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Abstract We propose an interior point method to solve instances of the nonconvex
optimization problems reformulated with canonical duality theory. To this aim we
propose an interior point potential reduction algorithm based on the solution of the
primal–dual total complementarity function. We establish the global convergence
result for the algorithm under mild assumptions. Our methodology is quite general
and canbe applied to several problemswhich dual has been formulatedwith canonical
duality theory and shows the possibility of devising efficient interior points methods
for nonconvex duality.

1 Introduction

We want to introduce a framework to solve the following saddle point problem:

min
x∈Rn

max
σ∈Rm

Ξ(x, σ ) = 1

2
xT G(σ )x − F(σ )T x − V ∗(σ ), s.t. G(σ ) � 0, (1)

where � indicates that G is positive semidefinite, G(σ ) is a n × n symmetric matrix
such that the map G(σ ) : Rm → R

n×n is positive semidefinite convex, that is,

G(tσ1 + (1 − t)σ2) � tG(σ1) + (1 − t)G(σ2), ∀σ1, σ2 ∈ R
m,∀t ∈ (0, 1).

V ∗(σ ) is a convex and two times continuously differentiable function in σ . it is easy
to notice that Problem (1) is convex in x for every σ such that G(σ ) � 0 and it is
concave for every σ .

Such problem arises from the reformulation of nonconvex optimization prob-
lems in Canonical Duality Theory. Canonical duality is a methodology to formulate
the dual of nonconvex optimization problems without any duality gap between the
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stationary points of the primal problem and the stationary points of the dual problem.
The interest in canonical duality is not only due to the absence of duality gap, but also
for the possibility to define global optimality conditions for many of such nonconvex
optimization problems. In the recent years, canonical duality theory has been applied
in biology, engineering, sciences [6, 16], and recently in network communications
[7, 15], radial basis neural networks [10] and constrained optimization [9].

In spite of its theoretical prowess and range of applications, there are few results
regarding the numerical solution of problems formulated with canonical duality the-
ory. In [16] several mid-sized instances of the maximum cut problem are solved, to
a maximum of 500 variables, with good performances in terms of speed; however,
no convergence result is given. A convergence result is given in [17]; however, the
assumptions on the convergence are rather strong. In a more recent work on the
application of canonical duality theory to Quasi-Variational Inequalities [11], the
authors reformulate problem (1) as a monotone Variational Inequality (VI) and are
able to solve high-dimensional problems with several thousand of variables, without
giving any convergence result, but suggesting that the methodology could have some
interesting proprieties.

In this paper we partially resume the approach presented in [11]. We consider the
Karush–Kunt–Tucker conditions of the monotone variational inequality associated
with (1), reformulate the problem as a system of constrained equations and then
prove the convergence of a potential reduction interior point method to the desired
solution under mild assumptions.

The approach we consider is a potential reduction algorithm based on the damped
Newton method reported in [3, 13]. The framework of this algorithm rests on six
main assumptions on the operator, the feasible set, and the potential reduction merit
function. The convergence result easily follows once it is proved that the proposed
methodology satisfies these assumptions. The same framework has been applied to
Generalized Nash Equilibrium Problems [1] and more recently to Quasi-Variational
Inequalities [2], providing in both cases new important benchmarks to solve these
problems.

The paper is organized as follows. In the next section we briefly show how prob-
lem (1) is obtained from general nonconvex optimization problem. In Sect. 3 we
reformulate problem (1) as a system of equations, while in Sect. 4 we briefly report
the key assumptions of the framework introduced in [13] and present the interior
point method together with its convergence proprieties and the boundedness of the
generated sequence. In Sect. 5 we report the conclusions.

Notation. For a given subset of S of Rn we let int S, cl S, and bd S denote,
respectively, the interior, the closure, and the boundary of S; Given a set A we
indicate with |A | the number of elements in A . If the mapping H : Rn → R

n is
differentiable in a point x in its domain, the Jacobian matrix of H at x is denoted
J H(x).

The set of real matrices with n rows and m columns is defined as Rn×m ; the set of
n − dimensional squared and symmetric matrices is denoted asS n; given a matrix
A, we denote with ai j its element on the i th row and j th column. The inner product
defined on the set Rn×n of squared matrices is given by
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X • Y = tr(X T Y ), (X; Y ) ∈ R
n×n,

where “tr” denotes the trace of a matrix. This inner product induces the Frobenius
norm for matrices given by

‖X‖F =
√

tr(X T X), X ∈ R
n×n .

Given a mapping F(x, Y ) : Rn × S n → R
n × S n defined as

F(x, Y ) =
(

g(x, Y )

h(x, Y )

)
,

with g(x, Y ) : Rn × S n → R
n and h(x, Y ) : Rn × S n → S n , a vector x̄ ∈ R

n and
a matrix Ȳ ∈ S n , with a small abuse of notation we define the product between the
mapping and the elements of Rn × S n as:

F(x, Y ) • (x̄, Ȳ ) = g(x, Y )T x̄ + h(x, Y ) • Ȳ .

The subsets ofS n consisting of the positive semidefinite and positive definite matri-
ces are denoted by S n+ and S n++, respectively. For two matrices A and B in S n ,
we write A � B if A − B ∈ S n+; similarly, A � B means A − B ∈ S n++; further-
more we define 	 and ≺ such that A 	 B if −A � −B and A ≺ B if −A � −B.
R

n+ ⊂ R
n denotes the set of nonnegative numbers in R

n; Rn++ ⊂ R
n denotes the set

of positive numbers in R
n; sta{ f (x) : x ∈ X } denotes the set of stationary points

of function f in X ; diag(a) denotes the (square) diagonal matrix whose diagonal
entries are the elements of the vector a; vect{A} denotes the vector ∈ R

n2
such that

the first n elements are the elements in the first column of A, the elements from n + 1
to 2n are the elements in the second column of A and so on till the last n elements
that correspond to the elements in the nth column of A; ◦ denotes the Hadamard
(component-wise) product operator; and 0n denotes the origin in R

n , likewise 0n×m

denotes the origin in R
n×m . If no index is indicated, the dimension of 0 is deduced

from the context; 1n denotes the vectors of all ones in R
n; In denotes the identity

matrix in Rn×n .

2 Problem Description

Canonical duality theory is applied to the following general nonconvex problem:

(P) : min
x∈Rn

{
Π(x) = W (x) + 1

2
xT Ax − cT x

}
,
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where W (x) is a nonconvex term in the objective function, A ∈ S n and c ∈ R
n . The

canonical dual transformation can be applied if the following assumption is satisfied:

Assumption 1 There exists a nonlinear operator

ξ = Λ(x) : Rn → Ea ⊆ R
m

function of x, such that the nonconvex functional W (x) can be rewritten as

W (x) = V (Λ(x)) = V (ξ) : Ea → R, (2)

where V is a convex and differentiable function in ξ .

If Assumption 1 is satisfied, the primal problem can be rewritten in the following
form:

min
x∈Rn

{
Π(x) = V (Λ(x)) + 1

2
xT Ax − cT x

}
.

As V (ξ) is convex and differentiable, it is possible to apply the Legendre transfor-
mation, and write the total complementarily function in the primal variable x and
dual variable σ ∈ Sa ⊆ R

m :

Ξ(x, σ ) = Λ(x)T σ − V ∗(σ ) + 1

2
xT Ax − cT x,

where V ∗(σ ) is the Fenchel conjugate of V (ξ ).
In many real-world applications, the geometrically nonlinear operator Λ(x) is

usually a quadratic function, say

Λ(x) =
{
1

2
xT Ck x − xT bk

}m

: Rn → Ea ⊂ R
m . (3)

In the following we focus on the transformation for a general quadratic operator.
With operator (3) the total complementarity function can be reformulated as

Ξ(x, σ ) = 1

2
xT G(σ )x − F(σ )T x − V ∗(σ ),

G(σ ) = A +
m∑

k=1

Ckσk, F(σ ) = c +
m∑

k=1

σkbk .

(4)

The dual is obtained by exploiting the stationarity conditions of (4) in the primal
variable:

∇xΞ(x, σ ) = 0n ⇒ x = G(σ )−1F(σ ),
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and substituting the newfound value in the total complementarity function:

Πd(σ ) = −1

2
F(σ )T G(σ )−1F(σ ) − V ∗(σ ). (5)

Note that the feasible set Sa is not convex; then, in order to identify the global
optimality conditions, we need to introduce the following subset ofSa :

S +
a = {σ ∈ Sa| G(σ ) � 0}.

Theorem 1. (Global Optimality [5]) Given a critical point (x̄, σ̄ ) of Ξ(x, σ ), x̄ is
the unique global minimizer of Π(x) if σ̄ ∈ S +

a is the global maximizer of Πd(σ ) on
S +

a , and there is no duality gap between the primal, dual, and total complementarity
functions, i.e.,

min
x∈Rn

Π(x) = P(x̄) = Ξ(x̄, σ̄ ) = Πd(σ̄ ) = max
σ∈S +

a

Πd(σ ). (6)

The result reported in equation (6) clearly shows the global optimality conditions.
The original nonconvex primal problem is reduced to the maximization of the dual
functionΠd(σ ) on the convex setS +

a . Furthermore it easy to notice from the (5) that
the dual is concave on S +

a , and therefore the resulting problem is convex. Finally,
we want to underline that there is no duality gap between the solution of the dual
and the global minimum in the primal.

3 Reformulation of the Problem as a System
of Constrained Equations

By the results of Theorem 1, it is possible to find the global solution of Problem (P)

by different approaches. One approach is to directly solve the dual formulation on
S +

a , but this method has several faults:

• It is necessary to calculate the inverse of matrix G(σ ) every time the objective
function is evaluated, and such operation could be necessary several times per
iteration;

• The inverse matrix operation can become even more time expensive or generate
errors in the case G(σ ) is ill-conditioned or it is not full rank;

• If the algorithm that solves the dual problem fails to converge to a good enough
approximation of a stationary point, it is difficult to retrieve informations on the
corresponding point in the primal problem.

For these reasons we propose a method that exploits the information available on
both the primal and dual problems and search for a saddle point of the total comple-
mentarity function inS +

a , that is exactly the problem in the form of (1). As a matter
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of facts, it is easy to notice that finding the maximum of Πd(σ ) inS +
a is equivalent

to solve the following canonical saddle point problem:

min
x∈Rn

max
σ∈Rm

Ξ(x, σ ) = 1

2
xT G(σ )x − F(σ )T x − V ∗(σ ) s.t., G(σ ) � 0, (7)

that is the same problem presented in the introduction. The solution of (7) can be
found by solving a monotone variational inequality on a convex set [3]:

Γ (x, σ ) = 0, G(σ ) � 0, (8)

where Γ : Rn+m → R
n+m is defined as

Γ (x, σ ) =
( ∇xΞ(x, σ )

−∇σ Ξ(x, σ )

)
.

The operator Γ is monotone because Ξ(x, σ ) is convex in the primal variables
for σ ∈ S +

a and it is concave for all σ ∈ Sa [14], while the set of positive def-
inite matrices is a convex cone. We want to find a solution of (8) by solving the
Karush–Kunt–Tucker (KKT) conditions associated with the problem, that is,

ΓL(x, σ, L) =
( ∇xΞ(x, σ )

−∇σ Ξ(x, σ ) − ∇σ (L • G(σ ))

)

= 0n+m

L • G(σ ) = 0, L � 0, G(σ ) � 0,

(9)

where L ∈ S n+ is the matrix of the Lagrangian multipliers. ThemappingΓL(x, σ, L)

is monotone as a result of Lemma 7 in [12]. Problems can arise when searching
for the solution of (8) when there are KKT points located on the boundary of the
feasible set. As a matter of facts, a point satisfying conditions (9) with L �= 0 does
not correspond to a saddle point of the total complementarity function Ξ(x, σ ) (in
fact they generally correspond to stationary points of the primal problem). In other
words we are interested in KKT points which matrix of multipliers L is equal to
0n×n .

To this aim, we reformulate the conditions (9) as a system of Constrained Equa-
tions (CE) and propose an interior point method specifically designed to solve this
system of Constrained Equations and send thematrix of Lagrangemultipliers to zero.
We introduce thematrix W ∈ S n+ of slack variables and consider theC E(H,Ω) sys-
tem:

H(z) = 0, z = (x, σ, L , W ) ∈ Ω, (10)

where H : Ω → S with Ω = R
n+m × S n+ × S n+ and S = R

n+m × S n+ × S n+ ×
S n+ , is defined as
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H(x, σ, L , W ) =
⎛

⎝
ΓL(x, σ, L)

Φ(σ, L , W )

L

⎞

⎠ (11)

with Φ(σ, L , W ) defined as

Φ(σ, L , W ) =
(

W − G(σ )

(LW + W L)/2

)
.

The last set of equations in (11) forces thematrix of Lagrangemultipliers to go to zero
when the algorithm reaches convergence, assuring that the solution of C E(Ω, H) is
a saddle point of (7).

4 Key Assumptions and Convergence Result

In this section we present the conditions which the operator H and the feasible setΩ
must satisfy together with a suitable potential reduction function in order to assure
the convergence to a solution of the (10). The framework we use is the same as the
one presented in [3] and [13]. This framework is based on six main assumptions that
we report here for convenience.

Given the setΩ , operator H , and a potential function p : int S → R, the following
assumptions must be satisfied by a potential reduction method in order to assure
convergence to a solution of the C E(Ω, H).
(A1) the closed set Ω has a nonempty interior.
(A2) there exists a closed set S ⊆ R

n+m × S n+ × S n+ × S n+ such that

1. 0 ∈ S;
2. the open set ΩI = H−1(int S) ∩ int Ω is nonempty;
3. the set H−1(int S) ∩ bd Ω is empty.

(A3) H is continuously differentiable on ΩI , and J H(x) is full rank for all x ∈ ΩI

(A4) for every sequence {uk} ⊂ int S such that

either lim
k→∞ ‖uk‖ = ∞ or lim

k→∞ uk = ū ∈ bd S\{0}

we have
lim

k→∞ p(uk) = ∞.

(A5) p is continuously differentiable in its domain and u • ∇ p(u) > 0 for all nonzero
u ∈ int S.
(A6) there exists a nonzero vector o ∈ S and a scalar β̄ ∈ (0, 1] such that

u • ∇ p(u) ≥ β̄
(o • u)(o • ∇ p(u))

‖o‖2 , ∀u ∈ int S.



256 V. Latorre

In the following theorems we show that operator H and the feasible set Ω satisfy
the aforementioned assumptions with the choice of a suitable potential reduction
function.

Theorem 2. Suppose that Ξ(x, λ) is twice differentiable in x and σ , then the set Ω

and the operator H in (11) satisfy conditions (A1)–(A3).

Proof. Condition (A1) is trivially satisfied, also condition (A2).1 holds. The point
(0n+m, In, In) belongs to both ΩI and int Ω , therefore condition (A2).2 holds. From
condition

(LW + W L)/2,

we can define the following set:

U = {(L , W ) ∈ S n
++ × S n

++ : LW + W L ∈ S n
++}.

It has been proved in lemma 1 of [12] that

U = {(L , W ) ∈ S n
+ × S n

+ : LW + W L ∈ S n
++}.

This alternative representation implies the (A2).3. Finally condition (A3) is satis-
fied because of the assumption on Ξ(x, λ) and the monotonicity of the operator
ΓL(x, σ, L). ��
Theorem 3. the potential function p : S → R defined as

p(a, B, C, D) = η log(‖a‖2 + ‖B‖2F + ‖C‖2F + ‖D‖2F )−
log(det(B)) − log(det(C)) − log(det(D)),

(12)

where η ≥ 2n, satisfies assumptions (A4)-(A6), with o = (0n+m, 0n×n, In, 0n×n) and
β̄ < 1/3

Proof. It can be easily noticed that the value of p goes to ∞ as the sequence
{ak, Bk, Ck, Dk} approaches the boundary of the feasible set. Considering that
‖Z‖F = √

tr(Z T Z), then ‖Z‖2F is the sum of the squares of the n eigenvalues of Z
and that det(Z) is the product of said eigenvalues, we have

p(a, B, C, D) = η log

(
n+m∑

i=1

‖a‖2 +
n∑

i=1

b2
i +

n∑

i=1

c2i +
n∑

i=1

d2
i

)

−
n∑

i=1

log bi −
n∑

i=1

log ci −
n∑

i=1

log di ,

where bi = 1, . . . , n, ci = 1, . . . , n and di = 1, . . . , n are the eigenvalues of B, C ,
and D respectively. Also considering that n log

(∑n
i=1 ui

) ≥ ∑n
i=1 log ui + n log n

it is possible to write
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p(a, B, C, D) >

(
2η

3n
− 1

) (
n∑

i=1

log bi +
n∑

i=1

log ci +
n∑

i=1

log di

)

,

therefore assumption (A4) is satisfied for η > 3
2n.

If we define

τ = ‖a‖2 + ‖B‖2F + ‖C‖2F + ‖D‖2F ,

it is possible to write the derivative of the potential function p as

∇ p(a, B, C, D) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2η

τ
a

2η

τ
B − B−1

2η

τ
C − C−1

2η

τ
D − D−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

we have

(a, B, C, D) • ∇ p(a, B, C, D) = 2η − 3n > 0,

and thus Assumption (A5) holds. For Assumption (A6), considering that tr(Z)2 ≤
n‖Z‖2F and n2 ≤ tr(Z−1)tr(Z) (for the arithmetic geometric mean inequality) we
have

[∇ p(a, B, C, D) • (0n+m , 0n×n, In, 0n×n)][(a, B, C, D) • (0n+m , 0n×n, In, 0n×n)]
‖(0n, In, 0n×n, 0n×n)‖2F

=

2η

n

tr(C)2

τ
− tr(C−1)tr(C)

n
≤

2η

n

tr(C)2

‖C‖2F
− tr(C−1)tr(C)

n
≤

2η − n <
1

β̄
(2η − 3n) = 1

β̄
[(a, B, C, D) • ∇ p(a, B, C, D)].

��
We let

z = (x, σ, L , W ), ψ(z) = p(H(z)),

and report the following method that follows the same scheme of the interior point
method presented in [13]:
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Algorithm 1: CPRA: Complementarity Potential Reduction Algorithm

(S.0): Choose z0 = (x0, σ 0, L0, W 0) ∈ Ω , γ ∈ (0, 1), β̄ < 1/3, ε > 0, and set
k := 0.
(S.1): If ‖Γ (x, σ )‖2 < ε: STOP
(S.2):Choose a scalarβk ∈ (0, β̄) andfind a solutiondk = (dxk, dσ k, d Lk, dW k)

of the following linear least squares problem:

min
d

{
1

2

∥
∥
∥
∥Q(zk, d) + H(zk) − βk

oT H(zk)

‖o‖2 o

∥
∥
∥
∥

2
}

.

where

Q (zk, d) =
⎛

⎜
⎜
⎜
⎜
⎝

∇2
xxΞ(xk, σ k)dx + ∇2

xσ Ξ(xk, σ k)dσ

−∇2
xσ Ξ(xk, σ k)T dx − ∇2

σσΞ(xk, σ k)dσ + ∇σ L(Lk • G(σ k))d L
dW − G(dσ)

(d L)W k + W k(d L) + Lk(dW ) + (dW )Lk

d L

⎞

⎟
⎟
⎟
⎟
⎠

(S.3): find a step size αk such that

zk + αkdk ∈ Ω

and
ψ(zk + αkdk) ≤ ψ(zk) + γ∇ψ(zk) • dk

(S.4): Set zk+1 = zk + αkdk , k ← k + 1, and go to (S.1).

Algorithm 1 is amodified, damped version of theNewtonmethod. At Step(S.0)
the initial values of the variables and parameters are set. In order to assure the
feasibility of z0, it generally suffices to put a large enough positive value of σ 0,
such that G(σ 0) � 0. At Step (S.1) there is the stopping criterion that assures
the final point is a good enough approximation of a stationary point of Ξ(x, σ ). At
Step (S.2) the modified newton direction is calculated. As the linear system is
not squared, the least squares solution to the system of equations is returned. One
of the main features of the algorithm is the presence of the vector o that bends the
direction toward the interior of the feasible set. It is important to underline that the
calculated direction at every iteration is unique for Assumption (A3) and always a
descent direction of ψ(·) in zk as shown in the following theorem:

Theorem 4. Suppose that conditions (A5) and (A6) hold. Assume also that z ∈ ΩI ,
dk = (dxk, dσ k, d Lk, dW k) ∈ R

n+m × S n+ × S n+ and β ∈ R are such that
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H(z) �= 0, 0 ≤ β < β̄,

dk = arg mind

{
1
2

∥
∥
∥Q(z, d) + H(z) − βk

oT H(z)
‖o‖2 o

∥
∥
∥
2
}

,
(13)

where o ∈ S and β̄ ∈ [0, 1] are as in condition (A6). Then dk is a descent direction
for ψ(·) in z, that is ∇ψ(z) • dk < 0

Proof. We introduce the following vector in Rn+m+3n2
:

Ĥ(z) =

⎛

⎜
⎜
⎝

ΓL(x, σ, L)

vect{W − G(σ )}
vect{(LW + W L)/2}

vect{L}

⎞

⎟
⎟
⎠ . (14)

The Jacobian of Ĥ(z) is the following (n + m + 3n2) × (n + m + 2n2) matrix:

J Ĥ(z) =

⎛

⎜
⎜
⎜
⎜
⎝

∇2
xxΞ(x, σ ) ∇2

xσΞ(x, σ ) 0n×n2 0n×n2

−∇2
xσ Ξ(x, σ ) ∇2

σσΞ(x, σ ) CT 0m×n2

0n2×n C 0n2×n2 In2

0n2×n 0n2×m Wen Len

0n2×n 0n2×m In2 0n2×n2

⎞

⎟
⎟
⎟
⎟
⎠

. (15)

where

Wen =

⎛

⎜
⎜
⎜
⎝

W + Inw11 Inw12 · · · Inw1n

Inw21 W + Inw22 · · · Inw2n
...

...
. . .

...

Inwn1 Inwn2 · · · W + Inwnn

⎞

⎟
⎟
⎟
⎠

, (16)

Len =

⎛

⎜
⎜
⎜
⎝

L + Inl11 Inl12 · · · Inl1n

Inl21 L + Inl22 · · · Inl2n
...

...
. . .

...

Inln1 Inln2 · · · L + Inlnn

⎞

⎟
⎟
⎟
⎠

, (17)

and C ∈ R
n2×m is ∇σ L(L • G(σ k))T . Let u ≡ Ĥ(z), if we consider d̂k ∈ R

n+m+2n2
,

solution of the following least squares problem:

d̂k = arg min
d

{
1

2

∥
∥
∥
∥(Ju)d + u − βk

ôT u

‖ô‖2 ô

∥
∥
∥
∥

2
}

, (18)

where ô has been suitably changed from o to match the dimension of Ĥ(z), it is easy
to notice that d̂k is equivalent to dk , solution of the least squares problem in (13), in
the following sense:
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d̂k =

⎛

⎜
⎜
⎝

dxk

dσ k

vect{d Lk}
vect{dW k}

⎞

⎟
⎟
⎠ .

Furthermore, if we define

∇ψ̂(z) =

⎛

⎜
⎜
⎝

∇xψ(z)
∇σψ(z)

vect{∇Lψ(z)}
vect{∇W ψ(z)}

⎞

⎟
⎟
⎠ , ∇ p̂(u) =

⎛

⎜
⎜
⎝

∇x p(H(z))
∇σ p(H(z))

vect{∇L p(H(z))}
vect{∇W p(H(z))}

⎞

⎟
⎟
⎠ ,

for the symmetry of the matrices involved in the calculations, we have

∇ψ(zk) • dk = ∇ψ̂(z)T d̂k, ∇ψ̂(z) = JuT ∇ p̂(u).

Another propriety of d̂k is that it satisfies the normal equations of (18)

d̂k = (
JuT Ju

)−1
JuT

(
βk

ôT u

‖ô‖2 ô − u

)
. (19)

Therefore, from the assumptions of the theorem and by exploiting the (19) it is
possible to obtain

∇ψ̂(z)T d̂k = ∇ p̂(u)T (Ju)d̂k

(19)= ∇ p̂(u)T Ju
(
JuT Ju

)−1
JuT

(
βk

ôT u
‖ô‖2 ô − u

)

= ∇ p̂(u)T Ju Ju−1(JuT )−1 JuT
(
βk

ôT u
‖ô‖2 ô − u

)

= ∇ p̂(u)T
(
βk

ôT u
‖ô‖2 ô − u

)
≤ −∇ p̂(u)T u(1 − βk

β̄
)

= −∇ p(H(z)) • H(z)(1 − βk

β̄
)

(A5)
< 0,

where with Ju−1 and (JuT )−1 are the Moore Penrose pseudo inverses of Ju and
JuT , respectively. The third equality derives from the propriety

(AB)−1 = B−1 A−1,

valid for theMoore Penrose pseudo inverse in the case we are considering (interested
readers can refer to [8]). The last equality follows from the definition of Ĥ(z) and
p̂(u). ��
At step (S.3) the potential function (12) is used to measure the progress of the
algorithm. Finally at Step (S.4) the value of k is updated and the loop is completed.

It is possible to observe that the sequence generated by Algorithm 1 necessarily
belongs to Ω . We now present the convergence result:
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Theorem 5. Assume that C E(Ω, H) has a solution. Let {zk} be the sequence gen-
erated by Algorithm 1, then

(a) the sequence {H(zk)} is bounded;
(b) any accumulation point of {zk}, if it exists, solves CE(Ω, H);
(c) limk→∞ H(zk) = 0;
(d) the sequence {zk} = {(xk, σ k, Lk, W k)} is bounded.

Proof. The proof of statements (a) and (b) follows from Theorem 3 of [13].
In order to prove the (c) we first have to prove the (d), that is the boundedness

of {zk}. To prove the boundless of {zk} we have to prove the boundedness of the
sequences {xk}, {σ k}, {Lk}, and {W k}. The boundedness of {Lk} is a direct conse-
quence of the boundedness of {H(zk)}.

To prove the boundedness of the sequences {xk} and {σ k} we use the operator Γ .
In detail, from the (4) we obtain

∇xΞ(x, σ ) = G(σ )x − F(σ ), (20)

−∇σΞ(x, σ ) = ∇V ∗(σ ) − ∇V (Λ(x)). (21)

It is easy to see that if one of the two sequences goes to infinity while the other
converges, ‖Γ (xk, σ k)‖ → ∞ contradicting the (a).
We consider the case in which {xk} and {σ k} go to infinity simultaneously. It is
possible to notice from the (4) that F(σ ) is linear in σ , and therefore if both the
variables go to infinity we have ‖∇xΞ(xk, σ k)‖ → ∞. Finally if we suppose that
{W k} → ∞, from the boundedness of {σ k} and constraint W − G(σ ) we obtain the
desired contradiction with the (a).

The (c) is a direct consequence of conditions (b) and (d). ��

5 Conclusions

We presented an interior points method framework for canonical duality theory that
converges under mild assumptions. The framework in this paper not only has really
favorable convergence proprieties, but it is also general and potentially able to handle
large-sized problems efficiently with a good level of reliability.

In our view, these results constitute an important step for several topics in opti-
mization. The new findings of this paper indicate that it is possible to adapt interior
points methods to the problems reformulated with canonical duality. Therefore, other
popular interior points methods such as primal–dual methods could be used to solve
problem (1) and find the global solution of many nonconvex optimization problems
efficiently.

There are also several applications that can be investigated with the presented
framework. In detail, the maximum cut problem and the radial basis function neural
networks problems can also be solved with canonical duality [10, 16], and the pro-
posed algorithmcould beuseful tofind their global solutions for large-sized instances.
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