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Abstract This paper presents a canonical duality approach for solving a general
topology optimization problem of nonlinear elastic structures. Based on the principle
of minimum total potential energy, this most challenging problem can be formulated
as a bi-levelmixed integer nonlinear programming problem (MINLP), i.e., for a given
deformation, the first-level optimization is a typical linear constrained 0–1 program-
ming problem, while for a given structure, the second-level optimization is a general
nonlinear continuous minimization problem in computational nonlinear elasticity.
It is discovered that for linear elastic structures, first-level optimization is a typical
Knapsack problem, which is considered to be NP-complete in computer science.
However, by using canonical duality theory, this well-known problem can be solved
analytically to obtain exact integer solution. A perturbed canonical dual algorithm
(CDT) is proposed and illustrated by benchmark problems in topology optimization.
Numerical results show that the proposed CDT method produces desired optimal
structure without any gray elements. The checkerboard issue in traditional methods
is much reduced. Additionally, an open problem on NP-hardness of the Knapsack
problem is proposed.

1 General Topology Optimization Problem and Challenges

Topology optimization is a mathematical method that optimizes material layout
within a given design space, for a given set of loads, boundary conditions, and
constraints with the goal of maximizing the performance of the system. Due to its
broad applications, the topology optimization has been subjected to extensively study
since the seminal paper by Bendsoe and Kikuch [4]. Generally speaking, a typical
topology optimization problem involves both continuous-state variable and discrete
density distribution that can take either the value 0 (void) or 1 (solid material) at
any point in the design domain. Thus, numerical discretization methods (say FEM)

D.Y. Gao (B)
Faculty of Science and Technology, Federation University Australia,
Mount Helen, VIC, Australia
e-mail: d.gao@federation.edu.au

© Springer International Publishing AG 2017
D.Y. Gao et al. (eds.), Canonical Duality Theory, Advances in Mechanics
and Mathematics 37, DOI 10.1007/978-3-319-58017-3_13

263



264 D.Y. Gao

for solving topology optimization problems lead to a so-called mixed integer non-
linear programming (MINLP) problem, which appears extensively in computational
engineering, decision and management sciences, operations research, industrial, and
systems engineering [10].

Let us consider an elastically deformable body that in an undeformed configu-
ration occupies an open domain Ω ⊂ R

d (d = 2, 3) with boundary Γ = ∂Ω . We
assume that the body is subjected to a body force f (per unit mass) in the refer-
ence domain Ω and a given surface traction t(x) of dead-load type on the boundary
Γt ⊂ ∂Ω , while the body is fixed on the remaining boundary Γu = ∂Ω ∩ Γt . Based
on the minimal potential principle in continuum mechanics, the topology optimiza-
tion of this elastic body can be formulated in the following coupled minimization
problem.

(P) : min
u∈Ua

min
ρ∈Z

{
Π(u, ρ) =

∫
Ω

W (∇u)ρdΩ +
∫

Ω

u · fρdΩ −
∫

Γt

u · tdΓ
}

,

(1)

where the unknown u : Ω → R
d is a displacement vector field, the design variable

ρ(x) ∈ {0, 1} is a discrete scalar field, and the stored energy per unit reference volume
W (D) is a nonlinear differentiable function of the deformation gradientD = ∇u. The
notation Ua identifies a kinematically admissible space of deformations, in which,
certain geometrical/boundary conditions are given, and

Z =
{
ρ(x) : Ω → {0, 1}|

∫
Ω

ρ(x)dΩ ≤ Vc

}

is a design feasible space, in which, Vc > 0 is the desired volume.
Mathematically speaking, the topology optimization (P) is a coupled nonlinear-

discrete minimization problem in infinite-dimensional space. For large deformation
problems, the stored energyW (D) is usually nonconvex. It is fundamentally difficult
to analytically solve this type of problems. Numerical methods must be adopted.

Finite element method is the most popular numerical approach for topology opti-
mization, by which the domain Ω is divided into n disjointed elements {Ωe} and in
each element, the unknown fields can be numerically discretized as

u(x) = Ne(x)ue, ρ(x) = ρe ∈ {0, 1} ∀x ∈ Ωe, (2)

where Ne is an interpolation matrix, ue is a nodal displacement vector, the binary
design variable ρe ∈ {0, 1} is used for determining whether the element Ωe is a void
(ρe = 0) or a solid (ρe = 1). Thus, by substituting (2) intoΠ(u, ρ) and letU m

a ⊂ R
m

be an admissible nodal displacement space,

Za =
{

ρ = {ρe} ∈ {0, 1}n|V (ρ) =
n∑

e=1

ρeΩe ≤ Vc

}
, (3)
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the variational problem (P) can be numerically reformulated the following global
optimization problem:

(Ph) : min
u∈U m

a

min
ρ∈Za

{
Πh(u, ρ) = C(ρ,u) − uT f(ρ)

}
, (4)

where

C(ρ,u) = ρT c(u), c(u) =
{∫

Ωe

W (∇Ne(x)ue)dΩ
}

∈ R
n, (5)

f(ρ) =
{∫

Ωe

ρeNe(x)Tbe(x)dΩ
}

+
{∫

Γ e
t

Ne(x)T t(x)dΓ
}

∈ R
m . (6)

Clearly, this discretized topology optimization involves both the continuous vari-
able u ∈ U m

a and the integer variable ρ ∈ Za; it is the so-called mixed integer
nonlinear programming problem (MINLP) in mathematical programming. Since
ρ
p
e = ρe ∀ρe ∈ {0, 1}, ∀p ∈ R, we have

Cp(ρ,u) :=
n∑

e=1

ρ p
e ce(u) = ( ρ ◦ . . . ◦ ρ︸ ︷︷ ︸

p times

)T c(u) = C(ρ,u) ∀p ∈ R, (7)

where ρ ◦ c = {ρece} represents the Hadamard product. Particularly, for p = 2, we
write

C2(ρ,u) := 1

2
ρTA(u)ρ, A(u) = 2Diag{c(u)}. (8)

Clearly, C2(ρ,u) is a convex function of ρ since A(u) 
 0 ∀u ∈ U m
a . By the facts

that ρ ∈ Za is the main design variable and the displacement u depends on each
given domain Ω , the problem (Ph) is actually a so-called bi-level programming
problem:

(Pbl) : min
ρ∈Za

min
u∈U m

a

{Cp(ρ,u) − uT f(ρ)} (9)

s.t. u = arg min
v∈U m

a

Πh(v, ρ). (10)

In this formulation, Cp(ρ,u) − uT f(ρ) represents the upper level cost function and
the total potential energyΠh(u, ρ) represents the lower level cost function. For large
deformation problems, the total potential energy Πh is usually a nonconvex function
of u. Therefore, this bi-level optimization could be the most challenging problem in
global optimization.

For linear elastic structures, the total potential energy Πh is a quadratic function
of u
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Πh(u, ρ) = 1

2
uTK(ρ)u − uT f(ρ), (11)

where K(ρ) = {ρeKe} ∈ R
m×m is the overall stiffness matrix, which is obtained by

assembling the sub-matrix ρeKe for each element Ωe. In this case, the lower level
optimization (10) is a convex minimization and for each given upper level design
variable ρ, the lower level solution is simply governed by the linear equilibrium
equationK(ρ)u = f(ρ). Therefore, the topology optimization for linear elasticity is
mathematically a linearly constrained integer programming problem:

(Ple) : min
ρ∈Za

min
u∈U m

a

{
−1

2
uTK(ρ)u| K(ρ)u = f(ρ)

}
. (12)

Due to the integer constraint, to solve this mixed integer quadratic minimization
problem is fundamentally difficult. In order to overcome the combinatorics complex-
ity in this problem, various approximations were proposed during the last decades,
including homogenization [4], density-based approximations [3], level set method
[21], and topological derivative [19]. These approaches generally relax the MINLP
problem into a continuous parameter optimization problem by using size, density,
or shape, and then solve it based on the traditional Newton-type (gradient-based) or
evolutionary optimization algorithms. A comprehensive survey on these approaches
was given in [18].

The so-called Simplified Isotropic Material with Penalization (SIMP) is one of
the most popular approaches in topology optimization:

(SIMP) : min
ρ∈RN

Cp(ρ,u(ρ)) (13)

s.t. K(ρ p)u = f(ρ), V (ρ) ≤ Vc, (14)

0 < ρe ≤ 1, e = 1, . . . , n (15)

where p is the so-called penalization parameter in topology optimization. The
SIMP formulation has been studied extensively in topology optimization and numer-
ous research papers have been produced during the past decades. By the fact that
ρ p = ρ ∀p ∈ R, ∀ρ ∈ {0, 1}n , we can see that the integer constraint ρ ∈ {0, 1}n in
(Ple) is simply replaced by the box constraint ρ ∈ (0, 1]n . Although it was discov-
ered by engineers that the “magic number” p = 3 can ensure good convergence to
almost 0-1 solutions, the SIMP formulation is not mathematically equivalent to the
topology optimization problem (Ple). Actually, in many real-world applications,
most SIMP solutions {ρe} are only approximate to 0 or 1 but never be exactly 0
or 1. Correspondingly, these elements are in grayscale which have to be filtered or
interpreted artificially. Additionally, this method suffers some key limitations such
as the unsure global optimization, many grayscale elements, checkerboard patterns,
etc.
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2 Canonical Dual Problem and Analytical Solution

Canonical dual finite element methods for solving elasto-plastic structures and large
deformationproblemshavebeen studied since1988 [5, 6].Applications to nonconvex
mechanics are given recently for post-buckling problems [1, 15]. This paper will
address the canonical duality theory for solving the challenging integer programming
problem in (Pu).

Let a = {ae = Vol(Ωe)} ∈ R
n , where Vol(Ωe) represents the volume of each

element Ωe. Then we have Za = {ρ ∈ {0, 1}n| ρT a ≤ Vc}. By the fact that minρ

minu = minu minρ , the alternative iteration can be adopted for solving the topology
optimization problem. Since C1(ρ,u) = 1

2u
TK(ρ)u = ρT c(u), for a given solution

of (10), the energy vector cu = c(u) ∈ R
n+ is nonnegative. Thus, the iterative method

for linear elastic topology optimization (Ple) can be proposed for solving the fol-
lowing linear 0–1 programming problem ((P) for short):

(P) : min
{
Pu(ρ) = −cTu ρ | ρ ∈ {0, 1}n, ρT a ≤ Vc

}
. (16)

This is the well-known Knapsack problem. Due to the 0–1 constraint, even this
most simple linear integer programming is listed as one of Karp’s 21 NP-complete
problems [13].

The canonical duality theory for general integer programming was first proposed
by Gao in 2007 [9]. The key idea of this theory is the introduction of a canonical
measure

ξ = Λ(ρ) = {ρ ◦ ρ − ρ, ρT a − Vc} : R
n → E = R

n+1. (17)

Let

Ea := {ξ = {ε, ν} ∈ R
n+1| ε ≤ 0, ν ≤ 0} (18)

be a convex cone in Rn+1. Its indicator Ψ (ξ) is defined by

Ψ (ξ) =
{
0 if ξ ∈ Ea
+∞ otherwise

which is a convex and lower semi-continuous (l.s.c) function in Rn+1. By this func-
tion, the primal problem can be relaxed in the following unconstrained minimization
form:

min
{
Φ(ρ) = Pu(ρ) + Ψ (Λ(ρ)) | ρ ∈ R

n
}
. (19)

Due to the convexity of Ψ (ξ), its conjugate function can be defined uniquely by the
Fenchel transformation:
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Ψ ∗(ζ ) = sup
ξ∈Rn+1

{ξ T ζ − Ψ (ξ)} =
{
0 if ζ ∈ E ∗

a
+∞ otherwise

(20)

where E ∗
a = {ζ = {σ , ς} ∈ R

n+1| σ ≥ 0, ς ≥ 0} is the dual space of Ea . Thus, by
using the Fenchel-Young equality Ψ (ξ) + Ψ ∗(ζ ) = ξ T ζ , the function Φ(ρ) can be
written in the Gao–Strang total complementary function [12]

Ξ(ρ, ζ ) = Pu(ρ) + Λ(ρ)T ζ − Ψ ∗(ζ ). (21)

Based on this function, the canonical dual of Φ(ρ) can be defined by

Φd(ζ ) = sta {Ξ(ρ, ζ )| ρ ∈ R
m} = PΛ

u (ζ ) − Ψ ∗(ζ ), (22)

where sta { f (x)| x ∈ X} stands for finding a stationary value of f (x) ∀x ∈ X , and

PΛ
u (ζ ) = sta {Λ(ρ)T ζ + Pu(ρ)} = −1

4
τ T
u (ζ )G−1(ζ )τ u(ζ ) − ςVc (23)

is the Λ-conjugate of Pu(ρ), in which,

G(ζ ) = Diag{σ }, τ u(ζ ) = σ − ςa + cu .

Clearly, PΛ
u (ζ ) is well defined if detG �= 0, i.e., σ �= 0 ∈ R

n . Let Sa = {ζ ∈
E ∗
a | detG �= 0}. We have the following standard result in the canonical duality

theory:

Theorem 1 (Complementary-Dual Principle). For a given u ∈ U m
a , if (ρ̄, ζ̄ ) is a

KKT point of Ξ , then ρ̄ is a KKT point of Φ, ζ̄ is a KKT point of Φd , and

Φ(ρ̄) = Ξ(ρ̄, ζ̄ ) = Φd(ζ̄ ). (24)

Proof. By the convexity of Ψ (ξ), we have the following canonical duality relations:

ζ ∈ ∂Ψ (ξ) ⇔ ξ ∈ ∂Ψ ∗(ζ ) ⇔ Ψ (ξ) + Ψ ∗(ζ ) = ξ T ζ , (25)

where

∂Ψ (ξ) =
{

ζ if ζ ∈ E ∗
a

∅ otherwise

is the sub-differential ofΨ . Thus, in terms of ξ = Λ(ρ) and ζ = {σ , ς}, the canonical
duality relations (25) can be equivalently written as

ρ ◦ ρ − ρ ≤ 0 ⇔ σ ≥ 0 ⇔ σ T (ρ ◦ ρ − ρ) = 0 (26)

ρT a − Vc ≤ 0 ⇔ ς ≥ 0 ⇔ ς(ρT a − Vc) = 0. (27)
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These are exactly the KKT conditions for the inequality constraints ρ ◦ ρ − ρ ≤ 0
and ρT a − Vc ≤ 0. Thus, (ρ̄, ζ̄ ) is a KKT point of Ξ if and only if ρ̄ is a KKT point
of Φ, ζ̄ is a KKT point of Φd . The equality (24) holds due to the canonical duality
relations in (25). �

Indeed, on the effective domain E ∗
a of Ψ ∗(ζ ), the total complementary function

Ξ can be written as

Ξ(ρ, σ , ς) = Pu(ρ) + σ T (ρ ◦ ρ − ρ) + ς(ρT a − Vc), (28)

which can be considered as the Lagrangian of (P) for the canonical constraint
Λ(ρ) ≤ 0 ∈ R

n+1. The Lagrange multiplier ζ = {σ , ς} ∈ E ∗
a must satisfy the KKT

conditions in (26) and (27). By the complementarity condition σ T (ρ ◦ ρ − ρ) = 0
we know that ρ ◦ ρ = ρ if σ > 0. Let

S +
a = {ζ = {σ , ς} ∈ E ∗

a | σ > 0}. (29)

Then for any given ζ = {σ , ς} ∈ S +
a , the function Ξ(·, ζ ) : Rm → R is strictly

convex, the canonical dual function of Pu can be well defined by

Pd
u (ζ ) = min

ρ∈Rm
Ξ(ρ, ζ ) = −1

4
τ T
u (ζ )G−1(ζ )τ u(ζ ) − ςVc. (30)

Thus, the canonical dual problem of (P) can be proposed as follows:

(Pd) : max{Pd
u (σ , ς)| (σ , ς) ∈ S +

a }. (31)

Theorem 2 (Analytical Solution). For any given u ∈ U m
a , if ζ̄ is a solution to

(Pd), then

ρ̄ = 1

2
G−1(ζ̄ )τ u(ζ̄ ) (32)

is a global optimal solution to (P) and

Pu(ρ̄) = min
ρ∈Za

Pu(ρ) = max
ζ∈S +

a

Pd
u (ζ ) = Pd

u (ζ̄ ). (33)

Proof. It is easy to prove that for any given u ∈ U m
a , the canonical dual function

Pd
u (ζ ) is concave on the open convex setS +

a . If ζ̄ is a KKT point of Pd
u (ζ ), then it

must be a unique global maximizer of Pd
u (ζ ) on S +

a . By Theorem1 we know that
if ζ̄ = {σ̄ , ς̄} ∈ S +

a is a KKT point of Φd(ζ ), then ρ̄ = ρ(ζ̄ ) defined by (32) must
be a KKT point of Φ(ρ). Since Ξ(ρ, ζ ) is a saddle function on Rn × S +

a , we have



270 D.Y. Gao

min
ρ∈Rn

Φ(ρ) = min
ρ∈Rn

max
ζ∈S +

a

Ξ(ρ, ζ ) = max
ζ∈S +

a

min
ρ∈Rn

Ξ(ρ, ζ )

= max
ζ∈S +

a

Φd(ζ ) = max
ζ∈S +

a

Pd
u (ζ ),

Since σ̄ > 0, the complementarity condition in (26) leads to

ρ̄ ◦ ρ̄ − ρ̄ = 0 i.e. ρ̄ ∈ {0, 1}n .

Thus, we have

Pu(ρ̄) = min
ρ∈Za

Pu(ρ) = max
ζ∈S +

a

Pd
u (ζ ) = Pd

u (ζ̄ )

as required.

Remark 1. Theorem 2 shows that although the canonical dual problem is a con-
cave maximization in continuous space, it produces the analytical solution (32) to
the well-known integer Knapsack problem (Pu)! This analytical solution was first
obtained by Gao in 2007 for general quadratic integer programming problems (see
Theorem 3, [9]). The indicator function of a convex set and its sub-differential were
first introduced by J.J. Moreau in 1968 in his study on unilateral constrained prob-
lems in contact mechanics [14]. His pioneering work laid a foundation for modern
analysis and the canonical duality theory. In solidmechanics, the indicator of a plastic
yield condition is also called a super-potential. Its sub-differential leads to a gen-
eral constitutive law and a unified pan-penalty finite element method in plastic limit
analysis [5]. In mathematical programming, the canonical duality leads to a unified
framework for nonlinear constrained optimization problems in multiscale systems
[7, 8, 10, 11].

3 Perturbed Canonical Duality Method and Algorithm

Numerically speaking, although the global optimal solution of the integer program-
ming problem (P) can be obtained by solving the canonical dual problem (Pd),
the rate of convergence is very slow since Pd

u (σ , ς) is nearly a linear function of
σ ∈ S +

a when σ is far from its origin. In order to overcome this problem, a so-called
β-perturbed canonical dual method has been proposed by Gao and Ruan in integer
programming [11], i.e., by introducing a perturbation parameter β > 0, the problem
(Pd) is replaced by

(Pd
β ) : max

{
Pd

β (σ , ς) = Pd
u (σ , ς) − 1

4
β−1σ Tσ | {σ , ς} ∈ S +

a

}
(34)

which is strictly concave on S +
a .
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Theorem 3. For a given u �= 0 ∈ R
m and Vc > 0, there exists a βc > 0 such that

for any given β ≥ βc, the problem (Pd
β ) has a unique solution ζ β ∈ S +

a . If ρβ =
1
2G

−1(ζ β)τ u(ζ β) ∈ {0, 1}n, then ρβ is a global optimal solution to (P).

Proof. It is easy to show that for any given β > 0, Pd
β (ζ ) is strictly concave on the

open convex set S +
a , i.e., (Pd

β ) has a unique solution. Particularly, the criticality
condition ∇Pd

β (ζ ) = 0 leads to the following canonical dual algebraic equations:

2β−1σ 3
e + σ 2

e = (ςae − ce)
2, e = 1, . . . , n, (35)

n∑
e=1

1

2

ae
σe

(σe − aeς + ce) − Vc = 0. (36)

It was proved in [8] that for any given β > 0 and θe = ςae − ce �= 0, e = 1, . . . , n,
the canonical dual algebraic equation (35) has a unique positive real solution

σe = 1

6
β[−1 + φe(ς) + φc

e (ς)] > 0, e = 1, . . . , n (37)

where

φe(ς) = η−1/3

[
2θ2

e − η + 2i
√

θ2
e (η − θ2

e )

]1/3

, η = β2

27
,

and φc
e is the complex conjugate of φe, i.e., φeφ

c
e = 1. Thus, the canonical dual

algebraic equation (36) has a unique solution

ς =
∑n

e=1 ae(1 + ce/σe) − 2Vc∑n
e=1 a

2
e/σe

. (38)

This shows that the perturbed canonical dual problem (Pd
β ) has a unique solution

in S +
a , which can be analytically obtained by (37) and (38). The rest proof of this

theorem is similar to that given in [11]. �

Theoretically speaking, for any given Vc < Vo, the perturbed canonical duality
method can produce desired optimal solution to the integer constrained problem (P).
However, if Vc � Vo, to reduce the initial volume Vo directly to Vc by solving the
bi-level topology optimization problem (Pbl)may lead to unreasonable solutions. In
order to resolve this problem, a volume decreasing control parameterμ ∈ (Vc/Vo, 1)
is introduced to slowly reduce the volume in the iteration. Thus, based on the above
strategies, the canonical duality algorithm (CDT) for solving the general topology
optimization problem (Pbl) can be proposed below.
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Algorithm 1. (Canonical Dual Algorithm for Topology Optimization (CDT))

(I) Initialization. Let ρ0 = {1} ∈ R
n . Find u0 by solving the sublevel optimization

problem
u0 = argmin{Πh(u, ρ0)| u ∈ Ua}. (39)

Compute c0 = c(u0) according to (5). Define an initial value ς0 > 0 and an
initial volume Vγ ∈ [Vc, Vo). Let γ = 0, k = 1.

(II) Find σ k = {σ k
e } ∈ R

n by

σ k
e = 1

6
β[−1 + φ(ς k−1) + φc(ς k−1)], e = 1, . . . , n.

(III) Find ς k by

ς k =
∑n

e=1 ae(1 + cγ
e /σ k

e ) − 2Vγ∑n
e=1 a

2
e/σ

k
e .

(IV) If
|Pd

β (σ k, ς k) − Pd
β (σ k−1, ς k−1)| ≤ ω1,

compute ργ by

ργ
e = 1

2
[1 − (ς kae − cγ

e )/σ k
e ], e = 1, . . . , n.

then go to (V); otherwise, let k = k + 1, go to (II).
(V) Find uγ by solving

uγ = argmin{Πh(u, ργ )| u ∈ Ua} (40)

(VI) Convergence test: If

|C(ργ ,uγ ) − C(ργ−1,uγ−1)| ≤ ω2, Vγ ≤ Vc

then stop; otherwise, let Vγ+1 = μVγ ≥ Vo and computing cγ+1 = c(uγ ), …,
n. Let γ = γ + 1, k = 1, go to (II).

The penalty parameter in this algorithm is usually taken β > 10. For linear elastic
materials, the lower level optimization (40) in the algorithm (CDT) can be simply
replaced by uγ = K−1(ργ )f(ργ ).
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Table 1 The comparison between the SIMP and CDT

Method Structures Steps Compliance

SIMP 41 169.2908

CDT 28 164.7108

4 Numerical Examples for Linear Elastic Structures

The proposed semi-analytic method is implemented in Matlab. For the purpose of
illustration, the applied load and geometry data are chosen as dimensionless. Young’s
modulus and Poisson’s ratio of the material are taken as E = 1 and ν = 0.3, respec-
tively. The volume fraction is μc = Vc/V0 = 0.6. The stiffness matrix of the struc-
ture in CDT algorithm is given by K(ρ) = ∑n

e=1[Emin + (E − Emin)ρe]Ke where
Emin = 10−9 in order to avoid singularity in computation. The evolutionary rate
used in the CDT isμ = 0.975. To compare with the SIMP approach, the well-known
88-line algorithm proposed byAndreassen et al. [2] is used with the parameters penal
= 3, rmin = 1.5, ft = 1.

Fig. 1 The design domain,
boundary conditions, and
external load for a MBB
beam
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Fig. 2 A test example of the benchmark Cantilever problem

4.1 MBB Beam Problem

The well-known benchmark Messerschmitt–Bölkow–Blohm (MBB) beam problem
in topology optimization is selected as the first test example (see Fig. 1). The design
domain is discretized with 180 × 60 square mesh elements. Computational results
obtained by both CDT and SIMP are reported in Table1.

4.2 Cantilever Beam

The second test example is the classical Cantilever problem (see Fig. 2). The beam
is fixed along its left side with a downward traction applied at its right middle point.
The example consists of 180 × 60 quad meshes and the target volume fraction is
μc = 0.6. Numerical results by both the CDT and SIMP are shown in Fig. 3.

4.3 Summary of Computational Results

The computational results for the above benchmark problems show clearly that with-
out filter, the SIMP produces a large range of checkerboard patterns and gray ele-
ments,while by theCDTmethod, precise void-solid optimal structure can be obtained
with very few checkerboard patterns. By the fact that the optimal density distribu-
tion ρ can be obtained analytically at each iteration, the CDT method produces
desired optimal structure within much less computing time. The convergence of the
CDT method depends mainly on the parameter μ ∈ [μc, 1). Generally speaking, the
smaller μ produces fast convergent but less optimal results. Detailed study on this
issue will be addressed in the future research. From the proof of Theorem 3 we
know that if θe = 0, the canonical dual algebraic equation (32) has two zero solu-
tions, which are located on the boundary of S +

a . Correspondingly, the density ρe

can’t be analytically given by equation (35). In this case, the primal problem (P)
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(a) SIMP without filter: compliance = 152.7490 with 37 iterations

(b) CDT: compliance = 153.6767 with 23 iterations

Fig. 3 Topology optimization for the cantilever beam by the SIMP (a) and CDT (b) methods

could be really NP-hard, which is a conjecture proposed in [10]. This open problem
deserves theoretically study in order to completely solve the Knapsack problem.

Acknowledgements Matlab code for the CDT algorithm was helped by Professor M. Li from
Zhejiang University. The research is supported by US Air Force Office of Scientific Research under
grants FA2386-16-1-4082 and FA9550-17-1-0151.

References

1. Ali, E.J., Gao, D.Y.: Improved canonical dual finite element method and algorithm for post
buckling analysis of nonlinear gao beam. In: Gao, D.Y., Latorre, V., Ruan, N. (eds.) Canoni-
cal Duality-Triality: Unified Theory and Methodology for Multidisciplinary Study. Springer,
Berlin (2016)

2. Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sigmund, O.: Efficient topology
optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim. 43(1), 1–16
(2011)

3. Bendsoe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1,
193C202 (1989)

4. Bendsoe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homog-
enization method. Comput. Methods Appl. Mech. Eng. 72(2), 197–224 (1988)

5. Gao, D.Y.: Panpenalty finite element programming for limit analysis. Comput. Struct. 28,
749–755 (1988)

6. Gao,D.Y.: Complementary finite elementmethod for finite deformation nonsmoothmechanics.
J. Eng. Math. 30, 339–353 (1996)

7. Gao, D.Y.: Canonical duality theory: unified understanding and generalized solutions for global
optimization. Comput. Chem. Eng. 33, 1964–1972 (2009)



276 D.Y. Gao

8. Gao, D.Y.: Duality Principles in Nonconvex Systems: Theory, Methods and Applications, pp.
xviii + 454. Springer, New York (2000)

9. Gao, D.Y.: Solutions and optimality to box constrained nonconvex minimization problems. J.
Indust. Manage. Optim. 3(2), 293–304 (2007)

10. Gao, D.Y.: On unifiedmodeling, theory, andmethod for solvingmulti-scale global optimization
problems. AIP Conf. Proc. 1776, 020005 (2016). doi:10.1063/1.4965311

11. Gao, D.Y., Ruan, N.: Solutions to quadratic minimization problems with box and integer
constraints. J. Glob. Optim. 47, 463–484 (2010)

12. Gao, D.Y., Strang, G.: Geometric nonlinearity: Potential energy, complementary energy, and
the gap function. Quart. Appl. Math. 47(3), 487–504 (1989)

13. Karp, R.K.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.)
Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)

14. Moreau, J.J.: La notion de sur-potentiel et les liaisons unilatérales en élastostatique. C.R. Acad.
Sci. Paris 267 A, 954–957 (1968)

15. Santos, H.A.F.A., Gao, D.Y.: Canonical dual finite element method for solving post-buckling
problems of a large deformation elastic beam. Int. J. Nonlinear Mech. 7, 240–247 (2011)

16. Sigmund, O.: A 99 line topology optimization code written in matlab. Struct. Multidiscip.
Optim. 21(2), 120–127 (2001)

17. Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on proce-
dures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16(1),
68–75 (1998)

18. Sigmund, O., Maute, K.: Topology optimization approaches: a comparative review. Struct.
Multidiscip. Optim. 48(6), 1031–1055 (2013)

19. Sokolowski, J., Zochowski, A.: On the topological derivative in shape optimization. Struct.
Optim. 37, 1251–1272 (1999)

20. Stolpe, M., Bendsoe, M.P.: Global optima for the Zhou-Rozvany problem. Struct. Multidiscip.
Optim. 43(2), 151–164 (2011)

21. van Dijk, N.P., Maute, K., Langelaar, M., van Keulen, F.: Level-set methods for structural
topology optimization: a review. Struct. Multidiscip. Optim. 48(3), 437–472 (2013)

http://dx.doi.org/10.1063/1.4965311

	Canonical Duality Theory for Topology Optimization 
	1 General Topology Optimization Problem and Challenges
	2 Canonical Dual Problem and Analytical Solution
	3 Perturbed Canonical Duality Method and Algorithm
	4 Numerical Examples for Linear Elastic Structures
	4.1 MBB Beam Problem
	4.2 Cantilever Beam
	4.3 Summary of Computational Results

	References


