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Abstract A new primal–dual algorithm is presented for solving a class of nonconvex
minimization problems. This algorithm is based on canonical duality theory such
that the original nonconvex minimization problem is first reformulated as a convex–
concave saddle point optimization problem, which is then solved by a quadratically
perturbed primal–dual method. Numerical examples are illustrated. Comparing with
the existing results, the proposed algorithm can achieve better performance.

1 Problems and Motivations

The nonconvex minimization problem to be studied is proposed as the following:

(Po) : min

{
P (x) = W (x) + 1

2
〈x,Ax〉 − 〈x, f 〉 | x ∈ Xa

}
, (1)

where x = {xi } ∈ R
n is a decision vector, A = {Ai j

} ∈ R
n×n is a given real sym-

metrical matrix, f = { fi } ∈ R
n is a given vector, 〈∗, ∗〉 denotes a bilinear form in

R
n × R

n; the feasible space Xa is an open convex subset of Rn such that on which
the nonconvex function W : Xa → R is well-defined.

Due to the nonconvexity, Problem (Po) may admit many local minima and local
maxima [4]. It is not an easy task to identify or numerically compute its global
minimizer. Therefore, many numerical methods have been developed in literature,
including the extended Gauss-Newton method (see [22]), the proximal method (see
[21]), as well as the popular semi-definite programming (SDP) relaxation (see [18]).
Generally speaking, Gauss–Newton type methods are local-based such that only
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local optimal solutions can be expected. To find global optimal solution often relies
on the branch-and-bound [2] as well as the moment matrix-based SDP relaxation
[20, 36]. However, these methods are computationally expensive which can be used
for solving mainly small or medium size problems. The main goal of this paper is to
develop an efficient algorithm for solving the nonconvex problem (Po).

Generally speaking, a powerful algorithm should based on a precise theory.
Canonical duality theory is a newly developed, powerful methodological theory that
has been used successfully for solving a large class of global optimization problems in
both continuous and discrete systems [4, 6, 8]. The main feature of this theory is that,
which depends on the objective function W (x), the nonconvex/nonsmooth/discrete
primal problems can be transformed into a unified concave maximization problem
over a convex continuous space, which can be solved easily using well-developed
convex optimization techniques (see review articles [6, 8] for details). This powerful
theory was developed from Gao and Strang’s original work [7] where the noncon-
vex function W (x) is the so-called stored energy, which is required, by the concept
(see [24], p. 8), to be an objective function. In mathematical physics, a real-valued
function W (x) is said to be objective if W (Qx) = W (x) for all rotation matrix Q
such that Q−1 = QT and detQ = 1 (see Chap. 6 in [4]), i.e., an objective function
W (x) should be an invariant under certain coordinate transformations. In continuum
mechanics, the objectivity is also referred as the frame-indifference (see [1, 24]).
Therefore, instead of the decision variables directly, an objective function usually
depends on certain measure (norm) of x, say, the Euclidean norm ‖x‖ as we have
‖Qx‖2 = xTQTQx = ‖x‖2. In this paper, we shall need only the following weak
assumptions for the nonconvex function W (x) in (Po).

Assumption 1

(A1). There exits a geometrical operator Λ(x) : Xa → Va ⊂ R
m and a strictly

convex differentiable function V : Va ⊂ R
m → R such that

W (x) = V (Λ(x)) ∀x ∈ Xa . (2)

(A2). The geometrical operator Λ(x) is a vector-valued quadratic mapping in the
form of

Λ(x) =
{

1

2
〈x,A1x〉 − 〈x, b1〉, · · · ,

1

2
〈x,Amx〉 − 〈x, bm〉

}
, (3)

where Ai , i = 1, · · · ,m, are symmetrical matrices with appropriate dimensions
and bi , i = 1, · · · ,m, are given vectors such that the range Va is a closed convex
set in R

m .

Actually, Assumption (A1) is the so-called canonical transformation. Particularly,
if Ai 
 0, bi = 0 ∀i = 1, · · · ,m, then Λ(x) is an objective (Cauchy–Riemann
type) measure (see [4]). Based on this assumption, the proposed nonconvex problem
(Po) can be reformulated in the following canonical form:
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(P) : min

{
P (x) = V (Λ(x)) + 1

2
〈x,Ax〉 − 〈x, f 〉 : x ∈ Xa

}
. (4)

The canonical primal problem (P) arises naturally from a wide range of applica-
tions in engineering and sciences. For instance, the canonical function V (ξ) is simply
a quadratic function of ξ = Λ(x) in the least squares methods for solving systems
of quadratic equations Λ(x) = d ∈ R

m (see [32]), chaotic dynamical systems [31],
wireless sensor network localization [11], general Euclidean distance geometry [26],
and computational biology [38]. In computational physics and networks optimiza-
tion, the position variable x is usually a matrix (second-order tensor) and the geo-
metrical operator ξ = Λ(x) is a positive semi-definite (discredited Cauchy–Riemann
measure) tensor (see [11]), the convex function V (ξ) is then an objective function,
which is the instance studied by Gao and Strang [4, 7]. Particularly, if W (x) is a
quadratic function, the canonical dual problem is equivalent to a SDP problem (see
[11]). By the facts that the geometrical operator defined in Assumption (A2) is a
general quadratic mapping, the nonconvex function W (x) studied in this paper is not
necessary to be “objective”, which certainly has extensive applications in complex
systems.

The rest of this paper is divided into six sections. The canonical dual problem is
formulated in the next section, where some existing difficulties are addressed. The
associated canonical min-max duality theory is discussed in Sect. 3. A proximal point
method is proposed in Sect. 4 to solve this canonical min-max problem. Section 5
presents some numerical experiments. Applications to sensor network optimization
are illustrated in Sect. 6. The paper is ended by some concluding remarks.

2 Canonical Duality Theory

By Assumption (A1), the canonical function V (·) is strictly convex and differen-
tiable on Va , therefore, the canonical dual mapping ς = ∇V (ξ) : Va → V ∗

a ⊂ R
m

is one-to-one onto the convex set V ∗
a ⊂ R

m such that the following canonical duality
relations hold on Va × V ∗

a

ς = ∇V (ξ) ⇔ ξ = ∇V ∗(ς) ⇔ V (ξ) + V ∗(ς) = 〈ξ ; ς〉, (5)

where 〈∗; ∗〉 is a bilinear form on R
m × R

m , and V ∗(ς) is the Legendre conjugate
of V (ξ) defined by

V ∗(ς) = max {〈ξ ; ς〉 − V (ξ) | ξ ∈ Va} . (6)

By convex analysis, we have

V (Λ(x)) = max
{〈Λ(x); ς〉 − V ∗(ς) | ς ∈ V ∗

a

}
. (7)
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Substituting (7) into (4), Problem (P) can be equivalently written as

min
x

max
ς

{
�(x, ς) | (x, ς) ∈ Xa × V ∗

a

}
, (8)

where � : Xa × V ∗
a → R is the total complementary function defined by

�(x, ς) = 〈Λ(x); ς〉 − V ∗(ς) + 1

2
〈x,Ax〉 − 〈x, f 〉

= 1

2
〈x,G(ς)x〉 − V ∗(ς) − 〈x, τ (ς)〉, (9)

in which

G(ς) = A +
m∑

k=1

ςkAk, (10)

and

τ (ς) = f +
m∑

k=1

ςkbk . (11)

For a given ς ∈ V ∗
a , the stationary condition ∇x�(x, ς) = 0 leads to the following

canonical equilibrium equation

G(ς)x = τ (ς). (12)

Let
Sa = {ς ∈ V ∗

a | ∃ x ∈ Xa, such that G(ς)x = τ (ς)
}

be the dual feasible space, in which, the canonical dual function is defined by

Pd(ς) = sta {�(x, ς) | x ∈ Xa} = −1

2
〈G†(ς)τ (ς), τ (ς)〉 − V ∗(ς), (13)

where sta { f (x)|x ∈ Xa} stands for finding stationary points of f (x) on Xa , and G†

represents the generalized inverse of G. Particularly, let

S +
a = {ς ∈ V ∗

a | G(ς) 
 0
}
, (14)

where G(ς) 
 0 means that the matrix G(ς) is positive semi-definite. Clearly, S +
a

is a convex set of Sa and the total complementary function �(x, ς) is convex–
concave on Xa × S +

a , by which, the canonical dual problem can be proposed as the
following:

(Pd) : max{Pd(ς) | ς ∈ S +
a }. (15)

The following result is due to the canonical duality theory.
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Theorem 1 (Gao [6]). Problem (Pd) is canonically dual to (P) in the sense that
if ς̄ is a stationary solution to (Pd), then the vector

x̄ = G†(ς̄)τ (ς̄) (16)

is a stationary point to (P) and P(x̄) = Pd(ς̄).

Moreover, if ς̄ ∈ S +
a , then x̄ is a global minimizer of (P) if and only if ς̄ is a

global maximizer of (Pd), i.e.,

P(x̄) = min
x∈Xa

P(x) ⇔ max
ς∈S +

a

Pd(ς) = Pd(ς̄). (17)

This theorem shows that if the canonical dual problem (Pd) has a stationary
solution on S +

a , then the nonconvex primal problem (P) is equivalent to a concave
maximization dual problem (Pd) without duality gap. If we further assume that
Xa = R

n and the optimal solution ς̄ to Problem (Pd ) is an interior point of S +
a ,

i.e., G(ς̄) � 0, then the optimal solution x̄ of Problem (P) can be obtained uniquely
by x̄ = G−1(ς̄)τ (ς) (see [10]).

However, our experiences show that for a class of “difficult” global optimization
problems, the canonical dual problem has no stationary solution in S +

a such that
G(ς̄) � 0. In this paper, we propose a computational scheme to solve the case in
which the solution is located on the boundary of S +

a . To continue, we need an
additional mild assumption:

(A3) There exists an optimal solution x̄ of Problem (P) such that G(ς̄) 
 0,
where ς̄ = ∇V (ξ)|ξ=Λ(x̄).

In fact, Assumption (A3) is easily satisfied by many real-world problems. To see
this, let us first examine the following examples.

Example 1. Suppose thatXa is a bounded convex polytope subset of Rn. SinceXa

contains only linear constraints, both Va and Sa are also close and bounded. Let
χ be the smallest eigenvalue of

∑m
k=1 ςkAk , where ς = [ς1, . . . , ςm]T ∈ Sa. Since

Sa is bounded, χ > −∞. Let χ̄ be the smallest eigenvalue of A. If χ̄ + χ ≥ 0, then
Assumption (A3) is satisfied.1

This example shows that if the quadratic function 1
2 〈x,Ax〉 is sufficiently convex,

the nonconvexity of V (Λ(x)) becomes insignificant. Thus, the combination of them
is still convex. However, this is a special case in nonconvex systems. The following
example has a wide applications in network optimization.

1In fact, Problem (P) is convex under the condition χ̄ + χ ≥ 0. The proof of this result is similar
to that of Proposition 1 given in [16].
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Example 2. Euclidean distance optimization problem:

min

⎧⎨
⎩
∑
i, j

(
‖xi − x j‖2 − d2

i, j

)2 +
∑
k

(
‖xk − ak‖2 − d2

k

)2 | xi ∈ R
d ∀i = 1, . . . , n

⎫⎬
⎭ ,

(18)

where xi is the location vector in Euclidean space Rd , di j and dk are given distance
values, the vectors {ak} are pre-fixed locations. Problem (18) has many applications,
such as wireless sensor network localization and molecular design, etc. For this
nonconvex problem, we can choose Λ(x) to be the collection of all Λi j (x) = ‖xi −
x j‖2 and Λk(x) = ‖xk − ak‖2. In this case, V (ξ) =∑i, j (ξi j − d2

i j )
2 +∑k(ξk −

d2
k )

2. If (18) has the optimal function value of 0, then ξi j = d2
i j and ξk = d2

k , where
ξ = Λ(x̄) and x̄ is an optimal solution of problem (18). It is easy to check that the
dual variable ς̄ = 0. Thus, det G(ς̄) = 0. Therefore, Assumption (A3) holds.

This example shows that Assumption (A3) is satisfied in the least squares method
for solving a large class of nonlinear systems [31, 32]. It is known that for the
conventional SDP relaxation methods, the solution of problem (18) can be exactly
recovered if and only if the SDP solution of Problem (18) is a relative interior and the
optimal function value of problem (18) is 0 [29]. If the problem (18) has more than
one solution, the conventional SDP relaxation does not produce any solution. The
goal of this paper is to overcome this difficulty by proposing a canonical primal–dual
iterative scheme.

3 Saddle Point Problem

Based on Assumption (A1–A3), the primal problem (P) is relaxed to the following
canonical saddle point problem:

(Sp) : min
x

max
ς

{
�(x, ς) = 1

2
〈x,G(ς)x〉 − V ∗(ς) − 〈x, τ (ς)〉 | (x, ς) ∈ Xa × S+

a

}
.

(19)

Suppose that (x̄, ς̄) is a saddle point of Problem (Sp). If det(G(ς̄)) �= 0, we call
Problem (Sp) is non-degenerate. Otherwise, we call it degenerate.

3.1 Non-degenerate Problem (S p)

Theorem 2. Suppose that Problem (Sp) is non-degenerate. Then, x̄ is a unique
solution of Problem (P) if and only if (x̄, ς̄ ) is a solution of Problem (Sp).
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Proof. Suppose that (x̄, ς̄ ) is the solution of Problem (Sp). Since Problem (Sp)
is non-degenerate, G(ς̄) � 0, i.e., ς̄ ∈ intS +

a . Thus, ∇ς�(x̄, ς̄) = ς̄ − Λ(x̄) = 0.
For any x ∈ Xa , we have

min
x∈Xa

P(x) = min
x∈Xa

max
ς∈V ∗

a

�(x, ς) = min
x∈Xa

max
ς∈S +

a

�(x, ς) = �(x̄, ς̄) = P(x̄).

Thus, x̄ is the optimal solution of Problem (P).
On the other hand, we suppose that x̄ is the optimal solution of Problem (P). Let

ς̄ = ∇V (Λ(x̄)). Then,

P(x̄) = �(x̄, ς̄) = max
ς∈Rm

�(x̄, ς).

Since V (·) is strictly convex, we have

�(x̄, ς) ≤ �(x̄, ς̄) ∀ ς ∈ V ∗
a ⊂ R

m . (20)

The equality holds in (20) if and only if ς = ς̄ since �(x̄, ς) is strictly concave
in terms of ς . Suppose that (x1, ς1) is also a saddle point of Problem (Sp). By a
similar induction as above, we can show that x1 is an optimal solution of Problem
(P). Furthermore, P(x1) = �(x1, ς1). Since x1 ∈ Xa , we have

P(x1) = �(x1, ς1) ≤ �(x̄, ς1) ≤ �(x̄, ς̄) = P(x̄).

The first equality holds only when x1 = x̄ since G(ς1) � 0. The second inequality
becomes equality if and only if ς1 = ς̄ since V (·) is strictly convex. By the fact that
x̄ is an optimal solution of Problem (P) and x1 ∈ Xa , P(x1) = P(x̄), x1 = x̄ and
ς1 = ς̄ . Thus, (x̄, ς̄ ) is the solution of Problem (Sp). We complete the proof. �

If Xa = R
n , the saddle point Problem (Sp) can be further recast as a convex

semi-definite programming problem.

Proposition 1. Suppose that Problem (Sp) is non-degenerate andXa = R
n. Let ς̄

be the solution of the following convex SDP problem:

(SDP) : min
{
V ∗(ς) + g

}
s.t.

[
G(ς) τ (ς)

τ T (ς) 2g

]

 0. (21)

Then, the SDP problem defined by (21) has a unique solution (ḡ, ς̄ ) such thatG(ς̄) �
0. Furthermore, x̄ = G−1(ς̄)τ (ς̄) is the unique solution of Problem (P).

Proof. By Schur complement lemma [15], the SDP problem (21) has a unique solution
(ḡ, ς̄ ) such that G(ς̄) � 0 if and only if the following convex minimization problem

min

{
V ∗(ς) + 1

2
〈G−1(ς)τ (ς), τ (ς)〉| G(ς) 
 0

}
(22)
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has a unique solution ς̄ such that G(ς̄) � 0. Since Xa = R
n , the convex minimiza-

tion problem (22) is equivalent to Problem (Sp) by Theorem 3.1 in [10]. �

Remark 1. Theorem 2 is actually a special case of the general result obtained by
Gao and Strang in finite deformation theory [7]. Indeed, if we let W̄ (x) = W (x) +
1
2 〈x,Ax〉 and Λ̄(x) = {Λ(x), 1

2 〈x,Ax〉}, then, the Gao–Strang complementary gap
function is simply defined as

G(x, ς) = 1

2
〈x,G(ς)x〉.

Clearly, this gap function is strictly positive for any nonzero x ∈ Xa if and only if
G(ς) � 0. Then by Theorem 2 in [7] we know that the primal problem has a unique
solution if the problem (Sp) is non-degenerate. By Theorem 2 and Proposition 1
we know that the nonconvex problem (P) can be solved easily either by solving a
sequence of strict convex–concave saddle point problems, or via solving a convex
semi-definite programming problem if Problem (Sp) is non-degenerate. By the fact
that g = 1

2 〈G−1(ς)τ (ς), τ (ς)〉 is actually the pure complementary gap function (see
Eq. (19) in [6]), the convex SDP problem (21) is indeed a special case of the canonical
dual problem (Pd) defined by (15). Moreover, the canonical duality theory can also
be used to find the biggest local extrema of the nonconvex problem (P) (see [10]).

3.2 Degenerate Problem (S p) and Linear Perturbation

If Problem (Sp) is degenerate, i.e.,G(ς̄) 
 0 and det(G(ς̄)) = 0 or ς̄ ∈ ∂S +
a , it has

multiple saddle points. The following theorem reveals the relations between Problem
(P) and Problem (Sp).

Theorem 3. Suppose that Problem (Sp) is degenerate.

1) If x̄ is a solution of Problem (P) and ς̄ = ∇V (Λ(x̄)), then (x̄, ς̄ ) is a saddle
point of Problem (Sp).

2) If (x̄, ς̄ ) is a saddle point of Problem (Sp), then x̄ is a solution of Problem (P).
3) If (x1, ς1) and (x2, ς2) are two saddle points of Problem (Sp), then ς1 = ς2.

Proof. 1). Since x̄ is a solution of Problem (P) and ς̄ = ∇V (Λ(x̄)) ∈ S +
a (by

Assumption (A3)),
�(x̄, ς) ≤ �(x̄, ς̄), ∀ς ∈ S +

a .

Furthermore,
〈∇P(x̄), x − x̄〉 ≥ 0, ∀x ∈ Xa . (23)

Substituting ∇P(x̄) = G(ς̄)x̄ − τ (ς̄) = ∇x�(x̄, ς̄) into (23), we obtain

〈∇x�(x̄, ς̄), x − x̄〉 ≥ 0, ∀ x ∈ Xa .
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Thus,
min
x∈Xa

�(x, ς̄) = �(x̄, ς̄).

Therefore,

�(x̄, ς) ≤ �(x̄, ς̄) ≤ �(x, ς̄), ∀ (x, ς) ∈ Xa × S +
a .

This implies that (x̄, ς̄ ) is a saddle point of Problem (Sp).
2). Suppose that (x̄, ς̄ ) is a saddle point of Problem (Sp) and ∇ς�(x̄, ς̄) = 0.

Then,
P(x̄) = �(x̄, ς̄) ≤ �(x, ς̄), ∀ (x, ς) ∈ Xa × S +

a .

On the other hand,

�(x, ς̄) = 〈Λ(x); ς̄〉 − V ∗(ς̄) −U (x) ≤ V (Λ(x)) −U (x) = P(x).

Combining the above two inequalities, x̄ is a solution Problem (P).
3). This result follows directly from the strict convexity of both V (·) and V ∗(·).

The proof is completed. �
Theorem 3 shows that the nonconvex minimization Problem (P) is equivalent to

the canonical saddle min-max Problem (Sp). What we should emphasize is that the
solutions set of Problem (P) is in general nonconvex, while the set of saddle points
of Problem (Sp) is convex. For example, let us consider the following optimization
problem:

min

{
1

2

(
(x1 + x2)

2 − 1
)2 + 1

2

(
(x1 − x2)

2 − 1
)2 | (x1, x2) ∈ R

2

}
. (24)

Let ξ = Λ(x) = [(x1 + x2)
2 − 1, (x1 − x2)

2 − 1]T . Then,

G(ς) =
[

ς1 + ς2 ς1 − ς2

ς1 − ς2 ς1 + ς2

]
,

V ∗(ς) = 1
2ςTς . Thus, G(ς) 
 0 ⇔ ς1 ≥ 0 and ς2 ≥ 0. Clearly, (x̄, ς̄ ) is a saddle

point of Problem (Sp) if and only if (x̄, ς̄ ) is the solution of the following variational
inequality:

G(ς̄)x̄ = 0, (25)

〈∇V ∗(ς̄) − Λ(x̄); ς − ς̄〉 ≥ 0, ∀ς ≥ 0. (26)

It is easy to verify that the optimization problem (24) has four solutions (1, 0), (0, 1),
(−1, 0) and (0,−1). Clearly, its solution set is nonconvex. On the other hand, by the
statement 3) in Theorem 3, we have ς̄ = 0. Thus, (x̄, ς̄) is a saddle point of Problem
(Sp) if and only if ς̄ = 0 and x̄ satisfies
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(x1 + x2)
2 ≤ 1,

(x1 − x2)
2 ≤ 1.

Denote Ω = convhull{(1, 0), (0, 1), (−1, 0), (0,−1)}, where convhull means con-
vex hull. Therefore, the saddle point set of Problem (Sp) is Ω × 0 which is a convex
set. This example also shows that the solutions of Problem (P) are the vertex points
of the saddle points set of Problem (Sp).

Now we turn our attention to the saddle point problem (Sp). For some simple
optimization problems, we can simply use linear perturbation method to solve it. To
illustrate it, let us consider a simple optimization problem given as below:

(P1) : min
x

P1(x) = 1

2

(
1

2
xTA1x − b1

)2

+ 1

2

(
1

2
xTA2x − b2

)2

− 〈x, f 〉.
(27)

Proposition 2. Suppose that there exists (ς1, ς2) such that ς1A1 + ς2A2 � 0. If the
saddle point (x̄, ς̄) of the associated Problem (Sp1) is on the boundary ofS

+
a , then

for any given ε > 0, there exists a Δ f ∈ R
n such that ‖Δ f ‖ ≤ ε and the perturbed

saddle point Problem (Sp1)

(Sp1) : min
x

max
ς

{
1

2
〈x,G(ς)x〉 − 1

2
ςTς − 〈x, f + Δ f 〉 : (x, ς) ∈ R

n × S +
a

}

has a unique saddle point (x̄ p, ς̄ p) such that G(ς̄ p) � 0. Furthermore, x̄ p is the
unique solution of

(P
ptb
1 ) : min

x
P1(x) = 1

2

(
1

2
xTA1x − b1

)2
+ 1

2

(
1

2
xTA2x − b2

)2
− 〈x, f + Δ f 〉,

where G(ς) = ς1A1 + ς2A2.

Proof. Since x ∈ R
n , Problem (Sp1) is equivalent to the following optimization

problem:

max
ς

−V ∗(ς) − 1

2
( f + Δ f )T (ς)G−1(ς)( f + Δ f )

s.t. G(ς) 
 0. (28)

By the assumption that there exists (ς1, ς2) such that ς1A1 + ς2A2 � 0, A1 and A2

are simultaneously diagonalizable via congruence. More specifically, there exists an
invertible matrix C such that

CTA1C = diag(a1
1, · · · , a1

n),

CTA2C = diag(a2
1, · · · , a2

n).



Canonical Primal–Dual Method 233

Under this condition, it is easy to show that for any given ε > 0, there exists a
Δ f ∈ R

n such that ‖Δ f ‖ ≤ ε and

lim
ς→∂S +

a

1

2
( f + Δ f )T (ς)G−1(ς)( f + Δ f ) = +∞.

Thus, the solution of the optimization problem (28) cannot be located in the boundary
of S +

a for this Δ f . The results follow readily. We complete the proof. �
From Proposition 1 we know that if the solution x̄ of Problem (P1) satisfies

G(ς̄) � 0, then it can be obtained by simply solving the concave maximization dual
problem (Pd). Otherwise, Proposition 2 shows that this solution can be obtained
under a small perturbation. Thus, the nonconvex optimization problem (P1) can be
completely solved by either the convex SDP or the canonical duality. However, for
general optimization problems, the linear perturbation method may not produce an
interior saddle point of Problem (Sp). To overcome this difficulty, we shall introduce
a nonlinear perturbation method in the next section.

4 Quadratic Perturbation Method

We now focus on solving the degenerated Problem (Sp). Clearly, Problem (Sp)
is strictly concave with respect to ς . However, if Problem (Sp) is degenerate, i.e.,
ς̄ ∈ ∂S +

a , then Problem (Sp) is convex but not strictly in terms of x. In this case,
Problem (Sp) has multiple solutions. To stabilize such kind of optimization prob-
lems, nonlinear perturbation methods can be used (see [9]). Thus, using the quadratic
perturbation method to Problem (Sp), a regularized saddle point problem can be pro-
posed as

min
x

max
ς∈S +

a

�ρk (x, ς) = �(x, ς) + ρk

2
‖x − xk‖2, (29)

where both xk and ρk , k = 1, 2, · · · , are given. In practical computation, the canon-
ical dual feasible space S +

a can also be relaxed as

S +
μk

= {ς ∈ V ∗
a ⊂ R

m | G(ς) + μk I 
 0},

where μk < ρk . Note that

�ρk (x, ς) = 1

2
〈x, (G(ς) + ρk I )x〉 − V ∗(ς) − 〈x, ρkxk + τ (ς)〉 + ρk

2
〈xk, xk〉.

Thus, �ρk (x, ς) is strictly convex–concave in R
n × S +

μk
and

min
x

max
ς∈S +

μk

�ρk (x, ς) = max
ς∈S +

μk

min
x

�ρk (x, ς).
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For each given ς ∈ S +
μk

, denote

x(ς) = arg min
x

�ρk (x, ς).

Then, x(ς) = (G(ς) + ρk I )−1(ρkxk + τ (ς)). Substituting this x(ς) into �ρk (x, ς),
we obtain the perturbed canonical dual function

Pd
ρk

(ς) = −1

2
〈(G(ς) + ρk I )

−1(ρkxk + τ (ς)), ρkxk + τ (ς)〉 − V ∗(ς) + ρk

2
〈xk , xk〉.

Now our canonical primal–dual algorithm can be proposed as follows.

Algorithm 1

Step 1 Initialization x0, ρ0, N and the error tolerance ε. Set k = 0.
Step 2 Set ς k+1 = arg maxς∈S +

μk
Pd

ρk
(ς) and xk+1 = (G(ς k+1) + ρk I )−1(ρkxk +

τ (ς k+1)).
Step 3 If ‖ς k+1 − ς k‖ ≤ ε, stop. Otherwise, set k = k + 1 and go to Step 2.

Theorem 4. Suppose that

1) ρ̄ ≥ ρk > 0, σk =∑k
i=1 ρi → +∞, ρk ↓ 0, μk ↓ 0 and 0 < μk < ρk;

2) For any given x, lim‖ς k‖→∞ �(x, ς k) = −∞;
3) The sequence {xk} is a bounded;

Then, there exists a (x̄, ς̄) ∈ R
n × S +

a such that {xk, ς k} → (x̄, ς̄). Furthermore,
(x̄, ς̄) is a saddle point of Problem (Sp).

Proof. Note that 0 < μk < ρk , the perturbed total complementary function �ρk (x, ς)

is strictly convex–concave with respect to (x, ς) in R
n × S +

μk
. Since (xk, ς k) is

generated by Algorithm 1, we have

(xk , ςk) = arg min
x

max
ς∈S +

μk

�ρk (x, ς) = arg min
x

max
ς∈S +

μk

{
�(x, ς) + ρk−1

2
‖x − xk−1‖2

}
.

(30)
That is

�ρk (xk, ς) ≤ �ρk (xk, ς k) ≤ �ρk (x, ς k), ∀(x, ς) ∈ R
n × S +

μk
.

By the fact that μk ↓ 0 and S +
μk

= {ς ∈ V ∗
a | G(ς) + μk I 
 0}, we have S +

μk
⊇

S +
μk+1

and
⋂

k S
+
μk

= S +
a .

To continue, we suppose that (x̄, ς̄) is a saddle point of Problem (Sp), i.e.,

�(x̄, ς) ≤ �(x̄, ς̄) ≤ �(x, ς̄), ∀(x, ς) ∈ R
n × S +

a .

Now we adopt the following steps to prove our results.
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1) The sequence {xk} is convergent, i.e., there exists a x̄ such that xk → x̄. From
(30), we have

�ρk−1 (xk , ςk) = �(xk , ςk) + ρk−1

2
‖xk − xk−1‖2 ≤ �ρk−1 (xk−1, ςk) = �(xk−1, ςk).

(31)
Clearly,

�(xk−1, ς k) + ρk−2

2
‖xk−1 − xk−2‖2 = �ρk−2(xk−1, ς k). (32)

Since ς k ∈ S +
μk

⊂ S +
μk−1

and (xk−1, ς k−1) is the saddle point of �ρk−1(x, ς) in
R

n × S +
μk−1

, we obtain

�ρk−2(xk−1, ς k) ≤ �ρk−2(xk−1, ς k−1) = �(xk−1, ς k−1) + ρk−2

2
‖xk−1 − xk−2‖2.

(33)
Combining (32) and (33), we obtain

�(xk−1, ς k) ≤ �(xk−1, ς k−1).

Thus,
�(xk, ς k) + ρk−1

2
‖xk − xk−1‖2 ≤ �(xk−1, ς k−1). (34)

Repeating the above process, we get

�(xk, ς k) +
k−1∑
i=1

ρi−1

2
‖xi − xi−1‖2 ≤ �(x1, ς1). (35)

On the other hand,

�ρk−1(xk, ς k) = �(xk, ς k) + ρk−1

2
‖xk − xk−1‖2

≥ �ρk−1(xk, ς̄) = �(xk, ς̄) + ρk−1

2
‖xk − xk−1‖2

≥ �(x̄, ς̄) + ρk−1

2
‖xk − xk−1‖2. (36)

Substituting (36) into (35) gives rise to

�(x̄, ς̄) +
k−2∑
i=1

ρi−1

2
‖xi − xi−1‖2 ≤ �(x1, ς1), ∀ k ∈ N.

Since {xk} is a bounded sequence, σk → +∞ and ρk ↓ 0, the sequence xk is
convergent, i.e., there exists a x̄ such that xk → x̄.
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2) The sequence {ς k} is convergent. We first show that ς k is a bounded sequence.
In a similar argument to the inequality (34), we can show that

�(xk+1, ς k+1) ≥ �(xk+1, ς̄) ≥ �(x̄, ς̄).

On the other hand,

�ρk (xk+1, ς k+1) = �(xk+1, ς k+1) + ρk

2
‖xk+1 − xk‖2

≤ �ρk (x̄, ς k+1) = �(x̄, ς k+1) + ρk

2
‖x̄ − xk‖2.

Summing the above inequalities together yields that

�(x̄, ς̄) − ρ̄

2
‖x̄ − xk‖2 ≤ �(x̄, ς̄) − ρk

2
‖x̄ − xk‖2

≤ �(xk+1, ς̄) − ρk

2
‖x̄ − xk‖2 ≤ �(x̄, ς k+1).

By Assumption (2) and xk → x̄, we know that ς k is a bounded sequence.
Now we suppose that there are two subsequences {ς1

k} and {ς2
k} of {ς k} such that

{ς1
k} → ς1 and {ς2

k} → ς2. Denote {x1
k} and {x2

k} are two subsequences of {xk}
associated with {ς1

k} and {ς2
k}. Clearly, ς1, ς2 ∈ S +

a . Note that

�(x1
k+1, ς

2) + ρ1
k

2
‖x1

k+1 − x1
k‖2 = �ρ1

k
(x1

k+1, ς
2)

≤ �ρ1
k
(x1

k+1, ς
1
k+1) = �(x1

k+1, ς
1
k+1) + ρ1

k

2
‖x1

k+1 − x1
k‖2. (37)

Thus,
�(x1

k+1, ς
2) ≤ �(x1

k+1, ς
1
k+1).

Taking limit on both sides of the above inequality yields to

�(x̄, ς2) ≤ �(x̄, ς1).

In a similar way, we can show that

�(x̄, ς1) ≤ �(x̄, ς2).

Therefore,
�(x̄, ς1) = �(x̄, ς2)

which implies that ς1 = ς2. Hence, {ς k} is a convergent sequence.
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3) We show that if {xk, ς k} → (x̄, ς̄), then (x̄, ς̄) is a saddle point of Problem (Sp).
In a similar argument to 2), it is easy to show that for any ς ∈ S +

a , we have

�(x̄, ς) ≤ �(x̄, ς̄).

So we only need to show that for any x,

�(x̄, ς̄) ≤ �(x, ς̄). (38)

Indeed, by the fact that

�ρk (xk+1, ς k+1) ≤ �ρk (x, ς k+1), ∀x.

Passing limit to the above inequality yields to the inequality (38). We complete
the proof. �
In Theorem 4, there are three assumptions. Assumption (1) is on the selection of

the parameters and Assumption (2) is always satisfied for strictly convex functions.
Assumption (3) is important to ensure the convergence of Algorithm 1. In fact, from
our numerical experiments, we found that xk might become unbound for certain
cases. Therefore, a modified algorithm for solving Problem (P) is suggested as the
following.

Algorithm 2

Step 1 Adopt Algorithm1 to solve Problem (Sp). Denote the obtained solution as
(x̄, ς̄).

Step 2 If ‖Λ(x̄) − ∇V ∗(ς̄)‖ ≤ ε, output x̄ is a global minimizer of Problem (P),
where ε is the tolerance. Otherwise, a gradient-based optimization method
is used to refine Problem (P) with initial condition x̄.

Remark 2. Since Problem (Sp) is a convex–concave saddle point problem, many
exact and inexact proximal point methods can be adapted [12, 14, 30]. In fact, solving
Problem (Sp) is an easy task since it is essentially a convex optimization problem.
However, to obtain a solution of Problem (P) from the solution set of Problem
(Sp) is a difficult task since the identification of degenerate indices in the nonlinear
complementarity problem is hard [37]. Unlike the classical proximal point methods,
our proposed Algorithm 1 is based on a sequence of exterior point approximation.
In this case, the gradient operator [∇x�(x, ς),−∇ς�(x, ς)] in R

n × S +
a is not a

monotone operator, but [∇x�(x, ς) + μk I,−∇ς�(x, ς)] is monotone in R
n × S +

a .
By the fact that

⋂
k S

+
μk

= S +
a , our algorithm generates a convergent sequence and

its clustering point is a saddle point of Problem (Sp) under certain conditions. Since
[∇x�(x, ς),−∇ς�(x, ς)] in R

n × S +
a is not monotone for each subproblem, it is

natural to approximate an optimal solution of Problem (P) under the perturbation
of the regularized term 1

2ρk‖x − xk‖2. This illustrates why our perturbed (exterior
penalty-type) algorithm usually produces an optimal solution of Problem (P), while
the existing proximal point methods based on the interior point algorithm do not.
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Remark 3. In our proof of Theorem 4, we require that ρk → 0. For classical proximal
point methods, this condition was not required. In fact, this condition is adopted for
simple proof that of clustering point (x̄, ς̄) of the sequence {xk, ς k} being a saddle
point of Problem (P). Our simulations show that ρk → 0 can be relaxed. Indeed, in
our test simulations, we found that the convergence for the case of ρk being chosen
as a proper constant parameter is faster than that one of ρk → 0.

5 Numerical Experiments

This section presents some numerical results by proposed canonical primal–dual
method. In our simulations, the involved SDP is solved by YALMIP [23] and
SeDuMi [34].

Example 5.1. Let us first consider the optimization problem (24). Taking ρk = 1
k

and μk = 0.1ρk , the initial condition is randomly generated. Table 1 reports the
results obtained by our method.

From Table 1, we can see that all the four solutions (0, 1), (1, 0), (0,−1), and
(−1, 0) can be detected by our algorithm with different (randomly generated) initial
conditions. The corresponding G(ς̄) ≈ 0, as we shown in Proposition 2, can also be
solved by perturbation method under any given tolerance. However, the following
optimization problem

min
x

P(x) = 1

2

m∑
i=1

(xTAix − di )
2 (39)

cannot be solved by perturbation method in general, where Ai , i = 1, · · · ,m, are
randomly generated semi-definite matrix and di , i = 1, · · · ,m, are chosen such that
the optimal function value of P(x) is 0. In fact, G(ς̄) = 0 since the optimal cost
function value of the optimization problem (39) is 0. Suppose that m is not too small

Table 1 Numerical results for optimization problem (24)

Initial condition x̄ ς̄ P(x̄) = 1
2 ‖ς̄ − Λ(x̄)‖2

(
0.81472369

0.90579194

) (
−1.12001364 × 10−14

1.00004756

) (
−3.48372378

−3.48372376

)
× 10−9 0.93735607 × 10−8

(
0.60684258

0.48598247

) (
1.00004756

5.39453096 × 10−14

) (
−3.48358490

−3.48358548

)
× 10−9 0.93735508 × 10−8

(
−0.61543234

−0.79193703

) (
0.56709252 × 10−14

−1.00004840

) (
−3.48379359

−3.48379378

)
× 10−9 0.93735627 × 10−8

(
−0.92181297

−0.73820724

) (
−1.00004756

0.12834042 × 10−13

) (
−3.48370090

−3.48370051

)
× 10−9 0.93735602 × 10−8
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Table 2 Numerical results for optimization problem (39) after 50 iterations

(n,m)
P(x̄) with ρk = 1/k

and μk = 0.1ρk

P(x̄) with ρk = 0.1

and μk = 0.1ρk

(20, 25) 4.67244827 × 10−6 4.44146192 × 10−8

(30, 35) 2.10227829 × 10−5 0.80404292 × 10−5

(40, 50) 0.00154861 2.34887665 × 10−5

(50, 60) 0.00951209 0.00032821

(for examplem ≥ 20), for any given small perturbation Δ f , the corresponding saddle
point problem (Sp) has no solution (x̄, ς̄ ) such that G(ς̄) � 0 by our numerical
experiences. Thus, the linear perturbation method cannot be applied. Now we use
our proposed algorithm to solve (39) with different ρk and μk . In about 80% cases,
our method can capture a solution of Problem (P). The corresponding numerical
results are reported in Table 2.

During our numerical computation, we observe that for very few steps (for exam-
ple, less than 20 iterations), the numerical solution by our method is very close to
one solution of Problem (P). In fact, for all the cases in Table 2, if we set ε = 10−4,
then all the obtained results are satisfied with maxi |x̄∗

i − xtruei | ≤ ε, i = 1, · · · , n,
where xtrue = [xtrue1 , · · · , xtruen ]T is one of exact optimal solutions of Problem (P).
However, it suffers from slow convergence. Table 2 shows it clearly for the last two
cases. If a gradient-based optimization method is applied, then the optimal function
value is P(x̄) ≈ 10−8 for all cases in Table 2.

It is obvious that Problem (39) has at least two solutions because of its symmetry,
i.e., if x̄ is its solution, so is −x̄. Thus, classical SDP-based relaxation methods in
[18, 33, 36] cannot produce an exact solution. However, our method can produce
one at the expense of iterative computation of a sequence of SDPs in most cases.

6 Applications to Sensor Networks

In this section, we apply our proposed method for sensor network localization prob-
lems.

Consider N sensors and M anchors, both located in the d-dimensional Euclidean
space R

d , where d is 2 or 3. Let the locations of M anchor points be given as a1,
a2, · · · , aM ∈ R

d . The locations of N sensor points x1, x2, · · · , xN ∈ R
d are to be

determined. Let Nx be a subset of {(i, j) : 1 ≤ i < j ≤ N } in which the distance
between the i th and the j th sensor point is given as di j and Na be a subset of
{(i, k) : 1 ≤ i ≤ N , 1 ≤ k ≤ M} in which the distance between the i th sensor point
and the kth anchor point is given as eik . Then, a sensor network localization problem
is to find vector xi ∈ R

d for all i = 1, 2, · · · , N , such that

‖xi − x j‖2 = d2
i j , ∀(i, j) ∈ Nx , (40)

‖xi − ak‖2 = e2
ik, ∀(i, k) ∈ Na . (41)
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When the given distances di j , (i, j) ∈ Nx , and eik, (i, k) ∈ Na, contain noise, the
equalities (40) and (41) may become infeasible. Thus, instead of solving (40) and
(41), we formulate it as a nonconvex optimization as given below:

min
x1,··· ,xN

∑
(i, j)∈Nx

(‖xi − x j‖2 − d2
i j )

2 +
∑

(i,k)∈Na

(‖xi − ak‖2 − e2
ik)

2. (42)

Denote x = [xT1 , · · · , xTN ]T ∈ R
dN . Then, (42) can be rewritten as

min
x

⎧⎨
⎩P(x) =

∑
i j∈Nx

(xTAi jx − d2
i j )

2 +
∑

ik∈Na

(xTBi ix − 2 f Tikx − (e2
ik − f Tik f ik))

2

⎫⎬
⎭ ,

(43)

where Ai j = (Ei − E j )(Ei − E j )
T , Bi i = EiET

i ,

Ei =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0d×d

· · ·
0d×d

Id×d ← i
0d×d

· · ·
0d×d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and f ik =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0d
· · ·
0d

ak ← i
0d
· · ·
0d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As in [17, 33], the root mean square distance

RMSD =
(

1

N

N∑
i=1

‖x̂i − x∗
i ‖2

2

)

is adopted to measure the accuracy of the locations of the sensor i , i = 1, · · · , N ,
where x̂i and x∗

i are the estimated position and true positions, respectively, i =
1, · · · , N . The software package SFSDP [17] is applied for generating test problems
and comparison. During our simulation, all of sensors are placed in [0, 1]×[0, 1]
randomly and four anchors are fixed at (0.125, 0.125), (0.125, 0.875),(0.875, 0.125),
and (0.875, 0.875), respectively.

For the conventional SDP relaxation methods, the computed sensor locations
match its true locations if and only if the corresponding sensor network is uniquely
localizable [33, 36]. Thus, if the localized sensor network has multiple solutions, the
conventional SDP relaxation methods [17, 33] fail to produce a good solution of the
optimization problem defined by (43). Let us consider the following network with
multiple solutions:

Example 6.1 Consider a sensor network containing six sensors and four anchors
depicted in Fig. 1. From Fig. 1, we can see that the sensors x∗

2 , x∗
3 , and x∗

5 have two
positions.
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Fig. 1 Network topology of
six sensors and four anchors
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More specifically, x2 can be either (0.0791, 0.0091) or (0.0091, 0.1709), x3, x5 can
be either the pair of [(0.7342, 0.8470), (0.8506, 0.7257)] or the pair of [(1.0158,

0.9030), (0.8994, 1.0243)]. Let x∗, x̌ , and x̂ be the true sensor locations, sensor
locations computed by the SDP method ([18]), and sensor locations computed by
Algorithm 1, respectively. The results are depicted in Fig. 2a, c. The true sensor
locations (denoted by circles) and the computed locations (denoted by stars) are
connected by solid lines. From the two figures, we can clearly see that our method
produce better estimations than the SDP relaxation method in [18]. However, we
need to solve a sequence of SDPs, but in [18], only one SDP is involved (Table 3).
To achieve a higher accuracy, we apply the gradient-based optimization method in
SFSDP to refine the solutions obtained by our method and that obtained by SDP
method in [18]. After refinement, RMSD obtained by SFSDP is 4.91 × 10−5 and
2.07 × 10−8 is obtained by our method. The refined results are depicted in Fig. 2b, d.
From Fig. 2b, we observe that there are still big errors for the sensor 3 and sensor 5
obtained by the refinement of SDP method in [18]. Figure 2d shows that our method
produces one of the exact solutions of the optimization problem defined by (43).
Thus, our method achieves better performance no matter before or after refinement.

In practical circumstances, the exact distances di j and eik are unavailable because
of the presence of noise during the measurement. To model such a case, we perturb
the distances as

d̂i j = max{(1 + ξi j ), 0.1}di j ((i, j) ∈ Nx ), (44)

êik = max{(1 + ξik), 0.1}eik ((i, k) ∈ Na), (45)

where ξi j , ξik are random variables and chosen from the standard normal distribution
N (0, σ ), where σ is the noisy parameter. By substituting (44) and (45) into (43), the
corresponding optimization problem involved in noisy distance is obtained.

Example 6.2 Consider a sensor network localization problem with 20 sensors and
4 anchors. Let the radio range be 0.3 and the noisy parameter be 0.001, respectively.
A sensor network generated randomly by these parameters is depicted in Fig. 3.

From Fig. 3, we can verify that for this sensor network, it has a unique solution.
We apply Algorithm 2 and the SDP method in [18] in conjunction with a gradient-

based refinement method to solve it. The computed results are listed in Table 4. The
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(a) Results by SFSDP
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(b) Results by SFSDP plus the refinement
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(c) Results by Algorithm 1
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(d) Results by Algorithm 5

Fig. 2 Computed locations information of six sensors and four anchors

Table 3 Numerical results for six sensors and four anchors

True solutions Solutions by
SDP in [18]

Solutions by
Algorithm 1

x∗
1 (0.5818, 0.0968) x̌1 (0.5818, 0.0961) x̂1 (0.5818, 0.0967)

x∗
2 (0.0791, 0.0091)

(0.0091, 0.1709)

x̌2 (0.0775, 0.0100) x̂2 (0.0056, 0.1599)

x∗
3 (0.7342, 0.8470)

(1.0158, 0.9030)

x̌3 (0.7334, 0.8985) x̂3 (1.0167, 0.8980)

x∗
4 (0.1936, 0.6169) x̌4 (0.1946, 0.6170) x̂4 (0.1937, 0.6169)

x∗
5 (0.8506, 0.7257)

(0.8994, 1.0243)

x̌5 (0.7995, 0.7439) x̂5 (0.9047, 1.0234)

x∗
6 (0.4301, 0.2720) x̌6 (0.4300, 0.2713) x̂6 (0.4299, 0.2718)

RMSD computed by SFSDP in conjunction with a gradient-based refinement method
is 9.95×10−2 while that computed by our method is 4.1041 × 10−7. The computed
results by Algorithm 2 and by SDP in conjunction with a gradient-based refinement
method in [18] are depicted in Fig. 4. From Fig. 4 and the values of RMSD, we know
that our method achieves better performance than that by SFSDP in conjunction with
a gradient-based refinement method. This is because if the distances are inexact, the
SDP-based methods in [18] are not ensured to produce a good solution. However, our
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Fig. 3 Network topology of
20 sensors and 4 anchors
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Table 4 Numerical results for 20 sensors and 4 anchors

True solutions Solutions by SDP
+ refinement in
[18]

Solutions by
Algorithm 2

x∗
1 (0.5818, 0.0968) x̌1 (0.6203, 0.2107) x̂1 (0.5815, 0.0963)

x∗
2 (0.0791, 0.0091) x̌2 (0.1379, 0.0015) x̂2 (0.0795, 0.0091)

x∗
3 (0.7342, 0.8470) x̌3 (0.7369, 0.8030) x̂3 (0.7343, 0.8475)

x∗
4 (0.1936, 0.6169) x̌4 (0.2384, 0.6406) x̂4 (0.1939, 0.6168)

x∗
5 (0.8506, 0.7257) x̌5 (0.8610, 0.7040) x̂5 (0.8503, 0.7258)

x∗
6 (0.4301, 0.2720) x̌6 (0.4319, 0.2943) x̂6 (0.4301, 0.2719)

x∗
7 (0.9846, 0.5671) x̌7 (0.7621, 0.5022) x̂7 (0.9833, 0.5670)

x∗
8 (0.3429, 0.3741) x̌8 (0.3399, 0.3793) x̂8 (0.3430, 0.3739)

x∗
9 (0.2070, 0.6663) x̌9 (0.2612, 0.6874) x̂9 (0.2067, 0.6662)

x∗
10 (0.6176, 0.5756) x̌10 (0.6612, 0.5025) x̂10 (0.6172, 0.5762)

x∗
11 (0.1644, 0.2955) x̌11 (0.1643, 0.3085) x̂11 (0.1643, 0.2956)

x∗
12 (0.6533, 0.2237) x̌12 (0.6984, 0.3363) x̂12 (0.6530, 0.2229)

x∗
13 (0.6673, 0.8736) x̌13 (0.6683, 0.8336) x̂13 (0.6676, 0.8746)

x∗
14 (0.2161, 0.6226) x̌14 (0.2607, 0.6429) x̂14 (0.2165, 0.6226)

x∗
15 (0.7701, 0.3595) x̌15 (0.6232, 0.2186) x̂15 (0.7691, 0.3595)

x∗
16 (0.1894, 0.1458) x̌16 (0.1637, 0.1663) x̂16 (0.1893, 0.1460)

x∗
17 (0.8786, 0.8741) x̌17 (0.8746, 0.8626) x̂17 (0.8789, 0.8743)

x∗
18 (0.4776, 0.6487) x̌18 (0.5169, 0.5805) x̂18 (0.4777, 0.6502)

x∗
19 (0.2370, 0.5215) x̌19 (0.2477, 0.5368) x̂19 (0.2378, 0.5215)

x∗
20 (0.2197, 0.0249) x̌20 (0.0236, 0.0836) x̂20 (0.2202, 0.0253)

method is based on the global solution of the optimization problem defined by (43).
Thus, the inexact measurements do not deteriorate the performance of our method.

Example 6.3 Consider a sensor network localization problem with 50 sensors, 4
anchors, and noisy perturbation being 0.001. The corresponding connections between
sensors and sensors and sensors and anchors are depicted in Fig. 5.
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(a) Results by SFSDP plus the refinement
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(b) Results by Algorithm 5

Fig. 4 Computed locations information of 20 sensors and 4 anchors
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Fig. 5 Network topology of 50 sensors and 4 anchors
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(a) Results by SFSDP plus the refinement
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(b) Results by Algorithm 2

Fig. 6 Computed locations information of 50 sensors and 4 anchors

The computed results by Algorithm 2 and by SFSDP in conjunction with a
gradient-based refinement method are depicted in Fig. 6. The RMSD computed by
SFSDP in conjunction with a gradient-based refinement method is 1.07 × 10−1,
while that by our method is 1.9956 × 10−5. Both Fig. 6 and the values of RMSD
show that our method achieves better performance.
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7 Conclusion

This paper presented an effective method and algorithms for solving a class of non-
convex optimization problems. Using the canonical duality theory, the original non-
convex optimization problem is first relaxed to a convex–concave saddle point opti-
mization problem. Depending on the singularity of the matrix G, this relaxed saddle
point problem is classified in two cases: degenerate or non-degenerate. For the non-
degenerate case, the solution of the primal problem can be recovered exactly through
solving a convex SDP problem. Otherwise, a quadratic perturbed primal–dual scheme
is proposed to solve the corresponding degenerate saddle point problem. We proved
that, under certain conditions, the sequence generated by our proposed scheme con-
verges to a solution of the corresponding saddle point problem. If this saddle point
satisfies the condition of ‖Λ(x̄) − ∇V ∗(ς̄)‖ ≤ ε within a given error tolerance, then
the solution of the primal problem is also recovered exactly. Otherwise, x̄ is taken
as a starting point and a gradient-based optimization method is applied to refine
the primal solution. Numerical simulations show that our method can achieve better
performance than the conventional SDP-based relaxation methods.

Acknowledgements The research was supported by US Air Force Office of Scientific Research
under the grants AFOSR FA9550-17-1-0151 and AOARD FOST-16-265. Numerical computation
was performed by research student Mr. Chaojie Li at Federation University.

References

1. Ball, J.M.: Some open problems in elasticity. Geometry, Mechanics, and Dynamics, pp. 3–59.
Springer, New York (2002)

2. Birgin, E.G., Floudas, C.A., Martinez, J.M.: Global minimization using an Augmented
Lagrangian method with variable lower-level constraints. Math. Program. Ser. A 125, 139–
162 (2010)

3. Gallier, J.: The Schur complement and symmetric positive semidefinite (and definite) matrices.
www.cis.upenn.edu/jean/schurcomp.pdf

4. Gao, D.Y.: Duality Principles in Nonconvex Systems: Theory Methods and Applications.
Springer, New York (2000)

5. Gao, D.Y.: Solutions and optimality to box constrained nonconvex minimization problems. J.
Ind. Manag. Optim. 3(2), 293–304 (2007)

6. Gao, D.Y.: Canonical duality theory: unified understanding and generalized solutions for global
optimization. Comput. Chem. Eng. 33, 1964–1972 (2009)

7. Gao, D.Y., Strang, G.: Geometric nonlinearity: potential energy, complementary energy, and
the gap function. Q. Appl. Math. 47(3), 487–504 (1989)

8. Gao, D.Y., Sherali, H.D.: Canonical duality: connection between nonconvex mechanics and
global optimization. Advances in Applied Mathematics and Global Optimization, pp. 249–316.
Springer, Berlin (2009)

9. Gao, D.Y., Ruan, N.: Solutions to quadratic minimization problems with box and integer
constraints. J. Global Optim. 47, 463–484 (2010)

10. Gao, D.Y., Wu, C.Z.: On the triality theory for a quartic polynomial optimization problem. J.
Ind. Manag. Optim. 8(1), 229–242 (2012)

www.cis.upenn.edu/jean/schurcomp.pdf


246 C. Wu and D.Y. Gao

11. Gao, D.Y., Ruan, N., Pardalos, P.M.: Canonical dual solutions to sum of fourth-order polynomi-
als minimization problems with applications to sensor network localization. In: Pardalos, P.M.,
Ye, Y.Y., Boginski, V., Commander, C. (eds.) Sensors: Theory, Algorithms and Applications,
vol. 61, pp. 37–54. Springer, Berlin (2012)

12. Guler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2, 649–664
(1992)

13. He, B.S., Liao, L.Z.: Improvement of some projection methods for monotone nonlinear varia-
tional inequalities. J. Optim. Theory Appl. 112, 111–128 (2002)

14. He, B.S., Yuan, X.M.: An accelerated inexact proximal point algorithm for convex minimiza-
tion. J. Optim. Theory Appl. 154, 536–548 (2012)

15. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)
16. Kaplan, A., Tichatschke, R.: Proximal point methods and nonconvex optimization. J. Global

Optim. 13, 389–406 (1998)
17. Kim, S., Kojima, M., Waki, H., Yamashita, M.: User Manual for SFSDP: a Sparse versions of

Full SemiDefinite programming relaxation for sensor network localization problems. Research
Reports on Mathematical and Computer Science, SERIES B (2009)

18. Kim, S., Kojima, M., Waki, H.: Exploiting sparsity in SDP relaxation for sensor network
localization. SIAM J. Optim. 1, 192–215 (2009)

19. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems.
Ekonomika i Matematicheskie 12, 747–756 (1976)

20. Lasserre, J.B.: Global optimization with polynomials and the problems of moments. SIAM J.
Optim. 11, 796–817 (2001)

21. Lewis, A.S., Wright, S.J.: A proximal method for composite minimization. arXiv:0812.0423v1
22. Li, C., Wang, X.: On convergence of the Gauss–Newton method for convex composite opti-

mization. Math. Program. 91, 349–356 (2002)
23. Löberg, J.: YALMIP: a toolbox for modeling and optimization in Matlab. In: Proceedings of

the International Symposium on CACSD, Taipei, Taiwan, pp. 284–89 (2004)
24. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, New

Jersey (1983)
25. More, J.J.: Generalizations of the trust region problem, Technical Report MCS-P349-0193.

Argonne National Labs, Argonne, IL (1993)
26. More, J., Wu, Z.: Distance geometry optimization for protein structures. J. Global Optim. 15,

219–234 (1999)
27. Nesterov, Y.: Dual extrapolation and its applications to solving variational inequalities and

related problems. Math. Program. Ser. B 109, 319–344 (2007)
28. Nesterov, Y.: Primal-dual subgradient methods for convex problems. Math. Program. Ser. B

120, 221–259 (2009)
29. Pong, T.K., Tseng, P.: (Robust) Edge-based semidefinite programming relaxation of sensor

network localization. Math. Program. 130(2), 321–358 (2011)
30. Rockafellar, R.T.: Monotone operators and the proximal point algorithms. SIAM J. Cont.

Optim. 14, 887–898 (1976)
31. Ruan, N., Gao, D.Y.: Canonical duality approach for nonlinear dynamical systems. IMA J.

Appl. Math. 79(2), 313–325 (2014)
32. Ruan, N., Gao, D.Y., Jiao, Y.: Canonical dual least square method for solving general nonlinear

systems of quadratic equations. Comput. Optim. Appl. 47, 335–347 (2010)
33. So, A.M., Ye, Y.: Theory of semidefinite programming for sensor network localization. Math.

Program. Ser. B 109, 367–384 (2007)
34. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.

Optim. Methods Softw. 12, 625–633 (1999)
35. Taskar, B., Julien, S.L., Jordan, M.I.: Structured prediction, dual extragradient and bregman

projections. J. Mach. Learn. Res. 7, 1627–1653 (2006)
36. Wang, Z., Zheng, S., Ye, Y., Boyd, S.: Further relaxations of the semidefinite programming

approach to sensor network localization. SIAM J. Optim. 19, 655–673 (2008)

http://arxiv.org/abs/0812.0423v1


Canonical Primal–Dual Method 247

37. Yamashita, N., Dan, H., Fukushima, M.: On the identification of degenerate indices in the
nonlinear complementarity problem with the proximal point algorithm. Math. Program. 99,
377–397 (2004)

38. Zhang, J., Gao, D.Y., Yearwood, J.: A novel canonical dual computational approach for prion
AGAAAAGA amyloid fibril molecular modeling. J. Theor. Biol. 284, 149–157 (2011). doi:10.
1016/j.jtbi.2011.06.024

http://dx.doi.org/10.1016/j.jtbi.2011.06.024
http://dx.doi.org/10.1016/j.jtbi.2011.06.024

	Canonical Primal--Dual Method for Solving Nonconvex Minimization Problems
	1 Problems and Motivations
	2 Canonical Duality Theory
	3 Saddle Point Problem
	3.1 Non-degenerate Problem (mathcalSp)
	3.2 Degenerate Problem (mathcalSp) and Linear Perturbation

	4 Quadratic Perturbation Method
	5 Numerical Experiments
	6 Applications to Sensor Networks
	7 Conclusion
	References


