with Ck will be explained in the proof of
Theorem 1.3.
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Second Part:

Applying the similar procedure, we see that

θk(x) = G(x) − Dk, G(x) :=
∫ x

c
f −(x)dx, x ∈ [c, d],

where the constant Dk ∈ (0, 1). Since f − > 0, then G ∈ C[c, d] is a strictly increas-
ing function with respect to x ∈ [c, d] and consequently is invertible. Let G−1 be its
inverse function, which is also a strictly increasing function, then

G−1 : [0, 1] → [c, d].

We can represent the analytical solution ūk in the following form:

ūk(x) =
∫ x

c

G(x) − Dk

λk(x)
dx, x ∈ [c, d].

Since

lim
x→G−1(Dk )−

G(x) − Dk

λk(x)
= 0, lim

x→G−1(Dk )+

G(x) − Dk

λk(x)
= 0,

thus ūk is continuous at the point x = G−1(Dk). As a result, ūk ∈ C[c, d]. Recall
that

ūk(d) =
∫ G−1(Dk )

c

G(x) − Dk

λk(x)
dx +

∫ d

G−1(Dk )

G(x) − Dk

λk(x)
dx = 0,

and we can determine the constant Dk ∈ (0, 1) uniquely. Indeed, let

N (t) :=
∫ G−1(t)

c

G(x) − t

λk(x, t)
dx +

∫ d

G−1(t)

G(x) − t

λk(x, t)
dx,

where λk(x, t) is from (17). As a matter of fact, N is strictly decreasing with respect
to t ∈ (0, 1), which leads to

Dk = N−1(0).

Indeed, for t1 < t2, t1, t2 ∈ (0, 1), by keeping in mind the identity (17), we have
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N (t1) =
∫ G−1(t1)

c

G(x) − t1
λk(x, t1)

dx +
∫ d

G−1(t1)

G(x) − t1
λk(x, t1)

dx

=
∫ G−1(t1)

c

G(x) − t1
λk(x, t1)

dx +
∫ G−1(t2)

G−1(t1)

G(x) − t1
λk(x, t1)

dx +
∫ d

G−1(t2)

G(x) − t1
λk(x, t1)

dx

>

∫ G−1(t1)

c

G(x) − t2
λk(x, t2)

dx +
∫ G−1(t2)

G−1(t1)

G(x) − t2
λk(x, t2)

dx +
∫ d

G−1(t2)

G(x) − t2
λk(x, t2)

dx

= N (t2).

Furthermore, the other cases, such as b = c and b > c, can also be discussed simi-
larly due to the fact that ūk = 0 on Ω ∩ Ω∗. Therefore, θk is uniquely determined in
U and the analytic solution ūk ∈ C(U ).

Third Part:

In order to prove the extremum of the critical pair, we recall the second variational
formula for both J (k) and J (k)

d .
On the one hand, for any test function φ ∈ L0 satisfying φx �= 0 a.e. in U , the

second variational form δ2φ J (k) with respect to φ is equal to

∫
U

d2

dt2

{
H (k)((ūk + tφ)x )

}∣∣∣
t=0

dx =
∫

U
e

k
2 (ū2

k,x −1)
{

k(ūk,xφx )
2 + φ2

x

}
dx . (24)

On the other hand, for any test function ψ ∈ V (k) satisfying ψ �= 0 a.e. in U , the
second variational form δ2ψ J (k)

d with respect to ψ is equal to

−1

2

∫
U

d2

dt2

{ θ2
k

k(ζk + tψ)
+ 2(ζk + tψ)

(
ln(k(ζk + tψ)) − 1

)}∣∣∣
t=0

dx

= −
∫

U

{θ2
k ψ2

kζ 3
k

+ ψ2

ζk

}
dx .

From (24) and (25), we know immediately that

δ2φ J (k)(ūk) > 0, δ2ψ J (k)
d (ζ̄k) < 0. (25)

Then Theorem 2.16 and the uniqueness of θk discussed in the first and second parts
complete our proof.

Consequently, we reach the conclusion of Theorem 1.2.
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2.3 Proof of Theorem 1.3:

Proof. Without loss of generality, we still consider the disjoint case, b < c. First we
show an important lemma which describes the asymptotic behavior of Ck and Dk

when k tends to infinity.

Lemma 2.19. When b < c, the sequences of {Ck}k and {Dk}k are given in the proof
of Theorem 2.18, then we have

lim
k→∞ Ck = F(

a + b

2
), (26)

lim
k→∞ Dk = G(

c + d

2
). (27)

Proof. Recall the identity

ūk(b) =
∫ F−1(Ck )

a

−F(x) + Ck

λk(x)
dx +

∫ b

F−1(Ck )

−F(x) + Ck

λk(x)
dx = 0. (28)

Since

lim
k→∞

−F(x) + Ck

λk(x)
= 1, x ∈ [a, F−1(Ck)),

lim
k→∞

−F(x) + Ck

λk(x)
= −1, x ∈ (F−1(Ck), b],

then for∀ε > 0, there exists an N ∈ N
+, such that for∀k > N , the following inequal-

ities hold:

(1 − ε)(F−1(Ck) − a) ≤
∫ F−1(Ck )

a

−F(x) + Ck

λk(x)
dx ≤ (1 + ε)(F−1(Ck) − a),

(29)

(−1 − ε)(b − F−1(Ck)) ≤
∫ b

F−1(Ck )

−F(x) + Ck

λk(x)
dx ≤ (−1 + ε)(b − F−1(Ck)).

(30)
Combining (29)–(31) together, we have

a + b

2
− b − a

2
ε ≤ F−1(Ck) ≤ a + b

2
+ b − a

2
ε. (31)

Then (27) follows immediately. It is obvious that we can prove (28) in a similar
manner.
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As a result, we define the limit of θk in L∞ as

θ(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lim
k→∞(−F(x) + Ck) = Fab(x), Fab(x) = −F(x) + F(

a + b

2
), x ∈ [a, b],

lim
k→∞(G(x) − Dk) = Gcd (x), Gcd (x) = G(x) − G(

c + d

2
), x ∈ [c, d].

Next, according to (18), we define the limit of λk in L∞ as

λ(x) :=
⎧⎨
⎩

|Fab(x)|, x ∈ [a, b],

|Gcd(x)|, x ∈ [c, d].

Finally, we calculate the limit of ūk inL0 as follows:

u(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x

a

Fab(x)

|Fab(x)|dx = x − a, x ∈ [a, a+b
2 ],

∫ a+b
2

a

Fab(x)

|Fab(x))|dx +
∫ x

a+b
2

Fab(x)

|Fab(x)|dx = −x + b, x ∈ ( a+b
2 , b],

∫ x

c

Gcd(x)

|Gcd(x)|dx = −x + c, x ∈ [c, c+d
2 ],

∫ c+d
2

c

Gcd(x)

|Gcd(x)|dx +
∫ x

c+d
2

Gcd(x)

|Gcd(x)|dx = x − d, x ∈ ( c+d
2 , d].

(32)

This solution is illustrated in Fig. 1. Several other cases can be proved similarly,
and the corresponding Kantorovich potentials are depicted in Figs. 1, 2, 3 and 4. As
a result, we have constructed a global maximizer for Kantorovich’s mass transfer
problem (3) in 1-D.

2.4 Application to Monge’s Problem

During the past few decades, Monge’s and Kantorovich’s problems have been the
subject of active inquiry, since it covers the domains of optimization, probability
theory, partial differential equations, allocation mechanism in economics and mem-
brane filtration in biology, etc. In this application part, we apply the main theorems
to solve a product allocation model in 1-D.

Wewant to transport some products from [a, b] to [c, d]. Assume that the products
are distributed uniformly in [a, b], that means, the density function f + satisfies
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x

Kantorovich potential u

a db c

1/2(b−a)

1/2(c−d)

(a)
x

u

Kantorovich potential u

bd

0

0

u

c a

1/2(b−a)

1/2(c−d)

(b)

Fig. 1 The unique continuous Kantorovich potential of Problem (3) while Ω and Ω∗ are disjoint
in 1-D

f +(x) = 1

b − a
, x ∈ [a, b].

Figure1: When f − > 0 in [c, d], according to Theorem 1.3, one can check that
the unique Kantorovich potential does not satisfy the dual criteria for optimality.
Therefore, in this case, the Kantorovich problem (3) is not a perfect dual problem of
Monge’s problem (1). We know, the optimal mapping should be s∗(x) = c, in which
case, the density f − is a δ-function in the form of

f − =
{∞ if x = c,
0 if x ∈ (c, d],

satisfying ∫ d

c
f −(x)dx = 1.

Figure2: When f − > 0 in [c, d], according to Theorem 1.3, one can check that
the unique Kantorovich potential satisfies the dual criteria for optimality only for
x ∈ [ a+b

2 , b], y ∈ [c, c+d
2 ]. Therefore, in this case, the Kantorovich problem (3) is

not a perfect dual problem of Monge’s problem (1). We know, the optimal mapping
should be s∗(x) = c.

Figure3: When f − > 0 in [c, d], according to Theorem 1.3, one can check that
the unique Kantorovich potential satisfies the dual criteria for optimality only when
we choose

s(x) =
⎧⎨
⎩

c if x ∈ [ a+c
2 , c] and y = c,

x if x, y ∈ (c, b),

y if x = b and y ∈ [b, b+d
2 ].

Therefore, in this case, the Kantorovich problem (3) is not a perfect dual problem
of Monge’s problem (1). We know, the optimal mapping should be
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x

u

Kantorovich potential u
1/2(b−a)

1/2(c−d)
b=c da

0

(a)

x

u

Kantorovich potential u

b

0

c

1/2(b−a)

1/2(c−d)
a=d

(b)

Fig. 2 The unique continuous Kantorovich potential of Problem (3) whileΩ andΩ∗ have a unique
common point in 1-D

x

u

Kantorovich potential u

0

a d

1/2(c−a)

bc
1/2(b−d)

(a)
x

u

Kantorovich potential u
1/2(b−d)

1/2(c−a)

0

c a d b

(b)

Fig. 3 The unique continuous Kantorovich potential of Problem (3) whileΩ ∩ Ω∗ have more than
one common point and Ω � Ω∗ or Ω∗ � Ω in 1-D

s∗(x) =
{

c if x ∈ [a, c],
x if x ∈ (c, b].

Figure4a, c, e: When f − > 0 in [c, d], according to Theorem 1.3, one can check
that the unique Kantorovich potential satisfies the dual criteria for optimality only
when we choose

s(x) =
⎧⎨
⎩

c if x ∈ [ a+c
2 , c] and y = c,

x if x, y ∈ (c, d],
d if x ∈ (d, b+d

2 ] and y = d.

Therefore, in this case, the Kantorovich problem (3) is not a perfect dual problem
of Monge’s problem (1). We know, the optimal mapping should be

s∗(x) =
⎧⎨
⎩

c if x ∈ [a, c],
x if x ∈ (c, d],
d if x ∈ (d, b].
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x

u

Kantorovich potential u

d=ba c

1/2(c−a)

0

(a) a< c < d = b, b−a ≥ d − c
x

u

Kantorovich potential u

c
1/2(c−a)

a d=b

0

(b) c < a< d = b, b−a ≤ d − c

x

u

Kantorovich potential u

a
0

bdc

1/2(c−a)

1/2(b−d)

(c) a< c < d < b, b−a ≥ d − c
x

u

Kantorovich potential u
0

c a bd
1/2(c−a)

1/2(b−d)

(d) c < a< b < d, b−a ≤ d − c

x

u

Kantorovich potential u

c=a
0

d b

1/2(b−d)

(e) c = a< d < b, , b−a ≥ d − c
x

u

Kantorovich potential u

c=a db

0

1/2(b−d)

(f) c = a< b < d, , b−a ≤ d − c

Fig. 4 The unique continuous Kantorovich potential of Problem (3) while Ω ⊆ Ω∗ or Ω∗ ⊆ Ω

in 1-D

Figure4b, d, f: When f − > 0 in [a, b], according to Theorem 1.3, one can check
that the unique Kantorovich potential does satisfy the dual criteria for optimality
when we choose s∗(x) = x, x ∈ [a, b]. Therefore, the Kantorovich problem (3) in
this case is a perfect dual problem of Monge’s problem (1).

Acknowledgements Themain results in this paperwere obtained during a research collaboration in
theFederationUniversityAustralia inAugust, 2015. Thefirst authorwishes to thankProfessorDavid
Gao for his hospitality and financial support. This project is partially supported by US Air Force
Office of Scientific Research (AFOSR FA9550-10-1-0487 and FA9550-17-1-0151). This project is
also supported by Jiangsu Planned Projects for Postdoctoral Research Funds (1601157B), Shanghai
University Start-up Grant for Shanghai 1000-Talent Program Scholars, National Natural Science
Foundation of China (NSFC 61673104, 71673043, 71273048, 71473036, 11471072), the Scientific
Research Foundation for the ReturnedOverseas Chinese Scholars, Fundamental Research Funds for
the Central Universities (2014B15214, 2242017K40086), Open Research Fund Program of Jiangsu



Kantorovich Mass Transfer Problem 125

Key Laboratory of Engineering Mechanics, Southeast University (LEM16B06). In particular, the
authors also express their deep gratitude to the referees for their careful reading and useful remarks.

References

1. Ambrosio, L.: Lecture Notes on Optimal Transfer Problems, preprint
2. Ambrosio, L.: Optimal transport maps in Monge-Kantorovich problem. ICM 3, 1–3 (2002)
3. Bourgain, J., Brezis, H.: Sur l’équation div u = f . C. R. Acad. Sci. Paris, Ser. I334, 973–976

(2002)
4. Caffarelli, L.A.: Allocation maps with general cost functions, in partial differential equations

and applications. Lect. Notes Pure Appl. Math. 177, 29–35 (1996)
5. Caffarelli, L.A., Feldman,M.,MCcann, R.J.: Constructing optimal maps forMonge’s transport

problem as a limit of strictly convex costs. J. AMS 15, 1–26 (2001)
6. Dacorogna, B., Moser, J.: On a partial differential equation involving the Jacobian determinant.

Ann. Inst. H. Poincaré 7, 1–26 (1990)
7. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Dunod, Paris (1976)
8. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge-Kantorovich mass

transfer problem. Mem. Am. Math. Soc. 653 (1999)
9. Evans, L.C.: Partial differential equations andMonge-Kantorovichmass transfer(survey paper)
10. Evans, L.C.: Three singular variational problems, preprint (2002)
11. Evans, L.C.: PartialDifferential Equations.Graduate Studies inMathematics, vol. 19.American

Mathematical Society, Providence (2002)
12. Gangbo, W., McCann, R.J.: Optimal maps in Monge’s transport problem, preprint (1995)
13. Gangbo, W., McCann, R.J.: Optimal maps in Monge’s mass transport problem. C. R. Acad.

Sci. Paris Sér. I Math. 321, 1653–1658 (1995)
14. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177, 113–161

(1996)
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