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Abstract This paper presents a canonical dual method for solving a quadratic
discrete value selection problem subjected to inequality constraints. By using a linear
transformation, the problem is first reformulated as a standard quadratic 0–1 integer
programming problem. Then, by the canonical duality theory, this challenging prob-
lem is converted to a concave maximization over a convex feasible set in continuous
space. It is proved that if this canonical dual problem has a solution in its feasi-
ble space, the corresponding global solution to the primal problem can be obtained
directly by a general analytical form. Otherwise, the problem could be NP-hard.
In this case, a quadratic perturbation method and an associated canonical primal-
dual algorithm are proposed. Numerical examples are illustrated to demonstrate the
efficiency of the proposed method and algorithm.

1 Introduction

Many decision-making problems, such as portfolio selection, capital budgeting,
production planning, resource allocation, and computer networks, etc., can often
be formulated as quadratic programming problems with discrete variables. See for
examples, [4, 5, 9, 24]. In engineering applications, the decision variables can not
have arbitrary values. Instead, either some or all of the variables must be selected
from a list of integer or discrete values for practical reasons. For examples, struc-
tural members may have to be selected from selections available in standard sizes,
member thicknesses may have to be selected from the commercially available ones,
the number of bolts for a connection must be an integer, the number of reinforcing
bars in a concrete member must be an integer, etc. [23]. However, these integer
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programming problems are computationally highly demanding. Nevertheless, some
numerical methods are now available.

Several review articles on nonlinear optimization problems with discrete vari-
ables are available [1, 4, 28, 33, 37, 38], and some popular methods have been
discussed, including branch and bound methods, a hybrid method that combines a
branch and bound method with a dynamic programming technique [29], sequential
linear programming, rounding-off techniques, cutting plane techniques [2], heuris-
tic techniques, penalty function approaches, simulated annealing [25], and genetic
algorithms, etc. The relaxation methods have also been proposed recently, leading to
secondorder cone programming (SOC) [21] and improved linearization strategy [35].

Branch and bound is perhaps the most widely known and used deterministic
method for discrete optimization problems. When applied to linear problems, this
method can be implemented in a way to yield a global minimum point. However for
nonlinear problems there is no such guarantee, unless the problem is convex. The
branch and bound method has been used successfully to deal with problems with
discrete design variables. However for the problem with a large number of discrete
design variables, the number of subproblems (nodes) becomes large, making the
method inefficient.

Simulated annealing (SA) and genetic algorithms (GA) belong to the category of
stochastic searchmethods [22]which based on an element of randomchoice. Because
of this, one has to sacrifice the possibility of an absolute guarantee of success within
a finite amount of computation.

Canonical duality theory provides a new and potentially useful methodology for
solving a large class of nonconvex/nonsmooth/discrete problems (see the review
articles [13, 19]). It was shown in [8, 12] that the Boolean integer programming
problems are actually equivalent to certain canonical dual problems in continuous
space without duality gap, which can be solved deterministically under certain con-
ditions. This theory has been generalized for solving multi-integer programming
[39] and the well-known max cut problems [40]. It is also shown in [13, 16] that by
the canonical duality theory, the NP-hard quadratic integer programming problem is
identical to a continuous unconstrained Lipschitzian global optimization problem,
which can be solved via deterministic methods (but not in polynomial times) (see
[20]). The canonical duality theory has been used successfully for solving a large
class of challenging problems not only in global optimization, but also in nonconvex
analysis and continuum mechanics [17].

In this paper, our goal is to solve a general quadratic programming problemwith its
decision variables taking values from discrete sets. The elements from these discrete
sets are not required to be binary or uniformly distributed. An effective numerical
method is developed based on the canonical duality theory [10]. The rest of the paper
is organized as follows. Section2 presents a mathematical statement of the general
discrete value quadratic programming problem and how it can be transformed into a
standard 0–1 programming problem in higher dimensional space. Section3 presents
a brief review on the canonical duality theory. Detailed canonical dual transformation
procedure is presented in Sect. 4 to show how the integer programming problem can
be converted to a concavemaximization in a convex space.Aperturbed computational
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method is developed in Sect. 5. Some numerical examples are illustrated in Sect. 6
to demonstrate the effectiveness and efficiency of the proposed method. The paper
is ended with some concluding remarks.

2 Primal Problem and Equivalent Transformation

The discrete programming problem to be addressed is given below:

(Pa) min P(x) = 1

2
xT Qx − cT x (1)

s.t. g(x) = Ax − b ≤ 0, (2)

x = [x1, x2, · · · , xn]T , xi ∈ Ui , i = 1, · · · , n,

where Q = {qi j } ∈ R
n×n is a symmetric matrix, A = {ai j } ∈ R

m×n is a matrix with
rank(A) = m < n, c = [c1, · · · , cn]T ∈ R

n and b = [b1, · · · , bm]T ∈ R
m are given

vectors. Here, for each i = 1, · · · , n,

Ui = {ui,1, · · · , ui,Ki },

where ui, j , j = 1, · · · , Ki , are given real numbers. In this paper, we let K =∑n
i=1 Ki .
Problem (Pa) arises in many real-world applications, say, the pipe network opti-

mization problems in water distribution systems, where the choices of pipelines are
discrete values. Such problems have been studied extensively by traditional direct
approaches (see [41]). Due to the constraint of discrete values, this problem is con-
sidered to be NP-hard and the traditional methods can only provide upper bound
results. In this paper, we will show that the canonical duality theory will provide
either a lower bound approach to this challenging problem, or the global optimal
solution under certain conditions.

In order to convert the discrete value problem (Pa) to the standard 0–1 program-
ming problem, we introduce the following transformation,

xi =
Ki∑

j=1

ui, j yi, j , i = 1, · · · , n, (3)

where, for each i = 1, · · · , n,ui, j ∈ Ui , j = 1, · · · , Ki . Then, the discrete program-
ming problem (Pa) can be written as the following 0–1 programming problem:

(Pb) min P(y) = 1

2
yT By − hT y (4)

s.t. g(y) = Dy − b ≤ 0, (5)
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Ki∑

j=1

yi, j − 1 = 0, i = 1, · · · , n, (6)

yi, j ∈ {0, 1}, i = 1, . . . , n; j = 1, · · · , Ki , (7)

where

y = [y1,1, · · · , y1,K1 , · · · , yn,1, · · · , yn,Kn ]T ∈ R
K ,

h = [c1u1,1, · · · , c1u1,K1 , · · · , cnun,1, · · · , cnun,Kn ]T ∈ R
K ,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

q1,1u21,1 · · · q1,1u1,1u1,K1 · · · q1,nu1,1un,Kn

...
. . .

...
. . .

...

q1,1u1,K1u1,1 · · · q1,1u21,K1
· · · · · ·

...
. . .

...
. . .

...

qn,1un,Knu1,1 · · · · · · · · · qn,nu2n,Kn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
K×K ,

D =
⎡

⎢
⎣

a1,1u1,1 · · · a1,1u1,K1 · · · a1,nun,Kn

...
. . .

...
. . .

...

am,1u1,1 · · · am,1u1,K1 · · · am,nun,Kn

⎤

⎥
⎦ ∈ R

m×K .

Theorem 1 Problem (Pb) is equivalent to Problem (Pa).

Proof For any i = 1, 2, · · · , n, it is clear that constraints (6) and (7) are equivalent
to the existence of only one j ∈ {1, · · · , Ki }, such that yi, j = 1 while yi, j = 0 for
all other j . Thus, from the definition of y, the conclusion follows readily. ��

Problem (Pb) is a standard 0–1 quadratic programming problemwith both equal-
ity and inequality constraints. Let

H =

⎡

⎢
⎢
⎢
⎣

1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...

0 · · · 0 0 · · · 0 · · · 1 · · · 1

⎤

⎥
⎥
⎥
⎦

∈ R
n×K

and, for a given integer K , let

eK = [1, · · · , 1, · · · , 1, · · · , 1]T ∈ R
K .
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Thus, on the feasible space

Y = {y ∈ R
K : Dy ≤ b, Hy = en, y ∈ {0, 1}K }, (8)

the integer constrained problem (Pb) can be reformulated as a standard constrained
0–1 programming problem:

(Pc) : min

{

P(y) = 1

2
yT By − hT y| y ∈ Y

}

. (9)

3 Canonical Duality Theory: A Brief Review

The basic idea of the canonical duality theory can be demonstrated by solving the
following general nonconvex problem (the primal problem (P) in short)

(P) : min
x∈Xa

{

P(x) = 1

2
〈x,Ax〉 − 〈x, f〉 + W (x)

}

, (10)

where A ∈ R
n×n is a given symmetric indefinite matrix, f ∈ R

n is a given vector
(input), 〈x, x∗〉 denotes the bilinear form between x and its dual variable x∗,Xa ⊂ R

n

is a given feasible space, and W : Xa → R ∪ {∞} is a general nonconvex objective
function.

It must be emphasized that, different from the objective function extensively used
in mathematical optimization, a real-valued function W (x) is called to be objective
in continuum physics and the canonical duality theory only if (see [10] Chap.6,
p. 288)

W (x) = W (Qx) ∀ x ∈ Xa, ∀Q ∈ Q,

where Q = {Q ∈ R
n×n| Q−1 = QT detQ = 1} is a special rotation group.

Geometrically speaking, an objective function does not depend on the rotation, but
only on certain measure of its variable. In Euclidean spaceRn , the simplest objective
function is the �2-norm ‖x‖ in R

n since ‖Qx‖2 = xTQTQx = ‖x‖2 ∀Q ∈ Q. By
Cholesky factorization, any positive definite matrix has a unique decomposition
C = D∗D. Thus, any convex quadratic function is objective. Physically, an objective
function does not depend on observers [7], which is essential for any real-world
mathematical modeling.

The key step in the canonical duality theory is to choose a nonlinear operator

ξ = Λ(x) : Xa → Ea ⊂ R
p (11)

and a canonical function V : Ea → R such that the nonconvex objective function
W (x) can be recast by adopting a canonical formW (x) = V (Λ(x)). Thus, the primal
problem (P) can be written in the following canonical form:
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(P) : min
x∈Xa

{P(x) = V (Λ(x)) −U (x)} , (12)

where U (x) = 〈x, f〉 − 1
2 〈x,Ax〉. By the definition introduced in [10], a differen-

tiable function V (ξ) is said to be a canonical function on its domain Ea if the duality
mapping ς = ∇V (ξ) from Ea to its range Sa ⊂ R

p is invertible. Let 〈ξ ; ς〉 denote
the bilinear form on Ea × Sa . Thus, for the given canonical function V (ξ), its Legen-
dre conjugate V ∗(ς) can be defined uniquely by the Legendre transformation (cf.
Gao [10])

V ∗(ς) = sta{〈ξ ; ς〉 − V (ξ) | ξ ∈ Ea}, (13)

where the notation sta{g(ξ)| ξ ∈ Ea} stands for finding stationary point of g(ξ) on
Ea . It is easy to prove that the following canonical duality relations hold on Ea × Sa :

ς = ∇V (ξ) ⇔ ξ = ∇V ∗(ς) ⇔ V (ξ) + V ∗(ς) = 〈ξ ; ς〉. (14)

By this one-to-one canonical duality, the nonconvex term W (x) = V (Λ(x)) in the
problem (P) can be replaced by 〈Λ(x); ς〉 − V ∗(ς) such that the nonconvex func-
tion P(x) is reformulated as the Gao-Strang total complementary function [10]:

Ξ(x, ς) = 〈Λ(x); ς〉 − V ∗(ς) −U (x) : Xa × Sa → R. (15)

By using this total complementary function, the canonical dual function Pd(ς) can
be obtained as

Pd(ς) = sta{Ξ(x, ς) | x ∈ Xa}
= UΛ(ς) − V ∗(ς), (16)

where UΛ(x) is defined by

UΛ(ς) = sta{〈Λ(x); ς〉 −U (x) | x ∈ Xa}. (17)

Inmanyapplications, the geometrically nonlinear operatorΛ(x) is usually a quadratic
function [3, 34]

Λ(x) = 1

2
〈x, Dkx〉 + 〈x,bk〉, (18)

where Dk ∈ R
n×n and bk ∈ R

n(k = 1, · · · , p). Let ς = [ς1, · · · , ςp]T . In this case,
the canonical dual function can be written in the following form:

Pd(ς) = −1

2
〈F(ς),G−1(ς)F(ς)〉 − V ∗(ς), (19)
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where

G(ς) = A +
p∑

k=1

ςk Dk, F(ς) = f −
p∑

k=1

ςkbk .

Let
S +

a = {ς ∈ R
p| G(ς) � 0}.

It is easy to prove that S +
a is convex. Moreover, S +

a is nonempty as long as there
exists one Dk � 0.

Therefore, the canonical dual problem can be proposed as

(Pd) : max{Pd(ς)| ς ∈ S +
a }. (20)

which is a concave maximization problem over a convex setS +
a ⊂ R

p.

Theorem 2 ([10]). Problem (Pd) is canonically dual to (P) in the sense that if ς̄
is a critical point of Pd(ς), then

x̄ = G−1(ς̄)F(ς̄) (21)

is a critical point of Π(x) and

P(x̄) = Ξ(x̄, ς̄) = Pd(ς̄). (22)

If ς̄ is a solution to (Pd), then x̄ is a global minimizer of (P) and

min
x∈Xa

P(x) = Ξ(x̄, ς̄) = max
ς∈S +

a

Pd(ς). (23)

Conversely, if x̄ is a solution to (P), it must be in the form of (21) for critical solution
ς̄ of Pd(ς).

To help explaining the theory, we consider a simple nonconvex optimization in
R

n:

min P(x) = 1

2
α(

1

2
‖x‖2 − λ)2 − xT f, ∀x ∈ R

n, (24)

where α, λ > 0 are given parameters. The criticality condition ∇P(x) = 0 leads to
a nonlinear algebraic equation system in Rn

α(
1

2
‖x‖2 − λ)x = f . (25)

Clearly, to solve this n-dimensional nonlinear algebraic equation directly is diffi-
cult. Also traditional convex optimization theory can not be used to identify global
minimizer. However, by the canonical dual transformation, this problem can be
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solved. To do so, we let ξ = Λ(u) = 1
2‖x‖2 − λ ∈ R. Then, the nonconvex func-

tion W (x) = 1
2α( 12‖x‖2 − λ)2 can be written in canonical form V (ξ) = 1

2αξ 2. Its
Legendre conjugate is given by V ∗(ς) = 1

2α
−1ς2, which is strictly convex. Thus,

the total complementary function for this nonconvex optimization problem is

Ξ(x, ς) = (
1

2
‖x‖2 − λ)ς − 1

2
α−1ς2 − xT f . (26)

For a fixed ς ∈ R, the criticality condition ∇xΞ(x, ς) = 0 leads to

ςx − f = 0. (27)

For each ς �= 0, the Eq. (27) gives x = f/ς in vector form. Substituting this into
the total complementary function Ξ , the canonical dual function can be easily
obtained as

Pd(ς) = {Ξ(x, ς)|∇xΞ(x, ς) = 0}
= −‖f‖2

2ς
− 1

2
α−1ς2 − λς, ∀ς �= 0. (28)

The critical point of this canonical function is obtained by solving the following dual
algebraic equation

(α−1ς + λ)ς2 = 1

2
‖f‖2. (29)

For any given parameters α, λ and the vector f ∈ R
n , this cubic algebraic equation

has at most three roots satisfying ς1 ≥ 0 ≥ ς2 ≥ ς3, and each of these roots leads to
a critical point of the nonconvex function P(x), i.e., xi = f/ςi , i = 1, 2, 3. By the
fact that ς1 ∈ S +

a = {ς ∈ R | ς > 0}, then Theorem 1 tells us that x1 is a global
minimizer of P(x).

Consider one dimension problem with α = 1, λ = 2, f = 1
2 , the primal function

and canonical dual function are shown in Fig. 1, where, x1 = 2.11491 is a global
minimizer of P(x), ς1 = 0.236417 is a global maximizer of Pd(ς), and P(x1) =
−1.02951 = Pd(ς1) (See the two black dots).

If we let f = 0, the graph of P(x) is symmetric (i.e., the so-called double-well
potential or theMexican hat for n = 2 [11])with infinite number of globalminimizers
satisfying ‖x‖2 = 2λ. In this case, the canonical dual Pd(ς) = − 1

2α
−1ς2 − λς is

strictly concave with only one critical point (local maximizer) ς3 = −αλ < 0 (for
α, λ > 0). The corresponding solution x3 = f/ς3 = 0 is a local maximizer. By the
canonical dual equation (29) we have ς1 = ς2 = 0 located on the boundary ofS +

a ,
which corresponding to the two global minimizers x1,2 = ±√

2λ for n = 1, see
Fig. 1b.
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(a) f = 0.5 (b) f = 0

Fig. 1 Graphs of P(x) (solid) and Pd (ς) (dashed)

This simple example shows a fundamental issue in global optimization, i.e., the
optimal solutions of a nonconvex problem depends sensitively on the linear term
(input) f . Geometrically speaking, the objective function W (x) in P(x) possesses
certain symmetry. If there is no linear term, i.e., the subjective function in P(x), the
nonconvex problemusually hasmore than one globalminimizer due to the symmetry.
Traditional direct approaches and the popular SDP method are usually failed to deal
with this situation. By the canonical duality theory, we understand that in this case
the canonical dual function has no critical point in its open set S +

a . Therefore, by
adding a linear perturbation f to break this symmetry, the canonical duality theory can
be used to solve the nonconvex problems to obtain one of global optimal solutions.
This idea was originally from Gao’s work (1996) on post-buckling analysis of large
deformed beam. The potential energy of this beam model is a double-well function,
similar to this example, without the force f , the beam could have two buckling states
(corresponding to twominimizers) and one un-buckled state (localmaximizer). Later
on (2008) in the Gao andOgden work on analytical solutions in phase transformation
[14], they further discovered that the nonconvex systemhas no phase transition unless
the force distribution f (x) vanished at certain points. They also discovered that if
force field f (x) changes dramatically, all the Newton type direct approaches failed
even to find any local minimizer. This discovery is fundamentally important for
understanding NP-hard problems in global optimization and chaos in nonconvex
dynamical systems. The linear perturbation method has been used successfully for
solving global optimization problems [16, 18, 32, 40]. Comprehensive reviews of
the canonical duality theory and its applications in nonconvex analysis and global
optimization can be found in [11, 13, 15].
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4 Canonical Dual Problem

Now we are ready to apply the canonical duality theory for solving the integer pro-
gramming problem (Pc) presented in Sect. 2. As indicated in [12, 13], the key
step for solving this NP-hard problem is to use a so-called canonical measure
ρ = {yi (yi − 1)} ∈ R

K such that the integer constraint yi ∈ {0, 1} can be equiva-
lently written in the canonical form

ρ = y ◦ (y − eK ) = {yi (yi − 1)} = 0 ∈ R
K

where the notation s ◦ t := [s1t1, s2t2, . . . , sK tK ]T denotes the Hadamard product for
any two vectors s, t ∈ R

K . Thus, the so-called geometrically admissible measure Λ

can be defined as

ξ = Λ(y) = {Dy − b, Hy − en, y ◦ (y − eK )}
= {ε, δ, ρ} ∈ E = R

m+n+K .

Let

U (y) = −P(y) = hT y − 1

2
yT By,

and define

V (ξ) =
{
0 if ε ≤ 0, δ = 0, ρ = 0,
+∞ otherwise.

Clearly, the constraints in Y can be replaced by the canonical transformation
V (Λ(y)) and the primal problem (Pc) can be equivalently written in the standard
canonical form [13]

(P) : min
{
Π(y) = V (Λ(y)) −U (y) : y ∈ R

K
}
. (30)

By the fact that V (ξ) is convex, lower, semi-continuous on E , its sub-differential
leads to the canonical dual variable ς = (σ , τ ,μ) ∈ ∂V (ξ) ∈ E ∗ = R

m+n+K , and
its Fenchel super-conjugate (cf. Rockafellar [30])

V �(ς) = sup{〈ξ ; ς〉 − V (ξ) : ξ ∈ E }
=

{
0 if σ ≥ 0, τ �= 0, μ �= 0
+∞ otherwise

(31)

is also convex, l.s.c. on E ∗. By convex analysis, the following generalized canonical
duality relations

ς ∈ ∂V (ξ) = E ∗
a ⇔ ξ ∈ ∂V �(ς) = Ea ⇔ V (ξ) + V �(ς) = 〈ξ ; ς〉 (32)
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hold on E × E ∗, where

Ea = {ξ = {ε, δ, ρ} ∈ E | ε ≤ 0, δ = 0, ρ = 0},

E ∗
a = {ς = {σ , τ ,μ} ∈ E ∗| σ ≥ 0, τ �= 0, μ �= 0}

are effective domains of V and V �, respectively. The last equality in (32) is equivalent
to the following KKT complementarity conditions:

εTσ = 0, δT τ = 0, ρTμ = 0. (33)

Clearly, the condition μ �= 0 leads to the integer condition ρ = {yi (yi − 1)} = 0 ∈
R

K . Let

F(ς) = h − DTσ − HT τ + μ, (34)

G(μ) = B + 2Diag (μ). (35)

Thus, on R
K × E ∗

a , the total complementary function Ξ associated with Π(y) can
be written as

Ξ(y, ς) = 〈Λ(y); ς〉 − V �(ς) −U (y)

= 1

2
yTG(μ)y − FT (ς)y − σ Tb − τ T en.

The criticality condition ∇yΞ(y, ς) = 0 leads to the canonical equilibrium equation

G(μ)y − F(ς) = 0. (36)

Let Sa ⊂ E ∗
a be a canonical dual space:

Sa = {ς = (σ , τ ,μ) ∈ E ∗
a : detG(ς) �= 0 }. (37)

Then on Sa , the canonical dual function can be finally formulated as

Πd(ς) = sta{Ξ(y, ς) : y ∈ R
K }

= −1

2
FT (ς)G−1(μ)F(ς) − σ Tb − τ T en. (38)

Theorem 3 (Complementary-Dual Principle). If ς̄ = (σ̄ , τ̄ , μ̄) is a KKT point of
Πd(ς) on Sa, then the vector

ȳ(ς̄) = G−1(μ̄)F(ς̄) (39)
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is a KKT point of Problem (P) and

Π(ȳ) = Πd(ς̄). (40)

Proof By introducing the Lagrange multiplier vectors ξ = {ε, δ, ρ} ∈ Ea to relax
the inequality constraints1 in E ∗

a , the Lagrangian function associated with the dual
function Πd(σ , τ ,μ) becomes

L(σ , τ ,μ, ε, ρ) = Πd(σ , τ ,μ) − εTσ − δT τ − ρTμ.

Then, in terms of y = G−1(μ)F(σ , τ ,μ), the criticality condition ∇ς L(ς, ξ) = 0
leads to

∂L(σ , τ ,μ, ε, δ, ρ)

∂σ
= Dy − b − ε = 0,

∂L(σ , τ ,μ, ε, δ, ρ)

∂τ
= Hy − en − δ = 0,

∂L(σ , τ ,μ, ε, δ, ρ)

∂μ
= y ◦ (y − eK ) − ρ = 0,

as well as the KKT conditions

σ ≥ 0, ε ≤ 0, σ T ε = 0, (41)

τ �= 0, δ = 0, δT τ = 0. (42)

μ �= 0, ρ = 0, ρTμ = 0. (43)

They can be written as:

Dy − b ≤ 0, (44)

Hy − en = 0, (45)

y ◦ (y − eK ) = 0, (46)

This proves that if (σ̄ , τ̄ , μ̄) is a KKT point of Πd(ς), then the vector

ȳ(σ̄ , τ̄ , μ̄) = G−1(μ̄)F(σ̄ , τ̄ , μ̄)

is a KKT point of Problem (P).

1The inequality detG(ς) �= 0 is not a constraint since the Lagrange multiplier for this inequality is
identical zero.
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Again, by the complementary conditions (41)–(43) and (39), we have

Πd(σ̄ , τ̄ , μ̄) = −1

2
F(σ̄ , τ̄ , μ̄)TG(μ̄)−1F(σ̄ , τ̄ , μ̄) − σ̄ Tb − τ̄ T en

= 1

2
ȳT Bȳ − hT ȳ + σ̄ T (Dȳ − b) + τ̄ T (H ȳ − en) + μ̄T (ȳ ◦ (ȳ − eK ))

= 1

2
ȳT Bȳ − hT ȳ = Π(ȳ).

Therefore, the theorem is proved. ��
Theorem 3 shows that the strong duality (40) holds for all KKT points of the

primal and dual problems. In continuum mechanics, this theorem solved a 50-year-
old problem and is known as the Gao principle [27]. In nonconvex analysis, this
theorem can be used for solving a large class of fully nonlinear partial differential
equations.

Remark 1. As we have demonstrated that by the generalized canonical duality (32),
all KKT conditions can be recovered for both equality and inequality constraints.
Generally speaking, the nonzero Lagrangemultiplier condition for the linear equality
constraint is usually ignored in optimization textbooks. But it can not be ignored for
nonlinear constraints. It is proved recently [26] that the popular augmented Lagrange
multiplier method can be used mainly for linear constrained problems. Since the
inequality constraintμ �= 0 produces a nonconvex feasible set E ∗

a , this constraint can
be replaced by either μ < 0 or μ > 0. But the condition μ < 0 is corresponding to
y ◦ (y − eK ) ≥ 0, this leads to a nonconvex open feasible set for the primal problem.
By the fact that the integer constraints yi (yi − 1) = 0 are actually a special case
(boundary) of the boxed constraints 0 ≤ yi ≤ 1, which is corresponding to y ◦ (y −
eK ) ≤ 0,we should haveμ > 0 (see [8] and [12, 16]). In this case, theKKT condition
(43) should be replaced by

μ > 0, y ◦ (y − eK ) ≤ 0, μT [y ◦ (y − eK )] = 0. (47)

Therefore, as long as μ �= 0 is satisfied, the complementarity condition in (47) leads
to the integer condition y ◦ (y − eK ) = 0. Similarly, the inequality τ �= 0 can be
replaced by τ > 0.

By this remark, we can introduce a convex subset of the dual feasible spaceSa :

S +
a = {ς = (σ , τ ,μ) ∈ E ∗ : σ ≥ 0, τ > 0, μ > 0, G(μ) � 0}. (48)

Then the canonical dual problem can be eventually proposed as the following

(Pd) max

{

Πd(ς) = −1

2
FT (ς)G−1(μ)F(ς) − σ Tb − τ T en| ς ∈ S +

a

}

. (49)
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It is easy to check that Πd(ς) is concave on the convex open set S +
a . Therefore,

if S +
a is not empty, this canonical dual problem can be solved easily by convex

minimization techniques.

Theorem 4 Assume that ς̄ = (σ̄ , τ̄ , μ̄) is a KKT point of Πd(ς) and ȳ = G−1(μ̄)

F(ς̄). If ς̄ ∈ S +
a , then ȳ is a global minimizer of Π(y) and ς̄ is a global maximizer

of Πd(ς) with

Π(ȳ) = min
y∈RK

Π(y) = max
ς∈S +

a

Πd(ς) = Πd(ς̄) (50)

Proof It is easy to check that the total complementary function Ξ(y, ς) is a saddle
function on the open set RK × S +

a , i.e., convex (quadratic) in y ∈ R
K and concave

(linear) in ς ∈ S +
a . Therefore, if (ȳ, ς̄) is a critical point of Ξ(y, ς), we must have

Πd (ς̄) = max
ς∈S +

a

Pd (ς) = max
ς∈S +

a

min
y∈RK

Ξ(y, ς) = min
y∈RK

max
ς∈S +

a

Ξ(y, ς)

= min
y∈RK

max
ς∈S +

a

{
1

2
yTG(μ)y − (h − DT σ − HT τ + μ)T y − σ T b − τT en

}

= min
y∈RK

max
ς∈S +

a

{
1

2
yT By − hT y + σ T (Dy − b) + τT (Hy − en) + μT [y ◦ (y − eK )]

}

= min
y∈RK

max
ς∈S +

a

{1
2
yT By − hT y + 〈Λ(y); ς〉} (51)

Note that

min
ς∈E ∗

{V �(ς)} = V �(ς̄) = 0, min
ξ∈E

{V (ξ)} = V (ξ̄) = 0.

Thus, it follows from (51) that

Πd(ς̄) = min
y∈RK

max
ς∈E ∗

{1
2
yT By − hT y + 〈Λ(y); ς〉 − V �(ς)}

= min
y∈RK

{1
2
yT By − hT y} + max

ς∈E ∗
{〈Λ(y); ς〉 − V �(ς)}

= min
y∈RK

{1
2
yT By − hT y + V (Λ(y))}

= min
y∈RK

Π(y) = min
y∈Y

P(y).

This completes the proof. ��
Remark 2. By the fact that S +

a is an open convex set, if the problem (P) has
multiple global minimizers, then its canonical dual solutions could be located on
the boundary of S +

a as illustrated in Sect. 3 and in [12, 31]. In order to solve this
problem, we let
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S +
c = {ς = (σ , τ ,μ) ∈ S +

a : μ ≥ 0, τ ≥ 0, G(μ) � 0}.

Then on this closed convex domain, the relaxed concave maximization problem

(P�) max{Πd(ς) : ς ∈ S +
c } (52)

has at least one solution ς̄ = (σ̄ , τ̄ , μ̄). If the corresponding ȳ = G−1(μ̄)F(ς̄) is
feasible, then ȳ is a global minimizer of the primal problem (P). IfG(μ̄) is singular,
than G−1(μ̄) can be replaced by the Moore–Penrose generalized inverse G† (see
[31]). Otherwise, the relaxed canonical dual (P�) provides a lower bound approach
to the primal problem (P), i.e.,

min
y∈Y

P(y) ≥ max
ς∈S +

c

Πd(ς).

This is one of the main advantages of the canonical duality theory.

5 Canonical Perturbation Method

In fact, Problem (Pd) can be rewritten as a convex minimization problem:

min
1

2
FT (ς)G−1(μ)F(ς) + σ Tb + τ T en,

s.t. ς ∈ S +
a .

If the primal problem has a unique global minimal solution, this canonical dual
problem may have a unique critical point in S +

a which can be obtained easily by
well-developed nonlinear minimization techniques. Otherwise, the canonical dual
function Πd(ς) may have critical point ς̄ located on the boundary of S +

a , where
the matrix G(μ) is singular. In order to handle this issue, (Pd) can be relaxed to a
semi-definite programming problem:

min g + σ Tb + τ T en,

s.t. g ≥ 1

2
FT (ς)G†(μ)F(ς), (53)

G(μ) � 0, (54)

ς ∈ E ∗, σ ≥ 0, μ > 0, (55)

where the parameter g is actually the Gao-Strang pure complementary gap function
[19], and G† represents the Moore–Penrose generalized inverse of G. Since τ is
a Lagrange multiplier for the linear equality Hy = en , the condition τ �= 0 can be
ignored in this section as long as the final solution y is feasible.
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Lemma 1 (Schur Complementary Lemma). Let

A =
[
B CT

C D

]

,

If B � 0, then A is positive (semi) definite if and only if the matrix D − CB−1CT is
positive (semi) definite. If B � 0, then, A is positive semi-definite if and only if the
matrix D − CB−1CT is positive semi-definite and (I − BB−1)C = 0.

According to Lemma 1, (53) is equivalent to

[
G(μ) F(ς)

FT (ς) 2g

]

� 0.

Thus, the canonical dual problem (Pd) can be further relaxed to the following
stardard semi-definite problem (SDP):

min g + σ Tb + τ T en,

s.t.

[
G(μ) F(ς)

FT (ς) 2g

]

� 0, G(μ) � 0,

ς ∈ E ∗, σ ≥ 0, μ > 0.

Although the SDP relaxation can be used theoretically to solve the canonical dual
problem for the case that Πd has critical points on the boundary ∂S +

a , in practice,
the matrixG(μ)will be ill-conditioning when the dual solution approaches to ∂S +

a .
In order to solve this type of challenging problems, a canonical perturbation method
has been suggested [16, 32]. Let

Ξδk (y, ς) = Ξ(y, ς) + δk

2
‖y − yk‖2

= 1

2
yTGδk (μ)y − FT

δk
(ς)y − σ Tb − τ T en + δk

2
yTk yk,

where, {δk} is a bounded sequence of positive real numbers, {yk} ∈ R
K is a set of

given vectors, Gδk (μ) = G(μ) + δk I , FT
δk
(ς) = FT (ς) + δkyk . Let

S +
δk

= {ς ∈ Sa : Gδk (μ) ≥ 0}.

Clearly, we have S +
a ⊂ S +

δk
. Therefore, the perturbed canonical dual problem can

be expressed as

(Pd
δk
) max Πd

δk
(ς) = −1

2
FT

δk
(ς)G†

δk
(μ)Fδk (ς) − σ Tb − τ T en,

s.t. ς ∈ S +
δk

.
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Based on this perturbed problem, the following canonical primal-dual algorithm can
be proposed for solving the nonconvex problem (P).

Algorithm 1 (Canonical Primal-Dual Algorithm)
Given initial data δ0 > 0, y0 ∈ R

K , and error allowance ε > 0, let k = 0.

1. Solve the perturbed canonical dual problem (Pd
δk
) to obtain ς k ∈ S+

δk
.

2. Compute ỹk+1 = [Gδk (ς k)]†Fδk (ς k) and let
yk+1 = yk + βk (̃yk+1 − yk), βk ∈ [0, 1].

3. If |P(yk+1 − P(yk)| ≤ ε, then stop, yk+1 is the optimal solution. Otherwise,
let k = k + 1, go back to step 1.

In this algorithm, {βk} ∈ [0, 1] are given parameters, which change the search direc-
tions. Clearly, if βk = 1, we have yk+1 = ỹk+1.

The key step in this algorithm is to solve the perturbed canonical dual problem
(Pd

δk
), which is equivalent to

min g + σ Tb + τ T en,

s.t.

[
G(μ) + δk I F(ς) + δkyk
FT (ς) + δkyk 2g

]

� 0,

G(μ) � 0,

ς ∈ S , σ ≥ 0, μ > 0.

This problem can be solved by a well-known software package named SeDuMi [36].

6 Numerical Experience

All data and computational results presented in this section are produced by Matlab.
In order to save space and fit the matrix in the paper, we round our these results up to
two decimals.

Example 1. 5-dimensional problem.
Consider Problem (Pa)with x=[x1, · · · , x5]T , while xi ∈ {2, 3, 5}, i=1, · · · , 5,

Q =

⎡

⎢
⎢
⎢
⎢
⎣

3.43 0.60 0.39 0.10 0.60
0.60 2.76 0.32 0.65 0.49
0.39 0.32 2.07 0.59 0.39
0.10 0.65 0.59 2.62 0.30
0.60 0.49 0.39 0.30 3.34

⎤

⎥
⎥
⎥
⎥
⎦

,

c = [38.97,−24.17, 40.39,−9.65, 13.20]T ,
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A =

⎡

⎢
⎢
⎣

0.94 0.23 0.04 0.65 0.74
0.96 0.35 0.17 0.45 0.19
0.58 0.82 0.65 0.55 0.69
0.06 0.02 0.73 0.30 0.18

⎤

⎥
⎥
⎦ ,

b = [11.49, 9.32, 14.43, 5.66]T .

Under the transformation (3), this problem is transformed into the 0–1 programming
Problem (P), where

y = [y1,1, y1,2, y1,3, · · · , y5,1, y5,1, y5,3]T ∈ R
15,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

13.71 20.56 34.27 2.40 3.61 6.01 1.58 2.37 3.95 0.39 0.58 0.97 2.38 3.57 5.95
20.56 30.84 51.41 3.61 5.41 9.01 2.37 3.55 5.92 0.58 0.88 1.46 3.57 5.36 8.93
34.27 51.41 85.68 6.01 9.01 15.02 3.95 5.92 9.87 0.97 1.46 2.43 5, 95 8.93 14.88
2.40 3.61 6.01 11.05 16.57 27.61 1.27 1.91 3.18 2.61 3.91 6.52 1.95 2.93 4.88
3.61 5.41 9.01 16.57 24.85 41.42 1.91 2.86 4.77 3.91 5.87 9.78 2.93 4.39 7.32
6.01 9.01 15.02 27.61 41.42 69.03 3.18 4.77 7.96 6.52 9.78 16.31 4.88 7.32 12.20
1.58 2.37 3.95 1.27 1.91 3.18 8.27 12.40 20.67 2.37 3.55 5.92 1.57 2.36 3.93
2.37 3.55 5.92 1.91 2.86 4.77 12.40 18.60 31.00 3.55 5.33 8.89 2.36 3.53 5.90
3.95 5.92 9.87 3.18 4.77 7.96 20.67 31.00 51.67 5.92 8.86 14.81 3.93 5.90 9.83
0.39 5.58 0.97 2.61 3.91 6.52 2.37 3.55 5.92 10.50 15.74 26.24 1.20 1.80 3.00
0.58 0.88 1.46 3.91 5.87 9.78 3.55 5.33 8.89 15.74 23.62 39.36 1.80 2.70 4.50
0.97 1.46 2.43 6.52 9.78 16.31 5.92 8.89 14.81 26.24 39.36 65.60 3.00 4.50 7.51
2.38 3.57 5.95 1.95 2.93 4.88 1.57 2.36 3.93 1.20 1.80 3.00 13.35 20.02 33.37
3.57 5.36 8.93 2.93 4.39 7.32 2.36 3.54 5.90 1.80 2.70 4.50 20.02 30.04 50.06
5.95 8.93 14.88 4.88 7.32 12.20 3.93 5.90 9.83 3.00 4.50 7.51 33.37 50.06 83.43

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

h = [77.95, 116.92, 194.87,−48.34,−72.51,−120.85, 80.78, 121.17

201.96,−19.29,−28.94,−48.23, 26.39, 39.59, 65.99]T ,

D =

⎡

⎢
⎢
⎣

1.88 2.83 4.71 0.47 0.70 1.17 0.09 0.12 0.22 1.30 1.94 3.24 1.49 2.23 3.72
1.91 2.87 4.78 0.71 1.06 1.77 0.34 0.51 0.85 0.90 1.35 2.25 0.38 0.57 0.94
1.15 1.72 2.88 1.64 2.46 4.11 1.30 1.95 3.25 1.09 1.64 2.74 1.37 2.06 3.43
0.12 0.18 0.30 0.03 0.05 0.08 1.46 2.20 3.66 0.59 0.89 1.48 0.37 0.55 0.92

⎤

⎥
⎥
⎦ ,

H =

⎡

⎢
⎢
⎢
⎣

1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

. . .
...

...
. . .

...
. . .

...
. . .

...

0 · · · 0 0 · · · 0 · · · 1 · · · 1

⎤

⎥
⎥
⎥
⎦

∈ R
5×15.

The canonical dual problem can be stated as follows:

(Pd)Maximize Πd(ς) = −1

2
F(ς)TG†(μ)F(ς) − σ Tb − τ T e5

subject to ς = (σ , τ ,μ) ∈ R
4+5+15, σ ≥ 0,μ > 0.
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By solving this dual problem with the sequential quadratic programming method in
the optimization Toolbox within the Matlab environment, we obtain

σ̄ = [0, 0, 0, 0]T ,

τ̄ = [73.90,−106.70, 111.95,−59.27,−0.01]T ,

and

μ̄ = [39.34, 22.07, 12.49, 33.56, 3.01, 76.14, 61.00, 35.52
18.78, 1.47, 41.96, 0.001, 0.001, 0.006]T .

It is clear that ς̄ = (σ̄ , τ̄ , μ̄) ∈ S+
a . Thus, from Theorem 4,

ȳ = (B + 2Diag (μ̄))†(h − DT σ̄ − HT τ̄ + μ̄)

= [0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]T

is the global minimizer of Problem (P)withΠd(ς̄) = −227.87 = Π(ȳ). The solu-
tion to the original primal problem can be calculated by using the transformation

x̄i =
Ki∑

j=1

ui, j ȳi, j , i = 1, 2, 3, 4, 5,

to give

x̄ = [5, 2, 5, 2, 2]T

with P(x̄) = −227.87.

Example 2. 10-dimensional problem. Consider Problem (Pa), with x =
[x1, · · · , x10]T , while xi ∈ {1, 2, 4, 7, 9}, i = 1, · · · , 10,

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6.17 0.62 0.46 0.37 0.56 0.66 0.67 0.85 0.57 0.44
0.62 5.63 0.29 0.56 0.79 0.29 0.43 0.69 0.49 0.39
0.46 0.29 5.81 0.55 0.22 0.55 0.36 0.27 0.51 0.91
0.37 0.56 0.55 6.10 0.28 0.42 0.44 0.34 0.75 0.44
0.56 0.79 0.22 0.28 4.75 0.40 0.55 0.42 0.49 0.44
0.66 0.29 0.55 0.42 0.40 5.71 0.32 0.57 0.65 0.70
0.67 0.43 0.36 0.44 0.55 0.32 5.27 0.56 0.37 0.85
0.85 0.69 0.27 0.34 0.42 0.57 0.56 5.91 0.15 0.62
0.57 0.49 0.51 0.75 0.49 0.65 0.37 0.15 4.51 0.46
0.44 0.39 0.91 0.44 0.44 0.70 0.85 0.62 0.46 5.73

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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f = [0.89, 0.03, 0.49, 0.17, 0.98, 0.71, 0.50, 0.47, 0.06, 0.68]T ,

A =

⎡

⎢
⎢
⎢
⎢
⎣

0.04 0.82 0.97 0.83 0.83 0.42 0.02 0.20 0.05 0.94
0.07 0.72 0.65 0.08 0.80 0.66 0.98 0.49 0.74 0.42
0.52 0.15 0.80 0.13 0.06 0.63 0.17 0.34 0.27 0.98
0.10 0.66 0.45 0.17 0.40 0.29 0.11 0.95 0.42 0.30
0.82 0.52 0.43 0.39 0.53 0.43 0.37 0.92 0.55 0.70

⎤

⎥
⎥
⎥
⎥
⎦

,

b = [33.76, 37.07, 26.75, 25.46, 37.36]T .

By solving the canonical dual problem of Problem (Pa), we obtain

σ̄ = [0, 0, 0, 0, 0]T ,

τ̄ = [−19.99,−20.12,−18.13,−18.37,−14.32,

−17.13,−18.46,−19.73,−17.65,−16.55]T ,

and

μ̄ = [9.51, 0.97, 21.93, 53.36, 74.34, 9.95, 0.21, 20.53, 51.01, 71.35
8.68, 0.77, 19.68, 48.03, 66.94, 8.30, 1.77, 21.91, 52.13, 72.27

6.40, 1.54, 17.39, 41.19, 57.04, 7.57, 1.98, 21.10, 49.77, 68.90

9.15, 0.16, 18.79, 46.72, 65.34, 9.82, 0.09, 19.90, 49.63, 69.45

8.76, 0.13, 17.92, 44.60, 62.39, 6.26, 4.03, 24.60, 55.48, 76.04]T ,

It is clear that ς̄ = (σ̄ , τ̄ , μ̄) ∈ S+
a . Therefore,

ȳ = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0]T

is the global minimizer of the problem (P)withΠd(ς̄) = 45.54 = Π(ȳ). The solu-
tion to the original primal problem is

x̄ = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T

with P(x̄) = 45.54.

Example 3. Relatively large size problems.

Consider Problem (Pa) with n = 20, 50, 100, 200, and 300. Let these five prob-
lems be referred to as Problem (1), · · · , Problem (5), respectively. Their coefficients
are generated randomly with uniform distribution. For each problem, qi j ∈ (0, 1),
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Table 1 Numerical results
for large scale integer
programming problems

n m CPU Time (s)

20 5 1.77

50 5 6.23

100 5 26.05

200 5 136.29

300 5 408.59

ai j ∈ (0, 1), for i = 1, · · · , n; j = 1, · · · , n, and ci ∈ (0, 1), xi ∈ {1, 2, 3, 4, 5}, for
i = 1, · · · n. Without loss of generality, we ensure that the constructed Q is a sym-
metric matrix. Otherwise, we let Q = Q+QT

2 . Furthermore, let Q be diagonally dom-
inated. For each xi , its lower bound is li = 1, and its upper bound is ui = 5. Let
l = [l1, · · · , ln]T and u = [u1, · · · , un]T . The right-hand sides of the linear con-
straints are chosen such that the feasibility of the test problem is satisfied. More
specifically, we set b = ∑

j ai j l j + 0.5 · (
∑

j ai j u j − ∑
j ai j l j ).

We then construct the canonical problem of each of the five problems. It is
solved by using the sequential quadratic programming method with active set strat-
egy from the Optimization Toolbox within the Matlab environment. The specifica-
tions of the personal notebook computer used are: Window 7 Enterprise, Intel(R),
Core(TM)(2.50 GHZ). Table1 presents the numerical results, where m is number of
linear constraints in Problem I (Pa).

From Table1, we see that the algorithm based on the canonical dual method can
solve large scale problems with reasonable computational time. Furthermore, for
each of the five problems, the solution obtained is a global optimal solution. For
the case of n = 300, the equivalent problem in the form of Problem (Pb) has 1500
variables. For such a problem, there are 21500 possible combinations.

7 Conclusion

We have presented a canonical duality approach for solving a general quadratic
discrete value selectionproblemwith linear constraints.Our results show that thisNP-
hard problem can be converted to a continuous concave dual maximization problem
over a convex space without duality gap. For certain given data, if this canonical dual
has a KKT point in the dual feasible spaceS +

a , the problem can be solved easily by
well-developed convex optimization methods. Otherwise, a canonical perturbation
method is proposed, which can be used to deal with challenging cases when the
primal problem has multiple global minimizers. Several examples, including some
relatively large scale ones, were solved effectively by using the method proposed.

Remanning open problems include how to solve the canonical dual problem (Pd)

more efficiently instead of using the SDP approximation. Also, for the given data
Q, c,A,b, the existence condition for the canonical dual problem having KKT point
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inS +
a is fundamentally important for understandingNP-hard problems. If the canon-

ical dual (Pd) has no KKT point in the closed set S +
c = S +

a ∪ ∂S +
a , the primal

problem is equivalent to the following canonical dual problem (see Eq. (67) in [16])

min sta{Πd(ς)| ς ∈ Sa}, (56)

i.e., to find the minimal stationary value of Πd on Sa . Since the feasible set Sa is
nonconvex, to solve this canonical dual problem is very difficult. Therefore, it is a
conjecture that the primal problem (P) could be NP-hard if its canonical dual (Pd)

has no KKT point in the closed set S+
a [12]. In this case, one alternative approach for

solving (P) is the canonical dual relaxation (P�). Although the relaxed problem
(P�) is convex, by Remark 2 we know that there exists a duality gap between the
primal problem (P). It turns out that the associated SDP method provides only a
lower bound approach for solving the primal problem. Further researches are needed
to know how big is this duality gap, how much does this relaxation lose, and how to
solve the nonconvex canonical dual problem (56).
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