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Abstract This paper presents a detailed study on global optimal solutions to a
nonconvex quadraticminimization problemwith a spherical constraint, which is well
known as a trust region subproblem and has been studied extensively for decades.
The main challenge is solving the so-called hard case, i.e., the problem has multiple
solutions on the boundary of the sphere. By canonical duality-triality theory, this
challenging problem is able to be reformulated as a one-dimensional canonical dual
problem, without any duality gaps. Results show that this problem is in the hard
case if and only if certain conditions are satisfied by both the direction and norm of
coefficient of the linear item in the objective function. A perturbation method and
associated algorithms are proposed to solve hard-case problems. Theoretical results
and methods are verified by numerical examples.

1 Introduction

We consider the following quadratic minimization problem:

(P) min P(x) = xT Qx − 2 f T x

s.t. x ∈ Xa,

where the given matrix Q ∈ R
n×n is assumed to be symmetric, f ∈ R

n is an arbi-
trarily given vector, and the feasible region is defined as

Xa = {
x ∈ R

n | ‖x‖ ≤ r
}
,

with r being a positive real number and ‖x‖ = ‖x‖2 representing �2 norm in Rn .
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Problem (P) arises naturally in computational mathematical physics with exten-
sive applications in engineering sciences. From the point view of systems theory, if
the vector f ∈ R

n is considered as an input (or source), then the solution x ∈ R
n

is referred to as the output (or state) of the system. By the fact that the capacity of
any given system is limited, the spherical constraint in Xa is naturally required for
virtually every real-world system. For example, in engineering structural analysis,
if the applied force f ∈ R

∞ is big enough, the stress distribution in the structure
will reach its elastic limit and the structure will collapse. For elasto-perfectly plastic
materials, the well-known von Mises yield condition is a nonlinear inequality con-
straint ‖x‖2 ≤ r imposed on eachmaterial point1 (see Chap.7, [1]). By finite element
method, the variational problem in structural limit analysis can be formulated as a
large-size nonlinear optimization problem with m quadratic inequality constraints
(m depends on the number of total finite elements). Such problems have been studied
extensively in computational mechanics for more than fifty years and the so-called
penalty-duality finite element programing [2, 3] is one of thewell-developed efficient
methods for solving this type of problems in engineering sciences.

Inmathematical programing, the problem (P) is known as a trust region subprob-
lem, which arises in trust region methods [4, 5]. In literatures, two similar problems
are also discussed: in [6–8], the convexity of the quadratic constraint is removed;
while in [9, 10], the constraint is replaced by a two-sided (lower and upper bounded)
quadratic constraint. Although the function P(x)may be nonconvex, it is proved that
the problem (P) possesses the hidden convexity, i.e., (P) is actually equivalent to
a convex optimization problem [10], and for each optimal solution x̄, there exist a
Lagrange multiplier μ̄ such that the following conditions hold [11]:

(Q + μ̄I)x̄ = f , (1)

Q + μ̄I � 0, (2)

‖x̄‖ ≤ r, μ̄ ≥ 0, μ̄(‖x̄‖ − r) = 0. (3)

Let λ1 be the smallest eigenvalue of the matrix Q. From conditions (2) and (3),
we have

μ̄ ≥ max{0,−λ1}.

If the problem (P) has no solutions on the boundary of Xa , then Q must be pos-
itive definite, and ‖Q−1 f ‖ < r , which leads to μ̄ = 0. Now suppose the solution
x̄ is on the boundary of Xa . If (Q + μ̄I) � 0, we have ‖(Q + μ̄I)−1 f ‖ = r and
the multiplier μ̄ can be easily found. While if det(Q + μ̄I) = 0, it becomes very
challenging to solve the problem [12–16] and the situation is referred to as ‘hard
case’ (see [17]). Mathematically speaking, when the problem is in the hard case,
there are multiple solutions for the equation (Q + μ̄I)x = f and they are in the

1The well-known Tresca yield condition ‖x‖∞ ≤ r is equivalent to a box constraint at eachmaterial
point. It was shown in the well-known experiment by Taylor and Quinney in 1931 that the vonMises
yield condition is better than the Tesca yield condition for metal structures (see [1] p. 404.).
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form x = (Q + μ̄I)† f + τ x̃ with (Q + μ̄I)x̃ = 0. As pointed out in [12, 15, 16,
18], the hard case always implies that f is perpendicular to the subspace generated
by all the eigenvectors corresponding to λ1. We show by Theorem 3 and Example 2
in this paper that this condition is only a necessary condition for the problem being
in the hard case. Many methods have been proposed for handling the problem (P),
especially focusing on the hard case: Newton type methods [17, 19], methods recast-
ing the problem in terms of a parameterized eigenvalue problem [12, 15], methods
sequential searching Krylov subspaces [18, 20], semidefinite programing methods
[13, 16], and the D.C. (difference of convex functions) method [21].

Canonical duality theory is a powerful methodological theory which has been
used successfully for solving a large class of difficult (nonconvex, nonsmooth, and
discrete) problems in global optimization (see [22, 23]), within a unified framework.
This theory ismainly comprised of (1) a canonical dual transformation, which can be
used to reformulate nonconvex/discrete problems from different systems as a unified
canonical dual problem without duality gaps; (2) a complementary-dual principle,
which provides a unified analytical solution form in terms of the canonical dual
variable; and (3) a triality theory, which is composed of canonical min–max duality,
double-min duality, and double-max duality. The canonical min–max duality can be
used to find a global optimal solution for the primal problem, while the double-min
and double-max dualities can be used to identify the biggest local minimizer and the
biggest local maximizer, respectively.

The canonical duality-triality theory was developed from Gao and Strang’s
original work [24], which discusses the nonconvex/nonsmooth variational problem

min{P(u) = W (Du) + F(u)}, (4)

where the variational argument u is a continuous function in an infinite-dimensional
space, D is a linear operator, W (w) is the stored energy, which is an objective func-
tional and depends only on the mathematical model, and F(u) is the external energy,
which is a “subjective" functional and depends on each problem (boundary-initial
conditions). It is well known in nonlinear analysis [25] and continuum physics (see
[1], p. 288) that a real-valued function W (w) is called objective only if W (w) satisfies
the frame-invariance principle,2 i.e., W (w) = W (Rw) for any rotation matrices R
such that RT = R−1 and det R = 1. It was emphasized in [25] that the objectivity
is not an assumption but an axiom. This means that the objective function depends
only on the constitutive property of the system. Geometrically speaking, the objec-
tive function should be an invariant under orthogonal transformation. This concept
lays a foundation for the canonical duality theory, i.e., instead of the design variable
u (the linear operator D can not change the nonconvexity of W (Du)), the canon-
ical dual transformation is to choose a geometrically admissible (say objective)
measure ξ = Λ(u) and a convex function V (ξ) such that W (Du) = V (Λ(u)) and
the duality relation ξ ∗ = ∇V (ξ) is invertible. Such one-to-one duality is called the

2See web page http://en.wikipedia.org/wiki/Objectivity_(frame_invariance).

http://en.wikipedia.org/wiki/Objectivity_(frame_invariance)
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canonical duality. The most simple objective measure is the �2 norm Λ(u) = uT u
since Λ(Ru) = Λ(u). Thus, the objective function W (w) can not be linear. On the
other hand, the so-called subjective function F(u) depends on input (such as external
force, market demanding, cost/price, etc.) and boundary-initial constraints for each
problem, which must be linear. Therefore, the combination of W (w) and F(u) can
be used to model general problems in complex systems3 [1, 27]. Using numerical
discretization (say, the finite element method) for the unknown variable u(x), the
general variational problem (4) becomes a very general global optimization problem
in finite dimensional space (see [2, 28]). This is the basic reason why the canonical
duality theory can be used for solving a large class of problems from different fields.
However, the objective function in mathematical programing has been misused with
other concepts such as cost, target, utility, and energy functions. It turns out that the
canonical duality theory has been challenged (cf. [29]) by oppositely using linear
W (w) and nonlinear F(u) as counterexamples (see [30]). These conceptual mistakes
show a big gap between mathematical physics and optimization.

The goal of this paper is to find global solutions for the problem (P), especially
when it is in the hard case. We first show in the next section that by the canonical
dual transformation, this constrained nonconvex problem can be reformulated as a
one-dimensional optimization problem. The complementary-dual principle shows
that this one-dimensional problem is canonically dual to (P) in the sense that both
problems have the same set of KKT solutions. While the canonical min–max duality
in the triality theory provides a sufficient and necessary condition for identifying
global optimal solutions. In order to solve the hard case, a perturbation method is
proposed in Sect. 4 and, accordingly, a canonical primal-dual algorithm is developed
in Sect. 5. Numerical results are presented in Sect. 6. The paper is ended with some
conclusion remarks.

2 Canonical Dual Problem

By the fact that the condition ‖x‖ ≤ r is a physical constraint (required by math-
ematical model), it must be written in canonical form. Therefore, instead of the
�2 norm, the canonical dual transformation is to introduce a quadratic (objec-
tive) measure ξ = Λ(x) = xT x : Rn → Ea = {ξ ∈ R| ξ ≥ 0} and a convex func-
tion V : Ea → R ∪ {+∞}

V (ξ) =
{
0 if ξ ≤ r2,
+∞ otherwise

3Gao and Strang’s model (4) has been generalized as min{P(u) = W (Du) − U (u)}, where U (u)

is a quadratic function, in order to cover more general problems in nonlinear dynamical systems
and global optimization [26].
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such that the constrained problem (P) can be written equivalently in the following
canonical form [22, 26, 27, 31]

min
{
Π(x) = V (Λ(x)) − U (x) | x ∈ R

n
}
,

where U (x) = −xT Qx + 2 f T x . By the Fenchel transformation, the conjugate of
V (ξ) can be uniquely defined as

V ∗(σ ) = sup{ξσ − V (ξ) | ξ ∈ Ea} =
{

r2σ if σ ≥ 0,
+∞ otherwise.

Clearly, V ∗(σ ) is convex, lower semi-continuous on E ∗
a = R. According to convex

analysis [32], we have the following equivalent relations on Ea × E ∗
a :

σ ∈ ∂V (ξ) ⇐⇒ ξ ∈ ∂V ∗(σ ) ⇐⇒ V (ξ) + V ∗(σ ) = ξσ.

By the canonical duality theory, the pair (ξ, σ ) satisfying (2) is called the (general-
ized) canonical duality pair (see [31] and Remark 1 in [22]). Clearly, the canonical
duality (2) is equivalent to

ξ − r2 ≤ 0, σ ≥ 0, σ (ξ − r2) = 0.

This shows that the KKT conditions in (3) are equivalently relaxed by one of the
canonical duality relations in (2). Replacing V (ξ) in Π(x) by the Fenchel-Young
equality V (ξ(x)) = ξ(x)σ − V ∗(σ ), the Gao-Strang total complementary function
can be naturally obtained as [26, 27]:

Ξ(x, σ ) = ξ(x)σ − V ∗(σ ) − U (x) = xT G(σ )x − 2 f T x − V ∗(σ ),

where G(σ ) = Q + σ I . Let

Sa = {σ ∈ R | σ ≥ 0, det G(σ ) �= 0 }

be a canonical dual feasible space. Then for any given σ ∈ Sa , the canonical dual
function Pd : Sa → R can be defined by

Pd(σ ) = sta
{
Ξ(x, σ ) | x ∈ R

n
} = − f T G(σ )−1 f − r2σ,

where the notation sta{Ξ(x, σ ) | x ∈ R
n} stands for computing stationary points of

Ξ(x, σ )with respect to x . Therefore, the stationary canonical dual problem is to find
KKT points σ̄ of Pd(σ ) such that [33]

Pd(σ̄ ) = sta{Pd(σ ) | σ ∈ Sa}.
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We need to emphasize that Pd(σ ) is a function of a scalar variable σ ∈ Sa ⊂ R,
regardless of the dimension of the primal problem, and the inequality det G(σ ) �=
0 is actually not a constraint (the Lagrange multiplier for this inequality is zero).
Therefore, the KKT points for this canonical dual problem are much easier to be
obtained than that for the primal problem. By the canonical duality theory, we have
the following theorem.

Theorem 1. (Analytical SolutionandComplementary-DualPrinciple [33])Sup-
pose that the symmetrical matrix Q has m (≤ n) distinct eigenvaluesλi , i = 1, . . . , m
and id ≤ m of them are strictly negative such that λ1 < λ2 < · · · < λid < 0 ≤
λid+1 < · · · < λm. Then for a given vector f ∈ R

n and a sufficiently large r > 0,
the canonical dual problem (2) has at most 2id + 1 KKT points σ̄i satisfying

σ̄1 > −λ1 > σ̄2 ≥ σ̄3 > −λ2 > · · · > −λid > σ̄2id ≥ σ̄2id+1 > 0.

For each σ̄i , i = 1, . . . , 2id + 1, the vector

x̄i = G(σ̄i )
−1 f (5)

is a KKT point of the primal problem (P), and we have

P(x̄ j ) ≥ P(x̄i ) = Ξ(x̄i , σ̄i ) = Pd(σ̄i ) ≤ Pd(σ̄ j ) ∀i, j = 1, . . . , 2id + 1, i ≤ j.

This theorem shows that the nonconvex function P(x) is canonically dual (without
duality gaps) to Pd(σ ) at each KKT point (x̄i , σ̄i ), and the function values of Pd(σi )

are in an opposite order with its critical points σ1 > σ2 ≥ . . . (see Fig. 1). Clearly,
the KKT solution x̄1 is a global minimizer of the primal problem (P).

In order to identify global optimal solutions among all the critical points of Pd(σ ),
a subset of Sa is needed:

S +
a = {σ ∈ Sa | G(σ ) � 0} .

Fig. 1 The graph of
canonical dual function
Pd (σ ) for n = 4 (see
Example 3 for details)
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The problem canonically dual to (P) can be proposed as the following

(Pd) max
{

Pd(σ ) | σ ∈ S +
a

}
.

Theorem 2. (Global Optimality Condition [1, 23]) Suppose that σ̄ is a critical
point of Pd(σ ). If σ̄ ∈ S +

a , then σ̄ is a global maximal solution of the problem (Pd )
on S +

a and x̄ = G(σ̄ )−1 f is a global minimal solution of the primal problem (P),
i.e.,

P(x̄) = min
x∈Xa

P(x) = max
σ∈S +

a

Pd(σ ) = Pd(σ̄ ).

According to the triality theorem [1, 29], the global optimality condition (2) is
called canonical min–max duality. By the fact that Pd(σ ) is strictly concave on the
(open) convex setS +

a , this theorem guarantees that if there is a critical point inS +
a ,

it must be unique and the nonconvex minimization problem (P) is equivalent to a
concave maximization problem (Pd). Similar result is also discussed by Corollary
5.3 in [9] and Theorem 1 in [13]. Moreover, for the case when n = 1, the double-min
duality statement in the weak-triality theory proven recently (see [29, 34, 35]) shows
that the problem (P) has at most one local minimizer, which is corresponding to a
critical point σ̄ ∈ S −

a = {σ ∈ Sa| G(σ ) ≺ 0}. All these previous results show that
the canonical duality-triality theory provides detailed information on a complete set
of solutions to the nonconvex problem (P).

Remark 1. Duality theory for quadratic minimization problems with �2-norm con-
straints was discussed extensively in plastic mechanics fifty years ago. It was shown
by Gao in [3] that for the quadratic �22 constraint, the canonical dual can be easily for-
mulated and a primal-dual finite element programing algorithm was first developed
for solving minimal potential variational problems in infinite dimensional space [2].
By the fact that the geometrical measure ξ(x) = xT x is quadratic, the first term in
Ξ(x, σ ) is the so-called (generalized) complementary gap function [26, 27] denoted
by

Gap(x, σ ) = ξ(x)σ + xT Qx = xT G(σ )x .

Clearly, Gap(x, σ ) ≥ 0 ∀x ∈ R
n if and only if σ ∈ S +

a . Therefore, Ξ(x, σ ) is a
saddle function on Rn × R if Gap(x, σ ) ≥ 0 ∀x ∈ R

n . This result was first discov-
ered by Gao and Strang in nonconvex mechanics [24], where they proved that this
gap function recovers a broken symmetry in geometrically nonlinear systems and
provides a global optimality condition for general nonconvex variational problems
in mathematical physics. Particularly, the total complementary function Ξ(x, σ ) on
R

n × R+ = {σ ∈ R| σ ≥ 0} has a simple form

Ξ(x, σ ) = xT G(σ )x − 2xT f − r2σ = P(x) + σ(xT x − r2),

which can be viewed as a Lagrangian of (P) for the �22-norm constraint xT x ≤ r2.
Indeed, the total complementary function Ξ(x, σ ) was also called nonlinear
Lagrangian in [1] or extended Lagrangian in [31]. However, for nonconvex target
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function P(x), the classical Lagrangian duality theory will produce a well-known
duality gap unless the global optimality condition Gap(x, σ ) ≥ 0 ∀x ∈ R

n is satis-
fied. Therefore, the Lagrangian duality theory is only a special case of the canonical
duality theory for certain problems. Also, by the fact that a large class of noncon-
vex/discrete global optimization problems can be equivalently reformulated as a
unified canonical dual form (2) (see [22, 26, 27]), which is equivalent to a convex
minimization problem over a convex feasible set, the so-called “hidden convexity"
is indeed a special case of the canonical min–max duality theory.

For the hard case, the matrix G(σ ) is singular at the KKT point σ̄ , the canonical
dual Pd(σ ) should be replaced by (see [36])

Pd(σ ) = − f T G(σ )† f − r2σ,

where G(σ )† stands for a generalized inverse of G(σ ). In [9, 13], the dual function is
also presented in discussions of the strong duality. Since this function is not strictly
concave on the closure of S +

a , it may have multiple critical points located on the
boundaryofS +

a . In the following sections,wewill first study the existence conditions
of these critical points, and then study an associated algorithm for computing these
solutions.

3 Existence Conditions

As Q is symmetrical, there exist a diagonal matrix Ł and an orthogonal matrix U
such that Q = UŁU T . The diagonal entities of Ł are the eigenvalues of Q and are
arranged in a nondecreasing order,

λ1 = · · · = λk < λk+1 ≤ · · · ≤ λn.

The columns of U are corresponding eigenvectors.
Let f̂ = U T f . Because (Q + σ I)−1 = U (Ł + σ I)−1U T , we can rewrite the

canonical dual function Pd(σ ) as

Pd(σ ) = −
∑k

i=1 f̂ 2i
λ1 + σ

−
n∑

i=k+1

f̂ 2i
λi + σ

− r2σ,

where f̂i , i = 1, . . . , n are elements of f̂ . It is now easy to see that as long as f �= 0,
Pd(σ ) has stationary points in Sa and thus the canonical dual problem (2) is well
defined. Whereas, for the case when f = 0, a perturbation should be introduced,
which is discussed in the next section.

Theorem 3. (Existence Conditions) Suppose that for any given Q ∈ R
n×n and

f ∈ R
n, λi , and f̂i are defined as above.
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The canonical dual function Pd(σ ) has a critical point σ̄ in (−λ1,+∞) if and only

if either
∑k

i=1 f̂ 2i �= 0 or
∑n

i=k+1
f̂ 2i

(λi −λ1)2
> r2 holds true. Furthermore, if λ1 ≤ 0,

then x̄ = G(σ̄ )−1 f is the unique solution of the primal problem (P).
If Pd(σ ) has no critical points in (−λ1,+∞), the primal problem (P) has exactly

two global solutions when the multiplicity of λ1 is k = 1 and has infinite number of
solutions when k > 1.

Proof: First, we prove that the existence of a critical point of Pd(σ ) in (−λ1,+∞)

implies that either
∑k

i=1 f̂ 2i �= 0 or
∑n

i=k+1
f̂ 2i

(λi −λ1)2
> r2 holds true. It is equivalent

to prove that if
∑k

i=1 f̂ 2i = 0 and
∑n

i=k+1
f̂ 2i

(λi −λ1)2
≤ r2 the dual function Pd(σ ) will

have no critical points in (−λ1,+∞). The first item in the expression (3) vanishes

when
∑k

i=1 f̂ 2i = 0. Then because
∑n

i=k+1
f̂ 2i

(λi −λ1)2
≤ r2, the first-order derivative of

the dual function

(Pd(σ ))′ =
n∑

i=k+1

f̂ 2i
(λi + σ)2

− r2

is always negative in (−λ1,+∞). Therefore, the dual function Pd(σ ) will have no
critical points in (−λ1,+∞).

Next we will give the proof of the sufficiency, which is divided into two parts:
(1) If

∑k
i=1 f̂ 2i �= 0, then σ = −λ1 is a pole of Pd(σ ), i.e., as σ approaches −λ1

from the right side, Pd(σ ) approaches −∞. The value of Pd(σ ) also approaches
−∞, when σ approaches +∞. Thus, −Pd(σ ) is coercive on (−λ1,+∞). Since,
for any σ ∈ (−λ1,+∞), G(σ ) is positive definite, Pd(σ ) is strictly concave on
(−λ1,+∞). Thus there exists a unique critical point in (−λ1,+∞).

(2) If
∑k

i=1 f̂ 2i = 0 and
∑n

i=k+1
f̂ 2i

(λi −λ1)2
> r2, (Pd(σ ))′ is positive at σ = −λ1.

Moreover, (Pd(σ ))′ approaches −r2 as σ approaches ∞. Therefore, there exists at
least one root for the equation (Pd(σ ))′ = 0 in (−λ1,+∞), which means Pd(σ ) has
at least one critical point in (−λ1,+∞). Similarly, because of the strict concavity of
Pd(σ ) over (−λ1,+∞), the critical point is unique.

Suppose λ1 ≤ 0. The uniqueness of global solution x̄ will be proved, if it can
be proved that (x̄, σ̄ ) is the only pair that satisfies the KKT conditions (1)–(3).
As mentioned above, the dual function Pd(σ ) is strictly concave on (−λ1,+∞),
which, plus the criticality of σ̄ , implies that (Pd(σ ))′ = ‖x‖2 − r2 > 0 for σ ∈
(−λ1, σ̄ ) and < 0 for σ ∈ (σ̄ ,+∞), where x = G(σ )−1 f . Thus, for any σ �=
σ̄ in (−λ1,+∞), there is no x such that (x, σ ) satisfies the KKT conditions
(1)–(3). Except for the interval (−λ1,+∞), σ = −λ1 is the last candidate. However,
if

∑k
i=1 f̂ 2i �= 0, the equation G(−λ1)x = f has no solutions, and if

∑k
i=1 f̂ 2i = 0

and
∑n

i=k+1
f̂ 2i

(λi −λ1)2
> r2, the feasibility of any solution of G(−λ1)x = f is violated

by the fact that ‖x‖2 − r2 = ∑n
i=k+1

f̂ 2i
(λi −λ1)2

− r2 > 0. Then,σ = −λ1 can notmake
the KKT conditions hold true. Therefore, (x̄, σ̄ ) is the unique pair that satisfies the
KKT conditions (1)–(3).
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Finally, suppose that there are no critical points in (−λ1,+∞), which, from the

above proof, is equivalent to
∑k

i=1 f̂ 2i = 0 and
∑n

i=k+1
f̂ 2i

(λi −λ1)2
≤ r2. Then, for any

global solution, we have σ̄ = −λ1. Let x̄ be a global solution and ȳ = U T x̄. Then
the canonical equilibrium equation G(σ̄ )x̄ = f can be equivalently transformed
into diag({λi + σ̄ }) ȳ = f̂ . If k = 1, i.e., the multiplicity of λ1 is one, the equation
uniquely determines ȳi , i = 2, . . . , n, but not ȳ1. By the fact that ȳT ȳ = r2, ȳ1 has
exactly two values, corresponding to the two global solutions of (P).While, if k > 1,
i.e., the matrix Q has at least two repeated eigenvalues λ1 = λ2 = · · · = λk ≤ 0,
the equations diag({λi + σ̄ }) ȳ = f̂ and ȳT ȳ = r2 have infinite number of
solutions. �

Remark 2. The complementarity relations between the primal problem (P) and
its canonical dual problem (Pd) are significant. When λ1 > 0, i.e., Q is positive
definite, if (P) has a global solution in the interior of Xa , which must be the
stationary point of P(x) and can be easily calculated, its canonical dual (Pd) has
no critical point in S +

a = [0,+∞) due to (Pd(0))′ = ‖x̄‖2 − r2 < 0, where x̄ =
G(0)−1 f is the stationary point of P(x). Dually, when λ1 ≤ 0, the primal function
P(x) is nonconvex and the global minimizer of (P)must be on the boundary ofXa .
In this case, if the canonical dual (Pd) has a critical point in S +

a = (−λ1,+∞),
the primal problem (P) is then not in the hard case and has a unique solution, which
can be easily obtained by solving the canonical dual problem. Whereas if (Pd)

has no critical points in S +
a , i.e., Pd(−λ1) = sup{Pd(σ )| σ ∈ S +

a }, the primal
problem (P) is in the hard case, because, for any σ ∈ S +

a and x = G(σ )−1 f , we
have (Pd(σ ))′ = ‖x‖2 − r2 < 0, which destroys the complementary condition in
(3), and only σ = −λ1 can make the KKT conditions (1)–(3) hold.

Therefore, combining with Theorem 3, we have the following result.

Corollary 1. If λ1 ≤ 0, the nonconvex problem (P) is in the hard case if and only

if both conditions (i)
∑k

i=1 f̂ 2i = 0 and (ii)
∑n

i=k+1
f̂ 2i

(λi −λ1)2
≤ r2 hold true.

The condition (i) is well known: the trust region subproblem could be in the hard case
only if the coefficient f is perpendicular to the subspace generated by eigenvectors
of the smallest eigenvalue. The condition (ii) is new, which shows that the hard case
of (P) depends not only on the direction of f , but also on its norm.

Theorem 3 and Corollary 1 show an important fact that the given vector f plays
an important role to the solutions of the problem (P). From the point of view of
solid mechanics, if f is considered as an applied force, then the decision variable x
is the displacement and the spherical constraint ‖x‖ ≤ r is corresponding to the von
Mises yield condition, which represents the capacity of the system. If the norm of
f is big enough, the deformation x should reach the limit ‖x‖ = r and the problem
(P) has a solution on the boundary of Xa . By the canonical duality, the problem
(Pd) must have a critical point in S +

a . If the norm of f is too small, the primal
problem (P) could have multiple solutions. In this case, (Pd) has no critical point
inS +

a and (P) could be in the hard case.
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To illustrate Theorem 3, let us consider a 3-dimensional problemwith coefficients

Q =
⎛

⎝
[r ] − 1 0 0

0 −1 0
0 0 1

⎞

⎠ , f =
⎛

⎝
[r ]0
0

−1.8

⎞

⎠ , and r = 2.

In this case, the eigenvalues of Q are λ1 = λ2 = −1, and λ3 = 1. So we have k = 2
and the target function

P(x) = −1

2
(x2

1 + x2
2 ) + 1

2
x2
3 + 1.8x3

is nonconvex,whoseminimizers are on the boundary of the feasible region.Replacing
x2
1 + x2

2 with r2 − x2
3 , the target function P(x) can be reformulated as a univariate

function of x3,
g(x3) = x2

3 + 1.8x3 − 2,

which achieves the minimum at x3 = −0.9. Then we obtain the following equation

x2
1 + x2

2 = r2 − x2
3 = 22 − (−0.9)2 = 3.19.

So all x̄ ∈ R
3 satisfying x̄2

1 + x̄2
2 = 3.19 and x̄3 = −0.9 are global minimizers of the

problem.

By the fact that
∑2

i=1 f̂ 2i = 0 and
∑3

i=2+1
f̂ 2i

(λi −λ1)2
= (−1.8)2/(1 + 1)2 ≤ r2 = 4,

Theorem 3 shows that Pd(σ ) has no critical point in S +
a , and (P) is indeed in the

hard case and has infinite number of global solutions. If we choose either a smaller

r or a vector f with a larger magnitude such that
∑3

i=2+1
f̂ 2i

(λi −λ1)2
> r2, the global

solution will be unique. For example, let r = 0.5. Then x3 = −0.9 is no longer the
minimizer of g(x3) and the problemmin{g(x3)| x2

3 ≤ 0.52} leads to x3 = −0.5. From
x2
1 + x2

2 = r2 − x2
3 = 0.52 − (−0.5)2 = 0, we know the unique global solution of

(P) is x̄ = (0, 0,−0.5)T .
In [37], Martinez investigated the ‘local-nonglobal minimizers’ of the problem

(P), of which the main results (Theorem 3.1 in [37]) can be restated in the following
theorem.

Theorem 4. (i) If x̄ is a local-nonglobal minimizer of (P), then there is a σ̄ ∈
(max{0,−λ2},−λ1) such that G(σ̄ )x̄= f and (Pd(σ̄ ))′′ ≥ 0.

(ii) There exists at most one local-nonglobal minimizer of (P).
(iii) If ‖x̄‖ = r , G(σ̄ )x̄ = f for some σ̄ ∈ (−λ2,−λ1), σ̄ > 0 and (Pd(σ̄ ))′′ > 0,

then x̄ is a strict local minimizer of (P).

From the point of view of the canonical duality theory, the σ̄ in this theorem
is actually a critical point of Pd(σ ). The case of (P) having no local-nonglobal
minimizers implies that all the local minimizers are global solutions. The situations
that leads to this case include (i) the multiplicity of λ1 being larger than one; (ii) no
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critical point in (max{0,−λ2},−λ1), and (iii) f being perpendicular to the eigen-
vector of λ1. The first situation results in (−λ2,−λ1) = ∅. The last situation violates
the necessary condition (Pd(σ ))′′ ≥ 0, which can be observed from the expression
of (Pd(σ ))′′,

(Pd(σ ))′′ = −2
n∑

i=1

f̂ 2i
(λi + σ)3

.

For any σ ∈ (−λ2,−λ1), the only nonnegative item in (Pd(σ ))′′ is the first term
−2 f̂ 21 /(λ1 + σ)3. Thus (Pd(σ ))′′ will be negative if f̂ 21 = 0.As shown inFig. 1, there
is a critical point σ̄2 ∈ (−λ2,−λ1) = (4.37, 10.51) and the corresponding solution
x̄2 obtained from the Eq. (5) is a local minimizer.

4 Perturbation Methods

This section is devoted to compute solutions for the problem when the canonical
dual problem (Pd) has no critical point in (−λ1,+∞). Since a necessary condition
for the hard case is

∑k
i=1 f̂ 2i = 0, a perturbation can be introduced such that this

condition does not hold true anymore. Impressively, once we obtain the critical point
in S +

a , all the global solutions can be determined. Our approach has been applied
successfully in canonical duality theory for solving nonlinear algebraic equations
[38], chaotic dynamical systems [39], as well as a class of NP-hard problems in the
global optimization [36, 40, 41].

In order to establish the existence conditions, a perturbation
∑k

i=1 αiUi with
parameters

α = {αi }k
i=1 �= 0

is introduced to f . Let

p = f +
k∑

i=1

αiUi , p̂ = U T p, and Pα(x) = xT Qx − 2 pT x .

It is true that the existence conditions hold true for the perturbed problem

(Pα) min{Pα(x) | x ∈ Xa},

for
∑k

i=1 p̂2
i �= 0 is guaranteed by (4).

The following theorem states that if the parameter α is chosen appropriately, the
optimal solution of the perturbed problem approximates that of the primal problem
(P).

Theorem 5. Suppose that λ1 ≤ 0, there is no critical point of Pd(σ ) in S +
a , and

x̄∗ is the optimal solution of the problem (Pα). Then, there is a global solution of
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the problem (P), denoted as x̄, which is on the boundary of Xa and, for any ε > 0,
if the parameter α satisfies

‖α‖2 ≤ (λ2 − λ1)
2

(

r2 −
n∑

i=k+1

f̂ 2i
(λi − λ1)2

)

(1/
√
2(1 − cos(ε/r)) − 1)−2,

we have ‖x̄∗ − x̄‖ ≤ ε.

Proof. For simplicity, the coordinate system is rotated and let y = U T x , yk = {yi }k
i=1

and y� = {yi }n
i=k+1. Since f̂i = 0 for i = 1, . . . , k, variables yi for i = 1, . . . , k

appear in the target function only in the form of squares. On the boundary of Xa ,
the problem (P) is then equivalent to the following problem in R

n−k :

min‖ y�‖≤r
P�( y�) =

n∑

i=k+1

(λi − λ1)y2i −
n∑

i=k+1

2 f̂i yi + λ1r
2.

Since P�( y�) is a strictly convex function, it has a unique stationary point,

ȳ� =
{

f̂i

λi − λ1

}n

i=k+1

.

Combining with the assumption of no critical point inS +
a , we know that this station-

ary point is the global optimal solution of the problem (4). Then, all ȳ that satisfies
ȳT

k ȳk = r2 − ȳT
� ȳ� are solutions of the problem (P). Here we choose one particular

solution with

ȳk = h ȳ∗
k , h = 1

‖ ȳ∗
k‖

√
r2 − ȳT

� ȳ�,

where ȳ∗ = U x̄∗, and let x̄ = U ȳ.

By canceling variables yi , i = 1, . . . , k, the perturbed problem (4) with the equal-
ity constraint is equivalent to

min‖ y�‖≤r
P�

α ( y�) =
n∑

i=k+1

(λi − λ1)y2i −
n∑

i=k+1

2 f̂i yi + λ1r
2 − 2‖α‖

√
r2 − yT

� y�.

The function P�
α ( y�) is also strictly convex. Moreover, for any ‖ y�‖ < r , we have

P�
α ( y�) < P�( y�), while for any ‖ y�‖ = r , we have P�

α ( y�) = P�( y�). The fact indi-
cates that the unique stationary point of P�

α ( y�) is in the interior of ‖ y�‖ ≤ r . Thus
the global solution ȳ∗

� is a stationary point of the problem (4) and then satisfies

ȳ∗
i = f̂i

λi − λ1 + ‖α‖(r2 − ȳ∗T
� ȳ∗

�)
− 1

2

, i = k + 1, . . . , n.
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and
|ȳ∗

i | < |ȳi |, i = k + 1, . . . , n.

Wewill prove that as ‖α‖ approaches zero, ȳ∗ will approach ȳ. First, we have the
following relationship

ȳ∗T ȳ =
√

r2 − ȳ∗T
� ȳ∗

�

√
r2 − ȳT

� ȳ� + ȳ∗T
� ȳ�

≤ 1

2

(
r2 − ȳ∗T

� ȳ∗
� + r2 − ȳT

� ȳ�

) + ȳ∗T
� ȳ�

= r2 − 1

2
‖ ȳ∗

� − ȳ�‖2,

where the first equality is derived from the definition of ȳk and the fact that ȳ
∗ locates

on the surface of the sphere. Based on the relationship

‖ ȳ∗ − ȳ‖ ≤ r arccos

(
ȳ∗T ȳ
r2

)
≤ r arccos

(
r2 − 1

2‖ ȳ∗
� − ȳ�‖2

r2

)

,

wewill have ‖ ȳ∗ − ȳ‖ ≤ ε, if ‖ ȳ∗
� − ȳ�‖2 ≤ 2r2(1 − cos ε

r ). Then, it can be verified
that

‖ ȳ∗
� − ȳ�‖2 ≤ r2

(
(λ2 − λ1)‖α‖−1

√
r2 − ȳ∗T

� ȳ∗
� + 1

)2 .

If let the right side of Eq. (4) be less than or equal to 2r2(1 − cos ε
r ), we obtain

‖α‖2 ≤ (λ2 − λ1)
2(r2 − ȳ∗T

� ȳ∗
�)

(1/
√
2(1 − cos ε

r ) − 1)2
.

Combining with relations in (4), we can state that ‖ ȳ∗ − ȳ‖ ≤ ε if the following
inequality is true

‖α‖2 ≤ (λ2 − λ1)
2(r2 − ∑n

i=k+1
f̂ 2i

(λi −λ1)2
)

(1/
√
2(1 − cos ε

r ) − 1)2
.

Since ‖x̄∗ − x̄‖ = ‖ ȳ∗ − ȳ‖, the Eq. (4) implies that ‖x̄∗ − x̄‖ ≤ ε. �
Theorem 5 shows that with a proper parameter α, the existence condition is guar-

anteed to hold true for the perturbed problem and the perturbation method can be
used to solve the hard case approximately. As the perturbation parameters approach
zero, the perturbed solutions will approach to one of the global solutions of (P). By
the projection theorem, the nearest points to x̄ and x̄∗ in the subspace spanned by
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{U1, . . . , Uk} are ∑k
i=1(x̄

T Ui )Ui and
∑k

i=1(x̄
∗T Ui )Ui , respectively. Then we have

the following relationship

‖x̄∗ −
k∑

i=1

(x̄∗T Ui )Ui‖2 < ‖x̄ −
k∑

i=1

(x̄T Ui )Ui‖2,

which means that the perturbed solution x̄∗ is closer to the subspace spanned by
{U1, . . . , Uk} than the solution x̄.

Furthermore, each solution of the problem (P) can be approximated, if the per-
turbation parameter α is properly chosen. When the multiplicity of λ1 is equal to
one, as stated in Theorem 3, there are exactly two global solutions. In this case, α

becomes a scalar and has exactly two possible directions, which are mutual opposite
and, respectively, lead to the two global solutions (see Example 1). For general cases,
there may be infinite number of global solutions for the problem (P), and we will
show that there is a one-to-one correspondence between solutions of the problem
(P) and directions of α. In the problem (4), variables yi , i = 1, . . . , k are removed
by solving the following minimization problem

min{−2αT yk | yT
k yk = r2 − yT

� y�, yk ∈ R
k}.

Its solution is

yk = hα, h = 1

‖α‖
√

r2 − yT
� y�,

i.e., the point falls on the boundary of the sphere in (4) and has the same direction
with α. If ‖α‖ keeps unchanged, the problem (4) always has the same solution and
the scalar h also keeps unchanged. Thus, each direction of α is corresponding to a
solution {yi }k

i=1, and all the solutions comprise the surface of a sphere centered at the
original inRk . On the other hand, from the problem (4), we have ȳT

k ȳk = r2 − ȳT
� ȳ�,

which means all global solutions of the problem (P) also comprise the surface of a
sphere. Combining Theorem 5, we then conclude that each solution of the problem
(P) can be approached as the direction of α is properly chosen and ‖α‖ approaches
zero.

5 Canonical Primal-Dual Algorithm

Based on the results obtained above, a canonical primal-dual algorithm is developed,
which is matrix inverse free and the essential cost of calculation is only the matrix–
vector multiplication.

The main step of this algorithm is to solve the following perturbed canonical dual
problem:
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(Pd
α ) max

{
Pd

α (σ ) = − pT G(σ )−1 p − r2σ | σ ∈ S +
a

}

Let ψ(σ) be its first-order derivative, i.e.,

ψ(σ) = (Pd
α (σ ))′ = pT G(σ )−1G(σ )−1 p − r2.

Then the critical point of Pd
α (σ ) in S +

a is corresponding to the solution of the
equation ψ(σ) = 0 inS +

a . The first- and second-order derivatives of ψ(σ) are

ψ ′(σ ) = −2 pT G(σ )−1G(σ )−1G(σ )−1 p,

ψ ′′(σ ) = 6 pT G(σ )−1G(σ )−1G(σ )−1G(σ )−1 p.

It is noticed that ψ(σ) is strictly decreasing and strictly convex overS +
a , ψ(σ) will

approach −r2 as σ approaches infinity and σ = −λ1 is a pole of ψ(σ).
We use the Lanczos method to compute an approximation for the smallest eigen-

value of Q and a corresponding eigenvector, denoted, respectively, by λ̃1 and Ũ1,
where the latter is a unit vector. For choosing an effective perturbation, it is not nec-
essary to calculate all eigenvectors of the smallest eigenvalue, since any one of which
will be sufficient to divert the direction of f . Here we use αŨ1 as a perturbation to f .

Although the perturbed canonical dual problem (Pd
α ) is strictly concave onS +

a ,
its derivative ψ(σ) would become ill-conditioned when σ approaches to the pole.
Therefore, instead of nonlinear optimization techniques, a bisection method is used
to find the root in (−λ1,+∞) for ψ(σ). Each time, as a dual solution σ > −λ1 is
obtained, the value ofψ(σ) is calculated and checked to seewhether it is equal to zero.
For moderate-size problems, it is not hard to calculate G(σ )−1 p by computing the
inverse or decomposition of G(σ ), but it is not possible for very large-size problems,
especially when the memory is very limited. One alternative approach is to solve the
following strictly convex minimization problem,

min
x∈Rn

xT G(σ )x − 2 pT x,

whose optimal solution is x = G(σ )−1 p. Actually, during iterations, we do not need
to calculate ψ(σ) every time, especially when σ is on the left side of the root and
close to the pole. It is discovered that for a given σ , the value of ψ(σ) is equal to the
optimal value of the following unconstrained concave maximization problem

max
z∈Rn

− zT G(σ )G(σ )z + 2 pT z − r2.

By the fact that the value of the target function will increase during the iterations,
we can stop solving the problem (5) if the target function is larger than a threshold,
and then we claim that σ must be on the left side of the root. Thus, the ill-condition
in computing ψ(σ) can be prevented as σ approaches to the pole. Since the optimal
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value is equal to zero when σ is a root of ψ(σ), any nonnegative value can be a
threshold.

An uncertainty interval should be initialized before the bisection method is
applied, and it is used to safeguard that the root is always in intervals of the bisection
method. For the right end of the interval, any large enough number can be a candi-
date. An upper bound can be calculated and then be chosen to be the right end of the
uncertainty interval. Let σ̄ ∗ ∈ (−λ1,+∞) be the root of ψ(σ). From the definition
of ψ(σ), we have

1

(λ1 + σ̄ ∗)2
p̂T p̂ − r2 ≥ 0.

Hence,
√
p̂T p̂/r = ‖ p‖/r is an upper bound for the root σ̄ ∗. However, the bound

‖ p‖/r may be not tight. A practical way is to let σ = −λ1 as a starting point and
then to update σ recursively by moving a certain step to its right each step. If the first
σ that makes the value of ψ(σ) be negative is smaller than the upper bound ‖ p‖/r ,
it is a tighter right end for the uncertainty interval.

Algorithm 1 (Initialization)
Input: Coefficients Q, f and r , and an error tolerance ε.
The smallest eigenvalue: Use Lanczos method to obtain λ̃1 and Ũ1.
Perturbation: If existence conditions do not hold, a perturbation is introduced and
let

p = f + αŨ1;

otherwise, let p = f .
Uncertainty interval: set a step size st and a threshold εt ; let σ = σ� = −λ̃1.

step 1: Solve the problem (5). If the value of the target function is larger than
the threshold εt , stop the iteration, let σ = σ + st and go to step 1; otherwise,
go to step 2.
step 2: Calculate the value of ψ(σ). If ψ(σ) > 0, set σ� = σ , σ = σ + st and
go to step 2; otherwise, let σu = σ and stop.

As the uncertainty interval [σ�, σu] is obtained, the bisection method is applied to
find the next iterate for σ , by setting σ be the middle point of the uncertainty interval.
The main part of the algorithm is given as follows:

Algorithm 2 (Main)
Do

set σ = (σ� + σu)/2 and calculate the value of ψ(σ);
If |ψ(σ)| < ε, then STOP and return σ and x ;
Else if ψ(σ) > 0, update σ� = σ ;
Else update σu = σ ;
End if

End do
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6 Numerical Experiments

First, three small-size examples are used to illustrate the application of the canonical
duality theory. Then, randomly generated examples for n ∈ [500, 5000] are presented
to demonstrate the efficiency of our method.

6.1 Small-Size Examples

Example 1 The given coefficients are

Q =
([r ] − 1 0

0 1

)
, f =

( [r ]0
−1.8

)
, and r = 1.

The existence conditions do not hold true for this example. There are two global solu-
tions, x̄1 = (0.437,−0.9)T and x̄2 = (−0.437,−0.9)T , which are red points shown
in Fig. 2. In order to show how the perturbation method works, a big perturbation is
firstly introduced to the linear coefficient f and let

p = (0.5,−1.8)T .

A critical point appears in the interior ofS +
a , which is σ̄ = 1.676 (see Fig. 2b). The

corresponding optimal solution for the perturbed problem is x̄∗
1 = (0.74,−0.673)T ,

which is shown as a green point in Fig. 2a. As the perturbation becomes smaller, the
solution of the perturbed problem should approach to that of the original problem.
We then let

p = (0.01,−1.8)T .

The critial point now is σ̄ = 1.022 and the corresponding solution is x̄∗
1 =

(0.456,−0.89)T (see Fig. 2d and c).
As pointed out above, the other global solution, x̄2, can also be approximated by

just choosing a perturbation with the opposite direction.
Let p = (−0.5,−1.8)T and p = (−0.01,−1.8)T . The critical point will be the

same as that for x̄∗
1, σ̄ = 1.676 and σ̄ = 1.022, and their corresponding primal solu-

tions are x̄∗
2 = (−0.74,−0.673)T and x̄∗

2 = (−0.456,−0.89)T .
In Fig. 2b, we can see that there is no critical point between−λ2 = −1 and−λ1 =

1, which suggests that there will no local-nonglobal solution. While there is a critical
point between−λ2 = −1 and−λ1 = 1 inFig. 2d, byTheorem4 theremust be a local-
nonglobal solution and it should locate near one of the global solutions, depending
on the perturbation.

Example 2 The matrix Q and radius r are the same as that in Example 1 and f is
changed to
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(a) (b)

(c) (d)

Fig. 2 Example 1: a and c are contours of the primal function and the boundary of the sphere;
b and d are the graphs of the dual function

f =
(

0
−3

)
,

which is in the same direction of that in Example 1 but has a larger length. We notice

that though
∑k

i=1 f̂ 2i �= 0 is violated, the condition
∑n

i=k+1
f̂ 2i

(λi −λ1)2
> r2 holds true.

Thus, the problem is not in the hard case. There is a critical point in the interior of
S +

a , which is shown in Fig. 3b, and it is corresponding to the unique global solution
of the primal problem, which is the green point in Fig. 3a.

Example 3 We consider a four-dimensional problem with Q, f and r being

Q =

⎛

⎜
⎜
⎝

[r ] − 10 0 2 −2
0 −3 −4 2
2 −4 7 −4

−2 2 −4 1

⎞

⎟
⎟
⎠ , f =

⎛

⎜
⎜
⎝

[r ] − 10
6
10
9

⎞

⎟
⎟
⎠ , and r = 5.

As shown in Fig. 1, the canonical dual function Pd(σ ) has six critical points

σ̄6 = −11.1 < σ̄5 = −10.49 < σ̄4 = −1.84 < σ̄3 = 6.08 < σ̄2 = 8.23 < σ̄1 = 12.58.
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(a) (b)

Fig. 3 Example 2: a is the contour of the primal function and boundary of the sphere; b is the
graph of the dual function

It can be verified that σ̄1 belongs toS +
a , i.e., G(σ̄1) � 0, which can also be observed

from Fig. 1 where all the vertical lines represent eigenvalues of matrix Q. Thus the
corresponding solution

x̄1 = (−4.71, 1.11, 1.25, 0.18)T

is the global solution of the primal problem. While σ̄2 = 8.23 is a local minimizer
of Pd(σ ) in (−λ2,−λ1) and thus the corresponding solution

x̄2 = (4.33, 1.05, 0.91, 2.08)T

is the local-nonglobal minimizer.

6.2 Large-Size Examples

Examples with dimensions of 500, 1000, 2000, 3000, and 5000 are randomly gener-
ated, including both general and hard cases. For each given dimension, both cases are
tested by ten examples, respectively. Thus, there are totally one hundred examples.
All elements of the coefficients, Q, f , and r , are integer numbers in [−100, 100].
For each example of the hard case, in order to make f be easily chosen, we use a
matrix Q of whom the multiplicity of the smallest eigenvalue is equal to one. The
vector f is constructed such that it is perpendicular to the eigenvector of the smallest
eigenvalue, and then a proper radius r is selected such that the existence conditions
are violated.

Two approaches are used to calculate the value ofψ(σ), one using decomposition
methods to calculate G(σ )−1 p, for whichwe use the ‘left division’ inMatlab, and the
other solving the problem (5), for which we use the function ‘quadprog’ in Matlab.
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The tolerance parameter ‘TolFun’ of ‘quadprog’ is set to 1e-12. The Lanczos method
is implemented by the function ‘eigs’ of Matlab. The Matlab is of version 7.13 and
runned in the platform with Linux 64-bit system and quad CPUs.

The step size st , the threshold εt and the termination tolerance ε are set to
‖ p‖/(200r), 0, and 1e-8, respectively. For the hard case, a perturbation αU1 is added
to the vector f , and two values of α, 1e-3, and 1e-4, are tried.

Results are shown in Tables1, 2, 3, and 4, and they contain the number of examples
which are successfully solved (Succ.Solv.), the distance of the optimal solution to
the boundary of the sphere (Dist.Boun.), the number of iterations in Algorithm 2
(Main) (Numb.Iter.), and the running time (in second) of the algorithm (Runn.Time).
The values in the columns of Dist.Boun., Numb.Iter., and Runn.Time are averages of
the examples successfully solved. We compare the results of the algorithm adopting

Table 1 General case and α = 1e − 3

Dim Succ. Solv. Dist. Boun. Numb. Iter. Runn. Time.

LD QP LD QP LD QP LD QP

500 10 10 4.716e-09 5.245e-09 28.9 28.6 0.53 1.29

1000 10 10 4.261e-09 3.974e-09 27.1 27.5 1.67 6.25

2000 10 10 3.211e-09 3.822e-09 28.2 27.8 6.52 15.23

3000 10 10 5.674e-09 5.221e-09 26.1 26.4 20.90 72.43

5000 10 10 5.422e-09 3.873e-09 28.6 28.5 71.68 170.34

Table 2 General case and α = 1e − 4

Dim Succ. Solv. Dist. Boun. Numb. Iter. Runn. Time.

LD QP LD QP LD QP LD QP

500 10 10 4.532e-09 4.464e-09 28.9 28.9 0.43 1.16

1000 10 10 3.849e-09 5.931e-09 27.4 27.1 1.47 6.08

2000 10 10 2.648e-09 2.872e-09 27.9 28.5 6.26 15.82

3000 10 10 5.299e-09 5.137e-09 26.2 26.2 20.15 73.60

5000 10 10 3.188e-09 4.005e-09 28.7 28.5 65.71 171.92

Table 3 Hard case and α = 1e − 3

Dim Succ.Solv. Dist.Boun. Numb.Iter. Runn.Time.

LD QP LD QP LD QP LD QP

500 10 10 4.340e-09 6.297e-09 36.0 34.9 0.48 1.11

1000 10 10 4.253e-09 4.904e-09 34.6 34.9 1.54 3.54

2000 10 10 2.808e-09 4.255e-09 35.9 35.8 7.15 15.11

3000 9 10 5.479e-09 4.466e-09 34.0 35.0 19.41 36.01

5000 10 10 3.755e-09 4.705e-09 35.2 35.5 74.79 121.41
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Table 4 Hard case and α = 1e − 4

Dim Succ.Solv. Dist.Boun. Numb.Iter. Runn.Time.

LD QP LD QP LD QP LD QP

500 7 9 2.503e-09 4.488e-09 39.6 40.6 0.51 1.36

1000 9 9 3.148e-09 4.482e-09 37.4 38.3 1.56 3.81

2000 5 9 8.668e-09 5.785e-09 38.6 42.6 7.36 17.95

3000 5 10 6.003e-09 3.997e-09 38.4 40.6 20.43 41.06

5000 8 10 4.748e-09 2.814e-09 37.8 38.8 72.72 131.51

‘left division’ and that of the algorithm adopting ’quadprog’ in the same table, where
LD denotes ‘left division’ and QP denotes ‘quadprog’.

We can see that the examples are solved very accurately with error allowance
being less than 1e-09. The failure in solving some examples is due to ‘left division’
and ‘quadprog’ being unable to handle very nearly singular matrices. For general
cases, all the examples can be solvedwithin nomore than 30 iterations, while for hard
cases, the number of iterations is around 40. From the running time,we notice that our
method is capable to handle very large problems in reasonable time. The algorithms
using ‘left division’ and ’quadprog’ have similar performances in the accuracy and
the number of iterations. Whereas the one using ‘left division’ needs much less time
than that of the one using ‘quadprog’. However, the one using ‘quadprog’ is able to
solve more examples successfully.

7 Conclusion Remarks

We have presented a detailed study on the quadratic minimization problem with a
sphere constraint. By the canonical duality, this nonconvex optimization is equivalent
to a unified concave maximization dual problem over a convex domain S +

a , which
is true also for many other global optimization problems under certain conditions
(see [26, 42–47]). Based on this canonical dual problem, sufficient and necessary
conditions are obtained for both general and hard cases. In order to solve hard-
case problems, a perturbation method and the associated polynomial algorithm are
proposed. Numerical results demonstrate that the proposed approach is able to solve
large-size problems deterministically and efficiently. Combiningwith the trust region
method, the theory and method presented in this paper can be used to solve general
global optimizations.
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