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Abstract This paper studies the nonconvex quadratic minimization problems with
quadratic constraints (called it asPqq ). These problems are from computational sci-
ence, machine learning, data mining, pattern recognition, computational mechanics,
and so on. When the quadratical matrix in the objective function is non-definition,
it is very difficult to get the global optimization solutions. There is a very powerful
method proposed by David Gao and it is called as canonical duality. It can help
to convert Pqq into a concave maximization dual problem over a convex set. In
this work, we employ it to deal with a special class of Pqq . The canonical duality
problems are formulated and the equation between optimization solution ofPqq and
canonical duality problem is presented in Theorem 1. Two conditions are given in
Theorem 2. Under these conditions, we can prove that the canonical duality problem
has a unique nonzero solution in the dual space. An algorithm is proposed to find out
the global optimization solutions. Several examples are illustrated to show that the
conditions are active and the proposed method is effective.

1 Introduction

In recent years, nonconvex quadratic minimization problems with quadratic con-
straints have attracted more and more attentions. The problems are arising from
applications in diverse fields such as computational science, machine learning, data
mining, pattern recognition, computational mechanics, and so on.

In 2012, Feng, Lin, Sheu, and Xia [7] had studied the (nonconvex) quadratic
minimization problem with one quadratic constraint(QP1QC). They showed that
under given assumption, the nonconvex (QP1QC) problem could be solved through
a dual approach with no duality gap. In 2014, Fabian and Gabriel [6] had considered
quadratic minimization problems with finitely many linear equality and a single
(nonconvex) quadratic inequality constraints. They characterized the strong duality,
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necessary and sufficient optimality conditions with or without the Slater assumption
geometrically.

In 2013, Tuy and Tuan [28] had studied new strong duality conditions for multiple
constrained quadratic optimization based on the topological minimax theorem. Their
results showed that many quadratic programs to be solved by solving one or just a
few semidefinite programs. In the last work of Tuy and Hoai-Phuong [27], they had
proposed novel approach to get more appropriate approximate optimal solutions of
the problems. In 2007, Jeyakumar et al. [21] had studied necessary global optimality
conditions for special classes of quadratic optimization problems such as weighted
least squares with ellipsoidal constraints, quadratic minimization with binary con-
straints, and so on.

In 2013, Misener and Floudas [23] had introduced the global mixed-integer
quadratic optimizer(GloMIQO). The problems can be considered as the special
cases of Pqq . They proposed a novel algorithm to solve the problems based on
branch-and-bound method. In 2013, Peter et al. [22] had studied the spatial branch-
and-bound method [26]. They proposed a novel method to perturb infeasible iterates
along Mangasarian–Fromovitz directions to feasible points. Their numerical results
showed that their proposed algorithm could performwell even for optimization prob-
lems where the standard branch-and-bound method did not converge to the correct
optimal value.

In 2012, Yuan, Fang, and Gao [33] had considered a class of quadrinomial mini-
mization problems with one quadratic constraint. In that work, the objective function
is fourth order polynomial. Before this work, the canonical duality was employed to
solve the altering support vector machine [32] and the corresponding problems with
linear inequality constraints had been studied [31].

The nonconvex quadratic minimization problems with quadratic constraints can
be formulated as follows ((Pqq) in short)

(Pqq) : min

{
P(x) = 1

2
xT Ax − f T x : x ∈ Xa

}
, (1)

where A = AT ∈ R
n×n is an indefinite matrix, the feasible space Xa is defined by

Xa �
{
x ∈ R

n| 1
2
xT Qi x + bTi x � ci , i = 1, 2, · · · ,m

}
, (2)

inwhich, Qi
T = Qi ∈ R

n×n (i = 1, 2, · · · ,m) are given nonsingularmatrices, bi ∈
R

n, (i = 1, 2, · · · ,m) are given vectors which control the geometric centers. ci (i =
1, 2, · · · ,m) ∈ R are given input constants.

In order to make sure that the feasible space Xa is nonempty, the quadratic
constraints must satisfy the Slater regularity condition, i.e., there exists one point x0
such that 1

2 x
T
0 Qi x0 + bTi x0 � ci , i = 1, 2, · · · ,m.

In this work, one hard restriction is given that f �= 0 ∈ R
n . The restriction is very

important to guarantee the uniqueness of global optimization solution of (Pqq). In
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physics, P(x) = 1
2 x

T Ax − f T x means energy function. The first part 1
2 x

T Ax means
kinetic energy or elastic energy or other one. The second part f T x means work under
an input force f . If force f = 0(object is on the stable state), the problems may
have infinite global optimization solutions. For example, we consider the following
problem

min
(x,y)∈R2

{
P(x, y) = −x2 − y2

}
s.t. x2 + y2 ≤ 4.

This problem has infinite solutions (x, y) in R
2 and x2 + y2 = 4. In another word,

the boundary points of feasible space are the global optimization solutions. If force
f = (2, 2)T , the problem is formulated as follows

min
(x,y)∈R2

{
P(x, y) = −x2 − y2 − 2x − 2y

}
s.t. x2 + y2 ≤ 4.

This problem has unique global optimization solution (x∗, y∗) = (
√
2,

√
2) (Fig. 1).

It is known that linear mixed 0–1, fractional, polynomial, bilevel, generalized
linear complementarity problems, can be reformulated as special cases of (Pqq).
Such problems have attracted the attention of many researchers in recent years. The
problem of minimizing nonconvex quadratic function with one convex quadratic
constraint arises from applying the trust region method in solving unconstrained
optimization. It was first proposed by Celis, Dennis, and Tapia (see in [2] and devel-
oped by Powell and Yuan in 1990 and 1991(see in [25, 30]. The subproblem of trust
region method is described as follows
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Fig. 1 Flowchart to show the difference between f = 0 and f �= 0. The color surface is the figure
of the objective function on the feasible space (the disk). The left one is f = 0 and it shows that the
problem has infinite global optimization solutions on the feasible space’s boundary. The right one
is f = (2, 2)T and it shows that the problem has unique global optimization solution on the point
(
√
2,

√
2)
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(ST R) :min
δ∈Rn

{Pk(δ) = f (x (k)) + g(k)T δ + 1
2δ

T B(k)δ}
s.t. 1

2‖δ‖2 � ρk .
(3)

Inwhich, δ is the objective vector(after solving themodel (3), we can construct the
next iteration points with (x (k+1) = x (k) + δ)), g(k) = ∇ f (x (k)) is the gradient vector,
B(k) is the Hessian matrix or approximate matrix of Hessian and ρk is the trust region
parameter. If the objective function is nonconvex, this problem is NP-hard [24].

With two (general) convex quadratic constraints, recently, the problem is termed as
the extended trust region subproblem(see in [2, 25, 29, 30]. In general, it is proved
to be NP-hard(see in [1, 24]. Actually, the extended trust region subproblem is a
special case of our presented problem (Pqq). It can be formulated as follows [29]

(ST T R) :
min
x∈Rn

{P(x) = 1
2 x

T Ax − f T x}
s.t. 1

2 x
T Q1x + bT1 x � c1,

1
2 x

T Q2x + bT2 x � c2.

(4)

Motivated by the difficulty of solving these problems, we are looking for some
good and powerful method to check out the global optimization solution. There is
a very powerful method proposed by Gao David (see in [12, 18]) and it is called
as canonical duality. The idea is from Legendre duality(presented and explored by
Ekeland (readers can refer to [3–5]). It is proved that it has some advantages in global
optimization and nonlinear mechanics (see in [8–20]). In this work, we employ it to
dealwith a special class ofPqq anduse it to convertPqq into a concavemaximization
dual problem over a convex set.

The paper is organized as follows. In Sect. 2, one novel definition is introduced
and stated as complementary positive definite matrix group. The basic procedure is
presented to convertPqq into a concave maximization dual problem. Two theorems
are presented to support us to find out the global optimization solution. Main result
in Theorem 1 is the equation between optimization solution of Pqq and canonical
duality problem. Main result in Theorem 2 is to give conditions to make sure that the
canonical duality problem has a unique optimization solution. In Sect. 3, we present
the basic framework of the proposed algorithm. In Sect. 4, several examples are
illustrated to show the correctness of given conditions and effectiveness of presented
theorems. Finally, we make a conclusion.

2 Canonical Duality Problem

2.1 Complementary Positive Definite Matrix

In order to study the existence of the problem Pqq , we introduce a definition.
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Definition 1 For a given matrix A ∈ R
n×n , G+(A) ⊂ R

n×n is called as comple-
mentary positive definite matrix group of A, if for any B ∈ G+(A), A + B is positive
definite. Mathematically,

G+(A) �
{
B ∈ R

n×n|A + B 
 0
}
. (5)

Especially, if A + B = I , B is called identity complementary matrix of A, where I
is the identity matrix of order n by n.

With the same idea, a new definition on complementary negative definite matrix
group can be given.

2.2 Canonical Duality Problem ofPqq

Following the standard procedure and ideas proposed by David Gao [15–18], we
construct the geometrical mapping as follows

ε(x) = {εi (x)} =
{
1

2
xT Qi x + bTi x − ci , i = 1, 2, · · · ,m

}
: Rn → R

m . (6)

The indicator is defined by

I (ε) =
{
0, if ε ≤ 0 ∈ R

m,

+∞, otherwise.

With the indicator, the quadratic constraints in (Pqq) can be relaxed and (Pqq)

takes the unconstrained form as following

(P) : min

{
P(x) = I (ε(x)) + 1

2
xT Ax − f T x : x ∈ R

n

}
. (7)

Because I (ε) is convex and lower semi-continuous on Rm , their canonical dual
variable σ satisfies the following duality relation

σ ∈ ∂−I (ε) ⇔ ε ∈ ∂−I ∗(σ ) ⇔ I (ε) + I ∗(σ ) = εTσ , (8)

where ∂− is called the sub-differential of I in convex analysis. I ∗(σ ) is Fenchel
sup-conjugate of I by

I ∗(σ ) = sup
ε∈Rm

{εTσ − I (ε)} =
{
0, i f σ � 0,
+∞, otherwise.

(9)
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The canonical dual function of P(x) is defined by the following equation (referred
to [8])

Pd(σ ) = QΛ(σ ) − I ∗(σ ), (10)

where
QΛ(σ ) = sta

{
εTσ + 1

2 x
T Ax − f T x

}
= − 1

2 F(σ )T G(σ )−1F(σ ) − cTσ ,
(11)

in which the notation sta{∗ : x ∈ R
n} is the operator to find out the stationary point

in the space Rn , G(σ ), F(σ ) and c are defined by

G(σ ) = (A +
m∑
i=1

Qiσi ), F(σ ) = ( f −
m∑
i=1

biσi ), c = (c1, c2, · · · , cm)T ,

(12)
where σi is the i-th element of σ .

The dual feasible space is defined by

S �
{
σ ∈ R

m |σ � 0 ∈ R
m, det(G(σ )) �= 0

}
. (13)

The canonical dual problem (Pd in short) associatedwith (Pqq) canbe eventually
formulated as follows

(Pd) : max
σ∈S

{
Pd(σ )

}
. (14)

2.3 Two Important Theorems

In order to show that there is no duality gap, the following theorem is presented.

Theorem 1 If A, Qi , bi , fi , ci , i = 1, 2, · · · ,m, are givenwith definitions in (Pqq)

such that the dual feasible space

Y �
{
σ ∈ S | G(σ )−1F(σ ) ∈ X

}
(15)

is not empty, the problem
(Pd) : max

σ∈Y
{
Pd(σ )

}
, (16)

is canonically (perfectly) dual to (Pqq). In another words, if σ̄ is a solution of the
dual problem (Pd),

x̄ = G(σ̄ )−1F(σ̄ ) (17)

is a solution of (Pqq) and
P(x̄) = Pd(σ̄ ). (18)
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Proof. If σ̄ is a solution of the dual problem (Pd) such that (17) holds, it must
satisfy the KKT conditions. Then, according to the complementarity conditions, we
have

σ̄ ⊥ ∇Pd(σ̄ ) and Pd(σ̄ ) = 0. (19)

Let us pay attention to the (13) and x̄ must satisfy the constraints, we have

1
2 x̄

T Qi x̄ + bTi x̄ − ci � 0,
σ̄i ⊥ 1

2 x̄
T Qi x̄ + bTi x̄ − ci ,

σ̄i � 0, i = 1, 2, · · · ,m.

(20)

This result shows that x̄ = G(σ̄ )−1F(σ̄ ) is a KKT point of (Pqq).
Next, we show the equivalence between the primal problem and canonical duality

one. According to complementarity conditions (20), we have

ci σ̄i = 1

2
x̄ T Qi σ̄i x̄ + bTi σ̄i x̄, i = 1, 2, · · · ,m. (21)

Thus, in terms of x̄ = G(σ̄ )−1F(σ̄ ) = (A +
m∑
i=1

Qi σ̄i )
−1( f −

m∑
i=1

bi σ̄i ), we have

m∑
i=1

Qi σ̄i x̄ +
m∑
i=1

bi σ̄i = f − Ax̄, (22)

then
Pd(σ̄ ) = − 1

2 F(σ̄ )T G(σ̄ )−1F(σ̄ ) − cT σ̄ ,

= − 1
2 x̄

T G(σ̄ )x̄ −
m∑
i=1

( 12 x̄
T Qi σ̄i x̄ + bTi σ̄i x̄),

= − 1
2 x̄

T Ax̄ − ( f − Ax̄)T x̄,

= 1
2 x̄

T Ax̄ − f T x̄,

= P(x̄),

which shows that there is no duality gap between (Pqq) and (Pd). The proof of the
theorem is concluded.

In order to get the optimization solution of (Pqq), we introduce the following
subset

S+ = {σ ∈ S | G(σ ) is positive definite} . (23)

In order to hold on the uniqueness of optimal duality solution, the following
existence theorem is presented.

Theorem 2 For any given symmetrical matrixes A, Qi ,∈ R
n×n, G+(A) (defined by

(5)) is the complementary positive definite matrix group of A, f, bi ∈ R
n, ci ∈ R,

i = 1, 2, · · · ,m, if the following two conditions are satisfied
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C1 :
m∑
i=1

Qi ∈ G+(A) ;

C2 : there must exist one k(1 ≤ k ≤ m) such that Qk is positive definite and Qk ∈
G+(A), moreover,

‖Dk A
−1 f ‖ > ‖bTk D−1

k ‖ +
√

‖bTk D−1
k ‖2 + 2|ck |, (24)

where Qk = DT
k Dk and ‖ ∗ ‖ is some vector norm.

Then, the canonical duality problem (16) has a unique nonzero solution σ̄ in the
space S+.

Proof. If the condition C1 is satisfied, the dual feasible space defined by (23) is
nonempty.

If C2 is also satisfied, we can get two results, the first one is that there is one
positive definite matrix Dk such that

Qk = DT
k Dk .

The second one is that the stationary point of quadratic objective function is out of
the convex constraint defined by 1

2 x
T Qkx + bTk x ≤ ck . The first one is easy to be

proved because Qk is symmetrical positive definite. Next, we will show how to get
the the second result. Because Dk from the first result is also positive definite, we
have

1
2 f

T (A−1)T Qk A−1 f + bTk A
−1 f

= 1
2 f

T (A−1)T DT
k Dk A−1 f + bTk D

−1
k Dk A−1 f

≥ | 12 f T (A−1)T DT
k Dk A−1 f | − |bTk D−1

k Dk A−1 f |
≥ 1

2‖Dk A−1 f ‖2 − ‖bTk D−1
k ‖‖Dk A−1 f ‖

= 1
2 (‖Dk A−1 f ‖ − ‖bTk D−1

k ‖)2 − 1
2‖bTk D−1

k ‖2,

if we pay attention to (24), from the above inequalities, the following inequalities
are easy to obtain,

1
2 f

T (A−1)T Qk A−1 f + bTk A
−1 f

≥ |ck | ≥ ck .

So, A−1 f is out of the constraint. According to complementary theory,

σ̄k �= 0.

Then, there is nonzero solution for the canonical duality problem in the space S+.
Because the objective function is concave and differentiable in the space S+, the
canonical duality solution is unique. The proof of theorem is concluded.
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3 Algorithm

In this section, an algorithm is proposed to solve the problem (Pqq). The basic
procedures are listed in Algorithm 1.

The algorithm has two important parts. The first one is to judge the conditions.
The other one is to get the duality optimization solution.

In the first part, we need to complete two important steps, they are from the com-
putation of eigenvalues of A + ∑m

k=1 Qk and A + Qi . If we recall the parameters,
n is the dimensional number of input variable x and m is the number of constrains.
The complexity of the first part is

T (m, n) = O(m × n2). (25)

In the other part, the time complexity comes from themethod to solve the canonical
duality problem. The complexity is

T (m, n) = O(n × m2). (26)

The complexity of the final time complexity of our proposed algorithm is

T (m, n) = O(m × n2) + O(n × m2). (27)

4 Applications

In this section, several examples are illustrated to show how to use the presented
theory to solve the problems. We employ the Quasi-Newton method to solve the
canonical duality problems.

Example 1. First of all, let us consider two-dimensional quadratic minimization

problem with one quadratic constraint. If we take A =
(
2 0
0 −1

)
, Q =

(
4 0
0 2

)
,

f =
(
3
3

)
, b =

(
0

−2

)
, c = 3, the following minimization problem is obtained,

min
x∈R2

{
P(x) = x21 − 0.5 ∗ x22 − 3x1 − 3x2

}
(28)

such that

2x21 + (x2 − 1)2 ≤ 4. (29)
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Algorithm 1 CDQN-QPQS algorithm

1: Input: thematrices A ,Qi , i = 1, 2, · · · ,m, the load item f and linear items bi , i = 1, 2, · · · ,m,
the const items of constraints ci , i = 1, 2, · · · ,m, algorithm stop cutoff ε;;

2: Initialization: σ 0 = 0, H0 = I, α0 = 1, i := 0 and ps := 0;
3: Computing: Fi = Pd (σ i ) and gi = ∇Pd (σ i );

mes = min(eig(A + ∑m
k=1 Qk));

4: if mes > 0 then
5: for k = 1 : m do
6: vk = min(eig(Qk));
7: if vk > 0 then
8: ps = ps + 1;
9: Avk = min(eig(A + Qk));
10: else
11: ps = ps;
12: Avk = −1;
13: end if
14: end for
15: Compute mv = max(Av);
16: if ps < 0 or mv < 0 then
17: ss = 0;
18: else
19: Select Qi such that vi > 0 and Avi > 0, let PQ = Qi , k = i ;

computing orthogonal decomposition of PQ = DT D;

lp = ‖DA−1 f ‖; rp = ‖bTk D−1‖ +
√

‖bTk D−1‖2 + 2|ck |;
20: if lp < rp then
21: ss = 0;
22: else
23: Quasi-Newton method is employed to solve the canonical duality problem

ss=arg{max
σ∈Y

{
Pd (σ )

}
};

24: end if
25: end if
26: else
27: ss = 0;
28: end if
29: Computing the global optimization solution: σ̄ = ss,

G(σ̄ ) = (A +
m∑
i=1

Qi σ̄ ), F(σ̄ ) = ( f −
m∑
i=1

bi σ̄ ),

and

x̄ = G(σ̄ )−1F(σ̄ );

30: Output: x̄ ; P(x̄); σ̄ ; Pd (σ̄ );
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Fig. 2 The graph of p(x) on
the quadratic constraint
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This problem is to search the global minimize value of P(x) in the inner part of
elliptic sphere whose boundary is determined by 2x21 + (x2 − 1)2 = 4(can be seen
in Fig. 2).

We can easily verify that condition C1 in Theorem 2 is satisfied because the
eigenvalues of matrix A + Q are 6 and 1. C2 is also satisfied because ‖DA−1 f ‖ =
5.1962 and

‖bT D−1‖ +
√

‖bT D−1‖2 + 2|c| = 4.2426.

where Q = DT D.
The corresponding dual problem is

max
σ∈R

{
Pd(σ ) = − 1

2 (
9

4σ+2 + (3+2σ)2

2σ−1 ) − 3σ
}

(30)

such that σ � 0.
Then we can present the solution of this problem. This dual problem has a unique

solution:
σ̄ = 1.5358.

The canonical duality global maximize value is

Pd(σ̄ ) = −14.0576.

The graph of the canonical duality problem Pd(σ ) on the interval [−5, 5] is shown
in Fig. 3. In this figure, we easily see that σ̄ = 1.5358 is the global maximizer and
max Pd(σ ) = Pd(1.5) = −14.0576.

The optimal solution of primal problem can be obtained by

x̄ = (A + σ̄Q)−1( f − bσ̄ ) =
(
0.3684
2.9309

)
.
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Fig. 3 The graph of Pd (σ )

on the interval [−5, 5]
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It is very easy to verify that

P(x̄) = −14.0576 = Pd(σ̄ ).

Let us pay attention to the solution, σ̄ = 1.5358 shows that the solution x̄ is on the
boundary of the feasible space, in fact, we can understand this from Fig.2. We can

easily check that x̄ =
(
0.3684
2.9309

)
satisfies 2x21 + (x2 − 1)2 = 4.

Example 2. We now consider three-dimensional quadratic minimization problem

with two quadratic constraints. If we take A =
⎛
⎝−2 0 0

0 2 0
0 0 −2

⎞
⎠ , Q1 =

⎛
⎝ 4 0 0
0 4 0
0 0 4

⎞
⎠ ,

Q2 =
⎛
⎝ 4 0 0
0 −1 0
0 0 4

⎞
⎠ , f =

⎛
⎝ 4
2
4

⎞
⎠ , b1 =

⎛
⎝ 0
0
0

⎞
⎠ , b2 =

⎛
⎝−3

0
0

⎞
⎠ , c1 = 2, c2 = 2, the

following minimization problem is obtained,

min
x∈R3

{
P(x) = −x21 + x22 − x23 − 4x1 − 2x2 − 4x3

}
(31)

such that
2x21 + 2x22 + 2x23 � 2, (32)

and
2x21 − 0.5x22 + 2x23 − 3x1 � 2. (33)

This problem is to look for the global minimize value of P(x) in the communal inner
part of one parabolic and one sphere which boundary is determined by 2x21 + 2x22 +
2x23 = 2 and 2x21 − 0.5x22 + 2x23 − 3x1 = 2 (can be seen in Fig. 4).
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Fig. 4 Two quadratic constrains figure bounded by 2x21 + 2x22 + 2x23 � 2 and 2x21 − 0.5x22 +
2x23 − 3x1 � 2

Also, we can easily verify that condition C1 in Theorem 2 is satisfied because
the eigenvalues of A + Q1 + Q2 are 5, 6 and 6, the eigenvalues of A + Q1 are 2, 2
and 6. C2 is satisfied because ‖D1A−1 f ‖ = 6 and

‖bT1 D−1
1 ‖ +

√
‖bT1 D−1

1 ‖2 + 2|c1| = 2.

where Q1 = DT
1 D1.

According to canonical duality theory, the canonical dual problem of (31) is as
follows:

max
(σ1,σ2)∈R2

{Pd(σ1, σ2) = − 1
2 (

(4+3σ2)
2

4(σ1+σ2)−2 + 4
4σ1−σ2+2+

16
4(σ1+σ2)−2 ) − 2σ1 − 2σ2}

(34)

such that σ1 � 0, σ2 � 0.
Then we can get the solution of this problem as following:

σ̄1 = 1.9447, σ̄2 = 0.

The canonical duality global maximized value is

Pd(σ̄1, σ̄2) = −6.8627.
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Fig. 5 The graph of
Pd (σ1, 0) on the interval
[1.8, 2.2]
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The graph of canonical duality problem objective function Pd(σ̄1, 0) on the interval
[1.8, 2.2] is shown in Fig. 5. In its figure, we easily guarantee that (σ̄1 = 1.9447, σ̄2 =
0) is the global maximize point and max Pd(σ1, 0) = Pd(1.9447, 0) = −6.8627.

The optimal solution of primal problem can be obtained by

x̄ = (A + σ̄1Q1 + σ̄2Q2)
−1( f − b1σ̄1 − b2σ̄2) =

⎛
⎝0.6922
0.2045
0.6922

⎞
⎠ .

It is very easy to verify that

P(1.9447, 0) = −6.8627 = Pd(0.6922, 0.2045, 0.6922).

Example 3. We now consider four-dimensional quadratic minimization problem
with three quadratic inequalities. constraint. If we take

A =

⎛
⎜⎜⎝
2 0 0 0
0 2 0 0
0 0 −20 0
0 0 0 4

⎞
⎟⎟⎠ , Q1 =

⎛
⎜⎜⎝
2 0 0 0
0 2 0 0
0 0 24 0
0 0 0 2

⎞
⎟⎟⎠ , Q2 =

⎛
⎜⎜⎝
1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎠ ,

Q3 =

⎛
⎜⎜⎝
2 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 2

⎞
⎟⎟⎠ , f =

⎛
⎜⎜⎝

4
12
−2
2

⎞
⎟⎟⎠ , b1 =

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠ , b2 =

⎛
⎜⎜⎝

−1
0
0
0

⎞
⎟⎟⎠ ,

b3 = (
0 0 −1 0

)T
, c1 = 9, c2 = c3 = 8.5, the following minimization problem is

obtained,
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min
x∈R4

{
P(x) = (x1 − 1)2 + x22 − 10x23 − 4x24 − 12x2 + 2x3 − 2x4

}
(35)

such that
x21 + x22 + x23 + x24 � 9, (36)

and
1

2
(x1 − 1)2 + x22 + 12x23 + x24 � 9, (37)

and

x21 − x22 + 1

2
(x3 − 1)2 + x24 � 9. (38)

The equality of the first constraint is sphere, the second one is ellipsoid and the last
one is hyperboloid.

Also, we can easily verify that condition C1 in Theorem 2 is satisfied because the
eigenvalues of A + Q1 + Q2 + Q3 are 4, 7, 7 and 10, the eigenvalues of A + Q1

are 4, 4, 4 and 6. C2 is satisfied because ‖D1A−1 f ‖ = 8.9855 and

‖bT1 D−1
1 ‖ +

√
‖bT1 D−1

1 ‖2 + 2|c1| = 4.2426.

where Q1 = DT
1 D1.

According to canonical duality theory, the canonical dual problem of (35) is as
follows

max
(σ1,σ2,σ3)∈R3

{
Pd(σ1, σ2, σ3) = − 1

2 (
(4+σ2)

2

2σ1+σ2+2σ3+2 + 144
2(σ1+σ2−σ3)+2+

(σ3−2)2

24σ1+2σ2+σ3−20 + 4
2(σ1+σ2+σ3)+4 ) − 9σ1 − 8.5σ2 − 8.5σ3

} (39)

such that σi � 0, i = 1, 2, 3.
Then we can get the solution of this problem as following:

σ̄1 = 1.1983, σ̄2 = 0, σ̄3 = 0.

The canonical duality global maximized value is

Pd(σ̄1, σ̄2, σ̄3) = −29.5216.

The optimal solution of primal problem can be obtained by

x̄ = (A + σ̄1Q1 + σ̄2Q2 + σ̄3Q3)
−1( f − b1σ̄1 − b2σ̄2 − b3σ̄3) =

⎛
⎜⎜⎝

0.9098
2.7293

−0.2283
0.3127

⎞
⎟⎟⎠ .
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It is very easy to verify that

P(1.1983, 0, 0) = −29.5216 = Pd(0.9098, 2.7293,−0.2283, 0.3127).

Example 4. Here, we present a ten-dimensional nonconvex quadratic program-
ming with two quadratic constraints. If we let

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0.5 1 1 1 0.5 0.5 0.5 0.5 0.5
0.5 −13 1 1 1 0.5 0.5 0.5 0.5 1
1 1 −14 0.5 0 1 1 1 0.5 0.5
1 1 0.5 −2 0.5 1 1 0.5 0.5 0.5
1 1 0 0.5 3 0.5 0.5 0.5 1 0.5
0.5 0.5 1 1 0.5 −6 0.5 0.5 0.5 0
0.5 0.5 1 1 0.5 0.5 −1 0.5 1 0
0.5 0.5 1 0.5 0.5 0.5 0.5 −13 0.5 1
0.5 0.5 0.5 0.5 1 0.5 1 0.5 −14 0.5
0.5 1 0.5 0.5 0.5 0 0 1 0.5 −5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10 0.5 1 1 1 0.5 0.5 0.5 0.5 0.5
0.5 25 1 1 1 0.5 0.5 0.5 0.5 1
1 1 24 0.5 0 1 1 1 0.5 0.5
1 1 0.5 12 0.5 1 1 0.5 0.5 0.5
1 1 0 0.5 9 0.5 0.5 0.5 1 0.5
0.5 0.5 1 1 0.5 12 0.5 0.5 0.5 0
0.5 0.5 1 1 0.5 0.5 9 0.5 1 0
0.5 0.5 1 0.5 0.5 0.5 0.5 25 0.5 1
0.5 0.5 0.5 0.5 1 0.5 1 0.5 31 0.5
0.5 1 0.5 0.5 0.5 0 0 1 0.5 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 0.5 1 1 1 0.5 0.5 0.5 0.5 0.5
0.5 9 1 1 1 0.5 0.5 0.5 0.5 1
1 1 8 0.5 0 1 1 1 0.5 0.5
1 1 0.5 6 0.5 1 1 0.5 0.5 0.5
1 1 0 0.5 4 0.5 0.5 0.5 1 0.5
0.5 0.5 1 1 0.5 6 0.5 0.5 0.5 0
0.5 0.5 1 1 0.5 0.5 4 0.5 1 0
0.5 0.5 1 0.5 0.5 0.5 0.5 13 0.5 1
0.5 0.5 0.5 0.5 1 0.5 1 0.5 13 0.5
0.5 1 0.5 0.5 0.5 0 0 1 0.5 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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the other corresponding coefficients are listed as follows

f = (−27 1 8 6 −18 6 30 1 13 4) ,

b1 = (10 8 6 10 14 9 9 9 11 8),
b2 = (16 9 14 15 9 7 9 13 6 11),

and c1 = c2 = 20.
Similar with the other three examples, we can easily verify that condition C1

in Theorem 2 is satisfied because the eigenvalues of A + Q1 + Q2 are listed as
follows {6.3635, 8.7851, 10.4295, 11.0365, 14.1675, 16.3225, 17.7796, 22.3263,
26.8958, 36.8937}, the eigenvalues of A + Q1 are listed as follows {2.8501, 4.6238,
5.8963, 6.9364, 8.6136, 9.8704, 10.7933, 11.8424, 15.0207, 22.5531}. C2 is satis-
fied because ‖D1A−1 f ‖ = 615.4753 and

‖bT1 D−1
1 ‖ +

√
‖bT1 D−1

1 ‖2 + 2|c1| = 11.3815.

where Q1 = DT
1 D1.

The canonical duality solution is

σ̄1 = 1.6894, σ̄2 = 0.

The canonical duality global maximize value is

Pd(σ̄1, σ̄2) = −149.6523.

The optimal solution of primal problem can be obtained by

x̄ = (−2.6417,−0.1485, 0.1268,−0.2010,−1.9168,−0.3058,
1.5580,−0.3112, 0.0087,−0.2020).

It is very easy to verify that

P(1.6984, 0) = −149.6523 = Pd(x̄).

5 Conclusions

Nonconvex quadratic minimization problems with quadratic constraints are well
known because they are very difficult to find out the global optimization solutions.
In this paper, we have employed the canonical duality to convert them into a concave
maximization dual problem over a convex set. With the presented conditions in
Theorem 2, we have proved that the canonical duality problem (16) has a unique
nonzero solution σ̄ in the space S+. With Theorem 1, we can find out the global
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optimization solutions x̄ of the class of nonconvex quadratic minimization problems
with quadratic constraints by (17). Several numerical examples can show that the
given conditions and results in Theorems 1 and 2 are correct.
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