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Abstract This paper deals a study on post-buckling problem of a large deformed
elastic beam by using a canonical dual mixed finite element method (CD-FEM). The
nonconvex total potential energy of this beam can be used to model post-buckling
problems. To verify the triality theory, different types of dual stress interpolations are
used. Applications are illustrated with different boundary conditions and different
external loads using semi-definite programming (SDP) algorithm. The results show
that the global minimizer of the total potential energy is stable buckled configura-
tion, the local maximizer solution leads to the unbuckled state, and both of these
two solutions are numerically stable. While the local minimizer is unstable buckled
configuration and very sensitive.

1 Introduction

Nonconvex variational problems have always presented serious challenges not only
in numerical analysis, but also in computational mechanics and engineering sci-
ences. By numerical discretization techniques, nonconvex variational problems are
linked with certain nonconvex global optimization minimization problems. Due to
the lack of global optimality condition, conventional numerical methods and direct
approaches cannot solve these problems deterministically. The popular primal–dual
interior point methods suffer from uncertain error bounds in nonconvex analysis
because of the intrinsic duality gaps produced by traditional duality theories. There-
fore, most nonconvex minimization problems are considered as NP-hard in global

E.J. Ali (B) · D.Y. Gao
Faculty of Science and Technology, Federation University Australia, Mt Helen,
Victoria 3353, Australia
e-mail: elafali@students.federation.edu.au

D.Y. Gao
e-mail: d.gao@federation.edu.au

E.J. Ali
University of Basrah College of Science, Basra, Iraq

© Springer International Publishing AG 2017
D.Y. Gao et al. (eds.), Canonical Duality Theory, Advances in Mechanics
and Mathematics 37, DOI 10.1007/978-3-319-58017-3_14

277



278 E.J. Ali and D.Y. Gao

optimization and computer sciences. Unfortunately, this fundamental difficulty is not
fully recognized in computational mathematics and mechanics due to the significant
gap between these fields.

Canonical duality theory is a newly developed, potentially powerful methodolog-
ical theory which can transfer general multi-scale nonconvex problems in Rn to a
unified convex dual problem in continuous space Rm withm ≤ n and without duality
gap. The associated triality theory provides extremality criteria for both global and
local optimal solutions, which can be used to develop powerful algorithms for solv-
ing general nonconvex variational problems. This talk will present a canonical dual
finite element method (CD-FEM) for solving general nonconvex variational prob-
lems. Using Gao–Strang’s complementary–dual principle and mixed finite element
discretization, the general nonconvex variational problem can be reformulated as a
min–max optimization problem of a saddle function. Based on the triality theory
and the SDP method, a canonical primal–dual algorithm is proposed. Detailed appli-
cation will be illustrated by post-buckling problem of a large elastic deformations
of beam, which is governed by a fourth-order nonlinear differential equation. The
total potential energy of this beam is a double-welled nonconvex functional with
two local minimizers, representing the two buckled states, and one local maximizer
representing the unbuckled state.

The purpose of the present work is to verify the triality theory to find all solutions
of the post-buckling problem of a large deformation nonlinear beam. Mixed finite
element method with mixed meshes of different dual stress interpolations are used to
get a closed dimensions between the discretized displacement and discretized stress.
Numerical results show that the our algorithm can produce a stable solutions for the
globalminimizer and localmaximizer. However, the localminimizer is very sensitive
to numerical discretization and external loads.

2 Nonconvex Problem and Canonical
Dual–Complementary Principle

Let us consider an elastic beam subjected to a vertical distributed lateral load q(x)
and compressive external axial force F at the right end as shown in Fig. 1. It was

Fig. 1 Simply supported
beam model
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discovered by Gao in 1996 that the well-known vonKarman nonlinear plate model in
one dimension is actually equivalent to a linear differential equation and therefore, it
cannot be used for studying post-buckling phenomena [4]. The main reason for this
“paradox” is due to the fact that the stress in lateral direction of large deformed plate
was ignored by von Karman. Therefore, von Karman equation works only for thin
plate and cannot be used as a beammodel. For a relatively thick beam such that h/L ∼
w(x) ∈ O(1), the deformation in the lateral direction can not be ignored. Based on
the finite deformation theory for Hooke’material and EulerBernoulli hypothesis (i.e.,
straight lines normal to themid-surface remain straight and normal to themid-surface
after deformation), a nonlinear beam model was proposed by Gao [4]:

E I.w,xxxx − αEw2
,xw,xx + Eλw,xx − f (x) = 0, ∀x ∈ [0 L], (1)

where E is the elastic modulus of material, I = 2h3/3 is the second moment of
area of the beam’s cross section, w is the transverse displacement field of the beam,
α = 3h(1 − v2) > 0 with v as the Poisson’s ratio, λ = (1 + v)(1 − v2)F/E > 0 is
an integral constant, f (x) = (1 − v2)q(x) depends mainly on the distributed lateral
load q(x); 2h and L represent to the height and length of the beam, respectively. The
axial displacement u(x) is governed by the following differential equation [4]:

ux = −1

2
(1 + v)w2

,x − λ

2h(1 + v)
, (2)

which shows that u(x) ∼ w,x (x) ∈ O(ε), u,x (x) ∼ w,xx (x) ∈ O(ε2). The total
potential energy attendant of this problem is the function Π(w) : Ua → R define
by

Π(w) =
∫ L

0

(
1

2
E Iw2

,xx + 1

12
Eαw4

,x − 1

2
Eλw2

,x − f (x) w

)
dx = 0, (3)

whereUa is the kinematically admissible space, in which certain necessary boundary
conditions are given. Thus, for the given external loads f (x) and λ, the primal
variational problem is to find w̄ ∈ Ua such that

(P) : Π(w̄) = inf {Π(w)|w ∈ Ua}. (4)

It is easy to prove that the stationary condition δΠ(w) = 0 leads to the governing
equation (1). From the classic beam theory, the Euler buckling load can be deter-
mined by

λcr = inf
w∈Ua

∫ L
0 E Iw2

,xxdx∫ L
0 Ew2

,xdx
. (5)

Clearly, before the axial load λ reaches to the Euler buckling load λcr , the total
potential energy Π(w) is convex on Ua and the nonlinear differential equation (1)
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has only one solution. When λ > λcr , the beam is in a post-buckling state. In this
case, the total potential energy Π is nonconvex and Eq. (1) may have at most three
(strong) solutions [6] at eachmaterial point x ∈ [0 L]: twominimizers corresponding
to the two possible buckled states, one maximizer corresponding to the possible
unbuckled state. Clearly, these solutions are sensitive to both the axial load λ and the
distributed lateral force field f (x). By Eq. (2) we know that the axial deformation
could be relatively larger, the Gao beam model can be used for studying both pre-
and post-buckling problems in engineering and sciences [2, 11].Mathematically, due
to the fact that traditional numerical methods and convex optimization techniques
cannot identify the global minimizer at each numerical iteration, most of nonconvex
optimization problems are considered to be NP-hard in global optimization and
computer science [7]. the Gao–Strang total complementary energyΞ : Ua × Sa →
R [8] in nonlinear elasticity can be defined as

Ξ(w, σ ) =
∫ L

0

(
1

2
E Iw2

,xx + 1

2
σw2

,x − 3

4Eα
(σ + Eλ)2 − f (x)w

)
dx

= G(w, σ ) −
∫ L

0
[V ∗(σ ) − f (x)w]dx, (6)

where Sa = {σ ∈ C[0, L]| σ(x) ≥ −λE ∀x ∈ [0, L]} and

G(w, σ ) =
∫ L

0

(
1

2
E Iw2

,xx + 1

2
σw2

,x

)
dx

is the generalized Gao–Strang complementary gap function [8].

3 Mixed Finite Element Method and Triality Theory

In order to apply FEM, the domain of the beam is discretized into m elements
[0, L] = ⋃m

e=1 Ωe. In each element Ωe = [xa, xb], the deflection, rotating angular,
and dual stress for the node xa are marked as wa , θa , and σa , respectively, and similar
for the node xb. Then, we have the nodal displacement vector wT

e = [wa θa wb θb]
of the e-th element and the nodal dual stress element σ T

e = [σa σb]. In each element,
we use mixed finite element interpolations for both w(x) and σ(x), i.e.,

wh
e (x) = NT

w (x)we , σ h
e (x) = NT

σ (x)σ e ∀x ∈ Ωe.

Thus, the spacesUa andSa can be numerically discretized to the finite-dimensional
spacesU h

a andS h
a , respectively. The shape function forw(x) is based on piecewise-

cubic polynomial, i.e.,
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Nw =

⎡
⎢⎢⎢⎣

1
4 (1 − ξ)2 (2 + ξ)
Le
8 (1 − ξ)2 (1 + ξ)
1
4 (1 + ξ)2 (2 − ξ)
Le
8 (1 + ξ)2 (ξ − 1)

⎤
⎥⎥⎥⎦ ,

where ξ = 2x/Le − 1 and Le is the length of e-th beam element. The shape function
for σ is based on different dual stress interpolations; piecewise-linear stresses (PLS,
δ = 1), piecewise-quadratic stresses (PQS, δ = 2), and piecewise-cubic stresses
(PCS, δ = 3) as follows:

Nσ |δ=1 = 1

2

[
1 − ξ

1 + ξ

]
, Nσ |δ=2 = 1

2

⎡
⎣ ξ 2 − ξ

1 − ξ 2

ξ 2 + ξ

⎤
⎦ ,

and

Nσ |δ=3 = 1

16

⎡
⎢⎢⎣

−1 + ξ + 9ξ 2 − 9ξ 3

9 − 27ξ − 9ξ 2 + 27ξ 3

9 + 27ξ − 9ξ 2 − 27ξ 3

−1−ξ + 9ξ 2 + 9ξ 3

⎤
⎥⎥⎦ ,

where δ refers to the number of straight lines inside the element e as shown in Fig. 2.
Thus, on the discretized feasible deformation space U h

a , the Gao–Strang total
complementary energy can be expressed in the following discretized form:

Ξ h(w, σ ) =
m∑
e=1

(
1

2
wT
e Ge(σe) we − 1

2
σ T
e Ke σe − λT

e σe − f Te we − ce

)

= 1

2
wT G(σ ) w − 1

2
σ T K σ − λT σ − fT w − c, (7)

wherew ∈ U h
a ⊂ R2(m+1) and σ ∈ S h

a ⊂ Rδm+1 are nodal deflection and dual stress
vectors, respectively. We let

S h
a = {σ ∈ Rδm+1| det G(σ ) 
= 0}. (8)

Fig. 2 Dual stress nodes in an element
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The Hessian matrix of the gap function G(σ ) ∈ R2(m+1) × R2(m+1) is obtained by
assembling the following symmetric matrices Ge(σe):

Ge(σe) =
∫

Ωe

(
EI N ′′

w (N ′′
w)T + (Nσ )T σe N ′

w (N ′
w)T

)
dx . (9)

The matrix K ∈ Rδm+1 × Rδm+1 is obtained by assembling the following positive-
definite matrices Ke

Ke =
∫

Ωe

(
3

2Eα
Nσ NT

σ

)
dx .

Also, λ = {λe} ∈ Rδm+1, f = { fe} ∈ R2(m+1) are defined by assembling the corre-

sponding element components λe = ∫
Ωe

(
3
2α λNσ

)
dx, fe = ∫

Ωe
f
(
x
)
Nw dx, and

c =
m∑
e=1

ce ∈ R, where ce = ∫
Ωe

(
3E
4α λ2

)
dx = 3

4α ELeλ
2.

By the critical condition δΞ h(w, σ ) = 0, we obtain the two equations G(σ ) w −
f = 0, and 1

2wT G,σ (σ ) w − K σ − λ = 0 , where G,σ (σ ) is gradient of G
respect to σ . The discretized pure complementary energy Πh

d : S h
a → R can be

obtained by the following canonical dual transformation:

Πh
d (σ ) = −1

2
fT G−1(σ ) f − 1

2
σ T K σ − λT σ − c (10)

Suppose (w̄, σ̄ ) is a stationary point ofΞ h(w, σ ), and let S +
a = {σ ∈ S h

a | G(σ ) �
0}, and S −

a = {σ ∈ S h
a | G(σ ) ≺ 0}. Then, by “Complementary–duality Princi-

ple theorem” [5], we have the following theorem.

Theorem 1. Suppose (w̄, σ̄ ) is a stationary point of Ξ h(w, σ ), then Πh
p(w̄) =

Ξ h(w̄, σ̄ ) = Πh
d (σ̄ ). Moreover, if σ̄ ∈ S +

a , then we have
Canonical Min–Max Duality: The stationary point w̄ is a global minimizer of

Πh
p(w) on U h

a if and only if σ̄ is a global maximizer of Πh
d (σ ) on S +

a , i.e.,

Πh
p(w̄) = min

w∈U h
a

Πh
p(w) ⇔ max

σ∈S +
a

Πh
d (σ ) = Πh

d (σ̄ ). (11)

If σ̄ ∈ S −
a , then on a neighborhood Uo × So ⊂ U h

a × S −
a of (w̄, σ̄ ) we have

Canonical Double-max Duality: The stationary point w̄ is a local maximizer of
Πh

p(w) onUo if and only if the stationary point σ̄ is a local maximizer of Πh
d (σ ) on

So, i.e.,
Πh

p(w̄) = max
w∈Uo

Πh
p(w) ⇔ max

σ∈So

Πh
d (σ ) = Πh

d (σ̄ ) (12)

Canonical Double-min Duality: The stationary point w̄ is a local minimizer of
Πh

p(w) on Uo if and only if the stationary point σ̄ is a local minimizer of Πh
d (σ ) on

So, i.e.,
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Πh
p(w̄) = min

w∈Uo

Πh
p(w) ⇔ min

σ∈So

Πh
d (σ ) = Πh

d (σ̄ ). (13)

The proof of this theorem follows from the general results in global optimization
[3, 9, 10]. The canonical min–max duality can be used to find global minimizer
of the nonconvex problem by the canonical dual problem max{Πh

d (σ )| σ ∈ S +
a },

which is a concavemaximization problemand can be solved easily bywell-developed
convex analysis and optimization techniques. The canonical double-max and double-
min duality statements can be used to find the biggest local maximizer and a local
minimizer of the nonconvex primal problem, respectively. It was proved in [3,
9, 10] that both the canonical min–max and double-max duality statements hold
strongly regardless the dimensions of U h

a and S h
a , while the canonical double-min

duality statement (13) holds weakly for dimU h
a 
= dimS h

a , but it holds strongly if
dimU h

a = dimS h
a . This case is within our reach in the following applications.

4 Semi-definite Programming Algorithm

According to Schur complement lemma [12], the global optimization problem
minw∈U h

a
Πh

p(w) = minw∈U h
a
maxσ∈S h

a
Ξ(w, σ ) s.t. G(σ ) � 0, can be relaxed to

the following SDP problem [1]:

max
σ ,t

t

s.t. G(σ ) � 0,

[
2K−1 σ

σ T 1
2wT G(σ )w − λTσ − fT w − c − t

]
� 0, (14)

where w = w(σ ) = G−1(σ )f . By the fact that K � 0, the second inequality con-
straint implies to; t (w, σ ) ≤ 1

2wT G(σ )w − λTσ − fT w − c.
By the same way, the SDP relaxation for the canonical double-max dual-

ity statement, maxw∈U h
a

Πh
p(w) = maxw,σ Ξ(w, σ ) = maxΠh

d (σ ) s.t. σ ∈ S −
a

should be equivalent to [1]:

max
σ ,t

t

s.t. −G(σ ) � 0,

[
2K−1 σ

σ T 1
2wT G(σ )w − λTσ − fT w − c − t

]
� 0. (15)

which leads to a local maximum solution to the post-buckling problem.
To find the local minimum for the beam post-buckling problem, it is appropriate

to use the following new formula of pure complementary energy [1]:

Π̂d(σ , w) = −1

2
fT G−1(σ ) f − 1

2
wT M(σ ) w − 1

2
λT σ − c. (16)
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The SDP relaxation for the canonical double-min duality statement minw Πh
p(w) =

minw,σ Ξ(w, σ ) = minw,σ Π̂d(σ , w) s.t. σ ∈ S −
a and for w = w(σ ) should be

equivalent to

min
σ ,t

t

s.t. −G(σ ) � 0,

[−2G(σ ) f
fT 1

2wT M(σ )w + 1
2λ

Tσ + c + t

]
� 0. (17)

Where M(σ ) is obtained by assembling the following symmetric matrices Me(σe):

Me(σe) =
∫

Ωe

1

2

(
(Nσ )T σe N ′

w (N ′
w)T

)
dx (18)

The post-buckling configurations of a large deformed nonlinear beam can be found
by the following steps:

1. With an initial point w(k=1), the next steps are repeated as w(k+1) converges to the
solution.

2. Find σ (k+1) by applying SDP algorithm for global maximizer and local minimizer
problems in (15) and (17), respectively.

3. Compute w(k+1) = G−1(σ (k+1))f .
4. Check convergence; if ‖w(k+1) − w(k)‖/‖w(k)‖ ≤ ε, stop with optimal solution

w∗ = w(k+1), where ε is a small positive real number. Otherwise, put k = k + 1
and return to step 2.

For applying SDP algorithm, a software package named SeDuMi [13] is used to
solve the problems (15) and (17) via the interior point method.

5 Numerical Solutions with Different Dual Stress
Interpolations

According to the triality theory, the canonical double-min duality statement (13)
holds strongly if dimU h

a = dimS h
a . So, the piecewise-quadratic stress (δ = 2) is

the most convenient to verify this theory to obtain closed dimensions between the
discretized displacement w ∈ R2(m+1) and discretized stress σ ∈ Rδm+1. But these
two dimensions are still not equal. However, it is possible to make these dimensions
equal if we use mixed different dual stress interpolations on the elements of the same
beam. So, many mixed meshes of dual stress interpolations are used in this paper
beside to the “PLS mesh” and “PQS mesh” in order to improve the local unstable
buckled configuration solution of a large deformed beam.

We present four different types of beams which are controlled by different
boundary conditions. Some geometrical data are kept fixed for all computations;
E = 1000Pa, v = 0.3, L = 1m, h = 0.05m with an odd number of beam elements
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m = 51. Different loading conditions, including both axial and transverse arrange-
ments, are considered in our applications.

5.1 Simply Supported Beam

A simply supported beammodel is fixed in both directions at x = 0 and fixed only in
the y-direction at x = L as shown in Fig. 3-a. By applying the boundary conditions,
w(0) = w′′(0) = w(L) = w′′(L) = 0, two elements of discretized displacementw =
{we} ∈ R2(m+1) should be zero. Then, the remaining nonzero elements of the vector
w is (2m).We used three types of dual stress interpolations to construct a mixedmesh
of dual stress fields in order to obtain dimU h

a = dimS h
a . The PQS is applied on

(m − 3) elements and the PCS is used for only one element that is on the central of
the beam.While the PLS is applied on two beam elements which surround the central
element as shown in “Mesh-1” in Fig. 4. So, we have dim(σ ) = dim(w) = 2m, and
this dimension equals 102 for m = 51. The critical load of the simply supported
beam is λcr = 0.00097m2, see Eq. (5). The approximate deflections with λ > λcr

under both of uniformly distributed load and concentrated force are shown in Figs. 5
and 6, respectively.

5.2 Doubly/Clamped Beam

Doubly/clamped beam is fixed at both ends (see Fig. 3-c). The boundary conditions,
w(0) = w′(0) = w(L) = w′(L) = 0, force the first two and the last two elements

Fig. 3 Different types of beams

Fig. 4 Mesh-1: Mixed dual stress interpolations of beam elements
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Fig. 5 Post-buckling solutions of simply supported beam under uniformly distributed load

Fig. 6 Post-buckling solutions of simply supported beam under a concentrated force

Fig. 7 Mesh-3: Mixed dual stress interpolations of beam elements

Fig. 8 Post-buckling configurations of clamped beam under uniformly distributed load

of discretized displacement w to be zero. Thus, the remaining nonzero element of
displacement vector is (2m − 2). The selected mixed mesh for dual stress field is
“Mesh-3”which contains (m − 3) of PQS,while PLS is used for three beam elements
(see Fig. 7). Form = 51, the dim(σ ) = dim(w) = 100. The approximate deflections
for λ > λcr with λcr = 0.0041m2 under uniformly distributed load and concentrated
force are shown in Figs. 8 and 9, respectively.
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Fig. 9 Post-buckling configurations of clamped beam under a concentrated force

Fig. 10 Mesh-4: Mixed dual stress interpolations of beam elements

Fig. 11 Post-buckling configurations of clamped/simply supported beam under uniformly distrib-
uted load

Fig. 12 Post-buckling configurations of clamped/simply supported beam under a concentrated
force

5.3 Clamped/Simply Supported Beam

Clamped/simply supported beam is clamped at x = 0 and fixed in both directions at
x = L as shown in Fig. 3-d. Three elements of discretized displacement w should be
zero after applying the boundary conditions; w(0) = w′(0) = w(L) = w′′(L) = 0.
The remaining nonzero element of w is (2m − 1). The “Mesh-4” is designed by
applying two different dual stress interpolations. The PQS is applied for (m − 3)
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beam elements, while the PLS is applied on two beam elements which surround the
central element as shown inFig. 10. Thus, form = 51, thedim(σ ) = dim(w) = 101.
The critical load of this beam is λcr = 0.0034m2. The approximate deflections under
uniformly distributed load and concentrated force are shown in Figs. 11 and 12,
respectively.

6 Conclusions

This paper presents a CD-FEM for the post-buckling analysis with a large elastic
deformations beam which is governed by a fourth-order nonlinear differential equa-
tion which was introduced by Gao in 1996. The generalized total complementary
energy Ξ(w, σ ) associated with this model is a nonconvex functional and was used
to study the post-buckling problems. Combining the generalized total complemen-
tary energy and the proposed formula of pure complementary energy Π̂d(σ , w)with
the triality theory, a canonical duality algorithm is studied for solving post-buckling
problems using SDP algorithm. According to the triality theory, the dimensions
of discretized displacement and dual stress have been made equal by designing a
number of mixed meshes of different dual stress interpolations. Different bound-
ary conditions and different loading conditions, including both axial and transverse
arrangements are considered in our applications. The numerical results show that the
global minimizer and local maximizer of the total potential energy are stable buck-
led configuration for different dual stress meshes. While the local minimizer present
unstable deformation states and the solutions of unstable buckled state is sensitive
to both stress interpolations and external loads.
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